Science.gov

Sample records for activated flux motion

  1. MAGNETIC HELICITY TRANSPORTED BY FLUX EMERGENCE AND SHUFFLING MOTIONS IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Zhang, Y.; Kitai, R.; Takizawa, K. E-mail: zhangyin@bao.ac.cn

    2012-06-01

    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from the sub-photosphere and the shuffling motions of footpoints of preexisting coronal field lines separately. It is well known that only the velocity component, which is perpendicular to the magnetic field ({upsilon}{sub B}), has contributed to the helicity accumulation. Here, we demonstrate that {upsilon}{sub B} can be deduced from a horizontal motion and vector magnetograms under a simple relation of {upsilon}{sub t} = {mu}{sub t} + ({upsilon}{sub n}/B{sub n} ) B{sub t}, as suggested by Demoulin and Berger. Then after dividing {upsilon}{sub B} into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectropolarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR the apparent rotational motion in the following sunspot is the real shuffling motions on the solar surface.

  2. Flux-motion related ac losses in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Chen, Q. Y.

    1993-03-01

    The ac losses of high-temperature superconductors in the flux-depinned mixed-state have been treated using the classical magnetic diffusion equation in conjunction with various models of flux-motion. With the imaginary part representing the ac losses, the field- and frequency-dependent ac susceptibilities were investigated. The imaginary component was found to obey a scaling rule with a characteristic frequency, estimated to be about 10 exp 5-10 exp 9 Hz, that depended on the sample size and normal state resistivity. This frequency range agrees with earlier experimental results, which could not be accounted for previously based upon the notion of thermally activated hopping of vortices. The frequency scaling behaviors using flux-creep and flux-flow models are presented.

  3. Ross sea ice motion, area flux, and deformation

    NASA Technical Reports Server (NTRS)

    kwok, Ron

    2005-01-01

    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  4. Reciprocating motion of active deformable particles

    NASA Astrophysics Data System (ADS)

    Tarama, M.; Ohta, T.

    2016-05-01

    Reciprocating motion of an active deformable particle in a homogeneous medium is studied theoretically. For generality, we employ a simple model derived from symmetry considerations for the center-of-mass velocity and elliptical and triangular deformations in two dimensions. We carry out, for the first time, a systematic investigation of the reciprocating motion of a self-propelled particle. It is clarified that spontaneous breaking of the front-rear asymmetry is essential for the reciprocating motion. Moreover, two routes are found for the formation of the reciprocating motion. One is a bifurcation from a motionless stationary state. The other is destabilisation of an oscillatory rectilinear motion.

  5. Dual Active Surface Heat Flux Gage Probe

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-01-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  6. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  7. Gravity wave motions and momentum fluxes in the middle atmosphere at Adelaide, Australia

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.; Fritts, D. C.

    1985-01-01

    A study was made of gravity wave momentum fluxes in the middle atmosphere using data collected during June 1984 at Adelaide, Australia (35 deg S). The primary objectives were to identify that portion of the gravity wave spectrum that contributes most of the momentum transport and flux divergence and to examine the temporal variability of wave energies and momentum fluxes. The data were obtained with an HF (2 MHz) radar operated in a Doppler configuration with two coplanar off-vertical beams. This technique provides a direct measure of the vertical flux of horizontal momentum due to an arbitrary spectrum of gravity wave and other motions in the plane of the radar beams.

  8. Simulation of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2015-12-01

    Shear flows long observed in solar active regions are now understood to be a consequence of the Lorentz force that develops from a complex interaction between magnetic fields and the thermal pressure of the Sun's gravitationally stratified atmosphere. The shearing motions transport magnetic flux and energy from the submerged portion of the field to the corona providing the necessary energy for flares, filament eruptions and CMEs. To further examine this shearing process, we simulate flux emergence on the scale of active regions with a large-scale model of the near surface convection zone constructed on an adaptive spherical grid. This model is designed to simulate flux emerging on the scale of active regions from a depth of 30 Mm. Here, we show results of a twisted flux rope emerging through the hierarchy of granular convection, and examine the flow patterns that arise as the flux approaches the photosphere. We show how these organized flows driven by the Lorentz force cause the coronal field evolve to a highly non-potential configuration capable of driving solar eruptions such as CMEs and flares.

  9. Metabolic networks in motion: 13C-based flux analysis.

    PubMed

    Sauer, Uwe

    2006-01-01

    Many properties of complex networks cannot be understood from monitoring the components--not even when comprehensively monitoring all protein or metabolite concentrations--unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism.

  10. Scaling behaviors and novel creep motion of ac-driven flux lines in type II superconductor with random point pins

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Ping; Luo, Meng-Bo; Hu, Xiao

    2012-01-01

    We performed Langevin dynamics simulations for the ac-driven flux lines in a type II superconductor with random point-like pinning centers. Scaling properties of flux-line velocity with respect to an instantaneous driving force of small frequency and around the critical dc depinning force are revealed successfully, which provides precise estimates on dynamic critical exponents. From the scaling function, we derive a creep law associated with activation by regular shaking. The effective energy barrier vanishes at the critical dc depinning point in a square-root way when the instantaneous driving force increases. The frequency plays a similar role to temperature in conventional creep motions, but in a nontrivial way governed by the critical exponents. We have also performed systematic finite-size scaling analysis for flux-line velocity in transient processes with dc driving, which provide estimates on critical exponents in good agreement with those derived with ac driving. The scaling law is checked successfully.

  11. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  12. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  13. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  14. Calculating the Motion and Direction of Flux Transfer Events with Cluster

    NASA Technical Reports Server (NTRS)

    Collado-Vega, Yaireska M.; Sibeck, David Gary

    2011-01-01

    We use multi-point timing analysis to determine the orientation and motion of flux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.

  15. Multipurpose active/passive motion compensation system

    SciTech Connect

    Sullivan, R.A.; Clements, R.E.; Davenport, M.R.

    1984-05-01

    A microprocessor-controlled active/passive motion compensation system has been developed for deploying a variety of geotechnical in-situ testing devices with mobile drilling rigs from low-cost service vessels. The light-weight rotary heave compensator incorporates a hydraulic motor as the compensator actuator and a servo-controlled closed loop pump to reduce the air storage and power requirements. Unique features of the system are the use of inertial sensors to measure three components of boat motion, the ability to run the system in active/passive or passive modes, and the ability to automatically lower the drillstring at a constant velocity while maintaining motion compensation. Quantitative measurements made during sea trials offshore California yielded motion compensation accuracy approaching 98 percent which is much better than the compensation achieved with passive systems. Results are presented from offshore in-situ testing with a cone penetrometer, a vane shear device, and a suspension PS logger. The system can also be used for other offshore applications.

  16. Influence of blade motion on mass flux to a model seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2015-11-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. While we anticipate that blade motion and reconfiguration may impact mass flux at the blade surface, this topic is an area of open discussion and research. We seek to better understand the interaction of individual blades with both unidirectional and oscillatory flows and how this interaction impacts mass flux. The degree of reconfiguration can be quantified by two dimensionless numbers, the Cauchy number, Ca, and the buoyancy parameter, B. For unidirectional currents (U) , a theoretical model for the transfer velocity (K) was constructed assuming the boundary layer on the blade surface remained laminar and developed like that over a flat plate, which predicts K ~U 0 . 5 . When the blades were bent-over, the model predicted the measured flux well; when the blades remained upright, the flux to the blade diminished relative to the model. Preliminary wave experiments show that blade motion increased with wave amplitude, and that there are two distinct regimes. In the first regime (Ca<15), the maximum reconfiguration was associated with the peak velocity (wave crest), so that the blade velocity leads the wave velocity by 90 degrees. The second regime occurred when Ca>15. In this regime, the phase difference was approximately zero and the blade moved passively with the wave. NSF.

  17. Microtubule Flux Mediates Poleward Motion of Acentric Chromosome Fragments during Meiosis in Insect SpermatocytesV⃞

    PubMed Central

    LaFountain, James R.; Oldenbourg, Rudolf; Cole, Richard W.; Rieder, Conly L.

    2001-01-01

    We applied a combination of laser microsurgery and quantitative polarization microscopy to study kinetochore-independent forces that act on chromosome arms during meiosis in crane fly spermatocytes. When chromosome arms located within one of the half-spindles during prometa- or metaphase were cut with the laser, the acentric fragments (lacking kinetochores) that were generated moved poleward with velocities similar to those of anaphase chromosomes (∼0.5 μm/min). To determine the mechanism underlying this poleward motion of detached arms, we treated spermatocytes with the microtubule-stabilizing drug taxol. Spindles in taxol-treated cells were noticeably short, yet with polarized light, the distribution and densities of microtubules in domains where fragment movement occurred were not different from those in control cells. When acentric fragments were generated in taxol-treated spermatocytes, 22 of 24 fragments failed to exhibit poleward motion, and the two that did move had velocities attenuated by 80% (to ∼0.1 μm/min). In these cells, taxol did not inhibit the disjunction of chromosomes nor prevent their poleward segregation during anaphase, but the velocity of anaphase was also decreased 80% (∼0.1 μm/min) relative to untreated controls. Together, these data reveal that microtubule flux exerts pole-directed forces on chromosome arms during meiosis in crane fly spermatocytes and strongly suggest that the mechanism underlying microtubule flux also is used in the anaphase motion of kinetochores in these cells. PMID:11739800

  18. Viscous flux motion in anisotropic type-II superconductors in low fields

    SciTech Connect

    Hao, Zhidong; Clem, J.R. Iowa State Univ. of Science and Technology, Ames, IA . Dept. of Physics)

    1990-01-01

    The Bardeen-Stephen model of viscous flux motion in isotropic Type-II superconductors is extended to the anisotropic case characterized by a phenomenological effective mass tensor m{sub ij}. When the magnetic field is low and the vortex lines are aligned along one of the three principal axes, simple expressions for the viscosity tensor {eta}{sub ij} of the viscous flux motion are obtained as functions of m{sub ij} and the normal state conductivity tensor {sigma}{sub ij} for temperature T close to the critical temperature {Tc}. For the high-temperature oxide superconductors the theory predicts that {eta}{sub b}{sup (a)}:{eta}{sub b}{sup (c)}:{eta}{sub c}{sup (a)} {approx} 1:4{gamma}:3{gamma}{sup 2}, where {eta}{sub i}{sup (j)} is the viscosity for the motion along the i-axis of a vortex parallel to the j-axis and {gamma} = {radical}m{sub c}/m{sub a} is the anisotropy parameter (m{sub i}, i = a,b,c, are the principal values of the mass tensor satisfying m{sub a} {approx} m{sub b} {much lt} m{sub c}). 9 refs., 1 fig.

  19. The effect of the solar motion on the flux of long-period comets

    NASA Astrophysics Data System (ADS)

    Gardner, E.; Nurmi, P.; Flynn, C.; Mikkola, S.

    2011-02-01

    The long-term dynamics of Oort cloud comets are studied under the influence of both the radial and the vertical components of the Galactic tidal field. Sporadic dynamical perturbation processes, such as passing stars, are ignored since we aim to study the influence of just the axisymmetric Galactic tidal field on the cometary motion and how it changes in time. We use a model of the Galaxy with a disc, bulge and dark halo, and a local disc density and disc scalelength constrained to fit the best available observational constraints. By integrating a few million of cometary orbits over 1 Gyr, we calculate the time variable flux of Oort cloud comets that enter the inner Solar system for the cases of a constant Galactic tidal field and a realistically varying tidal field, which is a function of the Sun's orbit. The applied method calculates the evolution of the comets by using first-order averaged mean elements. We find that the periodicity in the cometary flux is complicated and quasi-periodic. The amplitude of the variations in the flux is of the order of 30 per cent. The radial motion of the Sun is the chief cause of this behaviour, and should be taken into account when the Galactic influence on the Oort cloud comets is studied.

  20. Calculation of motion induced eddy current forces in null flux coils

    SciTech Connect

    Davey, K.; Morris, T.; Shaaf, J.; Rote, D.

    1995-11-01

    Time dependent motion induced eddy current forces can be quite difficult to compute. The movement of null flux coils between magnets is approached using a coupled boundary element-circuit approach to compute the forces on the structure. The technique involves treating the magnets as a separate circuit whose current is dictated by the product of the magnet thickness and the working coercivity. The mutual inductance between the windows of the moving null flux coil and the stationary equivalent magnet coil hold the key for predicting lift, guidance, and drag forces on the coil. The rate of change of these inductances with respect to position determines the forces and currents. A steady state approximation to these forces is derived in addition to a numerical simulation when the steady state assumption is invalid. The results compare favorably to laboratory results from a 4 ft. diameter experimental test wheel.

  1. Contribution of Low-Frequency Motions to Sensible Heat Fluxes over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng; Cai, Xuhui; Song, Yu; Sun, Jianning

    2016-06-01

    Field observations of the atmospheric boundary layer were made over urban and suburban terrain in the Yangtze River Delta, China. A multiresolution decomposition was applied over three different types of terrain: flat homogeneous terrain, suburban terrain and urban terrain, with results indicating that, (1) the average scale contribution of u, v, w and Tv had a similar variability with length scale for all these three sites respectively, and the dimensionless length scale corresponding to the maximum sensible heat flux contribution increased with the terrain complexity; (2) the length scale corresponding to the maximal average scale contribution for vertical wind velocity λ _w was directly proportional to the roughness length z0 in unstable conditions; and (3) the contributions of large-scale motions led to sensible heat fluxes determined with a large-aperture scintillomter being larger than those using the eddy-covariance method for the suburban case, whereas this phenomenon was not substantial for the urban case.

  2. Contribution of Low-Frequency Motions to Sensible Heat Fluxes over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng; Cai, Xuhui; Song, Yu; Sun, Jianning

    2016-10-01

    Field observations of the atmospheric boundary layer were made over urban and suburban terrain in the Yangtze River Delta, China. A multiresolution decomposition was applied over three different types of terrain: flat homogeneous terrain, suburban terrain and urban terrain, with results indicating that, (1) the average scale contribution of u, v, w and Tv had a similar variability with length scale for all these three sites respectively, and the dimensionless length scale corresponding to the maximum sensible heat flux contribution increased with the terrain complexity; (2) the length scale corresponding to the maximal average scale contribution for vertical wind velocity λ _w was directly proportional to the roughness length z0 in unstable conditions; and (3) the contributions of large-scale motions led to sensible heat fluxes determined with a large-aperture scintillomter being larger than those using the eddy-covariance method for the suburban case, whereas this phenomenon was not substantial for the urban case.

  3. Testing and optimizing active rotary flux compressors

    SciTech Connect

    Carder, B.M.; Eimerl, D.; Goodwin, E.J.; Trenholme, J.; Foley, R.J.; Bird, W.L.

    1981-06-01

    The test program for an Active Rotary Flux Compressor (ARFC) has demonstrated conclusively that large compression factors can be obtained with a laminated-iron, wave-wound, rotary flux compressor. Peak-current to startup-current ratios of 17 have been produced with a rotor tip speed of 60 meters per second. Sub-millisecond pulse widths were also measured: the minimum, 590 ..mu..sec (FWHM), was obtained at 5607 rpm with an 8-inch diameter, 4-pole rotor. The machine was operated without a high current output switch, proving the feasibility of a novel commutation scheme described. A computational code has been developed that will calculate the output waveshape of the model ARFC with reasonable accuracy. The code is being refined to better account for saturation in the iron laminations. A second optimization code selects the best design for a given application. This code shows favorable cost effectiveness of large ARFC's over the conventional capacitors to drive flashlamps for large lasers.

  4. Perceived causality influences brain activity evoked by biological motion.

    PubMed

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  5. Poynting flux in the neighbourhood of a point charge in arbitrary motion and radiative power losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-07-01

    We examine the electromagnetic fields in the neighbourhood of a ‘point charge’ in arbitrary motion and thereby determine the Poynting flux across a spherical surface of vanishingly small radius surrounding the charge. We show that the radiative power losses from a point charge turn out to be proportional to the scalar product of the instantaneous velocity and the first time-derivative of the acceleration of the charge. This may seem to be discordant with the familiar Larmor formula where the instantaneous power radiated from a charge is proportional to the square of acceleration. However, it seems that the root cause of the discrepancy actually lies in Larmor’s formula, which is derived using the acceleration fields but without due consideration for the Poynting flux associated with the velocity-dependent self-fields ‘co-moving’ with the charge. Further, while deriving Larmor’s formula, one equates the Poynting flux through a surface at some later time to the radiation loss by the enclosed charge at the retarded time. Poynting’s theorem, on the other hand, relates the outgoing radiation flux from a closed surface to the rate of energy decrease within the enclosed volume, all calculated for the same given instant only. Here we explicitly show the absence of any Poynting flux in the neighbourhood of an instantly stationary point charge, implying no radiative losses from such a charge, which is in complete conformity with energy conservation. We further show how Larmor’s formula is still able to serve our purpose in the vast majority of cases. It is further shown that Larmor’s formula in general violates momentum conservation and, in the case of synchrotron radiation, leads to a potentially incorrect conclusion about the pitch angle changes of the radiating charges, and that only the radiation reaction formula yields a correct result, consistent with special relativity.

  6. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  7. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  8. The influence of zero-flux surface motion on chemical reactivity.

    PubMed

    Morgenstern, Amanda; Morgenstern, Charles; Miorelli, Jonathan; Wilson, Tim; Eberhart, M E

    2016-02-21

    Visualizing and predicting the response of the electron density, ρ(r), to an external perturbation provides a portion of the insight necessary to understand chemical reactivity. One strategy used to portray electron response is the electron pushing formalism commonly utilized in organic chemistry, where electrons are pictured as flowing between atoms and bonds. Electron pushing is a powerful tool, but does not give a complete picture of electron response. We propose using the motion of zero-flux surfaces (ZFSs) in the gradient of the charge density, ∇ρ(r), as an adjunct to electron pushing. Here we derive an equation rooted in conceptual density functional theory showing that the movement of ZFSs contributes to energetic changes in a molecule undergoing a chemical reaction. Using a substituted acetylene, 1-iodo-2-fluoroethyne, as an example, we show the importance of both the boundary motion and the change in electron counts within the atomic basins of the quantum theory of atoms in molecules for chemical reactivity. This method can be extended to study the ZFS motion between smaller gradient bundles in ρ(r) in addition to larger atomic basins. Finally, we show that the behavior of ∇ρ(r) within atomic basins contains information about electron response and can be used to predict chemical reactivity. PMID:26832068

  9. Spontaneous motion in hierarchically assembled active matter

    PubMed Central

    Sanchez, Tim; Chen, Daniel T. N.; DeCamp, Stephen J.; Heymann, Michael; Dogic, Zvonimir

    2012-01-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication1. Besides their biological importance, such inherently non-equilibrium processes are an inspiration for developing biomimetic active materials from microscopic components that consume energy to generate continuous motion2–4. Being actively driven, these materials are not constrained by the laws of equilibrium statistical mechanics and can thus exhibit highly sought-after properties such as autonomous motility, internally generated flows and self-organized beating5–7. Starting from extensile microtubule bundles, we hierarchically assemble active analogs of conventional polymer gels, liquid crystals and emulsions. At high enough concentration, microtubules form a percolating active network characterized by internally driven chaotic flows, hydrodynamic instabilities, enhanced transport and fluid mixing. When confined to emulsion droplets, 3D networks spontaneously adsorb onto the droplet surfaces to produce highly active 2D nematic liquid crystals whose streaming flows are controlled by internally generated fractures and self-healing, as well as unbinding and annihilation of oppositely charged disclination defects. The resulting active emulsions exhibit unexpected properties, such as autonomous motility, which are not observed in their passive analogues. Taken together, these observations exemplify how assemblages of animate microscopic objects exhibit collective biomimetic properties that are starkly different from those found in materials assembled from inanimate building blocks, challenging us to develop a theoretical framework that would allow for a systematic engineering of their far-from-equilibrium material properties. PMID:23135402

  10. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    ERIC Educational Resources Information Center

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  11. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  12. Quantifying global melt flux and degassing rate from global mantle convection models with plate motion history

    NASA Astrophysics Data System (ADS)

    Li, M.; Black, B. A.; Zhong, S.; Manga, M.; Rudolph, M. L.; Olson, P.

    2015-12-01

    How does the Earth's deep mantle convection affect surface climate change? Volcanism in various geological settings, including mid-ocean ridges, volcanic arcs, rift zones and sites with intraplate volcanism, releases volatiles to Earth's surface. The amount and composition of these volatiles influence the evolution Earth's ocean, crust and atmosphere, which in turn control the evolution of the biosphere. While there are constraints of Earth's degassing from the geochemistry of samples in some localized regions, a quantification of the time evolution of degassing on a global scale remains largely unknown.In this study, we run geodynamical calculations with a full 3D spherical geometry to explore the amount of partial melting in the shallow part of Earth's mantle and implied degassing at a global scale. The plate motion history for the last 200 Ma or longer is employed as time-dependent velocity boundary condition for mantle flow. Using the temperature, pressure and composition in mantle convection models, we calculate the degree of partial melting in different geological settings. We show that the melt flux at mid-ocean ridges generally increases linearly with the speed of plates, with some perturbations due to changes of length of mid-ocean ridges. Generally, this melt flux is about 2-3 times in the past 200 million years than that of the present-day Earth. The present-day melt flux is ~20 km3/year, but this value reaches ~40 km3/year at about 80Ma, and ~60 km3/year at about 120-160Ma. Given estimates of volatile content in the source regions where partial melting occurs and the melt flux we calculate, we quantify the evolution of degassing rate (of CO2) at mid-ocean ridges, hotspots, large igneous provinces, and subduction zones.

  13. Brain activity accompanying perception of implied motion in abstract paintings.

    PubMed

    Kim, Chai-Youn; Blake, Randolph

    2007-01-01

    Early 20th century artists including Duchamp and Balla tried to portray moving objects on a static canvas by superimposing objects in successive portrayals of an action. We investigated whether implied motion in those paintings is associated with activation of motion-sensitive area MT+. In Experiment 1, we found that observers rated these kinds of paintings higher in portraying motion than they did other abstract paintings in which motion is not intended. We also found that observers who had previously experienced abstract paintings with implied motion tended to give higher motion ratings to that class of paintings. In Experiment 2, we used functional magnetic resonance imaging (fMRI) to measure brain activity of observers while viewing abstract paintings receiving the highest and the lowest motion rating scores in Experiment 1. We found MT+, but not primary visual cortex (V1), showed greater BOLD responses to abstract paintings with implied motion than to abstract paintings with little motion impression, but only in observers with prior experience viewing those kinds of paintings. These results imply that the neural machinery ordinarily engaged during perception of real visual motion is activated when people view paintings explicitly designed to convey a sense of visual motion. Experience, however, is necessary to achieve this sense of motion.

  14. Magnetic Flux Emergence and Shearing Motions as Trigger Mechanisms for Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Poedts, S.; Soenen, A.; Zuccarello, F. P.; Jacobs, C.; van der Holst, B.

    2009-04-01

    We study the initiation and early evolution of coronal mass ejections (CMEs) in the framework of numerical ideal magnetohydrodynamics (MHD). The magnetic field of the active region possesses a topology in order for the ``breakout'' model to work. An initial multi-flux system in steady equilibrium containing a pre-eruptive region consisting of three arcades with alternating flux polarity is kept in place by the magnetic tension of the overlying closed magnetic field of the helmet streamer. Both foot point shearing and magnetic flux emergence are used as a triggering mechanism in this model. The boundary conditions cause the central arcade to expand and lead to the eventual ejection of the top of the helmet streamer. We compare the topological and dynamical evolution of the two triggering mechanisms and find that the overall evolution of the systems are similar.

  15. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  16. Calculating the Motion and Direction of Flux Transfer Events with Cluster

    NASA Technical Reports Server (NTRS)

    Collado-Vega, Y. M.; Sibeck, D. G.

    2012-01-01

    For many years now, the interactions of the solar wind plasma with the Earth's magnetosphere has been one of the most important problems for Space Physics. It is very important that we understand these processes because the high-energy particles and also the solar wind energy that cross the magneto sphere could be responsible for serious damage to our technological systems. The solar wind is inherently a dynamic medium, and the particles interaction with the Earth's magnetosphere can be steady or unsteady. Unsteady interaction include transient processes like bursty magnetic reconnection. Flux Transfer Events (FTEs) are magnetopause signatures that usually occur during transient times of reconnection. They exhibit bipolar signatures in the normal component of the magnetic field. We use multi-point timing analysis to determine the orientation and motion of ux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.

  17. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    NASA Astrophysics Data System (ADS)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  18. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  19. IIB soliton spectra with all fluxes activated

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah

    2003-05-01

    Building upon an earlier proposal for the classification of fluxes, a sequence is proposed which generalizes the AHSS by computing type IIB string theory's group of conserved RR and also NS charges, which is conjectured to be a K-theory of dual pairs. As a test of this proposal, the formalism of Maldacena, Moore and Seiberg ( arxiv:hep-th/0108100) is applied to classify D-branes, NS5-branes, F-strings and their dielectric counterparts in IIB compactified on a 3-sphere with both NS and RR background fluxes. The soliton spectra on the 3-sphere are then compared with the output of the sequence, as is the baryon spectrum in Witten's non- spinc example, AdS 5× RP5. The group of conserved charges is seen to change during Brown-Teitelboim-like phase transitions which change the effective cosmological constant.

  20. Uses of motion imagery in activity-based intelligence

    NASA Astrophysics Data System (ADS)

    Lash, Thomas D.

    2013-05-01

    Activity-Based Intelligence (ABI) was defined by the Office of the Undersecretary of Defense for Intelligence as "a discipline of intelligence where the analysis and subsequent collection is focused on activity and transactions associated with an entity, population, or area of interest." ABI is inherently multi-INT, and motion imagery is a rich data source for ABI analysis. Motion imagery provides a unique temporal aspect which is critical for activity detection and classification. Additionally, motion imagery tends to have high spatial oversampling useful for determining activities and patterns above the noise threshold.

  1. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  2. Concerning the Motion and Orientation of Flux Transfer Events Produced by Component and Antiparallel Reconnection

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lin, R.-Q.

    2011-01-01

    We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions.

  3. Explosive Flux Compression: 50 Years of Los Alamos Activities

    SciTech Connect

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  4. An investigation of sea ice motion and fluxes within the Prince Gustaf Adolf Sea, Queen Elizabeth Islands, Canada, 2010

    NASA Astrophysics Data System (ADS)

    Wohlleben, T.; Howell, S.; Agnew, T.; Komarov, A. S.

    2011-12-01

    In this study, the sea ice flux events that occurred through the Prince Gustaf Adolf Sea flux gate into the Queen Elizabeth Islands (QEI) over the 2010 season are investigated in detail. In the Canadian Arctic Archipelago, multi-year ice (MYI) exports and in situ summer melt are primarily balanced by MYI influx events into QEI during the brief period each year when ice exchanges freely between the Arctic Ocean and the QEI reservoir. Here, data from two Canadian Ice Service satellite tracking beacons that drifted through the Gustaf flux gate in 2010, along with atmospheric sea level pressure and wind data, are compared to ice drift velocities derived from RADARSAT imagery using a new sea ice tracking system. It is demonstrated in this study that the annual average ice drifts implied by the fluxes reported in previous works underestimate the basic current-driven flow of sea ice across the Prince Gustaf Adolf Sea gate (as determined from Radarsat imagery during periods of no wind). It is further established that ice drifts (and hence ice fluxes) through the Gustaf flux gate vary spatially, with velocities on the eastern side in 2010 being consistently greater than those on the western side by a factor of ~2. These results reveal the potential of using Radarsat-derived ice motion to expand upon and improve the limited data on ocean currents within the Queen Elizabeth Islands, as well as to refine estimates of ice flux magnitudes and spatial patterns in this area.

  5. Abdominal muscle activation changes if the purpose is to control pelvis motion or thorax motion.

    PubMed

    Vera-Garcia, Francisco J; Moreside, Janice M; McGill, Stuart M

    2011-12-01

    The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior-posterior translations, medial-lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial-lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior-posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired.

  6. Transendothelial albumin flux: evidence against active transport of albumin

    SciTech Connect

    Siflinger-Birnboim, A.; Del Vecchio, P.J.; Cooper, J.A.; Malik, A.B.

    1986-03-01

    The authors studied whether albumin is actively transported across cultured pulmonary endothelium by comparing the transendothelial flux of /sup 125/I-albumin from the luminal-to-abluminal side to the flux from the abluminal-to-luminal side. Bovine pulmonary artery endothelial cells were grown to confluence on gelatinized polycarbonated filters separating abluminal from luminal compartments. Each compartment had an albumin concentration of 1 g/100 ml to equalize oncotic pressure gradients. The effect of hydrostatic pressure was eliminated by maintaining an equal level of fluid in both compartments. The transendothelial flux of albumin across the monolayer was measured by placing /sup 125/I-albumin tracer either on the luminal or the abluminal side. Equal fluxes of /sup 125/I-albumin from luminal-to-abluminal side and from abluminal-to-luminal side were observed. The results indicate that the pulmonary endothelium behaves symmetrically for albumin, indicating the absence of active transport of albumin.

  7. Wavelet-based motion artifact removal for electrodermal activity.

    PubMed

    Chen, Weixuan; Jaques, Natasha; Taylor, Sara; Sano, Akane; Fedor, Szymon; Picard, Rosalind W

    2015-01-01

    Electrodermal activity (EDA) recording is a powerful, widely used tool for monitoring psychological or physiological arousal. However, analysis of EDA is hampered by its sensitivity to motion artifacts. We propose a method for removing motion artifacts from EDA, measured as skin conductance (SC), using a stationary wavelet transform (SWT). We modeled the wavelet coefficients as a Gaussian mixture distribution corresponding to the underlying skin conductance level (SCL) and skin conductance responses (SCRs). The goodness-of-fit of the model was validated on ambulatory SC data. We evaluated the proposed method in comparison with three previous approaches. Our method achieved a greater reduction of artifacts while retaining motion-artifact-free data.

  8. Video summarization using descriptors of motion activity: a motion activity based approach to key-frame extraction from video shots

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Radhakrishnan, Regunathan; Peker, Kadir A.

    2001-10-01

    We describe a video summarization technique that uses motion descriptors computed in the compressed domain. It can either speed up conventional color-based video summarization techniques, or rapidly generate a key-frame based summary by itself. The basic hypothesis of the work is that the intensity of motion activity of a video segment is a direct indication of its `summarizability,' which we experimentally verify using the MPEG-7 motion activity descriptor and the fidelity measure proposed in H. S. Chang, S. Sull, and S. U. Lee, `Efficient video indexing scheme for content-based retrieval,' IEEE Trans. Circuits Syst. Video Technol. 9(8), (1999). Note that the compressed domain extraction of motion activity intensity is much simpler than the color-based calculations. We are thus able to quickly identify easy to summarize segments of a video sequence since they have a low intensity of motion activity. We are able to easily summarize these segments by simply choosing their first frames. We can then apply conventional color-based summarization techniques to the remaining segments. We thus speed up color-based summarization by reducing the number of segments processed. Our results also motivate a simple and novel key-frame extraction technique that relies on a motion activity based nonuniform sampling of the frames. Our results indicate that it can either be used by itself or to speed up color-based techniques as explained earlier.

  9. The non-active stellar chromosphere: Ca II basal flux

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, M. I.; Schröder, K.-P.; Hauschildt, P.

    2014-11-01

    We analyse high-resolution, high-s/n European Southern Observatories (ESO)-archive spectra (from UVES, the UV echelle spectrograph) of 76 inactive or modestly active stars of spectral type G to M, main sequence and giants. Using PHOENIX model photospheres with Ca II K lines that match the observed line profiles, we (i) revise the effective temperatures, (ii) obtain a precise surface flux scale for each star and (iii) directly determine the exact surface fluxes of each Ca II K chromospheric emission with respect to the photospheric line profile. We find that our stellar sample exhibits a lower boundary to its chromospheric surface flux distribution with an unprecedented definition. From a subsample of the 25 least active stars, we obtain a simple empirical formula for the basal Ca II flux as a function of effective temperature: log {F^basal_{Ca II(H+K)}} = 7.05(± 0.31) log {T_eff} - 20.86(± 1.15). This is in good agreement with the Mg II basal flux. In a direct comparison with the large body of Mt Wilson S-measurements of the chromospheric Ca II emission and its well-defined cut-off, excellent agreement is achieved as well. A new result, however, is the small scatter of the least active star's fluxes about the basal flux. It is about 25 per cent and equals the residual uncertainties of our approach. At the same time, we do not find any evidence for a gravity dependence within these limits. This strongly confirms the basal flux as a well-defined and universal phenomenon, which characterizes every inactive chromosphere.

  10. Active motion, communicative aggregations, and the spatial closure of Umwelt.

    PubMed

    Kull, K

    2000-01-01

    On the basis of a simple model of movable organisms that are supplied by semiotic force of attraction or repulsion, several general features of spatial behavior are demonstrated: (1) the stochastic spatial distribution of actively moving organisms is unstable; (2) simple or complex aggregations of organisms appear as a result of active motion; and (3) the ability for active motion ties the organisms with place. These results show that models that apply an internalist approach can considerably simplify the theory of spatial behavior of organic systems. Explanations based on the effects of Darwinian fitness may not be necessary for understanding the origin of biological aggregations.

  11. Tuning active Brownian motion with shot-noise energy pulses

    NASA Astrophysics Data System (ADS)

    Fiasconaro, Alessandro; Gudowska-Nowak, Ewa; Ebeling, Werner

    2009-01-01

    The main aim of this work is to explore the possibility of modeling the biological energy support mediated by absorption of ATP (adenosine triphosphate) as an energetic shot noise. We develop a general model with discrete input of energy pulses and study shot-noise-driven ratchets. We consider these ratchets as prototypes of Brownian motors driven by energy-rich ATP molecules. Our model is a stochastic machine able to acquire energy from the environment and convert it into kinetic energy of motion. We present characteristic features and demonstrate the possibility of tuning these motors by adapting the mean frequency of the discrete energy inputs, which are described as a special shot noise. In particular, the effect of stochastically driven directionality and uphill flux in systems acquiring energy from the shot noise is analyzed. As a possible application we consider the motion of kinesin on a microtubule under a constant load force.

  12. Magnetic flux motion in (P rxY1 -x ) B a2C u3O7 -δ polycrystal samples sintered in Ar and O2 atmospheres

    NASA Astrophysics Data System (ADS)

    Favre, S.; Yelpo, C.; Romero, P.; Stari, C.; Ariosa, D.

    2016-09-01

    We present a comparative study of the magnetic flux motion in ceramic pellets made of (P rxY1 -x ) B a2C u3O7 -δ as a function of their composition and morphology. Samples produced in Ar or O2 atmosphere present noticeable differences in their magnetic response that we explain in terms of their structural parameters. The material's parameters that most influence the flux dynamics are morphology and oxygen content, that change dramatically with the sintering atmosphere. Moderate changes are also observed as a function of the Pr content. Magnetic pinning efficiency is discussed in terms of intergranular couplings and effective activation energies, estimated from AC-susceptibility and magnetoresistance measurements.

  13. Initiation and Eruption Process of Magnetic Flux Rope from Solar Active Region NOAA 11719 to Earth-directed CME

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Zhang, J.

    2014-12-01

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  14. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  15. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  16. Motion of a quantum particle in a random-flux field

    NASA Astrophysics Data System (ADS)

    Łusakowski, Andrzej; Turski, Łukasz A.

    1993-08-01

    We consider a charged spinless quantum particle moving on a two-dimensional square lattice. Each plaquette of the lattice is penetrated by a random magnetic flux with values homogeneously distributed in the interval (0,2π) (in units of the elementary quantum flux h/e). The fluxes in different plaquettes are statistically independent. Using the path-integral method, within the saddle-point approximation, we evaluated the averaged density of states. Our results are compared with the recent numerical-simulation predictions of Pryor and Zee.

  17. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  18. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  19. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    SciTech Connect

    Perkins, R. J. Bellan, P. M.

    2015-02-15

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle in a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.

  20. Dipolarization, current sheet flapping motion and periodic particle flux enhancements observed during the Galaxy 15 spacecraft anomaly

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert

    2016-04-01

    On 5 April 2010, the Galaxy 15 spacecraft, orbiting at geosynchronous altitudes experienced an anomaly near local midnight when it stopped responding to any ground commands. Galaxy 15 spacecraft encountered severe plasma conditions while it was in eclipse and during the subsequent anomaly interval and these conditions included a massive magnetic field dipolarization that injected energetic particles from the magnetotail during a substorm. This anomaly was interesting for many reasons including that multiple spacecraft (GOES and THEMIS probes) were well located in the nightside to observe the substorm. At the time of the field line stretching and dipolarization some of the satellites observed magnetic variations together with particle flux enhancements with periodicities of a few minutes. In this study, we detail characteristics of this dipolarization, which was one of the strongest ever observed by a GOES spacecraft, as well as discuss perturbations in the magnetic field and particle fluxes that are indicative of magnetotail current sheet flapping motion.

  1. Contribution of complex stapes motion to cochlea activation.

    PubMed

    Eiber, Albrecht; Huber, Alexander M; Lauxmann, Michael; Chatzimichalis, Michail; Sequeira, Damien; Sim, Jae Hoon

    2012-02-01

    Classic theories of hearing have considered only a translational component (piston-like component) of the stapes motion as being the effective stimulus for cochlear activation and thus the sensation of hearing. Our previous study (Huber et al., 2008) qualitatively showed that rotational components around the long and short axes of the footplate (rocking-like components) lead to cochlear activation as well. In this study, the contribution of the piston-like and rocking-like components of the stapes motion to cochlea activation was quantitatively investigated with measurements in live guinea pigs and a related mathematical description. The isolated stapes in anesthetized guinea pigs was stimulated by a three-axis piezoelectric actuator, and 3-D motions of the stapes and compound action potential (CAP) of the cochlea were measured simultaneously. The measured values were used to fit a hypothesis of the CAP as a linear combination of the logarithms of the piston-like and rocking-like components. Both the piston-like and rocking-like components activate cochlear responses when they exceed certain thresholds. These thresholds as well as the relation between CAP and intensity of the motion component were different for piston-like and rocking-like components. The threshold was found to be higher and the sensitivity lower for the rocking-like component than the corresponding values for the piston-like component. The influence of the rocking-like component was secondary in cases of piston-dominant motions of the stapes although it may become significant for low amplitudes of the piston-like component.

  2. A comparison of Flux transfer events' motion determined by deHoffmann-Teller technique with the Cooling model

    NASA Astrophysics Data System (ADS)

    Dias Silveira, M. V.; Sibeck, D. G.; Gonzalez, W.; Koga, D.

    2015-12-01

    Flux transfer events (FTEs) are considered as a result of transient magnetic reconnection and are often observed in the vicinity of the Earth's magnetopause. The FTEs are responsible for transfer of mass, energy and momentum between solar wind and magnetosphere. According to FTE generation models and in situ observations, FTEs are formed in the subsolar region when the interplanetary magnetic field (IMF) is southward while for northward IMF they should be formed in the polar cap regions. In the present study it is analyzed 58 FTE events observed by the THEMIS spacecraft. First of all, the deHoffmann-Teller technique is employed to determine the local FTE velocity and direction. Then, these parameters (velocity and direction) are compared with those predicted by the Cooling model which has largely been employed to estimate the motion of reconnected flux tubes over a modeled magnetopause under specific solar wind conditions. The calculated deHoffmann-Teller velocity and direction indicate that FTEs observed at the flanks of magnetosphere (|YGSM|≥10 Re) move antisunward and dawn/duskward. For intermediate longitudes (|YGSM|<10 Re) a combination of dusk/dawnward and southward motions is found for the present study. The comparison between the calculated FTEs' velocity/direction and those predicted by the Cooling model presents a good agreement. It is also found that 12 FTE events were observed in the equatorial region during northward IMF.

  3. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    SciTech Connect

    Eyink, Gregory L.

    2009-08-15

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  4. CA II Emission surface fluxes in active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1984-01-01

    Ca II emission-line surface fluxes are derived for 14 stars from 17 A/mm photographic spectra. Most of the stars observed are active chromosphere binaries; a few are known X-ray sources or have been observed by the IUE. The status of optical information on each of the objects is reviewed, and new information on v sin i and duplicity is presented.

  5. Internal motions prime cIAP1 for rapid activation.

    PubMed

    Phillips, Aaron H; Schoeffler, Allyn J; Matsui, Tsutomu; Weiss, Thomas M; Blankenship, John W; Zobel, Kerry; Giannetti, Anthony M; Dueber, Erin C; Fairbrother, Wayne J

    2014-12-01

    Cellular inhibitor of apoptosis 1 (cIAP1) is a ubiquitin ligase with critical roles in the control of programmed cell death and NF-κB signaling. Under normal conditions, the protein exists as an autoinhibited monomer, but proapoptotic signals lead to its dimerization, activation and proteasomal degradation. This view of cIAP1 as a binary switch has been informed by static structural studies that cannot access the protein's dynamics. Here, we use NMR spectroscopy to study micro- and millisecond motions of specific domain interfaces in human cIAP1 and use time-resolved small-angle X-ray scattering to observe the global conformational changes necessary for activation. Although motions within each interface of the 'closed' monomer are insufficient to activate cIAP1, they enable associations with catalytic partners and activation factors. We propose that these internal motions facilitate rapid peptide-induced opening and dimerization of cIAP1, which undergoes a dramatic spring-loaded structural transition. PMID:25383668

  6. Active motion induced break-up of colloidal gels

    NASA Astrophysics Data System (ADS)

    Szakasits, Megan; Solomon, Michael

    2015-03-01

    We found that fractal gel networks of polystyrene colloids can be broken up by active motion of Janus colloids that have been incorporated into them. Janus particles were synthesized by electron beam deposition of platinum onto one micron carboxylate modified polystyrene particles. Through addition of the divalent salt magnesium chloride, an initially stable suspension of Janus and polystyrene colloids, present in equal proportion, underwent aggregation to yield a fractal gel. The Janus colloids were activated by addition of 30% v/v hydrogen peroxide through a porous hydrogel membrane. Changes in structure and dynamics were visualized by two channel confocal laser scanning microscopy (CLSM). By means of image analysis, we calculated the mean squared displacement (MSD) and radial distribution function (RDF) for gel samples before and after addition of hydrogen peroxide. The MSD confirmed the Janus particles we synthesized undergo active motion. The RDF and cluster size distribution of gel samples before and after addition of peroxide demonstrate how active motion broke apart the gel network into smaller clusters.

  7. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  8. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-02-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes.

  9. Motion Sensor Reactivity in Physically Active Young Adults

    ERIC Educational Resources Information Center

    Behrens, Timothy K.; Dinger, Mary K.

    2007-01-01

    The purpose of this study was to examine whether young adults changed their physical activity (PA) behavior when wearing motion sensors. PA patterns of 119 young adults (M age = 20.82 years, SD = 1.50, M body mass index = 23.93 kg/m[superscript 2] , SD = 4.05) were assessed during 2 consecutive weeks. In Week 1, participants wore an accelerometer.…

  10. Thermally activated depinning motion of contact lines in pseudopartial wetting.

    PubMed

    Du, Lingguo; Bodiguel, Hugues; Colin, Annie

    2014-07-01

    We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish near the equilibrium contact angle. These observations are consistent with the thermally activated depinning theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the contact line. PMID:25122310

  11. Motion Sensor Use for Physical Activity Data: Methodological Considerations

    PubMed Central

    McCarthy, Margaret; Grey, Margaret

    2015-01-01

    Background Physical inactivity continues to be a major risk factor for cardiovascular disease, and only one half of adults in the United States meet physical activity (PA) goals. PA data are often collected for surveillance or for measuring change after an intervention. One of the challenges in PA research is quantifying exactly how much and what type of PA is taking place—especially because self-report instruments have inconsistent validity. Objective The purpose is to review the elements to consider when collecting PA data via motion sensors, including the difference between PA and exercise; type of data to collect; choosing the device; length of time to monitor PA; instructions to the participants; and interpretation of the data. Methods The current literature on motion sensor research was reviewed and synthesized to summarize relevant considerations when using a motion sensor to collect PA data. Results Exercise is a division of PA that is structured, planned, and repetitive. Pedometer data includes steps taken, and calculated distance and energy expenditure. Accelerometer data includes activity counts and intensity. The device chosen depends on desired data, cost, validity, and ease of use. Reactivity to the device may influence the duration of data collection. Instructions to participants may vary depending on purpose of the study. Experts suggest pedometer data be reported as steps—since that is the direct output—and distance traveled and energy expenditure are estimated values. Accelerometer count data may be analyzed to provide information on time spent in moderate or vigorous activity. Discussion Thoughtful decision making about PA data collection using motion sensor devices is needed to advance nursing science. PMID:26126065

  12. δ-SUNSPOT FORMATION IN SIMULATION OF ACTIVE-REGION-SCALE FLUX EMERGENCE

    SciTech Connect

    Fang, Fang; Fan, Yuhong

    2015-06-10

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  13. The Dynamic Evolution of Active-Region-Scale Magnetic Flux Tubes in the Turbulent Solar Convective Envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria A.; Fan, Yuhong; Miesch, Mark S.

    2014-06-01

    The manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective upflows help tilt the apex of rising flux tubes toward the equator in accordance with Joy’s Law. Additionally, rotationally aligned, columnar convective structures called giant cells present in the ASH simulation organizes flux emergence into a large-scale longitudinal pattern similar to the active longitude trend on the Sun and other solar-like stars. The effect of radiative diffusion across the radiation zone-convection zone interface on the buoyant rise of magnetic flux tubes is also studied, as well as the possibility of an induced twist of flux tube magnetic fields lines due to the Coriolis force induced tilting of the flux tube apex, presence of turbulent convection, and the conservation of helicity. Flux emergence simulations through the convection zone of a Sun rotating at 5 times

  14. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    NASA Astrophysics Data System (ADS)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  15. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  16. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion. PMID:18377049

  17. Photothermally activated motion and ignition using aluminum nanoparticles

    SciTech Connect

    Abboud, Jacques E.; Chong Xinyuan; Zhang Mingjun; Zhang Zhili; Jiang Naibo; Roy, Sukesh; Gord, James R.

    2013-01-14

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be {approx}6 mm. Ignition delay can be {approx}0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  18. Motion transition of active filaments: rotation without hydrodynamic interactions.

    PubMed

    Jiang, Huijun; Hou, Zhonghuai

    2014-02-21

    We investigate the dynamics of an active semiflexible filament in a bead–rod model involving dynamically the hydrodynamic interaction (HI), active force, filament flexibility and viscous drag. We find that the filament can show three distinct types of motion, namely, translation, snaking and rotation, with the variation of the rigidity or active force. The transition from translation to snaking is continuous and mainly due to transverse instability, while the snaking–rotation transition is first-order like and shown to result from a type of symmetry breaking associated with the shape kinematics. Of particular interest, we find that HI is not necessary for the rotation or snaking motion, but can enlarge remarkably the parameter regions in which they can occur. Combining with local collisions, we show that, for the parameter region where HI is essential for the maintenance of rotation curvature of a single filament, HI is also essential for the emergence of collective vortexes. Thus, our findings provide new insights into the subtle role of HI in the formation of collective structures in active systems PMID:24983114

  19. Fusion of smartphone motion sensors for physical activity recognition.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2014-06-10

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

  20. Transition region fluxes in A-F Dwarfs: Basal fluxes and dynamo activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Schrijver, Carolus J.; Boyd, William

    1988-01-01

    The transition region spectra of 87 late A and early F dwarfs and subgiants were analyzed. The emission line fluxes are uniformly strong in the early F stars, and drop off rapidly among the late A stars. The basal flux level in the F stars is consistent with an extrapolation of that observed among the G stars, while the magnetic component displays the same flux-flux relations seen among solar-like stars. Despite the steep decrease in transition region emission flux for B-V less than 0.28, C II emission is detected in alpha Aql (B-V = 0.22). The dropoff in emission is inconsistent with models of the mechanically generated acoustic flux available. It is concluded that, although the nonmagnetic basal heating is an increasingly important source of atmospheric heating among the early F stars, magnetic heating occurs in any star which has a sufficiently thick convective zone to generate acoustic heating.

  1. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2014-03-01

    The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

  2. Crew activity and motion effects on the space station

    NASA Technical Reports Server (NTRS)

    Rochon, Brian V.; Scheer, Steven A.

    1987-01-01

    Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.

  3. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  4. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  5. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  6. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    SciTech Connect

    Hall, Derek B.; Greger, Paul D.

    2014-08-01

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographing only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.

  7. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  8. Some Studies in Large-Scale Surface Fluxes and Vertical Motions Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2010-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data on Convective Available Potential Energy (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We developed an empirical model and a C++ program to calculate surface potential temperatures and heat fluxes using the above data. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes.

  9. Motion verb sentences activate left posterior middle temporal cortex despite static context.

    PubMed

    Wallentin, Mikkel; Lund, Torben Ellegaard; Ostergaard, Svend; Ostergaard, Leif; Roepstorff, Andreas

    2005-04-25

    The left posterior middle temporal region, anterior to V5/MT, has been shown to be responsive both to images with implied motion, to simulated motion, and to motion verbs. In this study, we investigated whether sentence context alters the response of the left posterior middle temporal region. 'Fictive motion' sentences are sentences in which an inanimate subject noun, semantically incapable of self movement, is coupled with a motion verb, yielding an apparent semantic contradiction (e.g. 'The path comes into the garden.'). However, this context yields no less activation in the left posterior middle temporal region than sentences in which the motion can be applied to the subject noun. We speculate that the left posterior middle temporal region activity in fictive motion sentences reflects the fact that the hearer applies motion to the depicted scenario by scanning it egocentrically.

  10. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    PubMed

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  11. Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity?

    PubMed

    Pujol, Jesus; Macià, Dídac; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Sunyer, Jordi; de la Torre, Rafael; Caixàs, Assumpta; Martín-Santos, Rocío; Deus, Joan; Harrison, Ben J

    2014-11-01

    Imaging research on functional connectivity is uniquely contributing to characterize the functional organization of the human brain. Functional connectivity measurements, however, may be significantly influenced by head motion that occurs during image acquisition. The identification of how motion influences such measurements is therefore highly relevant to the interpretation of a study's results. We have mapped the effect of head motion on functional connectivity in six different populations representing a wide range of potential influences of motion on functional connectivity. Group-level voxel-wise maps of the correlation between a summary head motion measurement and functional connectivity degree were estimated in 80 young adults, 71 children, 53 older adults, 20 patients with Down syndrome, 24 with Prader-Willi syndrome and 20 with Williams syndrome. In highly compliant young adults, motion correlated with functional connectivity measurements showing a system-specific anatomy involving the sensorimotor cortex, visual areas and default mode network. Further characterization was strongly indicative of these changes expressing genuine neural activity related to motion, as opposed to pure motion artifact. In the populations with larger head motion, results were more indicative of widespread artifacts, but showing notably distinct spatial distribution patterns. Group-level regression of motion effects was efficient in removing both generalized changes and changes putatively related to neural activity. Overall, this study endorses a relatively simple approach for mapping distinct effects of head motion on functional connectivity. Importantly, our findings support the intriguing hypothesis that a component of motion-related changes may reflect system-specific neural activity.

  12. Activity-based exploitation of Full Motion Video (FMV)

    NASA Astrophysics Data System (ADS)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  13. Oxyanion flux characterization using passive flux meters: development and field testing of surfactant-modified granular activated carbon.

    PubMed

    Lee, Jimi; Rao, P S C; Poyer, Irene C; Toole, Robyn M; Annable, M D; Hatfield, K

    2007-07-17

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field

  14. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    NASA Astrophysics Data System (ADS)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  15. Magnetic flux cancellation and Doppler shifts in flaring active regions

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga; Petrie, Gordon

    2016-05-01

    Flux cancellation plays an important role in some theories of solar eruptions. The mechanism of flux cancellation is suggested by many models to be a necessary condition of flare initiation as a part of slow reconnection processes in the lower atmosphere. In our earlier work we analyzed flux cancellation events during major flares using GONG line-of-sight magnetograms. In this work we use vector magnetic field data from SDO/HMI for better interpretation of the longitudinal field changes. We also compute Doppler velocity shifts at the cancellation sites in attempt to distinguish between the three physical processes that could stand behind flux removal from the photosphere: submergence of U-shaped loops, emergence of Ω-shaped loops and magnetic reconnection.

  16. Active dipole clusters: From helical motion to fission.

    PubMed

    Kaiser, Andreas; Popowa, Katarina; Löwen, Hartmut

    2015-07-01

    The structure of a finite particle cluster is typically determined by total energy minimization. Here we consider the case where a cluster of soft-sphere dipoles becomes active, i.e., when the individual particles exhibit an additional self-propulsion along their dipole moments. We numerically solve the overdamped equations of motion for soft-sphere dipoles in a solvent. Starting from an initial metastable dipolar cluster, the self-propulsion generates a complex cluster dynamics. The final cluster state has in general a structure widely different to the initial one, the details depend on the model parameters and on the protocol of how the self-propulsion is turned on. The center of mass of the cluster moves on a helical path, the details of which are governed by the initial cluster magnetization. An instantaneous switch to a high self-propulsion leads to fission of the cluster. However, fission does not occur if the self-propulsion is increased slowly to high strengths. Our predictions can be verified through experiments with self-phoretic colloidal Janus particles and for macroscopic self-propelled dipoles in a highly viscous solvent.

  17. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    PubMed

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  18. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  19. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  20. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  1. Postural activity and motion sickness during video game play in children and adults.

    PubMed

    Chang, Chih-Hui; Pan, Wu-Wen; Tseng, Li-Ya; Stoffregen, Thomas A

    2012-03-01

    Research has confirmed that console video games give rise to motion sickness in many adults. During exposure to console video games, there are differences in postural activity (movement of the head and torso) between participants who later experience motion sickness and those who do not, confirming a prediction of the postural instability theory of motion sickness. Previous research has not addressed relations between video games, movement and motion sickness in children. We evaluated the nauseogenic properties of a commercially available console video game in both adults and 10-year-old children. Individuals played the game for up to 50 min and were instructed to discontinue immediately if they experienced any symptoms of motion sickness, however mild. During game play, we monitored movement of the head and torso. Motion sickness was reported by 67% of adults and by 56% of children; these rates did not differ. As a group, children moved more than adults. Across age groups, the positional variability of the head and torso increased over time during game play. In addition, we found differences in movement between participants who later reported motion sickness and those who did not. Some of these differences were general across age groups but we also found significant differences between the movement of adults and children who later reported motion sickness. The results confirm that console video games can induce motion sickness in children and demonstrate that changes in postural activity precede the onset of subjective symptoms of motion sickness in children.

  2. Effective temperature and spontaneous collective motion of active matter

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter

    2012-02-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative temperature system in which beautiful structures form resembling the asters seen in cell division.

  3. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles

    PubMed Central

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-01-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles. PMID:26504295

  4. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles.

    PubMed

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-09-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles.

  5. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  6. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion.

  7. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion. PMID:26737049

  8. Effects of attention and perceptual uncertainty on cerebellar activity during visual motion perception.

    PubMed

    Baumann, Oliver; Mattingley, Jason B

    2014-02-01

    Recent clinical and neuroimaging studies have revealed that the human cerebellum plays a role in visual motion perception, but the nature of its contribution to this function is not understood. Some reports suggest that the cerebellum might facilitate motion perception by aiding attentive tracking of visual objects. Others have identified a particular role for the cerebellum in discriminating motion signals in perceptually uncertain conditions. Here, we used functional magnetic resonance imaging to determine the degree to which cerebellar involvement in visual motion perception can be explained by a role in sustained attentive tracking of moving stimuli in contrast to a role in visual motion discrimination. While holding the visual displays constant, we manipulated attention by having participants attend covertly to a field of random-dot motion or a colored spot at fixation. Perceptual uncertainty was manipulated by varying the percentage of signal dots contained within the random-dot arrays. We found that attention to motion under high perceptual uncertainty was associated with strong activity in left cerebellar lobules VI and VII. By contrast, attending to motion under low perceptual uncertainty did not cause differential activation in the cerebellum. We found no evidence to support the suggestion that the cerebellum is involved in simple attentive tracking of salient moving objects. Instead, our results indicate that specific subregions of the cerebellum are involved in facilitating the detection and discrimination of task-relevant moving objects under conditions of high perceptual uncertainty. We conclude that the cerebellum aids motion perception under conditions of high perceptual demand.

  9. Microbial Activity and Volatile Fluxes in Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Corrigan, R. S.; Lowell, R. P.

    2013-12-01

    Understanding geographically and biologically the production or utilization of volatile chemical species such as CO2, CH4, and H2 is crucial not only for understanding hydrothermal processes but also for understanding life processes in the oceanic crust. To estimate the microbial effect on the transport of these volatiles, we consider a double-loop single pass model as shown in Figure 1 to estimate the mass fluxes shown. We then use a simple mixing formulation: C4Q4 = C3 (Q1 -Q3)+ C2Q2, where C2 is the concentration of the chemical in seawater, C3 is the average concentration of the chemical in high temperature focused flow, C4 is the expected concentration of the chemical as a result of mixing, and the relevant mass flows are as shown in Figure 1. Finally, we compare the calculated values of CO2, CH4, and H2 in diffuse flow fluids to those observed. The required data are available for both the Main Endeavour Field on the Juan de Fuca Ridge and the East Pacific Rise 9°50' N systems. In both cases we find that, although individual diffuse flow sites have observed concentrations of some elements that are greater than average, the average concentration of these volatiles is smaller in all cases than the concentration that would be expected from simple mixing. This indicates that subsurface microbes are net utilizers of these chemical constituents at the Main Endeavour Field and at EPR 9°50' N on the vent field scale. Figure 1. Schematic of a 'double-loop' single-pass model above a convecting, crystallizing, replenished AMC (not to scale). Heat transfer from the vigorously convecting, cooling, and replenished AMC across the conductive boundary layer δ drives the overlying hydrothermal system. The deep circulation represented by mass flux Q1 and black smoker temperature T3 induces shallow circulation noted by Q2. Some black smoker fluid mixes with seawater resulting in diffuse discharge Q4, T4, while the direct black smoker mass flux with temperature T3 is reduced

  10. Enzymatically active high-flux selectively gas-permeable membranes

    DOEpatents

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  11. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  12. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  13. Physical Activity Recognition Based on Motion in Images Acquired by a Wearable Camera.

    PubMed

    Zhang, Hong; Li, Lu; Jia, Wenyan; Fernstrom, John D; Sclabassi, Robert J; Mao, Zhi-Hong; Sun, Mingui

    2011-06-01

    A new technique to extract and evaluate physical activity patterns from image sequences captured by a wearable camera is presented in this paper. Unlike standard activity recognition schemes, the video data captured by our device do not include the wearer him/herself. The physical activity of the wearer, such as walking or exercising, is analyzed indirectly through the camera motion extracted from the acquired video frames. Two key tasks, pixel correspondence identification and motion feature extraction, are studied to recognize activity patterns. We utilize a multiscale approach to identify pixel correspondences. When compared with the existing methods such as the Good Features detector and the Speed-up Robust Feature (SURF) detector, our technique is more accurate and computationally efficient. Once the pixel correspondences are determined which define representative motion vectors, we build a set of activity pattern features based on motion statistics in each frame. Finally, the physical activity of the person wearing a camera is determined according to the global motion distribution in the video. Our algorithms are tested using different machine learning techniques such as the K-Nearest Neighbor (KNN), Naive Bayesian and Support Vector Machine (SVM). The results show that many types of physical activities can be recognized from field acquired real-world video. Our results also indicate that, with a design of specific motion features in the input vectors, different classifiers can be used successfully with similar performances.

  14. Physical Activity Recognition Based on Motion in Images Acquired by a Wearable Camera

    PubMed Central

    Zhang, Hong; Li, Lu; Jia, Wenyan; Fernstrom, John D.; Sclabassi, Robert J.; Mao, Zhi-Hong; Sun, Mingui

    2011-01-01

    A new technique to extract and evaluate physical activity patterns from image sequences captured by a wearable camera is presented in this paper. Unlike standard activity recognition schemes, the video data captured by our device do not include the wearer him/herself. The physical activity of the wearer, such as walking or exercising, is analyzed indirectly through the camera motion extracted from the acquired video frames. Two key tasks, pixel correspondence identification and motion feature extraction, are studied to recognize activity patterns. We utilize a multiscale approach to identify pixel correspondences. When compared with the existing methods such as the Good Features detector and the Speed-up Robust Feature (SURF) detector, our technique is more accurate and computationally efficient. Once the pixel correspondences are determined which define representative motion vectors, we build a set of activity pattern features based on motion statistics in each frame. Finally, the physical activity of the person wearing a camera is determined according to the global motion distribution in the video. Our algorithms are tested using different machine learning techniques such as the K-Nearest Neighbor (KNN), Naive Bayesian and Support Vector Machine (SVM). The results show that many types of physical activities can be recognized from field acquired real-world video. Our results also indicate that, with a design of specific motion features in the input vectors, different classifiers can be used successfully with similar performances. PMID:21779142

  15. Flux emergence in the solar active region NOAA 11158: the evolution of net current

    NASA Astrophysics Data System (ADS)

    Vemareddy, Panditi; Venkatakrishnan, Parameswaran; Karthikreddy, Solipuram

    2015-09-01

    We present a detailed investigation of the evolution of observed net vertical current using a time series of vector magnetograms of the active region (AR) NOAA 11158 obtained from the Helioseismic and Magnetic Imager. We also discuss the relation of net current to the observed eruptive events. The AR evolved from the βγ to βγδ configuration over a period of six days. The AR had two sub-regions of activity with opposite chirality: one dominated by sunspot rotation producing a strong CME, and the other showing large shear motions producing a strong flare. The net current in each polarity over the CME producing sub-region increased to a maximum and then decreased when the sunspots were separated. The time profile of net current in this sub-region followed the time profile of the rotation rate of the south-polarity sunspot in the same sub-region. The net current in the flaring sub-region showed a sudden increase at the time of the strong flare and remained unchanged until the end of the observation, while the sunspots maintained their close proximity. The systematic evolution of the observed net current is seen to follow the time evolution of total length of strongly sheared polarity inversion lines in both of the sub-regions. The observed photospheric net current could be explained as an inevitable product of the emergence of a twisted flux rope, from a higher pressure confinement below the photosphere into the lower pressure environment of the photosphere.

  16. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  17. Magnetic Flux Transport and the Long-term Evolution of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  18. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  19. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  20. Plume Capture by Divergent Plate Motions: Implications for the Distribution of Hotspots, Geochemistry of Mid-Ocean Ridge Basalts, and Heat Flux from the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Jellinek, A. M.; Richards, M. A.

    2001-12-01

    The coexistence of mantle plumes with plate-scale flow is problematic in geodynamics. Significant problems include the fixity of hotspots with respect to plate motions, the spatial distribution and duration of hotspots, the geophysical and geochemical signatures of plume-ridge interactions, and the relation between mantle plumes and heat flux across the core-mantle boundary. We present results from laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high Rayleigh number (up to 109) in a fluid with a strongly temperature-dependent viscosity. In a large tank, a layer of corn syrup is heated from below while being stirred by large-scale flow due to the opposing motions of a pair of conveyor belts immersed in the syrup at the top of the tank. Three regimes are observed, depending on the velocity ratio V of the imposed horizontal flow velocity to the rise velocity of plumes ascending from the hot boundary. When V<<1, large scale circulation has a negligible effect and convective upwelling occurs as randomly-spaced axisymmetric plumes that interact with one another. When V>10, plume instabilities are suppressed entirely and the heat flux from the hot lower boundary is carried by a central sheet-like upwelling. At intermediate V, ascending plumes are advected along the bottom boundary layer, and the heat flux from the boundary is found to scale (according to a simple boundary layer theory) with V and the ratio of the viscosity of cold fluid above the thermal boundary layer to the viscosity of the hottest fluid in contact with the bottom boundary. For large viscosity ratios (10-100), only about 1/5th or less of the total heat flux from the hot boundary layer is carried by plume instabilities, even for modest imposed horizontal flow velocities (V of order 1). When applied to Earth, our results suggest that plate-scale flow focuses ascending mantle plumes toward mid-ocean ridges, and that plumes may be

  1. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    USGS Publications Warehouse

    Aaron Lewis,; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  2. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    PubMed Central

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S.

    2015-01-01

    The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG) spectrum recorded during whole-body vibration (WBV) exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental) and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05), and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05). This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity. Key points The spikes observed in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity The motion artifacts are more pronounced in the first spike than the following spikes in the sEMG spectrum Reflex activity during WBV exercises is enhanced with an additional load of approximately 50% of the body mass PMID:25729290

  3. Console video games, postural activity, and motion sickness during passive restraint.

    PubMed

    Chang, Chih-Hui; Pan, Wu-Wen; Chen, Fu-Chen; Stoffregen, Thomas A

    2013-08-01

    We examined the influence of passive restraint on postural activity and motion sickness in individuals who actively controlled a potentially nauseogenic visual motion stimulus (a driving video game). Twenty-four adults (20.09 ± 1.56 years; 167.80 ± 7.94 cm; 59.02 ± 9.18 kg) were recruited as participants. Using elastic bands, standing participants were passively restrained at the head, shoulders, hips, and knees. During restraint, participants played (i.e., controlled) a driving video game (a motorcycle race), for 50 min. During game play, we recorded the movement of the head and torso, using a magnetic tracking system. Following game play, participants answered a forced choice, yes/no question about whether they were motion sick, and were assigned to sick and well groups on this basis. In addition, before and after game play, participants completed the Simulator Sickness Questionnaire, which provided numerical ratings of the severity of individual symptoms. Five of 24 participants (20.83 %) reported motion sickness. Participants moved despite being passively restrained. Both the magnitude and the temporal dynamics of movement differed between the sick and well groups. The results show that passive restraint of the body can reduce motion sickness when the nauseogenic visual stimulus is under participants' active control and confirm that motion sickness is preceded by distinct patterns of postural activity even during passive restraint.

  4. Flux rope proxies and fan-spine structures in active region NOAA 11897

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Zhang, J.

    2016-08-01

    Context. Flux ropes are composed of twisted magnetic fields and are closely connected with coronal mass ejections. The fan-spine magnetic topology is another type of complex magnetic fields. It has been reported by several authors, and is believed to be associated with null-point-type magnetic reconnection. Aims: We try to determine the number of flux rope proxies and reveal fan-spine structures in the complex active region (AR) NOAA 11897. Methods: Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigated flux rope proxies in NOAA AR 11897 from 14 November 2013 to 19 November 2013 and display two fan-spine structures in this AR. Results: For the first time, we detect flux rope proxies of NOAA 11897 for a total of 30 times in four different locations during this AR's transference from solar east to west on the disk. Moreover, we notice that these flux rope proxies were tracked by active or eruptive material of filaments 12 times, while for the remaining 18 times they appeared as brightenings in the corona. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. None of these flux rope proxies was observed to erupt; they faded away gradually. In addition to these flux rope proxies, we detect for the first time a secondary fan-spine structure. It was covered by dome-shaped magnetic fields that belong to a larger fan-spine topology. Conclusions: These new observations imply that many flux ropes can exist in an AR and that the complexity of AR magnetic configurations is far beyond our imagination. Movies 1-8 are available in electronic form at http://www.aanda.org

  5. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  6. Effects of attention and perceptual uncertainty on cerebellar activity during visual motion perception.

    PubMed

    Baumann, Oliver; Mattingley, Jason B

    2014-02-01

    Recent clinical and neuroimaging studies have revealed that the human cerebellum plays a role in visual motion perception, but the nature of its contribution to this function is not understood. Some reports suggest that the cerebellum might facilitate motion perception by aiding attentive tracking of visual objects. Others have identified a particular role for the cerebellum in discriminating motion signals in perceptually uncertain conditions. Here, we used functional magnetic resonance imaging to determine the degree to which cerebellar involvement in visual motion perception can be explained by a role in sustained attentive tracking of moving stimuli in contrast to a role in visual motion discrimination. While holding the visual displays constant, we manipulated attention by having participants attend covertly to a field of random-dot motion or a colored spot at fixation. Perceptual uncertainty was manipulated by varying the percentage of signal dots contained within the random-dot arrays. We found that attention to motion under high perceptual uncertainty was associated with strong activity in left cerebellar lobules VI and VII. By contrast, attending to motion under low perceptual uncertainty did not cause differential activation in the cerebellum. We found no evidence to support the suggestion that the cerebellum is involved in simple attentive tracking of salient moving objects. Instead, our results indicate that specific subregions of the cerebellum are involved in facilitating the detection and discrimination of task-relevant moving objects under conditions of high perceptual uncertainty. We conclude that the cerebellum aids motion perception under conditions of high perceptual demand. PMID:23982589

  7. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  8. The influence of yaw motion on the perception of active vs passive visual curvilinear displacement.

    PubMed

    Savona, Florian; Stratulat, Anca Melania; Roussarie, Vincent; Bourdin, Christophe

    2015-01-01

    Self-motion perception, which partly determines the realism of dynamic driving simulators, is based on multisensory integration. However, it remains unclear how the brain integrates these cues to create adequate motion perception, especially for curvilinear displacements. In the present study, the effect of visual, inertial and visuo-inertial cues (concordant or discordant bimodal cues) on self-motion perception was analyzed. Subjects were asked to evaluate (externally produced) or produce (self-controlled) curvilinear displacements as accurately as possible. The results show systematic overestimation of displacement, with better performance for active subjects than for passive ones. Furthermore, it was demonstrated that participants used unimodal or bimodal cues differently in performing their activity. When passive, subjects systematically integrated visual and inertial cues even when discordant, but with weightings that depended on the dynamics. On the contrary, active subjects were able to reject the inertial cue when the discordance became too high, producing self-motion perception on the basis of more reliable information. Thereby, multisensory integration seems to follow a non-linear integration model of, i.e., the cues' weight changes with the cue reliability and/or the intensity of the stimuli, as reported by previous studies. These results represent a basis for the adaptation of motion cueing algorithms are developed for dynamic driving simulators, by taking into account the dynamics of simulated motion in line with the status of the participants (driver or passenger).

  9. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  10. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  11. Effects of eating on vection-induced motion sickness, cardiac vagal tone, and gastric myoelectric activity

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, S. H.; Stern, R. M.; Koch, K. L.

    1992-01-01

    This study investigated the effect of food ingestion on motion sickness severity and its physiological mechanisms. Forty-six fasted subjects were assigned either to a meal group or to a no-meal group. Electrogastrographic (EGG) indices (normal 3 cpm activity and abnormal 4-9 cpm tachyarrhythmia) and respiratory sinus arrhythmia (RSA) were measured before and after a meal and during a subsequent exposure to a rotating drum in which illusory self-motion was induced. The results indicated that food intake enhanced cardiac parasympathetic tone (RSA) and increased gastric 3 cpm activity. Postprandial effects on motion sickness severity remain equivocal due to group differences in RSA baseline levels. During drum rotation, dysrhythmic activity of the stomach (tachyarrhythmia) and vagal withdrawal were observed. Furthermore, high levels of vagal tone prior to drum rotation predicted a low incidence of motion sickness symptoms, and were associated positively with gastric 3 cpm activity and negatively with tachyarrhythmia. These data suggest that enhanced levels of parasympathetic activity can alleviate motion sickness symptoms by suppressing, in part, its dysrhythmic gastric underpinnings.

  12. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  13. 10.7-cm solar radio flux and the magnetic complexity of active regions

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Moore, Ronald L.; Rabin, Douglas

    1987-01-01

    During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar radio flux occurred about 1.5 yr after the maximum smoothed sunspot number, whereas during cycles 18 and 19 no lag was observed. Thus, although 10.7-cm radio flux and Zurich sunspot number are highly correlated, they are not interchangeable, especially near solar maximum. The 10.7-cm flux more closely follows the number of sunspots visible on the solar disk, while the Zurich sunspot number more closely follows the number of sunspot groups. The number of sunspots in an active region is one measure of the complexity of the magnetic structure of the region, and the coincidence in the maxima of radio flux and number of sunspots apparently reflects higher radio emission from active regions of greater magnetic complexity. The presence of a lag between sunspot-number maximum and radio-flux maximum in some cycles but not in others argues that some aspect of the average magnetic complexity near solar maximum must vary from cycle to cycle. A speculative possibility is that the radio-flux lag discriminates between long-period and short-period cycles, being another indicator that the solar cycle switches between long-period and short-period modes.

  14. Embodied Semiotic Activities and Their Role in the Construction of Mathematical Meaning of Motion Graphs

    ERIC Educational Resources Information Center

    Botzer, Galit; Yerushalmy, Michal

    2008-01-01

    This paper examines the relation between bodily actions, artifact-mediated activities, and semiotic processes that students experience while producing and interpreting graphs of two-dimensional motion in the plane. We designed a technology-based setting that enabled students to engage in embodied semiotic activities and experience two modes of…

  15. Your Students Can Be Rocket Scientists! A Galaxy of Great Activities about Astronauts, Gravity, and Motion.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1994-01-01

    Presents activities for a springtime Space Day that can teach students about astronauts, gravity, and motion. Activities include creating a paper bag spacecraft to study liftoff and having students simulate gravity's effects by walking in various manners and recording pulse rates. A list of resources is included. (SM)

  16. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-11-01

    Using activating flux for gas tungsten arc welding (GTAW) to improve penetration capability is a well-established technique. Argon is an inert gas and the one most widely used as a shielding gas for GTAW. For the most austenitic stainless steels, pure argon does not provide adequate weld penetration. Argon-hydrogen mixtures give a more even heat input to the workpiece, increasing the arc voltage, which tends to increase the volume of molten material in the weld pool as well as the weld depth-to-width ratio. Great interest has been shown in the interaction between activating flux and the hydrogen concentration in an argon-based shielding gas. In this study, the weld morphology, the arc profile, the retained delta ferrite content, the angular distortion, and the microstructures were examined. The application of an activating flux combining argon and hydrogen for GTAW is important in the industry. The results of this study are presented here.

  17. Influence of Activating Flux and Helium Shielding Gas on an Austenitic Stainless Steel Weldment

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh; Yang, Chung-Wei

    2013-06-01

    Activating flux-assisted gas tungsten arc welding (GTAW) is a well-established method for enhancing weld penetration. In GTAW, steel is usually welded with a shielding gas that contains mostly argon. However, pure argon does not provide enough weld penetration. Argon-helium mixtures are inert and a greater concentration of helium would increase the arc voltage and the weld depth-to-width (D/W) ratio. There is a significant level of interest in the interaction between activating flux and shielding gas composition. Weld morphology, arc profile, retained δ ferrite content, angular distortion, and microstructure are extremely important in applying the activating flux combination argon-helium in GTAW; therefore, in this work, all these were studied.

  18. Morphometrical investigations on the reproductive activity of the ovaries in rats subjected to immobilization and to motion activity

    NASA Technical Reports Server (NTRS)

    Konstantinov, N.; Cheresharov, L.; Toshkova, S.

    1982-01-01

    Wistar-strain white female rats were divided into three groups, with the first group subjected to motion loading, the second used as control, and the third group was immobilized. A considerable reduction in numbers of corpora lutea was observed in the immobilized group, together with smaller numbers of embryos, high percent of embryo mortality, fetal growth retardation, and endometrium disorders. The control group showed no deviation from normal conditions, and there was slight improvement in reproductive activity of animals under motion loading.

  19. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations.

    PubMed

    Carriot, Jerome; Brooks, Jessica X; Cullen, Kathleen E

    2013-12-11

    The ability to keep track of where we are going as we navigate through our environment requires knowledge of our ongoing location and orientation. In response to passively applied motion, the otolith organs of the vestibular system encode changes in the velocity and direction of linear self-motion (i.e., heading). When self-motion is voluntarily generated, proprioceptive and motor efference copy information is also available to contribute to the brain's internal representation of current heading direction and speed. However to date, how the brain integrates these extra-vestibular cues with otolith signals during active linear self-motion remains unknown. Here, to address this question, we compared the responses of macaque vestibular neurons during active and passive translations. Single-unit recordings were made from a subgroup of neurons at the first central stage of sensory processing in the vestibular pathways involved in postural control and the computation of self-motion perception. Neurons responded far less robustly to otolith stimulation during self-generated than passive head translations. Yet, the mechanism underlying the marked cancellation of otolith signals did not affect other characteristics of neuronal responses (i.e., baseline firing rate, tuning ratio, orientation of maximal sensitivity vector). Transiently applied perturbations during active motion further established that an otolith cancellation signal was only gated in conditions where proprioceptive sensory feedback matched the motor-based expectation. Together our results have important implications for understanding the brain's ability to ensure accurate postural and motor control, as well as perceptual stability, during active self-motion.

  20. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  1. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  2. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  3. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow

    PubMed Central

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  4. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow.

    PubMed

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  5. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow.

    PubMed

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity.

  6. Spontaneous chiral symmetry breaking in collective active motion

    NASA Astrophysics Data System (ADS)

    Breier, Rebekka E.; Selinger, Robin L. B.; Ciccotti, Giovanni; Herminghaus, Stephan; Mazza, Marco G.

    2016-02-01

    Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspensions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral interactions. We study a simple model of active swimmers in three dimensions that effectively incorporates hydrodynamic interactions. We perform large-scale molecular dynamics simulations (up to 106 particles) and find long-lived metastable collective states that exhibit chiral organization although the interactions are achiral. We elucidate under which conditions these chiral states will emerge and grow to large scales. To explore the complex phase space available to the system, we perform nonequilibrium quenches on a one-dimensional Lebwohl-Lasher model with periodic boundary conditions to study the likelihood of formation of chiral structures.

  7. A novel heat flux study of a geothermally active lake - Lake Rotomahana, New Zealand

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; de Ronde, Cornel E. J.; Tontini, Fabio Caratori; Walker, Sharon L.; Fornari, Daniel J.

    2016-03-01

    A new technique for measuring conductive heat flux in a lake was adapted from the marine environment to allow for multiple measurements to be made in areas where bottom sediment cover is sparse, or even absent. This thermal blanket technique, pioneered in the deep ocean for use in volcanic mid-ocean rift environments, was recently used in the geothermally active Lake Rotomahana, New Zealand. Heat flow from the lake floor propagates into the 0.5 m diameter blanket and establishes a thermal gradient across the known blanket thickness and thereby provides an estimate of the conductive heat flux of the underlying terrain. This approach allows conductive heat flux to be measured over a spatially dense set of stations in a relatively short period of time. We used 10 blankets and deployed them for 1 day each to complete 110 stations over an 11-day program in the 6 × 3 km lake. Results show that Lake Rotomahana has a total conductive heat flux of about 47 MW averaging 6 W/m2 over the geothermally active lake. The western half of the lake has two main areas of high heat flux; 1) a high heat flux area averaging 21.3 W/m2 along the western shoreline, which is likely the location of the pre-existing geothermal system that fed the famous Pink Terraces, mostly destroyed during the 1886 eruption 2) a region southwest of Patiti Island with a heat flux averaging 13.1 W/m2 that appears to be related to the explosive rift that formed the lake in the 1886 Tarawera eruption. A small rise in bottom water temperature over the survey period of 0.01 °C/day suggests the total thermal output of the lake is ~ 112-132 MW and when compared to the conductive heat output suggests that 18-42% of the total thermal energy is by conductive heat transfer.

  8. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux

    NASA Astrophysics Data System (ADS)

    Tanimoto, Youichi; Nakamura, Hisashi; Kagimoto, Takashi; Yamane, Shozo

    2003-10-01

    Temporal and spatial structures of turbulent latent and sensible heat flux anomalies are examined in relation to dominant patterns of sea surface temperature anomalies (SSTA) observed over the North Pacific. Relative importance among observed anomalies in SST, surface air temperature, and wind speed in determining the anomalous turbulent heat fluxes is assessed through linearizing the observed flux anomalies. Over the central basin of the North Pacific, changes in the atmospheric variables, including air temperature and wind speed, are primarily responsible for the generation of local SST variations by changing turbulent heat flux, which supports a conventional view of extratropical air-sea interaction. In the region where ocean dynamics is very important in forming SSTAs, in contrast, SSTAs that have been formed in early winter play the primary role in determining mid- and late-winter turbulent heat flux anomalies, indicative of the SST forcing upon the overlying atmosphere. Specifically, both decadal scale SSTAs in the western Pacific subarctic frontal zone and El Niño related SSTAs south of Japan are found to be engaged actively in such forcing on the atmosphere. The atmospheric response to this forcing appears to include the anomalous storm track activity. The observed atmospheric anomalies, which may be, in part, forced by the preexisting SSTAs in those two regions, act to force SSTAs in other portions of the basin, leading to the time evolution of SSTAs as observed in the course of the winter season.

  9. The relevance of particle flux monitors in accelerator-based activation analysis

    SciTech Connect

    Segebade, Chr.; Maimaitimin, M.; Sun Zaijing

    2013-04-19

    One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

  10. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  11. Image-based synchronization of force and bead motion in active electromagnetic microrheometry

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Saleh, Omar A.

    2014-12-01

    In the past, electromagnetic tweezers have been used to make active microrheometers. An active microrheometer measures the dynamic mechanical properties of a material from the motion of embedded particles under external force, e.g. a sinusoidal magnetic force generated by a sinusoidal current on a coil. The oscillating amplitude and the phase lag of the motion are then used to estimate the material’s dynamic mechanical properties. The phase lag, in particular, requires precise synchronization of the particle motion with the external force. In previous works, synchronization difficulties have arisen from measuring two parameters with two instruments, one of them being a camera. We solved the synchronization issue by measuring two parameters with a single instrument, the camera alone. From captured images, particles can be tracked in three dimensions through an image-analysis algorithm while the current on the coil can be measured from the brightness of the image; this enables simultaneous synchronization of the phases of the driving current on the electromagnet coil and the motion of the magnetic probe particle. We calibrate the phase delay between the magnetic force and the particle’s motion in glycerol and confirm the calibration with a Hall probe. The technique is further tested by measuring the shear modulus of a polyacrylamide gel, and comparing the results to those obtained using a conventional rheometer.

  12. Active linear head motion improves dynamic visual acuity in pursuing a high-speed moving object.

    PubMed

    Hasegawa, Tatsuhisa; Yamashita, Masayuki; Suzuki, Toshihiro; Hisa, Yasuo; Wada, Yoshiro

    2009-04-01

    We usually move both our eyes and our head when pursuing a high-speed moving object. However, the vestibulo-ocular reflex (VOR), evoked by head motion, seems to disturb smooth pursuit eye movement because the VOR stabilizes the gaze against head motion. To determine whether head motion is advantageous for pursuing a high-speed moving object, we examined dynamic visual acuity (DVA) for a high-speed (80 degrees /s) rightward moving object with and without active linear rightward head motion (HM) at a maximum of 50 cm/s in nine healthy subjects. Furthermore, we analyzed eye and head movements to investigate the contribution of linear VOR (LVOR) and smooth eye movement under these conditions. In most subjects, active linear head motion improved DVA for a high-speed moving object. Subjects with higher DVA scores under HM had robust rightward gaze (eye + head) velocities (>60 cm/s), i.e., rightward smooth eye movements (>10 degrees /s). With the head stationary (HS), faster smooth eye movements (>40 degrees /s) were generated when the subjects pursued a high-speed moving object. They also showed anticipatory smooth eye movements under conditions HM and HS. However, the level of suppression of their LVOR abilities was equal to that of the others. These results suggest that the ability to generate anticipatory smooth pursuit eye movements for following a high-speed moving object against the LVOR is a determining factor for improvement of DVA under HM.

  13. Prospective active marker motion correction improves statistical power in BOLD fMRI.

    PubMed

    Muraskin, Jordan; Ooi, Melvyn B; Goldman, Robin I; Krueger, Sascha; Thomas, William J; Sajda, Paul; Brown, Truman R

    2013-03-01

    Group level statistical maps of blood oxygenation level dependent (BOLD) signals acquired using functional magnetic resonance imaging (fMRI) have become a basic measurement for much of systems, cognitive and social neuroscience. A challenge in making inferences from these statistical maps is the noise and potential confounds that arise from the head motion that occurs within and between acquisition volumes. This motion results in the scan plane being misaligned during acquisition, ultimately leading to reduced statistical power when maps are constructed at the group level. In most cases, an attempt is made to correct for this motion through the use of retrospective analysis methods. In this paper, we use a prospective active marker motion correction (PRAMMO) system that uses radio frequency markers for real-time tracking of motion, enabling on-line slice plane correction. We show that the statistical power of the activation maps is substantially increased using PRAMMO compared to conventional retrospective correction. Analysis of our results indicates that the PRAMMO acquisition reduces the variance without decreasing the signal component of the BOLD (beta). Using PRAMMO could thus improve the overall statistical power of fMRI based BOLD measurements, leading to stronger inferences of the nature of processing in the human brain.

  14. Evidence of left-lateral active motion at the North America-Caribbean plate boundary

    NASA Astrophysics Data System (ADS)

    Leroy, S. D.; Ellouz, N.; Corbeau, J.; Rolandone, F.; Mercier De Lepinay, B. F.; Meyer, B.; Momplaisir, R.; Granja, J. L.; Battani, A.; Burov, E. B.; Clouard, V.; Deschamps, R.; Gorini, C.; Hamon, Y.; LE Pourhiet, L.; Loget, N.; Lucazeau, F.; Pillot, D.; Poort, J.; Tankoo, K.; Cuevas, J. L.; Alcaide, J.; Poix, C. J.; Mitton, S.; Rodriguez, Y.; Schmitz, J.; Munoz Martin, A.

    2014-12-01

    The North America-Caribbean plate boundary is one of the least-known among large plate boundaries. Although it was identified early on as an example of a strike-slip fault in the north of Hispaniola, its structure and rate of motion remains poorly constrained. We present the first direct evidence for active sinistral strike-slip motion along this fault, based on swath seafloor mapping of the northern Haiti area. There is evidence for ~16.5 km of apparent strike-slip motion along the mapped segment of the Septentrional fault zone off Cap Haitien town which is terminated to the east onland Dominican republic and in the west to southern Cuban margin. By evaluating these new constraints within the context of geodetic models of global plate motions, we estimate an activity of the fault since 2 Ma with an angular velocity for the Caribbean plate relative to the North America predicted 6-12 mmyr-1 sinistral motion along the Septentrional fault zone. This transform fault was initiated around 20 million years ago in its western segment and since 2 Ma in its eastern segment in response to a regional reorganization of plate velocities and directions, which induced a change in configuration of plate boundaries.

  15. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2016-03-24

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2-30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available.

  16. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2016-01-01

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2-30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available. PMID:27023543

  17. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2016-01-01

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2–30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available. PMID:27023543

  18. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  19. Basic properties of magnetic flux tubes and restrictions on theories of solar activity

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    It is shown that the mean longitudinal field in a magnetic flux tube is reduced, rather than enhanced, by twisting the tube to form a rope. It is shown that there is no magnetohydrostatic equilibrium when one twisted rope is wound around another. Instead there is rapid line cutting (neutral point annihilation). It is shown that the twisting increases, and the field strength decreases, along a flux tube extending upward through a stratified atmosphere. These facts are at variance with Piddington's (1975) recent suggestion that solar activity is to be understood as the result of flux tubes which are enormously concentrated by twisting, which consist of several twisted ropes wound around each other, and which came untwisted where they emerge through the photosphere.

  20. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation

    PubMed Central

    Kim, Sung-Wook; Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin M.D.; Lee, You-Jin; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Niacin, also known as vitamin B3 or nicotinamide is a water-soluble vitamin that is present in black beans and rice among other foods. Niacin is well known as an inhibitor of metastasis in human breast carcinoma cells but the effect of niacin treatment on TRAIL-mediated apoptosis is unknown. Here, we show that niacin plays an important role in the regulation of autophagic flux and protects tumor cells against TRAIL-mediated apoptosis. Our results indicated that niacin activated autophagic flux in human colon cancer cells and the autophagic flux activation protected tumor cells from TRAIL-induced dysfunction of mitochondrial membrane potential and tumor cell death. We also demonstrated that ATG5 siRNA and autophagy inhibitor blocked the niacin-mediated inhibition of TRAIL-induced apoptosis. Taken together, our study is the first report demonstrating that niacin inhibits TRAIL-induced apoptosis through activation of autophagic flux in human colon cancer cells. And our results also suggest that autophagy inhibitors including genetic and pharmacological tools may be a successful therapeutics during anticancer therapy using TRAIL. PMID:26517672

  1. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  2. Pathological tremor and voluntary motion modeling and online estimation for active compensation.

    PubMed

    Bo, Antônio Padilha Lanari; Poignet, Philippe; Geny, Christian

    2011-04-01

    This paper presents an algorithm to perform online tremor characterization from motion sensors measurements, while filtering the voluntary motion performed by the patient. In order to estimate simultaneously both nonstationary signals in a stochastic filtering framework, pathological tremor was represented by a time-varying harmonic model and voluntary motion was modeled as an auto-regressive moving-average (ARMA) model. Since it is a nonlinear problem, an extended Kalman filter (EKF) was used. The developed solution was evaluated with simulated signals and experimental data from patients with different pathologies. Also, the results were comprehensively compared with alternative techniques proposed in the literature, evidencing the better performance of the proposed method. The algorithm presented in this paper may be an important tool in the design of active tremor compensation systems.

  3. Active faults, stress field and plate motion along the Indo-Eurasian plate boundary

    NASA Astrophysics Data System (ADS)

    Nakata, Takashi; Otsuki, Kenshiro; Khan, S. H.

    1990-09-01

    The active faults of the Himalayas and neighboring areas are direct indicators of Recent and sub-Recent crustal movements due to continental collision between the Indian and Eurasian plates. The direction of the maximum horizontal shortening or horizontal compressive stress axes deduced from the strike and type of active faulting reveals a characteristic regional stress field along the colliding boundary. The trajectories of the stress axes along the transcurrent faults and the Eastern Himalayan Front, are approximately N-S, parallel to the relative motion of the two plates. However, along the southern margin of the Eurasian plate, they are NE-SW in the Western Himalayan Front and NW-SE to E-W in the Kirthar-Sulaiman Front, which is not consistent with the direction of relative plate motion. A simple model is proposed in order to explain the regional stress pattern. In this model, the tectonic sliver between the transcurrent faults and the plate margin, is dragged northward by the oblique convergence of the Indian plate. Thus, the direction of relative motion between the tectonic sliver and the Indian plate changes regionally, causing local compressive stress fields. Judging from the long-term slip rates along the active faults, the relative motion between the Indian and Eurasian plates absorbed in the colliding zone is about one fourth of its total amount; the rest may be consumed along the extensive strike-slip faults in Tibet and China.

  4. Population activity in the human dorsal pathway predicts the accuracy of visual motion detection.

    PubMed

    Donner, Tobias H; Siegel, Markus; Oostenveld, Robert; Fries, Pascal; Bauer, Markus; Engel, Andreas K

    2007-07-01

    A person's ability to detect a weak visual target stimulus varies from one viewing to the next. We tested whether the trial-to-trial fluctuations of neural population activity in the human brain are related to the fluctuations of behavioral performance in a "yes-no" visual motion-detection task. We recorded neural population activity with whole head magnetoencephalography (MEG) while subjects searched for a weak coherent motion signal embedded in spatiotemporal noise. We found that, during motion viewing, MEG activity in the 12- to 24-Hz ("beta") frequency range is higher, on average, before correct behavioral choices than before errors and that it predicts correct choices on a trial-by-trial basis. This performance-predictive activity is not evident in the prestimulus baseline and builds up slowly after stimulus onset. Source reconstruction revealed that the performance-predictive activity is expressed in the posterior parietal and dorsolateral prefrontal cortices and, less strongly, in the visual motion-sensitive area MT+. The 12- to 24-Hz activity in these key stages of the human dorsal visual pathway is correlated with behavioral choice in both target-present and target-absent conditions. Importantly, in the absence of the target, 12- to 24-Hz activity tends to be higher before "no" choices ("correct rejects") than before "yes" choices ("false alarms"). It thus predicts the accuracy, and not the content, of subjects' upcoming perceptual reports. We conclude that beta band activity in the human dorsal visual pathway indexes, and potentially controls, the efficiency of neural computations underlying simple perceptual decisions.

  5. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  6. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame. PMID:23288333

  7. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  8. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration

  9. Numerical simulations of active region scale flux emergence: From spot formation to decay

    SciTech Connect

    Rempel, M.; Cheung, M. C. M.

    2014-04-20

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 10{sup 22} Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  10. Numerical Simulations of Active Region Scale Flux Emergence: From Spot Formation to Decay

    NASA Astrophysics Data System (ADS)

    Rempel, M.; Cheung, M. C. M.

    2014-04-01

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 1022 Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  11. Complementary limb motion estimation for the control of active knee prostheses.

    PubMed

    Vallery, Heike; Burgkart, Rainer; Hartmann, Cornelia; Mitternacht, Jürgen; Riener, Robert; Buss, Martin

    2011-02-01

    To restore walking after transfemoral amputation, various actuated exoprostheses have been developed, which control the knee torque actively or via variable damping. In both cases, an important issue is to find the appropriate control that enables user-dominated gait. Recently, we suggested a generic method to deduce intended motion of impaired or amputated limbs from residual human body motion. Based on interjoint coordination in physiological gait, statistical regression is used to estimate missing motion. In a pilot study, this complementary limb motion estimation (CLME) strategy is applied to control an active knee exoprosthesis. A motor-driven prosthetic knee with one degree of freedom has been realized, and one above-knee amputee has used it with CLME. Performed tasks are walking on a treadmill and alternating stair ascent and descent. The subject was able to walk on the treadmill at varying speeds, but needed assistance with the stairs, especially to descend. The promising results with CLME are compared with the subject's performance with her own prosthesis, the C-Leg from Otto Bock.

  12. Complementary limb motion estimation for the control of active knee prostheses.

    PubMed

    Vallery, Heike; Burgkart, Rainer; Hartmann, Cornelia; Mitternacht, Jürgen; Riener, Robert; Buss, Martin

    2011-02-01

    To restore walking after transfemoral amputation, various actuated exoprostheses have been developed, which control the knee torque actively or via variable damping. In both cases, an important issue is to find the appropriate control that enables user-dominated gait. Recently, we suggested a generic method to deduce intended motion of impaired or amputated limbs from residual human body motion. Based on interjoint coordination in physiological gait, statistical regression is used to estimate missing motion. In a pilot study, this complementary limb motion estimation (CLME) strategy is applied to control an active knee exoprosthesis. A motor-driven prosthetic knee with one degree of freedom has been realized, and one above-knee amputee has used it with CLME. Performed tasks are walking on a treadmill and alternating stair ascent and descent. The subject was able to walk on the treadmill at varying speeds, but needed assistance with the stairs, especially to descend. The promising results with CLME are compared with the subject's performance with her own prosthesis, the C-Leg from Otto Bock. PMID:21303189

  13. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  14. Biocatalyst activity in nonaqueous environments correlates with centisecond-range protein motions.

    PubMed

    Eppler, Ross K; Hudson, Elton P; Chase, Shannon D; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2008-10-14

    Recent studies exploring the relationship between enzymatic catalysis and protein dynamics in the aqueous phase have yielded evidence that dynamics and enzyme activity are strongly correlated. Given that protein dynamics are significantly attenuated in organic solvents and that proteins exhibit a wide range of motions depending on the specific solvent environment, the nonaqueous milieu provides a unique opportunity to examine the role of protein dynamics in enzyme activity. Variable-temperature kinetic measurements, X-band electron spin resonance spectroscopy, (1)H NMR relaxation, and (19)F NMR spectroscopy experiments were performed on subtilisin Carlsberg colyophilized with several inorganic salts and suspended in organic solvents. The results indicate that salt activation induces a greater degree of transition-state flexibility, reflected by a more positive DeltaDeltaS(dagger), for the more active biocatalyst preparations in organic solvents. In contrast, DeltaDeltaH(dagger) was negligible regardless of salt type or salt content. Electron spin resonance spectroscopy and (1)H NMR relaxation measurements, including spin-lattice relaxation, spin-lattice relaxation in the rotating frame, and longitudinal magnetization exchange, revealed that the enzyme's turnover number (k(cat)) was strongly correlated with protein motions in the centisecond time regime, weakly correlated with protein motions in the millisecond regime, and uncorrelated with protein motions on the piconanosecond timescale. In addition, (19)F chemical shift measurements and hyperfine tensor measurements of biocatalyst formulations inhibited with 4-fluorobenzenesulfonyl fluoride and 4-ethoxyfluorophosphinyl-oxy-TEMPO, respectively, suggest that enzyme activation was only weakly affected by changes in active-site polarity. PMID:18840689

  15. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  16. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  17. Coupling of postural activity with motion of a ship at sea.

    PubMed

    Varlet, Manuel; Bardy, Benoît G; Chen, Fu-Chen; Alcantara, Cristina; Stoffregen, Thomas A

    2015-05-01

    On land, body sway during stance becomes coupled with imposed oscillations of the illuminated environment or of the support surface. This coupling appears to have the function of stabilizing the body relative to the illuminated or inertial environment. In previous research, the stimulus has been limited to motion in a single axis. Little is known about our ability to couple postural activity with complex, multi-axis oscillations. On a ship at sea, we evaluated postural activity using measures of body movement, as such, and we separately evaluated a direct measure of coupling between body movement and ship motion. Participants were tested while facing fore-aft and athwartship. We compared postural activity between participants who had been seasick at the beginning of the voyage and those who had not. Coupling of postural activity with ship motion differed between body axes as a function of body orientation relative to the ship. In addition, coupling differed between participants who had been seasick at the beginning of the voyage and those who had not. We discuss the results in terms of implications for general theories of postural control, and for prediction of susceptibility to seasickness in individuals.

  18. Meridional motions of sunspots from 1947.9 to 1985.0. II - Latitude motions dependent on SPOT type and phase of the activity cycle

    NASA Astrophysics Data System (ADS)

    Lustig, G.; Hanslmeier, A.

    1987-01-01

    The dependence of the meridional motions of sunspots on sunspot-type and phase in the solar activity cycle for the time interval 1947.9-1985.0 is examined; this was done also with the sunspot data from the solar-observatory Kanzelhoehe. For the total time interval, investigations for each cycle were carried out only for the elder or long lasting G, H, and J sunspot groups and distinctions between similar sunspot types AB, C, D, EF, GHJ (Zuerich-classification). The meridional motions about the different activity maxima were also examined. In all investigations in the period from 1947.9 to 1985.0 a tendency to a southdrift can be observed on both hemispheres of the sun, but the mean meridional motions are between the error-bars not very significantly different from zero.

  19. Mass flux measurements at active lava lakes: Implications for magma recycling

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Flynn, Luke P.; Rothery, David A.; Oppenheimer, Clive; Sherman, Sarah B.

    1999-04-01

    Remotely sensed and field data can be used to estimate heat and mass fluxes at active lava lakes. Here we use a three thermal component pixel model with three bands of Landsat thematic mapper (TM) data to constrain the thermal structure of, and flux from, active lava lakes. Our approach considers that a subpixel lake is surrounded by ground at ambient temperatures and that the surface of the lake is composed of crusted and/or molten material. We then use TM band 6 (10.42-12.42 μm) with bands 3 (0.63-0.69 μm) or 4 (0.76-0.90 μm) and 5 (1.55-1.75 μm) or 7 (2.08-2.35 μm), along with field data (e.g., lava lake area), to place limits on the size and temperature of each thermal component. Previous attempts to achieve this have used two bands of TM data with a two-component thermal model. Using our model results with further field data (e.g., petrological data) for lava lakes at Erebus, Erta 'Ale, and Pu'u 'O'o, we calculate combined radiative and convective fluxes of 11-20, 14-27 and 368-373 MW, respectively. These yield mass fluxes, of 30-76, 44-104 and 1553-2079 kg s-1, respectively. We also identify a hot volcanic feature at Nyiragongo during 1987 from which a combined radiative and convective flux of 0.2-0.6 MW implies a mass flux of 1-2 kg s-1. We use our mass flux estimates to constrain circulation rates in each reservoir-conduit-lake system and consider four models whereby circulation results in intrusion within or beneath the volcano (leading to endogenous or cryptic growth) and/or magma mixing in the reservoir (leading to recycling). We suggest that the presence of lava lakes does not necessarily imply endogenous or cryptic growth: lava lakes could be symptomatic of magma recycling in supraliquidus reservoirs.

  20. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  1. Finger heat flux/temperature as an indicator of thermal imbalance with application for extravehicular activity.

    PubMed

    Koscheyev, Victor S; Leon, Gloria R; Coca, Aitor

    2005-11-01

    The designation of a simple, non-invasive, and highly precise method to monitor the thermal status of astronauts is important to enhance safety during extravehicular activities (EVA) and onboard emergencies. Finger temperature (Tfing), finger heat flux, and indices of core temperature (Tc) [rectal (Tre), ear canal (Tec)] were assessed in 3 studies involving different patterns of heat removal/insertion from/to the body by a multi-compartment liquid cooling/warming garment (LCWG). Under both uniform and nonuniform temperature conditions on the body surface, Tfing and finger heat flux were highly correlated with garment heat flux, and also highly correlated with each other. Tc responses did not adequately reflect changes in thermal balance during the ongoing process of heat insertion/removal from the body. Overall, Tfing/finger heat flux adequately reflected the initial destabilization of thermal balance, and therefore appears to have significant potential as a useful index for monitoring and maintaining thermal balance and comfort in extreme conditions in space as well as on Earth.

  2. HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells.

    PubMed

    Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I; Ho, Emily

    2016-06-01

    Histone deacetylase 6 is a multifunctional lysine deacetylase that is recently emerging as a central facilitator of response to stress and may play an important role in cancer cell proliferation. The histone deacetylase 6-inhibitor tubacin has been shown to slow the growth of metastatic prostate cancer cells and sensitize cancer cells to chemotherapeutic agents. However, the proteins histone deacetylase 6 interacts with, and thus its role in cancer cells, remains poorly characterized. Histone deacetylase 6 deacetylase activity has recently been shown to be required for efficient basal autophagic flux. Autophagy is often dysregulated in cancer cells and may confer stress resistance and allow for cell maintenance and a high proliferation rate. Tubacin may therefore slow cancer cell proliferation by decreasing autophagic flux. We characterized the histone deacetylase 6-interacting proteins in LNCaP metastatic prostate cancer cells and found that histone deacetylase 6 interacts with proteins involved in several cellular processes, including autophagy. Based on our interaction screen, we assessed the impact of the histone deacetylase 6-inhibitor tubacin on autophagic flux in two metastatic prostate cancer cell lines and found that tubacin does not influence autophagic flux. Histone deacetylase 6 therefore influences cell proliferation through an autophagy-independent mechanism. PMID:26643866

  3. Finger heat flux/temperature as an indicator of thermal imbalance with application for extravehicular activity

    NASA Astrophysics Data System (ADS)

    Koscheyev, Victor S.; Leon, Gloria R.; Coca, Aitor

    2005-11-01

    The designation of a simple, non-invasive, and highly precise method to monitor the thermal status of astronauts is important to enhance safety during extravehicular activities (EVA) and onboard emergencies. Finger temperature ( Tfing), finger heat flux, and indices of core temperature ( Tc) [rectal ( Tre), ear canal ( Tec)] were assessed in 3 studies involving different patterns of heat removal/insertion from/to the body by a multi-compartment liquid cooling/warming garment (LCWG). Under both uniform and nonuniform temperature conditions on the body surface, Tfing and finger heat flux were highly correlated with garment heat flux, and also highly correlated with each other. Tc responses did not adequately reflect changes in thermal balance during the ongoing process of heat insertion/removal from the body. Overall, Tfing/finger heat flux adequately reflected the initial destabilization of thermal balance, and therefore appears to have significant potential as a useful index for monitoring and maintaining thermal balance and comfort in extreme conditions in space as well as on Earth.

  4. Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han

    2016-08-01

    The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.

  5. Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han

    2016-11-01

    The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.

  6. The current-density dependence U(J) of the activation energy for the motion of Abrikosov vortices in the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Cl{sub 0.5}Br{sub 0.5}

    SciTech Connect

    Primenko, A.E.; Kuznetsov, V.D.; Metlushko, V.V.

    1995-02-01

    The authors have investigated the thermally activated motion of flux in the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Cl{sub 0.5}Br{sub 0.5} over a wide range of current densities J, and have obtained the dependence of the activation energy U for this motion on current density. 21 refs., 2 figs.

  7. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  8. The dependence of solar energetic particle fluxes in the Earth-Mars-Earth route on solar activity period.

    PubMed

    Kuznetsov, N V; Nymmik, R A

    2002-01-01

    This report presents the results of analyzing the relative importance of particle fluxes of different origin in the Earth-Mars-Earth route during different solar activity periods. The analysis has been made in terms of the galactic cosmic ray and solar energetic particle flux models developed at Moscow State University. The results demonstrate the extreme importance of the high-energy solar particle fluxes in interplanetary space even during the years of "quiet" Sun.

  9. YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities

    PubMed Central

    Schwarz, Roland; Musch, Patrick; von Kamp, Axel; Engels, Bernd; Schirmer, Heiner; Schuster, Stefan; Dandekar, Thomas

    2005-01-01

    Background A number of algorithms for steady state analysis of metabolic networks have been developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful. Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of the algorithm has been the instrument of choice up to now. As reported here, the analysis of metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis routines for expression levels and the most central, well connected metabolites and their metabolic connections are of particular interest. Results YANA features a platform-independent, dedicated toolbox for metabolic networks with a graphical user interface to calculate (integrating METATOOL), edit (including support for the SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa. Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can be used to simplify and analyze complex networks. Proteomics or gene expression data give a rough indication of some individual enzyme activities, whereas the complete flux distribution in the network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm (EA) for the prediction of EM activities with minimum error, including alerts for inconsistent experimental data. We offer the possibility to include further known constraints (e.g. growth constraints) in the EA calculation process. The redox metabolism around glutathione reductase serves as an illustration example. All software and documentation are available for download at . Conclusion A graphical toolbox and an editor for METATOOL as well as a series of additional routines for metabolic network analyses constitute a new user-friendly software for such efforts. PMID:15929789

  10. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  11. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  12. Active control of heave motion for TLP-type offshore platform under random waves

    NASA Astrophysics Data System (ADS)

    Battista, Ronaldo C.; Alves, Rosane M.

    1999-05-01

    In deep waters scenarios Tension Leg Platforms (TLP), under severe sea/wind conditions, may experience large response amplitudes of the hull motion. Large heave amplitudes caused by random dynamic loads appear as one of the most deleterious effects to the structural safety and integrity of the most critical components: mooring system and the handing risers. In a preliminary design reduction of these amplitudes is in general tentatively sought by compromised measures and concurrent design criteria like: high flutuability and deck payload vs. tendons and risers submerged weight; deck hydrodynamic vs. length variation of pretension tendons, etc. This paper shows that active control system may be installed inside the hull to attenuate dynamic amplitudes in heave motion. Optimal control theory are applicated for the idealization of mechanism to reduce the dynamic response amplitude, improving the safety conditions and increasing service life of tendons and risers, insuring the system functioning at all. The uncontrolled and controlled dynamic behaviors of a TLP prototype are investigated by using simplified mathematical models. The numerical results lead to the conclusion that active systems have good performance and efficiency in reducing and controlling the heave motion amplitudes and consequently the stress variations in tendons and risers of a TLP.

  13. Erosional flux from tectonically active landscapes: Case studies from Southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Allen, Philip; Gheorghiu, Delia; Rodes, Angel

    2016-04-01

    Erosion and sediment supply are fundamentally important controls on landscape evolution, governing the denudation of relief, the stratigraphy deposited in basins, and the ultimate destruction of orogens. However, quantifying the rates, timescales, and predominant processes of erosion remains a major challenge in many tectonically active areas. Here, we use Southern Italy as a case study to demonstrate how these challenges can be overcome. We present 15 new 10Be catchment-averaged erosion rates, for systems distributed along 5 active normal faults for which we have excellent constraints on throw rates along strike and uplift history. These footwall catchments have a total relief of up to 1800 m and throw rates up to 1.4 mm/yr. We show that sediment supply estimates based on the 10Be erosion rates agree well with sediment supply predictions based on the fault throw profiles. Our results suggest that about 80% of the material uplifted by the faults is being eroded at a similar magnitude to the fault throw rates, offering new insights into the topographic balance of uplift and erosion in this area. These findings imply that active normal faulting is the primary control on sediment supply in Southern Italy. Our field observations suggest that landslides are an important source of sediment in our study area, and are largely driven by incision in response to fault activity. Using a field-calibrated landslide inventory, we estimate landslide-derived sediment flux for our sampled catchments. These estimates correlate well with total sediment flux estimates, demonstrating quantitatively that landslides must be a major source of sediment. Their erosional signal is adequately captured by the 10Be analyses most likely because of the high frequency of small landslides and their high spatial density in these catchments (typically >10% of the total area), which ensures sufficient sediment mixing. Finally, we use our results to calibrate the BQART model of sediment supply, enabling

  14. Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

    PubMed

    Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm

    2016-10-01

    To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.

  15. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis

    PubMed Central

    Salabei, Joshua K.; Gibb, Andrew A.; Hill, Bradford G.

    2014-01-01

    Extracellular flux (XF) analysis has become a mainstream method to measure bioenergetic function in cells and tissues. While this technique is commonly used to measure energetics in intact cells, we outline here a detailed XF protocol for measuring respiration in permeabilized cells. Cells are permeabilized using saponin, digitonin, or recombinant perfringolysin O (XF PMP reagent) and provided with specific substrates to measure complex I- or II-mediated respiratory activity, Complex III+IV respiratory activity, or Complex IV activity. Medium- and long-chain acylcarnitines or glutamine may also be provided for measuring fatty acid oxidation or glutamine oxidation, respectively. This protocol allows for such measurements using a minimal number of cells compared with other protocols, without the need for mitochondrial isolation. The results are highly reproducible, and mitochondria remain well coupled. Collectively, this protocol provides comprehensive and detailed information regarding mitochondrial activity and efficiency, and, following preparative steps, takes approximately 6 hours to complete. PMID:24457333

  16. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    SciTech Connect

    Schroth, M.H.; Eugster, W.; Gomez, K.E.; Gonzalez-Gil, G.; Niklaus, P.A.; Oester, P.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a

  17. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  18. Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia)

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Evans, Susan E.; Shi, JunFen; O'Higgins, Paul; Fagan, Michael J.

    2010-01-01

    The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food reduction remains a major problem. Here, we present a novel approach for predicting the forces and activation patterns of muscles and muscle groups based on their known anatomical orientation (line of action). The work was carried out for the lizard-like reptile Sphenodon (Rhynchocephalia) using a sophisticated computer-based model and multi-body dynamics analysis. The model suggests that specific muscle groups control specific motions, and that during certain times in the bite cycle some muscles are highly active whereas others are inactive. The predictions of muscle activity closely correspond to data previously recorded from live Sphenodon using electromyography. Apparent exceptions can be explained by variations in food resistance, food size, food position and lower jaw motions. This approach shows considerable promise in advancing detailed functional models of food acquisition and reduction, and for use in other musculoskeletal systems where no experimental determination of muscle activity is possible, such as in rare, endangered or extinct species. PMID:19474084

  19. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  20. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  1. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzifčáková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  2. Ethanol effects on active and passive Na+ flux in toad bladder.

    PubMed

    Amaranath, L; Anton, A H

    1977-11-01

    Ethanol, like other anesthetics, has been reported to interfere with active Na+ transport in living membranes. In an attempt to elucidate the mechanism by which ethanol exerts this action, we tested in the toad bladder membrane: 1) the effect of ethanol on active Na+ transport, 2) the interaction of ethanol with vasopressin on Na+ transport, and 3) the effect of ethanol on passive Na+ flux. We found that, a) 1-500 microgram/ml of ethanol stimulated, and 10,000 microgram/ml depressed active Na+ transport; b) the combined effect of stimulating concentrations of ethanol and vasopressin, although suggestive of a positive interaction, might have arisen by chance (p = 0.08); c) depressant concentrations of ethanol failed to suppress the stimulation by vasopressin; and d) passive Na+ flux in bladders treated with ouabain and ethacrynic acid was not affected by ethanol (1-100 microgram/ml). These results indicate that ethanol in concentrations ranging from 1 to 10,000 microgram/ml does not block ATP/ATPase Na+ pump but apparently exerts a dose-dependent, stimulant-depressant effect on Na+ channels in the membrane.

  3. Processing 3D form and 3D motion: respective contributions of attention-based and stimulus-driven activity.

    PubMed

    Paradis, A-L; Droulez, J; Cornilleau-Pérès, V; Poline, J-B

    2008-12-01

    This study aims at segregating the neural substrate for the 3D-form and 3D-motion attributes in structure-from-motion perception, and at disentangling the stimulus-driven and endogenous-attention-driven processing of these attributes. Attention and stimulus were manipulated independently: participants had to detect the transitions of one attribute--form, 3D motion or colour--while the visual stimulus underwent successive transitions of all attributes. We compared the BOLD activity related to form and 3D motion in three conditions: stimulus-driven processing (unattended transitions), endogenous attentional selection (task) or both stimulus-driven processing and attentional selection (attended transitions). In all conditions, the form versus 3D-motion contrasts revealed a clear dorsal/ventral segregation. However, while the form-related activity is consistent with previously described shape-selective areas, the activity related to 3D motion does not encompass the usual "visual motion" areas, but rather corresponds to a high-level motion system, including IPL and STS areas. Second, we found a dissociation between the neural processing of unattended attributes and that involved in endogenous attentional selection. Areas selective for 3D-motion and form showed either increased activity at transitions of these respective attributes or decreased activity when subjects' attention was directed to a competing attribute. We propose that both facilitatory and suppressive mechanisms of attribute selection are involved depending on the conditions driving this selection. Therefore, attentional selection is not limited to an increased activity in areas processing stimulus properties, and may unveil different functional localization from stimulus modulation.

  4. Development of Kinematic Graphs of Median Nerve during Active Finger Motion: Implications of Smartphone Use

    PubMed Central

    2016-01-01

    Background Certain hand activities cause deformation and displacement of the median nerve at the carpal tunnel due to the gliding motion of tendons surrounding it. As smartphone usage escalates, this raises the public’s concern whether hand activities while using smartphones can lead to median nerve problems. Objective The aims of this study were to 1) develop kinematic graphs and 2) investigate the associated deformation and rotational information of median nerve in the carpal tunnel during hand activities. Methods Dominant wrists of 30 young adults were examined with ultrasonography by placing a transducer transversely on their wrist crease. Ultrasound video clips were recorded when the subject performing 1) thumb opposition with the wrist in neutral position, 2) thumb opposition with the wrist in ulnar deviation and 3) pinch grip with the wrist in neutral position. Six still images that were separated by 0.2-second intervals were then captured from the ultrasound video for the determination of 1) cross-sectional area (CSA), 2) flattening ratio (FR), 3) rotational displacement (RD) and 4) translational displacement (TD) of median nerve in the carpal tunnel, and these collected information of deformation, rotational and displacement of median nerve were compared between 1) two successive time points during a single hand activity and 2) different hand motions at the same time point. Finally, kinematic graphs were constructed to demonstrate the mobility of median nerve during different hand activities. Results Performing different hand activities during this study led to a gradual reduction in CSA of the median nerve, with thumb opposition together with the wrist in ulnar deviation causing the greatest extent of deformation of the median nerve. Thumb opposition with the wrist in ulnar deviation also led to the largest extent of TD when compared to the other two hand activities of this study. Kinematic graphs showed that the motion pathways of median nerve during

  5. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  6. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion.

    PubMed

    du Rose, Alister; Breen, Alan

    2016-01-01

    Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF) and surface electromyography (sEMG). Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES), Longissimus thoracis pars lumborum (LES), and Multifidus (LMU). Normalised root mean square (RMS) sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = -0.47 to 0.59). The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = -0.53). The relationships found may be important when considering rehabilitation for low back pain. PMID:27417592

  7. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion

    PubMed Central

    du Rose, Alister; Breen, Alan

    2016-01-01

    Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF) and surface electromyography (sEMG). Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES), Longissimus thoracis pars lumborum (LES), and Multifidus (LMU). Normalised root mean square (RMS) sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = −0.47 to 0.59). The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = −0.53). The relationships found may be important when considering rehabilitation for low back pain. PMID:27417592

  8. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    PubMed Central

    2016-01-01

    Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW) model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm's projective function. We test our work on the several datasets and obtain very promising results. PMID:27656199

  9. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    PubMed Central

    2016-01-01

    Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW) model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm's projective function. We test our work on the several datasets and obtain very promising results.

  10. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  11. Semi-active control of the rocking motion of monolithic art objects

    NASA Astrophysics Data System (ADS)

    Ceravolo, Rosario; Pecorelli, Marica Leonarda; Zanotti Fragonara, Luca

    2016-07-01

    The seismic behaviour of many art objects and obelisks can be analysed in the context of the seismic response of rigid blocks. Starting from the pioneering works by Housner, a large number of analytical studies of the rigid block dynamics were proposed. In fact, despite its apparent simplicity, the motion of a rigid block involves a number of complex dynamic phenomena such as impacts, sliding, uplift and geometric nonlinearities. While most of the current strategies to avoid toppling consist in preventing rocking motion, in this paper a novel semi-active on-off control strategy for protecting monolithic art objects was investigated. The control procedure under study follows a feedback-feedforward scheme that is realised by switching the stiffness of the anchorages located at the two lower corner of the block between two values. Overturning spectra have been calculated in order to clarify the benefits of applying a semi-active control instead of a passive control strategy. In accordance with similar studies, the numerical investigation took into account the dynamic response of blocks with different slenderness and size subject to one-sine pulse excitation.

  12. Reliability of the universal goniometer for assessing active cervical range of motion in asymptomatic healthy persons

    PubMed Central

    Farooq, Muhammad Nazim; Bandpei, Mohammad A. Mohseni; Ali, Mudassar; Khan, Ghazanfar Ali

    2016-01-01

    Objective: To determine within-rater and between-rater reliability of the universal goniometer (UG) for measuring active cervical range of motion (ACROM) in asymptomatic healthy subjects. Methods: Nineteen healthy subjects were tested in an identical seated position. Two raters used UG to measure active cervical movements of flexion, extension, right side flexion, left side flexion, right rotation and left rotation. Each motion was measured twice by each of the two raters and was re-measured all over again after one week. Data analysis was performed using the intraclass correlation coefficient (ICC). Results: The results demonstrated excellent within-session (ICC2,1 = 0.83 to 0.98) and between-session (ICC2,2 = 0.79 to 0.97) intra-rater reliability and excellent inter-rater reliability (ICC2,2 = 0.79 to 0.92). Conclusion: Considering above results it is concluded that UG is a reliable tool for assessing ACROM in a clinical setting for healthy subjects. PMID:27182261

  13. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  14. Distribution of the Effect of Solar Proton Flux And Geomagnetic Activity on the Stratospheric Ozone Profile

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Tassev, Y.; Yanev, T.; Tomova, D.

    Two-way MANOVA was used to examine the impact of two factors: 1) the proton flux intensity and 2) the geomagnetic activity on the dependant variable "ozone mixing ratio" which characterizes the stratospheric ozone profiles. The examination was carried out with fixed levels of two other factors: a) the heights at which the "ozone mixing ratio" was recorded, i,e, 35 km, 30.2 km, 24.5 km, 18.4 km, 15.6 km and b) the energetic intervals within which the proton flux was measured, i.e. =0,6-4,2 MeV; 4,2-8,7 MeV; 8,7-14,5 MeV; 15-44 MeV; 39-82 MeV; 84-200 MeV; 110-500 MeV. The analysis was performed for all combinations of levels of the factors a) and b) for which data was available. It was aimed at revealing which of the factors 1) and 2) were dominating with different combinations of the factors a) and b) with fixed levels. For this purpose a post hoc analysis was performed as well. The main results are as follows: factors 1) and 2) exert statistically significant impact on the dependant variable at all of the heights examined, but not for all of energetic intervals; increase of the ozone mixing ratio was observed as a main effect of the proton flux intensity at heights 24.5 km, 18.4 km, 15.6 km, but the analysis of the simultaneous acting of factors 1) and 2) revealed a decrease of the dependant variable at these heights; these effects possibly indicate the existence of two different mechanisms of impact on the ozone mixing ratio; the afore- discussed effects decrease with the height and therefore their graphical image was named "Christmas tree".

  15. NON-THERMAL RESPONSE OF THE CORONA TO THE MAGNETIC FLUX DISPERSAL IN THE PHOTOSPHERE OF A DECAYING ACTIVE REGION

    SciTech Connect

    Harra, L. K.; Abramenko, V. I.

    2012-11-10

    We analyzed Solar Dynamics Observatory line-of-sight magnetograms for a decaying NOAA active region (AR) 11451 along with co-temporal Extreme-Ultraviolet Imaging Spectrometer (EIS) data from the Hinode spacecraft. The photosphere was studied via time variations of the turbulent magnetic diffusivity coefficient, {eta}(t), and the magnetic power spectrum index, {alpha}, through analysis of magnetogram data from the Helioseismic and Magnetic Imager (HMI). These measure the intensity of the random motions of magnetic elements and the state of turbulence of the magnetic field, respectively. The time changes of the non-thermal energy release in the corona was explored via histogram analysis of the non-thermal velocity, v {sub nt}, in order to highlight the largest values at each time, which may indicate an increase in energy release in the corona. We used the 10% upper range of the histogram of v {sub nt} (which we called V {sup upp} {sub nt}) of the coronal spectral line of Fe XII 195 A. A 2 day time interval was analyzed from HMI data, along with the EIS data for the same field of view. Our main findings are the following. (1) The magnetic turbulent diffusion coefficient, {eta}(t), precedes the upper range of the v {sub nt} with the time lag of approximately 2 hr and the cross-correlation coefficient of 0.76. (2) The power-law index, {alpha}, of the magnetic power spectrum precedes V {sup upp} {sub nt} with a time lag of approximately 3 hr and the cross-correlation coefficient of 0.5. The data show that the magnetic flux dispersal in the photosphere is relevant to non-thermal energy release dynamics in the above corona. The results are consistent with the nanoflare mechanism of the coronal heating, due to the time lags being consistent with the process of heating and cooling the loops heated by nanoflares.

  16. Active and passive Brownian motion of charged particles in two-dimensional plasma models

    SciTech Connect

    Dunkel, Joern; Ebeling, Werner; Trigger, Sergey A.

    2004-10-01

    The dynamics of charged Coulomb grains in a plasma is numerically and analytically investigated. Analogous to recent experiments, it is assumed that the grains are trapped in an external parabolic field. Our simulations are based on a Langevin model, where the grain-plasma interaction is realized by a velocity-dependent friction coefficient and a velocity-independent diffusion coefficient. In addition to the ordinary case of positive (passive) friction between grains and plasma, we also discuss the effects of negative (active) friction. The latter case seems particularly interesting, since recent analytical calculations have shown that friction coefficients with negative parts may appear in some models of ion absorption by grains as well as in models of ion-grain scattering. Such negative friction may cause active Brownian motions of the grains. As our computer simulations show, the influence of negative friction leads to the formation of various stationary modes (rotations, oscillations), which, to some extent, can also be estimated analytically.

  17. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  18. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  19. A model for the formation of the active region corona driven by magnetic flux emergence

    NASA Astrophysics Data System (ADS)

    Chen, F.; Peter, H.; Bingert, S.; Cheung, M. C. M.

    2014-04-01

    Aims: We present the first model that couples the formation of the corona of a solar active region to a model of the emergence of a sunspot pair. This allows us to study when, where, and why active region loops form, and how they evolve. Methods: We use a 3D radiation magnetohydrodynamics (MHD) simulation of the emergence of an active region through the upper convection zone and the photosphere as a lower boundary for a 3D MHD coronal model. The coronal model accounts for the braiding of the magnetic fieldlines, which induces currents in the corona to heat up the plasma. We synthesize the coronal emission for a direct comparison to observations. Starting with a basically field-free atmosphere we follow the filling of the corona with magnetic field and plasma. Results: Numerous individually identifiable hot coronal loops form, and reach temperatures well above 1 MK with densities comparable to observations. The footpoints of these loops are found where small patches of magnetic flux concentrations move into the sunspots. The loop formation is triggered by an increase in upward-directed Poynting flux at their footpoints in the photosphere. In the synthesized extreme ultraviolet (EUV) emission these loops develop within a few minutes. The first EUV loop appears as a thin tube, then rises and expands significantly in the horizontal direction. Later, the spatially inhomogeneous heat input leads to a fragmented system of multiple loops or strands in a growing envelope. Animation associated with Fig. 2 is available in electronic form at http://www.aanda.org

  20. Thermal and Kinetic Properties of Motions in a Prominence Activation and Nearby Loop

    NASA Technical Reports Server (NTRS)

    Kucera, Therese; Landi, E.

    2005-01-01

    We perform a quantitative analysis of the thermal properties of a prominence activation and motions in a nearby loop. In order to make measurements of the quickly moving features seen in prominences in the UV we use the SOHO/SUMER spectrograph to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The lines observed cover a broad range of temperatures from 80,000 - 1.6 million K. These measurements are combined with TRACE movies in transition region and coronal temperature bands to obtain more complete information concerning prominence structure and motions. The resulting observations allow us to analyze the thermal and kinetic energy of the moving sources as functions of time. The loop and prominence are most apparent in lines formed at temperatures below 250,000 K. We find that in most cases the temperature distribution of plasma in a moving feature changes relatively little over time periods of about 20 minutes.

  1. The feasibility of shoulder motion tracking during activities of daily living using inertial measurement units.

    PubMed

    Kirking, Bryan; El-Gohary, Mahmoud; Kwon, Young

    2016-09-01

    Measurements of shoulder kinematics during activities of daily living (ADL) can be used to evaluate patient function before and after treatment and help define device testing conditions. The purpose of this study was to demonstrate the feasibility of using wearable inertial measurement units (IMUs) to track shoulder joint angles while performing actual ADLs outside of laboratory simulations. IMU data of 5 subjects with normal shoulders was collected for 4h at the subjects' workplace and up to 4h off-work. An Unscented Kalman Filter (UKF) enhanced with gyroscope bias modeling and zero velocity updates demonstrated an accuracy of about 2° and was used to estimate relative upper arm angles from the IMU data. The overall averaged 95th percentile angles were: flexion 128.8°, abduction 128.4°, and external rotation 69.5°. These peaks angles are similar to other investigator's reports using laboratory simulations of ADLs measured with optical and electromagnetic technologies. Additionally, with a Fourier transform the 50th percentile frequency was determined and used to extrapolate the typical number of arm cycles in a 10year period to be 649,000. Application of the UKF with the additional drift correction made substantial improvements in shoulder tracking performance and this feasibility data suggests that IMUs with the UKF are suitable for extended use outside of laboratory settings. The data provides a novel description of arm motion during ADLs including an estimate for the 10 year cycle count of upper arm motion. PMID:27371783

  2. Surface flux transport simulations. Inflows towards active regions and the modulation of the solar cycle.

    NASA Astrophysics Data System (ADS)

    Martin-Belda, David; Cameron, Robert

    2016-07-01

    Aims. We investigate the way near-surface converging flows towards active regions affect the build-up of magnetic field at the Sun's polar caps. In the Babcock-Leighton dynamo framework, this modulation of the polar fields could explain the variability of the solar cycle. Methods. We develop a surface flux transport code incorporating a parametrized model of the inflows and run simulations spanning several cycles. We carry out a parameter study to test how the strength and extension of the inflows affect the amplitude of the polar fields. Results. Inflows are seen to play an important role in the build-up of the polar fields, and can act as the non-linearity feedback mechanism required to limit the strength of the solar cycles in the Babcock-Leighton dynamo framework.

  3. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  4. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    PubMed

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. PMID:21646026

  5. HIP MUSCLE ACTIVATION AND KNEE FRONTAL PLANE MOTION DURING WEIGHT BEARING THERAPEUTIC EXERCISES

    PubMed Central

    Lubahn, Amanda J.; Tyson, Tiffany L.; Merkitch, Kenneth W.; Reutemann, Paul; Chestnut, John Mark

    2011-01-01

    Purpose/Background: Hip abduction strengthening exercises may be critical in the prevention and rehabilitation of both overuse and traumatic injuries where knee frontal plane alignment is considered to be important. The purpose of the current investigation was to examine the muscular activation of the gluteus maximus and gluteus medius during the double-leg squat (DLS), single-leg squat (SLS), or front step-up (FSU), and the same exercises when an added load was used to pull the knee medially. Methods: Eighteen healthy females (ages 18-26) performed six exercises: DLS, DLS with load, FSU, FSU with load, SLS, and SLS with load. Integrated and peak surface electromyography of gluteus maximus and gluteus medius of the dominant leg were recorded and normalized. Motion analysis was used to measure knee abduction angle during each exercise. Results: SLS had the highest integrated and peak activation for both muscles, regardless of load. Adding load, only increased DLS integrated gluteus maximus activation (p=0.019). Load did not increase integrated gluteus medius or peak gluteus maximus activation. Adding load decreased SLS peak gluteus medius activation (p=0.003). Adding load increased peak knee abduction angle during DLS (p=0.013), FSU (p=0.000), and SLS (p=0.011). Conclusions: Overall, the SLS was most effective exercise for activating the gluteus maximus and gluteus medius. Applied knee load does not appear to increase muscle activation during SLS and FSU. DLS with an applied load may be more beneficial in activating the gluteus maximus. Overall, the use of applied loads appears to promote poorer musculoskeletal alignment in terms of peak knee valgus angle. Level of Evidence: 3 PMID:21713231

  6. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  7. Driving technology for improving motion quality of active-matrix organic light-emitting diode display

    NASA Astrophysics Data System (ADS)

    Kim, Jongbin; Kim, Minkoo; Kim, Jong-Man; Kim, Seung-Ryeol; Lee, Seung-Woo

    2014-09-01

    This paper reports transient response characteristics of active-matrix organic light emitting diode (AMOLED) displays for mobile applications. This work reports that the rising responses look like saw-tooth waveform and are not always faster than those of liquid crystal displays. Thus, a driving technology is proposed to improve the rising transient responses of AMOLED based on the overdrive (OD) technology. We modified the OD technology by combining it with a dithering method because the conventional OD method cannot successfully enhance all the rising responses. Our method can improve all the transitions of AMOLED without modifying the conventional gamma architecture of drivers. A new artifact is found when OD is applied to certain transitions. We propose an optimum OD selection method to mitigate the artifact. The implementation results show the proposed technology can successfully improve motion quality of scrolling texts as well as moving pictures in AMOLED displays.

  8. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  9. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data

    PubMed Central

    Lewis, Jesse S.; Gerber, Brian D.

    2014-01-01

    Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal populations to estimate species occurrence. Occupancy modelling provides a flexible framework for the analysis of these data; explicitly recognizing that given a species occupies an area the probability of detecting it is often less than one. Despite the number of studies using camera data in an occupancy framework, there is only limited guidance from the scientific literature about survey design trade-offs when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers to maximise available resources and determine whether the objectives of a monitoring program or research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 km2 of the Western Slope of Colorado, USA to explore how survey effort (number of cameras deployed and the length of sampling period) affects the accuracy and precision (i.e., error) of the occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach where species occupancy and detection parameters were informed by empirical data from motion-activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10–120 cameras) and occasions (20–120 survey days). Our findings demonstrate that increasing total sampling effort generally decreases error associated with the occupancy estimate, but changing the number of sites or sampling duration can have very different results, depending on whether a species is spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the required survey effort includes maximizing the number of sites and the number of survey days, often to a level that may be logistically unrealistic for many studies. For common species with

  10. Active range of motion outcomes after reconstruction of burned wrist and hand deformities.

    PubMed

    Afifi, Ahmed M; Mahboub, Tarek A; Ibrahim Fouad, Amr; Azari, Kodi; Khalil, Haitham H; McCarthy, James E

    2016-06-01

    This works aim is to evaluate the efficacy of skin grafts and flaps in reconstruction of post-burn hand and wrist deformities. A prospective study of 57 burn contractures of the wrist and dorsum of the hand was performed. Flaps were used only if there was a non-vascularized structure after contracture release, otherwise a skin graft was used. Active range of motion (ROM) was used to assess hand function. The extension deformity cohort uniformly underwent skin graft following contracture release with a mean improvement of 71 degrees (p<0.0001). The flexion deformity cohort was treated with either skin grafts (8 patients) or flaps (9 patients) with a mean improvement of 44 degrees (p<0.0001). Skin grafts suffice for dorsal hand contractures to restore functional wrist ROM. For flexion contractures, flaps were more likely for contractures >6 months. Early release of burn contracture is advisable to avoid deep structure contracture.

  11. A Circular Motion Activity with Hot Wheels® Rev-Ups

    NASA Astrophysics Data System (ADS)

    Wagner, Glenn

    2009-02-01

    Hot Wheels® Rev-Ups provide a pedagogically engaging and inexpensive culminating activity for the application of circular motion with constant speed in introductory mechanics. The introductory Rev-Up, shown in Fig. 1, consists of a very durable car with two strong magnets built into the front and back of the car. The track is a piece of flexible plastic with a built-in metallic strip through its center that can then be formed into a circle. Pushing the car forward several times on a flat surface allows the car to move in a vertical circle when placed inside the track. What makes this toy attractive is that the gearing system allows the car to move at a relatively constant speed for about three to five seconds before slowing down appreciably.

  12. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data.

    PubMed

    Shannon, Graeme; Lewis, Jesse S; Gerber, Brian D

    2014-01-01

    Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal populations to estimate species occurrence. Occupancy modelling provides a flexible framework for the analysis of these data; explicitly recognizing that given a species occupies an area the probability of detecting it is often less than one. Despite the number of studies using camera data in an occupancy framework, there is only limited guidance from the scientific literature about survey design trade-offs when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers to maximise available resources and determine whether the objectives of a monitoring program or research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 km(2) of the Western Slope of Colorado, USA to explore how survey effort (number of cameras deployed and the length of sampling period) affects the accuracy and precision (i.e., error) of the occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach where species occupancy and detection parameters were informed by empirical data from motion-activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10-120 cameras) and occasions (20-120 survey days). Our findings demonstrate that increasing total sampling effort generally decreases error associated with the occupancy estimate, but changing the number of sites or sampling duration can have very different results, depending on whether a species is spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the required survey effort includes maximizing the number of sites and the number of survey days, often to a level that may be logistically unrealistic for many studies. For common species with

  13. Synergic co-activation of muscles in elbow flexion via fractional Brownian motion.

    PubMed

    Chang, Shyang; Hsyu, Ming-Chun; Cheng, Hsiu-Yao; Hsieh, Sheng-Hwu

    2008-12-31

    In reflex and volitional actions, co-activations of agonist and antagonist muscles are believed to be present. Recent studies indicate that such co-activations can be either synergic or dyssynergic. The aim of this paper is to investigate if the co-activations of biceps brachii, brachialis, and triceps brachii during volitional elbow flexion are in the synergic or dyssynergic state. In this study, two groups with each containing six healthy male volunteers participated. Each person of the first group performed 30 trials of volitional elbow flexion while each of the second group performed 30 trials of passive elbow flexion as control experiments. Based on the model of fractional Brownian motion, the intensity and frequency information of the surface electromyograms (EMGs) could be extracted simultaneously. No statistically significant changes were found in the control group. As to the other group, results indicated that the surface EMGs of all five muscle groups were temporally synchronized in frequencies with persistent intensities during each elbow flexion. In addition, the mean values of fractal dimensions for rest and volitional flexion states revealed significant differences with P < 0.01. The obtained positive results suggest that these muscle groups work together synergically to facilitate elbow flexion during the co-activations.

  14. Spinal Motion and Muscle Activity during Active Trunk Movements - Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures.

    PubMed

    Valentin, Stephanie; Licka, Theresia F

    2016-01-01

    Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6-11°; humans 12-34°) and extension (sheep: 4°; humans: 11-17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics.

  15. Spinal Motion and Muscle Activity during Active Trunk Movements – Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures

    PubMed Central

    Valentin, Stephanie; Licka, Theresia F.

    2016-01-01

    Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics. PMID:26741136

  16. Quantifying the Topology and Evolution of a Magnetic Flux Rope Associated with Multi-flare Activities

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Guo, Yang; Ding, M. D.

    2016-06-01

    Magnetic flux ropes (MFRs) play an important role in solar activities. The quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and associated activities. In this paper, we investigate the magnetic field of active region (AR) 12017 from 2014 March 28-29, during which time 12 flares were triggered by intermittent eruptions of a filament (either successful or confined). Using vector magnetic field data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we calculate the magnetic energy and helicity injection in the AR, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR from the closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The results show that the closed QSL structure surrounding the MFR becomes smaller as a consequence of flare occurrence. We also find that the flares in our sample are mainly triggered by kink instability. Moreover, the twist number varies more sensitively than other parameters with the occurrence of flares.

  17. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  18. INVESTIGATING TWO SUCCESSIVE FLUX ROPE ERUPTIONS IN A SOLAR ACTIVE REGION

    SciTech Connect

    Cheng, X.; Zhang, J.; Ding, M. D.; Guo, Y.; Olmedo, O.; Sun, X. D.; Liu, Y.

    2013-06-01

    We investigate two successive flux rope (FR1 and FR2) eruptions resulting in two coronal mass ejections (CMEs) on 2012 January 23. Both flux ropes (FRs) appeared as an EUV channel structure in the images of high temperature passbands of the Atmospheric Imaging Assembly prior to the CME eruption. Through fitting their height evolution with a function consisting of linear and exponential components, we determine the onset time of the FR impulsive acceleration with high temporal accuracy for the first time. Using this onset time, we divide the evolution of the FRs in the low corona into two phases: a slow rise phase and an impulsive acceleration phase. In the slow rise phase of FR1, the appearance of sporadic EUV and UV brightening and the strong shearing along the polarity inverse line indicates that the quasi-separatrix-layer reconnection likely initiates the slow rise. On the other hand, for FR2, we mainly contribute its slow rise to the FR1 eruption, which partially opened the overlying field and thus decreased the magnetic restriction. At the onset of the impulsive acceleration phase, FR1 (FR2) reaches the critical height of 84.4 ± 11.2 Mm (86.2 ± 13.0 Mm) where the decline of the overlying field with height is fast enough to trigger the torus instability. After a very short interval (∼2 minutes), the flare emission began to enhance. These results reveal the compound activity involving multiple magnetic FRs and further suggest that the ideal torus instability probably plays the essential role of initiating the impulsive acceleration of CMEs.

  19. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students. PMID:23247874

  20. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.

  1. Wearable motion sensors to continuously measure real-world physical activities

    PubMed Central

    Dobkin, Bruce H.

    2014-01-01

    Purpose of review Rehabilitation for sensorimotor impairments aims to improve daily activities, walking, exercise, and motor skills. Monitoring of practice and measuring outcomes, however, is usually restricted to laboratory-based procedures and self-reports. Mobile health devices may reverse these confounders of daily care and research trials. Recent findings Wearable, wireless motion sensor data, analyzed by activity pattern-recognition algorithms, can describe the type, quantity, and quality of mobility-related activities in the community. Data transmission from sensors to the cell phone and Internet enable continuous monitoring. Remote access to laboratory-quality data about walking speed, duration and distance, gait asymmetry and smoothness of movements, as well as cycling, exercise, and skills practice, opens new opportunities to engage patients in progressive, personalized therapies with feedback about performance. Clinical trial designs will be able to include remote verification of the integrity of complex physical interventions and compliance with practice, as well as capture repeated, ecologically sound, ratio-scale outcome measures. Summary Given the progressively falling cost of miniaturized wearable gyroscopes, accelerometers, and other physiologic sensors, as well as inexpensive data transmission, sensing systems may become as ubiquitous as cell phones for health care. Neurorehabilitation can develop these mobile health platforms for daily care and clinical trials to improve exercise and fitness, skills learning, and physical functioning. PMID:24136126

  2. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    NASA Technical Reports Server (NTRS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  3. Evaluation of CETP activity in vivo under non-steady-state conditions: influence of anacetrapib on HDL-TG flux.

    PubMed

    McLaren, David G; Previs, Stephen F; Phair, Robert D; Stout, Steven J; Xie, Dan; Chen, Ying; Salituro, Gino M; Xu, Suoyu S; Castro-Perez, Jose M; Opiteck, Gregory J; Akinsanya, Karen O; Cleary, Michele A; Dansky, Hayes M; Johns, Douglas G; Roddy, Thomas P

    2016-03-01

    Studies in lipoprotein kinetics almost exclusively rely on steady-state approaches to modeling. Herein, we have used a non-steady-state experimental design to examine the role of cholesteryl ester transfer protein (CETP) in mediating HDL-TG flux in vivo in rhesus macaques, and therefore, we developed an alternative strategy to model the data. Two isotopomers ([(2)H11] and [(13)C18]) of oleic acid were administered (orally and intravenously, respectively) to serve as precursors for labeling TGs in apoB-containing lipoproteins. The flux of a specific TG (52:2) from these donor lipoproteins to HDL was used as the measure of CETP activity; calculations are also presented to estimate total HDL-TG flux. Based on our data, we estimate that the peak total postprandial TG flux to HDL via CETP is ∼ 13 mg · h(-1) · kg(-1) and show that this transfer was inhibited by 97% following anacetrapib treatment. Collectively, these data demonstrate that HDL TG flux can be used as a measure of CETP activity in vivo. The fact that the donor lipoproteins can be labeled in situ using well-established stable isotope tracer techniques suggests ways to measure this activity for native lipoproteins in free-living subjects under any physiological conditions.

  4. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.

    PubMed

    Qu, Jianliang; Chen, Weihai; Zhang, Jianbin

    2014-09-01

    Parallel alignment stage with remote-center-of-motion (RCM) is of key importance in precision out-of-plane aligning since it can eliminate the harmful lateral displacement generated at the output platform. This paper presents the development of a parallelogram-based compliant RCM stage for active parallel alignment. Different from conventional parallelogram-based RCM mechanism, the proposed stage is designed with compliant mechanisms, which endows the stage with many attractive merits when used in precision micro-/nanomanipulations. A symmetric double-parallelogram mechanism (SDPM) based on flexure hinges is developed as the rotary guiding component to realize desired RCM function. Due to the geometrical constraint of the SDPM, the operating space of the stage can be easily adjusted by bending the input links without loss of rotational precision. The stage is driven by a piezoelectric actuator and its output motion is measured by non-contact displacement sensors. Based on pseudo-rigid-body simplification method, the analytical models predicting kinematics, statics, and dynamics of the RCM stage have been established. Besides, the dimensional optimization is conducted in order to maximize the first resonance frequency of the stage. After that, finite element analysis is conducted to validate the established models and the prototype of the stage is fabricated for performance tests. The experimental results show that the developed RCM stage has a rotational range of 1.45 mrad while the maximum center shift of the RCM point is as low as 1 μm, which validate the effectiveness of the proposed scheme.

  5. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment

    NASA Astrophysics Data System (ADS)

    Qu, Jianliang; Chen, Weihai; Zhang, Jianbin

    2014-09-01

    Parallel alignment stage with remote-center-of-motion (RCM) is of key importance in precision out-of-plane aligning since it can eliminate the harmful lateral displacement generated at the output platform. This paper presents the development of a parallelogram-based compliant RCM stage for active parallel alignment. Different from conventional parallelogram-based RCM mechanism, the proposed stage is designed with compliant mechanisms, which endows the stage with many attractive merits when used in precision micro-/nanomanipulations. A symmetric double-parallelogram mechanism (SDPM) based on flexure hinges is developed as the rotary guiding component to realize desired RCM function. Due to the geometrical constraint of the SDPM, the operating space of the stage can be easily adjusted by bending the input links without loss of rotational precision. The stage is driven by a piezoelectric actuator and its output motion is measured by non-contact displacement sensors. Based on pseudo-rigid-body simplification method, the analytical models predicting kinematics, statics, and dynamics of the RCM stage have been established. Besides, the dimensional optimization is conducted in order to maximize the first resonance frequency of the stage. After that, finite element analysis is conducted to validate the established models and the prototype of the stage is fabricated for performance tests. The experimental results show that the developed RCM stage has a rotational range of 1.45 mrad while the maximum center shift of the RCM point is as low as 1 μm, which validate the effectiveness of the proposed scheme.

  6. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Normandin, Marc D.; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey’s head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. PMID:24418501

  7. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.

    PubMed

    Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann; Normandin, Marc D; Brady, Thomas J; El Fakhri, Georges; Ouyang, Jinsong

    2014-05-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey's head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values.

  8. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  9. Peak muscle activation, joint kinematics, and kinetics during elliptical and stepping movement pattern on a Precor Adaptive Motion Trainer.

    PubMed

    Rogatzki, Matthew J; Kernozek, Thomas W; Willson, John D; Greany, John F; Hong, Di-An; Porcari, John R

    2012-06-01

    Kinematic, kinetic, and electromyography data were collected from the biceps femoris, rectus femoris (RF), gluteus maximus, and erector spinae (ES) during a step and elliptical exercise at a standardized workload with no hand use. Findings depicted 95% greater ankle plantar flexion (p = .01), 29% more knee extension (p = .003), 101% higher peak knee flexor moments (p < .001) 54% greater hip extensor moments (p < .001), 268% greater anterior joint reaction force (p = .009), 37% more RF activation (p < .001), and 200 % more ES activation (p <. 001) for the elliptical motion. Sixteen percent more hip flexion (p < .001), 42% higher knee extensor moments (p < .001), and 54% greater hip flexor moments (p = .041) occurred during the step motion. Biomechanical differences between motions should be considered when planning an exercise regimen. PMID:22808700

  10. Cortical activation to object shape and speed of motion during the first year

    PubMed Central

    Wilcox, Teresa; Hawkins, Laura B.; Hirskkowitz, Amy; Boas, David A.

    2014-01-01

    A great deal is known about the functional organization of cortical networks that mediate visual object processing in the adult. The current research is part of a growing effort to identify the functional maturation of these pathways in the developing brain. The current research used near-infrared spectroscopy to investigate functional activation of the infant cortex during the processing of featural information (shape) and spatiotemporal information (speed of motion) during the first year of life. Our investigation focused on two areas that were implicated in previous studies: anterior temporal cortex and posterior parietal cortex. Neuroimaging data were collected with 207 infants across three age groups: 3 to 6 months (Experiment 1), 7 to 8 months (Experiment 2), and 10 to 12 months (Experiments 3 and 4). The neuroimaging data revealed age-related changes in patterns of activation to shape and speed information, mostly involving posterior parietal areas, some of which were predicted and others that were not. We suggest that these changes reflect age-related differences in the perceptual and/or cognitive processes engaged during the task. PMID:24821531

  11. Active knee range of motion assessment in elite track and field athletes: normative values

    PubMed Central

    Malliaropoulos, Nikos; Kakoura, Lena; Tsitas, Kostas; Christodoulou, Dimitris; Siozos, Alexandros; Malliaras, Peter; Maffulli, Nicola

    2015-01-01

    Summary Background flexibility is an important physical characteristic in athletes in terms of performance and injury prevention. Active Range Of Motion (AROM) was assessed in elite Greek track and field athletes. Methods prospective cohort study was carried out. In the period 2000–2010, the AROM was measured bilaterally with the Active Knee Extension (AKE) test during an in-season period with a goniometer in 127 athletes. Results male runners and jumpers had a higher mean AROM than throwers, but this result was not statistically significant. Female jumpers had a higher mean AROM than both runners and throwers, but the difference was also not statistically significant. Conclusion in athletes, mean posterior thigh muscle flexibility is likely to be between 72.3° and 73.9°. Posterior thigh muscle flexibility is associated with performance, the higher the AROM, the better performance is achieved athletes have generally high AROM, and this may be a result of their increased muscle flexibility. The normative values of posterior thigh flexibility may assist in better monitoring rehabilitation of the posterior thigh muscle injuries and be useful in pre-season screening of athletes’ flexibility. PMID:26605196

  12. Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.

    PubMed

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F; Williams, Susan H; German, Rebecca Z; Sanford, Christopher P J; Gintof, Chris

    2011-08-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.

  13. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Isla, Alejandro; Scharek, Renate; Latasa, Mikel

    2015-03-01

    The diel vertical migration (DVM) of zooplankton contributes to the biological pump transporting material from surface to deep waters. We examined the DVM of the zooplankton community in different size fractions (53-200 μm, 200-500 μm, 500-1000 μm, 1000-2000 μm and > 2000 μm) during three cruises carried out in the open NW Mediterranean Sea. We assessed their metabolic rates from empirical published relationships and estimated the active fluxes of dissolved carbon to the mesopelagic zone driven by migrant zooplankton. Within the predominantly oligotrophic Mediterranean Sea, the NW region is one of the most productive ones, with a seasonal cycle characterized by a prominent spring bloom. The study area was visited at three different phases of the seasonal cycle: during the spring bloom, the post-bloom, and strongly stratified oligotrophic conditions. We found seasonal differences in DVM, less evident during the bloom. Changes in DVM intensity were related to the composition of the zooplanktonic assemblage, which also varied between cruises. Euphausiids appeared as the most active migrants in all seasons, and their life cycle conditioned the observed pattern. Immature stages, which are unable to perform large diel vertical movements, dominated during the bloom, in contrast to the higher relative importance of migrating adults in the other two sampling periods. The amount of dissolved carbon exported was determined by the migrant zooplankton biomass, being highest during the post-bloom (2.2 mmol C respired m- 2 d- 1, and up to 3.1 mmol C exported m- 2 d- 1 when DOC release estimations are added). The active transport by diel migrants represented a substantial contribution to total carbon export to deep waters, especially under stratified oligotrophic conditions, revealing the importance of zooplankton in the biological pump operating in the study area.

  14. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor

    SciTech Connect

    Park, H.; Choo, K.H.; Lee, C.H.

    1999-10-01

    The effect of powdered activated carbon (PAC) addition on the performance of a membrane-coupled anaerobic bioreactor (MCAB) was investigated in terms of membrane filterability and treatability through a series of batch and continuous microfiltration (MF) experiments. In both batch and continuous MF of the digestion broth, a flux improvement with PAC addition was achieved, especially when a higher shear rate and/or a higher PAC dose were applied. Both the fouling and cake layer resistances decreased continuously with increasing the PAC dose up to 5 g/L. PAC played an important role in substantially reducing the biomass cake resistance due to its incompressible nature and higher backtransport velocities. PAC might have a scouring effect for removing the deposited biomass cake from the membrane surface while sorbing and/or coagulating dissolved organics and colloidal particles in the broth. The chemical oxygen demand and color in the effluent were much removed with PAC addition, and the system was also more stable against shock loading.

  15. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  16. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  17. A framework for activity detection in wide-area motion imagery

    SciTech Connect

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

  18. Field-Aligned Current Sheet Motion and Its Correlation with Solar Wind Conditions and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Le, G.; Boardsen, S. A.; Slavin, J. A.; Strangeway, R. J.

    2008-05-01

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission and their corresponding solar wind conditions to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times.

  19. THE CHROMOSPHERIC ACTIVITY, AGE, METALLICITY, AND SPACE MOTIONS OF 36 WIDE BINARIES

    SciTech Connect

    Zhao, J. K.; Oswalt, T. D.; Rudkin, M.; Zhao, G.; Chen, Y. Q. E-mail: toswalt@fit.edu E-mail: gzhao@bao.ac.cn

    2011-04-15

    We present the chromospheric activity (CA) levels, metallicities, and full space motions for 41 F, G, K, and M dwarf stars in 36 wide binary systems. Thirty-one of the binaries contain a white dwarf (WD) component. In such binaries, the total age can be estimated by adding the cooling age of the WD to an estimate of the progenitor's main-sequence lifetime. To better understand how CA correlates to stellar age, 14 cluster member stars were also observed. Our observations demonstrate for the first time that, in general, CA decays with age from 50 Myr to at least 8 Gyr for stars with 1.0 {<=} V - I {<=} 2.4. However, little change occurs in the CA level for stars with V - I < 1.0 between 1 Gyr and 5 Gyr, consistent with the results of Pace et al. Our sample also exhibits a negative correlation between the stellar age and metallicity, a positive correlation between the stellar age and W space velocity component, and the W velocity dispersion increases with age. Finally, the population membership of these wide binaries is examined based upon their U, V, W kinematics, metallicity, and CA. We conclude that wide binaries are similar to field and cluster stars in these respects. More importantly, they span a much more continuous range in age and metallicity than is afforded by nearby clusters.

  20. Noise-enhanced stability and double stochastic resonance of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Zhang, Chun; Zeng, Jiakui; Liu, Ruifen; Wang, Hua

    2015-08-01

    In this paper, we study the transient and resonant properties of active Brownian particles (ABPs) in the Rayleigh-Helmholtz (RH) and Schweitzer-Ebeling-Tilch (SET) models, which is driven by the simultaneous action of multiplicative and additive noise and periodic forcing. It is shown that the cross-correlation between two noises (λ) can break the symmetry of the potential to generate motion of the ABPs. In case of no correlation between two noises, the mean first passage time (MFPT) is a monotonic decrease depending on the multiplicative noise, however in case of correlation between two noises, the MFPT exhibits a maximum, depending on the multiplicative noise for both models, this maximum for MFPT identifies the noise-enhanced stability (NES) effect of the ABPs. By comparing with case of no correlation (λ =0.0 ), we find two maxima in the signal-to-noise ratio (SNR) depending on the cross-correlation intensity, i.e. the double stochastic resonance is shown in both models. For the RH model, the SNR exhibits two maxima depending on the multiplicative noise for small cross-correlation intensity, while in the SET model, it exhibits only a maximum depending on the multiplicative noise. Whether λ =0.0 or not, the MFPT is a monotonic decrease, and the SNR exhibits a maximum, depending on the additive noise in both models.

  1. Fabric Active Transducer Stimulated by Water Motion for Self-Powered Wearable Device.

    PubMed

    Kwon, Soon-Hyung; Kim, Won Keun; Park, Junwoo; Yang, YoungJun; Yoo, Byungwook; Han, Chul Jong; Kim, Youn Sang

    2016-09-21

    The recent trend of energy-harvesting devices is an adoption of fabric materials with flexible and stretchable according to the increase of wearable electronics. But it is a difficult process to form a core structure of dielectric layer or electrode on fabric materials. In particular, a fabric-based energy-harvesting device in contact with water has not been studied, though there are many challenging issues including insulation and water absorption in a harsh environment. So we propose an effective method to obtain an electrical energy from the water contact using our new fabric energy harvesting device. Our water motion active transducer (WMAT) is designed to obtain electrical energy from the variable capacitance through the movement and contact of water droplet. In this paper, we succeeded in generating an electrical energy with peak to peak power of 280 μW using a 30 μL of water droplet with the fabric WMAT device of 70 mm × 50 mm dimension. Furthermore, we specially carried out spray-coating and transfer processes instead of the conventional spin-coating process on fabric materials to overcome the limitation of its uneven morphology and porous and deformable assembly. PMID:27564593

  2. Personalized Multilayer Daily Life Profiling Through Context Enabled Activity Classification and Motion Reconstruction: An Integrated System Approach.

    PubMed

    Xu, James Y; Wang, Yan; Barrett, Mick; Dobkin, Bruce; Pottie, Greg J; Kaiser, William J

    2016-01-01

    Profiling the daily activity of a physically disabled person in the community would enable healthcare professionals to monitor the type, quantity, and quality of their patients' compliance with recommendations for exercise, fitness, and practice of skilled movements, as well as enable feedback about performance in real-world situations. Based on our early research in in-community activity profiling, we present in this paper an end-to-end system capable of reporting a patient's daily activity at multiple levels of granularity: 1) at the highest level, information on the location categories a patient is able to visit; 2) within each location category, information on the activities a patient is able to perform; and 3) at the lowest level, motion trajectory, visualization, and metrics computation of each activity. Our methodology is built upon a physical activity prescription model coupled with MEMS inertial sensors and mobile device kits that can be sent to a patient at home. A novel context-guided activity-monitoring concept with categorical location context is used to achieve enhanced classification accuracy and throughput. The methodology is then seamlessly integrated with motion reconstruction and metrics computation to provide comprehensive layered reporting of a patient's daily life. We also present an implementation of the methodology featuring a novel location context detection algorithm using WiFi augmented GPS and overlays, with motion reconstruction and visualization algorithms for practical in-community deployment. Finally, we use a series of experimental field evaluations to confirm the accuracy of the system. PMID:25546868

  3. Personalized Multilayer Daily Life Profiling Through Context Enabled Activity Classification and Motion Reconstruction: An Integrated System Approach.

    PubMed

    Xu, James Y; Wang, Yan; Barrett, Mick; Dobkin, Bruce; Pottie, Greg J; Kaiser, William J

    2016-01-01

    Profiling the daily activity of a physically disabled person in the community would enable healthcare professionals to monitor the type, quantity, and quality of their patients' compliance with recommendations for exercise, fitness, and practice of skilled movements, as well as enable feedback about performance in real-world situations. Based on our early research in in-community activity profiling, we present in this paper an end-to-end system capable of reporting a patient's daily activity at multiple levels of granularity: 1) at the highest level, information on the location categories a patient is able to visit; 2) within each location category, information on the activities a patient is able to perform; and 3) at the lowest level, motion trajectory, visualization, and metrics computation of each activity. Our methodology is built upon a physical activity prescription model coupled with MEMS inertial sensors and mobile device kits that can be sent to a patient at home. A novel context-guided activity-monitoring concept with categorical location context is used to achieve enhanced classification accuracy and throughput. The methodology is then seamlessly integrated with motion reconstruction and metrics computation to provide comprehensive layered reporting of a patient's daily life. We also present an implementation of the methodology featuring a novel location context detection algorithm using WiFi augmented GPS and overlays, with motion reconstruction and visualization algorithms for practical in-community deployment. Finally, we use a series of experimental field evaluations to confirm the accuracy of the system.

  4. Extremely reduced motion in front of screens: investigating real-world physical activity of adolescents by accelerometry and electronic diary.

    PubMed

    Streb, Judith; Kammer, Thomas; Spitzer, Manfred; Hille, Katrin

    2015-01-01

    This paper reports accelerometer and electronic dairy data on typical daily activities of 139 school students from grade six and nine. Recordings covered a typical school day for each student and lasted on average for 23 h. Screen activities (watching television and using the computer) are compared to several other activities performed while sitting (e.g., playing, eating, sitting in school, and doing homework). Body movement was continuously recorded by four accelerometers and transformed into a motion sore. Our results show that extremely low motion scores, as if subjects were freezing, emerge to a greater extent in front of screens compared to other investigated activities. Given the substantial amount of time young people spend in front of screens and the rising obesity epidemic, our data suggest a mechanism for the association of screen time and obesity. PMID:25955531

  5. Oak Ridge National Laboratory's (ORNL) Weigh-In-Motion (WIM) Configuration and Data Management Activities

    SciTech Connect

    Abercrombie, Robert K; Sheldon, Frederick T; Schlicher, Bob G

    2006-01-01

    The Oak Ridge National Laboratory (ORNL) involvement in the Weigh-in-Motion (WIM) research with both government agencies and private companies dates back to 1989. The discussion here will focus on the US Army's current need for an automated WIM system to weigh and determine the center-of-balance for military wheeled vehicles and cargo and the expanded uses of WIM data. ORNL is addressing configuration and data management issues as they relate to deployments for both military and humanitarian activities. The transition from the previous WIM Gen I to the current Gen II system illustrates a configuration and data management solution that ensures data integration, integrity, coherence and cost effectiveness. Currently, Army units use portable and fixed scales, tape measures, and calculators to determine vehicle axle, total weights and center of balance for vehicles prior to being transshipped via railcar, ship, or airlifted. Manually weighing and measuring all vehicles subject to these transshipment operations is time-consuming, labor-intensive, hazardous and is prone to human errors (e.g., misreading scales and tape measures, calculating centers of balance and wheel, axle, and vehicle weights, recording data, and transferring data from manually prepared work sheets into an electronic data base and aggravated by adverse weather conditions). Additionally, in the context of the military, the timeliness, safety, success, and effectiveness of airborne heavy-drop operations can be significantly improved by the use of an automated system to weigh and determine center of balance of vehicles while they are in motion. The lack of a standardized airlift-weighing system for joint service use also creates redundant weighing requirements at the cost of scarce resources and time. This case study can be judiciously expanded into commercial operations related to safety and enforcement. The WIM program will provide a means for the Army to automatically identify/weigh and monitor

  6. Formation of sunspots and active regions through the emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Matthias D.; Fan, Yuhong

    2016-05-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the near surface layer radiation MHD simulations of magneto-convection and flux emergence with the MURaM code. The latter code simulates the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere.The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries come most probably from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted and the leading sides of the emerging flux tubes are usually up against the downdraft lanes of the giant cells. It is also found that penumbrae with numerous filamentary structures form in regions of strong horizontal magnetic fields that naturally comes from the ongoing flux emergence. In contrast to previous models, the penumbrae and umbrae are divided by very sharp boarders, which is highly consistent with observations.

  7. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    SciTech Connect

    Koski, J. A.; Keltner, N. R.; Nicolette, V. F.; Wix, S. D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average heat fluxes of 50 to 60 kW/m{sup 2} are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m{sup 2} are routinely observed in fires. Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container could be better predicted, design analyses would become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions.

  8. Gravity wave activity in the thermosphere inferred from GOCE data, and its dependence on solar flux conditions.

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Bruinsma, Sean; Doornbos, Eelco; Massarweh, Lotfi

    2016-04-01

    This study is focused on the effect of solar flux conditions on the dynamics of Gravity Waves (GW) in thermosphere. Air density and cross-wind in situ estimates from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometers are analyzed for the whole mission duration. The analysis was performed in the Fourier spectral domain averaging spectral results over periods of 2 months close to solstices. First the Amplitude Spectral Density (ASD) and the Magnitude Squared Coherence (MSC) of physical parameters are linked to local gravity waves. Then, a new GW marker (called Cf3) was introduced here to constrain GWs activity under Low, Medium and High solar flux conditions, showing a clear solar dumping effect on GW activity. Most of GW signal has been found in a spectral range above 8 mHz in GOCE data, meaning a maximum horizontal wavelength around 1000 km. The level GW activity at GOCE altitude is strongly decreasing with increasing solar flux. Furthermore, a shift in the dominant frequency with solar flux conditions has been noted, leading to a larger horizontal wavelengths (from 200 to 500 km) during high solar flux conditions. The influence of correlated error sources, between air density and cross-winds, is discussed. Consistency of the spectral domain results has been verified in time-domain with a global mapping of high frequency perturbations along GOCE orbit. This analysis shows a clear dependence with geomagnetic latitude with strong perturbations at magnetic poles, and an extension to lower latitudes favoured by low solar activity conditions. Various possible causes of this spatial trend are discussed.

  9. Motion patterns in activities of daily living: 3- year longitudinal follow-up after total shoulder arthroplasty using an optical 3D motion analysis system

    PubMed Central

    2014-01-01

    Background Total shoulder arthroplasty (TSA) can improve function in osteoarthritic shoulders, but the ability to perform activities of daily living (ADLs) can still remain impaired. Routinely, shoulder surgeons measure range of motion (ROM) using a goniometer. Objective data are limited, however, concerning functional three-dimensional changes in ROM in ADLs after TSA in patients with degenerative glenohumeral osteoarthritis. Methods This study included ten consecutive patients, who received TSA for primary glenohumeral osteoarthritis. The patients were examined the day before, 6 months, and 3 years after shoulder replacement as well. We compared them with a control group (n = 10) without any shoulder pathology and measured shoulder movement by 3D motion analysis using a novel 3 D model. The measurement included static maximum values, the ability to perform and the ROM of the ADLs “combing the hair”, “washing the opposite armpit”, “tying an apron”, and “taking a book from a shelf”. Results Six months after surgery, almost all TSA patients were able to perform the four ADLs (3 out of 40 tasks could not be performed by the 10 patients); 3 years postoperatively all patients were able to carry out all ADLs (40 out of 40 tasks possible). In performing the ADLs, comparison of the pre- with the 6-month and 3-year postoperative status of the TSA group showed that the subjects did not fully use the available maximum flexion/extension ROM in performing the four ADLs. The ROM used for flexion/extension did not change significantly (preoperatively 135°-0° -34° vs. 3 years postoperatively 131° -0° -53°). For abduction/adduction, ROM improved significantly from 33°-0° -27° preoperatively to 76° -0° -35° postoperatively. Compared to the controls (118°) the TSA group used less ROM for abduction to perform the four ADLs 3 years postoperatively. Conclusion TSA improves the ability to perform ADL and the individual ROM in ADLs in patients with

  10. MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Lister, M. L.; Richards, J. L.; Aller, M. F.; Aller, H. D.; Homan, D. C.; Kellermann, K. I.; Kovalev, Y. Y.

    2013-11-01

    We describe the parsec-scale kinematics of 200 active galactic nucleus (AGN) jets based on 15 GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGNs from the MOJAVE and 2 cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12-16 yr interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ∼0.°5 to ∼2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5-12 yr), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas yr{sup –1}), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the

  11. MOJAVE. X. Parsec-scale Jet Orientation Variations and Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Aller, M. F.; Aller, H. D.; Homan, D. C.; Kellermann, K. I.; Kovalev, Y. Y.; Pushkarev, A. B.; Richards, J. L.; Ros, E.; Savolainen, T.

    2013-11-01

    We describe the parsec-scale kinematics of 200 active galactic nucleus (AGN) jets based on 15 GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGNs from the MOJAVE and 2 cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12-16 yr interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ~0.°5 to ~2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5-12 yr), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas yr-1), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying

  12. Gas flux measurements of episodic bimodal eruptive activity at Karymsky volcano (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Arellano, S.; Galle, B.; Melnikov, D.

    2012-04-01

    Volcanoes of intermediate magmatic composition commonly exhibit episodes of intermittent gas and ash emission of variable duration. Due to the multiple conditions present at each system, different mechanisms have been proposed to account for the observed activity, and without key measurements at hand, a definite understanding of the situation might not be singled out. Karymsky, the most active volcano of Central Kamchatka, has presented a remarkably stable pattern of bimodal eruption since a few weeks after its violent reactivation in 1996. Periods of quasi-periodic explosive emissions with typical recurrence intervals of 3-10 min are alternated with episodes of semi-continuous discharge which intensity has a typical modulation at a frequency of 1 Hz. Geophysical studies at Karymsky have identified the main visual, seismic and acoustic features of these two eruption modalities. From these observations, the time scales of the processes have been defined and relevant models have been formulated, according to which the two modes are controlled by the rheological properties of an intruding gas-saturated magma batch and a shallow gas-depleted magma plug. Explosions are explained as the consequence of the formation of temporary sealing, overpressure buildup and vent clearance. Clearly, direct measurements of the gas emission rate are the key parameter to test such models. In this work, we report on the results of a field campaign for SO2 gas measurements carried out at Karymsky during 10-14 September 2011. We deployed 2 NOVAC-type, scanning DOAS systems as well as 1 rapid wide-Field of View mini-DOAS plume tracker. With this setup, we derived time-resolved SO2 flux, plume height, direction and speed, and detected pulses of increasing emission with high temporal resolution. We observed phases of explosive and quiescent degassing with variable amounts of ash emission and detected intensity changes of the associated acoustic signals. The repose time intervals between these

  13. Cortical activation associated with determination of depth order during transparent motion perception: A normalized integrative fMRI-MEG study.

    PubMed

    Natsukawa, Hiroaki; Kobayashi, Tetsuo

    2015-10-01

    When visual patterns drifting in different directions and/or at different speeds are superimposed on the same plane, observers perceive transparent surfaces on planes of different depths. This phenomenon is known as transparent motion perception. In this study, cortical activities were measured using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to reveal the cortical dynamics associated with determination of depth order during transparent motion perception. In addition, offline eye movement measurements were performed to determine the latencies of the start of both pursuit eye movements and depth attention that are important in determination of the depth order. MEG and fMRI data were analyzed by a normalized integrative fMRI-MEG method that enables reconstruction of time-varying dipole moments of activated regions from MEG signals. Statistical analysis of fMRI data was performed to identify activated regions. The activated regions were used as spatial constraints for the reconstruction using the integrative fMRI-MEG method. We focused on the period between latencies (216-405 ms) determined by eye movement experiment, which are related to determination of the depth order. The results of integrative analysis revealed that significant neural activities were observed in the visual association area, the human middle temporal area, the intraparietal sulcus, the lateral occipital cortex, and the anterior cingulate cortex between 216 and 405 ms. These results suggest that initial eye movement and accompanying cortical activations during focused duration play an important role in determining the depth order during transparent motion perception.

  14. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells.

    PubMed

    Nicolae, Averina; Wahrheit, Judith; Nonnenmacher, Yannic; Weyler, Christian; Heinzle, Elmar

    2015-11-01

    Metabolic compartmentation is a key feature of mammalian cells. Mitochondria are the powerhouse of eukaryotic cells, responsible for respiration and the TCA cycle. We accessed the mitochondrial metabolism of the economically important Chinese hamster ovary (CHO) cells using selective permeabilization. We tested key substrates without and with addition of ADP. Based on quantified uptake and production rates, we could determine the contribution of different elementary flux modes to the metabolism of a substrate or substrate combination. ADP stimulated the uptake of most metabolites, directly by serving as substrate for the respiratory chain, thus removing the inhibitory effect of NADH, or as allosteric effector. Addition of ADP favored substrate metabolization to CO2 and did not enhance the production of other metabolites. The controlling effect of ADP was more pronounced when we supplied metabolites to the first part of the TCA cycle: pyruvate, citrate, α-ketoglutarate and glutamine. In the second part of the TCA cycle, the rates were primarily controlled by the concentrations of C4-dicarboxylates. Without ADP addition, the activity of the pyruvate carboxylase-malate dehydrogenase-malic enzyme cycle consumed the ATP produced by oxidative phosphorylation, preventing its accumulation and maintaining metabolic steady state conditions. Aspartate was taken up only in combination with pyruvate, whose uptake also increased, a fact explained by complex regulatory effects. Isocitrate dehydrogenase and α-ketoglutarate dehydrogenase were identified as the key regulators of the TCA cycle, confirming existent knowledge from other cells. We have shown that selectively permeabilized cells combined with elementary mode analysis allow in-depth studying of the mitochondrial metabolism and regulation. PMID:26417715

  15. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells.

    PubMed

    Nicolae, Averina; Wahrheit, Judith; Nonnenmacher, Yannic; Weyler, Christian; Heinzle, Elmar

    2015-11-01

    Metabolic compartmentation is a key feature of mammalian cells. Mitochondria are the powerhouse of eukaryotic cells, responsible for respiration and the TCA cycle. We accessed the mitochondrial metabolism of the economically important Chinese hamster ovary (CHO) cells using selective permeabilization. We tested key substrates without and with addition of ADP. Based on quantified uptake and production rates, we could determine the contribution of different elementary flux modes to the metabolism of a substrate or substrate combination. ADP stimulated the uptake of most metabolites, directly by serving as substrate for the respiratory chain, thus removing the inhibitory effect of NADH, or as allosteric effector. Addition of ADP favored substrate metabolization to CO2 and did not enhance the production of other metabolites. The controlling effect of ADP was more pronounced when we supplied metabolites to the first part of the TCA cycle: pyruvate, citrate, α-ketoglutarate and glutamine. In the second part of the TCA cycle, the rates were primarily controlled by the concentrations of C4-dicarboxylates. Without ADP addition, the activity of the pyruvate carboxylase-malate dehydrogenase-malic enzyme cycle consumed the ATP produced by oxidative phosphorylation, preventing its accumulation and maintaining metabolic steady state conditions. Aspartate was taken up only in combination with pyruvate, whose uptake also increased, a fact explained by complex regulatory effects. Isocitrate dehydrogenase and α-ketoglutarate dehydrogenase were identified as the key regulators of the TCA cycle, confirming existent knowledge from other cells. We have shown that selectively permeabilized cells combined with elementary mode analysis allow in-depth studying of the mitochondrial metabolism and regulation.

  16. The weathering and element fluxes from active volcanoes to the oceans: a Montserrat case study

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Hembury, Deborah J.; Palmer, Martin R.; Tonge, Bill; Darling, W. George; Loughlin, Susan C.

    2011-04-01

    The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island's inhabitants.

  17. Influence of surface active substances on bubble motion and collision with various interfaces.

    PubMed

    Malysa, K; Krasowska, M; Krzan, M

    2005-06-30

    Bubble motion as a function of distance from a point of its detachment and phenomena occurring during the bubble approach and collision with liquid/gas and liquid/solid interfaces in pure water and solutions of various surface active substances are described and discussed. It is showed that presence of surface active substance has a profound influence on values of the terminal velocity and profiles of the local velocity. At low solutions concentrations there are three distinct stages in the bubble motion: (i) a rapid acceleration, (ii) a maximum velocity value followed by its monotonic decrease, and (iii) attainment of the terminal velocity, while at high concentrations (and in pure water) there are only stages (i) and (iii). It is showed that the bubble terminal velocity decreases rapidly at low surfactant concentration, but there can be found some characteristic concentrations (adsorption coverage's) above which the velocity almost stopped to decrease. Immobilization of the bubble surface resulting from adsorption of the surface active substances (surface tension gradients inducement) causes over twofold lowering of the bubble velocity. Presence of the maximum on the local velocity profiles is an indication that a stationary non-uniform distribution of adsorption coverage (needed for immobilization the bubble interface) was not established there. When the rising bubble arrives at liquid/gas interface or liquid/solid interface there can be formed either foam or wetting film or three-phase contact (TPC). It is showed that prior to the foam and/or wetting film formation the bubble colliding with the interfaces can bounce backward and simultaneously its shape pulsates rapidly with a frequency over 1000 Hz. It is rather unexpected that even in the case of the free surface the bubble's shape and consequently its surface area can vary so rapidly. It shows straightforward that on such a rapidly distorted interface the adsorption coverage can be very different from that

  18. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon.

    PubMed

    Kupryianchyk, D; Noori, A; Rakowska, M I; Grotenhuis, J T C; Koelmans, A A

    2013-05-21

    Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we report polychlorobiphenyl (PCB) pore water concentrations, fluxes, mass transfer coefficients, and survival data of two benthic species, for four treatments: no AC addition (control), powdered AC addition, granular AC addition and addition and subsequent removal of GAC (sediment stripping). AC addition decreased mass fluxes but increased apparent mass transfer coefficients because of dissolved organic carbon (DOC) facilitated transport across the benthic boundary layer (BBL). In turn, DOC concentrations depended on bioturbator activity which was high for the PAC tolerant species Asellus aquaticus and low for AC sensitive species Lumbriculus variegatus. A dual BBL resistance model combining AC effects on gradients, DOC facilitated transport and biodiffusion was evaluated against the data and showed how the type of resistance differs with treatment and chemical hydrophobicity. Data and simulations illustrate the complex interplay between AC and contaminant toxicity to benthic organisms and how differences in species tolerance affect mass fluxes from sediment to the water column. PMID:23590290

  19. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.

    PubMed

    Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka

    2010-09-01

    Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.

  20. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  1. Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1.

    PubMed

    Hu, Shenshen; Cattin-Ortolá, Jérôme; Munos, Jeffrey W; Klinman, Judith P

    2016-08-01

    The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase-1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen-tunneling properties of the wild-type protein and three single-site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C-H activation. In contrast, the primary kinetic isotope effects (KIEs) for C-H activation and their corresponding temperature dependencies remain unchanged up to ca. 700 bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope-dependent donor-acceptor distance-sampling modes, and a more global, isotope-independent search for productive protein conformational sub-states. PMID:27348724

  2. Flux pinning characteristics and irreversibility line in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  3. Flux pinning characteristics and irreversibility line in high temperature superconductors

    SciTech Connect

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-04-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  4. Evidence of flux rope and sigmoid in Active Regions prior eruptions

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Aulanier, Guillaume; Janvier, Miho; Bommier, Veronique; Dudik, Jaroslav; Gilchrist, Stuart; Zhao, Jie

    2016-07-01

    In the solar corona, the magnetic field is dominant, and the current density vector is nearly aligned with the magnetic field lines for strong and stressed field regions. Stressed and highly twisted flux ropes are at the origin of eruptive events such as flares and coronal mass ejections, which inject material into the interplanetary medium. The standard three dimensional (3D) flare model predicts the complex evolution of flare loops and the flux rope before the eruption. Flux ropes are not directly observed in the corona, however it has started to be possible to detect their footprints in the photosphere. Recent high spatial and temporal resolution spectro-polarimeters have allowed us to compute the photospheric electric currents and follow their evolution. Characteristics pattern like J-shaped ribbons indicate the presence of a flux rope before the flare. The results confirm the predictions of the 3D MHD standard model of eruptive flares. It is interesting to compare the magnetic helicity of the ejected flux rope with the in situ measurements of the corresponding ICME at L1. We will show some examples (February 15 2011, July 12 2012, Sept 10 2014).

  5. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes.

    PubMed

    Castaldi, S; Riondino, M; Baronti, S; Esposito, F R; Marzaioli, R; Rutigliano, F A; Vaccari, F P; Miglietta, F

    2011-11-01

    Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m(-2)) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N(2)O, CH(4) and CO(2) fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N(2)O fluxes were from 26% to 79% lower than N(2)O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N(2)O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH(4) fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.

  6. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints of the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.

  7. Gas flux dynamics in high arctic permafrost polygon and ice wedge active layer soil; microbial feedback implications

    NASA Astrophysics Data System (ADS)

    Mykytczuk, N. C.; Stackhouse, B. T.; Bennett, P.; Lamarche-Gagnon, G.; Hettich, R. L.; Phelps, T. J.; Layton, A.; Pfiffner, S. M.; Allan, J.; Vishnivetskaya, T. A.; Chourey, K.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Temperatures in the Arctic may increase 4-8°C over the next 100 years, thereby increasing the depth of the active layer (AL) and thawing the underlying permafrost, with ice wedges in particular acting as an early indicator, a bellwether, for changing permafrost. Although data on CO2 and CH4 fluxes have been studied along with microbial diversity of AL and permafrost environments, the relationship between methanogenic, methanotrophic and heterotrophic in situ activities within the AL and CO2 and CH4 fluxes as a function of temperature has not been delineated. Defining these relationships is critical for accurately modeling the extent and rate of + / - feedback in global climate models. Initial field investigations of diurnal CO2 and CH4 flux from permafrost and ice-wedge AL soils were conducted during July on Axel Heiberg Island in the Canadian high arctic. The AL soils (68-69 cm depth) were completely thawed while ambient air temperatures were between 9 and 27°C. The AL soils above the ice wedges had a higher water content and finer texture than the polygon AL soils. Diurnal patterns using in situ flux chambers and a Picarro C-13 CO2 cavity ring-down spectrometer recorded net outward flux of CO2 (3.2 to 8.8 g/m2/day) and consumption of atmospheric CH4 (-2.2 mg/m2/day) from the AL surfaces. Gas flux from the ice wedge soil surface were in a similar range as the polygon soil surface, having slightly higher maximal flux of CO2 (10.4 g/m2/day) and net efflux of CH4 (-2.2 to 14 mg/m2/day). Using a vertical probe, gas flux below the surface measured higher amounts of CO2 with increasing depth ranging from 10.4 to 21.4 g/m2/day in the polygon soils vs. 10 to 28.5 g/m2/day in the ice wedge soils. Through the same profile, the CH4 concentration decreased from 0.59 ppmv to < 0.1 ppmv within 30 cm of the surface in the ice wedge and from 1.1 to 0.54 ppmv at the base of the polygon AL. The δ13C of the CO2 efflux from the surface were consistent with microbial activity

  8. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  9. Using Motion-Sensor Games to Encourage Physical Activity for Adults with Intellectual Disability.

    PubMed

    Taylor, Michael J; Taylor, David; Gamboa, Patricia; Vlaev, Ivo; Darzi, Ara

    2016-01-01

    Adults with Intellectual Disability (ID) are at high risk of being in poor health as a result of exercising infrequently; recent evidence indicates this is often due to there being a lack of opportunities to exercise. This pilot study involved an investigation of the use of motion-sensor game technology to enable and encourage exercise for this population. Five adults (two female; 3 male, aged 34-74 [M = 55.20, SD = 16.71] with ID used motion-sensor games to conduct exercise at weekly sessions at a day-centre. Session attendees reported to have enjoyed using the games, and that they would like to use the games in future. Interviews were conducted with six (four female; two male, aged 27-51 [M = 40.20, SD = 11.28]) day-centre staff, which indicated ways in which the motion-sensor games could be improved for use by adults with ID, and barriers to consider in relation to their possible future implementation. Findings indicate motion-sensor games provide a useful, enjoyable and accessible way for adults with ID to exercise. Future research could investigate implementation of motion-sensor games as a method for exercise promotion for this population on a larger scale.

  10. Thermally Activated Energy and Flux-flow Hall Effect of Fe1+y(Te1+xSx)z

    SciTech Connect

    Petrovic, C.; Lei, H.; Hu, R.; Choi, E.S.

    2010-10-19

    Thermally activated flux flow (TAFF) and flux-flow Hall effect (FFHE) of Fe(Te,S) single crystal in the mixed state are studied in magnetic fields up to 35 T. Thermally activated energy (TAE) is analyzed using conventional Arrhenius relation and modified TAFF theory which is closer to experimental results. The results indicate that there is a crossover from single-vortex pinning region to collective creep pinning region with increasing magnetic field. The temperature dependence of TAE is different for H {parallel} ab and H {parallel} c. On the other hand, the analysis of FFHE in the mixed state indicates that there is no Hall sign reversal. We also observe scaling behavior |{rho}{sub xy}(H)|=A{rho}{sub xx}(H){sup {beta}}.

  11. SPINNING MOTIONS IN CORONAL CAVITIES

    SciTech Connect

    Wang, Y.-M.; Stenborg, G. E-mail: guillermo.stenborg.ctr.ar@nrl.navy.mi

    2010-08-20

    In movies made from Fe XII 19.5 nm images, coronal cavities that graze or are detached from the solar limb appear as continually spinning structures, with sky-plane projected flow speeds in the range 5-10 km s{sup -1}. These whirling motions often persist in the same sense for up to several days and provide strong evidence that the cavities and the immediately surrounding streamer material have the form of helical flux ropes viewed along their axes. A pronounced bias toward spin in the equatorward direction is observed during 2008. We attribute this bias to the poleward concentration of the photospheric magnetic flux near sunspot minimum, which leads to asymmetric heating along large-scale coronal loops and tends to drive a flow from higher to lower latitudes; this flow is converted into an equatorward spinning motion when the loops pinch off to form a flux rope. As sunspot activity increases and the polar fields weaken, we expect the preferred direction of the spin to reverse.

  12. Fluxes of low-energy particles in quiet periods of solar activity and the MgII index

    NASA Astrophysics Data System (ADS)

    Zeldovich, M. A.; Logachev, Yu. I.; Kecskemety, K.; Surova, G. M.

    2009-10-01

    Low fluxes of protons with energies 0.3-10 MeV were studied during 21-23 solar cycles as a function of the MgII index using the data of the instruments CPME, EIS ( IMP8), and EPHIN ( SOHO). It has been shown that a) during quiet time of solar activity the fluxes of protons (background protons) have a positive correlation with the MgII index value throughout the solar cycle, b) specific features of variations of the MgII index during the solar minima of 1986-1987 and 1996-1997 can be considered, as well as variations of background fluxes of low energy charged particles, to be manifestations of the 22-year magnetic cycle of the Sun, and c) periods of the lowest value of the MgII index are also characterized by the smaller values of the ratio of intensities of protons and helium nuclei than in other quiet periods. A hypothesis is put forward that acceleration in a multitude of weak solar flares is one of the sources of background fluxes of low energy particles in the interplanetary space.

  13. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly.

    PubMed

    Mendes, Pedro; Oliver, Stephen G; Kell, Douglas B

    2015-11-01

    A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed 'randomly' they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single 'random' transporter could account for the flux 42% of the time, and that two transporters can achieve 10·10(-6)cm·s(-1) 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that 'phospholipid bilayer diffusion (of drugs) is negligible' is not disproved by the calculations of 'likely' transporter-based fluxes.

  14. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly

    PubMed Central

    Mendes, Pedro; Oliver, Stephen G.; Kell, Douglas B.

    2015-01-01

    A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed ‘randomly’ they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single ‘random’ transporter could account for the flux 42% of the time, and that two transporters can achieve 10 · 10−6 cm·s−1 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that ‘phospholipid bilayer diffusion (of drugs) is negligible’ is not disproved by the calculations of ‘likely’ transporter-based fluxes. PMID:26538313

  15. Mechanically Activated Motion of a Single Self-Propelled Polymeric Microcapsule

    NASA Astrophysics Data System (ADS)

    Kolmakov, German; Schaefer, Alexander; Aranson, Igor; Balazs, Anna

    2011-03-01

    Using a hybrid computational approach, we demonstrate that a single nanoparticle-filled microcapsule on a rigid substrate can undergo self-sustained motion in response to initial mechanical deformation. Nanoparticles released from the capsule modify the underlying substrate and the adhesion gradients of the nanoparticle concentration formed at the surface sustain the motion of the capsule. The permeability of the microcapsule's shell increases with its deformation and therefore, more deformed microcapsules release nanoparticles at higher rates. An initial, non-uniform mechanical deformation of the capsule by an applied force causes an asymmetry in the nanoparticle distribution on the substrate that initiates the microcapsule motion. We also develop a two-dimensional model of the phenomenon within the phase-field approximation and compare the results of the two approaches.

  16. Activation of autophagy flux by metformin downregulates cellular FLICE–like inhibitory protein and enhances TRAIL- induced apoptosis

    PubMed Central

    Nazim, Uddin MD; Moon, Ji-Hong; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL is regarded as one of the most promising anticancer agents, because it can destruct cancer cells without showing any toxicity to normal cells. Metformin is an anti-diabetic drug with anticancer activity by inhibiting tumor cell proliferation. In this study, we demonstrated that metformin could induce TRAIL-mediated apoptotic cell death in TRAIL-resistant human lung adenocarcinoma A549 cells. Pretreatment of metformindownregulation of c-FLIP and markedly enhanced TRAIL-induced tumor cell death by dose-dependent manner. Treatment with metformin resulted in slight increase in the accumulation of microtubule-associated protein light chain LC3-II and significantly decreased the p62 protein levels by dose-dependent manner indicated that metformin induced autophagy flux activation in the lung cancer cells. Inhibition of autophagy flux using a specific inhibitor and genetically modified ATG5 siRNA blocked the metformin-mediated enhancing effect of TRAIL. These data demonstrated that downregulation of c-FLIP by metformin enhanced TRAIL-induced tumor cell death via activating autophagy flux in TRAIL-resistant lung cancer cells and also suggest that metformin may be a successful combination therapeutic strategy with TRAIL in TRAIL-resistant cancer cells including lung adenocarcinoma cells. PMID:26992204

  17. Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder.

    PubMed

    Eaton, D C; Frace, A M; Silverthorn, S U

    1982-01-01

    The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal 22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions, n, with a maximal flux, MMAX, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value for MMAX of 287.8 pM cm-2 sec-1 with an intracellular Na concentration of 2.0 mM Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40 +/- 0.07 for the transport process.

  18. Extension of the stability of motions in a combustion chamber by non- linear active control based on hysteresis

    SciTech Connect

    Knoop, P.; Culick, F.E.C.; Zukoski, E.E.

    1996-07-01

    This report presents the first quantitative data establishing the details of hysteresis whose existence in dynamical behavior was reported by Sterling and Zukoski. The new idea was demonstrated that the presence of dynamical hysteresis provides opportunity for a novel strategy of active nonlinear control of unsteady motions in combustors. A figure shows the hysteresis exhibited for the amplitude of pressure oscillations as a function of equivalence ratio in a combustor having a recirculation zone, in this case a dump combustor.

  19. Contrast Affects fMRI Activity in Middle Temporal Cortex Related to Center–Surround Interaction in Motion Perception

    PubMed Central

    Turkozer, Halide B.; Pamir, Zahide; Boyaci, Huseyin

    2016-01-01

    As the size of a high contrast drifting Gabor patch increases, perceiving its direction of motion becomes harder. However, the same behavioral effect is not observed for a low contrast Gabor patch. Neuronal mechanisms underlying this size–contrast interaction are not well understood. Here using psychophysical methods and functional magnetic resonance imaging (fMRI), we investigated the neural correlates of this behavioral effect. In the behavioral experiments, motion direction discrimination thresholds were assessed for drifting Gabor patches with different sizes and contrasts. Thresholds increased significantly as the size of the stimulus increased for high contrast (65%) but did not change for low contrast (2%) stimuli. In the fMRI experiment, cortical activity was recorded while observers viewed drifting Gabor patches with different contrasts and sizes. We found that the activity in middle temporal (MT) area increased with size at low contrast, but did not change at high contrast. Taken together, our results show that MT activity reflects the size–contrast interaction in motion perception. PMID:27065922

  20. Physics of active jamming during collective cellular motion in a monolayer.

    PubMed

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S

    2015-12-15

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.

  1. Physics of active jamming during collective cellular motion in a monolayer

    PubMed Central

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S.

    2015-01-01

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell−cell and cell−substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data. PMID:26627719

  2. Application of a novel spinal posture and motion measurement system in active and static sitting.

    PubMed

    Pries, Esther; Dreischarf, Marcel; Bashkuev, Maxim; Schmidt, Hendrik

    2015-01-01

    The quantification of work-related musculoskeletal risk factors is of great importance; however, only a few tools allow objective, unrestricted measurements of spinal posture and motion in workplaces. This study was performed to evaluate the applicability of the Epionics system in a sedentary workplace. The system is mobile and wireless and assesses lumbar lordosis, pelvic orientation and spinal motion, without restricting subjects in their movements. In total, 10 males were monitored while sitting for 2 h on static and dynamic office chairs and on an exercise ball, to evaluate the effect of dynamic sitting. The volunteers were able to perform their work unhampered. No differences among the tested furniture could be detected with respect to either the lordosis or the number of spinal movements after habituation to the furniture; however, differences in pelvic orientation were statistically significant. The results of the present study indicate that Epionics may be useful for the quantitative assessment of work-related risk factors. Practitioner Summary: Only a few tools allow objective, unrestricted measurements of spinal posture and motion in the workplace. Epionics SPINE measures lumbar lordosis, pelvic orientation and spinal motion under nearly unrestricted conditions and can be used to quantify work-related musculoskeletal risk factors. We demonstrated the use of this tool in the workplace-analysis. PMID:25712870

  3. Physics of active jamming during collective cellular motion in a monolayer.

    PubMed

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S

    2015-12-15

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data. PMID:26627719

  4. Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.; Miesch, M. S.

    2013-10-01

    We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1∘ to 40∘ in both hemispheres. This article expands upon Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy's Law as in Article 1, and in addition the scatter of tilt angles about the Joy's Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥ 40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy's Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.

  5. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  6. Neural correlates of apparent motion perception of impoverished facial stimuli: A comparison of ERP and ERSP activity

    PubMed Central

    Kolchinsky, Artemy; Puce, Aina

    2014-01-01

    Our brains readily decode human movements, as shown by neural responses to face and body motion. N170 event-related potentials (ERPs) are earlier and larger to mouth opening movements relative to closing in both line-drawn and natural faces, and gaze aversions relative to direct gaze in natural faces (Puce and Perrett, 2003; Puce et al., 2000). Here we extended this work by recording both ERP and oscillatory EEG activity (event-related spectral perturbations, ERSPs) to line-drawn faces depicting eye and mouth movements (Eyes: Direct vs Away; Mouth: Closed vs Open) and non-face motion controls. Neural activity was measured in 2 occipitotemporal clusters of 9 electrodes, one in each hemisphere. Mouth opening generated larger N170s than mouth closing, replicating earlier work. Eye motion elicited robust N170s that did not differ between gaze conditions. Control condition differences were seen, and generated the largest N170. ERSP difference plots across conditions in the occipitotemporal electrode clusters (Eyes: Direct vs Away; Mouth: Closed vs Open) showed statistically significant differences in beta and gamma bands for gaze direction changes and mouth opening at similar post-stimulus times and frequencies. In contrast, control stimuli showed activity in the gamma band with a completely different time profile and hemispheric distribution to facial stimuli. ERSP plots were generated in two 9 electrode clusters centered on central sites, C3 and C4. In the left cluster for all stimulus conditions, broadband beta suppression persisted from about 250 ms post-motion onset. In the right cluster, beta suppression was seen for control conditions only. Statistically significant differences between conditions were confined between 4 – 15 Hz, unlike occipitotemporal sites where differences occurred at much higher frequencies (high beta/gamma). Our data indicate that N170 amplitude is sensitive to the amount of movement in the visual field, independent of stimulus type. In

  7. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    PubMed

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-01

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  8. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  9. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-05-20

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (∼36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as 'magnetic breakout', are operating during the emergence of new active regions.

  10. Limits to solar cycle predictability: Cross-equatorial flux plumes

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Dasi-Espuig, M.; Jiang, J.; Işık, E.; Schmitt, D.; Schüssler, M.

    2013-09-01

    Context. Within the Babcock-Leighton framework for the solar dynamo, the strength of a cycle is expected to depend on the strength of the dipole moment or net hemispheric flux during the preceding minimum, which depends on how much flux was present in each hemisphere at the start of the previous cycle and how much net magnetic flux was transported across the equator during the cycle. Some of this transport is associated with the random walk of magnetic flux tubes subject to granular and supergranular buffeting, some of it is due to the advection caused by systematic cross-equatorial flows such as those associated with the inflows into active regions, and some crosses the equator during the emergence process. Aims: We aim to determine how much of the cross-equatorial transport is due to small-scale disorganized motions (treated as diffusion) compared with other processes such as emergence flux across the equator. Methods: We measure the cross-equatorial flux transport using Kitt Peak synoptic magnetograms, estimating both the total and diffusive fluxes. Results: Occasionally a large sunspot group, with a large tilt angle emerges crossing the equator, with flux from the two polarities in opposite hemispheres. The largest of these events carry a substantial amount of flux across the equator (compared to the magnetic flux near the poles). We call such events cross-equatorial flux plumes. There are very few such large events during a cycle, which introduces an uncertainty into the determination of the amount of magnetic flux transported across the equator in any particular cycle. As the amount of flux which crosses the equator determines the amount of net flux in each hemisphere, it follows that the cross-equatorial plumes introduce an uncertainty in the prediction of the net flux in each hemisphere. This leads to an uncertainty in predictions of the strength of the following cycle.

  11. Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review

    PubMed Central

    van den Heuvel, Sylvia P.; Staal, J. Bart; Smits-Engelsman, Bouwien C. M.

    2008-01-01

    The study is to provide a critical analysis of the research literature on clinimetric properties of instruments that can be used in daily practice to measure active cervical range of motion (ACROM) in patients with non-specific neck pain. A computerized literature search was performed in Medline, Cinahl and Embase from 1982 to January 2007. Two reviewers independently assessed the clinimetric properties of identified instruments using a criteria list. The search identified a total of 33 studies, investigating three different types of measurement instruments to determine ACROM. These instruments were: (1) different types of goniometers/inclinometers, (2) visual estimation, and (3) tape measurements. Intra- and inter-observer reliability was demonstrated for the cervical range of motion instrument (CROM), Cybex electronic digital instrument (EDI-320) and a single inclinometer. The presence of agreement was assessed for the EDI-320 and a single inclinometer. The CROM received a positive rating for construct validity. When clinical acceptability is taken into account both the CROM and the single inclinometer can be considered appropriate instruments for measuring the active range of motion in patients with non-specific neck pain in daily practice. Reliability is the aspect most frequently evaluated. Agreement, validity and responsiveness are documented less frequently. PMID:18427843

  12. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

    NASA Astrophysics Data System (ADS)

    Li, Lian-Fu; Jiang, Mao-Fa; Wang, Wen-Zhong; Chen, Zhao-Ping

    2000-06-01

    The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2-, X = F- or Cl-) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

  13. Plume capture by divergent plate motions: implications for the distribution of hotspots, geochemistry of mid-ocean ridge basalts, and estimates of the heat flux at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Jellinek, A. Mark; Gonnermann, Helge M.; Richards, Mark A.

    2003-01-01

    The coexistence of stationary mantle plumes with plate-scale flow is problematic in geodynamics. We present results from laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high Rayleigh number (10 6≤Ra≤10 9) in a fluid with a temperature-dependent viscosity. In a large tank, a layer of corn syrup is heated from below while being stirred by large-scale flow due to the opposing motions of a pair of conveyor belts immersed in the syrup at the top of the tank. Three regimes are observed, depending on the ratio V of the imposed horizontal flow velocity to the rise velocity of plumes ascending from the hot boundary, and on the ratio λ of the viscosity of the interior fluid to the viscosity of the hottest fluid in contact with the bottom boundary. When V≪1 and λ≥1, large-scale circulation has a negligible effect on convection and the heat flux is due to the formation and rise of randomly spaced plumes. When V>10 and λ>100, plume formation is suppressed entirely, and the heat flux is carried by a sheet-like upwelling located in the center of the tank. At intermediate V, and depending on λ, established plume conduits are advected along the bottom boundary and ascending plumes are focused towards the central upwelling. Heat transfer across the layer occurs through a combination of ascending plumes and large-scale flow. Scaling analyses show that the bottom boundary layer thickness and, in turn, the basal heat flux q depend on the Peclet number, Pe, and λ. When λ>10, q∝Pe 1/2 and when λ→1, q∝(Pe λ) 1/3, consistent with classical scalings. When applied to the Earth, our results suggest that plate-driven mantle flow focuses ascending plumes towards upwellings in the central Pacific and Africa as well as into mid-ocean ridges. Furthermore, plumes may be captured by strong upwelling flow beneath fast-spreading ridges. This behavior may explain why hotspots are more abundant near slow

  14. Use of Temperature and Surface Gas Flux as Novel Measures of Microbial Activity at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Warren, E.; Sihota, N. J.; Hostettler, F. D.

    2012-12-01

    Degradation of crude oil in the subsurface has been studied for over 30 years at a spill site located near Bemidji, Minnesota, USA. The well-characterized site is being used to experiment with the use of surface gas flux and temperature measurements as novel methods for quantifying microbial activity. In the largest subsurface oil body, a 2-m-thick smear zone spans the water table 6-8 m below the surface. Methane produced from degradation of the oil diffuses upward and mixes with oxygen from the surface supporting aerobic methanotrophy at 2-4 m depth. The methane oxidation produces CO2 and heat at rates which are hypothetically proportional to other measures of subsurface microbial activity. To test this hypothesis, vertical profiles of temperature and microbial populations, surface CO2 flux, and oil degradation state were measured at three sites in the oil body and one background site. Temperature increases in the oil zone near the water table were 1-4°C above the background site. The site with the highest temperature increase at the water table also had the highest concentrations of gene copy numbers for methanogens (mcrA) and methanotrophs (pmoA) along with the most degraded oil. Surface CO2 flux over the oil sites averaged more than twice that at the background site but was not consistently highest over the site with the highest activity by other measures. One possible explanation for this discrepancy is variation in the effective diffusion coefficient of the vadose zone between the methanotrophic zone and the surface. At the level of the methanotrophic zone, temperatures were elevated 2-6°C over the background values but again the site with greatest average annual temperature increase was not at the most active site. This may be due to enhanced recharge at the most active site, which lies at the center of a local topographic depression where focused recharge occurs. Overall, the temperature and flux data showed significant increases at the oil sites compared

  15. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  16. Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model

    NASA Astrophysics Data System (ADS)

    Valach, F.; Revallo, M.; Bochníček, J.; Hejda, P.

    2009-04-01

    Coronal mass ejections (CMEs) are believed to be the principal cause of increased geomagnetic activity. They are regarded as being in context of a series of related solar energetic events, such as X-ray flares (XRAs) accompanied by solar radio bursts (RSPs) and also by solar energetic particle (SEP) flux. Two types of the RSP events are known to be geoeffective, namely, the RSP of type II, interpreted as the signature of shock initiation in the solar corona, and type IV, representing material moving upward in the corona. The SEP events causing geomagnetic response are known to be produced by CME-driven shocks. In this paper, we use the method of the artificial neural network in order to quantify the geomagnetic response of particular solar events. The data concerning XRAs and RSPs II and/or IV together with their heliographic positions are taken as the input for the neural network. There is a key question posed in our study: can the successfulness of the neural network prediction scheme based solely on the solar disc observations (XRA and RSP) be improved by additional information concerning the SEP flux? To resolve this problem, we chose the SEP events possessing significant enhancement in the 10-h window, commencing 12 h after the generation of XRAs. In particular, we consider the flux of high-energy protons with energies over 10 MeV. We have used a chi-square test to demonstrate that supplying such extra input data improves the neural network prediction scheme.

  17. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  18. Motion Sickness

    MedlinePlus

    ... people traveling by car, train, airplanes and especially boats. Motion sickness can start suddenly, with a queasy ... motion sickness. For example, down below on a boat, your inner ear senses motion, but your eyes ...

  19. Lower Extremity Strength and Active Range of Motion in College Baseball Pitchers: A Comparison between Stance Leg and Kick Leg.

    PubMed

    Tippett, S R

    1986-01-01

    The role of the lower extremities and torso is vital in the pitching mechanism. However, a review of the literature reveals information primarily dealing with the upper extremity's role in throwing. This pilot study was conducted to: 1) determine selected lower extremity strength and range of motion measurements in sixteen college baseball pitchers, and 2) compare measurements in the stance leg to the kick leg. When preseason profiling is not possible, clinical norms for those treating college pitchers can be valuable in proper rehabilitation of the lower extremity. Also, by determining trends in lower extremity strength and motion when comparing kick (plant) leg to stance (drive) leg, a better understanding of lower extremity kinematics in the pitching act can be appreciated. Statistically significant differences were found in the active range of motion in plantarflexion, hip internal rotation, and hip extension of the stance leg, as well as hip flexion of the kick leg. lsokinetic evaluations at slow and fast speeds revealed significant differences in the strength of ankle dorsiflexors and hip flexors at slow speeds of the kick leg. Strength of the hamstrings on the kick leg was significant at fast speeds as was strength of the hip external rotators on the stance leg. J Orthop Sports Phys Ther 1986;8(1):10-14.

  20. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  1. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  2. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii)

    USGS Publications Warehouse

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E.; Delaney, David F.; Sinervo, Barry; Murphy, Mason O.; Ennen, Joshua R.; Briggs, Jessica R.; Cooper, Robert J.; Price, Steven J.

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  3. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).

    PubMed

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E; Delaney, David; Sinervo, Barry; Murphy, Mason O; Ennen, Joshua R; Briggs, Jessica R; Cooper, Robert; Price, Steven J

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  4. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption.

    PubMed

    Jiang, Chaowei; Wu, S T; Feng, Xuesheng; Hu, Qiang

    2016-05-16

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling.

  5. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    PubMed Central

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-01-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846

  6. The weight of computer mouse affects the wrist motion and forearm muscle activity during fast operation speed task.

    PubMed

    Chen, Han-Ming; Lee, Chang-Sian; Cheng, Chih-Hsiu

    2012-06-01

    The frequent use of the computer mouse was reported to be associated with the development of the musculoskeletal disorders in the wrist, forearm, and shoulder regions. This study was to examine the effect of the mouse weights and operation speeds on the wrist motion and muscle activity. 25 subjects (20 males and 5 females) were instructed to repetitively point-and-click the mouse between two targets displaced in the monitor with five different weighted mice (weights around 70, 100, 130, 160, and 190 g) at the fast (50 repetition/min) and slow (25 repetition/min) operation speeds. Surface electromyographic activity of the extensor carpi radialis, extensor carpi ulnaris, extensor digitorum, and upper trapezius muscles were recorded, and the electrogoniometer was used to register the wrist motions. The results showed that the maximal ulnar deviation was not significantly different among the examined conditions. The wrist movement range and the forearm muscle activities showed a V-shape tendency with the lowest value in the mouse weight of 130 g. This tendency was diminished during the slow speed tasks. The results suggested that the proper mouse weight could benefit the users in terms of increasing the movement efficiency and decreasing the muscular costs.

  7. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    PubMed

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  8. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model

    NASA Astrophysics Data System (ADS)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bx<1 , it is subcritical. For stock prices we find bx=1 within statistical uncertainty, for all x , consistent with an “efficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.

  9. Observations of plasma waves in the colliding jet region of a magnetic flux rope flanked by two active X lines at the subsolar magnetopause

    NASA Astrophysics Data System (ADS)

    Øieroset, M.; Sundkvist, D.; Chaston, C. C.; Phan, T. D.; Mozer, F. S.; McFadden, J. P.; Angelopoulos, V.; Andersson, L.; Eastwood, J. P.

    2014-08-01

    We have performed a detailed analysis of plasma and wave observations in a magnetic flux rope encountered by the THEMIS-D spacecraft at the subsolar magnetopause. The extent of the flux rope was ˜270 ion skin depths in the outflow direction, and it was flanked by two active X lines producing colliding plasma jets in the flux rope core where ion heating and suprathermal electrons were observed. The colliding jet region was highly dynamic and characterized by enhanced wave power in a broad frequency range. High-frequency waves, including ion acoustic-like waves, electron holes, and whistler mode waves, were observed in a limited spatial region near the flux rope center and did not appear to be associated with the observed large-scale heating and energization. Low-frequency kinetic Alfvén waves, on the other hand, were enhanced in the entire flux rope core, suggesting a possible link with the observed ion heating.

  10. Simulations of Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Stein, Robert; Nordlund, Aake

    Magnetic flux emerges from the solar surface on a wide range of scales. We review recent simulations of both large and small scale flux emergence. In our own simulations, we represent the magnetic flux produced by the global dynamo as uniform, untwisted, horizontal field advected into the simulation domain by supergranule scale inflows at the bottom. Our computational domain extends from the temperature minimum (half a megameter above the visible surface) to 20 Mm below the surface, which is 10% of the depth of the convection zone, but contains 2/3 of its scale heights. We investigate how magnetic flux rises through the upper solar convection zone and emerges through the surface. Convective up-flows and magnetic buoyancy bring field toward the surface. Convective down-flows pin down field and prevent its rise. Most of the field gets pumped downward by the convection, but some field rises to the surface. The convective motions both confine the flux concentrations (without the need for twist) and shred them. This process creates a hierarchy of magnetic loops with smaller loops riding "piggy-back", in a serpentine pattern, on larger loops. As a result, magnetic flux emerges in a mixed polarity, "pepper and salt" pattern. The small loops appear as horizontal field over granules with their vertical legs in the bounding intergranular lanes. The fields are quickly swept into the intergranular lanes. As the larger, parent, flux concentrations reach the surface with their legs rooted in the the downflow boundaries of the underlying, supergranule-scale, convective cells near the bottom of the simulation domain, the surface field counter-streams into separate, opposite polarity concentrations, creating pores and spots. The subsurface magnetic field lines of the pores and spots formed by the magneto-convection (without being imposed as an initial condition) are braided, some tightly, some loosely and they connect in complicated ways to the surrounding field at large depths

  11. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases.

  12. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases. PMID:26295309

  13. [Concurrence of multiple and integrated mechanisms in the modulation of enzyme activities: significance for the regulation of metabolic fluxes].

    PubMed

    Niemeyer, H; Cárdenas, M L

    1985-12-01

    The activity of some enzymes in a given metabolic pathway is modulated through multiple mechanisms, which operate in a simultaneous and coherent way to produce either stimulation or inhibition. The operation of these mechanisms is illustrated with several enzymes involved in glucose metabolism, by choosing examples from the presentations at the Symposium. Thus the reciprocal interactions of the regulatory mechanisms acting upon hexokinase D ('glucokinase'), phosphofructokinase, fructose 1,6-bisphosphatase and pyruvate kinase were discussed, as well as their relationships with the induction of enzyme conformational changes. In addition, the effects of covalent interconversions on glutamine synthetase activity were briefly analyzed. An outstanding feature exhibited by all these enzymes is the display of a great number of elasticity coefficients, which are differential quotients measuring the dependence of enzymatic activity on each variable that modulates it. A general assumption is that these enzymes make an important contribution to the control of the metabolic flux in which they participate. The flux control, however, appears to be shared in different degrees by all the components of the system, and may be quantified through the differential quotient denominated control coefficient. Some of the problems that emerge in any attempt to estimate these coefficients in the living cells are discussed. The problems derive partly from the complex subcellular structure, the formation of functional compartments resulting from reversible association of the enzymes, one to another and to different cellular components, and the actual state of cell water. These problems make that the results obtained with purified and highly diluted enzymes in most enzymological studies should not be extrapolated directly to what happens in vivo, without a careful evaluation of each particular case. The regulatory role of enzyme activity of fructose 2,6-bisphosphate and its eventual

  14. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.

    PubMed

    Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.

  15. Reconstruction of Active Regular Motion in Amoeba Extract: Dynamic Cooperation between Sol and Gel States

    PubMed Central

    Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol–gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol–gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol–gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol–gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol–gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba. PMID:23940560

  16. The Variation of Solar Fe 14 and Fe 10 Flux over 1.5 Solar Activity Cycles

    NASA Technical Reports Server (NTRS)

    Altrock, Richard C.

    1990-01-01

    A new source of data on the solar output, namely limb flux from the one- and two-million degree corona is presented. This parameter is derived from data obtained at the National Solar Observatory at Sacramento Peak with the 40 cm coronagraph of the John W. Evans Solar Facility and the Emission Line Coronal Photometer. The limb flux is defined to be the latitude-averaged intensity in millionths of the brightness of disk center from an annulus of width 1.1 minutes centered at a height of 0.15 solar constant above the limb of emission from lines at 6374A (Fe X) or 5303A (Fe XIV). Fe XIV data have been obtained since 1973 and Fe X since 1984. Examination of the Fe XIV data shows that there is ambiguity in the definition of the last two solar activity minima, which can affect the determination of cycle rise times and lengths. There is an indication that a constant minimum or basal corona may exist at solar minimum. Cycle 22 has had a much faster onset than Cycle 21 and has now overtaken Cycle 21. The rise characteristics of the two cycles were very similar up until Jul. to Aug. 1989, at which time a long-term maximum occurred in Fe X and Fe XIV, which could possibly be the solar maximum. Another maximum is developing at the current time. Cycle 21 was characterized in Fe XIV by at least 4 major thrusts or bursts of activity, each lasting on the order of a year and all having similar maximum limb fluxes which indicates that coronal energy output is sustained over periods in which the sunspot number declines significantly. Dramatic increases in the limb fluxes occur from minimum to maximum, ranging from factors of 14 to 21 in the two lines. Two different techniques to predict the epoch of solar maximum have been applied to the Fe XIV data, resulting in estimates of April 1989 (plus or minus 1 mo) and May 1990 (plus or minus 2 mos).

  17. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland.

    PubMed

    Johnson, David; Moore, Lucy; Green, Samuel; Leith, Ian D; Sheppard, Lucy J

    2010-10-01

    Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH4), nitrate (NO3), and ammonia (NH3) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO2. We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO3, NH4 and NH3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH3 had no effect on efflux of CO2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO3 and NH4 reduced CO2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components.

  18. Computing magnetic energy and helicity fluxes from series of magnetograms .

    NASA Astrophysics Data System (ADS)

    Démoulin, P.; Pariat, E.

    Magnetic energy and helicity fluxes can now be derived from measurements of the photospheric magnetic and velocity fields. We show that only photospheric flux-tube motions are needed to estimate the full fluxes. The derived maps of flux densities permit to localize where energy and helicity input occurs in active regions (ARs). The precision of the energy flux density is dominantly limited by the precision obtained on the transverse component of the magnetic field. On the contrary, the helicity flux density requires only the measurement of the vertical component of the magnetic field. Previously, the magnetic helicity maps were strongly affected by a false definition of the helicity flux density involving the magnetic vector potential. Applied to observations, this approach introduces important fake polarities. We define a better helicity flux density; it reduces the fake polarities by more than an order of magnitude. The spatial distribution of helicity injected into the studied ARs is much more coherent than previously thought, and presents a dominant sign in each AR. Finally, the correct helicity flux density could be derived from magnetograms if coronal connectivities are known.

  19. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance.

    PubMed

    Mauntel, Timothy C; Begalle, Rebecca L; Cram, Tyler R; Frank, Barnett S; Hirth, Christopher J; Blackburn, Troy; Padua, Darin A

    2013-07-01

    Knee valgus is a potential risk factor for lower extremity (LE) injuries. Clinical movement screenings and passive range of motion (PROM) measurements may help identify neuromuscular patterns, which contribute to knee valgus. The purpose of this study was to compare LE muscle activation and PROM between subjects who display visual medial knee displacement (MKD) during a single leg squat (SLS) and those who do not. We hypothesized that muscular activation and PROM would differ between the groups. Forty physically active adults (20 controls, 20 MKDs) participated in this study. Subjects completed 10 LE PROM assessments and performed 5 SLS trials while electromyography (EMG) data were collected from 8 LE muscles. Three separate multivariate analysis of variance were used to identify group differences in EMG data, muscle coactivation, and PROM. Results during the SLS indicated hip coactivation ratios revealed smaller gluteus medius to hip adductor (GMed:Hip Add) (p = 0.028) and gluteus maximus to hip adductor (GMax:Hip Add) coactivation ratios (p = 0.007) compared with the control group. Also, the MKD group displayed significantly less passive ankle dorsiflexion with the knee extended (p = 0.047) and flexed (p = 0.034), and greater talar glide motion (p = 0.012). The findings of this study indicate that MKD during a SLS seems to be influenced by decreased coactivation of the gluteal to the hip adductor muscles and restricted dorsiflexion. Therefore, conditioning, rehabilitation, and injury prevention programs should focus on decreasing hip adductor activity, increasing hip abductor and external rotator activity, and increasing ankle dorsiflexion in hopes to decrease the incidence of these injuries. PMID:23096063

  20. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  1. A Statistical Analysis of Activity-Based and Traditional Introductory Algebra Physics Using the Force and Motion Conceptual Evaluation

    NASA Astrophysics Data System (ADS)

    Trecia Markes, Cecelia

    2006-03-01

    With a three-year FIPSE grant, it has been possible at the University of Nebraska at Kearney (UNK) to develop and implement activity- based introductory physics at the algebra level. It has generally been recognized that students enter physics classes with misconceptions about motion and force. Many of these misconceptions persist after instruction. Pretest and posttest responses on the ``Force and Motion Conceptual Evaluation'' (FMCE) are analyzed to determine the effectiveness of the activity- based method of instruction relative to the traditional (lecture/lab) method of instruction. Data were analyzed to determine the following: student understanding at the beginning of the course, student understanding at the end of the course, how student understanding is related to the type of class taken, student understanding based on gender and type of class. Some of the tests used are the t-test, the chi-squared test, and analysis of variance. The results of these tests will be presented, and their implications will be discussed.

  2. Bacterial persistence is an active σS stress response to metabolic flux limitation.

    PubMed

    Radzikowski, Jakub Leszek; Vedelaar, Silke; Siegel, David; Ortega, Álvaro Dario; Schmidt, Alexander; Heinemann, Matthias

    2016-09-21

    While persisters are a health threat due to their transient antibiotic tolerance, little is known about their phenotype and what actually causes persistence. Using a new method for persister generation and high-throughput methods, we comprehensively mapped the molecular phenotype of Escherichia coli during the entry and in the state of persistence in nutrient-rich conditions. The persister proteome is characterized by σ(S)-mediated stress response and a shift to catabolism, a proteome that starved cells tried to but could not reach due to absence of a carbon and energy source. Metabolism of persisters is geared toward energy production, with depleted metabolite pools. We developed and experimentally verified a model, in which persistence is established through a system-level feedback: Strong perturbations of metabolic homeostasis cause metabolic fluxes to collapse, prohibiting adjustments toward restoring homeostasis. This vicious cycle is stabilized and modulated by high ppGpp levels, toxin/anti-toxin systems, and the σ(S)-mediated stress response. Our system-level model consistently integrates past findings with our new data, thereby providing an important basis for future research on persisters.

  3. Multiple measurement of the coupling between benthic carbon fluxes and bioturbation activity during the spring bloom''

    SciTech Connect

    Aller, R.C.; Aller, J.J.; Cochran, J.K.; Lee, C.

    1992-01-01

    In accordance with the research plan outlined in our original proposal, we began monitoring indicators of plankton production (Chl-a, cell counts) in surface waters of Long Island Sound from the Port Jefferson / Bridgeport Ferry on Dec. 3, 1992. In contrast to past years no dramatic bloom has occurred to date although a significant pattern of increasing chl-a began during the first week of April. We anticipate that the bloom wig be complete by mid to late April. This has been a particularly cold year based on comparison of 1993 bottom water temperatures and previously reported patterns from LIS, possibly reflecting climatic conditions which delayed the bloom. Typical sampling includes: surface and bottom water sampling for suspended matter, cell counts, chlorophyll-a, nutrients; triplicate box cores for macro-, meio-, and microfauna analysis; subcores for O[sub 2] microelectrode profiles; box core for radiochemical analyses ([sup 234]Th, [sup 7]Be); box core subcores for benthic fluxes under aerated and nonaerated conditions (O[sub 2], [Sigma]N, Mn[sup ++], [Sigma]CO[sub 2]); Br[sup [minus

  4. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    SciTech Connect

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E.

    1995-09-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  5. Bacterial persistence is an active σS stress response to metabolic flux limitation.

    PubMed

    Radzikowski, Jakub Leszek; Vedelaar, Silke; Siegel, David; Ortega, Álvaro Dario; Schmidt, Alexander; Heinemann, Matthias

    2016-01-01

    While persisters are a health threat due to their transient antibiotic tolerance, little is known about their phenotype and what actually causes persistence. Using a new method for persister generation and high-throughput methods, we comprehensively mapped the molecular phenotype of Escherichia coli during the entry and in the state of persistence in nutrient-rich conditions. The persister proteome is characterized by σ(S)-mediated stress response and a shift to catabolism, a proteome that starved cells tried to but could not reach due to absence of a carbon and energy source. Metabolism of persisters is geared toward energy production, with depleted metabolite pools. We developed and experimentally verified a model, in which persistence is established through a system-level feedback: Strong perturbations of metabolic homeostasis cause metabolic fluxes to collapse, prohibiting adjustments toward restoring homeostasis. This vicious cycle is stabilized and modulated by high ppGpp levels, toxin/anti-toxin systems, and the σ(S)-mediated stress response. Our system-level model consistently integrates past findings with our new data, thereby providing an important basis for future research on persisters. PMID:27655400

  6. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi.

    PubMed

    Lew, Roger R; Levina, Natalia N; Shabala, Lana; Anderca, Marinela I; Shabala, Sergey N

    2006-03-01

    Fungi normally maintain a high internal hydrostatic pressure (turgor) of about 500 kPa. In response to hyperosmotic shock, there are immediate electrical changes: a transient depolarization (1 to 2 min) followed by a sustained hyperpolarization (5 to 10 min) prior to turgor recovery (10 to 60 min). Using ion-selective vibrating probes, we established that the transient depolarization is due to Ca(2+) influx and the sustained hyperpolarization is due to H(+) efflux by activation of the plasma membrane H(+)-ATPase. Protein synthesis is not required for H(+)-ATPase activation. Net K(+) and Cl(-) uptake occurs at the same time as turgor recovery. The magnitude of the ion uptake is more than sufficient to account for the osmotic gradients required for turgor to return to its original level. Two osmotic mutants, os-1 and os-2, homologs of a two-component histidine kinase sensor and the yeast high osmotic glycerol mitogen-activated protein (MAP) kinase, respectively, have lower turgor than the wild type and do not exhibit the sustained hyperpolarization after hyperosmotic treatment. The os-1 mutant does not exhibit all of the wild-type turgor-adaptive ion fluxes (Cl(-) uptake increases, but net K(+) flux barely changes and net H(+) efflux declines) (os-2 was not examined). Both os mutants are able to regulate turgor but at a lower level than the wild type. Our results demonstrate that a MAP kinase cascade regulates ion transport, activation of the H(+)-ATPase, and net K(+) and Cl(-) uptake during turgor regulation. Other pathways regulating turgor must also exist.

  7. Patterns of Flux Emergence

    NASA Astrophysics Data System (ADS)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  8. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration.

    PubMed

    Derlon, Nicolas; Koch, Nicolas; Eugster, Bettina; Posch, Thomas; Pernthaler, Jakob; Pronk, Wouter; Morgenroth, Eberhard

    2013-04-15

    The impact of different feed waters in terms of eukaryotic populations and organic carbon content on the biofilm structure formation and permeate flux during Gravity-Driven Membrane (GDM) filtration was investigated in this study. GDM filtration was performed at ultra-low pressure (65 mbar) in dead-end mode without control of the biofilm formation. Different feed waters were tested (River water, pre-treated river water, lake water, and tap water) and varied with regard to their organic substrate content and their predator community. River water was manipulated either by chemically inhibiting all eukaryotes or by filtering out macrozoobenthos (metazoan organisms). The structure of the biofilm was characterized at the meso- and micro-scale using Optical Coherence Tomography (OCT) and Confocal Laser Scanning Microscopy (CLSM), respectively. Based on Total Organic Carbon (TOC) measurements, the river waters provided the highest potential for bacterial growth whereas tap water had the lowest. An increasing content in soluble and particulate organic substrate resulted in increasing biofilm accumulation on membrane surface. However, enhanced biofilm accumulation did not result in lower flux values and permeate flux was mainly influenced by the structure of the biofilm. Metazoan organisms (in particular nematodes and oligochaetes) built-up protective habitats, which resulted in the formation of open and spatially heterogeneous biofilms composed of biomass patches. In the absence of predation by metazoan organisms, a flat and compact biofilm developed. It is concluded that the activity of metazoan organisms in natural river water and its impact on biofilm structure balances the detrimental effect of a high biofilm accumulation, thus allowing for a broader application of GDM filtration. Finally, our results suggest that for surface waters with high particulate organic carbon (POC) content, the use of worms is suitable to enhance POC removal before ultrafiltration units.

  9. Motion mitigation for lung cancer patients treated with active scanning proton therapy

    SciTech Connect

    Grassberger, Clemens; Dowdell, Stephen; Sharp, Greg; Paganetti, Harald

    2015-05-15

    Purpose: Motion interplay can affect the tumor dose in scanned proton beam therapy. This study assesses the ability of rescanning and gating to mitigate interplay effects during lung treatments. Methods: The treatments of five lung cancer patients [48 Gy(RBE)/4fx] with varying tumor size (21.1–82.3 cm{sup 3}) and motion amplitude (2.9–30.6 mm) were simulated employing 4D Monte Carlo. The authors investigated two spot sizes (σ ∼ 12 and ∼3 mm), three rescanning techniques (layered, volumetric, breath-sampled volumetric) and respiratory gating with a 30% duty cycle. Results: For 4/5 patients, layered rescanning 6/2 times (for the small/large spot size) maintains equivalent uniform dose within the target >98% for a single fraction. Breath sampling the timing of rescanning is ∼2 times more effective than the same number of continuous rescans. Volumetric rescanning is sensitive to synchronization effects, which was observed in 3/5 patients, though not for layered rescanning. For the large spot size, rescanning compared favorably with gating in terms of time requirements, i.e., 2x-rescanning is on average a factor ∼2.6 faster than gating for this scenario. For the small spot size however, 6x-rescanning takes on average 65% longer compared to gating. Rescanning has no effect on normal lung V{sub 20} and mean lung dose (MLD), though it reduces the maximum lung dose by on average 6.9 ± 2.4/16.7 ± 12.2 Gy(RBE) for the large and small spot sizes, respectively. Gating leads to a similar reduction in maximum dose and additionally reduces V{sub 20} and MLD. Breath-sampled rescanning is most successful in reducing the maximum dose to the normal lung. Conclusions: Both rescanning (2–6 times, depending on the beam size) as well as gating was able to mitigate interplay effects in the target for 4/5 patients studied. Layered rescanning is superior to volumetric rescanning, as the latter suffers from synchronization effects in 3/5 patients studied. Gating minimizes the

  10. Motion mitigation for lung cancer patients treated with active scanning proton therapy

    PubMed Central

    Grassberger, Clemens; Dowdell, Stephen; Sharp, Greg; Paganetti, Harald

    2015-01-01

    Purpose: Motion interplay can affect the tumor dose in scanned proton beam therapy. This study assesses the ability of rescanning and gating to mitigate interplay effects during lung treatments. Methods: The treatments of five lung cancer patients [48 Gy(RBE)/4fx] with varying tumor size (21.1–82.3 cm3) and motion amplitude (2.9–30.6 mm) were simulated employing 4D Monte Carlo. The authors investigated two spot sizes (σ ∼ 12 and ∼3 mm), three rescanning techniques (layered, volumetric, breath-sampled volumetric) and respiratory gating with a 30% duty cycle. Results: For 4/5 patients, layered rescanning 6/2 times (for the small/large spot size) maintains equivalent uniform dose within the target >98% for a single fraction. Breath sampling the timing of rescanning is ∼2 times more effective than the same number of continuous rescans. Volumetric rescanning is sensitive to synchronization effects, which was observed in 3/5 patients, though not for layered rescanning. For the large spot size, rescanning compared favorably with gating in terms of time requirements, i.e., 2x-rescanning is on average a factor ∼2.6 faster than gating for this scenario. For the small spot size however, 6x-rescanning takes on average 65% longer compared to gating. Rescanning has no effect on normal lung V20 and mean lung dose (MLD), though it reduces the maximum lung dose by on average 6.9 ± 2.4/16.7 ± 12.2 Gy(RBE) for the large and small spot sizes, respectively. Gating leads to a similar reduction in maximum dose and additionally reduces V20 and MLD. Breath-sampled rescanning is most successful in reducing the maximum dose to the normal lung. Conclusions: Both rescanning (2–6 times, depending on the beam size) as well as gating was able to mitigate interplay effects in the target for 4/5 patients studied. Layered rescanning is superior to volumetric rescanning, as the latter suffers from synchronization effects in 3/5 patients studied. Gating minimizes the irradiated volume

  11. Impact of Human Activities on the Flux of Terrestrial Sediments to the Coastal Ocean Offshore Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Tzu-Ting; Su, Chih-Chieh; Liu, Char-Shine; Huang, Chen-fen; Hsu, Ho-Han

    2016-04-01

    Land to ocean material fluxes play an important role in global biogeochemical cycles. Changes in sediment supply not only greatly influence the benthic environment of coastal estuaries but also might threaten human lives and properties. Artificial constructions, such as roads and reservoirs, could affect natural environments and change sediment discharges. Due to its high precipitation, steep slopes, small basin areas, and frequent flood events, Taiwan is characterized with rapid erosion rates and extremely high sediment yields. In northeastern Taiwan, the high mean annual precipitation lead to large amounts of sediments being delivered into the ocean through the Lanyang River. Since 1957, the road constructions along the Lanyang River greatly increased terrestrial sediment flux to the coastal ocean. However, its influence on offshore area is not yet clear. In this study, we combine geochemical and geophysical data to evaluate the modern sedimentation history and discuss the impact of human activities on the Ilan Shelf. The preliminary results of grain size and 210Pb analyses from five sediment cores taken from the upper South Guishan Channel indicate the existence of local differences on hydrodynamic conditions. In addition, we also applied similarity index which based on a quantitative analysis algorithm to the chirp sonar data on echo character classification and calculated continuous grain size variations of the seafloor surface sediments. By combining all geochemical and geophysical data, we may reconstruct the holistic picture of human impacts on offshore environment from sedimentology records.

  12. A New Way of Sensing: Need-Based Activation of Antibiotic Resistance by a Flux-Sensing Mechanism

    PubMed Central

    Fritz, Georg; Dintner, Sebastian; Treichel, Nicole Simone; Radeck, Jara; Gerland, Ulrich; Gebhard, Susanne

    2015-01-01

    ABSTRACT Sensing of and responding to environmental changes are of vital importance for microbial cells. Consequently, bacteria have evolved a plethora of signaling systems that usually sense biochemical cues either via direct ligand binding acting as “concentration sensors” or by responding to downstream effects on bacterial physiology, such as structural damage to the cell. Here, we describe a novel, alternative signaling mechanism that effectively implements a “flux sensor” to regulate antibiotic resistance. It relies on a sensory complex consisting of a histidine kinase and an ABC transporter, in which the transporter fulfills the dual role of both the sensor of the antibiotic and the mediator of resistance against it. Combining systems biological modeling with in vivo experimentation, we show that these systems in fact respond to changes in activity of individual resistance transporters rather than to changes in the antibiotic concentration. Our model shows that the cell thereby adjusts the rate of de novo transporter synthesis to precisely the level needed for protection. Such a flux-sensing mechanism may serve as a cost-efficient produce-to-demand strategy, controlling a widely conserved class of antibiotic resistance systems. PMID:26199330

  13. Block-like motion of Tibetan Plateau: Evidences from active faults , GPS velocities and recent earthquake slips

    NASA Astrophysics Data System (ADS)

    Xu, X.; Cheng, J.

    2012-12-01

    continuous models have been proposed to explain GPS observations in many active regions. Here we first describe a division of active blocks in the Tibetan plateau and its adjacent regions in detail from recently published and unpublished maps showing distribution of active faults, discuss basic features of boundary faults around the blocks, block-like motions and their interior deformation patterns in the Quaternary. Then we examine present-day vectors and mechanical parameters of the active blocks both from the GPS observations and recent earthquake slips. All these analyses demonstrate that the block-like motion prevail in the Tibetan Plateau.

  14. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  15. Continuous monitoring of soil CO2 flux in tectonic active area of Sicily: relationship between gas emissions and crustal stress

    NASA Astrophysics Data System (ADS)

    Camarda, Marco; De Gregorio, Sofia; Favara, Rocco; Di Martino, Roberto M. R.

    2015-04-01

    Tectonic active areas are subjected to continue modification of the stress fields as result of the relative movement of portions of the crust. In these areas the stress generated the seismogenetic processes and at same time produces detectable modifications in the shallower portion of the crust such as superficial deformation, increase or decrease of pore pressure and change in fluids circulation. As results a wide variety of changes can be recorded in several parameters due to stress field modifications. The aim of this study was to monitor in continuous soil gas emissions of selected tectonic active area of the Sicily in order to investigate the relation between changes on this parameter and stress field modifications linked to seismogenetic processes. For this reason, in cooperation with DPC Sicilia a network of 20 stations for continuous monitoring of soil CO2 flux in the main seismic area of Sicily was deployed. The selection of the monitoring sites was based on a detailed geological structural study aimed to recognize active tectonic structures and on geochemical survey for identifying areas of anomalous degassing along the structures. Time series of soil CO2 flux long from 1 to 3 years were obtained. The acquired series were filtered for removing atmospheric parameters induced variations by applying the fast Fourier transform (FFT) and regression analysis.The results of comparison of filtered signals showed as almost all the stations have a low coefficient correlation, indicating that the recorded variations are likely due to minor stress modification having small spatial scale. A discrete correlation was founded between the signals of three stations placed in the same tectonic context in northeastern sector of Sicily. Interesting these stations showed a contemporary steep increase few days before the onset of seismic sequence, with events of magnitude up to 4.4, occurred in August 2013 in the northeastern Sicily. The concomitance of change in soil CO2 flux

  16. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery.

    PubMed

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore-Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  17. Active Flow Control of the Near Wake of an Axisymmetric Body in Prescribed Motion

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2014-11-01

    Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric moving wind tunnel bluff body model are exploited for modification of its near wake and thereby its global unsteady aerodynamic loads. The model is supported by eight servo-controlled wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The body moves along a prescribed trajectory controllable in six degrees of freedom using closed loop feedback from an external camera system. Actuation is effected by an integrated azimuthally-segmented array of four aft-facing synthetic jet modules around the perimeter of the tail end. In the present investigations, the aerodynamic loads are controlled during time-periodic axial and rotational motions with varying reduced frequencies of up to 0.259. It is shown that this flow control approach modifies the near wake and induces aerodynamic loads that are comparable to the baseline model dynamic loads. Control of the model's unsteady aerodynamic characteristics may be adopted for in flight stabilization.

  18. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery

    PubMed Central

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore–Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  19. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    SciTech Connect

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders.

  20. Using structure-from-motion for monitoring active lava flows and domes

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart; Varley, Nick

    2016-04-01

    3-D reconstruction software based on structure-from-motion (SfM) algorithms can substantially reduce the requirements and learning curve for generating topographic data from photographs, and thus offers strong potential for data collection in many dynamic environments. Unfortunately, SfM-based software tends not to provide the rigorous metrics that are used to assess the quality of results in conventional photogrammetry software. Here, we use examples of repeat oblique airborne acquisitions from a volcanic dome (Volcán de Colima, Mexico) and terrestrial time-lapse stereo-photography (Mt. Etna, Sicily) to examine the sensitivity of results to imaging characteristics and SfM processing procedures. At Volcán de Colima, photographs were acquired with a relatively favourable convergent geometry, from an opened window in a light aircraft. However, hazards prevent the deployment of ground control, so the derived topographic shape relies entirely on the image tie points generated automatically by the software. In contrast, at Mt. Etna, control targets could be used but, with only two (mildly convergent) cameras, the image geometry is naturally weaker that at Colima. We use both of these cases to explore some of the challenges involved with understanding the error inherent in projects processed using SfM-based approaches. Results are compared with those achieved using a rigorous close-range photogrammetry package.

  1. Observations of flux motion in niobium films

    SciTech Connect

    Xiao, Y.M.; Keiser, G.M. . W.W. Hansen Labs. of Physics)

    1991-03-01

    In this paper magnetic field trapped in a superconducting sphere is examined at temperatures from 4.6 K to 5.5 K The sphere is the rotor of a precision gyroscope, and is made of fused quartz and coated with a sputtered niobium film. The rotor diameter is 3.8 centimeters. The film thickness is 2.5 micrometers. The tests are carried out at ambient magnetic field of about 1 milligauss. Unexpected instability of the trapped field is observed. The experimental results and possible explanations are presented.

  2. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S; Lemos, João M

    2013-05-01

    Many approaches to trajectory analysis, such as clustering or classification, use probabilistic generative models, thus not requiring trajectory alignment/registration. Switched linear dynamical models (e.g., HMMs) have been used in this context, due to their ability to describe different motion regimes. However, these models are not suitable for handling space-dependent dynamics that are more naturally captured by nonlinear models. As is well known, these are more difficult to identify. In this paper, we propose a new way of modeling trajectories, based on a mixture of parametric motion vector fields that depend on a small number of parameters. Switching among these fields follows a probabilistic mechanism, characterized by a field of stochastic matrices. This approach allows representing a wide variety of trajectories and modeling space-dependent behaviors without using global nonlinear dynamical models. Experimental evaluation is conducted in both synthetic and real scenarios. The latter concerning with human trajectory modeling for activity classification, a central task in video surveillance.

  3. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  4. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S; Lemos, João M

    2013-05-01

    Many approaches to trajectory analysis, such as clustering or classification, use probabilistic generative models, thus not requiring trajectory alignment/registration. Switched linear dynamical models (e.g., HMMs) have been used in this context, due to their ability to describe different motion regimes. However, these models are not suitable for handling space-dependent dynamics that are more naturally captured by nonlinear models. As is well known, these are more difficult to identify. In this paper, we propose a new way of modeling trajectories, based on a mixture of parametric motion vector fields that depend on a small number of parameters. Switching among these fields follows a probabilistic mechanism, characterized by a field of stochastic matrices. This approach allows representing a wide variety of trajectories and modeling space-dependent behaviors without using global nonlinear dynamical models. Experimental evaluation is conducted in both synthetic and real scenarios. The latter concerning with human trajectory modeling for activity classification, a central task in video surveillance. PMID:23380856

  5. A one year long continuous record of seismic activity and surface motion at the tongue of Rhonegletscher (Valais, Switzerland)

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Röösli, Claudia; Walter, Fabian; Gabbi, Jeannette

    2014-05-01

    A critical gap in our current understanding of glaciers is how high sub-glacial water pressure controls the coupling of the glacier to its bed. Processes at the base of a glacier are inherently difficult to investigate due to their remoteness. Investigation of the sub-glacial environment with passive seismic methods is an innovative, rapidly growing interdisciplinary and promising endeavor. In combination with observations of surface motion and basal water pressure, this method is ideally suited to localize and quantify frictional and fracture processes which occur during periods of rapidly changing sub-glacial water pressure with consequent stress redistribution at the contact interface between ice and bed. Here we present the results of the first one-year-long glacier seismic monitoring performed on an Alpine glacier to our knowledge. Together with records of surface motion and hydrological measurements, we examine whether seasonal changes can be captured by seismic recording. Experiments were carried out from June 2012 to July 2013 on Rhonegletscher (Valais, Switzerland), by means of 3 three-components seismometers settled close to the tongue in 2 meters boreholes. An additional array of eleven sensors installed at the ice surface was also maintained during September 2012, in order to achieve more accurate icequakes locations. A high seismic emission is observed on Rhonegletscher, with icequakes located close to the surface or in the vicinity of the bedrock. The temporal distribution of seismic activity is shown to nicely reflect the seasonal evolution of the glacier hydrology, with a dramatic seismic release in early spring. During summer, released seismic activity is generally driven by diurnal ice/snow melting cycle. In winter, snow-cover conditions are associated with a reduced seismic release, with nevertheless some unexpected activity possibly related to snow-pack metamorphism. Based on icequake locations derived from data recorded in September, we discuss

  6. MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES

    SciTech Connect

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay E-mail: sgosain@prl.res.i

    2010-09-20

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.

  7. Magnetic Non-potentiality of Solar Active Regions and Peak X-ray Flux of the Associated Flares

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay

    2010-09-01

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.

  8. Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data

    PubMed Central

    Jansen, Marije; White, Thomas P.; Mullinger, Karen J.; Liddle, Elizabeth B.; Gowland, Penny A.; Francis, Susan T.; Bowtell, Richard; Liddle, Peter F.

    2012-01-01

    The simultaneous acquisition and subsequent analysis of EEG and fMRI data is challenging owing to increased noise levels in the EEG data. A common method to integrate data from these two modalities is to use aspects of the EEG data, such as the amplitudes of event-related potentials (ERP) or oscillatory EEG activity, to predict fluctuations in the fMRI data. However, this relies on the acquisition of high quality datasets to ensure that only the correlates of neuronal activity are being studied. In this study, we investigate the effects of head-motion-related artefacts in the EEG signal on the predicted T2*-weighted signal variation. We apply our analyses to two independent datasets: 1) four participants were asked to move their feet in the scanner to generate small head movements, and 2) four participants performed an episodic memory task. We created T2*-weighted signal predictors from indicators of abrupt head motion using derivatives of the realignment parameters, from visually detected artefacts in the EEG as well as from three EEG frequency bands (theta, alpha and beta). In both datasets, we found little correlation between the T2*-weighted signal and EEG predictors that were not convolved with the canonical haemodynamic response function (cHRF). However, all convolved EEG predictors strongly correlated with the T2*-weighted signal variation in various regions including the bilateral superior temporal cortex, supplementary motor area, medial parietal cortex and cerebellum. The finding that movement onset spikes in the EEG predict T2*-weighted signal intensity only when the time course of movements is convolved with the cHRF, suggests that the correlated signal might reflect a BOLD response to neural activity associated with head movement. Furthermore, the observation that broad-spectral EEG spikes tend to occur at the same time as abrupt head movements, together with the finding that abrupt movements and EEG spikes show similar correlations with the T2

  9. Activity, size, and flux of resuspended particles from Rocky Flats soil

    SciTech Connect

    Langer, G.

    1982-01-01

    Wind erosion processes that resuspend soil from Rocky Flats (rf) sites known as the pad field and the east field were studied. The soil in these sites contains above background amounts of Pu and Am. The following five major areas of concern were studied: Pu levels in source area soil; total Pu activity and activity-particle size relationship in the wind resuspended dust; culpability of suspected source areas for Pu activity reported by the RF surveillance samplers; Pu activity in the respirable and coarse fraction of wind resuspended dust; Pu activity in resuspended dust from wind tunnel simulations of wind erosion. Results indicate that Pu attached to wind blown dust from the pad field and the east field at rf does not present a health hazard. The Pu carrying dust particles are too large (> 3 ..mu..m) to be respirable and most are above the inhalable size (> 10 ..mu..m). For the July 1981 to March 1982 period, 90% of the Pu collected by the surveillance samplers east of the pad field originated from this field. For those months 90% of the winds over 14 m/s originated from the two western quadrants. Winds over 14 m/s resuspend most of the dust. From April to June 1982 there were no winds over 14 m/s and Pu originated about equally from the pad and east field. Wind tunnel resuspension of dust varied as the 2.8 to 4.2 power of wind speed for a soil moisture range of 14 to 1% respectively. Above 14% moisture little dust was resuspended. No measurable respirable particles (< 3 ..mu..m) were resuspended.

  10. Activity monitoring and motion classification of the lizard Chamaeleo jacksonii using multiple Doppler radars.

    PubMed

    Singh, Aditya; Lee, Scott S K; Butler, Marguerite; Lubecke, Victor

    2012-01-01

    We describe a simple, non-contact and efficient tool for monitoring the natural activity of a small lizard (Chamaeleo jacksonii) to yield valuable information about their metabolic activity and energy expenditure. It allows monitoring in a non-confined laboratory environment and uses multiple Doppler radars operating at 10.525 GHz. We developed a classification algorithm that can differentiate between fidgeting and locomotion by processing the quadrature baseband signals from the radars. The results have been verified by visual inspection and indicate that the tool could also be used for automated monitoring of the activities of reptiles and other small animals. PMID:23366934

  11. Activity monitoring and motion classification of the lizard Chamaeleo jacksonii using multiple Doppler radars.

    PubMed

    Singh, Aditya; Lee, Scott S K; Butler, Marguerite; Lubecke, Victor

    2012-01-01

    We describe a simple, non-contact and efficient tool for monitoring the natural activity of a small lizard (Chamaeleo jacksonii) to yield valuable information about their metabolic activity and energy expenditure. It allows monitoring in a non-confined laboratory environment and uses multiple Doppler radars operating at 10.525 GHz. We developed a classification algorithm that can differentiate between fidgeting and locomotion by processing the quadrature baseband signals from the radars. The results have been verified by visual inspection and indicate that the tool could also be used for automated monitoring of the activities of reptiles and other small animals.

  12. Gypenoside XVII Enhances Lysosome Biogenesis and Autophagy Flux and Accelerates Autophagic Clearance of Amyloid-β through TFEB Activation.

    PubMed

    Meng, Xiangbao; Luo, Yun; Liang, Tian; Wang, Mengxia; Zhao, Jingyu; Sun, Guibo; Sun, Xiaobo

    2016-04-01

    A strategy for activating transcription factor EB (TFEB) to restore autophagy flux may provide neuroprotection against Alzheimer's disease. Our previous study reported that gypenoside XVII (GP-17), which is a major saponin abundant in ginseng and Panax notoginseng, ameliorated amyloid-β (Aβ)25-35-induced apoptosis in PC12 cells by regulating autophagy. In the present study, we aimed to determine whether GP-17 has neuroprotective effects on PC12 cells expressing the Swedish mutant of APP695 (APP695swe) and APP/PS1 mice. We also investigated the underlying mechanism. We found that GP-17 could significantly increase Atg5 expression and the conversion of LC3-I to LC3-II in APP695 cells, which was associated with a reduction in p62 expression. GP-17 also elevated the number of LC3 puncta in APP695 cells transduced with pCMV-GFP-LC3. GP-17 promoted the autophagy-based elimination of AβPP, Aβ40, and Aβ42 in APP695swe cells and prevented the formation of Aβ plaques in the hippocampus and cortex of APP/PS1 mice. Furthermore, spatial learning and memory deficits were cured. Atg5 knockdown could abrogate the GP-17-mediated removal of AβPP, Aβ40, and Aβ42 in APP695swe cells. GP-17 upregulated LAMP-1, increased LysoTracker staining, and augmented LAMP-1/LC3-II co-localization. GP-17 could release TFEB from TFEB/14-3-3 complexes, which led to TFEB nuclear translocation and the induction of autophagy and lysosome biogenesis and resulted in the amelioration of autophagy flux. The knockdown of TFEB could abolish these effects of GP-17. In summary, these results demonstrated that GP-17 conferred protective effects to the cellular and rodent models of Alzheimer's disease by activating TFEB. PMID:27060963

  13. Active Motion of Hair Bundles Coupled to the Otolithic Membrane in the Frog Sacculus

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2011-11-01

    Active hair bundle motility has been proposed to provide the basis for the active process in the auditory organs of non-mammalian vertibrates, and has been extensively studied in mechanically decoupled or free-standing hair bundles from in vitro preparations of the frog sacculus. A number of studies have, however, suggested that cooperativity between hair cells plays an important role in the response of an intact organ. We use a semi-intact in vitro saccular preparation in which the hair cells are coupled and loaded by the otolithic membrane. While the hair bundles do not spontaneously oscillate beneath the membrane, they exhibit active movements in response to transient stimuli, demonstrating that the active process remains operant under these conditions. The coupled system however displays a striking decrease in frequency selectivity compared to freely oscillating bundles.

  14. Ionic contrast terahertz near-field imaging of axonal activity and water fluxes

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Martin, Jean-Louis; Gallot, Guilhem

    2007-02-01

    We demonstrated the direct and noninvasive imaging of functional neurons,1 as well as auricular heart muscle electrical activity2 by Ionic Contrast Terahertz (ICT) near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductances and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ICT technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. This technique should then provide grounds for the development of advanced functional neuroimaging methods based on diffusion anisotropy of water molecules.

  15. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  16. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    SciTech Connect

    Peter Swanson; Collin Stewart; Wendell Koontz

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  17. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    PubMed Central

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  18. The activL(®) Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain.

    PubMed

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL(®) Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL(®) Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL(®) Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL(®) Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date.

  19. The activL(®) Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain.

    PubMed

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL(®) Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL(®) Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL(®) Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL(®) Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  20. Present-day Block Motions and Strain Accumulation on Active Faults in the Caribbean

    NASA Astrophysics Data System (ADS)

    Symithe, S. J.; Calais, E.; Freed, A. M.

    2014-12-01

    The quasi-frontal subduction of the north and south American plates under the Lesser Antilles and the left and right lateral strike-slip along the northern and southern margins of the Caribbean plate offer the opportunity to study the transition from subduction to strike-slip between major plates. In addition, the segmentation and degree of interplate coupling at the Lesser Antilles subduction is key to our understanding of the earthquake potential of a subduction whose length is similar to the rupture area of the Mw9.0, 2011, Tohoku earthquake in Japan. We used the block modeling approach described in Meade and Loveless (2009) to test the optimal block geometry for the northern, eastern and southern boundaries of the Caribbean plate. We solved for angular velocities for each block/plate and strain accumulation rates for all major faults in the region. Then we calculated the variations in interplate coupling along the subduction plate boundaries using the accumulated strain rates. We tested 11 different block geometries; they are all based on geological evidences unless they are suggested by discrepancies within the GPS and seismological data or by previously published results. We confirm the existence of the micro Gonave plate. The boundary between the Micro-Gonave plate and the Hispaniola crustal block is better suited along the Haitian-Thrust-Belt instead of the Neiba-Matheux fault. The interseismic GPS velocities do not show evidence for a distinct North Lesser Antilles block. We found a totally uncoupled section of the subduction starting from the Puerto-Rico trench to the end of the Lesser Antilles section. All the relative motion of the Caribbean block is lost aseismically along the boundary of that portion of the subduction. While we found strong coupling along the northern Hispaniola section, most of the deformation on this region is being accumulated along intrablock faults with very low strain (~2mm/yr) along the intraplate subduction interface. We also

  1. HOMOLOGOUS FLUX ROPES OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2013-12-01

    We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20-22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30 km s{sup –1} after their appearance, and subsequently their intensities at 131 Å decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130 km s{sup –1} and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4π. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.

  2. Development of a wearable motion detector for telemonitoring and real-time identification of physical activity.

    PubMed

    Yang, Che-Chang; Hsu, Yeh-Liang

    2009-01-01

    Characteristics of physical activity are indicative of one's mobility level, latent chronic diseases, and aging process. Current research has been oriented to provide quantitative assessment of physical activity with ambulatory monitoring approaches. This study presents the design of a portable microprocessor-based accelerometry measuring device to implement real-time physical activity identification. An algorithm was developed to process real-time tri-axial acceleration signals produced by human movement to identify targeted still postures, postural transitions, and dynamic movements. Fall detection was also featured in this algorithm to meet the increasing needs of elderly care in free-living environments. High identification accuracy was obtained in performance evaluation. This device is technically viable for telemonitoring and real-time identification of physical activity, while providing sufficient information to evaluate a person's activity of daily living and her/his status of physical mobility. Limitations regarding real-time processing and implementation of the system for telemonitoring in the home environment were also observed.

  3. Motion sickness is associated with an increase in vestibular modulation of skin but not muscle sympathetic nerve activity.

    PubMed

    Klingberg, Danielle; Hammam, Elie; Macefield, Vaughan G

    2015-08-01

    We have previously shown that sinusoidal galvanic vestibular stimulation (sGVS), delivered bilaterally at frequencies of 0.08-2.00 Hz, causes a pronounced modulation of muscle sympathetic nerve activity (MSNA) and skin sympathetic nerve activity (SSNA), together with robust frequency-dependent illusions of side-to-side motion. At low frequencies of sGVS (≤0.2 Hz), some subjects report nausea, so we tested the hypothesis that vestibular modulation of MSNA and SSNA is augmented in individuals reporting nausea. MSNA was recorded via tungsten microelectrodes inserted into the left common peroneal nerve in 22 awake, seated subjects; SSNA was recorded in 14 subjects. Bipolar binaural sGVS (±2 mA, 100 cycles) was applied to the mastoid processes at 0.08, 0.13, and 0.18 Hz. Nausea was reported by 21 out of 36 subjects (58 %), but across frequencies of sGVS there was no difference in the magnitude of the vestibular modulation of MSNA in subjects who reported nausea (27.1 ± 1.8 %) and those who did not (30.4 ± 2.9 %). This contrasts with the significantly greater vestibular modulation of SSNA with nausea (41.1 ± 2.0 vs. 28.7 ± 3.1 %) and indicates an organ-specific modulation of sympathetic outflow via the vestibular system during motion sickness. PMID:26025612

  4. N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.

    PubMed

    Shmukler, Boris E; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B; Hubner, Christian A; Rivera, Alicia; Alper, Seth L

    2013-06-01

    The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K(+) efflux that lacks Cl(-)-dependence. The NEM-sensitivity of Cl(-)-independent K(+) efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl(-)-independent K(+) efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl(-)-independent K(+) efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl(-)-independent K(+) efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) are independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl(-)-independent K(+) efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH6.0 but not significantly altered at pH8.0, and is abolished at 0°C. Although the molecular identity of this little-studied K(+) efflux pathway of mouse erythrocytes remains unknown, its potential role in the pathophysiology of sickle red cell dehydration will be important for the extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. PMID:23481459

  5. N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.

    PubMed

    Shmukler, Boris E; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B; Hubner, Christian A; Rivera, Alicia; Alper, Seth L

    2013-06-01

    The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K(+) efflux that lacks Cl(-)-dependence. The NEM-sensitivity of Cl(-)-independent K(+) efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl(-)-independent K(+) efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl(-)-independent K(+) efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl(-)-independent K(+) efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) are independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl(-)-independent K(+) efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH6.0 but not significantly altered at pH8.0, and is abolished at 0°C. Although the molecular identity of this little-studied K(+) efflux pathway of mouse erythrocytes remains unknown, its potential role in the pathophysiology of sickle red cell dehydration will be important for the extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia.

  6. Effects of seasonal variation in prey abundance on field metabolism, water flux, and activity of a tropical ambush foraging snake.

    PubMed

    Christian, Keith; Webb, Jonathan K; Schultz, Timothy; Green, Brian

    2007-01-01

    The responses of animals to seasonal food shortages can have important consequences for population dynamics and the structure and function of food webs. We investigated how an ambush foraging snake, the northern death adder Acanthophis praelongus, responds to seasonal fluctuations in prey availability in its tropical environment. In the dry season, field metabolic rates and water flux, as measured by doubly labeled water, were significantly lower than in the wet season. Unlike some other reptiles of the wet-dry tropics, death adders showed no seasonal difference in their resting metabolism. About 94% of the decrease in energy expended in the dry season was due to a decrease in activity and digestion, with lower body temperatures accounting for the remainder. In the dry season, death adders were less active and moved shorter distances between foraging sites than in the wet season. Analysis of energy expenditure suggested that adders fed no more than every 2-3 wk in the dry season but fed more frequently during the wet season. Unlike many lizards that cease feeding during the dry season, death adders remain active and attempt to maximize their energy intake year-round.

  7. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  8. Front motion and localized states in an asymmetric bistable activator-inhibitor system with saturation

    NASA Astrophysics Data System (ADS)

    Yochelis, Arik; Garfinkel, Alan

    2008-03-01

    We study the spatiotemporal properties of coherent states (peaks, holes, and fronts) in a bistable activator-inhibitor system that exhibits biochemical saturated autocatalysis, and in which fronts do not preserve spatial parity symmetry. Using the Gierer-Meinhardt prototype model, we find the conditions in which two distinct pinning regions are formed. The first pinning type is known in the context of variational systems while the second is structurally different due to the presence of a heteroclinic bifurcation between two uniform states. The bifurcation also separates the parameter regions of counterpropagating fronts, leading in turn to the growth or contraction of activator domains. These phenomena expand the range of pattern formation theory and its biomedical applications: activator domain retraction suggests potential therapeutic strategies for patterned pathologies, such as cardiovascular calcification.

  9. Observations of Plasma Waves in the Colliding Jet Region of a 3D Magnetic Flux Rope Flanked by Two Active Reconnection X Lines at the Subsolar Magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Sundkvist, D. J.; Chaston, C. C.; Phan, T. D.; Mozer, F.; McFadden, J. P.; Angelopoulos, V.; Andersson, L.; Eastwood, J. P.

    2014-12-01

    We have performed a detailed analysis of plasma and wave observations in a 3D magnetic flux rope encountered by the THEMIS spacecraft at the subsolar magnetopause. The extent of the flux rope was ˜270 ion skin depths in the outflow direction, and it was flanked by two active reconnection X lines producing colliding plasma jets in the flux rope core where ion heating and suprathermal electrons were observed. The colliding jet region was highly dynamic and characterized by the presence of high-frequency waves such as ion acoustic-like waves, electron holes, and whistler mode waves near the flux rope center and low-frequency kinetic Alfvén waves over a larger region. We will discuss possible links between these waves and particle heating.

  10. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    NASA Astrophysics Data System (ADS)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  11. Autonomic control of neuronal-astrocytic interactions, regulating metabolic activities, and ion fluxes in the CNS.

    PubMed

    Hertz, L

    1992-01-01

    It is generally assumed that the brain, in contrast to all other organs, is not equipped with an autonomic nervous system, regulating blood supply, and cellular activities. This may be because systemic administration of most drugs acting on monoaminergic or cholinergic receptors have little or no effect on cerebral blood flow and metabolism. However, intrathecal administration of noradrenaline does, indeed, influence both blood flow and energy metabolism in the brain. The present review focuses on effects of noradrenaline or serotonin on energy metabolism, turnover of amino acid transmitters and ion homeostasis, with special emphasis on the cellular localization. Noradrenergic agonists stimulate brain metabolism in vivo as well as many aspects of energy metabolism, Na+,K(+)-ATPase activity and uptake of transmitter amino acids in astrocytes in primary cultures, with little or no effect on corresponding preparations of neurons. Serotonin acts differently, decreasing potassium-induced release of glutamate from both neurons and astrocytes. Little is known about the effects of acetylcholine. The functional significance of these effects is discussed. PMID:1393603

  12. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  13. Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit

    ERIC Educational Resources Information Center

    Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan

    2015-01-01

    In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and…

  14. Meeting Active Start Guidelines in the ADC-Motion Program: Preschool

    ERIC Educational Resources Information Center

    Rudisill, Mary E.; Wall, Sarah J.

    2004-01-01

    In order to meet the NASPE (2002) "Active Start" guidelines for preschool age children, it is important to consider a number of factors. Preschoolers should have plenty of unstructured as well as structured (planned) physical play throughout each day. They are quite capable physically and should accumulate considerable practice of their…

  15. Happiness in Motion: Emotions, Well-Being, and Active School Travel

    ERIC Educational Resources Information Center

    Ramanathan, Subha; O'Brien, Catherine; Faulkner, Guy; Stone, Michelle

    2014-01-01

    Background: A pan-Canadian School Travel Planning intervention promoted active school travel (AST). A novel component was exploring emotion, well-being, and travel mode framed by the concept of "sustainable happiness." Relationships between travel mode and emotions, parent perceptions of their child's travel mode on well-being, and…

  16. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  17. Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility.

    PubMed

    Darszon, Alberto; Guerrero, Adán; Galindo, Blanca E; Nishigaki, Takuya; Wood, Christopher D

    2008-01-01

    Echinoderm sperm use cyclic nucleotides (CNs) as essential second messengers to locate and swim towards the egg. Sea urchin sperm constitute a rich source of membrane-bound guanylyl cyclase (mGC), which was first cloned from sea urchin testis by the group of David Garbers. His group also identified speract, the first sperm-activating peptide (SAP) to be isolated from the egg investment (or egg jelly). This decapeptide stimulates sperm mGC causing a fast transient increase in cGMP that triggers an orchestrated set of physiological responses including: changes in: membrane potential, intracellular pH (pHi), intracellular Ca2+ concentration ([Ca2+]i) and cAMP levels. Evidence from several groups indicated that cGMP activation of a K+ selective channel was the first ion permeability change in the signaling cascade induced by SAPs, and recently the candidate gene was finally identified. Each of the 4 repeated, 6 trans-membrane segments of this channel contains a cyclic nucleotide binding domain. Together they comprise a single polypeptide chain like voltage-gated Na+ or Ca2+ channels. This new type of channel, named tetraKCNG, appears to belong to the exclusive club of novel protein families expressed only in sperm and its progenitors. SAPs also induce fluctuations in flagellar [Ca2+]i that correlate with changes in flagellar form and regulate sperm trajectory. The motility changes depend on [Ca2+]i influx through specific Ca2+ channels and not on the overall [Ca2+]i in the sperm flagellum. All cilia and flagella have a conserved axonemal structure and thus understanding how Ca2+ regulates cilia and flagella beating is a fundamental question. PMID:18649273

  18. Monitoring charge flux to quantify unusual ligand-induced ion channel activity for use in biological nanopore-based sensors.

    PubMed

    Macazo, Florika C; White, Ryan J

    2014-06-01

    The utility of biological nanopores for the development of sensors has become a growing area of interest in analytical chemistry. Their emerging use in chemical analysis is a result of several ideal characteristics. First, they provide reproducible control over nanoscale pore sizes with an atomic level of precision. Second, they are amenable to resistive-pulse type measurement systems when embedded into an artificial lipid bilayer. A single binding event causes a change in the flow of millions of ions across the membrane per second that is readily measured as a change in current with excellent signal-to-noise ratio. To date, ion channel-based biosensors have been limited to well-behaved proteins. Most demonstrations of using ion channels as sensors have been limited to proteins that remain in the open, conducting state, unless occupied by an analyte of interest. Furthermore, these proteins are nonspecific, requiring chemical, biochemical, or genetic manipulations to impart chemical specificity. Here, we report on the use of the pore-forming abilities of heat shock cognate 70 (Hsc70) to quantify a specific analyte. Hsc70 reconstitutes into phospholipid membranes and opens to form multiple conductance states specifically in the presence of ATP. We introduce the measurement of "charge flux" to characterize the ATP-regulated multiconductance nature of Hsc70, which enables sensitive quantification of ATP (100 μM-4 mM). We believe that monitoring protein-induced charge flux across a bilayer membrane represents a universal method for quantitatively monitoring ion-channel activity. This measurement has the potential to broaden the library of usable proteins in the development of nanopore-based biosensors.

  19. Clinical efficacy, safety and anti-inflammatory activity of two sevelamer tablet forms in patients on low-flux hemodialysis.

    PubMed

    Tzanno-Martins, C; Biavo, B M M; Ferreira-Filho, O; Ribeiro-Junior, E; João-Luiz, M V S; Degaspari, S; Scavone, C; Kawamoto, E

    2014-01-01

    Sevelamer hydrochloride is an ionic exchange resin with high affinity for phosphate. This phosphate-binding agent has few serious adverse reactions with the advantage of reducing total and low density lipoprotein (LDL) cholesterol levels. However, it is controversial as to whether sevelamer hydrochloride can modulate the inflammatory response via endotoxin reduction. Therefore, a single-center, open-label, prospective and randomized study was performed to compare the clinical efficacy, safety and anti-inflammatory activity of two sevelamer hydrochloride tablet forms a branded tablet form, Renagel (Genzyme manufacturer) and its generic equivalent (EMS manufacturer). Twenty-eight chronic kidney disease volunteer patients at stage 5 (CDK 5D), on chronic low-flux hemodialysis carried out in 4-hour sessions, three times a week, were studied. The serum phosphorus, ionic calcium, total cholesterol and fractions, bicarbonate, blood pH, interleukin (IL)-6, IL-10, IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) levels were collected prior to dialysis at mid-week. The incidence of gastrointestinal adverse effects were determined at the end of the phosphate-binder washout period as well as at the end of the fourth and eighth weeks of use of both tablet forms. The same magnitude of reduction in serum phosphorus was observed with both sevelamer tablet forms. Only the Renagel group showed lower total cholesterol and lower LDL cholesterol levels at the fourth and eighth week versus baseline. No significant differences in serum cytokine levels were identified in either drug group. However, the incidence of intestinal obstipation was higher among patients who used the generic equivalent form. In conclusion, Renagel and its EMS generic equivalent tablet forms have a similar clinical efficacy in reducing phosphorus in CKD 5D patients on low-flux hemodialysis and a similar safety profile. PMID:24674676

  20. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  1. Activation and Inhibition of the Receptor Histidine Kinase AgrC Occurs Through Opposite Helical Transduction Motions

    PubMed Central

    Wang, Boyuan; Zhao, Aishan; Novick, Richard; Muir, Tom W.

    2014-01-01

    Summary Staphylococcus aureus virulence is regulated when secreted autoinducing peptides (AIPs) are recognized by a membrane-bound receptor histidine kinase (RHK), AgrC. Some AIPs are agonists of virulence gene expression, while others are antagonists. It is unclear how AIP binding regulates AgrC activity. Here, we reconstitute an AgrC family member, AgrC-I, using nanometer-scale lipid bilayer discs. We show that AgrC-I requires membranes rich in anionic lipids to function. The agonist, AIP-I, binds AgrC-I non-cooperatively in a 2:2 stoichiometry, while an antagonist ligand, AIP-II, functions as an inverse agonist of the kinase activity. We also demonstrate the kinase and sensor domains in AgrC are connected by a helical linker whose conformational state exercises rheostat-like control over the kinase activity. Binding of agonist or inverse-agonist peptides results in twisting of the linker in different directions. These two observations provide a view of the molecular motions triggered by ligand binding in an intact membrane-bound RHK. PMID:24656130

  2. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  3. Single molecule analysis of B cell receptor motion during signaling activation

    NASA Astrophysics Data System (ADS)

    Rey Suarez, Ivan; Koo, Peter; Mochrie, Simon; Song, Wenxia; Upadhyaya, Arpita

    B cells are an essential part of the adaptive immune system. They patrol the body looking for signs of infection in the form of antigen on the surface of antigen presenting cells. The binding of the B cell receptor (BCR) to antigen induces signaling cascades that lead to B cell activation and eventual production of high affinity antibodies. During activation, BCR organize into signaling microclusters, which are platforms for signal amplification. The physical processes underlying receptor movement and aggregation are not well understood. Here we study the dynamics of single BCRs on activated murine primary B cells using TIRF imaging and single particle tracking. The tracks obtained are analyzed using perturbation expectation-maximization (pEM) a systems-level analysis that allows the identification of different short-time diffusive states from a set of single particle tracks. We identified five different diffusive states on wild type cells, which correspond to different molecular states of the BCR. By using actin polymerization inhibitors and mutant cells lacking important actin regulators we were able to identify the BCR molecule configuration associated with each diffusive state.

  4. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  5. TURBULENT PUMPING OF MAGNETIC FLUX REDUCES SOLAR CYCLE MEMORY AND THUS IMPACTS PREDICTABILITY OF THE SUN'S ACTIVITY

    SciTech Connect

    Karak, Bidya Binay; Nandy, Dibyendu E-mail: dnandi@iiserkol.ac.in

    2012-12-10

    Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

  6. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  7. Emotions in motion: dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations.

    PubMed

    Trautmann, Sina Alexa; Fehr, Thorsten; Herrmann, Manfred

    2009-08-11

    In social contexts, facial expressions are dynamic in nature and vary rapidly in relation to situational requirements. However, there are very few fMRI studies using dynamic emotional stimuli. The aim of this study was (1) to introduce and evaluate a new stimulus database of static and dynamic emotional facial expressions according to arousal and recognizability investigated by a rating by both participants of the present fMRI study and by an external sample of 30 healthy women, (2) to examine the neural networks involved in emotion perception of static and dynamic facial stimuli separately, and (3) to examine the impact of motion on the emotional processing of dynamic compared to static face stimuli. A total of 16 females participated in the present fMRI study performing a passive emotion perception task including static and dynamic faces of neutral, happy and disgusted expressions. Comparing dynamic stimuli to static faces indicated enhanced emotion-specific brain activation patterns in the parahippocampal gyrus (PHG) including the amygdala (AMG), fusiform gyrus (FG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), and occipital and orbitofrontal cortex (OFC). These regions have been discussed to be associated with emotional memory encoding, the perception of threat, facial identity, biological motion, the mirror neuron system, an increase of emotional arousal, and reward processing, respectively. Post hoc ratings of the dynamic stimuli revealed a better recognizability in comparison to the static stimuli. In conclusion, dynamic facial expressions might provide a more appropriate approach to examine the processing of emotional face perception than static stimuli. PMID:19501062

  8. Measuring physical activity in older adults: calibrating cut-points for the MotionWatch 8©

    PubMed Central

    Landry, Glenn J.; Falck, Ryan S.; Beets, Michael W.; Liu-Ambrose, Teresa

    2015-01-01

    Given the world’s aging population, the staggering economic impact of dementia, the lack of effective treatments, and the fact a cure for dementia is likely many years away – there is an urgent need to develop interventions to prevent or at least delay dementia’s progression. Thus, lifestyle approaches to promote healthy aging are an important line of scientific inquiry. Good sleep quality and physical activity (PA) are pillars of healthy aging, and as such, are an increasing focus for intervention studies aimed at promoting health and cognitive function in older adults. However, PA and sleep quality are difficult constructs to evaluate empirically. Wrist-worn actigraphy (WWA) is currently accepted as a valid objective measure of sleep quality. The MotionWatch 8© (MW8) is the latest WWA, replacing the discontinued Actiwatch 4 and Actiwatch 7. In the current study, concurrent measurement of WWA and indirect calorimetry was performed during 10 different activities of daily living for 23 healthy older adults (aged 57–80 years) to determine cut-points for sedentary and moderate-vigorous PA – using receiver operating characteristic curves – with the cut-point for light activity being the boundaries between sedentary and moderate to vigorous PA. In addition, simultaneous multi-unit reliability was determined for the MW8 using inter-class correlations. The current study is the first to validate MW8 activity count cut-points – for sedentary, light, and moderate to vigorous PA – specifically for use with healthy older adults. These cut-points provide important context for better interpretation of MW8 activity counts, and a greater understanding of what these counts mean in terms of PA. Hence, our results validate another level of analysis for researchers using the MW8 in studies aiming to examine PA and sleep quality concurrently in older adults. PMID:26379546

  9. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion.

    PubMed

    Schmitt, M; Stark, H

    2016-08-01

    A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle. PMID:27562831

  10. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion.

    PubMed

    Schmitt, M; Stark, H

    2016-08-01

    A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle.

  11. Dynamical Signatures of Collective Quality Grading in a Social Activity: Attendance to Motion Pictures

    PubMed Central

    Escobar, Juan V.; Sornette, Didier

    2015-01-01

    We investigate the laws governing people’s decisions and interactions by studying the collective dynamics of a well-documented social activity for which there exist ample records of the perceived quality: the attendance to movie theaters in the US. We picture the flows of attendance as impulses or “shocks” driven by external factors that in turn can create new cascades of attendances through direct recommendations whose effectiveness depends on the perceived quality of the movies. This corresponds to an epidemic branching model comprised of a decaying exponential function determining the time between cause and action, and a cascade of actions triggered by previous ones. We find that the vast majority of the ~3,500 movies studied fit our model remarkably well. From our results, we are able to translate a subjective concept such as movie quality into a probability of the deriving individual activity, and from it we build concrete quantitative predictions. Our analysis opens up the possibility of understanding other collective dynamics for which the perceived quality or appeal of an action is also known. PMID:25612292

  12. Dynamical signatures of collective quality grading in a social activity: attendance to motion pictures.

    PubMed

    Escobar, Juan V; Sornette, Didier

    2015-01-01

    We investigate the laws governing people's decisions and interactions by studying the collective dynamics of a well-documented social activity for which there exist ample records of the perceived quality: the attendance to movie theaters in the US. We picture the flows of attendance as impulses or "shocks" driven by external factors that in turn can create new cascades of attendances through direct recommendations whose effectiveness depends on the perceived quality of the movies. This corresponds to an epidemic branching model comprised of a decaying exponential function determining the time between cause and action, and a cascade of actions triggered by previous ones. We find that the vast majority of the ~3,500 movies studied fit our model remarkably well. From our results, we are able to translate a subjective concept such as movie quality into a probability of the deriving individual activity, and from it we build concrete quantitative predictions. Our analysis opens up the possibility of understanding other collective dynamics for which the perceived quality or appeal of an action is also known.

  13. ) Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Cho, Jung-Wook; Kim, Seon-Hyo

    2014-10-01

    The effects of basicity (CaO/SiO2), B2O3, and Li2O addition on the crystallization behaviors of lime-silica-based mold fluxes have been investigated by non-isothermal differential scanning calorimetry (DSC), field emission scanning electron microscopy, X-ray diffraction (XRD), and single hot thermocouple technique. It was found that the crystallization temperature of cuspidine increased with increasing the basicity of mold fluxes. The crystallization of wollastonite was suppressed with increasing the mold flux basicity due to the enhancement of cuspidine crystallization. The addition of B2O3 suppresses the crystallization of mold flux. The crystallization temperature of mold flux decreases with Li2O addition. The size of cuspidine increases, while the number of cuspidine decreases with increasing mold flux basicity. The morphology of cuspidine in mold fluxes with lower basicity is largely dendritic. The dendritic cuspidine in mold fluxes is composed of many fine cuspidine crystals. On the contrary, in mold fluxes with higher basicity, the cuspidine crystals are larger in size with mainly faceted morphology. The crystalline phase evolution was also calculated using a thermodynamic database, and compared with the experimental results determined by DSC and XRD. The results of thermodynamic calculation of crystalline phase formation are in accordance with the results determined by DSC and XRD.

  14. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  15. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus.

  16. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. PMID:25619737

  17. Kettlebell swing, snatch, and bottoms-up carry: back and hip muscle activation, motion, and low back loads.

    PubMed

    McGill, Stuart M; Marshall, Leigh W

    2012-01-01

    The intent of this study was to quantify spine loading during different kettlebell swings and carries. No previously published studies of tissue loads during kettlebell exercises could be found. Given the popularity of kettlebells, this study was designed to provide an insight into the resulting joint loads. Seven male subjects participated in this investigation. In addition, a single case study of the kettlebell swing was performed on an accomplished kettlebell master. Electromyography, ground reaction forces (GRFs), and 3D kinematic data were recorded during exercises using a 16-kg kettlebell. These variables were input into an anatomically detailed biomechanical model that used normalized muscle activation; GRF; and spine, hip, and knee motion to calculate spine compression and shear loads. It was found that kettlebell swings create a hip-hinge squat pattern characterized by rapid muscle activation-relaxation cycles of substantial magnitudes (∼50% of a maximal voluntary contraction [MVC] for the low back extensors and 80% MVC for the gluteal muscles with a 16-kg kettlebell) resulting in about 3,200 N of low back compression. Abdominal muscular pulses together with the muscle bracing associated with carries create kettlebell-specific training opportunities. Some unique loading patterns discovered during the kettlebell swing included the posterior shear of the L4 vertebra on L5, which is opposite in polarity to a traditional lift. Thus, quantitative analysis provides an insight into why many individuals credit kettlebell swings with restoring and enhancing back health and function, although a few find that they irritate tissues.

  18. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  19. Range of motion and leg rotation affect electromyography activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen M; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-09-01

    Leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed 8 LE REP at their 8 repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP × ROM interaction was detected (p < 0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, and 8 (p ≤ 0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p < 0.001). For vastus lateralis (VL), EMG increased across REP (p < 0.001) with NEU and TO EMG increasing linearly throughout ROM and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO, the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  20. Range of motion and leg rotation affect EMG activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-06-30

    The leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed eight LE REP at their 8-repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP x ROM interaction was detected (p<0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, 8 (p<0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p<0.001). For vastus lateralis (VL), EMG increased across REP (p<0.001) with NEU and TO EMG increasing linearly throughout ROM, and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  1. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  2. Variations of daytime and nighttime electron temperature and heat flux in the upper ionosphere, topside ionosphere and lower plasmasphere for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Truhlik, Vladimir; Triskova, Ludmila; Bilitza, Dieter; Podolska, Katerina

    2009-12-01

    A database of the electron temperature (Te) comprising of most of the available LEO satellite measurements is used for studying the solar activity variations of Te. The Te data are grouped for two levels of solar activity (low LSA and high HSA), five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the Te values we obtain variation of Te along magnetic field lines and heat flux for LSA and HSA. We have found that Te increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the Te response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between Te and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime.

  3. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  4. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  5. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Wang, Dongpo; Cheng, Fangjie; Wang, Ying

    2015-05-01

    The oxide-film structure on the 5052 Al alloy and the film-removal mechanism by activated CsF-AlF3 flux in brazing were studied. Characterisation of the oxide film shows that thermally activated Mg, segregated from the alloy's interior, was significantly enriched and oxidised during medium-temperature brazing. Thus, the outer oxide surface consisted of the amorphous MgO-like phase, and the interior of the oxide film comprised mainly the amorphous MgO-like phase and dispersely distributed and less-ordered MgAl2O4. The MgO-like phase was the main obstacle to oxide removal in brazing. The activated ZnCl2-containing CsF-AlF3 flux effectively removed the oxide film, and the 5052 Al alloy was successfully brazed by the Zn-Al filler metal and activated flux. When Zn2+ in the molten flux permeated the oxide film through cracks, its chemical reaction with the Al substrate loosened the oxide film, which was eventually pushed out as the filler metal spread over the alloy surface.

  6. Motion sickness.

    PubMed

    Golding, J F

    2016-01-01

    Over 2000 years ago the Greek physician Hippocrates wrote, "sailing on the sea proves that motion disorders the body." Indeed, the word "nausea" derives from the Greek root word naus, hence "nautical," meaning a ship. The primary signs and symptoms of motion sickness are nausea and vomiting. Motion sickness can be provoked by a wide variety of transport environments, including land, sea, air, and space. The recent introduction of new visual technologies may expose more of the population to visually induced motion sickness. This chapter describes the signs and symptoms of motion sickness and different types of provocative stimuli. The "how" of motion sickness (i.e., the mechanism) is generally accepted to involve sensory conflict, for which the evidence is reviewed. New observations concern the identification of putative "sensory conflict" neurons and the underlying brain mechanisms. But what reason or purpose does motion sickness serve, if any? This is the "why" of motion sickness, which is analyzed from both evolutionary and nonfunctional maladaptive theoretic perspectives. Individual differences in susceptibility are great in the normal population and predictors are reviewed. Motion sickness susceptibility also varies dramatically between special groups of patients, including those with different types of vestibular disease and in migraineurs. Finally, the efficacy and relative advantages and disadvantages of various behavioral and pharmacologic countermeasures are evaluated. PMID:27638085

  7. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  8. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  9. The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services

    NASA Astrophysics Data System (ADS)

    Boden, T. A.; Krassovski, M.; Yang, B.

    2013-02-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data archived and available from CDIAC are collections from long-term measurement projects. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. To successfully manage AmeriFlux data and support climate change research, CDIAC has designed flexible data systems using proven technologies and standards blended with new, evolving technologies and standards. The AmeriFlux data system, comprised primarily of a relational database, a PHP based data-interface and a FTP server, offers a broad suite of AmeriFlux data. The data interface allows users to query the AmeriFlux collection in a variety of ways and then subset, visualize and download the data. From the perspective of data stewardship, on the other hand, this system is designed for CDIAC to easily control database content, automate data movement, track data provenance, manage metadata content, and handle frequent additions and corrections. CDIAC and researchers in the flux community developed data submission guidelines to enhance the AmeriFlux data collection, enable automated data processing, and promote standardization across regional networks. Both continuous flux and meteorological data and irregular biological data collected at AmeriFlux sites are carefully scrutinized by CDIAC using established quality-control algorithms before the data are ingested into the AmeriFlux data system. Other tasks at CDIAC include reformatting and standardizing the diverse and heterogeneous datasets received from individual sites into a uniform and consistent network database

  10. The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services

    NASA Astrophysics Data System (ADS)

    Boden, T. A.; Krassovski, M.; Yang, B.

    2013-06-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data archived and available from CDIAC are collections from long-term measurement projects. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. To successfully manage AmeriFlux data and support climate change research, CDIAC has designed flexible data systems using proven technologies and standards blended with new, evolving technologies and standards. The AmeriFlux data system, comprised primarily of a relational database, a PHP-based data interface and a FTP server, offers a broad suite of AmeriFlux data. The data interface allows users to query the AmeriFlux collection in a variety of ways and then subset, visualize and download the data. From the perspective of data stewardship, on the other hand, this system is designed for CDIAC to easily control database content, automate data movement, track data provenance, manage metadata content, and handle frequent additions and corrections. CDIAC and researchers in the flux community developed data submission guidelines to enhance the AmeriFlux data collection, enable automated data processing, and promote standardization across regional networks. Both continuous flux and meteorological data and irregular biological data collected at AmeriFlux sites are carefully scrutinized by CDIAC using established quality-control algorithms before the data are ingested into the AmeriFlux data system. Other tasks at CDIAC include reformatting and standardizing the diverse and heterogeneous datasets received from individual sites into a uniform and consistent network database

  11. Accretion disc dynamo activity in local simulations spanning weak-to-strong net vertical magnetic flux regimes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-03-01

    Strongly magnetized accretion discs around black holes have attractive features that may explain enigmatic aspects of X-ray binary behaviour. The structure and evolution of these discs are governed by a dynamo-like mechanism, which channels part of the accretion power liberated by the magnetorotational instability (MRI) into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. The strength of the self-sustained toroidal magnetic field depends on the net vertical magnetic flux, which we vary across almost the entire range over which the MRI is linearly unstable. We quantify disc structure and dynamo properties as a function of the initial ratio of mid-plane gas pressure to vertical magnetic field pressure, β _0^mid = p_gas / p_B. For 10^5 ≥ β _0^mid ≥ 10 the effective α-viscosity parameter scales as a power law. Dynamo activity persists up to and including β _0^mid = 10^2, at which point the entire vertical column of the disc is magnetic pressure dominated. Still stronger fields result in a highly inhomogeneous disc structure, with large density fluctuations. We show that the turbulent steady state βmid in our simulations is well matched by the analytic model of Begelman et al. describing the creation and buoyant escape of toroidal field, while the vertical structure of the disc can be broadly reproduced using this model. Finally, we discuss the implications of our results for observed properties of X-ray binaries.

  12. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities.

    PubMed

    Jiongxin, Xu

    2005-05-01

    Since the 1970s, the water fluxes to the sea of the Yellow River have declined significantly. Based on data of precipitation, air temperature, the measured and "natural" river flow, the water diversion and consumption, and the areas of erosion and sediment control measures over the drainage basin, water fluxes to the sea of the Yellow River are studied in relation with the influences of changing climate and human activities. The Yellow River basin can be divided into different water source areas; multiple regression indicates that the variation in precipitation over different water source areas has different effect on water fluxes to the sea. In the period between 1970 and 1997, averaged air temperature over the whole Yellow River increased by about 1.0 degree C, from 16.5 degrees C to 17.5 degrees C, a factor that is negatively correlated with the water yield of the Yellow River. Water diversion and consumption has sharply increased and resulted in a significant decline in the water fluxes to the sea. Since the 1960s, erosion and sediment control measures have been practiced over the drainage basin. This factor, to a lesser degree, is also responsible for the decrease in water fluxes to the sea. A multiple regression equation has been established to estimate the change in water fluxes to the sea caused by the changes in precipitation, air temperature, water diversion and consumption, erosion, and sediment control measures, indicating that the contribution of water diversion and consumption to the variation in annual water flux to the sea is 41.3%, that of precipitation is 40.8%, that of temperature is 11.4%, and that of erosion and sediment control measures is 6.5%. PMID:15924206

  13. Effects of the CORE Exercise Program on Pain and Active Range of Motion in Patients with Chronic Low Back Pain.

    PubMed

    Cho, Hwi-Young; Kim, Eun-Hye; Kim, Junesun

    2014-08-01

    [Purpose] This study aimed to identify the effects of the CORE exercise program on pain and active range of motion (AROM) in patients with chronic low back pain. [Subjects and Methods] Thirty subjects with chronic low back pain were randomly allocated to two groups: the CORE group (n = 15) and the control group (n = 15). The CORE group performed the CORE exercise program for 30 minutes a day, 3 times a week, for 4 weeks, while the control group did not perform any exercise. The visual analog scale (VAS) and an algometer were used to measure pain, and pain-free AROM in the trunk was measured before and after the intervention. [Results] The CORE group showed significantly decreased VAS scores at rest and during movement and had a significantly increased pressure pain threshold in the quadratus lumborum and AROM in the trunk compared with those in the control group. [Conclusion] This study demonstrated that the CORE exercise program is effective in decreasing pain and increasing AROM in patients with chronic low back pain. Thus, the CORE exercise program can be used to manage pain and AROM in patients with chronic low back pain.

  14. Effects of the active release technique on pain and range of motion of patients with chronic neck pain

    PubMed Central

    Kim, Jun Ho; Lee, Han Suk; Park, Sun Wook

    2015-01-01

    [Purpose] To compare the influences of the active release technique (ART) and joint mobilization (JM) on the visual analog scale (VAS) pain score, pressure pain threshold (PPT), and neck range of motion (ROM) of patients with chronic neck pain. [Subjects] Twenty-four individuals with chronic neck pain were randomly and equally assigned to 3 groups: an ART group, a joint mobilization (JM) group, and a control group. Before and after the intervention, the degree of pain, PPT, and ROM of the neck were measured using a VAS, algometer, and goniometer, respectively. [Results] The ART group and JM group demonstrated significant changes in VAS and ROM between pre and post-intervention, while no significant change was observed in the control group. Significant differences in the PPT of all muscles were found in the ART group, while significant differences in all muscles other than the trapezius were found in the JM group. No significant difference in PPT was observed in any muscle of the control group. The posthoc test indicated no statistically significant difference between the ART and JM group, but the differences of variation in VAS, PPT, and ROM were greater in the ART group than in the JM and control groups. [Conclusion] ART for the treatment of chronic neck pain may be beneficial for neck pain and movement. PMID:26357426

  15. The distribution of solar magnetic fluxes and the nonlinearity of stellar flux-flux relations

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Harvey, K. L.

    1989-01-01

    Synoptic maps for the 1975-1984 period are used to determine the time-dependent distribution function of magnetic flux densities in the solar atmosphere. The distribution function depends only on the global level of magnetic activity, and it is used to study how relations between magnetic flux densities and radiative flux densities from different temperature regimes in the outer atmosphere (derived from spatially resolved solar observations) transform into relations between surface-averaged flux densities. It is found that the transformation to surface-averaged fluxes preserves the power-law character of relations between radiative and magnetic flux densities for spatially resolved data.

  16. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  17. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity

    NASA Astrophysics Data System (ADS)

    Laiolo, M.; Ranaldi, M.; Tarchini, L.; Carapezza, M. L.; Coppola, D.; Ricci, T.; Cigolini, C.

    2016-04-01

    Soil CO2 flux and 222Rn activity measurements may positively contribute to the geochemical monitoring of active volcanoes. The influence of several environmental parameters on the gas signals has been substantially demonstrated. Therefore, the implementation of tools capable of removing (or minimising) the contribution of the atmospheric effects from the acquired time series is a challenge in volcano surveillance. Here, we present 4 years-long continuous monitoring (from April 2007 to September 2011) of radon activity and soil CO2 flux collected on the NE flank of Stromboli volcano. Both gases record higher emissions during fall-winter (up to 2700 Bq * m- 3 for radon and 750 g m- 2 day- 1 for CO2) than during spring-summer seasons. Short-time variations on 222Rn activity are modulated by changes in soil humidity (rainfall), and changes in soil CO2 flux that may be ascribed to variations in wind speed and direction. The spectral analyses reveal diurnal and semi-diurnal cycles on both gases, outlining that atmospheric variations are capable to modify the gas release rate from the soil. The long-term soil CO2 flux shows a slow decreasing trend, not visible in 222Rn activity, suggesting a possible difference in the source depth of the of the gases, CO2 being deeper and likely related to degassing at depth of the magma batch involved in the February-April 2007 effusive eruption. To minimise the effect of the environmental parameters on the 222Rn concentrations and soil CO2 fluxes, two different statistical treatments were applied: the Multiple Linear Regression (MLR) and the Principal Component Regression (PCR). These approaches allow to quantify the weight of each environmental factor on the two gas species and show a strong influence of some parameters on the gas transfer processes through soils. The residual values of radon and CO2 flux, i.e. the values obtained after correction for the environmental influence, were then compared with the eruptive episodes that

  18. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback.

    PubMed

    Brooks, Jessica X; Cullen, Kathleen E

    2014-06-15

    Most of our sensory experiences are gained by active exploration of the world. While the ability to distinguish sensory inputs resulting of our own actions (termed reafference) from those produced externally (termed exafference) is well established, the neural mechanisms underlying this distinction are not fully understood. We have previously proposed that vestibular signals arising from self-generated movements are inhibited by a mechanism that compares the internal prediction of the proprioceptive consequences of self-motion to the actual feedback. Here we directly tested this proposal by recording from single neurons in monkey during vestibular stimulation that was externally produced and/or self-generated. We show for the first time that vestibular reafference is equivalently canceled for self-generated sensory stimulation produced by activation of the neck musculature (head-on-body motion), or axial musculature (combined head and body motion), when there is no discrepancy between the predicted and actual proprioceptive consequences of self-motion. However, if a discrepancy does exist, central vestibular neurons no longer preferentially encode vestibular exafference. Specifically, when simultaneous active and passive motion resulted in activation of the same muscle proprioceptors, neurons robustly encoded the total vestibular input (i.e., responses to vestibular reafference and exafference were equally strong), rather than exafference alone. Taken together, our results show that the cancellation of vestibular reafference in early vestibular processing requires an explicit match between expected and actual proprioceptive feedback. We propose that this vital neuronal computation, necessary for both accurate sensory perception and motor control, has important implications for a variety of sensory systems that suppress self-generated signals.

  19. A Review of the Accuracy and Utility of Motion Sensors to Measure Physical Activity of Frail, Older Hospitalized Patients.

    PubMed

    McCullagh, Ruth; Brady, Noeleen M; Dillon, Christina; Horgan, N Frances; Timmons, Suzanne

    2016-07-01

    The purpose of this review was to examine the utility and accuracy of commercially available motion sensors to measure step-count and time spent upright in frail older hospitalized patients. A database search (CINAHL and PubMed, 2004-2014) and a further hand search of papers' references yielded 24 validation studies meeting the inclusion criteria. Fifteen motion sensors (eight pedometers, six accelerometers, and one sensor systems) have been tested in older adults. Only three have been tested in hospital patients, two of which detected postures and postural changes accurately, but none estimated step-count accurately. Only one motion sensor remained accurate at speeds typical of frail older hospitalized patients, but it has yet to be tested in this cohort. Time spent upright can be accurately measured in the hospital, but further validation studies are required to determine which, if any, motion sensor can accurately measure step-count. PMID:26583827

  20. Monitoring Charge Flux to Quantify Unusual Ligand-Induced Ion Channel Activity for Use in Biological Nanopore-Based Sensors

    PubMed Central

    2015-01-01

    The utility of biological nanopores for the development of sensors has become a growing area of interest in analytical chemistry. Their emerging use in chemical analysis is a result of several ideal characteristics. First, they provide reproducible control over nanoscale pore sizes with an atomic level of precision. Second, they are amenable to resistive-pulse type measurement systems when embedded into an artificial lipid bilayer. A single binding event causes a change in the flow of millions of ions across the membrane per second that is readily measured as a change in current with excellent signal-to-noise ratio. To date, ion channel-based biosensors have been limited to well-behaved proteins. Most demonstrations of using ion channels as sensors have been limited to proteins that remain in the open, conducting state, unless occupied by an analyte of interest. Furthermore, these proteins are nonspecific, requiring chemical, biochemical, or genetic manipulations to impart chemical specificity. Here, we report on the use of the pore-forming abilities of heat shock cognate 70 (Hsc70) to quantify a specific analyte. Hsc70 reconstitutes into phospholipid membranes and opens to form multiple conductance states specifically in the presence of ATP. We introduce the measurement of “charge flux” to characterize the ATP-regulated multiconductance nature of Hsc70, which enables sensitive quantification of ATP (100 μM–4 mM). We believe that monitoring protein-induced charge flux across a bilayer membrane represents a universal method for quantitatively monitoring ion-channel activity. This measurement has the potential to broaden the library of usable proteins in the development of nanopore-based biosensors. PMID:24794413

  1. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology

    PubMed Central

    Loverde, Joseph R.; Pfister, Bryan J.

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury. PMID:26379492

  2. Relating photosynthetic activity of BSCs from spectral indices: a first step to upscale BSC role on carbon fluxes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Emilio; Chamizo, Sonia; Miralles, Isabel; Ortega, Raul; Luna, Lourdes; Cantón, Yolanda

    2014-05-01

    Arid and semiarid ecosystems are water limited environments where water availability is the main limiting factor controlling vegetation cover, productivity and ecosystem function. However, bare areas of these systems are usually covered by a thin layer of photoautrophic communities of microorganisms comprising cyanobacteria, algae, microfungi, lichens or bryophytes, so called biological soil crusts (BSCs), which may cover up to 70 % of the soil surface in these areas. These BSCs are capable to survive long drought periods, during which their physiological activity ceases, and become active just after rainfall or even after dew or fog events, thus triggering their photosynthetic activity. So, they play an active role in C storage in arid ecosystems, where they are considered the main agent of nutrient input on bare areas. Moreover, the carbon (C) stored in soils covered by BSCs may constitute an important nutrient surplus for soil microbial communities or vegetation. Thus, having accurate continuous information about C stocks and C fluxes in soils covered by BSCs, at ecosystems scale, constitutes a relevant issue for scientists and researchers from many different disciplines, and is crucial for assessing the impacts of increasing atmospheric CO2 concentration on global environmental change. Remote sensing images and derived vegetation indices are presented as one of the most promising tools to achieve this goal, since they provide spatially explicit information with high temporal resolution. So that, quantifying the photosynthetic activity on BSC areas using remote sensing data constitutes an essential step to advance in the knowledge about the role of arid and semiarid regions in global C balance. In this study we analyzed the potential of the most widely used vegetation indices to estimate gross photosynthesis (GP) in BSCs. To achieve this objective, GP was calculated, after a rainfall event on different BSCs and on bare field plots, as the sum of net primary

  3. [Correlation between the microbiological (S. aureus) and seismic activities with regard to the sun-earth interactions and neutron flux generation].

    PubMed

    Shestopalov, I P; Rogozhin, Iu A

    2005-01-01

    The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.

  4. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  5. Suspended particulate matter fluxes along with their associated metals, organic matter and carbonates in a coastal Mediterranean area affected by mining activities.

    PubMed

    Helali, Mohamed Amine; Zaaboub, Noureddine; Oueslati, Walid; Added, Ayed; Aleya, Lotfi

    2016-03-15

    A study of suspended particulate matter (SPM) fluxes along with their associated metals, organic matter and carbonates, was conducted off the Mejerda River outlet in May 2011 and in March and July 2012 at depths of 10, 20 and 40 m using sediment traps. SPM fluxes are more significant near the Mejerda outlet, especially in winter, but dissipate further offshore. Normalization reveals that the Mejerda is a major source of Pb, Zn, Cd, Cu, Ni, and Co, all of which are the result of human activities. In contrast, Fe, Mn and N are of authigenic origin. The enrichment factor shows that Pb, Zn and especially Cd are the most highly polluting metals off the Mejerda outlet. This confirms the trend observed on the shores of the Mejerda prodelta and is consistent with the type of mining activities conducted in the Mejerda catchment. PMID:26869095

  6. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  7. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    NASA Technical Reports Server (NTRS)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  8. Acoustic emission from magnetic flux tubes in the solar network

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Hasan, S. S.

    2013-06-01

    We present the results of three-dimensional numerical simulations to investigate the excitation of waves in the magnetic network of the Sun due to footpoint motions of a magnetic flux tube. We consider motions that typically mimic granular buffeting and vortex flows and implement them as driving motions at the base of the flux tube. The driving motions generates various MHD modes within the flux tube and acoustic waves in the ambient medium. The response of the upper atmosphere to the underlying photospheric motion and the role of the flux tube in channeling the waves is investigated. We compute the acoustic energy flux in the various wave modes across different boundary layers defined by the plasma and magnetic field parameters and examine the observational implications for chromospheric and coronal heating.

  9. 10 CFR 820.39 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Motions. 820.39 Section 820.39 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.39 Motions. (a) General. All motions in..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as...

  10. 10 CFR 820.39 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Motions. 820.39 Section 820.39 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.39 Motions. (a) General. All motions in..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as...

  11. 10 CFR 820.39 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Motions. 820.39 Section 820.39 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.39 Motions. (a) General. All motions in..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as...

  12. 10 CFR 820.39 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Motions. 820.39 Section 820.39 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.39 Motions. (a) General. All motions in..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as...

  13. 10 CFR 820.39 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Motions. 820.39 Section 820.39 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.39 Motions. (a) General. All motions in..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as...

  14. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374

  15. Audio-visual interactions for motion perception in depth modulate activity in visual area V3A.

    PubMed

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-05-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) "matched vs. unmatched" conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio-visual "congruent vs. incongruent" between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio-visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio-visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio-visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices.

  16. Io's wobbling flux tube and nonuniform surface conductivity - Longitude control of decametric emission and other magnetospheric interactions

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1979-01-01

    Study of systematic relations between Io's flux tube orientation, decametric emission control, and areal surface properties suggest a model that can account for longitude control of principal Io-associated decametric emissions and other observed Io/magnetosphere interactions. The model is based on the fact that Jupiter's magnetic field structure is dominated by a tilted dipole rotating at a different angular velocity than Io's orbital motion. This caused Io's flux tube near Io to wobble (precess) with respect to Io's rotational axis. Discrete contact junctions are invoked between the active current-sheet regions in the flux tube and Io's surface.

  17. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    SciTech Connect

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W.; Senkpeil, Ryan R.; Tlatov, Andrey G.; Nagovitsyn, Yury A.; Pevtsov, Alexei A.; Chapman, Gary A.; Cookson, Angela M.; Yeates, Anthony R.; Watson, Fraser T.; Balmaceda, Laura A.; DeLuca, Edward E.; Martens, Petrus C. H.

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  18. Independent Measurement of the Total Active B8 Solar Neutrino Flux Using an Array of He3 Proportional Counters at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Aharmim, B.; Ahmed, S. N.; Amsbaugh, J. F.; Anthony, A. E.; Banar, J.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Bowles, T. J.; Browne, M. C.; Bullard, T. V.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chauhan, D.; Chen, M.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Deng, H.; Detwiler, J.; Dimarco, M.; Doe, P. J.; Doucas, G.; Drouin, P.-L.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Gagnon, N.; Germani, J. V.; Goldschmidt, A.; Goon, J. T. M.; Graham, K.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamian, A. A.; Harper, G. C.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jagam, P.; Jamieson, B.; Jelley, N. A.; Keeter, K. J.; Klein, J. R.; Kormos, L. L.; Kos, M.; Krüger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Loach, J. C.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Martin, R.; McBryde, K.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, G. G.; Miller, M. L.; Monreal, B.; Monroe, J.; Morissette, B.; Myers, A.; Nickel, B. G.; Noble, A. J.; Oblath, N. S.; O'Keeffe, H. M.; Ollerhead, R. W.; Gann, G. D. Orebi; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Reitzner, S. D.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, L.; Skensved, P.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tešić, G.; Thornewell, P. M.; Tolich, N.; Tsui, T.; Tunnell, C. D.; van Wechel, T.; van Berg, R.; Vandevender, B. A.; Virtue, C. J.; Walker, T. J.; Wall, B. L.; Waller, D.; Tseung, H. Wan Chan; Wendland, J.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2008-09-01

    The Sudbury Neutrino Observatory (SNO) used an array of He3 proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (νx) B8 solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54-0.31+0.33(stat)-0.34+0.36(syst)×106cm-2s-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Δm2=7.59-0.21+0.19×10-5eV2 and θ=34.4-1.2+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO’s previous results.

  19. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    PubMed

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  20. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    PubMed

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results. PMID:18851271

  1. Thermally activated flux creep in the Bi 1.66Pb 0.34Sr 2Ca 2-xMg xCu 3O y superconductors

    NASA Astrophysics Data System (ADS)

    Kameli, P.; Salamati, H.; Abdolhosseini, I.; Sohrabi, D.

    2008-02-01

    A systematic study of the magnetoresistance of Bi 1.66Pb 0.34Sr 2Ca 2-xMg xCu 3O y ( x = 0, 0.2 and 0.4) samples has been studied within the thermally activated flux creep model. Under lower applied magnetic field, the calculated flux pinning energies, U( H) and intergranular upper critical field, Hc2 decreases by increasing the amount of Mg. The higher electronegativity of Mg in the unit cell promotes more intake of oxygen in the material, and the grain boundaries are in more over-doped regime. These over-doped regions reduce the intergranular coupling and increases weak link behavior of Mg doped samples.

  2. Seasonal variations in soil carbonic anhydrase activity in a pine forest ecosystem as inferred from soil CO18O flux measurements

    NASA Astrophysics Data System (ADS)

    Ogee, Jerome; Wingate, Lisa; Bosc, Alexandre; Burlett, Régis

    2015-04-01

    Quantifying terrestrial carbon storage and predicting the sensitivity of ecosystems to climate change relies on our ability to obtain observational constraints on photosynthesis and respiration at large scales (ecosystem, regional and global). Photosynthesis (GPP), the largest CO2 flux from the land surface, is currently estimated with considerable uncertainty (1-3). Robust estimates of global GPP can be obtained from an atmospheric budget of the oxygen isotopic composition (δ18O) of atmospheric CO2, provided that we have a good knowledge of the δ18O signatures of the terrestrial CO2 fluxes (1,4). The latter reflect the δ18O of leaf and soil water pools because CO2 exchanges 'isotopically' with water [CO2+H218O⇔H2O+CO18O]. This exchange can be accelerated by the enzyme carbonic anhydrase (CA). In leaves, where CA is present and abundant, this isotopic equilibrium is reached almost instantaneously. As a consequence, and because soil and leaf water pools have different δ18O signatures, CO2 fluxes from leaves and soils carry very distinct δ18O signals and can thus be tracked from the fluctuations in the δ18O of atmospheric CO2 (δa). There is growing evidence that the accelerated isotopic exchange between CO2 and water due to CA activity is a widespread phenomenon in soils as well (4). At the global scale, accounting for soil CA activity dramatically shifts the influence of soil and leaf fluxes on δa, thus changing the estimates of terrestrial gross CO2 fluxes (1,4). In this talk we will briefly present the current state of understanding of the environmental and ecological causes behind the variability in CA activity observed in soils and illustrate, using field data from a temperate pine forest, how soil CA activity varies over a single growing season and how it responds to soil surface environmental variables. References 1. L. R. Welp et al., Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño, Nature 477, 579-582 (2011

  3. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy

  4. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  5. Frozen translational and rotational motion of human immunodeficiency virus transacting activator of transcription peptide-modified nanocargo on neutral lipid bilayer.

    PubMed

    Wei, Lin; Zhao, Xin; Chen, Bo; Li, Hongchang; Xiao, Lehui; Yeung, Edward S

    2013-05-21

    With time-resolved high-precision single-particle tracking methodologies, we explored the adsorption and thermal motion of transacting activator of transcription (TAT) peptide-modified nanocargo on a model lipid bilayer in the nonelectrostatic domain. We found that the lateral and rotational motion of TAT peptide-modified nanocargo could be effectively suppressed on the surface of neutral lipid membrane, a feature that cannot be explained by existing hypotheses. A semiquantitative association activation energy analysis revealed that multiple weak bonds were required for the initial adsorption process. As a result, the localized multiple TAT peptides on the surface of the nanocargo can provide a pathway for the creation of a net of peptide-lipid complexes (e.g., lipid domain). The dragging forces caused by these complexes effectively confined the thermal motion of the nanocargo on the fluid membrane that cannot be achieved by individual peptides with random spatial and conformational distributions. These interesting findings could provide insightful information for the better understanding of the intracellular internalization mechanism of TAT peptide-modified nanocargo and might shed new light on the development of highly efficient intracellular carriers for site-specific delivery of drugs and genes.

  6. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  7. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  8. Absent activation in medial prefrontal cortex and temporoparietal junction but not superior temporal sulcus during the perception of biological motion in schizophrenia: a functional MRI study

    PubMed Central

    Hashimoto, Naoki; Toyomaki, Atsuhito; Hirai, Masahiro; Miyamoto, Tamaki; Narita, Hisashi; Okubo, Ryo; Kusumi, Ichiro

    2014-01-01

    Background Patients with schizophrenia show disturbances in both visual perception and social cognition. Perception of biological motion (BM) is a higher-level visual process, and is known to be associated with social cognition. BM induces activation in the “social brain network”, including the superior temporal sulcus (STS). Although deficits in the detection of BM and atypical activation in the STS have been reported in patients with schizophrenia, it remains unclear whether other nodes of the “social brain network” are also atypical in patients with schizophrenia. Purpose We aimed to explore whether brain regions other than STS were involved during BM perception in patients with schizophrenia, using functional magnetic resonance imaging (fMRI). Methods and patients Seventeen patients with schizophrenia, and 17 age- and sex- matched healthy controls, underwent fMRI scanning during a one-back visual task, containing three experimental conditions: (1) BM, (2) scrambled motion (SM), and (3) static condition. We used one-sample t-tests to examine neural responses selective to BM versus SM within each group, and two-sample t-tests to directly compare neural patterns to BM versus SM in schizophrenics versus controls. Results We found significant activation in the STS region when BM was contrasted with SM in both groups, with no significant difference between groups. On the contrary, significant activation in the medial prefrontal cortex (MPFC) and bilateral temporoparietal junction (TPJ) was found only in the control group. When we directly compared the two groups, the healthy controls showed significant greater activation in left MPFC and TPJ to BM versus SM than patients with schizophrenia. Conclusion Our findings suggest that patients with schizophrenia show normal activation to biologically and socially relevant motion stimuli in the STS, but atypical activation in other regions of the social brain network, specifically MPFC and TPJ. Moreover, these results

  9. Flux-creep activation energy for a BaFe1.9Ni0.1As2 single crystal derived from alternating current susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Ge, Jun-Yi; Li, Lin-Jun; Xu, Zhu-An; Moshchalkov, Victor V.

    2016-04-01

    Systematic ac susceptibility measurements have been performed to investigate the vortex dynamics in a BaFe1.9Ni0.1As2 single crystal as a function of temperature, frequency, ac field amplitude, and dc magnetic field. The complex activation energy U ( T , B , j ) is derived in the framework of thermally activated flux creep theory and can be expressed in one simple formula. A power law dependence of U ˜ B α with α = -0.46 is observed. The activation energy reaches 104 K at low fields, suggesting strong pinning in the material. The nonlinear function of the activation energy vs. the current density is determined, which has the expression of U ∝ j - 0.1 .

  10. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa.

    PubMed

    Lew, Roger R

    2010-08-01

    The internal hydrostatic pressure (turgor) of the filamentous fungus Neurospora crassa is regulated at about 400-500 kiloPascals, primarily by an osmotic MAP kinase cascade which activates ion uptake from the extracellular medium and glycerol synthesis. In the absence of hyperosmotic stress, the phenylpyrrole fungicide fludioxonil activates the osmotic MAP kinase cascade, resulting in cell death. Turgor, the electrical potential and net ion fluxes were measured after treatment with fludioxonil. In wildtype, fludioxonil causes a hyperpolarization of the plasma membrane and net H(+) efflux from the cell, consistent with activation of the H(+)-ATPase. At the same time, net K(+) uptake occurs, and turgor increases (about 2-fold above normal levels). None of these changes are observed in the os-2 mutant (which lacks a functional MAP kinase, the last of the three kinases in the osmotic MAP kinase cascade). Tip growth ceases as hyperpolarization, net ion flux changes, and turgor increases begin. The inappropriate turgor increase is the probable cause of eventual lysis and death. The results corroborate a multi-pathway response to hyperosmotic stress that includes activation of plasma membrane transport. The relation to cell expansion (tip growth) is not direct. Increases in turgor due to ion transport might be expected to increase growth rate, but this does not occur. Instead, there must be a complex regulatory interplay between the growth and the turgor driving force, possibly mediated by regulation of cell wall extensibility.

  11. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    SciTech Connect

    Su, Yingna; Van Ballegooijen, Adriaan

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.

  12. MAGNETAR GIANT FLARES-FLUX ROPE ERUPTIONS IN MULTIPOLAR MAGNETOSPHERIC MAGNETIC FIELDS

    SciTech Connect

    Yu Cong

    2012-09-20

    We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. Self-consistent stationary, axisymmetric models of the magnetosphere are constructed based on force-free magnetic field configurations that contain a helically twisted force-free flux rope. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curves contain two branches: one represents a stable equilibrium branch, and the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior: when the magnetar surface magnetic field evolves slowly, the height of the flux rope would gradually reach a critical value beyond which stable equilibriums can no longer be maintained. Subsequently, the flux rope would lose equilibrium and the gradual quasi-static evolution of the magnetosphere will be replaced by a fast dynamical evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the crust of the magnetar. Some implications of our model are also discussed.

  13. Coupled Estimation of Surface Heat fluxes and Vegetation Dynamics From Remotely Sensed Land Surface Temperature and Fraction of Photosynthet