Science.gov

Sample records for activated flux motion

  1. Electron flux in molecules induced by nuclear motion

    NASA Astrophysics Data System (ADS)

    Okuyama, Michihiro; Takatsuka, Kazuo

    2009-07-01

    As a general tool for analysis of chemical reactions from the view point of electron wavepacket dynamics, electron flux within a molecule is numerically realized in terms of physically time-dependent electronic wavefunctions given by the semiclassical Ehrenfest theory. These wavefunctions are synchronized with real time motion of molecular nuclei through the nuclear kinematic coupling (nonadiabatic elements). Since the standard quantum flux gives only a null field for a real-valued electronic eigenfunction, we extend the definition of flux such that the essential information of dynamical flow of electrons can be retrieved even from adiabatic electronic wavefunctions calculated in the scheme of the so-called ab initio molecular dynamics.

  2. Flux motion in thin superconductors with inhomogeneous pinning

    NASA Astrophysics Data System (ADS)

    Schuster, Thomas; Kuhn, Holger; Brandt, Ernst Helmut; Indenbom, Mikhail; Koblischka, Michael R.; Konczykowski, Marcin

    1994-12-01

    The penetration and exit of magnetic flux in thin superconductors in a perpendicular applied field is investigated in detail. Flux-density pictures and profiles are obtained by magneto-optics; magnetization curves are measured by torque magnetometry; theoretical space- and time-dependent flux-density and current-density profiles are calculated from Maxwell's equations in a planar approximation assuming a highly nonlinear current-voltage law E~(J/Jc)n (n>>1, E=electric field, J=sheet current) with a critical sheet current Jc(B,r) in general depending on the position and on the perpendicular flux density B. Our experiments and calculations show that for inhomogeneous pinning the additional nontrivial condition Jc=∞ for B=0 is appropriate. Our specimens are high-Tc superconductors in the form of platelets, strips, or rings. In two platelets, an inhomogeneous Jc was produced by heavy-ion irradiation of the edge zone or by thinning down the central part by sputtering. In all cases good qualitative agreement is found between the experimental and theoretical results. In particular, our time-dependent theory reproduces the recently derived static Bean-model profiles in perpendicular geometry, which we also confirm experimentally; field and current profiles in the ring are as predicted for a current-carrying strip in perpendicular field; in the platelet with enhanced edge pinning, when flux starts to leak into the central weak pinning zone the flux lines are driven immediately to the sample center and pile up there; for weaker inhomogeneity of Jc(r), when the flux front arrives from the edges at the central weak-pinning zone the flux lines jump to an intermediate position from where they fill the central zone gradually. Our experiments also confirm the predicted ``uphill motion'' of flux lines against the flux-density gradient and the occurrence of overcritical current densities in the flux-free regions.

  3. Mass flux in peristaltic motion: streamfunction--vorticity formulation.

    NASA Astrophysics Data System (ADS)

    Marques, Francisco; Ortega, Joaquin; Lopez, John

    1999-11-01

    The peristaltic motion induced by propagating waves on the wall of a circular pipe is considered. A common practice in the streamfunction--vorticity formulation is to fix the values of the streamfunction ψ both on the wall and the axis, or fix the axial mass flux Q and ψ on one side; the axial pressure gradient π0 is a function of these imposed values. But in some problems the axial mass flux Q is an unknown, and the axial pressure gradient π0 is given; to handle these cases, an additional boundary condition is needed. This is the case in the peristaltic pumping problem, where the mass flux depends on the efficiency of the peristaltic pumping (the specific way the wall is moving), and also of the (adverse) pressure gradient opposing that motion. An additional important point is that the ``constants'' Q, ψ(R), ψ(0) are in general functions of time, and it does not make sense to fix them as constants at the outset. One of the goals of the analysis of the peristaltic pumping is to monitor the temporal variation of the mass flux Q, which makes it necessary to use the additional boundary condition mentioned. Some numerical results showing the evolution of the magnitudes Q, ψ(R), ψ(0) will be presented.

  4. Ross sea ice motion, area flux, and deformation

    NASA Technical Reports Server (NTRS)

    kwok, Ron

    2005-01-01

    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  5. Epitaxial high T c cuprate superlattices: A study of the thermal flux motion

    NASA Astrophysics Data System (ADS)

    Triscone, J.-M.; Antognazza, L.; Brunner, O.; Mieville, L.; Karkut, M. G.; van der Linden, P.; Perenboom, J. A. A. J.; Fischer, Ø.

    1991-12-01

    Epitaxial c-axis YBa 2Cu 3O 7/PrBa 2Cu 3O 7 (YBCO/PrBCO) superlattices grown by single target dc planar magnetron sputtering are used as a model system to investigate the nature of flux motion in high T c superconductors (HTS). When a magnetic field H is applied parallel to the c-axis we find that, for sufficiently thick PrBCO layers, the activation energy for flux motion U is proportional to the YBCO thickness. This allows us to extract a lower limit, about 500Å, for the correlation lenght along the vortices in pure YBCO. We find also for thin YBCO layers that U∼lnH which could be the signature that the dissipation process is related to the creation in the 2-D vortex lattice of dislocations pairs. When the field is applied in the a-b plane we find for thin YBCO layers separated by thick enough PrBCO layers that the resistive transition becomes field independent. Measurements on a 24Å/96Å YBCO/PrBCO multilayer up to 20T do not show any broadening of the resistive transition. We also find that the activation energy for flux motion decreases with decreasing the YBCO thickness and is insensitive to magnetic field below the H c1 of the individual YBCO layers.

  6. Induced mass and wave motions in the lower solar atmosphere. I - Effects of shear motion of flux tubes

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Hu, Y. Q.; Nakagawa, Y.; Tandberg-Hanssen, E.

    1983-01-01

    Observations indicate that various dynamic solar phenomena lead to enhanced emission of electromagnetic waves from radio to X-ray wavelengths which can be traced to magnetic activity in the photospheric level. A number of previous investigations have ignored the dynamic responses in the solar atmosphere. On the other hand, Nakagawa et al. (1978, 1981) have studied the atmospheric responses in the frame of MHD in the supersonic super-Alfvenic region. Studies of the slowly varying dynamic response (subsonic) have been unsuccessful because of the requirements of high accuracy in the numerical scheme in which a rigorous mathematical treatment of the boundary conditions is necessary. Recently, a numerical MHD model was constructed by using the full implicit continuous eulerian method. The present investigation makes use of a method which is written in a more convenient numerical code. A two-dimensional, time-dependent, nonplanar MHD model is used to investigate the induced mass and wave motions in the lower solar atmosphere due to the shear motion of flux tubes.

  7. Quantifying the tailward motion of reconnecting flux ropes at magnetopauses of Earth and other planets

    NASA Astrophysics Data System (ADS)

    Cassak, P.; Doss, C.; Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Dorelli, J.

    2015-12-01

    Flux ropes caused by magnetic reconnection commonly form at the dayside magnetopauses of Earth and other planets, such as Mercury and Jupiter. They are convected tailward due to their interaction with the solar wind and as the result of reconnection. The leading model for their tailward propagation speed at Earth's magnetopause has been described using boundary layer physics (Cowley and Owen, Planet. Space Sci., 37, 1461, 1989). We revisit this topic, noting that during times when the reconnection at both X-lines bracketing the flux ropes remain active, there should be consistency with the scaling laws of asymmetric magnetic reconnection with a flow shear. The convection speed of an isolated reconnecting X-line as a function of arbitrary upstream plasma parameters, including the reconnecting magnetic fields, densities, and upstream flow in the plane of the fields, was recently calculated analytically and tested with two-fluid simulations (Doss et al., J. Geophys. Res., submitted). Here, we present fully electromagnetic kinetic particle-in-cell simulations of local asymmetric reconnection with a flow shear that confirm the prediction in collisionless plasmas relevant to planetary magnetospheres. It is notable that the X-line convects even for sub-Alfvenic flow shear and can reconnect even for flow speeds exceeding twice the magnetosheath Alfven speed, which counters previous models. The application of these results for flux rope motion in global magnetospheric simulations of Earth is discussed, as are applications to the magnetospheres of other planets.

  8. Statistics of Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wei; Fan, Jun-Hui

    2008-08-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the Λ-CDM model. We checked the relationships between their proper motions, redshifts, βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  9. Dual Active Surface Heat Flux Gage Probe

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-01-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  10. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  11. Gravity wave motions and momentum fluxes in the middle atmosphere at Adelaide, Australia

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.; Fritts, D. C.

    1985-01-01

    A study was made of gravity wave momentum fluxes in the middle atmosphere using data collected during June 1984 at Adelaide, Australia (35 deg S). The primary objectives were to identify that portion of the gravity wave spectrum that contributes most of the momentum transport and flux divergence and to examine the temporal variability of wave energies and momentum fluxes. The data were obtained with an HF (2 MHz) radar operated in a Doppler configuration with two coplanar off-vertical beams. This technique provides a direct measure of the vertical flux of horizontal momentum due to an arbitrary spectrum of gravity wave and other motions in the plane of the radar beams.

  12. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors.

    PubMed

    Savel'ev, Sergey; Nori, Franco

    2002-11-01

    A new generation of microscopic ratchet systems is currently being developed for controlling the motion of electrons and fluxons, as well as for particle separation and electrophoresis. Virtually all of these use static spatially asymmetric potential energies to control transport properties. Here we propose completely new types of ratchet-like systems that do not require fixed spatially asymmetric potentials in the samples. As specific examples of this novel general class of ratchets, we propose devices that control the motion of flux quanta in superconductors and could address a central problem in many superconducting devices; namely, the removal of trapped magnetic flux that produces noise. In layered superconductors there are two interpenetrating perpendicular vortex lattices consisting of Josephson vortices (JVs) and pancake vortices (PVs). We show that, owing to the JV-PV mutual interaction and asymmetric driving, the a.c. motion of JVs and/or PVs can provide a net d.c. vortex current. This controllable vortex motion can be used for making pumps, diodes and lenses of quantized magnetic flux. These proposed devices sculpt the microscopic magnetic flux profile by simply modifying the time dependence of the a.c. drive, without the need for samples with static pinning--for example, without lithography or irradiation.

  13. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  14. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  15. Flare Activity and Magnetic Helicity Injection By Photospheric Horizontal Motions

    NASA Astrophysics Data System (ADS)

    Moon, Y.-J.; Chae, J.; Choe, G.; Wang, H.; Park, Y. D.; Yun, H. S.; Yurchyshyn, V.; Goode, P. R.

    2002-05-01

    We present observational evidence that the occurrence of homologous flares in an active region is physically related to the injection of magnetic helicity by horizontal photospheric motions. We have analyzed a set of 1 minute cadence magnetograms of NOAA AR 8100 taken over a period of 6.5 hours by Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SOHO). During this observing time span, seven homologous flares took place in the active region. We have computed the magnetic helicity injection rate into the solar atmosphere by photospheric shearing motions, and found that a significant amount of magnetic helicity was injected during the observing period. In a strong M4.1 flare, the magnetic helicity injection rate impulsively increased and peaked at the same time as the X-ray flux did. The flare X-ray flux integrated over the X-ray emission time strongly correlates with the magnetic helicity injected during the flaring interval. The integrated X-ray flux is found to be a logarithmically increasing function of the injected magnetic helicity. Our results suggest that injection of helicity and abrupt increase of helicity magnitude play a significant role in flare triggering. This work has been supported by NASA grants NAG5-10894 and NAG5-7837, by MURI grant of AFOSR, by the US-Korea Cooperative Science Program (NSF INT-98-16267), by NRL M10104000059-01J000002500 of the Korean government, and by the BK 21 project of the Korean government.

  16. Self-similarity in active colloid motion

    NASA Astrophysics Data System (ADS)

    Constant, Colin; Sukhov, Sergey; Dogariu, Aristide

    The self-similarity of displacements among randomly evolving systems has been used to describe the foraging patterns of animals and predict the growth of financial systems. At micron scales, the motion of colloidal particles can be analyzed by sampling their spatial displacement in time. For self-similar systems in equilibrium, the mean squared displacement increases linearly in time. However, external forces can take the system out of equilibrium, creating active colloidal systems, and making this evolution more complex. A moment scaling spectrum of the distribution of particle displacements quantifies the degree of self-similarity in the colloid motion. We will demonstrate that, by varying the temporal and spatial characteristics of the external forces, one can control the degree of self-similarity in active colloid motion.

  17. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  18. A superconducting reversible rectifier that controls the motion of magnetic flux quanta.

    PubMed

    Villegas, J E; Savel'ev, Sergey; Nori, Franco; Gonzalez, E M; Anguita, J V; García, R; Vicent, J L

    2003-11-14

    We fabricated a device that controls the motion of flux quanta in a niobium superconducting film grown on an array of nanoscale triangular pinning potentials. The controllable rectification of the vortex motion is due to the asymmetry of the fabricated magnetic pinning centers. The reversal in the direction of the vortex flow is explained by the interaction between the vortices trapped on the magnetic nanostructures and the interstitial vortices. The applied magnetic field and input current strength can tune both the polarity and magnitude of the rectified vortex flow. Our ratchet system is explained and modeled theoretically, taking the interactions between particles into consideration.

  19. Calculating the Motion and Direction of Flux Transfer Events with Cluster

    NASA Technical Reports Server (NTRS)

    Collado-Vega, Yaireska M.; Sibeck, David Gary

    2011-01-01

    We use multi-point timing analysis to determine the orientation and motion of flux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.

  20. Biologically-inspired Devices for Controlling the Motion of Flux-Quanta

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2002-03-01

    Motor proteins employ non-equilibrium fluctuations in anisotropic media to transport cargo at the cellular level. Similarly, biologically-inspired devices could transport quanta at the nano-scale. We [1,2,3] have studied non-equilibrium thermal fluctuations in several new type of ratchet systems in superconductors with either (a) channel wall asymmetries, (b) graduated pinning density, (c) anisotropic pinning traps. We study stochastic transport of flux quanta in superconductors by alternating current (AC) rectification. Our simulated systems provide a variety of fluxon pumps, "lenses", or fluxon "rectifiers" because in them the applied electrical AC is transformed into a net DC motion of fluxons. Thermal fluctuations and the asymmetry of the potential (e.g., via channel walls, or inhomegeneous pinning distribution) induce this "diode" effect. The latter can have important applications in devices, like SQUID magnetometers, and for "fluxon optics", including convex and concave "fluxon lenses" that focus/concentrate or disperse flux quanta. Certain features are unique to these novel types of two-dimensional (2D) pumps, and different from the previously studied ratchets (mostly in 1D, with only one particle moving). [1] J. Wambaugh, et. al., Superconducting fluxon pumps and lenses. Phys. Rev. Lett. 83, 5106 (1999). [2] C. Olson, et al., Collective interaction-driven ratchet for transporting flux quanta. Phys. Rev. Lett. 87, 7002 (2001). [3] B.Y. Zhu et al., Biologically-inspired Devices for Controlling the Motion of Flux-Quanta, preprint.

  1. Intestinal motor activity, endoluminal motion and transit.

    PubMed

    de Iorio, F; Malagelada, C; Azpiroz, F; Maluenda, M; Violanti, C; Igual, L; Vitrià, J; Malagelada, J-R

    2009-12-01

    A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.

  2. Viscous flux motion in anisotropic type-II superconductors in low fields

    SciTech Connect

    Hao, Zhidong; Clem, J.R. Iowa State Univ. of Science and Technology, Ames, IA . Dept. of Physics)

    1990-01-01

    The Bardeen-Stephen model of viscous flux motion in isotropic Type-II superconductors is extended to the anisotropic case characterized by a phenomenological effective mass tensor m{sub ij}. When the magnetic field is low and the vortex lines are aligned along one of the three principal axes, simple expressions for the viscosity tensor {eta}{sub ij} of the viscous flux motion are obtained as functions of m{sub ij} and the normal state conductivity tensor {sigma}{sub ij} for temperature T close to the critical temperature {Tc}. For the high-temperature oxide superconductors the theory predicts that {eta}{sub b}{sup (a)}:{eta}{sub b}{sup (c)}:{eta}{sub c}{sup (a)} {approx} 1:4{gamma}:3{gamma}{sup 2}, where {eta}{sub i}{sup (j)} is the viscosity for the motion along the i-axis of a vortex parallel to the j-axis and {gamma} = {radical}m{sub c}/m{sub a} is the anisotropy parameter (m{sub i}, i = a,b,c, are the principal values of the mass tensor satisfying m{sub a} {approx} m{sub b} {much lt} m{sub c}). 9 refs., 1 fig.

  3. Contribution of Low-Frequency Motions to Sensible Heat Fluxes over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng; Cai, Xuhui; Song, Yu; Sun, Jianning

    2016-10-01

    Field observations of the atmospheric boundary layer were made over urban and suburban terrain in the Yangtze River Delta, China. A multiresolution decomposition was applied over three different types of terrain: flat homogeneous terrain, suburban terrain and urban terrain, with results indicating that, (1) the average scale contribution of u, v, w and Tv had a similar variability with length scale for all these three sites respectively, and the dimensionless length scale corresponding to the maximum sensible heat flux contribution increased with the terrain complexity; (2) the length scale corresponding to the maximal average scale contribution for vertical wind velocity λ _w was directly proportional to the roughness length z0 in unstable conditions; and (3) the contributions of large-scale motions led to sensible heat fluxes determined with a large-aperture scintillomter being larger than those using the eddy-covariance method for the suburban case, whereas this phenomenon was not substantial for the urban case.

  4. A miniaturized human-motion energy harvester using flux-guided magnet stacks

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2016-11-01

    We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.

  5. Study of Particle Motion in He II Counterflow Across a Wide Heat Flux Range

    NASA Astrophysics Data System (ADS)

    Mastracci, Brian; Takada, Suguru; Guo, Wei

    2017-01-01

    Some discrepancy exists in the results of He II counterflow experiments obtained using particle image velocimetry (PIV) when compared with those obtained using particle tracking velocimetry (PTV): using PIV, it was observed that tracer particles move at roughly half the expected normal fluid velocity, v_n/2 , while tracer particles observed using PTV moved at approximately v_n . A suggested explanation is that two different flow regimes were examined since the range of heat flux applied in each experiment was adjacent but non-overlapping. Another PTV experiment attempted to test this model, but the applied heat flux did not overlap with any PIV experiments. We report on the beginnings of a study of solid D_2 particle motion in counterflow using PTV, and the heat flux range overlaps that of all previous visualization studies. The observed particle velocity distribution transitions from a two-peak structure to a single peak as the heat flux is increased. Furthermore, the mean value of one peak in the bi-modal distributions grows at approximately the same rate as v_n , while the mean value of the single-peak distributions grows at roughly 0.4v_n , in reasonable agreement with both previous experiments and with the suggested model.

  6. Poynting flux in the neighbourhood of a point charge in arbitrary motion and radiative power losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-07-01

    We examine the electromagnetic fields in the neighbourhood of a ‘point charge’ in arbitrary motion and thereby determine the Poynting flux across a spherical surface of vanishingly small radius surrounding the charge. We show that the radiative power losses from a point charge turn out to be proportional to the scalar product of the instantaneous velocity and the first time-derivative of the acceleration of the charge. This may seem to be discordant with the familiar Larmor formula where the instantaneous power radiated from a charge is proportional to the square of acceleration. However, it seems that the root cause of the discrepancy actually lies in Larmor’s formula, which is derived using the acceleration fields but without due consideration for the Poynting flux associated with the velocity-dependent self-fields ‘co-moving’ with the charge. Further, while deriving Larmor’s formula, one equates the Poynting flux through a surface at some later time to the radiation loss by the enclosed charge at the retarded time. Poynting’s theorem, on the other hand, relates the outgoing radiation flux from a closed surface to the rate of energy decrease within the enclosed volume, all calculated for the same given instant only. Here we explicitly show the absence of any Poynting flux in the neighbourhood of an instantly stationary point charge, implying no radiative losses from such a charge, which is in complete conformity with energy conservation. We further show how Larmor’s formula is still able to serve our purpose in the vast majority of cases. It is further shown that Larmor’s formula in general violates momentum conservation and, in the case of synchrotron radiation, leads to a potentially incorrect conclusion about the pitch angle changes of the radiating charges, and that only the radiation reaction formula yields a correct result, consistent with special relativity.

  7. The influence of zero-flux surface motion on chemical reactivity.

    PubMed

    Morgenstern, Amanda; Morgenstern, Charles; Miorelli, Jonathan; Wilson, Tim; Eberhart, M E

    2016-02-21

    Visualizing and predicting the response of the electron density, ρ(r), to an external perturbation provides a portion of the insight necessary to understand chemical reactivity. One strategy used to portray electron response is the electron pushing formalism commonly utilized in organic chemistry, where electrons are pictured as flowing between atoms and bonds. Electron pushing is a powerful tool, but does not give a complete picture of electron response. We propose using the motion of zero-flux surfaces (ZFSs) in the gradient of the charge density, ∇ρ(r), as an adjunct to electron pushing. Here we derive an equation rooted in conceptual density functional theory showing that the movement of ZFSs contributes to energetic changes in a molecule undergoing a chemical reaction. Using a substituted acetylene, 1-iodo-2-fluoroethyne, as an example, we show the importance of both the boundary motion and the change in electron counts within the atomic basins of the quantum theory of atoms in molecules for chemical reactivity. This method can be extended to study the ZFS motion between smaller gradient bundles in ρ(r) in addition to larger atomic basins. Finally, we show that the behavior of ∇ρ(r) within atomic basins contains information about electron response and can be used to predict chemical reactivity.

  8. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  9. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  10. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    ERIC Educational Resources Information Center

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  11. Biologically inspired devices for easily controlling the motion of magnetic flux quanta

    NASA Astrophysics Data System (ADS)

    Zhu, B. Y.; Marchesoni, F.; Nori, Franco

    2003-05-01

    Motor proteins employ non-equilibrium fluctuations in anisotropic media to transport cargo at the cellular level. Here we consider anisotropic pinning to transport magnetic flux quanta inside superconductor. In particular, we consider: (1) composite pins by superimposing two interpenetrating arrays of weak and strong pinning centers; (2) triangular blind antidots; (3) V-shaped pinning sites. Specifically, we study stochastic transport of fluxons by alternating current (AC) rectification. Our simulated systems provide fluxon pumps, or fluxon “rectifiers”, because the applied electrical AC force is transformed into a net DC motion of fluxons. The asymmetry of the ratchet-shaped pinning landscape induce this “diode” effect, which can have important applications in devices, like SQUID magnetometers, and for fluxon optics, including convex and concave fluxon lenses.

  12. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-09-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source.

  13. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-06-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases. are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source.

  14. Calculating the Motion and Direction of Flux Transfer Events with Cluster

    NASA Technical Reports Server (NTRS)

    Collado-Vega, Y. M.; Sibeck, D. G.

    2012-01-01

    For many years now, the interactions of the solar wind plasma with the Earth's magnetosphere has been one of the most important problems for Space Physics. It is very important that we understand these processes because the high-energy particles and also the solar wind energy that cross the magneto sphere could be responsible for serious damage to our technological systems. The solar wind is inherently a dynamic medium, and the particles interaction with the Earth's magnetosphere can be steady or unsteady. Unsteady interaction include transient processes like bursty magnetic reconnection. Flux Transfer Events (FTEs) are magnetopause signatures that usually occur during transient times of reconnection. They exhibit bipolar signatures in the normal component of the magnetic field. We use multi-point timing analysis to determine the orientation and motion of ux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.

  15. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  16. The motion of magnetic flux tube at the dayside magnetopause under the influence of solar wind flow

    SciTech Connect

    Liu, Z.X.; Hu, Y.D.; Li, F. ); Pu, Z.Y. )

    1990-05-01

    The authors propose that flux transfer events (FTEs) at the dayside magnetopause are formed by fluid vortices in the flow field. According to the view of vortex-induced reconnection a FTE tube is a magnetic fluid vortex tube (MF vortex tube). The motion of a FTE tube can be represented by that of a MF vortex in the formation region located in the dayside magnetopause region. This study deals with the internal and external influences governing the motion of MF vortex tubes. The equations of motion of a vortex tube are established and solved. It is found that a FTE tube moves frm low latitude to high latitude with a certain speed. However, the motional path is not a straight line but oscillates about the northward direction for the northern hemisphere. The motional velocity, amplitude and period of the oscillation depend on the flow field and magnetic field in the magnetosheath and magnetosphere as well as the size of the FTE tube.

  17. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  18. Instabilities, motion and deformation of active fluid droplets

    NASA Astrophysics Data System (ADS)

    Whitfield, Carl A.; Hawkins, Rhoda J.

    2016-12-01

    We consider two minimal models of active fluid droplets that exhibit complex dynamics including steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a concentration of active contractile matter adsorbed to its boundary. We analytically predict activity driven instabilities in the concentration profile, and compare them to the dynamics we find from simulations. Secondly, we consider a droplet of active polar fluid of constant concentration. In this system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities in the polarisation field. Both these systems show spontaneous transitions to motility and deformation which resemble dynamics of the cell cytoskeleton in animal cells.

  19. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    NASA Astrophysics Data System (ADS)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  20. Tidal motions and tidally induced fluxes through La Línea submarine canyon, western Alboran Sea

    NASA Astrophysics Data System (ADS)

    Lafuente, Jesús GarcíA.; Sarhan, Tarek; Vargas, Manuel; Vargas, Juan M.; Plaza, Francisco

    1999-02-01

    Detailed observations from two mooring lines deployed in La Línea submarine canyon, western Alboran Sea, are presented. This is a narrow canyon in the sense that its width is always less than the internal radius of deformation. Tidal currents within the canyon are polarized in the along-canyon direction according to its narrow nature. They have considerable amplitude (values of around 0.5 m/s are often observed) and are forced by the internal pressure gradients associated with the baroclinic tide that is generated in the surroundings. Subsequent amplification of onshore baroclinic currents within the canyon accounts for the large amplitude observed. Cross-shelf exchange through the canyon due to tidal motions is different from zero despite the close to zero mean of tidal currents. The explanation is based on the asymmetry of water properties flowing up-canyon and down-canyon (some sort of tidal rectification). Regarding the energy flux, the canyon seems to be an adequate conduit to carry energy to the shore. Estimations made from our observations indicate that energy input onto the shelf per unit length parallel to the shore at the canyon head is enough to maintain mixing on the shelf at intermediate depths.

  1. Concerning the Motion and Orientation of Flux Transfer Events Produced by Component and Antiparallel Reconnection

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lin, R.-Q.

    2011-01-01

    We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions.

  2. Explosive Flux Compression: 50 Years of Los Alamos Activities

    SciTech Connect

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  3. Explosive Flux Compression:. 50 Years of LOS Alamos Activities

    NASA Astrophysics Data System (ADS)

    Fowler, C.; Thomson, D.; Garn, W.

    2004-11-01

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  4. The Contribution of Mesoscale Motions to the Mass and Heat Fluxes of an Intense Tropical Convective System.

    NASA Astrophysics Data System (ADS)

    Leary, Colleen A.; Houze, Robert A., Jr.

    1980-04-01

    The existence of extensive precipitating anvil clouds in intense tropical convection suggests that vertical air motions associated with the anvil clouds play a significant role in the mass and heat budgets of these systems. This paper uses three different sets of assumptions about the water budget of an idealized mesoscale convective system to test the sensitivity of diagnostic calculations of vertical transports of mass and heat to the inclusion or exclusion of anvil clouds and their associated mesoscale vertical air motions. The properties of the mesoscale updraft and downdraft are evaluated using observations and the results of modeling studies. When a mesoscale updraft and downdraft are included in the diagnostic calculations, the profiles of vertical transports of mass and moist static energy are both qualitatively and quantitatively different from the results when mesoscale vertical air motions are excluded. Inclusion of mesoscale vertical motions in the diagnostic calculations leads to smaller upward mass transports below 4 km, larger upward mass sports above 4 km, less cooling below 4 km, and more cooling between 4.5 and 6.5 km than are obtained when mesoscale motions are not included in the calculations. These results imply that the effect of mesoscale vertical air motions on cloud mass flux and net beating profiles should be considered when parameterizing the effects of tropical convection on the larger scale environment.

  5. Statistical models for predicting the change in mean motion of a satellite over time including the effects of solar flux

    NASA Astrophysics Data System (ADS)

    Burns, J. M.

    1985-12-01

    This investigation derived a simple model to determine the change in mean motion over time when the actual values are unknown. A method was developed to include effects of solar flux by calculating an average value of n over 30 days. The model requires a knowledge of the mean motion for about 30 days before the time of interest to calculate this average. The analysis was done using BMDP on a CDC Cyber 6000 computer using element set data from actual satellites. This model does not attempt absolute accuracy, but is intended to be a method to quickly approximate a new mean motion when real values are not available. A limitation of this model is the amount of historical data and analyst judgement which are required.

  6. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  7. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  8. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    SciTech Connect

    Perkins, R. J. Bellan, P. M.

    2015-02-15

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle in a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.

  9. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives.

    PubMed

    Cole, David; Bending, Simon; Savel'ev, Sergey; Grigorenko, Alexander; Tamegai, Tsuyoshi; Nori, Franco

    2006-04-01

    Initially inspired by biological motors, new types of nanodevice have been proposed for controlling the motion of nanoparticles. Structures incorporating spatially asymmetric potential profiles (ratchet substrates) have been realized experimentally to manipulate vortices in superconductors, particles in asymmetric silicon pores, as well as charged particles through artificial pores and arrays of optical tweezers. Using theoretical ideas, we demonstrate experimentally how to guide flux quanta in layered superconductors using a drive that is asymmetric in time instead of being asymmetric in space. By varying the time-asymmetry of the drive, we are able experimentally to increase or decrease the density of magnetic flux at the centre of superconducting samples that have no spatial ratchet substrate. This is the first ratchet without a ratchet potential. The experimental results can be well described by numerical simulations considering the dragging effect of two types of vortices penetrating layered superconductors in tilted magnetic fields.

  10. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-08-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding "hot-spots", and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  11. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  12. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  13. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  14. Simulation of the active Brownian motion of a microswimmer

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni

    2014-07-01

    Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations both in homogenous and complex environments. In particular, we show how active Brownian particles do not follow the Maxwell-Boltzmann distribution—a clear signature of their out-of-equilibrium nature—and how, unlike passive Brownian particles, microswimmers can be funneled, trapped, and sorted.

  15. Muscle motion and EMG activity in vibration treatment.

    PubMed

    Fratini, Antonio; La Gatta, Antonio; Bifulco, Paolo; Romano, Maria; Cesarelli, Mario

    2009-11-01

    The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R(2)=0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential.

  16. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.

    2009-08-01

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfvén theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  17. Modeling the Subsurface Evolution of Active-Region Flux Tubes

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2009-12-01

    I present results from a set of 3-D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior that put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to asymmetric stretching of the Ω-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist α ≡ JB / B2, whereas the values in the following leg show large fluctuations and are of mixed signs.

  18. Observing shadow motions: resonant activity within the observer's motor system?

    PubMed

    Alaerts, Kaat; Van Aggelpoel, Tinne; Swinnen, Stephan P; Wenderoth, Nicole

    2009-09-25

    Several studies have demonstrated that the human motor cortex is activated by the mere observation of actions performed by others. In the present study, we explored whether the perception of 'impoverished motion stimuli', such as shadow animations, is sufficient to activate motor areas. To do so, transcranial magnetic stimulation (TMS) was applied over the hand area of the primary motor cortex (M1) while subjects observed shadow animations depicting finger motions. Data showed that resonant motor responses in M1 were only found when a biological effector was recognized from the observed shadow animation. Interestingly, M1 responses were similar for observing shadow or real motions. Therefore, the loss of 'pictorial' movement features in a shadow animation appeared to have no effect on motor resonance in M1. In summary, these findings suggest that the 'recognition' of biological motion from sparse visual input is both necessary and sufficient to recruit motor areas. This supports the hypothesis that the motor system is involved in recognizing the actions performed by others.

  19. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    PubMed

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  20. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  1. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  2. Motion and Magnetic Flux Changes of Coronal Bright Points Relative to Supergranular Cell Boundaries

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Safari, H.; Attie, R.; Alipour, N.

    2016-01-01

    To calculate the magnetic flux and the horizontal movement of coronal bright points (CBPs) in relation to supergranular cell boundaries, the time series of the SDO/HMI visible-light continuum images and SDO/AIA EUV images for 13 February 2011 have been studied. The supergranular lanes were detected in HMI continuum images using the automatic supergranular cell recognition method. The automatic identification and tracking method was applied for detecting the CBPs in AIA 193 Å images. By applying the ball-tracking method on HMI continuum images, the underlying flow fields were determined. By using the velocity fields and the automatic supergranular cell recognition method, the lanes and boundaries were detected. The locations of CBPs were projected on the photospheric co-spatial and co-temporal images. We found that about 90 % of the locations of CBPs correspond to the lane of the supergranular cell boundaries (network CBPs or NCBPs) of which about 40 % of them appeared at junctions. The remaining 10 % appeared within the supergranular regions (internetwork CBPs or INCBPs). The horizontal velocities for NCBPs and INCBPs were about 1.6±0.1 km s^{-1} and 1.7±0.1 km s^{-1}, respectively. Using the magnetic field extrapolation, we were able to detect the bipoles underlying CBPs, and we studied their magnetic evolution. The orientation of CBPs observed in the 171, 193, and 211 Å images and the orientation of their magnetic bipoles are positively correlated. For out of 50 INCBPs, 54 % showed cancellation, 32 % emergence, and 12 % complex flux changes. Out of 90 NCBPs, 60 % presented cancellation, 20 % showed emergence, and 20 % showed complex flux changes.

  3. Thermally activated depinning motion of contact lines in pseudopartial wetting.

    PubMed

    Du, Lingguo; Bodiguel, Hugues; Colin, Annie

    2014-07-01

    We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish near the equilibrium contact angle. These observations are consistent with the thermally activated depinning theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the contact line.

  4. δ-SUNSPOT FORMATION IN SIMULATION OF ACTIVE-REGION-SCALE FLUX EMERGENCE

    SciTech Connect

    Fang, Fang; Fan, Yuhong

    2015-06-10

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  5. δ-Sunspot Formation in Simulation of Active-region-scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fan, Yuhong

    2015-06-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  6. Formation of δ-Sunspot in Simulations of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fan, Yuhong

    2015-04-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging pattherns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the -spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  7. Motion Sensor Use for Physical Activity Data: Methodological Considerations

    PubMed Central

    McCarthy, Margaret; Grey, Margaret

    2015-01-01

    Background Physical inactivity continues to be a major risk factor for cardiovascular disease, and only one half of adults in the United States meet physical activity (PA) goals. PA data are often collected for surveillance or for measuring change after an intervention. One of the challenges in PA research is quantifying exactly how much and what type of PA is taking place—especially because self-report instruments have inconsistent validity. Objective The purpose is to review the elements to consider when collecting PA data via motion sensors, including the difference between PA and exercise; type of data to collect; choosing the device; length of time to monitor PA; instructions to the participants; and interpretation of the data. Methods The current literature on motion sensor research was reviewed and synthesized to summarize relevant considerations when using a motion sensor to collect PA data. Results Exercise is a division of PA that is structured, planned, and repetitive. Pedometer data includes steps taken, and calculated distance and energy expenditure. Accelerometer data includes activity counts and intensity. The device chosen depends on desired data, cost, validity, and ease of use. Reactivity to the device may influence the duration of data collection. Instructions to participants may vary depending on purpose of the study. Experts suggest pedometer data be reported as steps—since that is the direct output—and distance traveled and energy expenditure are estimated values. Accelerometer count data may be analyzed to provide information on time spent in moderate or vigorous activity. Discussion Thoughtful decision making about PA data collection using motion sensor devices is needed to advance nursing science. PMID:26126065

  8. Collective motion in an active suspension of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Gachelin, J.; Rousselet, A.; Lindner, A.; Clement, E.

    2014-02-01

    We investigate experimentally the emergence of collective motion in the bulk of an active suspension of Escherichia coli bacteria. When increasing the concentration from a dilute to a semi-dilute regime, we observe a continuous crossover from a dynamical cluster regime to a regime of ‘bio-turbulence’ convection patterns. We measure a length scale characterizing the collective motion as a function of the bacteria concentration. For bacteria fully supplied with oxygen, the increase of the correlation length is almost linear with concentration and at the largest concentrations tested, the correlation length could be as large as 24 bacterial body sizes (or 7-8 when including the flagella bundle). In contrast, under conditions of oxygen shortage the correlation length saturates at a value of around 7 body lengths.

  9. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  10. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion.

  11. Transition region fluxes in A-F Dwarfs: Basal fluxes and dynamo activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Schrijver, Carolus J.; Boyd, William

    1988-01-01

    The transition region spectra of 87 late A and early F dwarfs and subgiants were analyzed. The emission line fluxes are uniformly strong in the early F stars, and drop off rapidly among the late A stars. The basal flux level in the F stars is consistent with an extrapolation of that observed among the G stars, while the magnetic component displays the same flux-flux relations seen among solar-like stars. Despite the steep decrease in transition region emission flux for B-V less than 0.28, C II emission is detected in alpha Aql (B-V = 0.22). The dropoff in emission is inconsistent with models of the mechanically generated acoustic flux available. It is concluded that, although the nonmagnetic basal heating is an increasingly important source of atmospheric heating among the early F stars, magnetic heating occurs in any star which has a sufficiently thick convective zone to generate acoustic heating.

  12. Flux motion and isotropic effects in MgB2 near the critical temperature

    NASA Astrophysics Data System (ADS)

    Olutaş, M.; Kiliç, A.; Kiliç, K.; Altinkök, A.

    2012-11-01

    The anisotropic behaviour of polycrystalline MgB2 was studied in details by means of angle dependent magnetovoltage measurements ( V- θ curves) at the temperatures near the critical temperature T c, where θ is the angle between the external magnetic field H and the transport current I. The measurement of V- θ curves was carried out at fixed temperatures below T c for different values of H and I in a range of θ = -20° -200°. Magnetovoltage measurements ( V- H curves) were performed for perpendicular and parallel orientations of H with respect to I, i.e., the V ⊥- H curves for ěc H bot ěc I and V ∥- H curves for ěc Hallel ěc I . The analysis of V- θ curves does not give any agreement with V( θ) sin2( θ) or any modified angular relationship, so that the measured dissipation is nearly independent of the angle between H and I. The isotropic effects observed in MgB2 were discussed in the frame of the continuum approximation, the discrete case and the flux line cutting associated with the double critical state model derived in the literature. Finally, it is concluded that structural disorder induced isotropic effects can explain the isotropic angular dissipation observed in V- θ, I- V and V- H curves.

  13. Fusion of smartphone motion sensors for physical activity recognition.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2014-06-10

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

  14. Fusion of Smartphone Motion Sensors for Physical Activity Recognition

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2014-01-01

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible. PMID:24919015

  15. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2014-03-01

    The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

  16. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography.

    PubMed

    Crowe, David A; Leuthold, Arthur C; Georgopoulos, Apostolos P

    2010-12-28

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermore, when subjects perceived motion, activity states within the brain did not differ across stimuli of different amounts of embedded motion. In contrast, we found that during periods of nonperception brain-activity states varied with the amount of motion signal embedded in the stimulus. Taken together, these results suggest that during perception the brain may lock into a stable state in which lower-level signals are suppressed.

  17. Crew activity and motion effects on the space station

    NASA Technical Reports Server (NTRS)

    Rochon, Brian V.; Scheer, Steven A.

    1987-01-01

    Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.

  18. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  19. Active motion and load control of floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jalili, Kaveh

    The research in this thesis is focused on stabilization and load reduction of floating offshore wind turbine (FOWT) structures for both the fore-aft (pitch) and side-to-side (roll) directions. Based on the Tuned Mass Damper (TMD) and Active Vane concepts recently proposed, two composite actuation schemes are investigated. The first scheme is to apply the horizontal vane and vertical vane to platform pitch and roll, respectively, resulting in the so-called Double Vane Actuation (DVA) scheme. The second scheme is the combination of the TMD based pitch control and active vertical vane based roll control, resulting in the so-called Hybrid Actuation (HA) scheme. Simulation results of DVA show great reductions of motions and loads in the fore-aft and side-to-side directions. Performance of HA is investigated by extensive simulations based on the IEC61400-3 standard and results show significant and consistent motions and loads reductions in both FA and SS directions.

  20. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  1. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    SciTech Connect

    Hall, Derek B.; Greger, Paul D.

    2014-08-01

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographing only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.

  2. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  3. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  4. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images

    NASA Astrophysics Data System (ADS)

    Siman, W.; Mawlawi, O. R.; Mikell, J. K.; Mourtada, F.; Kappadath, S. C.

    2017-01-01

    The aims of this study were to evaluate the effects of noise, motion blur, and motion compensation using quiescent-period gating (QPG) on the activity concentration (AC) distribution—quantified using the cumulative AC volume histogram (ACVH)—in count-limited studies such as 90Y-PET/CT. An International Electrotechnical Commission phantom filled with low 18F activity was used to simulate clinical 90Y-PET images. PET data were acquired using a GE-D690 when the phantom was static and subject to 1-4 cm periodic 1D motion. The static data were down-sampled into shorter durations to determine the effect of noise on ACVH. Motion-degraded PET data were sorted into multiple gates to assess the effect of motion and QPG on ACVH. Errors in ACVH at AC90 (minimum AC that covers 90% of the volume of interest (VOI)), AC80, and ACmean (average AC in the VOI) were characterized as a function of noise and amplitude before and after QPG. Scan-time reduction increased the apparent non-uniformity of sphere doses and the dispersion of ACVH. These effects were more pronounced in smaller spheres. Noise-related errors in ACVH at AC20 to AC70 were smaller (<15%) compared to the errors between AC80 to AC90 (>15%). The accuracy of ACmean was largely independent of the total count. Motion decreased the observed AC and skewed the ACVH toward lower values; the severity of this effect depended on motion amplitude and tumor diameter. The errors in AC20 to AC80 for the 17 mm sphere were  -25% and  -55% for motion amplitudes of 2 cm and 4 cm, respectively. With QPG, the errors in AC20 to AC80 of the 17 mm sphere were reduced to  -15% for motion amplitudes  <4 cm. For spheres with motion amplitude to diameter ratio  >0.5, QPG was effective at reducing errors in ACVH despite increases in image non-uniformity due to increased noise. ACVH is believed to be more relevant than mean or maximum AC to calculate tumor control and normal tissue complication probability

  5. Updates on AmeriFlux Network Data Activities

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Jackson, B.

    2011-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the central data repository for the AmeriFlux network. The currently available datasets include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update on this network database including the recent release of gap-filled meteorological records and progress in generating value-added high level products for the flux measurements. We will also discuss our plans in developing and producing other high-level products, such as uncertainty estimates for flux measurement and derivation of phenology from the available measurements at flux sites.

  6. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    PubMed

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  7. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux.

    PubMed

    Capati, Mark Luigi Fabian; Nakazono, Ayako; Igawa, Kazunari; Ookubo, Kensuke; Yamamoto, Yuya; Yanagiguchi, Kajirou; Kubo, Shisei; Yamada, Shizuka; Hayashi, Yoshihiko

    2016-12-01

    A low concentration of boron (B) accelerates the proliferation and differentiation of mammalian osteoblasts. The aim of this study was to investigate the effects of 0.1 mM of B on the membrane function of osteoblastic cells in vitro. Genes involved in cell activity were investigated using gene expression microarray analyses. The Ca(2+) influx and efflux were evaluated to demonstrate the activation of L-type Ca(2+) channel for the Ca(2+) influx, and that of Na(+)/K(+)-ATPase for the Ca(2+) efflux. A real-time PCR analysis revealed that the messenger RNA (mRNA) expression of four mineralization-related genes was clearly increased after 3 days of culture with a B-supplemented culture medium. Using microarray analyses, five genes involved in cell proliferation and differentiation were upregulated compared to the control group. Regarding the Ca(2+) influx, in the nifedipine-pretreated group, the relative fluorescence intensity for 1 min after adding B solution did not increase compared with that for 1 min before addition. In the control group, the relative fluorescence intensity was significantly increased compared with the experimental group (P < 0.05). Regarding the Ca(2+) efflux, in the experimental group cultured in 0.1 mM of B-supplemented medium, the relative fluorescence intensity for 10 min after ouabain treatment revealed a significantly lower slope value compared with the control group (P < 0.01). This is the first study to demonstrate the acceleration of Ca(2+) flux by B supplementation in osteoblastic cells. Cell membrane stability is related to the mechanism by which a very low concentration of B promotes the proliferation and differentiation of mammalian osteoblastic cells in vitro.

  8. AmeriFlux Network Data Activities: updates, progress and plans

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Song, X.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the long-term data repository for the AmeriFlux network. Datasets currently available include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update of this network database including a comprehensive review and evaluation of the biological data from about 70 sites, development of a new product for flux uncertainty estimates, and re-formatting of Level-2 standard files. In 2013, we also provided data support to two synthesis studies --- 2012 drought synthesis and FACE synthesis. Issues related to data quality and solutions in compiling datasets for these synthesis studies will be discussed. We will also present our work plans in developing and producing other high-level products, such as derivation of phenology from the available measurements at flux sites.

  9. Flux motion, proximity effect, and critical current density in YBa2Cu3O7-δ/silver composites

    NASA Astrophysics Data System (ADS)

    Jung, J.; Mohamed, M. A.-K.; Cheng, S. C.; Franck, J. P.

    1990-10-01

    We report on studies of magnetic and transport properties, as well as on characterization of defects in the pure YBa2Cu3O7-δ and the YBa2Cu3O7-δ/Ag(10 and 30 wt. %) composites. The studies of magnetic properties include the diamagnetic shielding, the Meissner effect, the trapped field [for both zero-field-cooling (ZFC) and field-cooling (FC) cases], and their dependence on applied magnetic field, temperature, and time. High- and low-magnetic-field hysteresis loops were measured and the intragrain ``magnetic'' critical current density was calculated. The studies of transport properties include the resistivity and intergrain ``transport'' critical-current-density measurements. Distribution, spacing, and size of intragrain twin boundaries were investigated. The results show the degradation of superconducting properties if silver is added to YBa2Cu3O7-δ during the sintering process, except the enhancement of the intergrain critical current density JCT in YBa2Cu3O7-δ/Ag(10 wt. %) composite. The activation energy for intergranular flux creep of 1.6 and ~0.3 eV was found for the pure YBa2Cu3O7-δ and the YBa2Cu3O7-δ/Ag composites, respectively. The results did not show any relationship between JCT, the activation energy, and the number of pinning centers (the trapped field) in these samples. It is suggested that the proximity junctions superconductor-normal-metal-superconductor built up by intergranular silver, and not flux pinning, are responsible for the increase of JCT. Defect characterization by transmission electron microscopy revealed that silver does not affect the structure of twin boundaries inside the grains of YBa2Cu3O7-δ.

  10. Variability of the Lyman alpha flux with solar activity

    SciTech Connect

    Lean, J.L.; Skumanich, A.

    1983-07-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10/sup 11/ photons/cm/sup 2//s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10/sup 11/ photons/cm/sup 2//s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error.

  11. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  12. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  13. Horizontal flow fields in and around a small active region. The transition period between flux emergence and decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns

  14. A triboelectric motion sensor in wearable body sensor network for human activity recognition.

    PubMed

    Hui Huang; Xian Li; Ye Sun

    2016-08-01

    The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.

  15. Chirality in microswimmer motion: From circle swimmers to active turbulence

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2016-11-01

    In this minireview, recent progress in our understanding of the basic physical principles of microswimmers which perform a motion characterized by chirality is summarized. We discuss both the chiral motion of a single circle swimmer and the occurrence of bacterial turbulence where swirls of different chirality are formed spontaneously in an interacting ensemble of linear microswimmers. Some recent highlights in this context as obtained by theory, simulation and experiment are summarized and briefly discussed.

  16. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  17. The effects of a single game of rugby on active cervical range of motion.

    PubMed

    Lark, Sally D; McCarthy, Peter W

    2009-03-01

    The cumulative effect of playing rugby over many years decreases active cervical range of motion, especially in the forwards. This in itself should influence long-term neck care; however, it leaves the important question of how noticeable the acute effects of active cervical range of motion are following a single game. The active cervical range of motion was measured in 21 elite rugby players (mean age 24.4 +/- 4.3 years; average professional career of 7 +/- 3.4 years) before and after a single game of rugby at the start of the season. The active cervical range of motion was recorded in flexion, extension, left and right side flexion, plus left and right rotation using a cervical range of motion device. The results show generally decreased active cervical range of motion from before to after a game independent of position played. Rugby backs had significantly (P < 0.05) reduced active cervical range of motion in flexion, while forwards were affected in extension and left lateral flexion (P < 0.05). These results highlight that a single game of rugby can reduce functional capacity of the neck (active cervical range of motion), and the affected neck movement appears to be related to the role of positional play. The authors suggest that neck training and muscle damage repair should be an important part of a rugby player's post-game recovery to limit the reduction in functional capacity.

  18. Obesity effect on male active joint range of motion.

    PubMed

    Park, Woojin; Ramachandran, Jaiganesh; Weisman, Paul; Jung, Eui S

    2010-01-01

    Despite the prevalence of obesity, how obesity affects human physical capabilities is not well documented. As an effort toward addressing this, the current study investigated the obesity effect on joint range of motion (RoM) based on data collected from 20 obese and 20 non-obese males. In total, 30 inter-segmental motions occurring at the shoulder, elbow, knee and ankle joints and lumbar and cervical spine areas were examined. The obesity effect was found to be non-uniform across the joint motions. Obesity significantly reduced RoM for nine of the 30 motions: shoulder extensions and adductions, lumbar spine extension and lateral flexions and knee flexions. The largest significant RoM reduction was 38.9% for the left shoulder adduction. The smallest was 11.1% for the right knee flexion. The obesity-associated RoM reductions appear to be mainly due to the mechanical interposition and obstruction of inter-segmental motions caused by excess fat in the obese body. STATEMENT OF RELEVANCE: Currently, obesity is prevalent worldwide and its prevalence is expected to increase continually in the near future. This study empirically characterised the obesity effects on joint RoM to provide better understanding of the physical capabilities of the obese. The study findings will facilitate designing man-artefact systems that accommodate obese individuals.

  19. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  20. Postural activity and motion sickness during video game play in children and adults.

    PubMed

    Chang, Chih-Hui; Pan, Wu-Wen; Tseng, Li-Ya; Stoffregen, Thomas A

    2012-03-01

    Research has confirmed that console video games give rise to motion sickness in many adults. During exposure to console video games, there are differences in postural activity (movement of the head and torso) between participants who later experience motion sickness and those who do not, confirming a prediction of the postural instability theory of motion sickness. Previous research has not addressed relations between video games, movement and motion sickness in children. We evaluated the nauseogenic properties of a commercially available console video game in both adults and 10-year-old children. Individuals played the game for up to 50 min and were instructed to discontinue immediately if they experienced any symptoms of motion sickness, however mild. During game play, we monitored movement of the head and torso. Motion sickness was reported by 67% of adults and by 56% of children; these rates did not differ. As a group, children moved more than adults. Across age groups, the positional variability of the head and torso increased over time during game play. In addition, we found differences in movement between participants who later reported motion sickness and those who did not. Some of these differences were general across age groups but we also found significant differences between the movement of adults and children who later reported motion sickness. The results confirm that console video games can induce motion sickness in children and demonstrate that changes in postural activity precede the onset of subjective symptoms of motion sickness in children.

  1. Effective temperature and spontaneous collective motion of active matter

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter

    2012-02-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative temperature system in which beautiful structures form resembling the asters seen in cell division.

  2. STUDY OF THE POYNTING FLUX IN ACTIVE REGION 10930 USING DATA-DRIVEN MAGNETOHYDRODYNAMIC SIMULATION

    SciTech Connect

    Fan, Y. L.; Wang, H. N.; He, H.; Zhu, X. S.

    2011-08-10

    Powerful solar flares are closely related to the evolution of magnetic field configuration on the photosphere. We choose the Poynting flux as a parameter in the study of magnetic field changes. We use time-dependent multidimensional MHD simulations around a flare occurrence to generate the results, with the temporal variation of the bottom boundary conditions being deduced from the projected normal characteristic method. By this method, the photospheric magnetogram could be incorporated self-consistently as the bottom condition of data-driven simulations. The model is first applied to a simulation datum produced by an emerging magnetic flux rope as a test case. Then, the model is used to study NOAA AR 10930, which has an X3.4 flare, the data of which has been obtained by the Hinode/Solar Optical Telescope on 2006 December 13. We compute the magnitude of Poynting flux (S{sub total}), radial Poynting flux (S{sub z} ), a proxy for ideal radial Poynting flux (S{sub proxy}), Poynting flux due to plasma surface motion (S{sub sur}), and Poynting flux due to plasma emergence (S{sub emg}) and analyze their extensive properties in four selected areas: the whole sunspot, the positive sunspot, the negative sunspot, and the strong-field polarity inversion line (SPIL) area. It is found that (1) the S{sub total}, S{sub z} , and S{sub proxy} parameters show similar behaviors in the whole sunspot area and in the negative sunspot area. The evolutions of these three parameters in the positive area and the SPIL area are more volatile because of the effect of sunspot rotation and flux emergence. (2) The evolution of S{sub sur} is largely influenced by the process of sunspot rotation, especially in the positive sunspot. The evolution of S{sub emg} is greatly affected by flux emergence, especially in the SPIL area.

  3. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles.

    PubMed

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-09-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles.

  4. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles

    PubMed Central

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-01-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles. PMID:26504295

  5. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  6. Enzymatically active high-flux selectively gas-permeable membranes

    SciTech Connect

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  7. Marker-less reconstruction of dense 4-D surface motion fields using active laser triangulation for respiratory motion management.

    PubMed

    Bauer, Sebastian; Berkels, Benjamin; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim; Rumpf, Martin

    2012-01-01

    To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of +/- 0.22 mm w.r.t. ground truth data.

  8. Photothermally Activated Motion and Ignition Using Aluminum Nanoparticles

    DTIC Science & Technology

    2013-01-17

    In comparison with alternative sources such as spark ignition,19 laser igni- tion,20 plasma ignition,21 plasma -assisted combustion,22 and combustion...energy-dispersive X-ray spectroscopy measurements of motion-only and afterignition products confirm significant Al oxidation occurs through sintering ...significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The

  9. Sunspots motions in the 22^nd cycle of activity

    NASA Astrophysics Data System (ADS)

    Tomic, A. S.; Vince, I.

    2006-08-01

    We handled approximately 30 000 rows with data for 5744 sunspots, obtained on Debrecen Heliophysical Observatory, for years 1986-1989 and 1993-1995. By method of last squares we solved for each spot inverse relations between time of observation, angular distance from central meridian and latitude. On this way were obtained mean equatorial and mean meridional motion, giving parameters of rotation for 90 latitude zones width of one degree. The averaged sideral equatorial angular speed of rotation: omega = 2.91+/-0.01[micro rad/ day], and: A = -0.65+/-0/01 [micro rad/day] were obtained. Solving second inverse problem - Busso's equation, were derived characteristic equatorial periods for different latitudes, from sunspots meridional motion. We obtained values between 32 day on the pole, and 400 years for latitude 2.5 degree. Also, covariance of spot motions along equator and meridian is calculated for all 5744 spots in 90 degree of latitude, which fully confirmed Ward's model of angular moment transport.

  10. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  11. Comparison of flux motion in type-II superconductors including pinning centers with the shapes of nano-rods and nano-particles by using 3D-TDGL simulation

    NASA Astrophysics Data System (ADS)

    Ito, Shintaro; Ichino, Yusuke; Yoshida, Yutaka

    2015-11-01

    Time-dependent Ginzburg-Landau (TDGL) equations are very useful method for simulation of the motion of flux quanta in type-II superconductors. We constructed the 3D-TDGL simulator and succeeded to simulate the motion of flux quanta in 3-dimension. We carried out the 3D-TDGL simulation to compare two superconductors which included only pinning centers with the shape of nano-rods and only nano-particle-like pinning centers in the viewpoint of the flux motion. As a result, a motion of "single-kink" caused the whole motion of a flux quantum in the superconductor including only the nano-rods. On the other hand, in the superconductor including the nano-particles, the flux quanta were pinned by the nano-particles in the various magnetic field applied angles. As the result, no "single-kink" occurred in the superconductor including the nano-particles. Therefore, the nano-particle-like pinning centers are effective shape to trap flux quanta for various magnetic field applied angles.

  12. Magnetic Flux Transport and the Long-term Evolution of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  13. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  14. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  15. Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA

    NASA Astrophysics Data System (ADS)

    Lewis, A.; Hilley, G. E.; Lewicki, J. L.

    2015-09-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the structure-from-motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 °C and 450 W m- 2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  16. Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbO x film growth

    NASA Astrophysics Data System (ADS)

    Franz, Robert; Clavero, César; Kolbeck, Jonathan; Anders, André

    2016-02-01

    The ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in +\\mathbf{E}× \\mathbf{B} than in -\\mathbf{E}× \\mathbf{B} direction, thus confirming the notion that ionisation zones (also known as spokes or plasma bunches) are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. Nb{{\\text{O}}x} thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate the observed plasma properties to the film growth conditions. The chemical composition and the film thickness varied with changing deposition angle, where the latter, similar to the ion fluxes, was higher in +\\mathbf{E}× \\mathbf{B} than in -\\mathbf{E}× \\mathbf{B} direction.

  17. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    USGS Publications Warehouse

    Aaron Lewis,; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  18. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  19. Characterization of Beta-leptinotarsin-h and the Effects of Calcium Flux Antagonists on its Activity

    DTIC Science & Technology

    2007-11-02

    observation eliminated non-selective cation channels such as nicotinic, glutamatergic, purinergic P2X, and serotoni- nergic 5 - HT3 ligand-operated Ca 2C...Characterization of b-leptinotarsin-h and the effects of calcium flux antagonists on its activity Richard D. Croslanda,*, Richard W. Fitchb,1, Harry...presynaptic nerve terminals. We tested antagonists of Ca2C flux for their effects on b-leptinotarsin-h-stimulated Ca2C uptake in rat brain synaptosomes

  20. Flux rope proxies and fan-spine structures in active region NOAA 11897

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Zhang, J.

    2016-08-01

    Context. Flux ropes are composed of twisted magnetic fields and are closely connected with coronal mass ejections. The fan-spine magnetic topology is another type of complex magnetic fields. It has been reported by several authors, and is believed to be associated with null-point-type magnetic reconnection. Aims: We try to determine the number of flux rope proxies and reveal fan-spine structures in the complex active region (AR) NOAA 11897. Methods: Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigated flux rope proxies in NOAA AR 11897 from 14 November 2013 to 19 November 2013 and display two fan-spine structures in this AR. Results: For the first time, we detect flux rope proxies of NOAA 11897 for a total of 30 times in four different locations during this AR's transference from solar east to west on the disk. Moreover, we notice that these flux rope proxies were tracked by active or eruptive material of filaments 12 times, while for the remaining 18 times they appeared as brightenings in the corona. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. None of these flux rope proxies was observed to erupt; they faded away gradually. In addition to these flux rope proxies, we detect for the first time a secondary fan-spine structure. It was covered by dome-shaped magnetic fields that belong to a larger fan-spine topology. Conclusions: These new observations imply that many flux ropes can exist in an AR and that the complexity of AR magnetic configurations is far beyond our imagination. Movies 1-8 are available in electronic form at http://www.aanda.org

  1. Move with Science: Energy, Force, & Motion. An Activities-Based Teacher's Guide.

    ERIC Educational Resources Information Center

    Beven, Roy Q.

    The secondary school level activities contained in this book use the subject of transportation to teach the basic concepts of physics and several areas of human biology. The material is organized into sections including curriculum design, activities, background readings, and resources. Activities focus on such topics as notions of motion stability…

  2. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  3. Student expectations in a group learning activity on harmonic motion

    NASA Astrophysics Data System (ADS)

    Kaczynski, Adam; Wittmann, Michael C.

    2013-01-01

    Students in a sophomore-level mechanics course participated in a new group learning activity that was intended to support model-building and finding coherence between multiple representations in the context of an underdamped harmonic system. Not all of the student groups framed the activity in the same way, and many attempted tasks that existed outside of the prompts of the activity. For one group, this meant that instead of providing a rich verbal description, they framed the activity as finding a mathematical expression.

  4. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness.

  5. Improved thrust calculations of active magnetic bearings considering fringing flux

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Kwan-Ho; Ko, Kyoung-Jin; Choi, Ji-Hwan; Sung, So-Young; Lee, Yong-Bok

    2012-04-01

    A methodology for deriving fringing permeance in axisymmetric devices such as active thrust magnetic bearings (ATMBs) is presented. The methodology is used to develop an improved equivalent magnetic circuit (EMC) for ATMBs, which considers the fringing effect. This EMC was used to characterize the force between the housing and mover and the dependence of thrust and inductance on the air gap and input current, respectively. These characteristics were validated by comparison with those obtained by the finite element method and in experiments.

  6. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  7. Classification of upper limb motions from around-shoulder muscle activities: hand biofeedback.

    PubMed

    González, Jose; Horiuchi, Yuse; Yu, Wenwei

    2010-05-28

    Mining information from EMG signals to detect complex motion intention has attracted growing research attention, especially for upper-limb prosthetic hand applications. In most of the studies, recordings of forearm muscle activities were used as the signal sources, from which the intention of wrist and hand motions were detected using pattern recognition technology. However, most daily-life upper limb activities need coordination of the shoulder-arm-hand complex, therefore, relying only on the local information to recognize the body coordinated motion has many disadvantages because natural continuous arm-hand motions can't be realized. Also, achieving a dynamical coupling between the user and the prosthesis will not be possible. This study objective was to investigate whether it is possible to associate the around-shoulder muscles' Electromyogram (EMG) activities with the different hand grips and arm directions movements. Experiments were conducted to record the EMG of different arm and hand motions and the data were analyzed to decide the contribution of each sensor, in order to distinguish the arm-hand motions as a function of the reaching time. Results showed that it is possible to differentiate hand grips and arm position while doing a reaching and grasping task. Also, these results are of great importance as one step to achieve a close loop dynamical coupling between the user and the prosthesis.

  8. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  9. Design of a continuous passive and active motion device for hand rehabilitation.

    PubMed

    Birch, B; Haslam, E; Heerah, I; Dechev, N; Park, E J

    2008-01-01

    This paper presents the design of a novel, portable device for hand rehabilitation. The device provides for CPM (continuous passive motion) and CAM (continuous active motion) hand rehabilitation for patients recovering from damage such as flexor tendon repair and strokes. The device is capable of flexing/extending the MCP (metacarpophalangeal) and PIP (proximal interphalangeal) joints through a range of motion of 0 degrees to 90 degrees for both the joints independently. In this way, typical hand rehabilitation motions such as intrinsic plus, intrinsic minus, and a fist can be achieved without the need of any splints or attachments. The CPM mode is broken into two subgroups. The first mode is the use of preset waypoints for the device to cycle through. The second mode involves motion from a starting position to a final position, but senses the torque from the user during the cycle. Therefore the user can control the ROM by resisting when they are at the end of the desired motion. During the CPM modes the device utilizes a minimum jerk trajectory model under PD control, moving smoothly and accurately between preselected positions. CAM is the final mode where the device will actively resist the movement of the user. The user moves from a start to end position while the device produces a torque to resist the motion. This active resistance motion is a unique ability designed to mimic the benefits of a human therapist. Another unique feature of the device is its ability to independently act on both the MCP and PIP joints. The feedback sensing built into the device makes it capable of offering a wide and flexible range of rehabilitation programs for the hand.

  10. Effects of eating on vection-induced motion sickness, cardiac vagal tone, and gastric myoelectric activity

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, S. H.; Stern, R. M.; Koch, K. L.

    1992-01-01

    This study investigated the effect of food ingestion on motion sickness severity and its physiological mechanisms. Forty-six fasted subjects were assigned either to a meal group or to a no-meal group. Electrogastrographic (EGG) indices (normal 3 cpm activity and abnormal 4-9 cpm tachyarrhythmia) and respiratory sinus arrhythmia (RSA) were measured before and after a meal and during a subsequent exposure to a rotating drum in which illusory self-motion was induced. The results indicated that food intake enhanced cardiac parasympathetic tone (RSA) and increased gastric 3 cpm activity. Postprandial effects on motion sickness severity remain equivocal due to group differences in RSA baseline levels. During drum rotation, dysrhythmic activity of the stomach (tachyarrhythmia) and vagal withdrawal were observed. Furthermore, high levels of vagal tone prior to drum rotation predicted a low incidence of motion sickness symptoms, and were associated positively with gastric 3 cpm activity and negatively with tachyarrhythmia. These data suggest that enhanced levels of parasympathetic activity can alleviate motion sickness symptoms by suppressing, in part, its dysrhythmic gastric underpinnings.

  11. Shuttle program. Solar activity prediction of sunspot numbers, predicted solar radio flux

    NASA Technical Reports Server (NTRS)

    Johnson, G. G.; Newman, S. R.

    1980-01-01

    A solar activity prediction technique for monthly mean sunspot numbers over a period of approximately ten years from February 1979 to January 1989 is presented. This includes the predicted maximum epoch of solar cycle 21, approximately January 1980, and the predicted minimum epoch of solar cycle 22, approximately March 1987. Additionally, the solar radio flux 10.7 centimeter smooth values are included for the same time frame using a smooth 13 month empirical relationship. The incentive for predicting solar activity values is the requirement of solar flux data as input to upper atmosphere density models utilized in mission planning satellite orbital lifetime studies.

  12. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  13. Your Students Can Be Rocket Scientists! A Galaxy of Great Activities about Astronauts, Gravity, and Motion.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1994-01-01

    Presents activities for a springtime Space Day that can teach students about astronauts, gravity, and motion. Activities include creating a paper bag spacecraft to study liftoff and having students simulate gravity's effects by walking in various manners and recording pulse rates. A list of resources is included. (SM)

  14. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  15. Morphometrical investigations on the reproductive activity of the ovaries in rats subjected to immobilization and to motion activity

    NASA Technical Reports Server (NTRS)

    Konstantinov, N.; Cheresharov, L.; Toshkova, S.

    1982-01-01

    Wistar-strain white female rats were divided into three groups, with the first group subjected to motion loading, the second used as control, and the third group was immobilized. A considerable reduction in numbers of corpora lutea was observed in the immobilized group, together with smaller numbers of embryos, high percent of embryo mortality, fetal growth retardation, and endometrium disorders. The control group showed no deviation from normal conditions, and there was slight improvement in reproductive activity of animals under motion loading.

  16. Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity

    SciTech Connect

    Snoep, J.L. |; Arfman, N.; Yomano, L.P.; Ingram, L.O.; Westerhoff, H.V.; Conway, T.

    1996-07-20

    Alycolytic genes in Zymomonas mobilis are highly expressed and constitute half of the cytoplasmic protein. The first four genes (glf, zwf, edd, glk) in this pathway form an operon encoding a glucose permease, glucose 6-phosphate dehydrogenase (G6-P dehydrogenase), 6-phosphogluconate dehydratase, and glucokinase, respectively. Each gene was overexpressed from a tac promoter to investigate the control of glycolysis during the early stages of batch fermentation when flux (qCO{sub 2}) is highest. Almost half of flux control appears to reside with G6-P dehydrogenase (C{sub G6-P dehydrogenase}{sup J} = 0.4). Although Z. mobilis exhibits one of the highest rates of glycolysis known, recombinants with elevated G6-P dehydrogenase had a 10% to 13% higher glycolytic flux than the native organism. A small increase in flux was also observed for recombinants expressing glf. Results obtained did not allow a critical evaluation of glucokinase and this enzyme may also represent an important control point. 6-Phosphogluconate dehydratase appears to be saturating at native levels. With constructs containing the full operon, growth rate and flux were both reduced, complicating interpretations. However, results obtained were also consistent with G6-P dehydrogenase as a primary site of control. Flux was 17% higher in operon constructs which exhibited a 17% increase in G6-P dehydrogenase specific activity, relative to the average of other operon constructs which contain a frameshift mutation in zwf.

  17. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  18. AGLITE: a multi-wavelength lidar for measuring emitted aerosol concentrations and fluxes and air motion from agricultural facilities

    NASA Astrophysics Data System (ADS)

    Wilkerson, Thomas D.; Bingham, Gail E.; Zavyalov, Vladimir V.; Swasey, Jason A.; Hancock, Jed J.; Crowther, Blake G.; Cornelsen, Scott S.; Marchant, Christian; Cutts, James N.; Huish, David C.; Earl, Curtis L.; Andersen, Jan M.; Cox, McLain L.

    2006-12-01

    AGLITE is a multi-wavelength lidar developed for the Agricultural Research Service (ARS), United States Department of Agriculture (USDA) and its program on particle emissions from animal production facilities. The lidar transmitter is a 10 kHz pulsed NdYAG laser at 355, 532 and 1064 nm. We analyze lidar backscatter and extinction to extract aerosol physical properties. All-reflective optics and dichroic and interferometric filters permit all wavelengths to be measured simultaneously, day or night, using photon counting by MTs, an APD, and fast data acquisition. The lidar housing is a transportable trailer suitable for all-weather operation at any accessible site. We direct the laser and telescope FOVs to targets of interest in both azimuth and elevation. The lidar has been applied in atmospheric studies at a swine production farm in Iowa and a dairy in Utah. Prominent aerosol plumes emitted from the swine facility were measured as functions of temperature, turbulence, stability and the animal feed cycle. Particle samplers and turbulence detectors were used by colleagues specializing in those fields. Lidar measurements also focused on air motion as seen by scans of the farm volume. The value of multi-wavelength, eye-safe lidars for agricultural aerosol measurements has been confirmed by the successful operation of AGLITE.

  19. A novel heat flux study of a geothermally active lake - Lake Rotomahana, New Zealand

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; de Ronde, Cornel E. J.; Tontini, Fabio Caratori; Walker, Sharon L.; Fornari, Daniel J.

    2016-03-01

    A new technique for measuring conductive heat flux in a lake was adapted from the marine environment to allow for multiple measurements to be made in areas where bottom sediment cover is sparse, or even absent. This thermal blanket technique, pioneered in the deep ocean for use in volcanic mid-ocean rift environments, was recently used in the geothermally active Lake Rotomahana, New Zealand. Heat flow from the lake floor propagates into the 0.5 m diameter blanket and establishes a thermal gradient across the known blanket thickness and thereby provides an estimate of the conductive heat flux of the underlying terrain. This approach allows conductive heat flux to be measured over a spatially dense set of stations in a relatively short period of time. We used 10 blankets and deployed them for 1 day each to complete 110 stations over an 11-day program in the 6 × 3 km lake. Results show that Lake Rotomahana has a total conductive heat flux of about 47 MW averaging 6 W/m2 over the geothermally active lake. The western half of the lake has two main areas of high heat flux; 1) a high heat flux area averaging 21.3 W/m2 along the western shoreline, which is likely the location of the pre-existing geothermal system that fed the famous Pink Terraces, mostly destroyed during the 1886 eruption 2) a region southwest of Patiti Island with a heat flux averaging 13.1 W/m2 that appears to be related to the explosive rift that formed the lake in the 1886 Tarawera eruption. A small rise in bottom water temperature over the survey period of 0.01 °C/day suggests the total thermal output of the lake is ~ 112-132 MW and when compared to the conductive heat output suggests that 18-42% of the total thermal energy is by conductive heat transfer.

  20. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow

    PubMed Central

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  1. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow.

    PubMed

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity.

  2. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  3. Active experiments and single ion motion in the magnetotail

    NASA Astrophysics Data System (ADS)

    Rothwell, P. L.; Yates, G. K.

    1983-07-01

    Analytic solutions to the Lorentz equation which indicate that the magnetic field in the plasma sheet focuses selected ions from the plasma sheet boundaries on the neutral sheet are obtained. The kinetic energy of these ions usually exceeds the threshold energy required for the ion tearing mode instability. Two active experiments based on this effect are proposed. Heavy ions injected towards dusk on the plasma sheet boundary would become focused on the neutral sheet and perhaps trigger the ion tearing mode. A boundary perturbation, such as a thermal chemical release, that locally enhances the boundary turbulence level could be introduced, causing sufficient ksq = 1 ions to be focused on the neutral sheet to trigger the ion tearing mode.

  4. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  5. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation

    PubMed Central

    Kim, Sung-Wook; Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin M.D.; Lee, You-Jin; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Niacin, also known as vitamin B3 or nicotinamide is a water-soluble vitamin that is present in black beans and rice among other foods. Niacin is well known as an inhibitor of metastasis in human breast carcinoma cells but the effect of niacin treatment on TRAIL-mediated apoptosis is unknown. Here, we show that niacin plays an important role in the regulation of autophagic flux and protects tumor cells against TRAIL-mediated apoptosis. Our results indicated that niacin activated autophagic flux in human colon cancer cells and the autophagic flux activation protected tumor cells from TRAIL-induced dysfunction of mitochondrial membrane potential and tumor cell death. We also demonstrated that ATG5 siRNA and autophagy inhibitor blocked the niacin-mediated inhibition of TRAIL-induced apoptosis. Taken together, our study is the first report demonstrating that niacin inhibits TRAIL-induced apoptosis through activation of autophagic flux in human colon cancer cells. And our results also suggest that autophagy inhibitors including genetic and pharmacological tools may be a successful therapeutics during anticancer therapy using TRAIL. PMID:26517672

  6. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  7. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2016-03-24

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2-30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available.

  8. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2016-01-01

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2–30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available. PMID:27023543

  9. Parkinson-Related Changes of Activation in Visuomotor Brain Regions during Perceived Forward Self-Motion

    PubMed Central

    van der Hoorn, Anouk; Renken, Remco J.; Leenders, Klaus L.; de Jong, Bauke M.

    2014-01-01

    Radial expanding optic flow is a visual consequence of forward locomotion. Presented on screen, it generates illusionary forward self-motion, pointing at a close vision-gait interrelation. As particularly parkinsonian gait is vulnerable to external stimuli, effects of optic flow on motor-related cerebral circuitry were explored with functional magnetic resonance imaging in healthy controls (HC) and patients with Parkinson’s disease (PD). Fifteen HC and 22 PD patients, of which 7 experienced freezing of gait (FOG), watched wide-field flow, interruptions by narrowing or deceleration and equivalent control conditions with static dots. Statistical parametric mapping revealed that wide-field flow interruption evoked activation of the (pre-)supplementary motor area (SMA) in HC, which was decreased in PD. During wide-field flow, dorsal occipito-parietal activations were reduced in PD relative to HC, with stronger functional connectivity between right visual motion area V5, pre-SMA and cerebellum (in PD without FOG). Non-specific ‘changes’ in stimulus patterns activated dorsolateral fronto-parietal regions and the fusiform gyrus. This attention-associated network was stronger activated in HC than in PD. PD patients thus appeared compromised in recruiting medial frontal regions facilitating internally generated virtual locomotion when visual motion support falls away. Reduced dorsal visual and parietal activations during wide-field optic flow in PD were explained by impaired feedforward visual and visuomotor processing within a magnocellular (visual motion) functional chain. Compensation of impaired feedforward processing by distant fronto-cerebellar circuitry in PD is consistent with motor responses to visual motion stimuli being either too strong or too weak. The ‘change’-related activations pointed at covert (stimulus-driven) attention. PMID:24755754

  10. Generalized analysis of thermally activated domain-wall motion in Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Emori, Satoru; Umachi, Chinedum K.; Bono, David C.; Beach, Geoffrey S. D.

    2015-03-01

    Thermally activated domain-wall (DW) motion driven by magnetic field and electric current is investigated experimentally in out-of-plane magnetized Pt(Co/Pt)3 multilayers. We directly extract the thermal activation energy barrier for DW motion and observe the dynamic regimes of creep, depinning, and viscous flow. Further analysis reveals that the activation energy must be corrected with a factor dependent on the Curie temperature, and we derive a generalized Arrhenius-like equation governing thermally activated motion. By using this generalized equation, we quantify the efficiency of current-induced spin torque in assisting DW motion. Current produces no effect aside from Joule heating in the multilayer with 7-Å thick Co layers, whereas it generates a finite spin torque on DWs in the multilayer with atomically thin 3-Å Co layers. These findings suggest that conventional spin-transfer torques from in-plane spin-polarized current do not drive DWs in ultrathin Co/Pt multilayers.

  11. The study of variations of low energy cosmic helium's flux (up to 6 MeV) due to solar activity

    NASA Astrophysics Data System (ADS)

    Shayan, M.; Davoudifar, P.; Bagheri, Z.

    2017-04-01

    In General, the flux of low energy cosmic rays varies with time due to solar activities. The cosmic particle fluxes were studied using data of satellites near the Earth. In this work, first we studied the variations of particle fluxes from 1 Jan to 31 Dec 2000 and 35 events were selected. Then we proposed a relation for cosmic particle flux as a function of time and rigidity in the time of approaching ejecta to the Earth. The coefficients of the relation were calculated using experimental data of particle fluxes from ACE satellite. Finally, we compare time variations of these coefficients for different events.

  12. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (less than 0.814 MeV). The "best fit" values derived from these observations suggest an average daily production rate of about 0.485 Ar-37 atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, some researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with various markers of the solar cycle (e.g., sunspot number, the Ap index, etc.). In this paper, using the larger "standard data set," the issue of correlative behavior between solar electron neutrino flux and solar activity is re-examined. The results presented here clearly indicate that no statistically significant association exists between any of the usual markers of solar activity and the solar electron neutrino flux.

  13. Evaluation of CETP activity in vivo under non-steady-state conditions: influence of anacetrapib on HDL-TG flux[S

    PubMed Central

    McLaren, David G.; Previs, Stephen F.; Phair, Robert D.; Stout, Steven J.; Xie, Dan; Chen, Ying; Salituro, Gino M.; Xu, Suoyu S.; Castro-Perez, Jose M.; Opiteck, Gregory J.; Akinsanya, Karen O.; Cleary, Michele A.; Dansky, Hayes M.; Johns, Douglas G.; Roddy, Thomas P.

    2016-01-01

    Studies in lipoprotein kinetics almost exclusively rely on steady-state approaches to modeling. Herein, we have used a non-steady-state experimental design to examine the role of cholesteryl ester transfer protein (CETP) in mediating HDL-TG flux in vivo in rhesus macaques, and therefore, we developed an alternative strategy to model the data. Two isotopomers ([2H11] and [13C18]) of oleic acid were administered (orally and intravenously, respectively) to serve as precursors for labeling TGs in apoB-containing lipoproteins. The flux of a specific TG (52:2) from these donor lipoproteins to HDL was used as the measure of CETP activity; calculations are also presented to estimate total HDL-TG flux. Based on our data, we estimate that the peak total postprandial TG flux to HDL via CETP is ∼13 mg·h−1·kg−1 and show that this transfer was inhibited by 97% following anacetrapib treatment. Collectively, these data demonstrate that HDL TG flux can be used as a measure of CETP activity in vivo. The fact that the donor lipoproteins can be labeled in situ using well-established stable isotope tracer techniques suggests ways to measure this activity for native lipoproteins in free-living subjects under any physiological conditions. PMID:26658238

  14. Relationship between the photospheric Poynting flux and the active region luminosity

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Canfield, Richard C.; Fisher, George H.; Hudson, Hugh S.; Welsch, Brian

    2014-06-01

    How does energy radiated by active regions compare with magnetic energy that propagates lower across the photosphere? This is a fundamental question for energy storage and release in active regions, yet it is presently poorly understood. In this work we quantify and compare both energy terms using SDO observations of the active region (AR) 11520. To quantify the magnetic energy crossing the photosphere, or the Poynting flux, we need to know both the magnetic field vector B and electric field vector E as well. Our current electric field inversion technique, PDFI, combines the Poloidal-Toroidal-Decomposition method with information from Doppler measurements, Fourier local correlation tracking (FLCT) results, and the ideal MHD constraint, to determine the electric field from vector magnetic field and Doppler data. We apply the PDFI method to a sequence of Helioseismic and Magnetic Imager (HMI/SDO) vector magnetogram data, to find the electric-field and hence the Poynting-flux evolution in AR 11520. We find that most of the magnetic energy in this AR is injected in the range of $10^7$ to $10^8$ $ergs/{cm^2 s}$, with the largest fluxes reaching $10^{10}$ $ergs/{cm^2 s}$. Integrating over the active region this yields a total energy of order $10^{28}$ ergs/s. To quantify the active region luminosity, we use EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA) spectrally resolved observations. We find the active region luminosity of order $10^{28}$ ergs/s. We compare derived magnetic and radiated energy fluxes on different temporal and spatial scales and estimate their uncertainties. We also discuss the roles that potential/non-potential and emerging/shearing terms play in the total magnetic energy budget.

  15. Prospective Real-Time Correction for Arbitrary Head Motion Using Active Markers

    PubMed Central

    Ooi, Melvyn B.; Krueger, Sascha; Thomas, William J.; Swaminathan, Srirama V.; Brown, Truman R.

    2011-01-01

    Patient motion during an MRI exam can result in major degradation of image quality, and is of increasing concern due to the aging population and its associated diseases. This work presents a general strategy for real-time, intra-image compensation of rigid-body motion that is compatible with multiple imaging sequences. Image quality improvements are established for structural brain MRI acquired during volunteer motion. A headband integrated with three active markers is secured to the forehead. Prospective correction is achieved by interleaving a rapid track-and-update module into the imaging sequence. For every repetition of this module, a short tracking pulse-sequence re-measures the marker positions; during head motion, the rigid-body transformation that realigns the markers to their initial positions is fed back to adaptively update the image-plane – maintaining it at a fixed orientation relative to the head – before the next imaging segment of k-space is acquired. In cases of extreme motion, corrupted lines of k-space are rejected and re-acquired with the updated geometry. High precision tracking measurements (0.01 mm) and corrections are accomplished in a temporal resolution (37 ms) suitable for real-time application. The correction package requires minimal additional hardware and is fully integrated into the standard user interface, promoting transferability to clinical practice. PMID:19488989

  16. Population variability in the Active Brownian Particle model of Daphnia motions

    NASA Astrophysics Data System (ADS)

    Moss, Frank; Erdmann, Udo; Schimansky-Geier, Lutz; Ordmann, Anke

    2004-03-01

    Three characteristic motions of foraging biological agents are predicted by the Active Brownian Particle model [1]. These are random motions about the minimum of a central attracting potential, a bifurcation to bidirectional circular motions about the axis of symmetry of the potential, and a transition to vortex motion. All three can be observed in swarms of the zooplankton Daphnia swimming in light fields. Here we focus on the bidirectional circular motions in 2-D space [1]. The mean radii, as well as other characteristics of the paths, are determined by three strength parameters appropriate to individual Daphnia: energy uptake from the medium, metabolistic drain, and dissipation due to movement. It is shown that individual variability can be represented by distributions of these strength parameters. Conditions for which the experimental data are best described by the model are discussed. [1] U. Erdmann, W. Ebeling and V. S. Anishchenko, Excitation of rotational modes in two-dimensional systems of driven Brownian particles. Phys. Rev. E 65, 061106 (2002)

  17. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  18. Numerical simulations of active region scale flux emergence: From spot formation to decay

    SciTech Connect

    Rempel, M.; Cheung, M. C. M.

    2014-04-20

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 10{sup 22} Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  19. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  20. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  1. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration

  2. Analysis of the Flux Growth Rate in Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Abramenko, V. I.; Kutsenko, A. S.; Tikhonova, O. I.; Yurchyshyn, V. B.

    2017-04-01

    We studied the emergence process of 42 active regions (ARs) by analyzing the time derivative, R(t), of the total unsigned flux. Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) were used. A continuous piecewise linear fitting to the R(t)-profile was applied to detect an interval, Δ t2, of nearly constant R(t) covering one or several local maxima. The magnitude of R(t) averaged over Δ t2 was accepted as an estimate of the maximum value of the flux growth rate, R_{MAX}, which varies in a range of (0.5 - 5)×10^{20} Mx hour^{-1} for ARs with a maximum total unsigned flux of (0.5 - 3)× 10^{22} Mx. The normalized flux growth rate, RN, was defined under the assumption that the saturated total unsigned flux, F_{MAX}, equals unity. Out of 42 ARs in our initial list, 36 events were successfully fitted, and they form two subsets (with a small overlap of eight events): the ARs with a short (<13 hours) interval Δ t2 and a high (>0.024 hour^{-1}) normalized flux emergence rate, RN, form the "rapid" emergence event subset. The second subset consists of "gradual" emergence events, and it is characterized by a long (>13 hours) interval Δ t2 and a low RN (<0.024 hour^{-1}). In diagrams of R_{MAX} plotted versus F_{MAX}, the events from different subsets do not overlap, and each subset displays an individual power law. The power-law index derived from the entire ensemble of 36 events is 0.69 ± 0.10. The rapid emergence is consistent with a two-step emergence process of a single twisted flux tube. The gradual emergence is possibly related to a consecutive rising of several flux tubes emerging at nearly the same location in the photosphere.

  3. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  4. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  5. Galactic cosmic ray flux in the mid of 1700 from 44Ti activity of Agen meteorite

    NASA Astrophysics Data System (ADS)

    Taricco, Carla; Sinha, Neeharika; Bhandari, Narendra; Colombetti, Paolo; Mancuso, Salvatore; Rubinetti, Sara; Barghini, Dario

    2016-04-01

    Cosmogenic isotopes produced by galactic cosmic rays (GCR) in meteorites offer the opportunity to reveal the heliospheric magnetic field modulation in the interplanetary space between heliocentric distances of 1 and 3 AU. We present the gamma-activity measurement of Agen meteorite, a H5 chondrite that fell on September 5, 1814 in Aquitaine, France. Its 44Ti activity reflects GCR flux integrated since the mid of 1700 to the time of fall and confirms the decreasing trend of GCR flux that we previously suggested on the basis of measurements of other meteorites which fell in the last 250 years as well as the centennial modulation of GCR due to the Gleissberg solar cycle This result was obtained thanks to the high-efficiency and selective configuration of the gamma-ray spectrometer (HPGe+NaI) operating at the underground Laboratory of Monte dei Cappuccini (OATo, INAF) in Torino, Italy.

  6. Range of Motion Requirements for Upper-Limb Activities of Daily Living

    PubMed Central

    Walters, Lisa Smurr; Cowley, Jeffrey; Wilken, Jason M.; Resnik, Linda

    2016-01-01

    OBJECTIVE. We quantified the range of motion (ROM) required for eight upper-extremity activities of daily living (ADLs) in healthy participants. METHOD. Fifteen right-handed participants completed several bimanual and unilateral basic ADLs while joint kinematics were monitored using a motion capture system. Peak motions of the pelvis, trunk, shoulder, elbow, and wrist were quantified for each task. RESULTS. To complete all activities tested, participants needed a minimum ROM of −65°/0°/105° for humeral plane angle (horizontal abduction–adduction), 0°–108° for humeral elevation, −55°/0°/79° for humeral rotation, 0°–121° for elbow flexion, −53°/0°/13° for forearm rotation, −40°/0°/38° for wrist flexion–extension, and −28°/0°/38° for wrist ulnar–radial deviation. Peak trunk ROM was 23° lean, 32° axial rotation, and 59° flexion–extension. CONCLUSION. Full upper-limb kinematics were calculated for several ADLs. This methodology can be used in future studies as a basis for developing normative databases of upper-extremity motions and evaluating pathology in populations. PMID:26709433

  7. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  8. Influence of Photospheric Magnetic Conditions on the Catastrophic Behaviors of Flux Ropes in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui; Liu, Jiajia

    2017-02-01

    Since only the magnetic conditions at the photosphere can be routinely observed in current observations, it is of great significance to determine the influences of photospheric magnetic conditions on solar eruptive activities. Previous studies about catastrophe indicated that the magnetic system consisting of a flux rope in a partially open bipolar field is subject to catastrophe, but not if the bipolar field is completely closed under the same specified photospheric conditions. In order to investigate the influence of the photospheric magnetic conditions on the catastrophic behavior of this system, we expand upon the 2.5-dimensional ideal magnetohydrodynamic model in Cartesian coordinates to simulate the evolution of the equilibrium states of the system under different photospheric flux distributions. Our simulation results reveal that a catastrophe occurs only when the photospheric flux is not concentrated too much toward the polarity inversion line and the source regions of the bipolar field are not too weak; otherwise no catastrophe occurs. As a result, under certain photospheric conditions, a catastrophe could take place in a completely closed configuration, whereas it ceases to exist in a partially open configuration. This indicates that whether the background field is completely closed or partially open is not the only necessary condition for the existence of catastrophe, and that the photospheric conditions also play a crucial role in the catastrophic behavior of the flux rope system.

  9. HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells

    PubMed Central

    Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I

    2015-01-01

    Histone deacetylase 6 is a multifunctional lysine deacetylase that is recently emerging as a central facilitator of response to stress and may play an important role in cancer cell proliferation. The histone deacetylase 6-inhibitor tubacin has been shown to slow the growth of metastatic prostate cancer cells and sensitize cancer cells to chemotherapeutic agents. However, the proteins histone deacetylase 6 interacts with, and thus its role in cancer cells, remains poorly characterized. Histone deacetylase 6 deacetylase activity has recently been shown to be required for efficient basal autophagic flux. Autophagy is often dysregulated in cancer cells and may confer stress resistance and allow for cell maintenance and a high proliferation rate. Tubacin may therefore slow cancer cell proliferation by decreasing autophagic flux. We characterized the histone deacetylase 6-interacting proteins in LNCaP metastatic prostate cancer cells and found that histone deacetylase 6 interacts with proteins involved in several cellular processes, including autophagy. Based on our interaction screen, we assessed the impact of the histone deacetylase 6-inhibitor tubacin on autophagic flux in two metastatic prostate cancer cell lines and found that tubacin does not influence autophagic flux. Histone deacetylase 6 therefore influences cell proliferation through an autophagy-independent mechanism. PMID:26643866

  10. Glucose-induced activation of rubidium transport and water flux in sunflower root systems.

    PubMed

    Quintero, J M; Molina, R; Fournier, J M; Benlloch, M; Ramos, J

    2001-01-01

    Excised 20-d-old sunflower roots (Helianthus annuus L. cv. Sun-Gro 393) were used to study the effect of different sugars on rubidium and water fluxes. The roots sensed and absorbed glucose from the external medium inducing the activation of rubidium accumulated in the root (Rb(+) root), the flux of exuded rubidium (J(Rb)) and, to a lesser degree, the exudation rate (J(v)). These effects were also triggered by fructose, but not by 6-deoxyglucose (6-dG), a glucose analogue which is not a substrate for hexokinase (HXK). The effect of 2-deoxyglucose (2-dG), an analogue that is phosphorylated but not further metabolized, was complex, suggesting an inhibitory effect on solute transport to the xylem. The amounts of glucose required to activate rubidium and water fluxes were similar to those previously reported to regulate different processes in other plants (0.5--10 mM). When sorbitol was used instead of glucose, neither rubidium uptake (Rb(+) root plus J(Rb)) nor J(v) was activated. It is proposed that glucose present in the root plays an important signalling role in the regulation of Rb(+) (K(+)) and water transport in plant roots.

  11. Measurement of surface mercury fluxes at active industrial gold mines in Nevada (USA).

    PubMed

    Eckley, C S; Gustin, M; Marsik, F; Miller, M B

    2011-01-01

    Mercury (Hg) may be naturally associated with the rock units hosting precious and base metal deposits. Active gold mines are known to have point source releases of Hg associated with ore processing facilities. The nonpoint source release of Hg to the air from the large area (hundreds to thousands of hectares) of disturbed and processed material at industrial open pit gold mines has not been quantified. This paper describes the field data collected as part of a project focused on estimating nonpoint source emissions of Hg from two active mines in Nevada, USA. In situ Hg flux data were collected on diel and seasonal time steps using a dynamic flux chamber from representative mine surfaces. Hg fluxes ranged from <1500 ng m(-2) day(-1) for waste rock piles (0.6-3.5 μg g(-1)) to 684,000 ng m(-2) day(-1) for tailings (2.8-58 μg g(-1)). Releases were positively correlated with material Hg concentrations, surface grain size, and moisture content. Highest Hg releases occurred from materials under active cyanide leaching and from tailings impoundments containing processed high-grade ore. Data collected indicate that as mine sites are reclaimed and material disturbance ceases, emissions will decline. Additionally local cycling of atmospheric Hg (deposition and re-emission) was found to occur.

  12. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  13. HADES RV Programme with HARPS-N at TNG . III. Flux-flux and activity-rotation relationships of early-M dwarfs

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Scandariato, G.; Stelzer, B.; Biazzo, K.; Lanza, A. F.; Maggio, A.; Micela, G.; González-Álvarez, E.; Affer, L.; Claudi, R. U.; Cosentino, R.; Damasso, M.; Desidera, S.; González Hernández, J. I.; Gratton, R.; Leto, G.; Messina, S.; Molinari, E.; Pagano, I.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; Sozzetti, A.; Suárez Mascareño, A.; Zanmar Sanchez, R.

    2017-01-01

    Context. Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres and for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. Aims: We test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships previously investigated for main-sequence FGK stars and for pre-main-sequence M stars also hold for early-M dwarfs on the main-sequence. Although several attempts have been made so far, here we analyse a large sample of stars undergoing relatively low activity. Methods: We analyse in a homogeneous and coherent way a well-defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-N red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cross-correlation technique, while emission flux excesses in the Ca ii H & K and Balmer lines from Hα up to Hɛ are obtained by using the spectral subtraction technique. The relationships between the emission excesses and the stellar parameters (projected rotational velocity, effective temperature, kinematics, and age) are studied. Relations between pairs of fluxes of different chromospheric lines (flux-flux relationships) are also studied and compared with the literature results for other samples of stars. Results: We find that the strength of the chromospheric emission in the Ca ii H & K and Balmer lines is roughly constant for stars in the M0-M3 spectral range. Although our sample is likely to be biased towards inactive stars, our data suggest that a moderate but significant correlation between activity and rotation might be present, as well as a hint of kinematically selected young stars showing higher levels of emission in the calcium line and in most of the Balmer lines. We find our sample of M dwarfs to be complementary in terms of chromospheric and X-ray fluxes with

  14. Formation and Eruption of a Flux Rope from the Sigmoid Active Region NOAA 11719 and Associated M6.5 Flare: A Multi-wavelength Study

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.; Dhara, Sajal Kumar; Shanmugaraju, A.; Moon, Yong-Jae

    2017-01-01

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining the temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.

  15. Direction of Biological Motion Affects Early Brain Activation: A Link with Social Cognition

    PubMed Central

    Pegna, Alan John; Gehring, Elise; Meyer, Georg; Del Zotto, Marzia

    2015-01-01

    A number of EEG studies have investigated the time course of brain activation for biological movement over this last decade, however the temporal dynamics of processing are still debated. Moreover, the role of direction of movement has not received much attention even though it is an essential component allowing us to determine the intentions of the moving agent, and thus permitting the anticipation of potential social interactions. In this study, we examined event-related responses (ERPs) in 15 healthy human participants to light point walkers and their scrambled counterparts, whose movements occurred either in the radial or in the lateral plane. Compared to scrambled motion (SM), biological motion (BM) showed an enhanced negativity between 210 and 360ms. A source localization algorithm (sLORETA) revealed that this was due to an increase in superior and middle temporal lobe activity. Regarding direction, we found that radial BM produced an enhanced P1 compared to lateral BM, lateral SM and radial SM. This heightened P1 was due to an increase in activity in extrastriate regions, as well as in superior temporal, medial parietal and medial prefrontal areas. This network is known to be involved in decoding the underlying intentionality of the movement and in the attribution of mental states. The social meaning signaled by the direction of biological motion therefore appears to trigger an early response in brain activity. PMID:26121591

  16. Coupling of postural activity with motion of a ship at sea.

    PubMed

    Varlet, Manuel; Bardy, Benoît G; Chen, Fu-Chen; Alcantara, Cristina; Stoffregen, Thomas A

    2015-05-01

    On land, body sway during stance becomes coupled with imposed oscillations of the illuminated environment or of the support surface. This coupling appears to have the function of stabilizing the body relative to the illuminated or inertial environment. In previous research, the stimulus has been limited to motion in a single axis. Little is known about our ability to couple postural activity with complex, multi-axis oscillations. On a ship at sea, we evaluated postural activity using measures of body movement, as such, and we separately evaluated a direct measure of coupling between body movement and ship motion. Participants were tested while facing fore-aft and athwartship. We compared postural activity between participants who had been seasick at the beginning of the voyage and those who had not. Coupling of postural activity with ship motion differed between body axes as a function of body orientation relative to the ship. In addition, coupling differed between participants who had been seasick at the beginning of the voyage and those who had not. We discuss the results in terms of implications for general theories of postural control, and for prediction of susceptibility to seasickness in individuals.

  17. The current-density dependence U(J) of the activation energy for the motion of Abrikosov vortices in the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Cl{sub 0.5}Br{sub 0.5}

    SciTech Connect

    Primenko, A.E.; Kuznetsov, V.D.; Metlushko, V.V.

    1995-02-01

    The authors have investigated the thermally activated motion of flux in the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Cl{sub 0.5}Br{sub 0.5} over a wide range of current densities J, and have obtained the dependence of the activation energy U for this motion on current density. 21 refs., 2 figs.

  18. YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities

    PubMed Central

    Schwarz, Roland; Musch, Patrick; von Kamp, Axel; Engels, Bernd; Schirmer, Heiner; Schuster, Stefan; Dandekar, Thomas

    2005-01-01

    Background A number of algorithms for steady state analysis of metabolic networks have been developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful. Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of the algorithm has been the instrument of choice up to now. As reported here, the analysis of metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis routines for expression levels and the most central, well connected metabolites and their metabolic connections are of particular interest. Results YANA features a platform-independent, dedicated toolbox for metabolic networks with a graphical user interface to calculate (integrating METATOOL), edit (including support for the SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa. Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can be used to simplify and analyze complex networks. Proteomics or gene expression data give a rough indication of some individual enzyme activities, whereas the complete flux distribution in the network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm (EA) for the prediction of EM activities with minimum error, including alerts for inconsistent experimental data. We offer the possibility to include further known constraints (e.g. growth constraints) in the EA calculation process. The redox metabolism around glutathione reductase serves as an illustration example. All software and documentation are available for download at . Conclusion A graphical toolbox and an editor for METATOOL as well as a series of additional routines for metabolic network analyses constitute a new user-friendly software for such efforts. PMID:15929789

  19. The cerebral activity related to the visual perception of forward motion in depth.

    PubMed

    de Jong, B M; Shipp, S; Skidmore, B; Frackowiak, R S; Zeki, S

    1994-10-01

    We have used the technique of PET to chart the areas of human cerebral cortex specifically responsive to an optical flow stimulus simulating forward motion in depth over a flat horizontal surface. The optical flow display contained about 2000 dots accelerating in radial directions away from the focus of expansion, which subjects fixated at the centre of the display monitor. Dots remained of constant size, but their density decreased from the horizon, lying across the middle of the screen, to the foreground at the lower screen margin; the top half of the display was void. For the control stimulus the dot motions were randomized, removing any sensation of motion in depth and diminishing the impression of a flat terrain. Comparison of the regional cerebral blood flow (rCBF) elicited by the optical flow and control stimuli was thus intended to reveal any area selectively responsive to the radial velocity field that is characteristic of optical flow in its simplest natural form. Six subjects were scanned, and analysed as a group. Four subjects were analysed as individuals, their PET data being co-registered with MRIs of the cerebrum to localize rCBF changes to individual gyri and sulci. There were three main areas of activation associated with optical flow: the dorsal cuneus (area V3) and the latero-posterior precuneus (or superior parietal lobe) in the right hemisphere, and the occipito-temporal ventral surface, in the region of the fusiform gyrus, in both hemispheres. There was no significant activation of V1/V2, nor of V5. These results show that higher stages of motion take place in both the 'dorsal' and 'ventral' visual pathways, as these are commonly conceived, and that both may be fed by area V3. The information potentially derivable from optical flow concerns the direction of heading, and the layout of the visual environment, a form of three-dimensional structure-from-motion. The perceptual division of labour between the various activated areas cannot be

  20. Automatic active space selection for the similarity transformed equations of motion coupled cluster method

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Nooijen, Marcel; Neese, Frank; Izsák, Róbert

    2017-02-01

    An efficient scheme for the automatic selection of an active space for similarity transformed equations of motion (STEOM) coupled cluster method is proposed. It relies on state averaged configuration interaction singles (CIS) natural orbitals and makes it possible to use STEOM as a black box method. The performance of the new scheme is tested for singlet and triplet valence, charge transfer, and Rydberg excited states.

  1. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Matsumoto, H.; Kojima, H.; Mukai, T.; Saito, Y.; Yamamoto, T.

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  2. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  3. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  4. Superior results with continuous passive motion compared to active motion after periosteal transplantation. A retrospective study of human patella cartilage defect treatment.

    PubMed

    Alfredson, H; Lorentzon, R

    1999-01-01

    Fifty-seven consecutive patients (33 men and 24 women), with a mean age of 32 years (range 16-53 years), who suffered from an isolated full-thickness cartilage defect of the patella and disabling knee pain of long duration, were treated by autologous periosteal transplantation to the cartilage defect. The first 38 consecutive patients (group A) were postoperatively treated with continuous passive motion (CPM), and the next 19 consecutive patients (group B) were treated with active motion for the first 5 days postoperatively. In both groups, the initial regimens were followed by active motion, slowly progressive strength training, and slowly progressive weight bearing. In group A, after a mean follow-up of 51 months (range 33-92 months), 29 patients (76%) were graded as excellent or good, 7 patients (19%) were graded as fair, and 2 patients (5%) were graded as poor. In group B, after a mean follow-up of 21 months (range 14-28 months), 10 patients (53%) were graded as excellent or good, 6 patients (32%) were graded as fair, and 3 patients (15%) were graded as poor. Altogether, nine of the fair or poor cases (50%) were diagnosed with chondromalacia of the patella. Our results, after performing autologous periosteal transplantation in patients with full-thickness cartilage defects of the patella and disabling knee pain, are good if CPM is used postoperatively. The clinical results using active motion postoperatively are not acceptable, especially not in patients with chondromalacia of the patella.

  5. Convergence in full motion video processing, exploitation, and dissemination and activity based intelligence

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Lewis, Gina

    2012-06-01

    Over the last decade, intelligence capabilities within the Department of Defense/Intelligence Community (DoD/IC) have evolved from ad hoc, single source, just-in-time, analog processing; to multi source, digitally integrated, real-time analytics; to multi-INT, predictive Processing, Exploitation and Dissemination (PED). Full Motion Video (FMV) technology and motion imagery tradecraft advancements have greatly contributed to Intelligence, Surveillance and Reconnaissance (ISR) capabilities during this timeframe. Imagery analysts have exploited events, missions and high value targets, generating and disseminating critical intelligence reports within seconds of occurrence across operationally significant PED cells. Now, we go beyond FMV, enabling All-Source Analysts to effectively deliver ISR information in a multi-INT sensor rich environment. In this paper, we explore the operational benefits and technical challenges of an Activity Based Intelligence (ABI) approach to FMV PED. Existing and emerging ABI features within FMV PED frameworks are discussed, to include refined motion imagery tools, additional intelligence sources, activity relevant content management techniques and automated analytics.

  6. X-ray flux variability of active galactic nuclei observed using NuSTAR

    NASA Astrophysics Data System (ADS)

    Rani, Priyanka; Stalin, C. S.; Rakshit, Suvendu

    2017-04-01

    We present results of a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of four BL Lac objects (BL Lacs), three flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and eight narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65 per cent of the sources in our sample show significant variations on hourly time-scales. Using the Mann-Whitney U-test and the Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87 per cent), followed by BL Lacs (82 per cent), Seyfert galaxies (56 per cent) and FSRQs (23 per cent). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.

  7. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  8. Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

    PubMed

    Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm

    2016-10-01

    To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.

  9. Early active motion protocol following open reduction internal fixation of the scaphoid: A pilot study.

    PubMed

    Dunn, J-C; Kusnezov, N; Fares, A; Buccino, Z; Esquivel, D; Mitchell, J

    2017-02-01

    Scaphoid fractures are common injuries which traditionally have been treated with long periods of immobilization even after open reduction and internal fixation (ORIF). The purpose of this pilot investigation was two-fold: 1) describe a precise postoperative Early Active Motion (EAM) rehabilitation protocol following ORIF of scaphoid fractures and 2) record the outcomes of the EAM protocol. Eight consecutive patients having undergone ORIF of the scaphoid were enrolled in the EAM and followed for a minimum of 1 year. At 12 weeks, Disabilities of the Arm Shoulder and Hand (DASH) score, Mayo Wrist score, and range of motion values were obtained. At 1 year, a telephone survey was conducted and several data points were obtained including DASH and Mayo Wrist score, number of push-ups, satisfaction with surgery and ability to remain on active duty. All 8 patients were male, on active duty, with an average age of 26 years. Two patients used tobacco products and none had major health problems. All patients completed the EAM protocol and obtained CT; all CT exams demonstrated healing at 8 weeks. At 12 weeks postoperatively, the average DASH score was 8.8±16 (range: 0-47.5), Mayo wrist score was 88±10 (range: 75-100) and range of motion nearly symmetrical. At a mean final follow-up of 15.4 months postoperatively, the average DASH score was 1.1±1.7 (Range: 0-4.5), Mayo wrist score was 97.5±4 (range 90-100), average number of push-ups was 57 (40-70) at the prior Army Physical Fitness Test. All patients were satisfied with surgery and all remained on active duty at 1 year. There were no reported complications. The EAM protocol following scaphoid fracture ORIF is safe and effective. The EAM can reliably return patients back to high demand activity earlier than a traditional protocol.

  10. Impacts of membrane flux enhancers on activated sludge respiration and nutrient removal in MBRs.

    PubMed

    Iversen, Vera; Koseoglu, Hasan; Yigit, Nevzat O; Drews, Anja; Kitis, Mehmet; Lesjean, Boris; Kraume, Matthias

    2009-02-01

    This paper presents the findings of experimental investigations regarding the influence of 13 different flux enhancing chemicals (FeCl3, polyaluminium chloride, 2 chitosans, 5 synthetic polymers, 2 starches and 2 activated carbons) on respirometric characteristics and nitrification/denitrification performance of membrane bioreactor (MBR) mixed liquor. Flux enhancing chemicals are a promising method to reduce the detrimental effects of fouling phenomena via the modification of mixed liquor characteristics. However, potentially inhibiting effects of these chemicals on mixed liquor biological activity triggered the biokinetic studies (in jar tests) conducted in this work. The tested polyaluminium chloride (PACl) strongly impacted on nitrification (-16%) and denitrification rate (-43%). The biodegradable nature of chitosan was striking in endogenous and exogenous tests. Considering the relatively high costs of this chemical, an application for wastewater treatment does thus not seem to be advisable. Also, addition of one of the tested activated carbons strongly impacted on the oxygen uptake rate (-28%), nitrification (-90%) and denitrification rate (-43%), due to a decrease of pH. Results show that the changes in kLa values were mostly not significant, however, a decrease of 13% in oxygen transfer was found for sludge treated with PACl.

  11. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzifčáková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  12. Ice motion and seismic activity on a steep temporate glacier tongue

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Faillettaz, Jerome; Funk, Martin

    2010-05-01

    Ice motion and seismic activity on a steep temporate glacier (Triftgletscher, Bernese Alps, Switzerland) Pierre Dalban Canassy*, Jerome Faillettaz* and Martin Funk* * Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, CH-8092 Zurich, Switzerland (dalban@vaw.baug.ethz.ch) In the last 15 years Triftgletscher (Bernese Alps, Switzerland) has substantially retreated (several hundreds of meters) from the riegel and a proglacial lake containing 6.106 m3 water has been formed in the glacier forefield. Because of the glacier retreat, especially the thinning of the lower flat tongue, the stability of the steep section behind it is affected. The consequence is that the likelihood of large ice avalanches starting from the steep section will increase. The recent intensive glacier thinning in the lower tongue area of 6-10 m.a-1 has even worsened the situation because the runout path of the ice avalanches has become steeper. Ice avalanches with several millions of m3 triggering impulse waves by plunguing into the lake can be the consequence. The aim of our study is to improve the understanding of the mechanisms leading to such instabilities and to develop a predictive method based on both seismic and photogrammetric surveys. The seismic recording is performed with help of 3 geophones installed on the rock on both sides of the serac fall allowing a continuous record. We are able to highlight seismic events by applying an automatic detection procedure, to locate their sources and also to evaluate the released energy of each detected icequake. The most part of these events are due to crack openings and falls of ice chunks, but we could also isolate specific events corresponding to stick-slip motions. The latter seem to play a significant role in the destabilization of the ice mass and represent valuable precursors to break-off episodes. The 2D picture analysis is achieved by analysing photographs taken every day at the same time by an automatic camera installed in

  13. Impact of Physical Activity in Cardiovascular and Musculoskeletal Health: Can Motion Be Medicine?

    PubMed Central

    Curtis, Gannon L.; Chughtai, Morad; Khlopas, Anton; Newman, Jared M.; Khan, Rafay; Shaffiy, Shervin; Nadhim, Ali; Bhave, Anil; Mont, Michael A.

    2017-01-01

    Physical activity is a well-known therapeutic tool for various types of medical conditions, including vasculopathic diseases such as coronary artery disease, stroke, type 2 diabetes, and obesity. Additionally, increased physical activity has been proposed as a therapy to improve musculoskeletal health; however, there are conflicting reports about physical activity potentially leading to degenerative musculoskeletal disease, especially osteoarthritis (OA). Additionally, although physical activity is known to have its benefits, it is unclear as to what amount of physical activity is the most advantageous. Too much, as well as not enough exercise can have negative consequences. This could impact how physicians advise their patients about exercise intensity. Multiple studies have evaluated the effect of physical activity on various aspects of health. However, there is a paucity of systematic studies which review cardiovascular and musculoskeletal health as outcomes. Therefore, the purpose of this review was to assess how physical activity impacts these aspects of health. Specifically, we evaluated the effect of various levels of physical activity on: 1) cardiovascular and 2) musculoskeletal health. The review revealed that physical activity may decrease cardiovascular disease and improve OA symptoms, and therefore, motion can be considered a “medicine”. However, because heavy activity can potentially lead to increased OA risk, physicians should advise their patients that excessive activity can also potentially impact their health negatively, and should be done in moderation, until further study. PMID:28392856

  14. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  15. Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia)

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Evans, Susan E.; Shi, JunFen; O'Higgins, Paul; Fagan, Michael J.

    2010-01-01

    The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food reduction remains a major problem. Here, we present a novel approach for predicting the forces and activation patterns of muscles and muscle groups based on their known anatomical orientation (line of action). The work was carried out for the lizard-like reptile Sphenodon (Rhynchocephalia) using a sophisticated computer-based model and multi-body dynamics analysis. The model suggests that specific muscle groups control specific motions, and that during certain times in the bite cycle some muscles are highly active whereas others are inactive. The predictions of muscle activity closely correspond to data previously recorded from live Sphenodon using electromyography. Apparent exceptions can be explained by variations in food resistance, food size, food position and lower jaw motions. This approach shows considerable promise in advancing detailed functional models of food acquisition and reduction, and for use in other musculoskeletal systems where no experimental determination of muscle activity is possible, such as in rare, endangered or extinct species. PMID:19474084

  16. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    PubMed Central

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-01-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097

  17. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  18. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  19. Motion and Muscle Activity Are Affected by Instability Location During a Squat Exercise.

    PubMed

    Nairn, Brian C; Sutherland, Chad A; Drake, Janessa D M

    2017-03-01

    Nairn, BC, Sutherland, CA, and Drake, JDM. Motion and muscle activity are affected by instability location during a squat exercise. J Strength Cond Res 31(3): 677-685, 2017-Squat exercise training using instability devices has become increasingly popular for a multitude of reasons. Many devices generate instability at the feet and provide a bottom-up perturbation; however, the effect of a top-down instability device during a squat remains unclear. To induce instability at the upper body, a water-filled cylinder called the Attitube was used. This study analyzed the effects of instability location (top-down, bottom-up, and no instability) during a squat exercise in terms of kinematics and muscle activation. Ten male participants were instrumented with 75 reflective markers to track kinematics of the ankle, knee, hip, trunk, and the Bar/Attitube, and electromyography was recorded from 12 muscles bilaterally. Squats were performed with an Olympic bar on a stable surface, an Olympic bar on a BOSU ball (BALL, bottom-up), and the Attitube on solid ground (TUBE, top-down). The TUBE showed up to 1.5 times reduction in erector spinae activation and up to 1.5 times less trunk flexion while being performed at a slower velocity. There was also higher abdominal activation in the TUBE, with up to 2.8 times greater oblique activation compared with the stable condition. The BALL increased ankle eversion and knee flexion with higher muscle activation in gastrocnemius, biceps femoris, and quadriceps. Overall, changing the location of instability during a squat changed the motion and muscle activation patterns of the trunk and lower extremities. This provides information for future research into rehabilitation, learning proper squat technique, and for specific training scenarios.

  20. Thermally activated Hall creep of flux lines from a columnar defect

    NASA Astrophysics Data System (ADS)

    Gorokhov, D. A.; Blatter, G.

    1998-02-01

    We analyze the thermally activated depinning of an elastic string (line tension ɛ) governed by Hall dynamics from a columnar defect modeled as a cylindrical potential well of depth V0 for the case of a small external force F. An effective one-dimensional-field Hamiltonian is derived in order to describe the two-dimensional string motion. At high temperatures the decay rate is proportional to F5/2T-1/2exp[F0/F-U(F)/T], with F0 a constant of order of the critical force and U(F)~(ɛV0)1/2V0/F the activation energy. The results are applied to vortices pinned by columnar defects in superclean superconductors.

  1. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    PubMed Central

    2016-01-01

    Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW) model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm's projective function. We test our work on the several datasets and obtain very promising results. PMID:27656199

  2. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  3. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells.

    PubMed

    Triantafilou, Kathy; Kar, Satwik; van Kuppeveld, Frank J M; Triantafilou, Martha

    2013-12-01

    Human rhinoviruses have been linked with underlying lung disorders, such as asthma and chronic obstructive pulmonary disease, in children and adults. However, the mechanism of virus-induced airway inflammation is poorly understood. In this study, using virus deletion mutants and silencing for nucleotide-binding oligomerization domain-like receptors (NLRs), we show that the rhinovirus ion channel protein 2B triggers NLRP3 and NLRC5 inflammasome activation and IL-1β secretion in bronchial cells. 2B protein targets the endoplasmic reticulum and Golgi and induces Ca(2+) reduction in these organelles, thereby disturbing the intracellular calcium homeostasis. NLRP3 and NLRC5 act in a cooperative manner during the inflammasome assembly by sensing intracellular Ca(2+) fluxes and trigger IL-1β secretion. These results reveal for the first time that human rhinovirus infection in primary bronchial cells triggers inflammasome activation.

  4. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  5. Distribution of the Effect of Solar Proton Flux And Geomagnetic Activity on the Stratospheric Ozone Profile

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Tassev, Y.; Yanev, T.; Tomova, D.

    Two-way MANOVA was used to examine the impact of two factors: 1) the proton flux intensity and 2) the geomagnetic activity on the dependant variable "ozone mixing ratio" which characterizes the stratospheric ozone profiles. The examination was carried out with fixed levels of two other factors: a) the heights at which the "ozone mixing ratio" was recorded, i,e, 35 km, 30.2 km, 24.5 km, 18.4 km, 15.6 km and b) the energetic intervals within which the proton flux was measured, i.e. =0,6-4,2 MeV; 4,2-8,7 MeV; 8,7-14,5 MeV; 15-44 MeV; 39-82 MeV; 84-200 MeV; 110-500 MeV. The analysis was performed for all combinations of levels of the factors a) and b) for which data was available. It was aimed at revealing which of the factors 1) and 2) were dominating with different combinations of the factors a) and b) with fixed levels. For this purpose a post hoc analysis was performed as well. The main results are as follows: factors 1) and 2) exert statistically significant impact on the dependant variable at all of the heights examined, but not for all of energetic intervals; increase of the ozone mixing ratio was observed as a main effect of the proton flux intensity at heights 24.5 km, 18.4 km, 15.6 km, but the analysis of the simultaneous acting of factors 1) and 2) revealed a decrease of the dependant variable at these heights; these effects possibly indicate the existence of two different mechanisms of impact on the ozone mixing ratio; the afore- discussed effects decrease with the height and therefore their graphical image was named "Christmas tree".

  6. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  7. Thermally activated flux flow in superconducting epitaxial FeSe0.6Te0.4 thin film

    NASA Astrophysics Data System (ADS)

    Ahmad, D.; Choi, W. J.; Seo, Y. I.; Seo, Sehun; Lee, Sanghan; Kwon, Yong Seung

    The thermally activated flux flow effect has been studied in epitaxial FeSe0.6Te0.4 thin film grown by a PLD method through the electrical resistivity measurement under various magnetic fields for B//c and B//ab. The results showed that the thermally activated flux flow effect is well described by the nonlinear temperature-dependent activation energy. The evaluated apparent activation energy U0 (B) is one order larger than the reported results and showed the double-linearity in both magnetic field directions. Furthermore, the FeSe0.6Te0.4 thin film shows the anisotropy of 5.6 near Tc and 2D-like superconducting behavior in thermally activated flux flow region. In addition, the vortex glass transition and the temperature dependence of the high critical fields were determined.

  8. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity

    NASA Astrophysics Data System (ADS)

    Wu, D. J.; Feng, H. Q.; Chao, J. K.

    2008-03-01

    Context: Recent observations of the solar wind show that interplanetary magnetic flux ropes (IMFRs) have a continuous scale-distribution from small-scale flux ropes to large-scale magnetic clouds. Aims: In this work, we investigate the energy spectrum of IMFRs and its possible connection with solar activity. Methods: In consideration of the detectable probability of an IMFR to be proportional to its diameter, the actual energy spectrum of IMFRs can be obtained from the observed spectrum based on spacecraft observations in the solar wind. Results: It is found that IMFRs have a negative power-law spectrum with an index α = 1.36±0.03, which is similar to that of solar flares, and is probably representative of interplanetary energy spectrum of coronal mass ejections (CMEs), that is, the energy spectrum of interplanetary CMEs (ICMEs). This indicates that the energy distribution of CMEs has a similar negative power-law spectrum. In particular, there are numerous small-scale CMEs in the solar corona, and their interplanetary consequences may be directly detected in situ by spacecraft in the solar wind as small-scale IMFRs, although they are too weak to appear clearly in current coronagraph observations. Conclusions: The presence of small-scale CMEs, especially the energy spectrum of CMEs is potentially important for understanding both the solar magneto-atmosphere and CMEs.

  9. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  10. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  11. Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study

    SciTech Connect

    Pevsner, Alex; Nehmeh, Sadek A.; Humm, John L.; Mageras, Gig S.; Erdi, Yusuf E.

    2005-07-15

    Respiratory motion is known to affect the quantitation of {sup 18}FDG uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with {sup 18}FDG solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in sphere

  12. Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot.

    PubMed

    Miura, Naoki; Sugiura, Motoaki; Takahashi, Makoto; Sassa, Yuko; Miyamoto, Atsushi; Sato, Shigeru; Horie, Kaoru; Nakamura, Katsuki; Kawashima, Ryuta

    2010-01-01

    Motion smoothness is critical in transmitting implicit information of body action, such as aesthetic qualities in dance performances. We expected that the perception of motion smoothness would be characterized by great intersubject variability deriving from differences in personal backgrounds and attitudes toward expressive body actions. We used functional magnetic resonance imaging and a humanoid robot to investigate the effects of the motion smoothness of expressive body actions and the intersubject variability due to personal attitudes on perceptions during dance observation. The effect of motion smoothness was analyzed by both conventional subtraction analysis and functional connectivity analyses that detect cortical networks reflecting intersubject variability. The results showed that the cortical networks of motion- and body-sensitive visual areas showed increases in activity in areas corresponding with motion smoothness, but the intersubject variability of personal attitudes toward art did not influence these active areas. In contrast, activation of cortical networks, including the parieto-frontal network, has large intersubject variability, and this variability is associated with personal attitudes about the consciousness of art. Thus, our results suggest that activity in the cortical network involved in understanding action is influenced by personal attitudes about the consciousness of art during observations of expressive body actions.

  13. Interplanetary proton flux and solar wind conditions for different solar activities interacting with spacecraft and astronauts in space

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2014-01-01

    The goal of this research is to determine the interplanetary proton flux and solar wind conditions by using data from several satellites such as Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES) in particular GOES 9, GOES 11, GOES 12, GOES 13, and Solar Heliospheric Observatory (SOHO) to determine proton flux in different solar wind conditions. The data from above satellites were used to determine space weather conditions in which the goals are to evaluate proton fluxes for four periods of solar cycle activity: a solar cycle 23/24 minimum (2008), close to a solar cycle 22/23 minimum (1997), with intermediate activity (2011) and for about maximum activity for the cycle 23 (2003), to compare data of two period of solar cycle in 2003 and 2008 (Max vs. Min), to compare data of two period of solar cycle in 1997 and 2008 (Min vs. Min), to compare soft X-ray flux from SOHO with proton 1-10 MeV flux from GOES 9 for strong flare in 1997. To conclude the above evaluations are being used to determine the interaction between the space weather conditions and the following consequences of these conditions important for astronautics and everyday human activity: 1- Satellite and Spacecraft charging, 2-Dangerous conditions for onboard electronics and astronauts during strong solar flare events, and 3- Total Electron Content (TEC), Global Positioning System (GPS), and radio communication problems related to solar activity.

  14. Thermal and Kinetic Properties of Motions in a Prominence Activation and Nearby Loop

    NASA Technical Reports Server (NTRS)

    Kucera, Therese; Landi, E.

    2005-01-01

    We perform a quantitative analysis of the thermal properties of a prominence activation and motions in a nearby loop. In order to make measurements of the quickly moving features seen in prominences in the UV we use the SOHO/SUMER spectrograph to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The lines observed cover a broad range of temperatures from 80,000 - 1.6 million K. These measurements are combined with TRACE movies in transition region and coronal temperature bands to obtain more complete information concerning prominence structure and motions. The resulting observations allow us to analyze the thermal and kinetic energy of the moving sources as functions of time. The loop and prominence are most apparent in lines formed at temperatures below 250,000 K. We find that in most cases the temperature distribution of plasma in a moving feature changes relatively little over time periods of about 20 minutes.

  15. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow.

    PubMed

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L; Migliore, Elaina M; Chipps, Esther M; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today's dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives.

  16. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow

    PubMed Central

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L.; Migliore, Elaina M.; Chipps, Esther M.; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today’s dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives. PMID:28269924

  17. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals.

    PubMed

    Naggar, Isaac; Nakase, Ko; Lazar, Jason; Salciccioli, Louis; Selesnick, Ivan; Stewart, Mark

    2014-07-01

    Vagal inputs control pacemaking and conduction systems in the heart. Anatomical evidence suggests a direct ventricular action, but functional evidence that separates direct and indirect (via the conduction system) vagal actions is less well established. We studied vagus nerve stimulation (VNS) during sinus rhythm and ventricular fibrillation (VF) in pigs and sheep to determine: 1) the range of unilateral and bilateral actions (inotropic and chronotropic) and 2) whether VNS alters left ventricular motion and/or electrical activity during VF, a model of abnormal electrical conduction of the left ventricle that excludes sinus and atrioventricular nodal function. Adult pigs (N=8) and sheep (N=10) were anesthetized with urethane and mechanically ventilated. VNS was performed in animals at 1, 2, 5, 10, 20, 50, and 100Hz for 20s. VF was induced with direct current to the ventricles or occlusion of the left anterior descending coronary artery. In 4 pigs and 3 sheep, left ventricular wall motion was assessed from endocardial excursion in epicardial echocardiography. In sheep and pigs, the best frequency among those tested for VNS during sinus rhythm to produce sustained electrical and mechanical ventricular standstill was 50Hz for unilateral or bilateral stimulation. When applied during VF, bilateral VNS increased the variability of the dominant VF frequency, indicating a direct impact on the excitability of ventricular myocytes, and decreased endocardial excursion by more than 50% during VF. We conclude that the vagus nerve directly modulates left ventricular function independently from its effects on the conduction system.

  18. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  19. Investigating Possible Links between Incoming Cosmic Ray Fluxes and Lightning Activity

    NASA Astrophysics Data System (ADS)

    Chronis, Themis

    2010-05-01

    During the past two decades, particular scientific attention has been drawn to the potential cosmic ray-atmospheric coupling. Galactic cosmic rays reaching the upper troposphere are suggested as the key modulators of the global electric circuit with further implications on cloud microphysical processes. Unfortunately, the scarcity of the associated observations renders the evaluation of the theoritized mechanisms rather difficult. This contribution proposes a different approach by introducing observations provided by the National Lightning Detection Network for the period 1990-2005. The study area encompasses the greater part of continental U.S. and the surrounding waters. The results highlight a statistically significant positive trend between monthly lightning activity and galactic cosmic ray fluxes during the winter season. During the summer season the trend becomes statistically non-significant. In addition, the featured analysis introduces a technique to assess the potential impact of Forbush Events on daily lightning activity. Results illustrate that lightning activity may be responsive (minimized) 4-5 days following a Forbush Event.

  20. Relationship between active cervical range of motion and flexion-relaxation ratio in asymptomatic computer workers.

    PubMed

    Yoo, Won-Gyu; Park, Se-Yeon; Lee, Mi-Ra

    2011-01-01

    A high prevalence and incidence of neck and shoulder pain is present in the working population, especially sedentary workers. Recent findings have indicated that the flexion-relaxation (FR) ratio in the cervical erector spinae (CES) muscles might be a significant criteria of neuromuscular impairment and function. Additionally, the active cervical range of motion (ROM) is frequently used for discriminating between individuals with pain and those who are asymptomatic. The purpose of the present study was to examine the relationship between the active cervical ROM and the FR ratio in a sample of regular visual display terminal (VDT) workers. In total, 20 asymptomatic male VDT workers were recruited. Active cervical ROM was measured by a cervical ROM (CROM) instrument. Surface electromyography (EMG) was used to collect myoelectrical signals from the CES muscles, and the FR ratio was calculated for statistical analysis. Pearson correlation coefficients were used to quantify the linear relationship between the active cervical ROM and the FR ratio. The values obtained for the FR ratio in the right CES muscles correlated significantly with the active cervical ROM measured in flexion (r=0.73, p<0.01), left lateral flexion (r=0.64, p<0.01), and left rotation (r=0.60, p<0.01). Flexion (r=0.74, p<0.01) and right lateral flexion (r=0.61, p<0.01) positively correlated with the left FR ratio. Extension and right rotation showed either a very weak or no correlation with the mean value of the right and left FR ratio. Our findings suggested that the cervical FR ratio had a positive correlation with cervical movements, and that changes of the activation patterns in CES demonstrated as cervical FR ratio are associated with reduction of the cervical range of motion including flexion and lateral flexion. In addition, muscular dysfunction of the CES could occur in regular computer workers prior to occurrence of pain; this means that the FR ratio could be used to evaluate the potential

  1. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  2. INVESTIGATING TWO SUCCESSIVE FLUX ROPE ERUPTIONS IN A SOLAR ACTIVE REGION

    SciTech Connect

    Cheng, X.; Zhang, J.; Ding, M. D.; Guo, Y.; Olmedo, O.; Sun, X. D.; Liu, Y.

    2013-06-01

    We investigate two successive flux rope (FR1 and FR2) eruptions resulting in two coronal mass ejections (CMEs) on 2012 January 23. Both flux ropes (FRs) appeared as an EUV channel structure in the images of high temperature passbands of the Atmospheric Imaging Assembly prior to the CME eruption. Through fitting their height evolution with a function consisting of linear and exponential components, we determine the onset time of the FR impulsive acceleration with high temporal accuracy for the first time. Using this onset time, we divide the evolution of the FRs in the low corona into two phases: a slow rise phase and an impulsive acceleration phase. In the slow rise phase of FR1, the appearance of sporadic EUV and UV brightening and the strong shearing along the polarity inverse line indicates that the quasi-separatrix-layer reconnection likely initiates the slow rise. On the other hand, for FR2, we mainly contribute its slow rise to the FR1 eruption, which partially opened the overlying field and thus decreased the magnetic restriction. At the onset of the impulsive acceleration phase, FR1 (FR2) reaches the critical height of 84.4 ± 11.2 Mm (86.2 ± 13.0 Mm) where the decline of the overlying field with height is fast enough to trigger the torus instability. After a very short interval (∼2 minutes), the flare emission began to enhance. These results reveal the compound activity involving multiple magnetic FRs and further suggest that the ideal torus instability probably plays the essential role of initiating the impulsive acceleration of CMEs.

  3. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  4. X-RAY ACTIVITY PHASED WITH PLANET MOTION IN HD 189733?

    SciTech Connect

    Pillitteri, I.; Guenther, H. M.; Wolk, S. J.; Kashyap, V. L.; Cohen, O.

    2011-11-01

    We report on the follow-up XMM-Newton observation of the planet-hosting star HD 189733 we obtained in 2011 April. We observe a flare just after the secondary transit of the hot Jupiter. This event shares the same phase and many of the characteristics of the flare we observed in 2009. We suggest that a systematic interaction between planet and stellar magnetic fields when the planet passes close to active regions on the star can lead to periodic variability phased with planetary motion. By means of high-resolution X-ray spectroscopy with the Reflection Grating Spectrometer on board XMM-Newton, we determine that the corona of this star is unusually dense.

  5. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data.

    PubMed

    Shannon, Graeme; Lewis, Jesse S; Gerber, Brian D

    2014-01-01

    Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal populations to estimate species occurrence. Occupancy modelling provides a flexible framework for the analysis of these data; explicitly recognizing that given a species occupies an area the probability of detecting it is often less than one. Despite the number of studies using camera data in an occupancy framework, there is only limited guidance from the scientific literature about survey design trade-offs when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers to maximise available resources and determine whether the objectives of a monitoring program or research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 km(2) of the Western Slope of Colorado, USA to explore how survey effort (number of cameras deployed and the length of sampling period) affects the accuracy and precision (i.e., error) of the occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach where species occupancy and detection parameters were informed by empirical data from motion-activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10-120 cameras) and occasions (20-120 survey days). Our findings demonstrate that increasing total sampling effort generally decreases error associated with the occupancy estimate, but changing the number of sites or sampling duration can have very different results, depending on whether a species is spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the required survey effort includes maximizing the number of sites and the number of survey days, often to a level that may be logistically unrealistic for many studies. For common species with

  6. Active range of motion outcomes after reconstruction of burned wrist and hand deformities.

    PubMed

    Afifi, Ahmed M; Mahboub, Tarek A; Ibrahim Fouad, Amr; Azari, Kodi; Khalil, Haitham H; McCarthy, James E

    2016-06-01

    This works aim is to evaluate the efficacy of skin grafts and flaps in reconstruction of post-burn hand and wrist deformities. A prospective study of 57 burn contractures of the wrist and dorsum of the hand was performed. Flaps were used only if there was a non-vascularized structure after contracture release, otherwise a skin graft was used. Active range of motion (ROM) was used to assess hand function. The extension deformity cohort uniformly underwent skin graft following contracture release with a mean improvement of 71 degrees (p<0.0001). The flexion deformity cohort was treated with either skin grafts (8 patients) or flaps (9 patients) with a mean improvement of 44 degrees (p<0.0001). Skin grafts suffice for dorsal hand contractures to restore functional wrist ROM. For flexion contractures, flaps were more likely for contractures >6 months. Early release of burn contracture is advisable to avoid deep structure contracture.

  7. Fossil fuel burning in Taylor Valley, southern Victoria Land, Antarctica: Estimating the role of scientific activities on carbon and nitrogen reservoirs and fluxes

    SciTech Connect

    Lyons, W.B.; Nezat, C.A.; Welch, K.A.; Kottmeier, S.T.; Doran, P.T.

    2000-05-01

    Particulate organic and elemental carbon and nitrogen as well as NO{sub x} fluxes from scientific activities have been computed for Taylor Valley, Antarctica ({approximately}78{degree} S). These authropogenic fluxes have been compared to both the natural fluxes and landscape reservoirs as determined from Long-Term Ecological Research (LTER) investigations in the valley. The anthropogenic, nongaseous carbon fluxes are minor compared to the natural fluxes, while the anthropogenic NO{sub x} flux may be potentially important over decadal time scales.

  8. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase.

    PubMed

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-23

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.

  9. Thermal activation of ‘allosteric-like’ large-scale motions in a eukaryotic Lactate Dehydrogenase

    PubMed Central

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-01

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH’s conformational landscape that enriches the static view based on crystallographic studies alone. PMID:28112231

  10. Spinal Motion and Muscle Activity during Active Trunk Movements – Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures

    PubMed Central

    Valentin, Stephanie; Licka, Theresia F.

    2016-01-01

    Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics. PMID:26741136

  11. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    NASA Technical Reports Server (NTRS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  12. Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source.

    PubMed

    Junker, Björn H; Lonien, Joachim; Heady, Lindsey E; Rogers, Alistair; Schwender, Jörg

    2007-01-01

    After the completion of the genomic sequencing of model organisms, numerous post-genomic studies, integrating transcriptome and metabolome data, are aimed at developing a more complete understanding of cell physiology. Here, we measure in vivo metabolic fluxes by steady state labeling, and in parallel, the activity of enzymes in central metabolism in cultured developing embryos of Brassica napus. Embryos were grown on either the amino acids glutamine and alanine as an organic nitrogen source, or on ammonium nitrate as an inorganic nitrogen source. The type of nitrogen made available to developing embryos caused substantial differences in fluxes associated with the tricarboxylic acid cycle, including flux reversion. The changes observed in enzyme activity were not consistent with our estimates of metabolic flux. Furthermore, most extractable enzyme activities are in large surplus relative to the requirements for the observed in vivo fluxes. The results demonstrate that in this model system the metabolic response of central metabolism to changes in environmental conditions can be achieved largely without regulatory reprogramming of the enzyme machinery.

  13. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  14. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.

  15. Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise

    PubMed Central

    Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.

    2016-01-01

    Context:  The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective:  To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design:  Descriptive laboratory study. Setting:  Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants:  A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s):  Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s):  Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results:  The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions:  Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055

  16. Detection of (in)activity periods in human body motion using inertial sensors: a comparative study.

    PubMed

    Olivares, Alberto; Ramírez, Javier; Górriz, Juan M; Olivares, Gonzalo; Damas, Miguel

    2012-01-01

    Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved.

  17. Detection of (In)activity Periods in Human Body Motion Using Inertial Sensors: A Comparative Study

    PubMed Central

    Olivares, Alberto; Ramírez, Javier; Górriz, Juan M.; Olivares, Gonzalo; Damas, Miguel

    2012-01-01

    Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved. PMID:22778613

  18. Body motion for powering biomedical devices.

    PubMed

    Romero, Edwar; Warrington, Robert O; Neuman, Michael R

    2009-01-01

    Kinetic energy harvesting has been demonstrated as a useful technique for powering portable electronic devices. Body motion can be used to generate energy to power small electronic devices for biomedical applications. These scavengers can recharge batteries, extending their operation lifetime or even replace them. This paper addresses the generation of energy from human activities. An axial flux generator is presented using body motion for powering miniature biomedical devices. This generator presents a gear-shaped planar coil and a multipole NdFeB permanent magnet (PM) ring with an attached eccentric weight. The device generates energy by electromagnetic induction on the planar coil when subject to a changing magnetic flux due to the generator oscillations produced by body motion. A 1.5 cm(3) prototype has generated 3.9 microW of power while walking with the generator placed laterally on the ankle.

  19. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  20. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction.

    PubMed

    Forder, J; Scriabine, A; Rasmussen, H

    1985-11-01

    Isolated perfused rabbit ear arteries contract when treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of the calcium-activated, phospholipid-dependent protein kinase or C-kinase. Under conditions where the calcium concentration in the perfusate is 1.5 mM and the potassium concentration is 4.8 mM, there is a latent period of 70 +/- 19 min (mean +/- S.E.M., n = 10) between TPA addition and the onset of the contractile response. Once initiated, the contractile response is progressive and sustained. When perfusion conditions are altered in such a way as to modify calcium flux across the plasma membrane (i.e., raising the extracellular calcium concentration to 2.5 mM Ca++, raising the extracellular potassium concentration to 10 mM, and/or preincubating the tissues in media containing 100 nM Bay K 8644, a potent calcium channel agonist), the latency period between TPA addition and initiation of the contractile response is significantly reduced (2.5 mM Ca++, 37 +/- 7 min; 10 mM K+ and 2.5 mM Ca++, 11 +/- 3 min; 100 nM Bay K 8644 and 1.5 mM Ca++, 20 +/- 7 min; 100 nM Bay K 8644 and 2.5 mM Ca2+, 8.5 +/- 1.7 min; 10 mM K+ and 100 nM Bay K 8644, 11 +/- 5 min). Likewise, the combination of 2.5 mM calcium, 100 nM Bay K 8644, and 3.3 microM ouabain results in a contractile response 4.5 +/- 2.0 min after TPA addition (means +/- S.E.M., n = 4). Control tissues (absence of TPA addition) run simultaneously show no contractile responses to the various Ca++ flux regulators even after 90 min of incubation.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    NASA Astrophysics Data System (ADS)

    van der Laan, Sander; Manohar, Swagath; Vermeulen, Alex; Bosveld, Fred; Meijer, Harro; Manning, Andrew; van der Molen, Michiel; van der Laan-Luijkx, Ingrid

    2016-11-01

    We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC), to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn) surface flux is calculated from short-term changes in ambient (222Rn) activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels) and space (i.e. over the footprint of the observations). The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual) means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW) and Lutjewad station (LUT). For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02) atoms cm-2 s-1 with values > 0.5 atoms cm-2 s-1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04) atoms cm-2 s-1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include calibration of process-based 222Rn soil flux models, validation

  2. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.

    PubMed

    Qu, Jianliang; Chen, Weihai; Zhang, Jianbin

    2014-09-01

    Parallel alignment stage with remote-center-of-motion (RCM) is of key importance in precision out-of-plane aligning since it can eliminate the harmful lateral displacement generated at the output platform. This paper presents the development of a parallelogram-based compliant RCM stage for active parallel alignment. Different from conventional parallelogram-based RCM mechanism, the proposed stage is designed with compliant mechanisms, which endows the stage with many attractive merits when used in precision micro-/nanomanipulations. A symmetric double-parallelogram mechanism (SDPM) based on flexure hinges is developed as the rotary guiding component to realize desired RCM function. Due to the geometrical constraint of the SDPM, the operating space of the stage can be easily adjusted by bending the input links without loss of rotational precision. The stage is driven by a piezoelectric actuator and its output motion is measured by non-contact displacement sensors. Based on pseudo-rigid-body simplification method, the analytical models predicting kinematics, statics, and dynamics of the RCM stage have been established. Besides, the dimensional optimization is conducted in order to maximize the first resonance frequency of the stage. After that, finite element analysis is conducted to validate the established models and the prototype of the stage is fabricated for performance tests. The experimental results show that the developed RCM stage has a rotational range of 1.45 mrad while the maximum center shift of the RCM point is as low as 1 μm, which validate the effectiveness of the proposed scheme.

  3. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Isla, Alejandro; Scharek, Renate; Latasa, Mikel

    2015-03-01

    The diel vertical migration (DVM) of zooplankton contributes to the biological pump transporting material from surface to deep waters. We examined the DVM of the zooplankton community in different size fractions (53-200 μm, 200-500 μm, 500-1000 μm, 1000-2000 μm and > 2000 μm) during three cruises carried out in the open NW Mediterranean Sea. We assessed their metabolic rates from empirical published relationships and estimated the active fluxes of dissolved carbon to the mesopelagic zone driven by migrant zooplankton. Within the predominantly oligotrophic Mediterranean Sea, the NW region is one of the most productive ones, with a seasonal cycle characterized by a prominent spring bloom. The study area was visited at three different phases of the seasonal cycle: during the spring bloom, the post-bloom, and strongly stratified oligotrophic conditions. We found seasonal differences in DVM, less evident during the bloom. Changes in DVM intensity were related to the composition of the zooplanktonic assemblage, which also varied between cruises. Euphausiids appeared as the most active migrants in all seasons, and their life cycle conditioned the observed pattern. Immature stages, which are unable to perform large diel vertical movements, dominated during the bloom, in contrast to the higher relative importance of migrating adults in the other two sampling periods. The amount of dissolved carbon exported was determined by the migrant zooplankton biomass, being highest during the post-bloom (2.2 mmol C respired m- 2 d- 1, and up to 3.1 mmol C exported m- 2 d- 1 when DOC release estimations are added). The active transport by diel migrants represented a substantial contribution to total carbon export to deep waters, especially under stratified oligotrophic conditions, revealing the importance of zooplankton in the biological pump operating in the study area.

  4. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  5. The Vestibulo-ocular Reflex During Active Head Motion in Chiari II Malformation

    PubMed Central

    Salman, Michael S.; Sharpe, James A.; Lillakas, Linda; Dennis, Maureen; Steinbach, Martin J.

    2008-01-01

    Background Chiari type II malformation (CII) is a developmental anomaly of the cerebellum and brainstem, which are important structures for processing the vestibulo-ocular reflex (VOR). We investigated the effects of the deformity of CII on the angular VOR during active head motion. Methods Eye and head movements were recorded using an infrared eye tracker and magnetic head tracker in 20 participants with CII [11 males, age range 8-19 years, mean (SD) 14.4 (3.2) years]. Thirty-eight age-matched healthy children and adolescents (21 males) constituted the control group. Participants were instructed to ‘look’ in darkness at the position of their thumb, placed 25 cm away, while they made horizontal and vertical sinusoidal head rotations at frequencies of about 0.5 Hz and 2 Hz. Parametric and non-parametric tests were used to compare the two groups. Results The VOR gains, the ratio of eye to head velocities, were abnormally low in two participants with CII and abnormally high in one participant with CII. Conclusion The majority of participants with CII had normal VOR performance in this investigation. However, the deformity of CII can impair the active angular VOR in some patients with CII. Low gain is attributed to brainstem damage and high gain to cerebellar dysfunction. PMID:18973069

  6. Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.

    PubMed

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F; Williams, Susan H; German, Rebecca Z; Sanford, Christopher P J; Gintof, Chris

    2011-08-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.

  7. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging.

  8. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  9. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog.

    PubMed

    Freitag, Thomas E; Toet, Sylvia; Ineson, Phil; Prosser, James I

    2010-07-01

    The relationship between biogeochemical process rates and microbial functional activity was investigated by analysis of the transcriptional dynamics of the key functional genes for methanogenesis (methyl coenzyme M reductase; mcrA) and methane oxidation (particulate methane monooxygenase; pmoA) and in situ methane flux at two peat soil field sites with contrasting net methane-emitting and -oxidizing characteristics. qPCR was used to quantify the abundances of mcrA and pmoA genes and transcripts at two soil depths. Total methanogen and methanotroph transcriptional dynamics, calculated from mcrA and pmoA gene : transcript abundance ratios, were similar at both sites and depths. However, a linear relationship was demonstrated between surface mcrA and pmoA transcript dynamics and surface flux rates at the methane-emitting and methane-oxidizing sites, respectively. Results indicate that methanotroph activity was at least partially substrate-limited at the methane-emitting site and by other factors at the methane-oxidizing site. Soil depth also contributed to the control of surface methane fluxes, but to a lesser extent. Small differences in the soil water content may have contributed to differences in methanogen and methanotroph activities. This study therefore provides a first insight into the regulation of in situ, field-level surface CH(4) flux at the molecular level by an accurate reflection of gene : transcript abundance ratios for the key genes in methane generation and consumption.

  10. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    SciTech Connect

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u

    2010-09-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  11. Formation of sunspots and active regions through the emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Matthias D.; Fan, Yuhong

    2016-05-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the near surface layer radiation MHD simulations of magneto-convection and flux emergence with the MURaM code. The latter code simulates the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere.The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries come most probably from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted and the leading sides of the emerging flux tubes are usually up against the downdraft lanes of the giant cells. It is also found that penumbrae with numerous filamentary structures form in regions of strong horizontal magnetic fields that naturally comes from the ongoing flux emergence. In contrast to previous models, the penumbrae and umbrae are divided by very sharp boarders, which is highly consistent with observations.

  12. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    SciTech Connect

    Koski, J. A.; Keltner, N. R.; Nicolette, V. F.; Wix, S. D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average heat fluxes of 50 to 60 kW/m{sup 2} are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m{sup 2} are routinely observed in fires. Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container could be better predicted, design analyses would become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions.

  13. Gravity wave activity in the thermosphere inferred from GOCE data, and its dependence on solar flux conditions.

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Bruinsma, Sean; Doornbos, Eelco; Massarweh, Lotfi

    2016-04-01

    This study is focused on the effect of solar flux conditions on the dynamics of Gravity Waves (GW) in thermosphere. Air density and cross-wind in situ estimates from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometers are analyzed for the whole mission duration. The analysis was performed in the Fourier spectral domain averaging spectral results over periods of 2 months close to solstices. First the Amplitude Spectral Density (ASD) and the Magnitude Squared Coherence (MSC) of physical parameters are linked to local gravity waves. Then, a new GW marker (called Cf3) was introduced here to constrain GWs activity under Low, Medium and High solar flux conditions, showing a clear solar dumping effect on GW activity. Most of GW signal has been found in a spectral range above 8 mHz in GOCE data, meaning a maximum horizontal wavelength around 1000 km. The level GW activity at GOCE altitude is strongly decreasing with increasing solar flux. Furthermore, a shift in the dominant frequency with solar flux conditions has been noted, leading to a larger horizontal wavelengths (from 200 to 500 km) during high solar flux conditions. The influence of correlated error sources, between air density and cross-winds, is discussed. Consistency of the spectral domain results has been verified in time-domain with a global mapping of high frequency perturbations along GOCE orbit. This analysis shows a clear dependence with geomagnetic latitude with strong perturbations at magnetic poles, and an extension to lower latitudes favoured by low solar activity conditions. Various possible causes of this spatial trend are discussed.

  14. Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earth's magnetopause.

    PubMed

    Øieroset, M; Phan, T D; Eastwood, J P; Fujimoto, M; Daughton, W; Shay, M A; Angelopoulos, V; Mozer, F S; McFadden, J P; Larson, D E; Glassmeier, K-H

    2011-10-14

    We report the direct detection by three THEMIS spacecraft of a magnetic flux rope flanked by two active X lines producing colliding plasma jets near the center of the flux rope. The observed density depletion and open magnetic field topology inside the flux rope reveal important three-dimensional effects. There was also evidence for nonthermal electron energization within the flux rope core where the fluxes of 1-4 keV superthermal electrons were higher than those in the converging reconnection jets. The observed ion and electron energizations differ from current theoretical predictions.

  15. Impact of seabird activity on nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Zhu, Renbin; Chen, Qingqing; Ding, Wei; Xu, Hua

    2012-12-01

    In this study, tundra N2O and CH4 fluxes were measured from one seabird sanctuary (SBT) and two non-seabird colonies (NST-I and NST-II) in Ny-Ålesund (79°55'N, 11°56'E), Svalbard during the summers of 2008 and 2009. N2O and CH4 fluxes from SBT showed large temporal and spatial variations depending on the intensity of seabird activity. High seabird activity sites showed large N2O and CH4 emissions while low N2O and CH4 emissions, even CH4 uptake occurred at medium and low seabird activity sites. Overall the mean fluxes were 18.3 ± 3.6 μg N2O m-2 h-1 and 53.5 ± 20.3 μg CH4 m-2 h-1 from tundra SBT whereas tundra NST-I and NST-II represented a relatively weak N2O source (8.3 ± 13.2 μg N2O m-2 h-1) and strong CH4 sink (-82.8 ± 22.3 μg CH4 m-2 h-1). Seabird activity was the strongest control of N2O and CH4 fluxes compared with soil temperature and moisture, and high N2O and CH4 emissions were created by soil physical and chemical processes (the sufficient supply of nutrients NH4+-N, NO3--N, total nitrogen, total phosphorus and total carbon from seabird guano, seabird tramp and appropriate water content) related to the seabird activity. Our work suggests that tundra ecosystems impacted by seabird activity are the potential "hotspots" for N2O and CH4 emissions although these sources have been largely neglected at present. Furthermore the combination of seabird activity and warming climate will likely further enhance N2O and CH4 emissions from the High Arctic tundra.

  16. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  17. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  18. A framework for activity detection in wide-area motion imagery

    SciTech Connect

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

  19. Three-dimensional kinematic analysis of active cervical spine motion by using a multifaceted marker device.

    PubMed

    Tsunezuka, Hiroaki; Kato, Daishiro; Okada, Satru; Ishihara, Shunta; Shimada, Junichi

    2013-01-01

    Assessing cervical range of motion (CROM) is an important part of the clinical evaluation of patients with conditions such as whiplash syndrome. This study aimed to develop a convenient and accurate system involving multifaceted marker device (MMD)-based assessment of 3-dimensional (3D) dynamic coupled CROM and joint angular velocity. We used an infrared optical tracking system and our newly developed MMD that solved problems such as marker shielding and reflection angle associated with the optical tracking devices and enabled sequential and accurate analysis of the 3D dynamic movement of the polyaxial joint and other structurally complicated joints. The study included 30 asymptomatic young male volunteers (age, 22-27 years). The MMD consisted of 5 surfaces and 5 markers and was attached to the participant's forehead. We measured active CROM (axial rotation, flexion/extension, and lateral bending) and joint angular velocity by the MMD. The MMD was easy to use, safe for patients and operators, could be constructed economically, and generated accurate data such as dynamic coupled CROM and angular velocity.

  20. Flux pinning characteristics and irreversibility line in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  1. Oak Ridge National Laboratory's (ORNL) Weigh-In-Motion (WIM) Configuration and Data Management Activities

    SciTech Connect

    Abercrombie, Robert K; Sheldon, Frederick T; Schlicher, Bob G

    2006-01-01

    The Oak Ridge National Laboratory (ORNL) involvement in the Weigh-in-Motion (WIM) research with both government agencies and private companies dates back to 1989. The discussion here will focus on the US Army's current need for an automated WIM system to weigh and determine the center-of-balance for military wheeled vehicles and cargo and the expanded uses of WIM data. ORNL is addressing configuration and data management issues as they relate to deployments for both military and humanitarian activities. The transition from the previous WIM Gen I to the current Gen II system illustrates a configuration and data management solution that ensures data integration, integrity, coherence and cost effectiveness. Currently, Army units use portable and fixed scales, tape measures, and calculators to determine vehicle axle, total weights and center of balance for vehicles prior to being transshipped via railcar, ship, or airlifted. Manually weighing and measuring all vehicles subject to these transshipment operations is time-consuming, labor-intensive, hazardous and is prone to human errors (e.g., misreading scales and tape measures, calculating centers of balance and wheel, axle, and vehicle weights, recording data, and transferring data from manually prepared work sheets into an electronic data base and aggravated by adverse weather conditions). Additionally, in the context of the military, the timeliness, safety, success, and effectiveness of airborne heavy-drop operations can be significantly improved by the use of an automated system to weigh and determine center of balance of vehicles while they are in motion. The lack of a standardized airlift-weighing system for joint service use also creates redundant weighing requirements at the cost of scarce resources and time. This case study can be judiciously expanded into commercial operations related to safety and enforcement. The WIM program will provide a means for the Army to automatically identify/weigh and monitor

  2. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  3. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints of the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.

  4. Cortical activation associated with determination of depth order during transparent motion perception: A normalized integrative fMRI-MEG study.

    PubMed

    Natsukawa, Hiroaki; Kobayashi, Tetsuo

    2015-10-01

    When visual patterns drifting in different directions and/or at different speeds are superimposed on the same plane, observers perceive transparent surfaces on planes of different depths. This phenomenon is known as transparent motion perception. In this study, cortical activities were measured using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to reveal the cortical dynamics associated with determination of depth order during transparent motion perception. In addition, offline eye movement measurements were performed to determine the latencies of the start of both pursuit eye movements and depth attention that are important in determination of the depth order. MEG and fMRI data were analyzed by a normalized integrative fMRI-MEG method that enables reconstruction of time-varying dipole moments of activated regions from MEG signals. Statistical analysis of fMRI data was performed to identify activated regions. The activated regions were used as spatial constraints for the reconstruction using the integrative fMRI-MEG method. We focused on the period between latencies (216-405 ms) determined by eye movement experiment, which are related to determination of the depth order. The results of integrative analysis revealed that significant neural activities were observed in the visual association area, the human middle temporal area, the intraparietal sulcus, the lateral occipital cortex, and the anterior cingulate cortex between 216 and 405 ms. These results suggest that initial eye movement and accompanying cortical activations during focused duration play an important role in determining the depth order during transparent motion perception.

  5. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes.

    PubMed

    Castaldi, S; Riondino, M; Baronti, S; Esposito, F R; Marzaioli, R; Rutigliano, F A; Vaccari, F P; Miglietta, F

    2011-11-01

    Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m(-2)) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N(2)O, CH(4) and CO(2) fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N(2)O fluxes were from 26% to 79% lower than N(2)O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N(2)O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH(4) fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.

  6. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study1

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141

  7. SPINNING MOTIONS IN CORONAL CAVITIES

    SciTech Connect

    Wang, Y.-M.; Stenborg, G. E-mail: guillermo.stenborg.ctr.ar@nrl.navy.mi

    2010-08-20

    In movies made from Fe XII 19.5 nm images, coronal cavities that graze or are detached from the solar limb appear as continually spinning structures, with sky-plane projected flow speeds in the range 5-10 km s{sup -1}. These whirling motions often persist in the same sense for up to several days and provide strong evidence that the cavities and the immediately surrounding streamer material have the form of helical flux ropes viewed along their axes. A pronounced bias toward spin in the equatorward direction is observed during 2008. We attribute this bias to the poleward concentration of the photospheric magnetic flux near sunspot minimum, which leads to asymmetric heating along large-scale coronal loops and tends to drive a flow from higher to lower latitudes; this flow is converted into an equatorward spinning motion when the loops pinch off to form a flux rope. As sunspot activity increases and the polar fields weaken, we expect the preferred direction of the spin to reverse.

  8. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly

    PubMed Central

    Mendes, Pedro; Oliver, Stephen G.; Kell, Douglas B.

    2015-01-01

    A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed ‘randomly’ they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single ‘random’ transporter could account for the flux 42% of the time, and that two transporters can achieve 10 · 10−6 cm·s−1 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that ‘phospholipid bilayer diffusion (of drugs) is negligible’ is not disproved by the calculations of ‘likely’ transporter-based fluxes. PMID:26538313

  9. Activation of autophagy flux by metformin downregulates cellular FLICE–like inhibitory protein and enhances TRAIL- induced apoptosis

    PubMed Central

    Nazim, Uddin MD; Moon, Ji-Hong; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL is regarded as one of the most promising anticancer agents, because it can destruct cancer cells without showing any toxicity to normal cells. Metformin is an anti-diabetic drug with anticancer activity by inhibiting tumor cell proliferation. In this study, we demonstrated that metformin could induce TRAIL-mediated apoptotic cell death in TRAIL-resistant human lung adenocarcinoma A549 cells. Pretreatment of metformindownregulation of c-FLIP and markedly enhanced TRAIL-induced tumor cell death by dose-dependent manner. Treatment with metformin resulted in slight increase in the accumulation of microtubule-associated protein light chain LC3-II and significantly decreased the p62 protein levels by dose-dependent manner indicated that metformin induced autophagy flux activation in the lung cancer cells. Inhibition of autophagy flux using a specific inhibitor and genetically modified ATG5 siRNA blocked the metformin-mediated enhancing effect of TRAIL. These data demonstrated that downregulation of c-FLIP by metformin enhanced TRAIL-induced tumor cell death via activating autophagy flux in TRAIL-resistant lung cancer cells and also suggest that metformin may be a successful combination therapeutic strategy with TRAIL in TRAIL-resistant cancer cells including lung adenocarcinoma cells. PMID:26992204

  10. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  11. Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder.

    PubMed

    Eaton, D C; Frace, A M; Silverthorn, S U

    1982-01-01

    The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal 22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions, n, with a maximal flux, MMAX, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value for MMAX of 287.8 pM cm-2 sec-1 with an intracellular Na concentration of 2.0 mM Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40 +/- 0.07 for the transport process.

  12. Using Motion-Sensor Games to Encourage Physical Activity for Adults with Intellectual Disability.

    PubMed

    Taylor, Michael J; Taylor, David; Gamboa, Patricia; Vlaev, Ivo; Darzi, Ara

    2016-01-01

    Adults with Intellectual Disability (ID) are at high risk of being in poor health as a result of exercising infrequently; recent evidence indicates this is often due to there being a lack of opportunities to exercise. This pilot study involved an investigation of the use of motion-sensor game technology to enable and encourage exercise for this population. Five adults (two female; 3 male, aged 34-74 [M = 55.20, SD = 16.71] with ID used motion-sensor games to conduct exercise at weekly sessions at a day-centre. Session attendees reported to have enjoyed using the games, and that they would like to use the games in future. Interviews were conducted with six (four female; two male, aged 27-51 [M = 40.20, SD = 11.28]) day-centre staff, which indicated ways in which the motion-sensor games could be improved for use by adults with ID, and barriers to consider in relation to their possible future implementation. Findings indicate motion-sensor games provide a useful, enjoyable and accessible way for adults with ID to exercise. Future research could investigate implementation of motion-sensor games as a method for exercise promotion for this population on a larger scale.

  13. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion

    PubMed Central

    Selen, L. P. J.; Medendorp, W. P.

    2014-01-01

    Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108

  14. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion.

    PubMed

    Gutteling, T P; Selen, L P J; Medendorp, W P

    2015-03-01

    Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion.

  15. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-05-20

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (∼36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as 'magnetic breakout', are operating during the emergence of new active regions.

  16. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  17. Determination of aluminum and phosphorus in biological materials by reactor activation analysis using germanium as integral flux monitor and comparator.

    PubMed

    Furnari, J C; Cohen, I M

    1994-01-01

    A method for determination of aluminum and phosphorus in biological materials, based on activation in a nuclear reactor and measurement of 28Al, produced by the 27Al(n, gamma)28Al and 31P(n, alpha)28Al reactions, is described. Irradiations in the undisturbed and epicadmium spectra provide a two-equation system in order to determine the contributions of aluminum and phosphorus to the total activities. Germanium is used as an integral flux monitor and comparator, through the reactions: 74Ge(n, gamma)75Ge, 76Ge(n, gamma)77Ge, and 72Ge(n,p)72Ga.

  18. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    PubMed

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-07

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  19. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  20. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  1. Use of Temperature and Surface Gas Flux as Novel Measures of Microbial Activity at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Warren, E.; Sihota, N. J.; Hostettler, F. D.

    2012-12-01

    Degradation of crude oil in the subsurface has been studied for over 30 years at a spill site located near Bemidji, Minnesota, USA. The well-characterized site is being used to experiment with the use of surface gas flux and temperature measurements as novel methods for quantifying microbial activity. In the largest subsurface oil body, a 2-m-thick smear zone spans the water table 6-8 m below the surface. Methane produced from degradation of the oil diffuses upward and mixes with oxygen from the surface supporting aerobic methanotrophy at 2-4 m depth. The methane oxidation produces CO2 and heat at rates which are hypothetically proportional to other measures of subsurface microbial activity. To test this hypothesis, vertical profiles of temperature and microbial populations, surface CO2 flux, and oil degradation state were measured at three sites in the oil body and one background site. Temperature increases in the oil zone near the water table were 1-4°C above the background site. The site with the highest temperature increase at the water table also had the highest concentrations of gene copy numbers for methanogens (mcrA) and methanotrophs (pmoA) along with the most degraded oil. Surface CO2 flux over the oil sites averaged more than twice that at the background site but was not consistently highest over the site with the highest activity by other measures. One possible explanation for this discrepancy is variation in the effective diffusion coefficient of the vadose zone between the methanotrophic zone and the surface. At the level of the methanotrophic zone, temperatures were elevated 2-6°C over the background values but again the site with greatest average annual temperature increase was not at the most active site. This may be due to enhanced recharge at the most active site, which lies at the center of a local topographic depression where focused recharge occurs. Overall, the temperature and flux data showed significant increases at the oil sites compared

  2. Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion.

    PubMed

    Mikhailov, Victor A; Cooper, Helen J

    2009-05-01

    Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO(2) laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.

  3. Effect of Erbium substitution on temperature and field dependence of thermally activated flux flow resistance in Bi-2212 superconductor

    NASA Astrophysics Data System (ADS)

    Paladhi, D.; Mandal, P.; Sahoo, R. C.; Giri, S. K.; Nath, T. K.

    2016-12-01

    Thermally activated flux flow (TAFF) regime of Er doped Bi2Sr2Ca1-xErxCu2O8+δ (x=0.0, 0.1, 0.3) polycrystalline systems have been investigated using magneto-transport measurements up to 70 kOe magnetic field. High quality single phase samples have been prepared by standard solid state reaction method. The activation energy or pinning strength (U0) have been calculated using thermally activated flux flow (TAFF) model by linear fitting from the semi-logarithmic curve of ln ρ vs 1/T. It has been observed that activation energy (U0) decreases with Er substitution and U0 follows power law dependence with magnetic field for all three samples. Irreversibility lines (IL) have been drawn from the magneto-transport data for all three samples and it is observed that IL shifts to lower temperature with higher Er concentration. It is confirmed from the above results that pinning strength becomes weaker with Er doping. Finally, the variation of U0 have been shown with temperature by re-plotting -T(ln (ρ/ρ100)) vs T for three samples showing non-linear dependence with temperature.

  4. Low-energy electron flux and its reaction to active experimentation of Spacelab

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.

    1981-01-01

    An instrument capable of observing the natural electron flux in the energy range from 0.1 to 12.0 kiloelectron volts is discussed for use in an experiment intended as a forerunner of a method that will utilize artificially accelerated electrons as tracer particles for electron fields parallel to the magnetic field. Effects that are of importance either as means of detecting the echo beam or as causes of beam perturbations (e.g., spacecraft charging effects and electron background) are to be studied. The use of electron accelerators as a tool to probe magnetospheric processes rather than to modify them is planned.

  5. The relationship between the active cervical range of motion and changes in head and neck posture after continuous VDT work.

    PubMed

    Yoo, Won-Gyu; An, Duk-Hyun

    2009-04-01

    This study investigated the relationship between the active cervical range of motion (ROM) and changes in the head and neck posture after continuous visual display terminal (VDT) work. Twenty VDT workers were recruited from laboratories. The active cervical ROM of the participants was measured and videotaped to capture the craniocervical and cervicothoracic angles using a single video camera before and after VDT work. Pearson correlation coefficients were used to quantify the linear relationship between active cervical ROM measurements and the changes in the craniocervical and cervicothoracic angles after continuous VDT work. Active neck extension (r=-0.84, p<0.01) was negatively correlated with the mean craniocervical angle, and active neck flexion (r=-0.82, p<0.01) and left lateral flexion (r=-0.67, p<0.01) were negatively correlated with the mean cervicothoracic angle.

  6. A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator.

    PubMed

    Kanik, Mehmet; Say, Mehmet Girayhan; Daglar, Bihter; Yavuz, Ahmet Faruk; Dolas, Muhammet Halit; El-Ashry, Mostafa M; Bayindir, Mehmet

    2015-04-08

    A multilayered triboelectric nanogenerator (MULTENG) that can be actuated by acoustic waves, vibration of a moving car, and tapping motion is built using a 3D-printing technique. The MULTENG can generate an open-circuit voltage of up to 396 V and a short-circuit current of up to 1.62 mA, and can power 38 LEDs. The layers of the triboelectric generator are made of polyetherimide nanopillars and chalcogenide core-shell nanofibers.

  7. Neutron flux measurement using activated radioactive isotopes at the Baksan underground scintillation telescope

    NASA Astrophysics Data System (ADS)

    Kochkarov, M. M.; Alikhanov, I. A.; Boliev, M. M.; Dzaparova, I. M.; Novoseltseva, R. V.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.

    2016-11-01

    Preliminary results of a neutron background measurement at the Baksan underground scintillation telescope (BUST) are presented. The external planes of the BUST are fully covered with standard scintillation detectors shielding the internal planes and suppressing thus background events due to cosmogenic and local radioactivity. The shielded internal planes were used as target for the neutron flux registration. The experimental method is based on the delayed coincidences between signals from any of the BUST counters. It is assumed that the first signal is due to inelastic interaction of a neutron with the organic scintillator, while the second signal comes from the decay of an unstable radioactive isotope formed when the fast neutron interacts with the 12C nuclei. Using the Monte-Carlo method (GEANT4) we also simulated propagation of neutrons through a layer of scintillator. The experimentally found muon induced neutron flux is j =1.3 -0.3 +0.7 ×10-10cm-2s-1 for neutron energies E ≥ 22MeV, which is in a qualitative agreement with similar measurements of other underground laboratories as well as with predictions of the GEANT4.

  8. Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy.

    PubMed

    Munteanu, Sorin; Roger, Jean Paul; Fedala, Yasmina; Amiot, Fabien; Combellas, Catherine; Tessier, Gilles; Kanoufi, Frédéric

    2013-01-01

    The coating of gold (Au) electrode surfaces with nitrophenyl (NP) layers is studied by combination of electrochemical actuation and optical detection. The electrochemical actuation of the reduction of the nitrobenzenediazonium (NBD) precursor is used to generate NP radicals and therefore initiate the electrografting. The electrografting process is followed in situ and in real time by light reflectivity microscopy imaging, allowing for spatio-temporal imaging with sub-micrometer lateral resolution and sub-nanometer thickness sensitivity of the local growth of a transparent organic coating onto a reflecting Au electrode. The interest of the electrochemical actuation resides in its ability to finely control the grafting rate of the NP layer through the electrode potential. Coupling the electrochemical actuation with microscopic imaging of the electrode surface allows quantitative estimates of the local grafting rates and subsequently a real time and in situ mapping of the reacting fluxes of NP radicals on the surface. Over the 2 orders of magnitude range of grafting rates (from 0.04 to 4 nm s(-1)), it is demonstrated that the edge of Au electrodes are grafted -1.3 times more quickly than their centre, illustrating the manifestation of edge-effects on flux distribution at an electrode. A model is proposed to explain the observed edge-effect, it relies on the short lifetime of the intermediate NP radical species.

  9. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  10. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.

    PubMed

    Wang, Qingzhao; Ou, Mark S; Kim, Y; Ingram, L O; Shanmugam, K T

    2010-04-01

    During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo. Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed between the PDH* and PFL pathways. A pfl mutant with LDH and PDH* activities, as well as a pfl ldh double mutant with PDH* activity, had a surprisingly low cell yield per mole of ATP (Y(ATP)) (about 7.0 g of cells per mol of ATP) compared to 10.9 g of cells per mol of ATP for the wild type. The lower Y(ATP) suggests the operation of a futile energy cycle in the absence of PFL in this strain. An understanding of the controls at the pyruvate node during anaerobic growth is expected to provide unique insights into rational metabolic engineering of E. coli and related bacteria for the production of various biobased products at high rates and yields.

  11. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  12. The flexion–rotation test performed actively and passively: a comparison of range of motion in patients with cervicogenic headache

    PubMed Central

    Bravo Petersen, Shannon M.; Vardaxis, Vassilios G.

    2015-01-01

    Limitation in cervical spine range of motion (ROM) is one criterion for diagnosis of cervicogenic headaches (CHs). The flexion–rotation test, when performed passively (FRT-P), has been shown to be a useful test in diagnosis of CH. Few investigations have examined the flexion-rotation test when performed actively (FRT-A) by the individual, and no studies have examined the FRT-A in a symptomatic population. The purpose of this study was to compare ROM during the FRT-A and FRT-P in patients with CH and asymptomatic individuals and to compare ROM between sides for these two versions of the test. Twelve patients with CH and 10 asymptomatic participants were included in the study. An eight-camera Motion Analysis system was used to measure head motion relative to the trunk during the FRT-P and the FRT-A. Cervical rotation ROM was measured in a position of full cervical flexion for both tests. No significant difference was observed between right and left sides for cervical rotation ROM during the FRT-P nor the FRT-A when performed by asymptomatic participants. In patients with CH, a significant difference was observed between sides for the FRT-P (P = 0.014); however, the FRT-A failed to reveal bilateral descrepancy in rotation ROM. PMID:26109826

  13. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    PubMed Central

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-01-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846

  14. Increasing dust fluxes on the northeastern Tibetan Plateau linked with the Little Ice Age and recent human activity since the 1950s

    NASA Astrophysics Data System (ADS)

    Wan, Dejun; Jin, Zhangdong; Zhang, Fei; Song, Lei; Yang, Jinsong

    2016-12-01

    Arid and semi-arid areas in inner Asia contribute lots of mineral dust in the northern hemisphere, but dust flux evolution in the past is poorly constrained. Based on particle sizes and elemental compositions of a sediment core from Lake Qinghai on the northeastern Tibetan Plateau, dust fluxes during ∼1518-2011 A.D. were reconstructed based on 18-100 μm fractions of the lake sediment. The dust fluxes during the past ∼500 years ranged between 100 and 300 g/m2/yr, averaging 202 g/m2/yr, experiencing four stages: Stage 1 (∼1518-1590s), the flux was averaged 165 g/m2/yr, much lower than that in the Stage 2 (1590s-1730s, 254 g/m2/yr); similarly, an average flux of 169 g/m2/yr in the Stage 3 (1730s-1950s) was followed by an increased flux of 259 g/m2/yr in the Stage 4 (1950s-2011). During the first three stages the fluxes were dominated by natural dust activities in arid inner Asia, having a positive relation with wind intensity but a poor correlation with effective moisture (or precipitation) and temperature. The high dust flux in Stage 2 was due to relatively strong wind during the maximum Little Ice Age, whereas the remarkably high flux in 1950s-2011 was resulted from recent increasing human activities in northwestern China. The dust record not only documents past dust fluxes on the northeastern Tibetan Plateau but also reflects evolutions and mechanisms of dust activity/emission in inner Asia during the past ∼500 years.

  15. Controls on gross fluxes of nitrous oxide and methane from an active agricultural ecosystem

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Silver, W. L.

    2013-12-01

    Agricultural soils can be a significant source of greenhouse gas emissions. Most research on the dynamics of these gases measure net fluxes across the soil-atmosphere interface. This approach limits our ability to determine driving variables because production and consumption processes occur simultaneously, and may be controlled by different factors. We used the trace gas stable isotope pool dilution technique to simultaneously measure field rates of gross production and consumption of N2O and CH4 during the growing season in a corn field located in the Sacramento-San Joaquin Delta, California. We also measured net nitrogen (N) mineralization and nitrification rates, soil temperature, soil moisture, and soil carbon dioxide (CO2) emissions to explore their role as drivers of greenhouse gas fluxes. Across five sampling dates spanning from seeding to senescence, net N2O fluxes ranged from 0 - 4.5 mg N m-2 d-1 and averaged 1.6 × 0.2 mg N m-2 d-1 (n = 112). Gross N2O production ranged from 0.09 - 6.6 mg N m-2 d-1 and gross N2O reduction rates ranged from 0.00 - 0.95 mg N m-2 d-1. The N2O yield averaged 0.68 × 0.02 (n = 40). At peak growth (days after seeding 59 and 94), 89 % of the variability in gross N2O production rates was predicted by the combination of soil moisture, soil temperature, net N mineralization, and CO2 emissions (n = 15, p < 0.001); and 91 % of the variability in gross N2O reduction rates was predicted by net N mineralization and net nitrification together (n = 15, p < 0.001). When the corn was not at peak growth (days after seeding 11, 24, and 171), gross N2O production was most strongly correlated with soil temperature (R2 = 0.20, n = 24, p = 0.03), and gross N2O reduction rates were best predicted by CO2 emissions (R2 = 0.80, n =24, p < 0.001). Net CH4 fluxes ranged from -1.3 to 0.44 mg C m-2 d-1 but fluxes were not detectable for 94 out of 112 measurements. Overall net CH4 fluxes averaged -0.03 × 0.02 mg C m-2 d-1. Using the trace gas pool

  16. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii)

    USGS Publications Warehouse

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E.; Delaney, David F.; Sinervo, Barry; Murphy, Mason O.; Ennen, Joshua R.; Briggs, Jessica R.; Cooper, Robert J.; Price, Steven J.

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  17. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).

    PubMed

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E; Delaney, David; Sinervo, Barry; Murphy, Mason O; Ennen, Joshua R; Briggs, Jessica R; Cooper, Robert; Price, Steven J

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  18. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    PubMed

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  19. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.

    PubMed

    Jiang, Hong-Ren; Yoshinaga, Natsuhiko; Sano, Masaki

    2010-12-31

    We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.

  20. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model

    NASA Astrophysics Data System (ADS)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bx<1 , it is subcritical. For stock prices we find bx=1 within statistical uncertainty, for all x , consistent with an “efficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.

  1. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model.

    PubMed

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series X(t). The branching ratio b(x) is defined as b(x)=E[xi(x)/x]. The random variable xi(x) is the value of the next signal given that the previous one is equal to x, so xi(x)=[X(t+1) | X(t)=x]. If b(x)>1, the process is on average supercritical when the signal is equal to x, while if b(x)<1, it is subcritical. For stock prices we find b(x)=1 within statistical uncertainty, for all x, consistent with an "efficient market hypothesis." For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, b(x) is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where b(x) approximately equal 1, which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for X(t) and for xi(x). For the BTW model the distribution of xi(x) is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where b(x) is close to one disappears once bulk dissipation is introduced in the BTW model-supporting our hypothesis that it is an indicator of criticality.

  2. Hip range of motion during daily activities in patients with posterior pelvic tilt from supine to standing position.

    PubMed

    Tamura, Satoru; Miki, Hidenobu; Tsuda, Kosuke; Takao, Masaki; Hattori, Asaki; Suzuki, Naoki; Yonenobu, Kazuo; Sugano, Nobuhiko

    2015-04-01

    In most patients with hip disorders, the anterior pelvic plane (APP) sagittal tilt does not change from supine to standing position. However, in some patients, APP sagittal tilt changes more than 10° posteriorly from supine to standing position. The purpose of this study was to both examine APP sagittal tilt and investigate the hip flexion and extension range of motion (ROM) required during daily activities in these atypical patients. Patient-specific 4-dimensional (4D) motion analysis was performed for 50 hips from 44 patients who had undergone total hip arthroplasty. All patients divided into two categories, such as atypical patients for whom the pelvis tilted more than 10° posteriorly from supine to standing position preoperatively (19 hips from 18 patients) and the remaining typical patients (31 hips from 26 patients). The required hip flexion and extension angles did not differ significantly between atypical patients and typical patients. In conclusion, the hip flexion ROM during deep bending activities and hip extension ROM during extension activities required in those atypical patients with pelvic tilt more than 10° backward from supine to standing position did not shift in the direction of extension.

  3. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making.

    PubMed

    Huk, Alexander C; Shadlen, Michael N

    2005-11-09

    Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the formation of perceptual decisions in a random dot direction-discrimination task in which monkeys communicate their decisions with eye-movement responses. We tested the hypothesis that decision-related neural activity in LIP represents the time integral of the momentary motion "evidence." By briefly perturbing the strength of the visual motion stimulus during the formation of perceptual decisions, we tested whether this LIP activity reflected a persistent, integrated "memory" of these brief sensory events. We found that the responses of LIP neurons reflected substantial temporal integration. Brief pulses had persistent effects on both the monkeys' choices and the responses of neurons in LIP, lasting up to 800 ms after appearance. These results demonstrate that LIP is involved in neural time integration underlying the accumulation of evidence in this task. Additional analyses suggest that decision-related LIP responses, as well as behavioral choices and reaction times, can be explained by near-perfect time integration that stops when a criterion amount of evidence has been accumulated. Temporal integration may be a fundamental computation underlying higher cognitive functions that are dissociated from immediate sensory inputs or motor outputs.

  4. FLOWS AND MOTIONS IN MOSS IN THE CORE OF A FLARING ACTIVE REGION: EVIDENCE FOR STEADY HEATING

    SciTech Connect

    Brooks, David H.; Warren, Harry P.

    2009-09-20

    We present new measurements of the time variability of intensity, Doppler, and nonthermal velocities in moss in an active region core observed by the EUV Imaging Spectrometer on Hinode in 2007 June. The measurements are derived from spectral profiles of the Fe XII 195 A line. Using the 2'' slit, we repeatedly scanned 150'' by 150'' in a few minutes. This is the first time it has been possible to make such velocity measurements in the moss, and the data presented are the highest cadence spatially resolved maps of moss Doppler and nonthermal velocities ever obtained in the corona. The observed region produced numerous C- and M-class flares with several occurring in the core close to the moss. The magnetic field was therefore clearly changing in the active region core, so we ought to be able to detect dynamic signatures in the moss if they exist. Our measurements of moss intensities agree with previous studies in that a less than 15% variability is seen over a period of 16 hr. Our new measurements of Doppler and nonthermal velocities reveal no strong flows or motions in the moss, nor any significant variability in these quantities. The results confirm that moss at the bases of high temperature coronal loops is heated quasi-steadily. They also show that quasi-steady heating can contribute significantly even in the core of a flare productive active region. Such heating may be impulsive at high frequency, but if so it does not give rise to large flows or motions.

  5. The Variation of Solar Fe 14 and Fe 10 Flux over 1.5 Solar Activity Cycles

    NASA Technical Reports Server (NTRS)

    Altrock, Richard C.

    1990-01-01

    A new source of data on the solar output, namely limb flux from the one- and two-million degree corona is presented. This parameter is derived from data obtained at the National Solar Observatory at Sacramento Peak with the 40 cm coronagraph of the John W. Evans Solar Facility and the Emission Line Coronal Photometer. The limb flux is defined to be the latitude-averaged intensity in millionths of the brightness of disk center from an annulus of width 1.1 minutes centered at a height of 0.15 solar constant above the limb of emission from lines at 6374A (Fe X) or 5303A (Fe XIV). Fe XIV data have been obtained since 1973 and Fe X since 1984. Examination of the Fe XIV data shows that there is ambiguity in the definition of the last two solar activity minima, which can affect the determination of cycle rise times and lengths. There is an indication that a constant minimum or basal corona may exist at solar minimum. Cycle 22 has had a much faster onset than Cycle 21 and has now overtaken Cycle 21. The rise characteristics of the two cycles were very similar up until Jul. to Aug. 1989, at which time a long-term maximum occurred in Fe X and Fe XIV, which could possibly be the solar maximum. Another maximum is developing at the current time. Cycle 21 was characterized in Fe XIV by at least 4 major thrusts or bursts of activity, each lasting on the order of a year and all having similar maximum limb fluxes which indicates that coronal energy output is sustained over periods in which the sunspot number declines significantly. Dramatic increases in the limb fluxes occur from minimum to maximum, ranging from factors of 14 to 21 in the two lines. Two different techniques to predict the epoch of solar maximum have been applied to the Fe XIV data, resulting in estimates of April 1989 (plus or minus 1 mo) and May 1990 (plus or minus 2 mos).

  6. Influences of Surface and Ionic Properties on Electricity Generation of an Active Transducer Driven by Water Motion.

    PubMed

    Park, Junwoo; Yang, YoungJun; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-02-19

    In this Letter, we discuss the surface, ionic properties, and scale-up potential of an active transducer that generated electricity from natural water motion. When a liquid contacts a solid surface, an electrical double layer (EDL) is always formed at the solid/liquid interface. By modulating the EDL, the active transducer could generate a peak voltage of ∼3 V and a peak power of ∼5 μW. Interestingly, there were specific salinities of solution droplets that showed maximum performance and different characteristics according to the ions' nature. Analyzing the results macroscopically, we tried to figure out the origins of the active transducing precipitated by ions dynamics. Also, we demonstrated the scale-up potential for practical usage by multiple electrode design.

  7. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland.

    PubMed

    Johnson, David; Moore, Lucy; Green, Samuel; Leith, Ian D; Sheppard, Lucy J

    2010-10-01

    Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH4), nitrate (NO3), and ammonia (NH3) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO2. We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO3, NH4 and NH3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH3 had no effect on efflux of CO2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO3 and NH4 reduced CO2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components.

  8. Active and passive Ca2+ fluxes across cell membranes of the guinea-pig taenia coli.

    PubMed

    Casteels, R; Van Breemen, C

    1975-09-09

    The exchange of Ca between the extracellular fluid and the cellular compartment has been investigated in smooth muscle cells of taenia coli. It was found that during the initial phase of metabolic depletion by DNP + IAA, the net inwards flux of Ca amounts to 0.02 pmol cm(-2)-sec(-1). This increase might be proportional to the physiological calcium leak. The study of the relation between the inwardly directed Na gradient and the cellular Ca content has revealed that this Na gradient exerts no effect during prolonged exposure to K-free solution and a very limited effect during exposure to Na-deficient solutions. The cellular 45Ca release induced by metabolic inhibition is not affected by substituting Li or choline for Na. The supplementary calcium which enters the cells during exposure to a solution at low temperature is extruded on returning to a solution at 35 degrees C, even if the Na gradient is reversed. This finding and the effects of metabolic inhibition indicate that Ca extrusion in smooth muscle cells is a process which depends on metabolism and which is not affected by the inwardly directed Na gradient.

  9. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    SciTech Connect

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E.

    1995-09-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  10. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration.

    PubMed

    Derlon, Nicolas; Koch, Nicolas; Eugster, Bettina; Posch, Thomas; Pernthaler, Jakob; Pronk, Wouter; Morgenroth, Eberhard

    2013-04-15

    The impact of different feed waters in terms of eukaryotic populations and organic carbon content on the biofilm structure formation and permeate flux during Gravity-Driven Membrane (GDM) filtration was investigated in this study. GDM filtration was performed at ultra-low pressure (65 mbar) in dead-end mode without control of the biofilm formation. Different feed waters were tested (River water, pre-treated river water, lake water, and tap water) and varied with regard to their organic substrate content and their predator community. River water was manipulated either by chemically inhibiting all eukaryotes or by filtering out macrozoobenthos (metazoan organisms). The structure of the biofilm was characterized at the meso- and micro-scale using Optical Coherence Tomography (OCT) and Confocal Laser Scanning Microscopy (CLSM), respectively. Based on Total Organic Carbon (TOC) measurements, the river waters provided the highest potential for bacterial growth whereas tap water had the lowest. An increasing content in soluble and particulate organic substrate resulted in increasing biofilm accumulation on membrane surface. However, enhanced biofilm accumulation did not result in lower flux values and permeate flux was mainly influenced by the structure of the biofilm. Metazoan organisms (in particular nematodes and oligochaetes) built-up protective habitats, which resulted in the formation of open and spatially heterogeneous biofilms composed of biomass patches. In the absence of predation by metazoan organisms, a flat and compact biofilm developed. It is concluded that the activity of metazoan organisms in natural river water and its impact on biofilm structure balances the detrimental effect of a high biofilm accumulation, thus allowing for a broader application of GDM filtration. Finally, our results suggest that for surface waters with high particulate organic carbon (POC) content, the use of worms is suitable to enhance POC removal before ultrafiltration units.

  11. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Thomas; Grosse, Guido; Strauss, Jens; Schirrmeister, Lutz; Morgenstern, Anne; Schaphoff, Sibyll; Meinshausen, Malte; Boike, Julia

    2015-04-01

    With rising global temperatures and consequent permafrost degradation a part of old carbon stored in high latitude soils will become available for microbial decay and eventual release to the atmosphere. To estimate the strength and timing of future carbon dioxide and methane fluxes from newly thawed permafrost carbon, we have developed a simplified, two-dimensional multi-pool model. As large amounts of soil organic matter are stored in depths below three meters, we have also simulated carbon release from deep deposits in Yedoma regions. For this purpose we have modelled abrupt thaw under thermokarst lakes which can unlock large amounts of soil carbon buried deep in the ground. The computational efficiency of our 2-D model allowed us to run large, multi-centennial ensembles of differing scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Our model simulations, which are constrained by multiple lines of recent observations, suggest cumulated CO2 fluxes from newly thawed permafrost until the year 2100 of 20-58 Pg-C under moderate warming (RCP2.6), and of 42-141Pg-C under strong warming (RCP8.5). Under intense thermokarst activity, our simulated methane fluxes proved substantial and caused up to 40 % of total permafrost-affected radiative forcing in the 21st century. By quantifying CH4 contributions from different pools and depth levels, we discuss the role of thermokarst dynamics in affecting future Arctic carbon release. The additional global warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission in our simulations and reached about 0.1°C by end of the century. The long-term, permafrost-affected global warming increased further in the 22nd and 23rd century, reaching a maximum of about 0.4°C in the year 2300.

  12. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.

    PubMed

    Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.

  13. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  14. Relationship between structure of phenothiazine analogues and their activity on platelet calcium fluxes.

    PubMed Central

    Enouf, J.; Lévy-Toledano, S.

    1984-01-01

    Phenothiazine analogues have been tested for their effect on calcium uptake into platelet membrane vesicles and on ionophore-induced platelet activation, both phenomena being Ca2+-dependent. Both calcium uptake into membrane vesicles and ionophore-induced platelet activation were inhibited by the drugs. Evidence for two inhibitors as potent as chlorpromazine and trifluoperazine was found. These drugs are apparently competitive inhibitors of calcium uptake. A structure-activity relationship has been established. The data suggest that the phenothiazines are able to inhibit calmodulin-insensitive calcium uptake of platelet membrane vesicles and that therefore they cannot be assumed to be selective inhibitors of calmodulin interactions under all circumstances. PMID:6697061

  15. Impact of Human Activities on the Flux of Terrestrial Sediments to the Coastal Ocean Offshore Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Tzu-Ting; Su, Chih-Chieh; Liu, Char-Shine; Huang, Chen-fen; Hsu, Ho-Han

    2016-04-01

    Land to ocean material fluxes play an important role in global biogeochemical cycles. Changes in sediment supply not only greatly influence the benthic environment of coastal estuaries but also might threaten human lives and properties. Artificial constructions, such as roads and reservoirs, could affect natural environments and change sediment discharges. Due to its high precipitation, steep slopes, small basin areas, and frequent flood events, Taiwan is characterized with rapid erosion rates and extremely high sediment yields. In northeastern Taiwan, the high mean annual precipitation lead to large amounts of sediments being delivered into the ocean through the Lanyang River. Since 1957, the road constructions along the Lanyang River greatly increased terrestrial sediment flux to the coastal ocean. However, its influence on offshore area is not yet clear. In this study, we combine geochemical and geophysical data to evaluate the modern sedimentation history and discuss the impact of human activities on the Ilan Shelf. The preliminary results of grain size and 210Pb analyses from five sediment cores taken from the upper South Guishan Channel indicate the existence of local differences on hydrodynamic conditions. In addition, we also applied similarity index which based on a quantitative analysis algorithm to the chirp sonar data on echo character classification and calculated continuous grain size variations of the seafloor surface sediments. By combining all geochemical and geophysical data, we may reconstruct the holistic picture of human impacts on offshore environment from sedimentology records.

  16. Solar activity prediction of sunspot numbers (verification). Predicted solar radio flux; predicted geomagnetic indices Ap and Kp. [space shuttle program: satellite orbital lifetime

    NASA Technical Reports Server (NTRS)

    Newman, S. R.

    1980-01-01

    Efforts to further verify a previously reported technique for predicting monthly sunspot numbers over a period of years (1979 to 1989) involved the application of the technique over the period for the maximum epoch of solar cycle 19. Results obtained are presented. Methods and results for predicting solar flux (F10.7 cm) based on flux/sunspot number models, ascent and descent, and geomagnetic activity indices as a function of sunspot number and solar cycle phase classes are included.

  17. GLYCOENGINEERING OF ESTERASE ACTIVITY THROUGH METABOLIC FLUX-BASED MODULATION OF SIALIC ACID.

    PubMed

    Mathew, Mohit; Tan, Elaine; Labonte, Jason W; Shah, Shivam; Saeui, Christopher T; Liu, Lingshu; Bhattacharya, Rahul; Bovonratwet, Patawut; Gray, Jeffrey J; Yarema, Kevin

    2017-02-20

    This report describes the metabolic glycoengineering (MGE) of intracellular esterase activity in human colon cancer (LS174T) and Chinese hamster ovary (CHO) cells. In silico analysis of the carboxylesterases CES1 and CES2 suggested that these enzymes are modified with sialylated N-glycans, which are proposed to stabilize the active multimeric forms of these enzymes. This premise was supported by treating cells with butanolylated ManNAc to increase sialylation, which in turn increased esterase activity. By contrast, hexosamine analogs not targeted to sialic acid biosynthesis (e.g., butanoylated GlcNAc or GalNAc) had minimal impact. Measurement of mRNA and protein confirmed that esterase activity was controlled through glycosylation and not through transcription or translation. Azide-modified ManNAc analogs widely used in MGE also enhanced esterase activity and provided a way to enrich targeted "glycoengineered" proteins (such as CES2), thereby providing unambiguous evidence that the compounds were converted to sialosides and installed into the glycan structures of esterases as intended. Overall, this study provides a pioneering example of the modulation of intracellular enzyme activity through MGE, which expands the value of this technology from its current status as a labeling strategy and modulator of cell surface biological events.

  18. Observations of flux motion in niobium films

    SciTech Connect

    Xiao, Y.M.; Keiser, G.M. . W.W. Hansen Labs. of Physics)

    1991-03-01

    In this paper magnetic field trapped in a superconducting sphere is examined at temperatures from 4.6 K to 5.5 K The sphere is the rotor of a precision gyroscope, and is made of fused quartz and coated with a sputtered niobium film. The rotor diameter is 3.8 centimeters. The film thickness is 2.5 micrometers. The tests are carried out at ambient magnetic field of about 1 milligauss. Unexpected instability of the trapped field is observed. The experimental results and possible explanations are presented.

  19. Controlling the motion of magnetic flux quanta.

    PubMed

    Zhu, B Y; Marchesoni, F; Nori, Franco

    2004-05-07

    We study the transport of vortices in superconductors with triangular arrays of boomerang- or V-shaped asymmetric pinning wells, when applying an alternating electrical current. The asymmetry of the pinning landscape induces a very efficient "diode" effect, that allows the sculpting at will of the magnetic field profile inside the sample. We present the first quantitative study of magnetic "lensing" of fluxons inside superconductors. Our proposed vortex lens provides a near threefold increase of the vortex density at its "focus" regions. The main numerical features have been derived analytically.

  20. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  1. Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A

    PubMed Central

    Wang, Tong; Martin, Sally; Papadopulos, Andreas; Harper, Callista B.; Mavlyutov, Timur A.; Niranjan, Dhevahi; Glass, Nick R.; Cooper-White, Justin J.; Sibarita, Jean-Baptiste; Choquet, Daniel; Davletov, Bazbek; Meunier, Frédéric A.

    2015-01-01

    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity. PMID:25878289

  2. Motion mitigation for lung cancer patients treated with active scanning proton therapy

    SciTech Connect

    Grassberger, Clemens; Dowdell, Stephen; Sharp, Greg; Paganetti, Harald

    2015-05-15

    Purpose: Motion interplay can affect the tumor dose in scanned proton beam therapy. This study assesses the ability of rescanning and gating to mitigate interplay effects during lung treatments. Methods: The treatments of five lung cancer patients [48 Gy(RBE)/4fx] with varying tumor size (21.1–82.3 cm{sup 3}) and motion amplitude (2.9–30.6 mm) were simulated employing 4D Monte Carlo. The authors investigated two spot sizes (σ ∼ 12 and ∼3 mm), three rescanning techniques (layered, volumetric, breath-sampled volumetric) and respiratory gating with a 30% duty cycle. Results: For 4/5 patients, layered rescanning 6/2 times (for the small/large spot size) maintains equivalent uniform dose within the target >98% for a single fraction. Breath sampling the timing of rescanning is ∼2 times more effective than the same number of continuous rescans. Volumetric rescanning is sensitive to synchronization effects, which was observed in 3/5 patients, though not for layered rescanning. For the large spot size, rescanning compared favorably with gating in terms of time requirements, i.e., 2x-rescanning is on average a factor ∼2.6 faster than gating for this scenario. For the small spot size however, 6x-rescanning takes on average 65% longer compared to gating. Rescanning has no effect on normal lung V{sub 20} and mean lung dose (MLD), though it reduces the maximum lung dose by on average 6.9 ± 2.4/16.7 ± 12.2 Gy(RBE) for the large and small spot sizes, respectively. Gating leads to a similar reduction in maximum dose and additionally reduces V{sub 20} and MLD. Breath-sampled rescanning is most successful in reducing the maximum dose to the normal lung. Conclusions: Both rescanning (2–6 times, depending on the beam size) as well as gating was able to mitigate interplay effects in the target for 4/5 patients studied. Layered rescanning is superior to volumetric rescanning, as the latter suffers from synchronization effects in 3/5 patients studied. Gating minimizes the

  3. The Formation of an Inverse S-shaped Active-region Filament Driven by Sunspot Motion and Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Priest, E. R.; Guo, Q. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H.

    2016-11-01

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  4. Effects of using an unstable inclined board on active and passive ankle range of motion in patients with ankle stiffness.

    PubMed

    Yoo, Won-Gyu

    2015-07-01

    [Purpose] The present study assessed the effects of using an unstable inclined board on the active and passive ankle range of motion in patients with ankle stiffness. [Subjects] The study included 10 young female patients with ankle stiffness. [Methods] The patients were divided into the following two groups: a group that performed ankle dorsiflexion stretching exercises using a wooden inclined board and a group that performed stretching exercises using an air-cushioned inclined board (unstable inclined board). Active and passive ankle dorsiflexion angles were measured bilaterally using a goniometer. [Results] Both inclined boards significantly increased active and passive ankle dorsiflexion. After performing ankle stretching exercises, active dorsiflexion significantly increased the unstable inclined board compared to that using the wooden inclined board. However, the passive dorsiflexion angles did not differ significantly between the two groups after ankle stretching exercises. [Conclusion] The use of an unstable inclined board might stimulate activation of the ankle dorsiflexors in addition to stretching muscle or tissue. Active ankle dorsiflexion was more effectively improved with stretching exercises using an unstable inclined board than with exercises using a wooden inclined board.

  5. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  6. Active Flow Control of the Near Wake of an Axisymmetric Body in Prescribed Motion

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2014-11-01

    Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric moving wind tunnel bluff body model are exploited for modification of its near wake and thereby its global unsteady aerodynamic loads. The model is supported by eight servo-controlled wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The body moves along a prescribed trajectory controllable in six degrees of freedom using closed loop feedback from an external camera system. Actuation is effected by an integrated azimuthally-segmented array of four aft-facing synthetic jet modules around the perimeter of the tail end. In the present investigations, the aerodynamic loads are controlled during time-periodic axial and rotational motions with varying reduced frequencies of up to 0.259. It is shown that this flow control approach modifies the near wake and induces aerodynamic loads that are comparable to the baseline model dynamic loads. Control of the model's unsteady aerodynamic characteristics may be adopted for in flight stabilization.

  7. Gamma-Band Activities in Mouse Frontal and Visual Cortex Induced by Coherent Dot Motion

    PubMed Central

    Han, Hio-Been; Hwang, Eunjin; Lee, Soohyun; Kim, Min-Shik; Choi, Jee Hyun

    2017-01-01

    A key question within systems neuroscience is to understand how the brain encodes spatially and temporally distributed local features and binds these together into one perceptual representation. Previous works in animal and human have shown that changes in neural synchrony occur during the perceptual processing and these changes are distinguished by the emergence of gamma-band oscillations (GBO, 30–80 Hz, centered at 40 Hz). Here, we used the mouse electroencephalogram to investigate how different cortical areas play roles in perceptual processing by assessing their GBO patterns during the visual presentation of coherently/incoherently moving random-dot kinematogram and static dots display. Our results revealed that GBO in the visual cortex were strongly modulated by the moving dots regardless of the existence of a global dot coherence, whereas GBO in frontal cortex were modulated by coherence of the motion. Moreover, concurrent GBO across the multiple cortical area occur more frequently for coherently moving dots. Taken together, these findings of GBO in the mouse frontal and visual cortex are related to the perceptual binding of local features into a globally-coherent representation, suggesting the dynamic interplay across the local/distributed networks of GBO in the global processing of optic flow. PMID:28252109

  8. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery

    PubMed Central

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore–Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  9. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    SciTech Connect

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders.

  10. Using structure-from-motion for monitoring active lava flows and domes

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart; Varley, Nick

    2016-04-01

    3-D reconstruction software based on structure-from-motion (SfM) algorithms can substantially reduce the requirements and learning curve for generating topographic data from photographs, and thus offers strong potential for data collection in many dynamic environments. Unfortunately, SfM-based software tends not to provide the rigorous metrics that are used to assess the quality of results in conventional photogrammetry software. Here, we use examples of repeat oblique airborne acquisitions from a volcanic dome (Volcán de Colima, Mexico) and terrestrial time-lapse stereo-photography (Mt. Etna, Sicily) to examine the sensitivity of results to imaging characteristics and SfM processing procedures. At Volcán de Colima, photographs were acquired with a relatively favourable convergent geometry, from an opened window in a light aircraft. However, hazards prevent the deployment of ground control, so the derived topographic shape relies entirely on the image tie points generated automatically by the software. In contrast, at Mt. Etna, control targets could be used but, with only two (mildly convergent) cameras, the image geometry is naturally weaker that at Colima. We use both of these cases to explore some of the challenges involved with understanding the error inherent in projects processed using SfM-based approaches. Results are compared with those achieved using a rigorous close-range photogrammetry package.

  11. Research on the filtering characteristic of single phase series hybrid active power filter based on fundamental magnetic flux compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jun; Chen, Qiaofu; Zhang, Yuqi

    2012-12-01

    In this article, the PWM inverter works as a controlled fundamental current source in the single phase series hybrid active power filter (APF) based on fundamental magnetic flux compensation (FMFC). The series transformer can exhibit the self-impedance of primary winding to harmonic current, which forces harmonic current to flow into passive power filter. With the influence of harmonic current, the voltage of primary winding of transformer is a harmonic voltage, which makes the inverter output currents have a certain harmonic component, and it degrades the filtering characteristics. On the basis of PWM inverter, the mathematical model of series hybrid APF is established, and the filtering characteristics of single phase APF are analysed in detail. Three methods are gained to improve filtering characteristics: reasonably designing the inverter output filter inductance, increasing series transformer ratio and adopting voltage feed-forward control. Experimental results show that the proposed APF has greater validity.

  12. HOMOLOGOUS FLUX ROPES OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2013-12-01

    We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20-22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30 km s{sup –1} after their appearance, and subsequently their intensities at 131 Å decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130 km s{sup –1} and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4π. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.

  13. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  14. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  15. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S; Lemos, João M

    2013-05-01

    Many approaches to trajectory analysis, such as clustering or classification, use probabilistic generative models, thus not requiring trajectory alignment/registration. Switched linear dynamical models (e.g., HMMs) have been used in this context, due to their ability to describe different motion regimes. However, these models are not suitable for handling space-dependent dynamics that are more naturally captured by nonlinear models. As is well known, these are more difficult to identify. In this paper, we propose a new way of modeling trajectories, based on a mixture of parametric motion vector fields that depend on a small number of parameters. Switching among these fields follows a probabilistic mechanism, characterized by a field of stochastic matrices. This approach allows representing a wide variety of trajectories and modeling space-dependent behaviors without using global nonlinear dynamical models. Experimental evaluation is conducted in both synthetic and real scenarios. The latter concerning with human trajectory modeling for activity classification, a central task in video surveillance.

  16. Effects of restrictive clothing on lumbar range of motion and trunk muscle activity in young adult worker manual material handling.

    PubMed

    Eungpinichpong, Wichai; Buttagat, Vitsarut; Areeudomwong, Pattanasin; Pramodhyakul, Noppol; Swangnetr, Manida; Kaber, David; Puntumetakul, Rungthip

    2013-11-01

    The objective of this study was to examine the effect of wearing restrictive trousers on lumbar spine movement, trunk muscle activity and low back discomfort (LBD) in simulations of manual material handling (MMH) tasks. Twenty-eight young adults participated in the study performing box lifting, liquid container handling while squatting, and forward reaching while sitting on a task chair when wearing tight pants (sizes too small for the wearer) vs. fit pants (correct size according to anthropometry). Each task was repeated three times and video recordings were used as a basis for measuring lumbar range of motion (LRoM). The response was normalized in terms on baseline hip mobility. Trunk muscle activity of rectus abdominis (RA) and erector spinae (ES) muscles were also measured in each trial and normalized. At the close of each trial, participants rated LBD using a visual analog scale. Results revealed significant effects of both pants and task types on the normalized LRoM, trunk muscle activity and subjective ratings of LBD. The LRoM was higher and trunk muscle (ES) activity was lower for participants when wearing tight pants, as compared to fit pants. Discomfort ratings were significantly higher for tight pants than fit. These results provide guidance for recommendations on work clothing fit in specific types of MMH activities in order to reduce the potential of low-back pain among younger workers in industrial companies.

  17. Biomarker indicators of bacterial activity and organic fluxes during end Triassic mass extinction event

    NASA Astrophysics Data System (ADS)

    Jiao, Dan; Perry, Randall S.; Engel, Mike H.; Sephton, Mark A.

    2008-08-01

    Lipid biomarker analyses of sedimentary organic matter from a marine Triassic-Jurassic (T-J) section at Queen Charlotte Islands, British Columbia reveal significant bacterial activity and microbial community changes that coincide with faunal extinctions across the T-J boundary. Bacterial activity is indicated by the 25-norhopane biodegradation index (25-norhopanes / 25-norhopanes+regular hopanes). Microbial community changes is revealed by variations in relative abundance of 2-methylhopane which is mainly generated from cyanobacteria. The 2-methylhopane index (2-methyl hopane/ C30 hopane + C29 25-norhopane) increases above the radiolarian based T-J boundary, and coincides with changes in the 25-norhopane index. The data reveal a complex microbial event involving both autotrophic and heteorotrophic bacteria responding to variations in allochthonous organic matter and nutrient supply.

  18. Properties of osmolyte fluxes activated during regulatory volume decrease in cultured cerebellar granule neurons.

    PubMed

    Pasantes-Morales, H; Chacón, E; Murray, R A; Morán, J

    1994-04-15

    Efflux pathways for amino acids, K, and Cl activated during regulatory volume decrease (RVD) were characterized in cultured cerebellar granule neurons exposed to hyposmotic conditions. Results of this study favor diffusion pores (presumably channels) over energy-dependent transporters as the mechanisms responsible for the efflux of these osmolytes. The selectivity of osmolyte pathways activated by RVD was assessed by increasing the extracellular concentrations of cations, anions, and amino acids to such an extent that upon opening of the pathway, a permeable compound will enter the cell and block RVD by reducing the efflux of water carried by the exit of intracellular osmolytes. The cationic pathway was found selective for K (and Rb), whereas the anionic pathway was rather unselective being permeable to Cl, nitrate, iodine, benzoate, thiocyanate, and sulfate but impermeable to gluconate. Glutamate and aspartate as K but not as Na salts were permeable through the anion channel. RVD was slightly inhibited by quinidine but otherwise was insensitive to known K channel blockers. RVD was inhibited by 4,4'-diisothiocyanostilbene-2-2'-disulfonic acid (DIDS), niflumic acid, and dipyridamole. Gramicidin did not affect cell volume in isosmotic conditions but greatly accelerated RVD, suggesting that cell permeability to Cl is low in isosmotic conditions but increases markedly during RVD making K permeability the rate limit of the process. The permeability pathway for amino acids activated during RVD as permeable to short chain alpha- and beta-amino acids, but excluded glutamine and basic amino acids.

  19. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2015-06-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland

  20. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2014-12-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon store will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrammes of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42-141 and 157-313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates do only consider fluxes from newly thawed permafrost but not from soils already part of the seasonally thawed active layer under preindustrial climate. Our simulated methane fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest methane emission rates of about 50 Tg-CH4 year-1 around the mid of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is accounted for. CH4 release from newly thawed carbon in wetland-affected deposits is only

  1. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.

    PubMed

    Artetxe, Arkaitz; Beristain, Andoni; Kabongo, Luis

    2014-01-01

    In this work we present a system that uses the accelerometer embedded in a mobile phone to perform activity recognition, with the purpose of continuously and pervasively monitoring the users' level of physical activity in their everyday life. Several classification algorithms are analysed and their performance measured, based for 6 different activities, namely walking, running, climbing stairs, descending stairs, sitting and standing. Feature selection has also been explored in order to minimize computational load, which is one of the main concerns given the restrictions of smartphones in terms of processor capabilities and specially battery life.

  2. Observations of Plasma Waves in the Colliding Jet Region of a 3D Magnetic Flux Rope Flanked by Two Active Reconnection X Lines at the Subsolar Magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Sundkvist, D. J.; Chaston, C. C.; Phan, T. D.; Mozer, F.; McFadden, J. P.; Angelopoulos, V.; Andersson, L.; Eastwood, J. P.

    2014-12-01

    We have performed a detailed analysis of plasma and wave observations in a 3D magnetic flux rope encountered by the THEMIS spacecraft at the subsolar magnetopause. The extent of the flux rope was ˜270 ion skin depths in the outflow direction, and it was flanked by two active reconnection X lines producing colliding plasma jets in the flux rope core where ion heating and suprathermal electrons were observed. The colliding jet region was highly dynamic and characterized by the presence of high-frequency waves such as ion acoustic-like waves, electron holes, and whistler mode waves near the flux rope center and low-frequency kinetic Alfvén waves over a larger region. We will discuss possible links between these waves and particle heating.

  3. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  4. Activation of autophagic flux by epigallocatechin gallate mitigates TRAIL-induced tumor cell apoptosis via down-regulation of death receptors

    PubMed Central

    Park, Sang-Youel

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major polyphenol in green tea. Recent studies have reported that EGCG can inhibit TRAIL-induced apoptosis and activate autophagic flux in cancer cells. However, the mechanism behind these processes is unclear. The present study found that EGCG prevents tumor cell death by antagonizing the TRAIL pathway and activating autophagy flux. Our results indicate that EGCG dose-dependently inhibits TRAIL-induced apoptosis and decreases the binding of death receptor 4 and 5 (DR4 and 5) to TRAIL. In addition, EGCG activates autophagy flux, which is involved in the inhibition of TRAIL cell death. We confirmed that the protective effect of EGCG can be reversed using genetic and pharmacological tools through re-sensitization to TRAIL. The inhibition of autophagy flux affects not only the re-sensitization of tumor cells to TRAIL, but also the restoration of death receptor proteins. This study demonstrates that EGCG inhibits TRAIL-induced apoptosis through the manipulation of autophagic flux and subsequent decrease in number of death receptors. On the basis of these results, we suggest further consideration of the use of autophagy activators such as EGCG in combination anti-tumor therapy with TRAIL. PMID:27582540

  5. Effects of seasonal variation in prey abundance on field metabolism, water flux, and activity of a tropical ambush foraging snake.

    PubMed

    Christian, Keith; Webb, Jonathan K; Schultz, Timothy; Green, Brian

    2007-01-01

    The responses of animals to seasonal food shortages can have important consequences for population dynamics and the structure and function of food webs. We investigated how an ambush foraging snake, the northern death adder Acanthophis praelongus, responds to seasonal fluctuations in prey availability in its tropical environment. In the dry season, field metabolic rates and water flux, as measured by doubly labeled water, were significantly lower than in the wet season. Unlike some other reptiles of the wet-dry tropics, death adders showed no seasonal difference in their resting metabolism. About 94% of the decrease in energy expended in the dry season was due to a decrease in activity and digestion, with lower body temperatures accounting for the remainder. In the dry season, death adders were less active and moved shorter distances between foraging sites than in the wet season. Analysis of energy expenditure suggested that adders fed no more than every 2-3 wk in the dry season but fed more frequently during the wet season. Unlike many lizards that cease feeding during the dry season, death adders remain active and attempt to maximize their energy intake year-round.

  6. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  7. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    PubMed Central

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  8. The activL(®) Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain.

    PubMed

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL(®) Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL(®) Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL(®) Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL(®) Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date.

  9. Present-day Block Motions and Strain Accumulation on Active Faults in the Caribbean

    NASA Astrophysics Data System (ADS)

    Symithe, S. J.; Calais, E.; Freed, A. M.

    2014-12-01

    The quasi-frontal subduction of the north and south American plates under the Lesser Antilles and the left and right lateral strike-slip along the northern and southern margins of the Caribbean plate offer the opportunity to study the transition from subduction to strike-slip between major plates. In addition, the segmentation and degree of interplate coupling at the Lesser Antilles subduction is key to our understanding of the earthquake potential of a subduction whose length is similar to the rupture area of the Mw9.0, 2011, Tohoku earthquake in Japan. We used the block modeling approach described in Meade and Loveless (2009) to test the optimal block geometry for the northern, eastern and southern boundaries of the Caribbean plate. We solved for angular velocities for each block/plate and strain accumulation rates for all major faults in the region. Then we calculated the variations in interplate coupling along the subduction plate boundaries using the accumulated strain rates. We tested 11 different block geometries; they are all based on geological evidences unless they are suggested by discrepancies within the GPS and seismological data or by previously published results. We confirm the existence of the micro Gonave plate. The boundary between the Micro-Gonave plate and the Hispaniola crustal block is better suited along the Haitian-Thrust-Belt instead of the Neiba-Matheux fault. The interseismic GPS velocities do not show evidence for a distinct North Lesser Antilles block. We found a totally uncoupled section of the subduction starting from the Puerto-Rico trench to the end of the Lesser Antilles section. All the relative motion of the Caribbean block is lost aseismically along the boundary of that portion of the subduction. While we found strong coupling along the northern Hispaniola section, most of the deformation on this region is being accumulated along intrablock faults with very low strain (~2mm/yr) along the intraplate subduction interface. We also

  10. Measured response of the equatorial thermospheric temperature to geomagnetic activity and solar flux changes

    NASA Technical Reports Server (NTRS)

    Biondi, M. A.; Meriwether, J. W., Jr.

    1985-01-01

    Fabry-Perot inteferometer determinations of thermospheric temperatures from 630.0-nm nightglow line-width measurements have been carried out for the period April-August 1983 from Arequipa, Peru (16.4-deg S, 71.5-deg W geographic; 4.4-deg S magnetic). The nightly variation of the thermospheric temperature T(n) measured on 62 nights is compared with MSIS model predictions and found to agree occasionally with the model but, on average, to exceed model predictions by about 180 K. The largest differences, 400-500 K, often occur during strongly increasing geomagnetic activity such as sudden commencements. The rapid increases in T(n) may result from energetic neutrals precipitating at low latitudes from the ring current or from energy carried to equatorial regions from high-latitude (auroral oval) heat sources by gravity waves and equatorward neutral winds.

  11. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  12. Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.

    PubMed

    Zhang, Hongkang; Zou, Beiyan; Du, Fang; Xu, Kaiping; Li, Min

    2015-02-01

    Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCal5)] with engineered-enhanced calcium permeability. SoCal5 retains wild-type (WT) Nav1.5 pharmacological profiles. WT SoCal5 and SoCal5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a different-colored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCal5 reveals a hit rate (>50% inhibition) of around 13% at 10 μM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.

  13. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    NASA Astrophysics Data System (ADS)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  14. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  15. Longitudinal study of preterm and full-term infants: High-density EEG analyses of cortical activity in response to visual motion.

    PubMed

    Agyei, Seth B; van der Weel, F R Ruud; van der Meer, Audrey L H

    2016-04-01

    Electroencephalogram (EEG) was used to investigate brain electrical activity of full-term and preterm infants at 4 and 12 months of age as a functional response mechanism to structured optic flow and random visual motion. EEG data were recorded with an array of 128-channel sensors. Visual evoked potentials (VEPs) and temporal spectral evolution (TSE, time-dependent amplitude changes) were analysed. VEP results showed a significant improvement in full-term infants' latencies with age for forwards and reversed optic flow but not random visual motion. Full-term infants at 12 months significantly differentiated between the motion conditions, with the shortest latency observed for forwards optic flow and the longest latency for random visual motion, while preterm infants did not improve their latencies with age, nor were they able to differentiate between the motion conditions at 12 months. Differences in induced activities were also observed where comparisons between TSEs of the motion conditions and a static non-flow pattern showed desynchronised theta-band activity in both full-term and preterm infants, with synchronised alpha-beta band activity observed only in the full-term infants at 12 months. Full-term infants at 12 months with a substantial amount of self-produced locomotor experience and neural maturation coupled with faster oscillating cell assemblies, rely on the perception of structured optic flow to move around efficiently in the environment. The poorer responses in the preterm infants could be related to impairment of the dorsal visual stream specialized in the processing of visual motion.

  16. Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit

    ERIC Educational Resources Information Center

    Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan

    2015-01-01

    In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and Edelson's (1998)…

  17. Happiness in Motion: Emotions, Well-Being, and Active School Travel

    ERIC Educational Resources Information Center

    Ramanathan, Subha; O'Brien, Catherine; Faulkner, Guy; Stone, Michelle

    2014-01-01

    Background: A pan-Canadian School Travel Planning intervention promoted active school travel (AST). A novel component was exploring emotion, well-being, and travel mode framed by the concept of "sustainable happiness." Relationships between travel mode and emotions, parent perceptions of their child's travel mode on well-being, and…

  18. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  19. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  20. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  1. Thermally Activated Motion of a Screw Dislocation Overcoming the Peierls Potential for Prismatic Slip in an hcp Lattice

    NASA Astrophysics Data System (ADS)

    Edagawa, Keiichi; Suzuki, Takayoshi; Takeuchi, Shin

    1998-07-01

    The prismatic slip in hcp metals has been studied by calculating the thermally activated motion of a 1/3[11\\bar{2}0] screw dislocation in a two-dimensional Peierls potential assumed in the (11\\bar{2}0) plane. The kink pair formation process for the transition of the dislocation from a stable position to another under applied stress has been investigated and the activation energies for the two types of transitions constituting the prismatic slip have been calculated. Using the activation energies, the critical flow stress τc has been deduced as a function of the direction of the applied stress χ and temperature. The calculated τc χ relations deviate significantly from the Schmid law and well reproduce the deviation relation observed in the experimental data of Ti. The deviation from the Schmid law originates in a structural feature of the hcp lattice itself, i.e., a zigzag arrangement along the prismatic plane of atomic rows.

  2. CH4 Flux Inversion Studies for Future Active Space CH4 Missions like MERLIN

    NASA Astrophysics Data System (ADS)

    Heimann, M.; Marshall, J.

    2011-12-01

    Space based active sensors such as the planned German-French CH4 DIAL MERLIN mission have a very small footprint and therefore see through moderately small cloud holes. This fact, in addition to being independent of reflected sunlight is expected to provide global coverage with a higher number of observations than heretofore possible with passive sensors. How will this impact our ability to infer the different types of CH4 surface sources? Using a global atmospheric inversion system we quantify the resulting error reduction of inferred CH4 source estimates as a function of spatial and temporal resolution given instrument accuracy and other parameters of potential satellite orbits. The methodology is based on the classical Green's function approach on a monthly global 8°x10° resolution (Houweling et al., 2004) extended by using a nested two-step procedure for the investigation of higher temporal and spatial source resolutions (Rödenbeck et al., 2009). We furthermore employ a nested Lagrangian system at very high resolution (down to 1/8° x 1/12°) to quantify the impact on the detection and quantification of point sources such as power plants, landfills, natural gas pipelines, forest fires, geological seeps, and volcanoes. We demonstrate that the current specification of the MERLIN DIAL mission with a nominal breakthrough instrument precision of 18 ppb and bias of 3 ppb over 50km would lead to a substantial improvement of CH4 source quantification in many regions of the world as compared to what is possible with the currently existing observations from the surface network or passive satellite sensors. Houweling, S, FM Breon, I Aben, C Roedenbeck, M Gloor, M Heimann, and P Ciais. 2004. "Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time." Atmospheric Chemistry And Physics 4: 523-538. Roedenbeck, C, C Gerbig, K Trusilova, and M Heimann. 2009. "A

  3. Single molecule analysis of B cell receptor motion during signaling activation

    NASA Astrophysics Data System (ADS)

    Rey Suarez, Ivan; Koo, Peter; Mochrie, Simon; Song, Wenxia; Upadhyaya, Arpita

    B cells are an essential part of the adaptive immune system. They patrol the body looking for signs of infection in the form of antigen on the surface of antigen presenting cells. The binding of the B cell receptor (BCR) to antigen induces signaling cascades that lead to B cell activation and eventual production of high affinity antibodies. During activation, BCR organize into signaling microclusters, which are platforms for signal amplification. The physical processes underlying receptor movement and aggregation are not well understood. Here we study the dynamics of single BCRs on activated murine primary B cells using TIRF imaging and single particle tracking. The tracks obtained are analyzed using perturbation expectation-maximization (pEM) a systems-level analysis that allows the identification of different short-time diffusive states from a set of single particle tracks. We identified five different diffusive states on wild type cells, which correspond to different molecular states of the BCR. By using actin polymerization inhibitors and mutant cells lacking important actin regulators we were able to identify the BCR molecule configuration associated with each diffusive state.

  4. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  5. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus.

    PubMed

    Burke, M R; Barnes, G R

    2008-12-15

    We used passive and active following of a predictable smooth pursuit stimulus in order to establish if predictive eye movement responses are equivalent under both passive and active conditions. The smooth pursuit stimulus was presented in pairs that were either 'predictable' in which both presentations were matched in timing and velocity, or 'randomized' in which each presentation in the pair was varied in both timing and velocity. A visual cue signaled the type of response required from the subject; a green cue indicated the subject should follow both the target presentations (Go-Go), a pink cue indicated that the subject should passively observe the 1st target and follow the 2nd target (NoGo-Go), and finally a green cue with a black cross revealed a randomized (Rnd) trial in which the subject should follow both presentations. The results revealed better prediction in the Go-Go trials than in the NoGo-Go trials, as indicated by higher anticipatory velocity and earlier eye movement onset (latency). We conclude that velocity and timing information stored from passive observation of a moving target is diminished when compared to active following of the target. This study has significant consequences for understanding how visuomotor memory is generated, stored and subsequently released from short-term memory.

  6. Identifying Loss Mechanisms Responsible for the Rapid Depletion of Outer Radiation Belt Electron Flux

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Onsager, T. G.; O'Brien, T.; Fraser, B. J.

    2004-12-01

    Since the discovery of earth's radiation belts researchers have sought to explain and predict the changing relativistic electron flux levels in the outer belt. This goal has proved a perplexing challenge because, surprisingly, flux levels do not always rise as energy input from the solar wind increases during active periods such as geomagnetic storms [Reeves et al., 2003;O'Brien et al., 2001]. The erratic response of the radiation belt electrons to geomagnetic activity suggests that flux levels are set by a teetering struggle between acceleration and loss. Thus, to predict flux variations, both processes must be understood. Some acceleration mechanisms have been proposed and tested resulting in incremental progress, but still little is known about how relativistic electrons are removed from the magnetosphere. We investigate how relativistic electrons are lost from the outer radiation belt using a superposed epoch analysis of electron flux decrease events identified in multi-satellite data [Onsager et al., 2002; Green et al., 2004]. More specifically, we test three mechanisms proposed to explain the flux reductions: adiabatic motion in response to a changing magnetic field topology, drift out the magnetopause boundary, and scattering into the atmosphere. The superposed study shows that the magnetic field becomes temporarily stretched at dusk suggesting that adiabatic electron motion might contribute to the initial flux reduction; however, the electron flux does not recover when the magnetic field recovers, indicating that true loss from the magnetosphere occurs. Magnetopause encounters should similarly affect both high energy protons and electrons; however, no concurrent reduction of proton flux is observed implying that this mechanism is not active. Low altitude observations show increased electron flux in the loss cone suggesting that scattering to the atmosphere is the cause the flux depletions. We investigate possible causes of the increased scattering including

  7. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  8. Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropy.

    PubMed

    Emori, Satoru; Beach, Geoffrey S D

    2012-01-18

    We have experimentally studied micrometer-scale domain wall (DW) motion driven by a magnetic field and an electric current in a Co/Pt multilayer strip with perpendicular magnetic anisotropy. The thermal activation energy for DW motion, along with its scaling with the driving field and current, has been extracted directly from the temperature dependence of the DW velocity. The injection of DC current resulted in an enhancement of the DW velocity independent of the current polarity, but produced no measurable change in the activation energy barrier. Through this analysis, the observed current-induced DW velocity enhancement can be entirely and unambiguously attributed to Joule heating.

  9. Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis.

    PubMed

    Henry, Molly J; McAuley, J Devin

    2013-01-01

    A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners' judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.

  10. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  11. The seven sisters DANCe. II. Proper motions and the lithium rotation-activity connection for G and K Pleiades

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Bouy, H.; Bouvier, J.; Moraux, E.; Sarro, L. M.; Bertin, E.; Cuillandre, J.-C.; Stauffer, J. R.; Lillo-Box, J.; Pollock, A.

    2016-12-01

    Context. Stellar clusters open the window to understanding stellar evolution and, in particular, the change with time and the dependence on mass of different stellar properties. As such, stellar clusters act as laboratories where different theories can be tested. Aims: We try to understand the origin of the connection between lithium depletion in F, G, and K stars, rotation and activity in the Pleiades open cluster. Methods: We have collected all the relevant data in the literature, including information regarding rotation period, binarity, and activity, and cross-matched this data with proper motions, multiwavelength photometry, and membership probability from the DANCe database. To avoid biases, we only included single members of the Pleiades with probabilities larger than 75% in the discussion. Results: The analysis confirms that there is a strong link between activity, rotation, and the lithium equivalent width excess, especially for the range Lum(bol) = 0.5-0.2L⊙ (about K2-K7 spectral types or 0.75-0.95 M⊙). Conclusions: It is not possible to disentangle these effects, but we cannot exclude that the observed lithium overabundance is partially an observational effect from enhanced activity owing to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A113

  12. Impact of increasing physical activity on cognitive functioning in breast cancer survivors: Rationale and study design of Memory & Motion

    PubMed Central

    Hartman, Sheri J.; Natarajan, Loki; Palmer, Barton W.; Parker, Barbara; Patterson, Ruth E.; Sears, Dorothy D.

    2015-01-01

    Introduction Many breast cancer survivors experiences problems with cognitive functioning that can persist years after treatment. Increasing physical activity has been shown to improve cognitive functioning in healthy and cognitively impaired adults, but has not yet been tested in cancer survivors. The primary aim of this randomized controlled trial is to examine the effects of a 3-month physical activity intervention compared to a waitlist control arm on neuropsychological outcomes and subjective cognitive concerns in breast cancer survivors. Methods Eighty sedentary breast cancer survivors, self-reporting difficulties with cognition, will be randomized into an Exercise arm or Control arm. The Exercise arm includes an activity tracker (i.e., a Fitbit), phone calls, plus tailored and non-tailored email content. The Control arm will receive emails on women’s health topics on the same schedule as the Exercise arm. Assessments conducted at baseline and 3 months include: neuropsychological testing, cognitive concerns and other aspects of quality of life, and 7 days of a hip-worn accelerometer. Participants will also provide fasting blood draws to assess brain-derived neurotropic factor, Insulin-like growth factor 1, insulin resistance, and C-reactive protein. Primary and secondary outcomes are changes in neuropsychological testing and cognitive concerns. Biomarkers will be examined to further understand the underlying relationship between physical activity and cognition. Conclusion The Memory & Motion study is designed to test whether increasing physical activity can improve cognitive functioning in breast cancer survivors. Results from this study could be used to guide development of interventions to improve cognitive functioning in breast cancer survivors. PMID:26427563

  13. Measuring physical activity in older adults: calibrating cut-points for the MotionWatch 8©

    PubMed Central

    Landry, Glenn J.; Falck, Ryan S.; Beets, Michael W.; Liu-Ambrose, Teresa

    2015-01-01

    Given the world’s aging population, the staggering economic impact of dementia, the lack of effective treatments, and the fact a cure for dementia is likely many years away – there is an urgent need to develop interventions to prevent or at least delay dementia’s progression. Thus, lifestyle approaches to promote healthy aging are an important line of scientific inquiry. Good sleep quality and physical activity (PA) are pillars of healthy aging, and as such, are an increasing focus for intervention studies aimed at promoting health and cognitive function in older adults. However, PA and sleep quality are difficult constructs to evaluate empirically. Wrist-worn actigraphy (WWA) is currently accepted as a valid objective measure of sleep quality. The MotionWatch 8© (MW8) is the latest WWA, replacing the discontinued Actiwatch 4 and Actiwatch 7. In the current study, concurrent measurement of WWA and indirect calorimetry was performed during 10 different activities of daily living for 23 healthy older adults (aged 57–80 years) to determine cut-points for sedentary and moderate-vigorous PA – using receiver operating characteristic curves – with the cut-point for light activity being the boundaries between sedentary and moderate to vigorous PA. In addition, simultaneous multi-unit reliability was determined for the MW8 using inter-class correlations. The current study is the first to validate MW8 activity count cut-points – for sedentary, light, and moderate to vigorous PA – specifically for use with healthy older adults. These cut-points provide important context for better interpretation of MW8 activity counts, and a greater understanding of what these counts mean in terms of PA. Hence, our results validate another level of analysis for researchers using the MW8 in studies aiming to examine PA and sleep quality concurrently in older adults. PMID:26379546

  14. Dynamical signatures of collective quality grading in a social activity: attendance to motion pictures.

    PubMed

    Escobar, Juan V; Sornette, Didier

    2015-01-01

    We investigate the laws governing people's decisions and interactions by studying the collective dynamics of a well-documented social activity for which there exist ample records of the perceived quality: the attendance to movie theaters in the US. We picture the flows of attendance as impulses or "shocks" driven by external factors that in turn can create new cascades of attendances through direct recommendations whose effectiveness depends on the perceived quality of the movies. This corresponds to an epidemic branching model comprised of a decaying exponential function determining the time between cause and action, and a cascade of actions triggered by previous ones. We find that the vast majority of the ~3,500 movies studied fit our model remarkably well. From our results, we are able to translate a subjective concept such as movie quality into a probability of the deriving individual activity, and from it we build concrete quantitative predictions. Our analysis opens up the possibility of understanding other collective dynamics for which the perceived quality or appeal of an action is also known.

  15. Dynamical Signatures of Collective Quality Grading in a Social Activity: Attendance to Motion Pictures

    PubMed Central

    Escobar, Juan V.; Sornette, Didier

    2015-01-01

    We investigate the laws governing people’s decisions and interactions by studying the collective dynamics of a well-documented social activity for which there exist ample records of the perceived quality: the attendance to movie theaters in the US. We picture the flows of attendance as impulses or “shocks” driven by external factors that in turn can create new cascades of attendances through direct recommendations whose effectiveness depends on the perceived quality of the movies. This corresponds to an epidemic branching model comprised of a decaying exponential function determining the time between cause and action, and a cascade of actions triggered by previous ones. We find that the vast majority of the ~3,500 movies studied fit our model remarkably well. From our results, we are able to translate a subjective concept such as movie quality into a probability of the deriving individual activity, and from it we build concrete quantitative predictions. Our analysis opens up the possibility of understanding other collective dynamics for which the perceived quality or appeal of an action is also known. PMID:25612292

  16. Brownian dynamics simulation of substrate motion near active site of enzyme entrapped inside reverse micelle.

    PubMed

    Ermakova, Elena A; Zakhartchenko, Nataliya L; Zuev, Yuri F

    2010-08-01

    Brownian dynamics simulation has been applied to analyze the influence of the electrostatic field of a reverse micelle on the enzyme-substrate complex formation inside a micelle. The probability that the enzyme-substrate complex will form from serine protease (trypsin) and the specific hydrophilic cationic substrate Nalpha-benzoyl-L: -arginine ethyl ester has been studied within the framework of the encounter complex formation theory. It has been shown that surfactant charge, dipole moments created by charged surfactant molecules and counterions, and permittivity of the inner core of reverse micelles can all be used as regulatory parameters to alter the substrate orientation near the active site of the enzyme and to change the probability that the enzyme-substrate complex will form.

  17. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  18. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus.

  19. Kettlebell swing, snatch, and bottoms-up carry: back and hip muscle activation, motion, and low back loads.

    PubMed

    McGill, Stuart M; Marshall, Leigh W

    2012-01-01

    The intent of this study was to quantify spine loading during different kettlebell swings and carries. No previously published studies of tissue loads during kettlebell exercises could be found. Given the popularity of kettlebells, this study was designed to provide an insight into the resulting joint loads. Seven male subjects participated in this investigation. In addition, a single case study of the kettlebell swing was performed on an accomplished kettlebell master. Electromyography, ground reaction forces (GRFs), and 3D kinematic data were recorded during exercises using a 16-kg kettlebell. These variables were input into an anatomically detailed biomechanical model that used normalized muscle activation; GRF; and spine, hip, and knee motion to calculate spine compression and shear loads. It was found that kettlebell swings create a hip-hinge squat pattern characterized by rapid muscle activation-relaxation cycles of substantial magnitudes (∼50% of a maximal voluntary contraction [MVC] for the low back extensors and 80% MVC for the gluteal muscles with a 16-kg kettlebell) resulting in about 3,200 N of low back compression. Abdominal muscular pulses together with the muscle bracing associated with carries create kettlebell-specific training opportunities. Some unique loading patterns discovered during the kettlebell swing included the posterior shear of the L4 vertebra on L5, which is opposite in polarity to a traditional lift. Thus, quantitative analysis provides an insight into why many individuals credit kettlebell swings with restoring and enhancing back health and function, although a few find that they irritate tissues.

  20. Platelet adhesion, contact phase coagulation activation, and C5a generation of polyethylene glycol acid-grafted high flux cellulosic membrane with varieties of grafting amounts.

    PubMed

    Fushimi, F; Nakayama, M; Nishimura, K; Hiyoshi, T

    1998-10-01

    Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.

  1. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Wang, Dongpo; Cheng, Fangjie; Wang, Ying

    2015-05-01

    The oxide-film structure on the 5052 Al alloy and the film-removal mechanism by activated CsF-AlF3 flux in brazing were studied. Characterisation of the oxide film shows that thermally activated Mg, segregated from the alloy's interior, was significantly enriched and oxidised during medium-temperature brazing. Thus, the outer oxide surface consisted of the amorphous MgO-like phase, and the interior of the oxide film comprised mainly the amorphous MgO-like phase and dispersely distributed and less-ordered MgAl2O4. The MgO-like phase was the main obstacle to oxide removal in brazing. The activated ZnCl2-containing CsF-AlF3 flux effectively removed the oxide film, and the 5052 Al alloy was successfully brazed by the Zn-Al filler metal and activated flux. When Zn2+ in the molten flux permeated the oxide film through cracks, its chemical reaction with the Al substrate loosened the oxide film, which was eventually pushed out as the filler metal spread over the alloy surface.

  2. Plasma Jet Motion Across the Geomagnetic Field in the ``North Star'' Active Geophysical Experiment

    NASA Astrophysics Data System (ADS)

    Gavrilov, B. G.; Zetzer, J. I.; Podgorny, I. M.; Sobyanin, D. B.; Meng, C.-I.; Erlandson, R. E.; Stenbaek-Nielsen, H. C.; Pfaff, R. F.; Lynch, K. A.

    2003-01-01

    The active geophysical rocket experiment ``North Star'' was carried out in the auroral ionosphere on January 22, 1999, at the Poker Flat Research Range (Alaska, USA) using the American research rocket Black Brant XII with explosive plasma generators on board. Separable modules with scientific equipment were located at distances of from 170 to 1595 m from the plasma source. The experiment continued the series of the Russian-American joint experiments started by the ``Fluxus'' experiment in 1997. Two injections of aluminum plasma across the magnetic field were conducted in the ``North Star'' experiment. They were different, since in the first injection a neutral gas cloud was formed in order to increase the plasma ionization due to the interaction of neutrals of the jet and cloud. The first and second injections were conducted at heights of 360 and 280 km, respectively. The measurements have shown that the charged particle density was two orders of magnitude higher in the experiment with the gas release. The magnetic field in the first injection was completely expelled by the dense plasma of the jet. The displacement of the magnetic field in the second injection was negligible. The plasma jet velocity in both injections decreased gradually due to its interaction with the geomagnetic field. One of the most interesting results of the experiment was the conservation of high plasma density during the propagation of the divergent jet to considerable distances. This fact can be explained by the action of the critical ionization velocity mechanism.

  3. Human force discrimination during active arm motion for force feedback design.

    PubMed

    Feyzabadi, Seyedshams; Straube, Sirko; Folgheraiter, Michele; Kirchner, Elsa Andrea; Kim, Su Kyoung; Albiez, Jan Christian

    2013-01-01

    The goal of this study was to analyze the human ability of external force discrimination while actively moving the arm. With the approach presented here, we give an overview for the whole arm of the just-noticeable differences (JNDs) for controlled movements separately executed for the wrist, elbow, and shoulder joints. The work was originally motivated in the design phase of the actuation system of a wearable exoskeleton, which is used in a teleoperation scenario where force feedback should be provided to the subject. The amount of this force feedback has to be calibrated according to the human force discrimination abilities. In the experiments presented here, 10 subjects performed a series of movements facing an opposing force from a commercial haptic interface. Force changes had to be detected in a two-alternative forced choice task. For each of the three joints tested, perceptual thresholds were measured as absolute thresholds (no reference force) and three JNDs corresponding to three reference forces chosen. For this, we used the outcome of the QUEST procedure after 70 trials. Using these four measurements we computed the Weber fraction. Our results demonstrate that different Weber fractions can be measured with respect to the joint. These were 0.11, 0.13, and 0.08 for wrist, elbow, and shoulder, respectively. It is discussed that force perception may be affected by the number of muscles involved and the reproducibility of the movement itself. The minimum perceivable force, on average, was 0.04 N for all three joints.

  4. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  5. Ultrasound study of the motion of the residual femur within a trans-femoral socket during daily living activities other than gait.

    PubMed

    Convery, P; Murray, K D

    2001-12-01

    This study analyses the residual femur motion of a single amputee within a transfemoral socket during a series of daily living activities. Two simultaneously transmitting, socket mounted transducers were connected to two ultrasound scanners. Displacement measurements of the ultrasound image of the femur were video recorded and measured on "paused" playback. Abduction/adduction and flexion/extension of the residual femur within the socket at any instant during these activities were estimated, knowing the relative positions of the two transducers and the position of the residual femur on the ultrasound image. Consistent motion patterns of the residual femur within the trans-femoral socket were noted throughout each monitored daily living activity of the single amputee studied. Convery and Murray (2000) reported that during level walking, relative to the socket, the residual femur extends 6 degrees and abducts 9 degrees by mid-stance while flexing 6 degrees and adducting 2 degrees by toe-off. Uphill/downhill, turning to the right and stepping up/down altered this reported pattern of femoral motion by approximately 1 degree. During the standing activity from a seated position the femur initially flexed 4 degrees before moving to 7 degrees extension, while simultaneously adducting 6 degrees. During the sitting activity from a standing position the femur moved from 7 degrees extension and 6 degrees adduction to 3 degrees flexion and 1 degree abduction. The activity of single prosthetic support to double support introduced only minor femoral motion whereas during the activity of prosthetic suspension the femur flexed 8 degrees while simultaneously adducting 9 degrees. Additional studies of more amputees are required to validate the motion patterns presented in this investigation.

  6. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  7. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  8. The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services

    NASA Astrophysics Data System (ADS)

    Boden, T. A.; Krassovski, M.; Yang, B.

    2013-06-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data archived and available from CDIAC are collections from long-term measurement projects. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. To successfully manage AmeriFlux data and support climate change research, CDIAC has designed flexible data systems using proven technologies and standards blended with new, evolving technologies and standards. The AmeriFlux data system, comprised primarily of a relational database, a PHP-based data interface and a FTP server, offers a broad suite of AmeriFlux data. The data interface allows users to query the AmeriFlux collection in a variety of ways and then subset, visualize and download the data. From the perspective of data stewardship, on the other hand, this system is designed for CDIAC to easily control database content, automate data movement, track data provenance, manage metadata content, and handle frequent additions and corrections. CDIAC and researchers in the flux community developed data submission guidelines to enhance the AmeriFlux data collection, enable automated data processing, and promote standardization across regional networks. Both continuous flux and meteorological data and irregular biological data collected at AmeriFlux sites are carefully scrutinized by CDIAC using established quality-control algorithms before the data are ingested into the AmeriFlux data system. Other tasks at CDIAC include reformatting and standardizing the diverse and heterogeneous datasets received from individual sites into a uniform and consistent network database

  9. The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services

    NASA Astrophysics Data System (ADS)

    Boden, T. A.; Krassovski, M.; Yang, B.

    2013-02-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data archived and available from CDIAC are collections from long-term measurement projects. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. To successfully manage AmeriFlux data and support climate change research, CDIAC has designed flexible data systems using proven technologies and standards blended with new, evolving technologies and standards. The AmeriFlux data system, comprised primarily of a relational database, a PHP based data-interface and a FTP server, offers a broad suite of AmeriFlux data. The data interface allows users to query the AmeriFlux collection in a variety of ways and then subset, visualize and download the data. From the perspective of data stewardship, on the other hand, this system is designed for CDIAC to easily control database content, automate data movement, track data provenance, manage metadata content, and handle frequent additions and corrections. CDIAC and researchers in the flux community developed data submission guidelines to enhance the AmeriFlux data collection, enable automated data processing, and promote standardization across regional networks. Both continuous flux and meteorological data and irregular biological data collected at AmeriFlux sites are carefully scrutinized by CDIAC using established quality-control algorithms before the data are ingested into the AmeriFlux data system. Other tasks at CDIAC include reformatting and standardizing the diverse and heterogeneous datasets received from individual sites into a uniform and consistent network database

  10. Towards Active Tracking of Beating Heart Motion in the Presence of Arrhythmia for Robotic Assisted Beating Heart Surgery

    PubMed Central

    Tuna, E. Erdem; Karimov, Jamshid H.; Liu, Taoming; Bebek, Özkan; Fukamachi, Kiyotaka; Çavuşoğlu, M. Cenk

    2014-01-01

    In robotic assisted beating heart surgery, the control architecture for heart motion tracking has stringent requirements in terms of bandwidth of the motion that needs to be tracked. In order to achieve sufficient tracking accuracy, feed-forward control algorithms, which rely on estimations of upcoming heart motion, have been proposed in the literature. However, performance of these feed-forward motion control algorithms under heart rhythm variations is an important concern. In their past work, the authors have demonstrated the effectiveness of a receding horizon model predictive control-based algorithm, which used generalized adaptive predictors, under constant and slowly varying heart rate conditions. This paper extends these studies to the case when the heart motion statistics change abruptly and significantly, such as during arrhythmias. A feasibility study is carried out to assess the motion tracking capabilities of the adaptive algorithms in the occurrence of arrhythmia during beating heart surgery. Specifically, the tracking performance of the algorithms is evaluated on prerecorded motion data, which is collected in vivo and includes heart rhythm irregularities. The algorithms are tested using both simulations and bench experiments on a three degree-of-freedom robotic test bed. They are also compared with a position-plus-derivative controller as well as a receding horizon model predictive controller that employs an extended Kalman filter algorithm for predicting future heart motion. PMID:25048462

  11. Surface Flux Emergence and Coronal Eruption

    NASA Astrophysics Data System (ADS)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  12. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  13. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  14. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump

  15. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity

    NASA Astrophysics Data System (ADS)

    Laiolo, M.; Ranaldi, M.; Tarchini, L.; Carapezza, M. L.; Coppola, D.; Ricci, T.; Cigolini, C.

    2016-04-01

    Soil CO2 flux and 222Rn activity measurements may positively contribute to the geochemical monitoring of active volcanoes. The influence of several environmental parameters on the gas signals has been substantially demonstrated. Therefore, the implementation of tools capable of removing (or minimising) the contribution of the atmospheric effects from the acquired time series is a challenge in volcano surveillance. Here, we present 4 years-long continuous monitoring (from April 2007 to September 2011) of radon activity and soil CO2 flux collected on the NE flank of Stromboli volcano. Both gases record higher emissions during fall-winter (up to 2700 Bq * m- 3 for radon and 750 g m- 2 day- 1 for CO2) than during spring-summer seasons. Short-time variations on 222Rn activity are modulated by changes in soil humidity (rainfall), and changes in soil CO2 flux that may be ascribed to variations in wind speed and direction. The spectral analyses reveal diurnal and semi-diurnal cycles on both gases, outlining that atmospheric variations are capable to modify the gas release rate from the soil. The long-term soil CO2 flux shows a slow decreasing trend, not visible in 222Rn activity, suggesting a possible difference in the source depth of the of the gases, CO2 being deeper and likely related to degassing at depth of the magma batch involved in the February-April 2007 effusive eruption. To minimise the effect of the environmental parameters on the 222Rn concentrations and soil CO2 fluxes, two different statistical treatments were applied: the Multiple Linear Regression (MLR) and the Principal Component Regression (PCR). These approaches allow to quantify the weight of each environmental factor on the two gas species and show a strong influence of some parameters on the gas transfer processes through soils. The residual values of radon and CO2 flux, i.e. the values obtained after correction for the environmental influence, were then compared with the eruptive episodes that

  16. Effects of the active release technique on pain and range of motion of patients with chronic neck pain

    PubMed Central

    Kim, Jun Ho; Lee, Han Suk; Park, Sun Wook

    2015-01-01

    [Purpose] To compare the influences of the active release technique (ART) and joint mobilization (JM) on the visual analog scale (VAS) pain score, pressure pain threshold (PPT), and neck range of motion (ROM) of patients with chronic neck pain. [Subjects] Twenty-four individuals with chronic neck pain were randomly and equally assigned to 3 groups: an ART group, a joint mobilization (JM) group, and a control group. Before and after the intervention, the degree of pain, PPT, and ROM of the neck were measured using a VAS, algometer, and goniometer, respectively. [Results] The ART group and JM group demonstrated significant changes in VAS and ROM between pre and post-intervention, while no significant change was observed in the control group. Significant differences in the PPT of all muscles were found in the ART group, while significant differences in all muscles other than the trapezius were found in the JM group. No significant difference in PPT was observed in any muscle of the control group. The posthoc test indicated no statistically significant difference between the ART and JM group, but the differences of variation in VAS, PPT, and ROM were greater in the ART group than in the JM and control groups. [Conclusion] ART for the treatment of chronic neck pain may be beneficial for neck pain and movement. PMID:26357426

  17. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.

    PubMed

    Ishida, Toyokazu

    2010-05-26

    Assignment of particular roles to catalytic residues is an important requirement in clearly understanding enzyme functions. Therefore, predicting the catalytic activities of mutant variants is a fundamental challenge in computational biochemistry. Although site-directed mutagenesis is widely used for studying enzymatic activities and other important classes of protein function, interpreting mutation experiments is usually difficult mainly due to side effects induced by point mutations. Because steric and, in many cases, electrostatic effects may affect the local, fine geometries conserved in wild-type proteins that are usually believed to be thermodynamically stable, simply reducing a loss in catalytic activity into clear elements is difficult. To address these important but difficult issues, we performed a systematic ab initio QM/MM computational analysis combined with MD-FEP simulations and all-electron QM calculations for the entire protein matrix. We selected chorismate mutase, one of the simplest and well-known enzymes, to discuss the details of mutational effects on the enzymatic reaction process. On the basis of the reliable free energy profiles of the wild-type enzyme and several mutant variants, we analyzed the effects of point mutations relative to electronic structure and protein dynamics. In general, changes in geometrical parameters introduced by a mutation were usually limited to the local mutational site. However, this local structural modification could affect the global protein dynamics through correlated motions of particular amino acid residues even far from the mutation site. Even for mutant reactions with low catalytic activity, transition state stabilization was observed as a result of conformational modifications and reorganization around the active site. As for the electrostatic effect created by the polar protein environment, the wild-type enzyme was most effectively designed to stabilize the transition state of the reactive substrate, and

  18. Relating photosynthetic activity of BSCs from spectral indices: a first step to upscale BSC role on carbon fluxes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Emilio; Chamizo, Sonia; Miralles, Isabel; Ortega, Raul; Luna, Lourdes; Cantón, Yolanda

    2014-05-01

    Arid and semiarid ecosystems are water limited environments where water availability is the main limiting factor controlling vegetation cover, productivity and ecosystem function. However, bare areas of these systems are usually covered by a thin layer of photoautrophic communities of microorganisms comprising cyanobacteria, algae, microfungi, lichens or bryophytes, so called biological soil crusts (BSCs), which may cover up to 70 % of the soil surface in these areas. These BSCs are capable to survive long drought periods, during which their physiological activity ceases, and become active just after rainfall or even after dew or fog events, thus triggering their photosynthetic activity. So, they play an active role in C storage in arid ecosystems, where they are considered the main agent of nutrient input on bare areas. Moreover, the carbon (C) stored in soils covered by BSCs may constitute an important nutrient surplus for soil microbial communities or vegetation. Thus, having accurate continuous information about C stocks and C fluxes in soils covered by BSCs, at ecosystems scale, constitutes a relevant issue for scientists and researchers from many different disciplines, and is crucial for assessing the impacts of increasing atmospheric CO2 concentration on global environmental change. Remote sensing images and derived vegetation indices are presented as one of the most promising tools to achieve this goal, since they provide spatially explicit information with high temporal resolution. So that, quantifying the photosynthetic activity on BSC areas using remote sensing data constitutes an essential step to advance in the knowledge about the role of arid and semiarid regions in global C balance. In this study we analyzed the potential of the most widely used vegetation indices to estimate gross photosynthesis (GP) in BSCs. To achieve this objective, GP was calculated, after a rainfall event on different BSCs and on bare field plots, as the sum of net primary

  19. A formulation of three-dimensional residual mean flow and wave activity flux applicable to both to Rossby waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Sato, K.

    2012-12-01

    The Transformed Eulerian-Mean (TEM) equations formulated by Andrews and McIntyre (1976, 1978) has been widely used to examine wave-mean flow interaction in the meridional cross section. Although a lot of efforts have been made to generalize the TEM equations to three dimensions so far, formulae derived by previous studies are applicable to particular waves, mainly Rossby waves on the quasi-geostrophic (QG) equations or inertia-gravity waves on the primitive equations. This study has newly formulated three-dimensional (3D) TEM equations which are applicable to both Rossby waves and gravity waves. The formulae can be used to examine the 3D material transport driven by these waves. Moreover, two kinds of 3D wave activity flux have been derived respectively for describing the wave force to the mean flow and for the wave propagation. The residual mean flow is expressed with the sum of the Eulerian-mean flow and the Stokes drift in the 2D TEM equations. Thus, a formulation is made for the 3D Stokes drift on the primitive equation (PRSD) from its original definition using a small amplitude theory for a slowly-varying mean flow. The PRSD is equivalent to the 3D Stokes drift derived by Kinoshita et al. (2010) for gravity waves for the constant Coriolis parameter and to the 3D QG Stokes drift which is also derived in this study for the small Rossby number limit. The 3D wave activity flux (3D-flux-M), whose divergence corresponds to the wave force, is derived by using PRSD. The 3D residual mean flow associated with synoptic-scale wave disturbances in the upper troposphere in April is investigated by applying the new formulae to ERA-Interim data. It is found that the sum of time-mean unbalanced flow and PRSD is southward in the east end of the storm track although it is northward in the west as is consistent with the 2D residual flow. A case study is also made for dominant gravity waves around the Southern Andes by applying the PRSD and 3D-flux-M to the simulation data of a

  20. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  1. Suspended particulate matter fluxes along with their associated metals, organic matter and carbonates in a coastal Mediterranean area affected by mining activities.

    PubMed

    Helali, Mohamed Amine; Zaaboub, Noureddine; Oueslati, Walid; Added, Ayed; Aleya, Lotfi

    2016-03-15

    A study of suspended particulate matter (SPM) fluxes along with their associated metals, organic matter and carbonates, was conducted off the Mejerda River outlet in May 2011 and in March and July 2012 at depths of 10, 20 and 40 m using sediment traps. SPM fluxes are more significant near the Mejerda outlet, especially in winter, but dissipate further offshore. Normalization reveals that the Mejerda is a major source of Pb, Zn, Cd, Cu, Ni, and Co, all of which are the result of human activities. In contrast, Fe, Mn and N are of authigenic origin. The enrichment factor shows that Pb, Zn and especially Cd are the most highly polluting metals off the Mejerda outlet. This confirms the trend observed on the shores of the Mejerda prodelta and is consistent with the type of mining activities conducted in the Mejerda catchment.

  2. Latitudinal distributions of activities in atmospheric aerosols, deposition fluxes, and soil inventories of ⁷Be in the East Asian monsoon zone.

    PubMed

    Gai, N; Pan, J; Yin, X C; Zhu, X H; Yu, H Q; Li, Y; Tan, K Y; Jiao, X C; Yang, Y L

    2015-10-01

    Activities of atmospheric aerosols, bulk deposition fluxes, and undisturbed soil inventories of (7)Be were investigated in China's East Asian monsoon zone at various latitudes ranging from 23.8°N to 43.5°N. The annual latitudinal distributions of (7)Be concentrations in aerosols follow a distribution pattern which looks similar to a normal distribution with the maxima occurring in the mid-latitude region. Simultaneous measurements of (7)Be at various latitudes suggest that atmospheric circulation may play an important role in the latitudinal distributions of (7)Be in surface air. Latitude and wet precipitation are the main factors controlling the bulk (7)Be depositional fluxes. Significant seasonal variations in (7)Be depositional fluxes in Beijing, a mid-latitude city, were observed with the highest flux in summer and the lowest in winter, whereas less seasonality were found in the high- and the low-latitude cities. The highest (7)Be inventory in undisturbed soils in summer also occurred at a mid-latitudinal area in the East Asian monsoon zone. Precipitation is the main factor controlling the (7)Be soil inventory in Qingdao with the highest values occurring in autumn followed by summer.

  3. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  4. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    PubMed

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  5. Flux penetration in a superconducting film partially capped with a conducting layer

    NASA Astrophysics Data System (ADS)

    Brisbois, J.; Gladilin, V. N.; Tempere, J.; Devreese, J. T.; Moshchalkov, V. V.; Colauto, F.; Motta, M.; Johansen, T. H.; Fritzsche, J.; Adami, O.-A.; Nguyen, N. D.; Ortiz, W. A.; Kramer, R. B. G.; Silhanek, A. V.

    2017-03-01

    The influence of a conducting layer on the magnetic flux penetration in a superconducting Nb film is studied by magneto-optical imaging. The metallic layer partially covering the superconductor provides an additional velocity-dependent damping mechanism for the flux motion that helps to protect the superconducting state when thermomagnetic instabilities develop. If the flux advances with a velocity slower than w =2 /μ0σ t , where σ is the cap layer conductivity and t is its thickness, the flux penetration remains unaffected, whereas for incoming flux moving faster than w , the metallic layer becomes an active screening shield. When the metallic layer is replaced by a perfect conductor, it is expected that the flux braking effect will occur for all flux velocities. We investigate this effect by studying Nb samples with a thickness step. Some of the observed features, namely the deflection of the flux trajectories at the border of the thick center, as well as the favored flux penetration at the indentation, are reproduced by time-dependent Ginzburg-Landau simulations.

  6. Energetic Ion Acceleration by Small-scale Solar Wind Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Webb, G. M.; Zank, G. P.; Khabarova, O.

    2015-09-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of supersonic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that ion drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes.

  7. Perceptual Experience of Visual Motion Activates hMT+ Independently From the Physical Reality: fMRI Insights From the Looming Pinna Figure.

    PubMed

    Budnik, U; Hindi-Attar, C; Hamburger, K; Pinna, B; Hennig, J; Speck, O

    2016-06-03

    The human motion processing area, hMT+, has been labeled the critical neural area for processing of real and illusory visual motion in radial 2D patterns. However, the activation in hMT+ during perception of illusory rotation in the looming double-circular Pinna Figure (PF) generated in 3D space has not been observed yet. To do so, an optic-flow like motion of rings (looming) in PF was generated on a computer screen. A psychophysically precise nulling procedure allowed quantifying the individual amount of the perceived illusory rotation in PF (PI) for each participant. The interpolation of the individual illusory motion parameters created a subjectively non-rotating PF and a physically rotating control stimulus of identical rotary strength as the PI. The physically rotating control was a double-circular figure which diverged from PF only in its arrangement of luminance gradients. In a 3-Tesla scanner, participants were presented with a random order of rotating and non-rotating figures (illusory, real, no rotation, and nulled PI). Both types, illusory and real rotation, when equal in perceptual strength for the observer, were found to be processed by hMT+.

  8. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    NASA Technical Reports Server (NTRS)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  9. NMR Dynamics of PSE-4 β-Lactamase: An Interplay of ps-ns Order and μs-ms Motions in the Active Site

    PubMed Central

    Morin, Sébastien; Gagné, Stéphane M.

    2009-01-01

    The backbone dynamics for the 29.5 kDa class A β-lactamase PSE-4 is presented. This solution NMR study was performed using multiple field 15N spin relaxation and amide exchange data in the EX2 regime. Analysis was carried out with the relax program and includes the Lipari-Szabo model-free approach. Showing similarity to the homologous enzyme TEM-1, PSE-4 is very rigid on the ps-ns timescale, although slower μs-ms motions are present for several residues; this is especially true near the active site. However, significant dynamics differences exist between the two homologs for several important residues. Moreover, our data support the presence of a motion of the Ω loop first detected using molecular dynamics simulations on TEM-1. Thus, class A β-lactamases appear to be a class of highly ordered proteins on the ps-ns timescale despite their efficient catalytic activity and high plasticity toward several different β-lactam antibiotics. Most importantly, catalytically relevant μs-ms motions are present in the active site, suggesting an important role in catalysis. PMID:19486690

  10. Heterotrophic activity on appendicularian (Tunicata: Appendicularia) houses in mesopelagic regions and their potential contribution to particle flux

    NASA Astrophysics Data System (ADS)

    Davoll, Peter J.; Youngbluth, Marsh J.

    1990-02-01

    Repeated observations and collections of appendicularian houses ( ca 1-10 cm dia.) from Johnson-Sea-Link submersibles indicate these conspicuous mucoid aggregates (0.08-0.49 houses m -3) were a common component of the biodetritus at midwater depths (490-760 m) in Bermuda and the Bahamas during May and November 1984, respectively. Microorganisms and olive-green bodies found on these houses were 1-3 orders of magnitude more numerous than in an equal volume of surrounding seawater. The production rates of bacteria on aggregates varied from 0.01 to 10.83 ng C house -1 h -1 and accounted for 0.01-4.0% of total bacterial production in the water column. The potential carbon flux from these large particles amounted to 0.83 mg C m -2 day -1 (=8% of total carbon flux).

  11. The CO2 flux and the chemistry of the crater lake in 2013-2015 evidence for the enhanced activity of El Chichon volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Jácome Paz, Mariana Patricia; Taran, Yuri; Inguaggiato, Salvatore; Collard, Nathalie

    2016-04-01

    During 2013-2015, four CO2 flux surveys were performed in the El Chichon crater both, from the lake surface and from the soil of the crater floor. The chemistry of the lake water, as well as its physical parameters (surface area, depth, temperature) were also determined. The CO2 flux in 2014-2015 compared to the 2007-2008 data (Mazot et al., 2011, BV, 73: 423-441) increased almost one order of magnitude (from ~ 140 t/d in 2008 to ~ 840 t/d in 2014). During the last two years the lake became the largest for the whole time of observations with the maximum surface area more than 18 ha covering completely the NE fumarolic field and all thermal springs feeding the lake with mineralized water. Despite the maximum volume of the lake it was characterized in 2015 by the highest since 2007 chloride content (~2500 ppm) and temperature (34°C). A large degassing spot in the middle of the lake for the first time was observed in April 2015 with more than 10,000 g m-2 d-1 of the CO2 flux. These observations evidence that the volcano-hydrothermal system of El Chichon volcano came into a new stage of activity associated most probably with changes in the magmatic activity at depth.

  12. CO2 flux and chemistry of El Chichón crater lake (México) in the period 2013-2015: Evidence for the enhanced volcano activity

    NASA Astrophysics Data System (ADS)

    Jácome Paz, Mariana P.; Taran, Yuri; Inguaggiato, Salvatore; Collard, Nathalie

    2016-01-01

    The CO2 flux from El Chichón crater in the period from 2014 to 2015 increased by a factor of 3 (from ~260 t d-1 to ~800 t d-1) compared to the 2007-2008 data. The mechanism triggering the CO2 flux from the lake surface has changed from being dominantly diffusive to mainly advective (bubbling). The Cl concentration was steadily decreasing during the last two decades in the Na-Cl boiling springs feeding the lake. Since 2013, for both lake and SP springs, the Cl concentration has increased up to the 2005 Cl concentration levels. A large degassing spot in the middle of the lake was found in April 2015 with a CO2 flux of more than 10,000 g m-2 d-1. These observations are the evidence of the onset of a new stage of activity within the volcano-hydrothermal system of El Chichón volcano associated most probably with changes in the magmatic activity at depth.

  13. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    SciTech Connect

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W.; Senkpeil, Ryan R.; Tlatov, Andrey G.; Nagovitsyn, Yury A.; Pevtsov, Alexei A.; Chapman, Gary A.; Cookson, Angela M.; Yeates, Anthony R.; Watson, Fraser T.; Balmaceda, Laura A.; DeLuca, Edward E.; Martens, Petrus C. H.

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  14. The photospheric Poynting flux and coronal heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.

    2015-04-01

    Some models of coronal heating suppose that convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we investigate this idea by estimating the upward transport of magnetic energy-the vertical Poynting flux, Sz-across the photosphere in a plage region. To do so, we combine the following: (i) estimates of photospheric horizontal velocities, vh, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are (i) strong enough to be measured with relatively small uncertainties, (ii) not so strong that convection is heavily suppressed (as within umbrae), and (iii) unipolar, so Sz in plage is not influenced by mixed-polarity processes (e.g., flux emergence) unrelated to heating in stable, active-region fields. In this plage region, we found that the average Sz varied in space, but was positive (upward) and sufficient to explain coronal heating, with values near (5 ± 1) × 107 erg cm-2 s-1. We find the energy input per unit magnetic flux to be on the order of 105 erg s-1 Mx-1. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlations with both total field strength and unsigned vertical field, |Bz|, than either Sz or horizontal flux density, Bh. The observed Ca II brightness enhancement, however, probably contains a strong contribution from a near-photosphere hot-wall effect, which is unrelated to heating in the solar atmosphere.

  15. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    NASA Astrophysics Data System (ADS)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo

  16. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374

  17. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity

    PubMed Central

    Pi, Huifeng; Li, Min; Tian, Li; Yang, Zhiqi; Yu, Zhengping; Zhou, Zhou

    2017-01-01

    Cadmium (Cd), a highly ubiquitous heavy metal, is a well-known inducer of neurotoxicity. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. In this study, we found that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function by reducing the levels of lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis and altering lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to nerve cell death. In addition, Cd decreases transcription factor EB (TFEB) expression at both the mRNA and protein levels. Furthermore, Cd induces the nuclear translocation of TFEB and TFEB target-gene expression, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Notably, restoration of the levels of lysosomal-associated membrane protein, lysosomal proteolysis, lysosomal pH and autophagic flux through Tfeb overexpression protects against Cd-induced neurotoxicity, and this protective effect is incompletely dependent on TFEB nuclear translocation. Moreover, gene transfer of the master autophagy regulator TFEB results in the clearance of toxic proteins and the correction of Cd-induced neurotoxicity in vivo. Our study is the first to demonstrate that Cd disrupts lysosomal function and autophagic flux and manipulation of TFEB signalling may be a therapeutic approach for antagonizing Cd-induced neurotoxicity. PMID:28240313

  18. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    PubMed

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  19. Sex and Age Differences in Motion Sickness in Rats: The Correlation with Blood Hormone Responses and Neuronal Activation in the Vestibular and Autonomic Nuclei.

    PubMed

    Zhou, Wei; Wang, Junqin; Pan, Leilei; Qi, Ruirui; Liu, Peng; Liu, Jiluo; Cai, Yiling

    2017-01-01

    Many studies have demonstrated sex and age differences in motion sickness, but the underlying physiological basis is still in controversy. In the present study, we tried to investigate the potential correlates of endocrine and/or neuronal activity with sex and age differences in rats with motion sickness. LiCl-induced nausea symptom was evaluated by conditioned gaping. Motion sickness was assessed by measurement of autonomic responses (i.e., conditioned gaping and defecation responses), motor impairments (i.e., hypoactivity and balance disturbance) after Ferris wheel-like rotation, and blood hormone levels and central Fos protein expression was also observed. We found that rotation-induced conditioned gaping, defecation responses and motor disorders were significantly attenuated in middle-aged animals (13- and 14-month-age) compared with adolescents (1- and 2-month-age) and young-adults (4- and/or 5-month-age). LiCl-induced conditioned gapings were also decreased with age, but was less pronounced than rotation-induced ones. Females showed greater responses in defecation and spontaneous locomotor activity during adolescents and/or young-adult period. Blood adrenocorticotropic hormone and corticosterone significantly increased in 4-month-old males after rotation compared with static controls. No significant effect of rotation was observed in norepinephrine, epinephrine, β-endorphin and arginine-vasopressin levels. The middle-aged animals (13-month-age) also had higher number of rotation-induced Fos-labeled neurons in the spinal vestibular nucleus, the parabrachial nucleus (PBN), the central and medial nucleus of amygdala (CeA and MeA) compared with adolescents (1-month-age) and young-adults (4-month-age) and in the nucleus of solitary tract (NTS) compared with adolescents (1-month-age). Sex difference in rotation-induced Fos-labeling was observed in the PBN, the NTS, the locus ceruleus and the paraventricular hypothalamus nucleus at 4 and/or 13 months of age. These

  20. Sex and Age Differences in Motion Sickness in Rats: The Correlation with Blood Hormone Responses and Neuronal Activation in the Vestibular and Autonomic Nuclei

    PubMed Central

    Zhou, Wei; Wang, Junqin; Pan, Leilei; Qi, Ruirui; Liu, Peng; Liu, Jiluo; Cai, Yiling

    2017-01-01

    Many studies have demonstrated sex and age differences in motion sickness, but the underlying physiological basis is still in controversy. In the present study, we tried to investigate the potential correlates of endocrine and/or neuronal activity with sex and age differences in rats with motion sickness. LiCl-induced nausea symptom was evaluated by conditioned gaping. Motion sickness was assessed by measurement of autonomic responses (i.e., conditioned gaping and defecation responses), motor impairments (i.e., hypoactivity and balance disturbance) after Ferris wheel-like rotation, and blood hormone levels and central Fos protein expression was also observed. We found that rotation-induced conditioned gaping, defecation responses and motor disorders were significantly attenuated in middle-aged animals (13- and 14-month-age) compared with adolescents (1- and 2-month-age) and young-adults (4- and/or 5-month-age). LiCl-induced conditioned gapings were also decreased with age, but was less pronounced than rotation-induced ones. Females showed greater responses in defecation and spontaneous locomotor activity during adolescents and/or young-adult period. Blood adrenocorticotropic hormone and corticosterone significantly increased in 4-month-old males after rotation compared with static controls. No significant effect of rotation was observed in norepinephrine, epinephrine, β-endorphin and arginine-vasopressin levels. The middle-aged animals (13-month-age) also had higher number of rotation-induced Fos-labeled neurons in the spinal vestibular nucleus, the parabrachial nucleus (PBN), the central and medial nucleus of amygdala (CeA and MeA) compared with adolescents (1-month-age) and young-adults (4-month-age) and in the nucleus of solitary tract (NTS) compared with adolescents (1-month-age). Sex difference in rotation-induced Fos-labeling was observed in the PBN, the NTS, the locus ceruleus and the paraventricular hypothalamus nucleus at 4 and/or 13 months of age. These

  1. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy

  2. Seasonal variations in soil carbonic anhydrase activity in a pine forest ecosystem as inferred from soil CO18O flux measurements

    NASA Astrophysics Data System (ADS)

    Ogee, Jerome; Wingate, Lisa; Bosc, Alexandre; Burlett, Régis

    2015-04-01

    Quantifying terrestrial carbon storage and predicting the sensitivity of ecosystems to climate change relies on our ability to obtain observational constraints on photosynthesis and respiration at large scales (ecosystem, regional and global). Photosynthesis (GPP), the largest CO2 flux from the land surface, is currently estimated with considerable uncertainty (1-3). Robust estimates of global GPP can be obtained from an atmospheric budget of the oxygen isotopic composition (δ18O) of atmospheric CO2, provided that we have a good knowledge of the δ18O signatures of the terrestrial CO2 fluxes (1,4). The latter reflect the δ18O of leaf and soil water pools because CO2 exchanges 'isotopically' with water [CO2+H218O⇔H2O+CO18O]. This exchange can be accelerated by the enzyme carbonic anhydrase (CA). In leaves, where CA is present and abundant, this isotopic equilibrium is reached almost instantaneously. As a consequence, and because soil and leaf water pools have different δ18O signatures, CO2 fluxes from leaves and soils carry very distinct δ18O signals and can thus be tracked from the fluctuations in the δ18O of atmospheric CO2 (δa). There is growing evidence that the accelerated isotopic exchange between CO2 and water due to CA activity is a widespread phenomenon in soils as well (4). At the global scale, accounting for soil CA activity dramatically shifts the influence of soil and leaf fluxes on δa, thus changing the estimates of terrestrial gross CO2 fluxes (1,4). In this talk we will briefly present the current state of understanding of the environmental and ecological causes behind the variability in CA activity observed in soils and illustrate, using field data from a temperate pine forest, how soil CA activity varies over a single growing season and how it responds to soil surface environmental variables. References 1. L. R. Welp et al., Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño, Nature 477, 579-582 (2011

  3. Audio-visual interactions for motion perception in depth modulate activity in visual area V3A.

    PubMed

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-05-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) "matched vs. unmatched" conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio-visual "congruent vs. incongruent" between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio-visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio-visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio-visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices.

  4. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  5. Motion Sickness

    MedlinePlus

    ... but it is more common in children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling and cold sweats. It can then lead to dizziness and nausea and vomiting. Your brain senses movement by getting signals from your inner ears, eyes, ...

  6. MAGNETAR GIANT FLARES-FLUX ROPE ERUPTIONS IN MULTIPOLAR MAGNETOSPHERIC MAGNETIC FIELDS

    SciTech Connect

    Yu Cong

    2012-09-20

    We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. Self-consistent stationary, axisymmetric models of the magnetosphere are constructed based on force-free magnetic field configurations that contain a helically twisted force-free flux rope. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curves contain two branches: one represents a stable equilibrium branch, and the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior: when the magnetar surface magnetic field evolves slowly, the height of the flux rope would gradually reach a critical value beyond which stable equilibriums can no longer be maintained. Subsequently, the flux rope would lose equilibrium and the gradual quasi-static evolution of the magnetosphere will be replaced by a fast dynamical evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the crust of the magnetar. Some implications of our model are also discussed.

  7. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  8. Studies of vertical fluxes of horizontal momentum in the lower atmosphere using the MU-radar

    NASA Astrophysics Data System (ADS)

    Kuo, F. S.; Lue, H. Y.; Fern, C. L.; Röttger, J.; Fukao, S.; Yamamoto, M.

    2008-11-01

    We study the momentum flux of the atmospheric motions in the height ranges between 6 and 22 km observed using the MU radar at Shigaraki in Japan during a 3 day period in January 1988. The data were divided by double Fourier transformation into data set of waves with downward- phase- velocity and data set of waves with upward-phase-velocity for independent momentum flux calculation. The result showed that both the 72 h averaged upward flux and downward flux of zonal momentum were negative at nearly each height, meaning that the upward flux was dominated by westward propagating waves while the downward flux was dominated by eastward propagating waves. The magnitude of the downward flux was approximately a factor of 1.5 larger than the upward flux for waves in the 2~7 h and 7~24 h period bands, and about equal to the upward flux in the 10 30 min and 30 min 2 h period bands. It is also observed that the vertical flux of zonal momentum tended to be small in each frequency band at the altitudes below the jet maximum (10~12 km), and the flux increased toward more negative values to reach a negative maximum at some altitude well above the jet maximum. Daily averaged flux showed tremendous variation: The 1st 24 h (quiet day) was relatively quiet, and the fluxes of the 2nd and 3rd 24 h (active days) increased sharply. Moreover, the upward fluxes of zonal momentum below 17 km in the quiet day for each period band (10~30 min, 30 min~2 h, 2~7 h, and 7~24 h) were dominantly positive, while the corresponding downward fluxes were dominantly negative, meaning that the zonal momentum below 17 km in each period band under study were dominantly eastward (propagating along the mean wind). In the active days, both the upward fluxes and downward fluxes in each frequency band were dominantly negative throughout the whole altitude range 6.1 18.95 km.

  9. Tunable color temperature solid state white light source using flux grown phosphor crystals of Eu3+, Dy3+ and Tb3+ activated calcium sodium molybdenum oxide

    NASA Astrophysics Data System (ADS)

    Khanna, A.; Dutta, P. S.

    2014-11-01

    Solid state light sources with dynamically tunable color temperature in the range of 3000-6000 K with chromaticity coordinates lying on the Planckian black body curve has been designed using mixtures of narrow emissions at 615 nm, 575 nm and 550 nm. These respective emissions lines were generated by individual phosphor crystals of trivalent rare earth (RE3+) species, europium (Eu3+), dysprosium (Dy3+) and terbium (Tb3+) activated calcium sodium molybdenum oxide (Ca1-2xNaxMoO4:RE3+x), when excited by near-ultra-violet (NUV) light emitting diode (LED) with emission wavelength of 380 nm. Highly luminescent crystals of these compounds have been grown from molten solutions (flux) of molybdenum (VI) oxide. The flux grown crystals exhibit emission intensity 2-4 times more than phosphor powders of the same compounds synthesized by traditional solid-state reactions. An optimum flux to solute ratio of 2.5 and solute dissolution temperature of 1100 °C resulted in the largest size crystals.

  10. Yugoslav strong motion network

    NASA Astrophysics Data System (ADS)

    Mihailov, Vladimir

    1985-04-01

    Data concerning ground motion and the response of structures during strong earthquakes are necessary for seismic hazard evaluation and the definition of design criteria for structures to be constructed in seismically active zones. The only way to obtain such data is the installation of a strong-motion instrument network. The Yugoslav strong-motion programme was created in 1972 to recover strong-motion response data used by the structural engineering community in developing earthquake resistant design. Instruments, accelerographs SMA-1 and seismoscopes WM-1, were installed in free-field stations and on structures (high-rise buildings, dams, bridges, etc.). A total number of 176 accelerographs and 137 seismoscopes have been installed and are operating in Yugoslavia. The strong-motion programme in Yugoslavia consists of five subactivities: network design, network operation, data processing, network management and research as well as application. All these activities are under the responsibility of IZIIS in cooperation with the Yugoslav Association of Seismology. By 1975 in the realisation of this project participated the CALTECH as cooperative institution in the joint American-Yugoslav cooperative project. The results obtained which are presented in this paper, and their application in the aseismic design justify the necessity for the existence of such a network in Yugoslavia.

  11. Flow motion dynamics of microvascular blood flow and oxygenation: Evidence of adaptive changes in obesity and type 2 diabetes mellitus/insulin resistance.

    PubMed

    Clough, Geraldine F; Kuliga, Katarzyna Z; Chipperfield, Andrew J

    2017-02-01

    An altered spatial heterogeneity and temporal stability of network perfusion can give rise to a limited adaptive ability to meet metabolic demands. Derangement of local flow motion activity is associated with reduced microvascular blood flow and tissue oxygenation, and it has been suggested that changes in flow motion activity may provide an early indicator of declining, endothelial, neurogenic, and myogenic regulatory mechanisms and signal the onset and progression of microvascular pathophysiology. This short conference review article explores some of the evidence for altered flow motion dynamics of blood flux signals acquired using laser Doppler fluximetry in the skin in individuals at risk of developing or with cardiometabolic disease.

  12. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    SciTech Connect

    Su, Yingna; Van Ballegooijen, Adriaan

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.

  13. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    SciTech Connect

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  14. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin

  15. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  16. Marbles in Motion.

    ERIC Educational Resources Information Center

    Brown, Helen; Meyers, Bernice; Schmidt, William

    1999-01-01

    Marbles were successfully used to help primary students develop concepts of motion. Marble-unit activities began with shaking and rattling inference bags and predicting by listening just how many marbles were in each bag. Students made qualitative and quantitative observations of the marbles, manipulated marbles with a partner, and observed…

  17. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images

    NASA Astrophysics Data System (ADS)

    Park, Sang-June; Ionascu, Dan; Killoran, Joseph; Mamede, Marcelo; Gerbaudo, Victor H.; Chin, Lee; Berbeco, Ross

    2008-07-01

    Gated (4D) PET/CT has the potential to greatly improve the accuracy of radiotherapy at treatment sites where internal organ motion is significant. However, the best methodology for applying 4D-PET/CT to target definition is not currently well established. With the goal of better understanding how to best apply 4D information to radiotherapy, initial studies were performed to investigate the effect of target size, respiratory motion and target-to-background activity concentration ratio (TBR) on 3D (ungated) and 4D PET images. Using a PET/CT scanner with 4D or gating capability, a full 3D-PET scan corrected with a 3D attenuation map from 3D-CT scan and a respiratory gated (4D) PET scan corrected with corresponding attenuation maps from 4D-CT were performed by imaging spherical targets (0.5-26.5 mL) filled with 18F-FDG in a dynamic thorax phantom and NEMA IEC body phantom at different TBRs (infinite, 8 and 4). To simulate respiratory motion, the phantoms were driven sinusoidally in the superior-inferior direction with amplitudes of 0, 1 and 2 cm and a period of 4.5 s. Recovery coefficients were determined on PET images. In addition, gating methods using different numbers of gating bins (1-20 bins) were evaluated with image noise and temporal resolution. For evaluation, volume recovery coefficient, signal-to-noise ratio and contrast-to-noise ratio were calculated as a function of the number of gating bins. Moreover, the optimum thresholds which give accurate moving target volumes were obtained for 3D and 4D images. The partial volume effect and signal loss in the 3D-PET images due to the limited PET resolution and the respiratory motion, respectively were measured. The results show that signal loss depends on both the amplitude and pattern of respiratory motion. However, the 4D-PET successfully recovers most of the loss induced by the respiratory motion. The 5-bin gating method gives the best temporal resolution with acceptable image noise. The results based on the 4D

  18. The AmeriFlux Data Activity and Data System: An Evolving Collection of Data Management Techniques, Tools, Products and Services

    SciTech Connect

    Boden, Thomas A; Krassovski, Misha B; Yang, Bai

    2013-01-01

    support for numerous long-term measurement projects crucial to climate change science. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. We share our approaches in satisfying the challenges of delivering AmeriFlux data worldwide to benefit others with similar challenges handling climate change data, further heighten awareness and use of an outstanding ecological data resource, and highlight expanded software engineering applications being used for climate change measurement data.

  19. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  20. Motion in microfluidic ratchets.

    PubMed

    Caballero, D; Katuri, J; Samitier, J; Sánchez, S

    2016-11-15

    The ubiquitous random motion of mesoscopic active particles, such as cells, can be "rectified" or directed by embedding the particles in systems containing local and periodic asymmetric cues. Incorporated on lab-on-a-chip devices, these microratchet-like structures can be used to self-propel fluids, transport particles, and direct cell motion in the absence of external power sources. In this Focus article we discuss recent advances in the use of ratchet-like geometries in microfluidics which could open new avenues in biomedicine for applications in diagnosis, cancer biology, and bioengineering.

  1. Regarding "Semi-active control of the rocking motion of monolithic art objects" [Journal of Sound and Vibration, 374 (2016) 1-16

    NASA Astrophysics Data System (ADS)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "Semi-active control of the rocking motion of monolithic art objects" by R. Ceravolo, M.L. Pecorelli, and L.Z. Fragonara, did not contain a direct citation of the fundamental and original work by D. Konstantinidis and N. Makris entitled "Experimental and analytical studies on the seismic response of free-standing and anchored laboratory equipment", Report No. PEER 2005/07. Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, 2005. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  2. Influence of urban activities on polycyclic aromatic hydrocarbons in precipitation: distribution, sources and depositional flux in a developing metropolis, Fortaleza, Brazil.

    PubMed

    Cavalcante, Rivelino M; Sousa, Francisco W; Nascimento, Ronaldo F; Silveira, Edilberto R; Viana, Rommel B

    2012-01-01

    We measured polycyclic aromatic hydrocarbons (PAHs) in bulk precipitation in the Fortaleza metropolitan area, Ceará, Brazil, for the first time. Because little information is available concerning PAHs in tropical climatic regions, we assessed their spatial distribution and possible sources and the influence of urban activities on the depositional fluxes of PAHs in bulk precipitation. The concentrations of individual and total PAHs (Σ(PAHs)) in bulk precipitation ranged from undetectable to 133.9 ng.L(-1) and from 202.6 to 674.8 ng.L(-1), respectively. The plume of highest concentrations was most intense in a zone with heavy automobile traffic and favorable topography for the concentration of emitted pollutants. The depositional fluxes of PAHs in bulk precipitation calculated in this study (undetectable to 0.87 μg.m(-2).month(-1)) are 4 to 27 times smaller than those reported from tourist sites and industrial and urban areas in the Northern Hemisphere. Diagnostic ratio analyses of PAH samples showed that the major source of emissions is gasoline exhaust, with a small percentage originating from diesel fuel. Contributions from coal and wood combustion were also found. Major economic activities appear to contribute to pollutant emissions.

  3. Estimates of suspended-sediment flux and bedform activity on the inner portion of the Eel continental shelf

    USGS Publications Warehouse

    Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.

    1999-01-01

    Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long

  4. Stefan blowing effects on MHD bioconvection flow of a nanofluid in the presence of gyrotactic microorganisms with active and passive nanoparticles flux

    NASA Astrophysics Data System (ADS)

    Giri, Shib Sankar; Das, Kalidas; Kundu, Prabir Kumar

    2017-02-01

    The present paper investigates the effect of Stefan blowing on the hydro-magnetic bioconvection of a water-based nanofluid flow containing gyrotactic microorganisms through a permeable surface. Also we studied both actively and passively the controlled flux of nanoparticles and the effect of a surface slip at the wall. We adopt a similarity approach to reduce the leading partial differential equations into ordinary differential equations along with two separate boundary conditions (active and passive) and solve the resulting equations numerically by employing the RK-4 method through the shooting technique to perform the flow analysis. Discussions on the effect of emerging flow parameter on the flow characteristic are made properly through graphs and charts. We observed that the effects of the traditional Lewis number and suction/blowing parameter on temperature distribution and microorganism concentration are converse to each other. A fair result comparison of the present paper with formerly obtained results is given.

  5. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor

    PubMed Central

    Salehizadeh, Seyed M. A.; Dao, Duy; Bolkhovsky, Jeffrey; Cho, Chae; Mendelson, Yitzhak; Chon, Ki H.

    2015-01-01

    Accurate estimation of heart rates from photoplethysmogram (PPG) signals during intense physical activity is a very challenging problem. This is because strenuous and high intensity exercise can result in severe motion artifacts in PPG signals, making accurate heart rate (HR) estimation difficult. In this study we investigated a novel technique to accurately reconstruct motion-corrupted PPG signals and HR based on time-varying spectral analysis. The algorithm is called Spectral filter algorithm for Motion Artifacts and heart rate reconstruction (SpaMA). The idea is to calculate the power spectral density of both PPG and accelerometer signals for each time shift of a windowed data segment. By comparing time-varying spectra of PPG and accelerometer data, those frequency peaks resulting from motion artifacts can be distinguished from the PPG spectrum. The SpaMA approach was applied to three different datasets and four types of activities: (1) training datasets from the 2015 IEEE Signal Process. Cup Database recorded from 12 subjects while performing treadmill exercise from 1 km/h to 15 km/h; (2) test datasets from the 2015 IEEE Signal Process. Cup Database recorded from 11 subjects while performing forearm and upper arm exercise. (3) Chon Lab dataset including 10 min recordings from 10 subjects during treadmill exercise. The ECG signals from all three datasets provided the reference HRs which were used to determine the accuracy of our SpaMA algorithm. The performance of the SpaMA approach was calculated by computing the mean absolute error between the estimated HR from the PPG and the reference HR from the ECG. The average estimation errors using our method on the first, second and third datasets are 0.89, 1.93 and 1.38 beats/min respectively, while the overall error on all 33 subjects is 1.86 beats/min and the performance on only treadmill experiment datasets (22 subjects) is 1.11 beats/min. Moreover, it was found that dynamics of heart rate variability can be

  6. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.

    PubMed

    Salehizadeh, Seyed M A; Dao, Duy; Bolkhovsky, Jeffrey; Cho, Chae; Mendelson, Yitzhak; Chon, Ki H

    2015-12-23

    Accurate estimation of heart rates from photoplethysmogram (PPG) signals during intense physical activity is a very challenging problem. This is because strenuous and high intensity exercise can result in severe motion artifacts in PPG signals, making accurate heart rate (HR) estimation difficult. In this study we investigated a novel technique to accurately reconstruct motion-corrupted PPG signals and HR based on time-varying spectral analysis. The algorithm is called Spectral filter algorithm for Motion Artifacts and heart rate reconstruction (SpaMA). The idea is to calculate the power spectral density of both PPG and accelerometer signals for each time shift of a windowed data segment. By comparing time-varying spectra of PPG and accelerometer data, those frequency peaks resulting from motion artifacts can be distinguished from the PPG spectrum. The SpaMA approach was applied to three different datasets and four types of activities: (1) training datasets from the 2015 IEEE Signal Process. Cup Database recorded from 12 subjects while performing treadmill exercise from 1 km/h to 15 km/h; (2) test datasets from the 2015 IEEE Signal Process. Cup Database recorded from 11 subjects while performing forearm and upper arm exercise. (3) Chon Lab dataset including 10 min recordings from 10 subjects during treadmill exercise. The ECG signals from all three datasets provided the reference HRs which were used to determine the accuracy of our SpaMA algorithm. The performance of the SpaMA approach was calculated by computing the mean absolute error between the estimated HR from the PPG and the reference HR from the ECG. The average estimation errors using our method on the first, second and third datasets are 0.89, 1.93 and 1.38 beats/min respectively, while the overall error on all 33 subjects is 1.86 beats/min and the performance on only treadmill experiment datasets (22 subjects) is 1.11 beats/min. Moreover, it was found that dynamics of heart rate variability can be

  7. Transcriptional activities of methanogens and methanotrophs vary with methane emission flux in rice soils under chronic nutrient constraints of phosphorus and potassium

    NASA Astrophysics Data System (ADS)

    Sheng, Rong; Chen, Anlei; Zhang, Miaomiao; Whiteley, Andrew S.; Kumaresan, Deepak; Wei, Wenxue

    2016-12-01

    Nutrient status in soil is crucial for the growth and development of plants which indirectly or directly affect the ecophysiological functions of resident soil microorganisms. Soil methanogens and methanotrophs can be affected by soil nutrient availabilities and plant growth, which in turn modulate methane (CH4) emissions. Here, we assessed whether deficits in soil-available phosphorus (P) and potassium (K) modulated the activities of methanogens and methanotrophs in a long-term (20 year) experimental system involving limitation in either one or both nutrients. Results showed that a large amount of CH4 was emitted from paddy soil at rice tillering stage (flooding) while CH4 flux was minimum at ripening stage (drying). Compared to soils amended with NPK fertiliser treatment, the soils without P input significantly reduced methane flux rates, whereas those without K input did not. Under P limitation, methanotroph transcript copy number significantly increased in tandem with a decrease in methanogen transcript abundance, suggesting that P-deficiency-induced changes in soil physio-chemical properties, in tandem with rice plant growth, might constrain the activity of methanogens, whereas the methanotrophs might be adaptive to this soil environment. In contrast, lower transcript abundance of both methanogen and methanotrophs were observed in K-deficient soils. Assessments of community structures based upon transcripts indicated that soils deficient in P induced greater shifts in the active methanotrophic community than K-deficient soils, while similar community structures of active methanogens were observed in both treatments. These results suggested that the population dynamics of methanogens and methanotrophs could vary along with the changes in plant growth states and soil properties induced by nutrient deficiency.

  8. Flux Cancellation and the Evolution of the Eruptive Filament of 2011 June 7

    NASA Astrophysics Data System (ADS)

    Yardley, S. L.; Green, L. M.; Williams, D. R.; van Driel-Gesztelyi, L.; Valori, G.; Dacie, S.

    2016-08-01

    We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular eruption on 2011 June 7. We analyze and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighboring active regions (ARs 11227 & 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6 day period building up to the eruption of the filament, 1.7 × 1021 Mx, 21% of AR 11226's maximum magnetic flux, was canceled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 × 1021 Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive-polarity sunspot, which splits, with the largest section moving rapidly toward the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggest that the magnetic field configuration supporting the filament material is that of a flux rope.

  9. Motion of the shoulder complex in individuals with isolated acromioclavicular osteoarthritis and associated with rotator cuff dysfunction: part 2 - muscle activity.

    PubMed

    Sousa, Catarina de Oliveira; Michener, Lori Ann; Ribeiro, Ivana Leão; Reiff, Rodrigo Bezerra de Menezes; Camargo, Paula Rezende; Salvini, Tania Fátima

    2015-02-01

    This study aimed to compare muscle activity in individuals with isolated acromioclavicular osteoarthritis (ACO), ACO associated with rotator cuff disease (ACO+RCD), and controls. Seventy-four participants (23 isolated ACO, 25 ACO+RCD, 26 controls) took part in this study. Disability was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Muscle activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and anterior deltoid (AD) was collected during arm elevation in the sagittal and scapular planes. Pain during motion was assessed with the numerical pain rating scale. Analysis of the DASH, pain and kinematics were reported in part 1 of this study. For each muscle, separate 2-way linear mixed-model ANOVAs were performed to compare groups. ACO+RCD group had more UT and AD activity than the the isolated ACO and control other groups, more AD activity than the isolated ACO group during the ascending phase, and more AD activity than the ACO and control groups during the descending phase in both planes. Isolated ACO group had less SA activity than the control group only in the sagittal plane. Alterations in shoulder muscle activity are present in individuals with isolated ACO and with ACO+RCD and should be considered in rehabilitation.

  10. An Analysis of Moisture Fluxes into the Gulf of California

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.; Schubert, Siegfried D.; Suarez, Max J.; Huang, Norden E.

    2009-01-01

    This study examines the nature of episodes of enhanced warm-season moisture flux into the Gulf of California. Both spatial structure and primary time scales of the fluxes are examined using the 40-yr ECMWF Re-Analysis data for the period 1980-2001. The analysis approach consists of a compositing technique that is keyed on the low-level moisture fluxes into the Gulf of California. The results show that the fluxes have a rich spectrum of temporal variability, with periods of enhanced transport over the gulf linked to African easterly waves on subweekly (3-8 day) time scales, the Madden-Julian oscillation (MJO) at intraseasonal time scales (20-90 day), and intermediate (10-15 day) time-scale disturbances that appear to originate primarily in the Caribbean Sea-western Atlantic Ocean. In the case of the MJO, enhanced low-level westerlies and large-scale rising motion provide an environment that favors large-scale cyclonic development near the west coast of Central America that, over the course of about 2 weeks, expands northward along the coast eventually reaching the mouth of the Gulf of California where it acts to enhance the southerly moisture flux in that region. On a larger scale, the development includes a northward shift in the eastern Pacific ITCZ, enhanced precipitation over much of Mexico and the southwestern United States, and enhanced southerly/southeasterly fluxes from the Gulf of Mexico into Mexico and the southwestern and central United States. In the case of the easterly waves, the systems that reach Mexico appear to redevelop/reorganize on the Pacific coast and then move rapidly to the northwest to contribute to the moisture flux into the Gulf of California. The most intense fluxes into the gulf on these time scales appear to be synchronized with a midlatitude short-wave trough over the U.S. West Coast and enhanced low-level southerly fluxes over the U.S. Great Plains. The intermediate (10-15 day) time-scale systems have zonal wavelengths roughly twice

  11. An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO Colla

    2008-06-05

    The Sudbury Neutrino Observatory (SNO) used an array of {sup 3}He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active ({nu}{sub x}) {sup 8}B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst) x 10{sup 6} cm{sup -2}s{sup -1}, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields {Delta}m{sup 2} = 7.94{sub -0.26}{sup +0.42} x 10{sup -5} eV{sup 2} and {theta} = 33.8{sub -1.3}{sup +1.4} degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  12. Independent Measurement of the Total Active {sup 8}B Solar Neutrino Flux Using an Array of {sup 3}He Proportional Counters at the Sudbury Neutrino Observatory

    SciTech Connect

    Aharmim, B.; Chauhan, D.; Farine, J.; Fleurot, F.; Hallman, E. D.; Krueger, A.; Schwendener, M. H.; Virtue, C. J.; Ahmed, S. N.; Cai, B.; Chen, M.; DiMarco, M.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Guillian, E.; Harvey, P. J.; Keeter, K. J.; Kormos, L. L.; Kos, M.

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of {sup 3}He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active ({nu}{sub x}) {sup 8}B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst)x10{sup 6} cm{sup -2} s{sup -1}, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields {delta}m{sup 2}=7.59{sub -0.21}{sup +0.19}x10{sup -5} eV{sup 2} and {theta}=34.4{sub -1.2}{sup +1.3} degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  13. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  14. Minkowski Flux Vacua of Type II Supergravities

    NASA Astrophysics Data System (ADS)

    Andriot, David; Blâbäck, Johan; Van Riet, Thomas

    2017-01-01

    We study flux compactifications of 10D type II supergravities to 4D Minkowski space-time, supported by parallel orientifold Op planes with 3 ≤p ≤8 . With some geometric restrictions, the 4D Ricci scalar can be written as a negative sum of squares involving Bogomol'nyi-Prasad-Sommerfield-like conditions. Setting all squares to zero provides automatically a solution to 10D equations of motion. This way we characterize a broad class, if not the complete set, of Minkowski flux vacua with parallel orientifolds. We conjecture an extension with nongeometric fluxes. None of our results rely on supersymmetry.

  15. Retrieval of lava and SO2 fluxes during long-lived effusive eruptions using MSG-SEVIRI: the case of Bárdarbunga 2014 activity

    NASA Astrophysics Data System (ADS)

    Gouhier, Mathieu; Gauthier, Pierre-Jean; Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir

    2015-04-01

    During effusive events, such as that of the 2014 Holuhraun eruption in the Bárdarbunga Volcanic System, Iceland, the lava and SO2 fluxes can be very large and possibly last for several months. However, the magma effusion rate as well as the gas flux may vary. The monitoring of any changes is essential as it informs on the dynamics of the eruption, and possibly reflects modifications of deeper mechanisms at the origin of the eruption. Geostationary satellite sensors turns out to be particularly relevant to record rapid changes of surface activity by the continuous acquisition of infrared data at time resolution of up to one image every five minutes. However, the long time-series generated cannot easily be analyzed and interpreted using conventional techniques, and require automated processing. Here we present a new method, hereafter called the "gradient method", which can be applied for the quantification of both lava volume and gas mass fluxes during long-lived effusive eruptions using infrared geostationary satellite data. The retrieval scheme comprises the following steps: firstly, the instantaneous lava volume and SO2 cloud mass must be calculated from each image. Then, we apply the "gradient method" to retrieve the lava and gas fluxes, leading to estimates of the true lava volume and gas mass. For the lava, the 3.9µm and 12µm wavebands are used to detect thermal anomalies and calculate related lava areas from the dual "pixel integrated temperature" method. Then, assuming the lava flow thickness, it gives an instantaneous lava volume. The SO2 column abundance is retrieved from the 8.7µm waveband using a linear regression derived from a least square fit procedure between satellite sensor measurements and simulated radiances. It leads to an instantaneous SO2 cloud mass. These calculations are made at each time step, generating time series of these two parameters. The actual lava volume and SO2 mass cannot be estimated through the integration of the total time

  16. Proposal of Method for Control of Muscle Activation Level for Limbs during Motion and Application of this Method in Strength Training

    NASA Astrophysics Data System (ADS)

    Komada, Satoshi; Murakami, Yosuke; Hirai, Junji

    With an increase in the number of elderly people in our society, the need for equipments that ensure activities of daily living and that can be used in strength training for reducing the need for nursing care is increasing. In this paper, we propose a method for controlling the level of muscle activation for a particular muscle group without EMG sensors; the force exerted by the tips of the limbs during motion is used to control the level of muscle activation. The method is based on a musculoskeletal model for limbs called functionally different effective muscles of three antagonistic pairs of six muscles in 2D space. Hill's equation is incorporated in the method to consider force-velocity characteristics of muscles. EMG measurement results for two muscles under isokinetic contraction in the lower limbs of a subject show that difference between the achieved activation level and the desired activation level is less than the error of the output force distribution. Moreover, the control method is applied to strength training. A manipulator that can facilitate the isokinetic contraction with more than the desired activation level for a specific muscle group is developed.

  17. Integration of physical activity and technology motion devices within a combined 5th and 6th grade science curriculum

    NASA Astrophysics Data System (ADS)

    Finn, Kevin Eugene

    Background: National recommendations to increase school-based physical activity and promote academic success advise incorporating movement into traditional classroom lessons. Classroom-based physical activities have favorable associations with indicators of cognitive functioning, academic behaviors, and academic achievement. Purpose: This study analyzed the Active Science framework, which incorporated school-based physical activity within interactive science classroom lessons. Specifically, the study measured the effects of the Active Science framework on student physical activity levels in the classroom, student learning of science inquiry skills and content knowledge, and student perceptions of physical activity and science. A secondary purpose was to evaluate the teachers' perceptions on the implementation of the framework. Subjects: Participants were 37 Hispanic girls (age=11.1 +/-0.8 yr) in mixed 5th/6th grade science classes in a private, urban middle school. Methods: Physical activity levels of the students during the Active Science framework were measured using pedometers and heart rate monitors. Pre- and post-tests were used to assess the levels of learning achieved by the students in science inquiry skills and content during the Active Science framework. Student perceptions and attitudes toward science and physical activity were measured during student focus groups and pre-post perception surveys. Lesson plan evaluations completed by the teachers and structured interviews provided data on implementation of the framework. Results: Physical activity results showed heart rate (146 +/-9 bpm); maximal heart rate (196 +/-10.6 bpm); time (35 +/-2.5 mins); steps (3050 +/-402.7); calories (99 +/-8.4 kcal); and distance (1.1 +/-0.2 miles) while performing the activity portion of the science lessons were consistent with national recommendations for accumulating school-based physical activity. Significant increases in science content and skills test scores with a 22

  18. 10 CFR 820.39 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Motions. 820.39 Section 820.39 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.39 Motions. (a) General. All motions in an enforcement adjudication except those made orally, shall be in writing, state the grounds...

  19. Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2015-02-01

    The Ninetyeast Ridge, a linear trace of the Kerguelen hot spot in the Indian Ocean, was emplaced on a rapidly drifting Indian plate. Magma production rates along the ridge track are computed using gravity-derived excess crustal thickness data. The production rates change between 2 and 15 m3/s over timescales of 3-16 Myr. Major variations in magma production rates are primarily associated with significant changes in the Indian plate velocity with low-production phases linked to high plate velocity periods. The lowest magma production rate (2 m3/s) at 62 Ma is associated with the rapid northward drift of Indian plate under the influence of the Reunion mantle plume. The contemporaneous slowing of the African plate coincides with increase in magma production rate along the Walvis Ridge in the Atlantic Ocean. The present study suggests that variations in the Indian plate motion and frequent ridge jumps have a major role in controlling the magma production, particularly on long-period cycles (~16 Myr). Short-period variations (~5 Myr) in magma productions may be associated with intrinsic changes in the plume, possibly due to the presence of solitary waves in the plume conduit.

  20. Active Range of Motion with Individual Protective Equipment: Self-Contained Breathing Apparatus and Levels B and A Configurations

    DTIC Science & Technology

    2009-10-01

    CONDITIONS 27 FIGURES 1. AROM for Cervical Rotation during Head S2S Activity for Each IPE Condition 14 2. AROM for Cervical Flexion and Extension...during Head Nod Activity 14 3. AROM for Lateral Cervical Fle