Science.gov

Sample records for activated glassy carbon

  1. Electroanalytical study of nifedipine using activated glassy carbon electrode.

    PubMed

    Sentürk, Z; Ozkan, S A; Ozkan, Y

    1998-01-01

    The electrochemical properties of nifedipine have been investigated in aqueous solution by linear sweep and cyclic voltammetry. The method is based both on the reduction and on the oxidation of the drug at a glassy carbon electrode activated by applying a new pre-treatment. The voltammograms of nifedipine on pH, concentration and scan rate have been carefully examined. Both the electroreduction and electrooxidation of nifedipine allow its determination at pH 1.5 in the concentration range of 2 x 10(-5)-6 x 10(-4) M and 8 x 10(-5)-1 x 10(-3) M, respectively. The method has been applied to commercial samples (tablets and capsules).

  2. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay.

  3. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  4. Anodic electrosynthesis of some peroxy compounds on glassy carbon electrodes

    SciTech Connect

    Khomutov, N.E.; Zakhodyakina, N.A.; Svirida, L.V.; Nesvat, N.V.

    1987-11-10

    The authors present the results of a study of the anodic electrosynthesis of hydrogen peroxide and its derivatives on glassy carbon in solutions of sodium carbonate and sodium carbonate with sodium borate. We studied the kinetics of anodic processes on glassy carbon with the aid of polarization measurements and a method for determining the concentrations of active oxygen in the anolyte and the current efficiency. The current efficiencies with respect to active oxygen obtained on glassy carbon in the mixed solution of sodium borate and sodium carbonate are close to the current efficiencies which are observed on platinum anodes in the industrial electrosynthesis of perborates.

  5. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity.

    PubMed

    Gomes, Janaina F; Gasparotto, Luiz H S; Tremiliosi-Filho, Germano

    2013-07-01

    Glycerol is at present abundantly co-produced in the biodiesel fabrication and can be used as fuel in Direct Glycerol Fuel Cells (DGFC) for cogeneration of electricity, value-added chemicals and heat. With this motivation, in the present work, we investigated at a fundamental level the oxidation of glycerol over glassy carbon (GC) supported Au nanoparticles in alkaline medium using cyclic voltammetry. By controlling the Au deposition time, we varied the GC supported Au coverage from 0.4% to 30% maintaining a regular particle size distribution with a mean particle size of about 200 nm. An influence of the carbon support on the activity of the GC-supported Au nanoparticles was evidenced. Results from studies on the oxidation of glycerol and ethylene glycol on Au and Pt nanoparticles supported on a glassy carbon, highly ordered pyrolytic graphite and dimensionally stable anode under different pH conditions indicate that the carbon support participates actively in the oxidation of glycerol and other alcohols. We propose that active oxygenated species are gradually formed on the glassy carbon by potential cycling (up to the saturation of the carbon area) and these oxygenated species are additional oxygen suppliers for the oxidation of glycerol residues adsorbed on the Au particles, following a mechanism consisting of the synergism of two active elements: gold and carbon.

  6. Phosphorus-doped and undoped glassy carbon indicator electrodes in controlled-current potentiometric titrations of bromide- or chloride-containing active ingredients in some pharmaceutical preparations.

    PubMed

    Abramović, Biljana F; Guzsvány, Valéria J; Gaál, Ferenc F

    2005-02-23

    Phosphorus-doped glassy carbon (as a novel material) and glassy carbon (Sigri commercial sample) were applied as potentiometric indicator electrodes in the titrimetric determination of active components with bromide or chloride in their molecules in different pharmaceutical preparations (Buscopan, Prostigmine, Isoptin, Bedoxin, Akineton and Trodon). After the necessary pre-treatment of the electrode surfaces and sample dissolution, the halide was titrated with a standard solution of silver nitrate (indirect determination). Amounts of 10-20 micromol of the investigated active ingredients per titration were determined with a relative standard deviation that, depending on the nature of indicator electrode, determined molecules and filler components, was in the range of 0.3-2.7%. The results obtained were compared with those of the official methods and with those obtained by potentiometric titrations using silver electrode. The titrimetric procedures developed are relatively fast, easy, economical and can be used to analyse of a large number of pharmaceutical products.

  7. Wafer-level microstructuring of glassy carbon

    NASA Astrophysics Data System (ADS)

    Hans, Loïc. E.; Prater, Karin; Kilchoer, Cédric; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-03-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon microstructuring for future precision compression molding of low and high glass-transition temperature. For applications in optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high precision glass molding.

  8. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  9. NRA of hydrogen in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Hirvonen, J. K.; Maleki, H.

    1997-02-01

    Glassy Polymeric Carbon (GPC) is prepared from a precursor resin by careful heat treatment. Heat Treatment Temperatures (HTT) above 1500 °C are believed to expel all hydrogen and oxygen from the grafene structure of GPC. However, we have shown that significant amounts of oxygen remain sequestered in the pores of GPC even at HTT's above 1500 °C. In the present study we report the detection of similar amounts of hydrogen for various heat treatment temperatures up to 2500 °C. A Nuclear Reaction Analysis (NRA) method with the 1H(15N,αγ)12C reaction and a specifically designed coincidence array is used to detect the 4.43 MeV gamma ray whose yield is proportional to the hydrogen content in the GPC. The H:C atomic ratio decreases with increasing HTT and we show that it exceeds 1:100 even for a HTT of 2500 °C.

  10. Shock-wave studies of anomalous compressibility of glassy carbon

    NASA Astrophysics Data System (ADS)

    Molodets, A. M.; Golyshev, A. A.; Savinykh, A. S.; Kim, V. V.

    2016-02-01

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm3 and 1.55(2) g/cm3. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formed in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson's ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.

  11. High temperature annealing studies of strontium ion implanted glassy carbon

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  12. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    NASA Astrophysics Data System (ADS)

    Nam, Eunseok; Lee, Chan-Young; Jun, Martin B. G.; Min, Byung-Kwon

    2015-04-01

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining.

  13. Lithium ion diffusion through glassy carbon plate

    SciTech Connect

    Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.

    1998-07-01

    The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.

  14. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: study of direct voltammetry and bioelectrocatalytic activity.

    PubMed

    Saadati, Shagayegh; Salimi, Abdollah; Hallaj, Rahman; Rostami, Amin

    2012-11-13

    A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH(2)-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH(2)-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH(2)-IL and negatively charged catalase a sensitive H(2)O(2) biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k(s)) and Michaelis-Menten constant (K(M)) of immobilized catalase were 3.32×10(-12) mol cm(-2), 5.28s(-1) and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM(-1)cm(-2) and low detection limit of 100 nM at concentration range up to 2.1 mM.

  15. Active fluidization in dense glassy systems.

    PubMed

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells. PMID:27380935

  16. Electroanalysis of trimethoprim on metalloporphyrin incorporated glassy carbon electrode.

    PubMed

    Rajith, Leena; Kumar, Krishnapillai Girish

    2010-09-01

    Trimethoprim (TMP) is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections. It belongs to the class of chemotherapeutic agents known as dihydrofolate reductase inhibitors. Its use is associated with idiosyncratic reactions, including liver toxicity and agranulocytosis. In order to determine TMP electrochemically, a metalloporphyrin modified glassy carbon electrode was prepared by coating [5,10,15,20- tetrakis(4-methoxyphenyl) porphyrinato]Mn (III)chloride (TMOPPMn(III)Cl) solution on the surface of the electrode. The electrochemical behaviour of TMP in Phosphate buffer solution (PBS) on TMOPPMn(III)Cl modified glassy carbon electrode (TMOPPMn(III)Cl/GCE) was explored using differential pulse voltammetry (DPV). The voltammograms showed enhanced oxidation response at the TMOPPMn (III)Cl/GCE with respect to the bare GCE for TMP, attributable to the electrocatalytic activity of TMOPPMn(III)Cl. Electrochemical parameters of the oxidation of TMP on the modified electrode were analyzed. The electro-oxidation of TMP was found to be irreversible, pH dependent and adsorption controlled on the modified electrode. It is found that the oxidation peak current is proportional to the concentration of TMP over the range 6 × 10⁻⁸ - 1 × 10⁻⁶ M with a very low detection limit of 3 × 10⁻⁹ M at 2 min open circuit accumulation. The repeatability expressed as relative standard deviation (RSD) for n = 9 was 3.2% and the operational stability was found to be 20 days. Another striking feature is that equimolar concentration of sulfamethoxazole did not interfere in the determination of TMP. Applicability to assay the drug in urine and tablet samples has also been studied.

  17. Removal of a mixture tetracycline-tylosin from water based on anodic oxidation on a glassy carbon electrode coupled to activated sludge.

    PubMed

    Yahiaoui, Idris; Aissani-Benissad, Farida; Fourcade, Florence; Amrane, Abdeltif

    2015-01-01

    The purpose of this study was first to examine the electrochemical oxidation of two antibiotics, tetracycline (TC) and tylosin (Tylo), considered separately or in mixture, on a glassy carbon electrode in aqueous solutions; and then to assess the relevance of such electrochemical process as a pre-treatment prior to a biological treatment (activated sludge) for the removal of these antibiotics. The influence of the working potential and the initial concentration of TC and Tylo on the electrochemical pre-treatment process was also investigated. It was noticed that antibiotics degradation was favoured at high potential (2.4 V/ saturated calomel electrode (SCE)), achieving total degradation after 50 min for TC and 40 min for Tylo for 50 mg L(-1) initial concentration, with a higher mineralization efficiency in the case of TC. The biological oxygen demand in 5 days (BOD5)/Chemical oxygen demand (COD) ratio increased substantially, from 0.033 to 0.39 and from 0.038 to 0.50 for TC and Tylo, respectively. Regarding the mixture (TC and Tylo), the mineralization yield increased from 10.6% to 30.0% within 60 min of reaction time when the potential increased from 1.5 to 2.4 V/SCE and the BOD5/COD ratio increased substantially from 0.010 initially to 0.29 after 6 h of electrochemical pre-treatment. A biological treatment was, therefore, performed aerobically during 30 days, leading to an overall decrease of 72% of the dissolved organic carbon by means of the combined process.

  18. The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface

    SciTech Connect

    Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

    2013-12-02

    Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  19. A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode.

    PubMed

    Ghosh, Tanushree; Sarkar, Priyabrata; Turner, Anthony P F

    2015-04-01

    A new uric acid biosensor was constructed using ferrocene (Fc) induced electro-activated uricase (UOx) deposited within Nafion (Naf) on glassy carbon electrode (GCE). Electro-activation of UOx was successfully achieved by cyclic voltammetry through the electrostatic interaction of Fc with Trp residues within the hydrophobic pockets in UOx. The Naf/UOx/Fc composite was characterised by AFM, FTIR and EDX to ensure proper immobilisation. The interaction of Fc with the enzyme was analysed by Trp fluorescence spectroscopy and the α-helicity of the protein was measured by CD spectropolarimetry. The charge transfer resistance (Rct), calculated from electrochemical impedance spectroscopy, for the modified sensor was lowered (1.39 kΩ) and the enzyme efficiency was enhanced by more than two fold as a result of Fc incorporation. Cyclic voltammetry, differential pulse voltammetry and amperometry all demonstrated the excellent response of the Naf/UOx/Fc/GCE biosensor to uric acid. The sensor system generated a linear response over a range of 500 nM to 600 μM UA, with a sensitivity and limit of detection of 1.78 μA μM(-1) and 230 nM, respectively. The heterogeneous rate constant (ks) for UA oxidation was much higher for Naf/UOx/Fc/GCE (1.0 × 10(-4) cm s(-1)) than for Naf/UOx/GCE (8.2 × 10(-5) cm s(-1)). Real samples, i.e. human blood, were tested for serum UA and the sensor yielded accurate results at a 95% confidence limit.

  20. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  1. Sensitive Electrochemical Detection of Enzymatically-generated Thiocholine at Carbon Nanotube Modified Glassy Carbon Electrode

    SciTech Connect

    Liu, Guodong; Riechers, Shawn L.; Mellen, Maria C.; Lin, Yuehe

    2005-11-01

    A carbon nanotube modified glassy-carbon (CNT/GC) electrode was used for enhancing the sensitivity of electrochemical measurements of enzymatically-generated thiocholine. Cyclic voltammetric and amperometric characteristics of thiocholine at CNT/GC, glassy carbon, carbon paste, and gold electrodes were compared. The CNT layer leads to a greatly improved anodic detection of enzymatically generated thiocholine product including lower oxidation overpotential (0.15 V) and higher sensitivity because of its electrocatalytic activity, fast electron transfer and large surface area. The sensor performance was optimized with respect to the operating conditions. Under the optimal batch conditions, a detection limit of 5 ?10 -6 mol/L was obtained with good precision (RSD = 5.2%, n=10). Furthermore, the attractive response of thiocholine on a CNT/GC electrode has allowed it to be used for constant-potential flow injection analysis. The detection limit was greatly improved to 0.3 ?10-6 mol/L. The high sensitivity electrochemical detection of enzymatically generated thiocholine with a CNT sensing platform holds great promise to prepare an acetylcholinesterase biosensor for monitoring organophosphate pesticides and nerve agents.

  2. Active cage model of glassy dynamics.

    PubMed

    Fodor, Étienne; Hayakawa, Hisao; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size. PMID:27575182

  3. Active cage model of glassy dynamics

    NASA Astrophysics Data System (ADS)

    Fodor, Étienne; Hayakawa, Hisao; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.

  4. High-resolution images of Pd particles supported on highly oriented pyrolytic graphite and glassy carbon

    SciTech Connect

    Murakami, Yasushi; Naoi, Katsuo; Yahikozawa, Kiyochika; Takasu, Yoshio . Dept. of Fine Materials Engineering)

    1994-09-01

    Ultrafine metal particles dispersed on supporting materials have been developed as catalysts for the oxidation of automobile exhaust gas, the hydrogenation of carbon monoxide, and electrodes of fuel cells. Both activities and selectivities of these reactions depend on the morphology of the dispersed metal. The morphology of palladium particles supported on both highly oriented pyrolytic graphite (HOPG) and glassy carbon was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The particles on the HOPG were linked with neighboring particles to agglomerate, while the particles on the glassy carbon were circular. AFM data with tapping mode for the palladium particles on HOPG were consistent with the high-resolution SEM image. Although the lateral resolution of the AFM image was lower than that for the high-resolution SEM data, the AFM image clearly indicated the height distribution of the agglomerates.

  5. Evidence for a glassy state in strongly driven carbon.

    PubMed

    Brown, C R D; Gericke, D O; Cammarata, M; Cho, B I; Döppner, T; Engelhorn, K; Förster, E; Fortmann, C; Fritz, D; Galtier, E; Glenzer, S H; Harmand, M; Heimann, P; Kugland, N L; Lamb, D Q; Lee, H J; Lee, R W; Lemke, H; Makita, M; Moinard, A; Murphy, C D; Nagler, B; Neumayer, P; Plagemann, K-U; Redmer, R; Riley, D; Rosmej, F B; Sperling, P; Toleikis, S; Vinko, S M; Vorberger, J; White, S; White, T G; Wünsch, K; Zastrau, U; Zhu, D; Tschentscher, T; Gregori, G

    2014-01-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

  6. Evidence for a glassy state in strongly driven carbon

    SciTech Connect

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Gwangju Inst. of Science and Technology, Gwangju; Inst. for Basic Science, Gwangju ; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K. -U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

  7. Use of glassy carbon as a working electrode in controlled potential coulometry.

    PubMed

    Plock, C E; Vasquez, J

    1969-11-01

    Glassy carbon has been used as the working electrode in controlled potential coulometry. The results of coulometric investigations of chromium, copper, iron, uranium and neptunium are compared with results obtained with platinum or mercury working electrodes. The accuracy of results with the glassy carbon electrode compares favourably with the results obtainable with the other electrodes, but the precision is poorer.

  8. Use of glassy carbon as a working electrode in controlled potential coulometry.

    PubMed

    Plock, C E; Vasquez, J

    1969-11-01

    Glassy carbon has been used as the working electrode in controlled potential coulometry. The results of coulometric investigations of chromium, copper, iron, uranium and neptunium are compared with results obtained with platinum or mercury working electrodes. The accuracy of results with the glassy carbon electrode compares favourably with the results obtainable with the other electrodes, but the precision is poorer. PMID:18960665

  9. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Hegde, Rajesh N; Hosamani, Ragunatharaddi R; Nandibewoor, Sharanappa T

    2009-09-01

    The voltammetric oxidation of cinnarizine was investigated. In pH 2.5 Britton-Robinson buffer, cinnarizine shows an irreversible oxidation peak at about 1.20 V at a multi-walled carbon nanotube (MWCNT)-modified glassy carbon electrode. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of cinnarizine. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the cinnarizine determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 9.0x10(-8) to 6.0x10(-6) M and 2.58x10(-9) M, respectively for cinnarizine. The proposed method was successfully applied to cinnarizine determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for the detection of analyte in urine as a real sample. PMID:19446444

  10. Surface treatment of Glassy Polymeric Carbon artifacts for medical applications

    SciTech Connect

    Rodrigues, M. G.; Zimmerman, R. L.; Rezende, M. C.

    1999-06-10

    Glassy Polymeric Carbon (GPC) has been used for mechanical cardiac valves. GCP valves are chemically biocompatible and durable, but less thromboresistant than biological valves. Enhanced thromboresistance of mechanical cardiac components with porous surface has been demonstrated. The endothelialized tissue blood-contacting surface adheres to the porous prosthetic component and decreases the formation of thrombus. Our experience has shown that the porosity of GPC can be increased and controlled by MeV ion bombardment. We report here that the surface roughness of heat-treated GPC bombarded with C, O, Si and Au is also enhanced. The surface roughness of the ion-bombarded samples is on a smaller scale than those roughened by sand blasting (measurements made with Perthomete S and P). The roughness decreases slightly after heat treatment, in linear proportion to the shrinkage of the test piece. Possible beneficial effects of the imbedded ions on tissue adherence and thromboresistance must be determined by in vivo animal experiments.

  11. Evidence for a glassy state in strongly driven carbon

    DOE PAGES

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; et al

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen closemore » to their original positions in the fluid.« less

  12. Evidence for a glassy state in strongly driven carbon

    PubMed Central

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K.-U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.

    2014-01-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid. PMID:24909903

  13. Evidence for a glassy state in strongly driven carbon.

    PubMed

    Brown, C R D; Gericke, D O; Cammarata, M; Cho, B I; Döppner, T; Engelhorn, K; Förster, E; Fortmann, C; Fritz, D; Galtier, E; Glenzer, S H; Harmand, M; Heimann, P; Kugland, N L; Lamb, D Q; Lee, H J; Lee, R W; Lemke, H; Makita, M; Moinard, A; Murphy, C D; Nagler, B; Neumayer, P; Plagemann, K-U; Redmer, R; Riley, D; Rosmej, F B; Sperling, P; Toleikis, S; Vinko, S M; Vorberger, J; White, S; White, T G; Wünsch, K; Zastrau, U; Zhu, D; Tschentscher, T; Gregori, G

    2014-01-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid. PMID:24909903

  14. Poly(4-vinylpyridine)-coated glassy carbon flow detectors

    SciTech Connect

    Wang, J.; Golden, T.; Tuzhi, P.

    1987-03-01

    The performance of a thin-layer flow detector with a glassy carbon electrode coated with a film of protonated poly(4-vinylpyridine) is described. Substantial improvement in the selectivity of amperometric detection for liquid chromatography and flow injection systems is observed as a result of excluding cationic species from the surface. The detector response was evaluated with respect to flow rate, solute concentration, coating scheme, film-to-film reproducibility, and other variables. Despite the increase in diffusional resistance, low detection limits of ca. 0.04 and 0.10 ng of ascorbic acid and uric acid, respectively, are maintained. Protection from organic surfactants can be coupled to the charge exclusion effect by using a bilayer coating, with a cellulose acetate film atop the poly(4-vinylpyridine) layer. Applicability to urine sample is demonstrated.

  15. A study on oxidized glassy carbon sheets for bipolar supercapacitor electrodes

    SciTech Connect

    Braun, A.; Baertsch, M.; Geiger, F.

    2000-07-01

    Electrochemical Double Layer Capacitors (EDLC) for high energy and power density applications, based on glassy carbon (GC) electrodes, are being developed in this laboratory. In the context of this project, GC sheets were oxidized and investigated with Small Angle X-ray Scattering (SAXS), Electrochemical Impedance Spectroscopy (EIS) and Nitrogen Gas Adsorption (BET). During oxidation on active film with open pores is built on the surface of the GC. Upon oxidation, the internal volumetric surface area of the active film decreases, whereas the volumetric electrochemical double layer capacitance increases. The authors show that this effect is correlated with the opening, the growth and the coalescence of the pores.

  16. Surface micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-09-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. This makes it also a suitable candidate as mold material for precision compression molding of low and high glass-transition temperature materials. To fabricate molds for diffractive optics a highresolution structuring technique is needed. We introduce a process that allows the micro-structuring of glassy carbon by reactive ion etching. Key parameters such as uniformity, surface roughness, edge definition and lateral resolution are discussed. They are the most relevant parameters for a stamp in optical applications. The use of titanium as a hard mask makes it possible to achieve a reasonable selectivity of 4:1, which has so far been one of the main problems in microstructuring of glassy carbon. We investigate the titanium surface structure with its 5-10 nm thick layer of TiO2 grains and its influence on the shape of the hard mask. In our fabrication procedure we were able to realize optically flat diffractive structures with slope angles of more than 80° at typical feature sizes of 5 μm and at 700 nm depth. The fabricated glassy carbon molds were applied to thermal imprinting onto different glasses. Glassy carbon molds with 1 mm thickness were tested with binary optical structures. Our experiments show the suitability of glassy carbon as molds for cost efficient mass production with a high quality.

  17. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    PubMed

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification.

  18. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    PubMed

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification. PMID:26625272

  19. InP synthesis by the synthesis, solute diffusion (SSD) method using glassy-carbon crucibles

    SciTech Connect

    Miskys, C.R.; Oliveira, C.E.M. de; Carvalho, M.M.G. de

    1996-12-31

    An Indium Phosphide (InP) Synthesis system by the Synthesis, Solute Diffusion (SSD) method has been built. It provides high purity InP charges with low carrier densities (3 {times} 10{sup 14} to 2 {times} 10{sup 15} cm{sup {minus}3}) to be used as starting material for InP single-crystal Liquid Encapsulated Czochralski (LEC) growth. Glassy-carbon is a refractory material with low vapor pressure that can be moulded in various forms and sizes. Indeed the glassy-carbon crucible is reusable after the synthesis because InP does not stick to its walls. Preliminary electrical characteristics measurements showed residual carrier concentration below 3 {times} 10{sup 15} cm{sup {minus}3}. These results are comparable with those achieved utilizing quartz crucibles. The features denoted makes glassy-carbon an interesting alternative in comparison with quartz and PBN crucibles.

  20. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.

    PubMed

    Zhang, Lei; Jiang, Xiue; Wang, Erkang; Dong, Shaojun

    2005-08-15

    Gold nanoparticles have been attached onto glassy carbon electrode surface through sulfhydryl-terminated monolayer and characterized by X-ray photoelectron spectroscopy, atomic force microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The gold nanoparticles-attached glassy carbon electrodes have been applied to the immobilization/adsorption of hemoglobin, with a monolayer surface coverage of about 2.1 x 10(-10) mol cm(-2), and consequently obtained the direct electrochemistry of hemoglobin. Gold nanoparticles, acting as a bridge of electron transfer, can greatly promote the direct electron transfer between hemoglobin and the modified glassy carbon electrode without the aid of any electron mediator. In phosphate buffer solution with pH 6.8, hemoglobin shows a pair of well-defined redox waves with formal potential (E0') of about -0.085 V (versus Ag/AgCl/saturated KCl). The immobilized hemoglobin maintained its biological activity, showing a surface controlled electrode process with the apparent heterogeneous electron transfer rate constant (ks) of 1.05 s(-1) and charge-transfer coefficient (a) of 0.46, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide. A potential application of the hemoglobin-immobilized gold nanoparticles modified glassy carbon electrode as a biosensor to monitor hydrogen peroxide has been investigated. The steady-state current response increases linearly with hydrogen peroxide concentration from 2.0 x 10(-6) to 2.4 x 10(-4) M. The detection limit (3sigma) for hydrogen peroxide is 9.1 x 10(-7) M.

  1. Electrochemical assembling of methionine-gold nanoparticles and catalysis on the surface of glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Wang, J. H.; Zhang, X. M.; Cao, W.; Ge, A.; Zhou, L.

    2014-12-01

    In this paper cyclic voltammetry was used for the synthesis of linear array spherical gold nanoparticles on the surface of glassy carbon electrode using methionine as a stable reagent. The methionine-gold nanoparticles on the surface of glassy electrode were obtained. The methionine-gold nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy, energy dispersive spectrometry and powder X-ray diffraction. Electrochemical behavior of methionine at methionine-gold nanoparticle modified electrode was investigated. It was demonstrated that the methionine-gold nanoparticles can catalyze electrochemical transformations of methionine.

  2. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  3. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  4. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  5. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    PubMed

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical.

  6. Elastic Properties of 4-6 nm-thick Glassy Carbon Thin Films

    NASA Astrophysics Data System (ADS)

    Manoharan, M. P.; Lee, H.; Rajagopalan, R.; Foley, H. C.; Haque, M. A.

    2010-01-01

    Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4-6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young’s modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale.

  7. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    NASA Astrophysics Data System (ADS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guérin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-02-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 °C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon.

  8. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    PubMed

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations.

  9. Spectroscopic ellipsometric and Raman spectroscopic investigations of pulsed laser treated glassy carbon surfaces

    NASA Astrophysics Data System (ADS)

    Csontos, J.; Pápa, Z.; Gárdián, A.; Füle, M.; Budai, J.; Toth, Z.

    2015-05-01

    In this study spectroscopic ellipsometry (SE) and Raman spectroscopy are applied to study structural modification of glassy carbon, due to high intensity laser ablation. Two KrF lasers with different pulse durations (480 fs and 18 ns), an ArF (20 ns), and a frequency doubled Nd:YAG laser (8 ns) were applied to irradiate the surface of glassy carbon targets. The main characteristics of the different laser treatments are compared by introducing the volumetric fluence which takes into account the different absorption values at different wavelengths. SE showed the appearance of a modified layer on the ablated surfaces. In the case of the ns lasers the thickness of this layer was in the range of 10-60 nm, while in the case of fs laser it was less than 20 nm. In all cases the average refractive index (n) of the modified layers slightly decreased compared to the refractive index of glassy carbon. Increase in extinction coefficient (k) was observed in the cases of ArF and fs KrF laser treatment, while the k values decreased significantly in the cases of nanosecond pulse duration KrF and Nd:YAG laser treatments. In the Raman spectra of the ablated areas the characteristic D and G peaks were widened due to appearance of an amorphous phase. Both Raman spectroscopy and SE indicate that the irradiated areas show carbon nanoparticle formation in all cases.

  10. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOEpatents

    Holcombe, C.E. Jr.; Seals, R.D.

    1995-09-26

    A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.

  11. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOEpatents

    Holcombe, Jr., Cressie E.; Seals, Roland D.

    1995-01-01

    A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.

  12. The Influence of Ion Implantation on cell Attachment to Glassy Polymeric Carbon

    SciTech Connect

    Zimmerman, R.; Ila, D.; Gurhan, I.; Ozdal-Kurt, F.; Sen, B. H.; Rodrigues, M.

    2006-11-13

    In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that near surface implantation of silver in Glassy Polymeric Carbon (GPC) can completely inhibit cell attachment on implanted areas while leaving adjacent areas unaffected. Patterned ion implantation permits precise control of tissue growth on medical applications of GPC. We have shown that silver ion implantation or argon ion assisted surface deposition of silver inhibits cell growth on GPC, a desirable improvement of current cardiac implants.

  13. Growth of InP single crystals by liquid encapsulated Czochralski (LEC) using glassy-carbon crucibles

    SciTech Connect

    Oliveira, C.E.M. de; Miskys, C.R.; Carvalho, M.M.G. de

    1996-12-31

    Using a high pressure puller and Glassy-Carbon crucibles, undoped InP single crystals weighing 100g and with 25 mm diameter were grown in the <100> direction. The residual carrier concentration of samples, measure by the Van der Pauw method at 300K, was about 5 {times} 10{sup 15}cm{sup {minus}3}, result as good as those obtained with Quartz crucibles with the advantage that Glassy-Carbon crucibles are fully reusable.

  14. Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes.

    PubMed

    Ghanem, Mohamed A; Compton, Richard G; Coles, Barry A; Canals, Antonio; Marken, Frank

    2005-10-01

    The direct electroanalysis of complex formulations containing alpha-tocopherol (vitamin E) is possible in micellar solution and employing microwave-enhanced voltammetry. In the presence of microwave radiation substantial heating and current enhancement effects have been observed at 330 microm diameter glassy carbon electrodes placed into a micellar aqueous solution and both hydrophilic and highly hydrophobic redox systems are detected. For the water soluble Fe(CN)(6)(3-/4-) redox system in micellar aqueous solutions of 0.1 M NaCl and 0.1 M sodium dodecylsulfate (SDS) at low to intermediate microwave power, thermal effects and convection effects are observed. At higher microwave power, thermal cavitation is induced and dominates the mass transport at the electrode surface. For the micelle-soluble redox systems tert-butylferrocene and 2,5-di-tert-butyl-1,4-benzoquinone, strong and concentration dependent current responses are observed only in the presence of microwave radiation. For the oxidation of micelle-soluble alpha-tocopherol current responses at glassy carbon electrodes are affected by adsorption and desorption processes whereas at platinum electrodes, analytical limiting currents are obtained over a wide range of alpha-tocopherol concentrations. However, for the determination of alpha-tocopherol in a commercial formulation interference from proteins is observed at platinum electrodes and direct measurements are possible only over a limited concentration range and at glassy carbon electrodes.

  15. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    PubMed

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. PMID:25939764

  16. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  17. Modeling mechanophore activation within a crosslinked glassy matrix

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.

    2013-07-01

    Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

  18. Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Manisankar, P; Sundari, Pl Abirama; Sasikumar, R; Palaniappan, Sp

    2008-09-15

    The cyclic voltammetric behaviour of three common pesticides such as isoproturon (ISO), voltage (VOL) and dicofol (DCF) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNTs/GCE), polyaniline (PANI) and polypyrrole (PPY) deposited MWCNT/GCE. The modified electrode film was characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The electroactive behaviour of the pesticides was realized from the cyclic voltammetric studies. The differential pulse voltammetric principle was used to analyze the above-mentioned pesticides using MWCNT/GCE, PANI/MWCNT/GCE and PPY/MWCNT/GCE. Effects of accumulation potential, accumulation time, Initial scan potential, amplitude and pulse width were examined for the optimization of stripping conditions. The PANI/MWCNT/GCE performed well among the three electrode systems and the determination range obtained was 0.01-100 mgL(-1) for ISO, VOL and DCF respectively. The limit of detection (LOD) was 0.1 microgL(-1) for ISO, 0.01 microgL(-1) for VOL and 0.05 microgL(-1) for DCF on PANI/MWCNT/GCE modified system. It is significant to note that the PANI/MWCNT/GCE modified system results in the lowest LOD in comparison with the earlier reports. Suitability of this method for the trace determination of pesticide in spiked samples was also realized.

  19. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    ERIC Educational Resources Information Center

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  20. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  1. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    PubMed

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples.

  2. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    DOE PAGES

    Matheu, Roc; Francàs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(N–N2)2]3+, 23+ (N–N22+ is 4-(pyridin-4-yl) benzenediazonium and bda2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpartmore » in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s–1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less

  3. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine.

    PubMed

    Navaee, Aso; Salimi, Abdollah; Teymourian, Hazhir

    2012-01-15

    In the present study, the graphene nanosheets (GNSs) modified glassy carbon (GC) electrode is employed for simultaneous determination of morphine, noscapine and heroin. To the best of our knowledge this is the first report of the simultaneous determination of these three important opiate drugs based on their direct electrochemical oxidation. Field emission scanning electron microscopy (FESEM) technique is utilized in order to study the surface morphology of the modified electrode. The modified electrode shows excellent electrocatalytic activity toward oxidation of morphine, noscapine and heroin at reduced overpotentials in wide pH range. In the performed experiments, differential pulse voltammetric determination of morphine, noscapine and heroin yields calibration curves with the following characteristics; linear dynamic range up to 65, 40 and 100 μM, sensitivity of 275, 500 and 217 nA μM(-1) cm(-2), and detection limits of 0.4, 0.2 and 0.5 μM at 3S(B), respectively. Fast response time, signal stability, high sensitivity, low cost and ease of preparation method without using any specific electron-transfer mediator or specific reagent are the advantageous of the proposed sensor. The modified electrode can be used for simultaneous or individual detection of three major narcotic components, heroin, noscapine and morphine at micromolar concentration without any separation or pretreatment steps.

  4. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    SciTech Connect

    Matheu, Roc; Francàs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(N–N2)2]3+, 23+ (N–N22+ is 4-(pyridin-4-yl) benzenediazonium and bda2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s–1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.

  5. Graphene modified glassy carbon sensor for the determination of aspirin metabolites in human biological samples.

    PubMed

    Purushotham, Meruva; Gupta, Pankaj; Goyal, Rajendra N

    2015-10-01

    A graphene modified glassy carbon (GR/GCE) sensor has been developed for the determination of aspirin metabolites 2,3- and 2,5-dihydroxybenzoic acids (2,3- and 2,5-DHB). The modified sensor was characterized by Field Emission Scanning Electron Microscopy and Electrochemical Impedance Spectroscopy. The electrochemical behavior of 2,3- and 2,5-DHB was investigated by cyclic and square wave voltammetry. The modified sensor exhibited excellent electrocatalytic activity for the oxidation of 2,3- and 2,5-DHB, leading to a remarkable enhancement in the peak current as compared to the bare sensor. The results were attributed to the enhanced surface area and high conductivity of GR. The anodic peak currents of 2,3- and 2,5-DHB were found to be linear in the concentration range of 1-150 µM and 1-200 µM with the detection limits of 47 nM and 51 nM, respectively. The sensor was capable to determine 2,5-DHB effectively without any interference from the uric acid and other metabolites present in the urine samples. The practical utility of GR/GCE has been successfully demonstrated for the determination of 2,5-DHB in the urine samples of persons undergoing treatment with aspirin. PMID:26078167

  6. Electron photoemission from platinum and palladium microdeposits on glassy carbon into the solution

    SciTech Connect

    Yakushev, V.V.; Bagotskii, V.S.; Skundin, A.M.

    1984-08-01

    It was of interest to the authors to compare the electrocatalytic and photoemission properties of microdeposits in other systems. Platinum and palladium microdeposits on glassy carbon were selected as such systems in the present work. The procedure used in the photoemission measurements has been previously described. All measurements were conducted in 1 N KOH. A mercury-mercuric oxide electrode served as reference electrode. The true surface areas of the platinum microdeposits were measured potentiodynamically in terms of hydrogen adsorption and oxygen desorption, while that of the palladium microdeposits was measured in terms of oxygen desorption. The results of the present work yield the important conclusion that the changes which occur in the density of electronic states in the microdeposits because of their contact with the support depend on potential, i.e., on the position of the Fermi level. It is found that the enhancement of the photoemission currents is attended by an increase, and the depression of the photoemission currents is attended by a decrease in electrocatalytic activity.

  7. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Rafati, Amir Abbas; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400ppm (0.37μM-1.5mM) with a low detection limit of 0.04ppm (0.15μM) (S/N=3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples.

  8. Simultaneous Determination of Dopamine, Serotonin and Ascorbic Acid at a Glassy Carbon Electrode Modified with Carbon-Spheres

    PubMed Central

    Zhou, Jianqing; Sheng, Meili; Jiang, Xueyue; Wu, Guozhi; Gao, Feng

    2013-01-01

    A novel glassy carbon electrode (GCE) modified with carbon-spheres has been fabricated through a simple casting procedure. The modified GCE displays high selectivity and excellent electrochemical catalytic activities towards dopamine (DA), serotonin (5-HT), and ascorbic acid (AA). In the co-existence system, the peak separations between AA and DA, DA and 5-HT, and AA and 5-HT are large up to 230, 180, and 410 mV, respectively. Differential pulse voltammetry (DPV) has been employed to simultaneously detect DA, 5-HT, and AA, and the linear calibration curves for DA, 5-HT, and AA are obtained in the range of 20.0–150.0 μM, 40.0–750.0 μM and 300.0–2,000.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.7 μM and 0.6 μM, respectively. The proposed electrode has been applied to detect DA, 5-HT, and AA in real samples using standard addition method with satisfactory results. PMID:24135993

  9. Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng

    2014-06-01

    This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.

  10. Multilevel micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-03-01

    A consumer market for diffractive optical elements in glass can only be created if high efficient elements are available at affordable prices. In diffractive optics the efficiency and optical properties increases with the number of levels used, but in the same way the costs are multiplied by the number if fabrication steps. Replication of multilevel diffractive optical elements in glass would allow cost efficient fabrication but a suitable mold material is needed. Glassy carbon shows a high mechanical strength, thermal stability and non-sticking adhesion properties, which makes it an excellent candidate as mold material for precision compression molding of low and high glass-transition temperature materials. We introduce an 8 level micro structuring process for glassy carbon molds with standard photolithography and a Ti layer as hard mask for reactive ion etching. The molds were applied to thermal imprinting onto low and high transition temperature glass. Optical performance was tested for the molded samples with different designs for laser beamsplitters. The results show a good agreement to the design specification. Our result allow us to show limitations of our fabrication technique and we discussed the suitability of precision glass molding for cost efficient mass production with a high quality.

  11. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  12. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA. PMID:20402644

  13. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode.

    PubMed

    Hwang, Gil-Ho; Han, Won-Kyu; Hong, Seok-Jun; Park, Joon-Shik; Kang, Sung-Goon

    2009-02-15

    We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 microg/L for lead and 0.49 microg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.

  14. Nucleation and growth of thin films of the organic conductor TTF-iodide over glassy carbon. Electrochemical and spectroelectrochemical study.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2009-04-21

    On the basis of the electrochemical and spectroelectrochemical behavior of thin films of TTF over a glassy carbon electrode in iodide media, a new, more complete mechanism for the electrode processes involved is proposed. The voltammetric and chronoamperometric results for the films can be explained in light of a recently developed nucleation-growth model involving a layer-by-layer mechanism. Also, their in situ UV-vis spectral data expand the available knowledge about the overall mechanism and the nature of the compound formed over the glassy carbon electrode. PMID:19366229

  15. Nucleation and growth of thin films of the organic conductor TTF-iodide over glassy carbon. Electrochemical and spectroelectrochemical study.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2009-04-21

    On the basis of the electrochemical and spectroelectrochemical behavior of thin films of TTF over a glassy carbon electrode in iodide media, a new, more complete mechanism for the electrode processes involved is proposed. The voltammetric and chronoamperometric results for the films can be explained in light of a recently developed nucleation-growth model involving a layer-by-layer mechanism. Also, their in situ UV-vis spectral data expand the available knowledge about the overall mechanism and the nature of the compound formed over the glassy carbon electrode.

  16. Electrochemical study of functionalization on the surface of a chitin/platinum-modified glassy carbon paste electrode.

    PubMed

    Sugawara, Kazuharu; Yugami, Asako; Terui, Norifumi; Kuramitz, Hideki

    2009-11-01

    To functionalize chitin surfaces using proteins, we developed a glucose oxidase (GOD)-chitin/platinum-modified glassy carbon paste electrode (GCPE) as a model. In a weakly acidic solution, negatively charged GOD were immobilized by the protonated acetylamide groups on chitin. When the electrode was immersed in a solution containing GOD, the enzyme was readily immobilized due to the electrostatic interaction. In addition, measurements were performed using electrodes made with powders of different sizes because sensor performance depends on the particle sizes of glassy carbon powder. PMID:19907096

  17. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    PubMed

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  18. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode.

    PubMed

    Lee, Eunhee; Kim, Daekun; You, Jung-Min; Kim, Seul Ki; Yun, Mira; Jeon, Seungwon

    2012-12-01

    Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.

  19. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    PubMed

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. PMID:26278169

  20. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    PubMed

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose.

  1. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    NASA Astrophysics Data System (ADS)

    Blacha-Grzechnik, Agata; Piwowar, Katarzyna; Krukiewicz, Katarzyna; Koscielniak, Piotr; Szuber, Jacek; Zak, Jerzy K.

    2016-05-01

    The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate 1O2 when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals' synthesis or in the wastewater treatment.

  2. Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis.

    PubMed

    Zhao, Shuang; Zhang, Kai; Bai, Yu; Yang, Weiwei; Sun, Changqing

    2006-10-01

    The direct electron transfer of glucose oxidase (GOD) was achieved based on the immobilization of GOD/colloidal gold nanoparticles on a glassy carbon electrode by a Nafion film. The immobilized GOD displayed a pair of well-defined and nearly reversible redox peaks with a formal potential (Eo ') of -0.434 V in 0.1 M pH 7.0 phosphate buffer solution and the response showed a surface-controlled electrode process. The dependence of Eo ' on solution pH indicated that the direct electron transfer reaction of GOD was a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOD retained its electrocatalytic activity for the oxidation of glucose. So the resulting modified electrode can be used as a biosensor for detecting glucose. PMID:16556513

  3. Electrografting of 3-Aminopropyltriethoxysilane on a Glassy Carbon Electrode for the Improved Adhesion of Vertically Oriented Mesoporous Silica Thin Films.

    PubMed

    Nasir, Tauqir; Zhang, Lin; Vilà, Neus; Herzog, Grégoire; Walcarius, Alain

    2016-05-01

    Vertically oriented mesoporous silica has proven to be of interest for applications in a variety of fields (e.g., electroanalysis, energy, and nanotechnology). Although glassy carbon is widely used as an electrode material, the adherence of silica deposits is rather poor, causing mechanical instability. A solution to improve the adhesion of mesoporous silica films onto glassy carbon electrodes without compromising the vertical orientation and the order of the mesopores will greatly contribute to the use of this kind of modified carbon electrode. We propose here the electrografting of 3-aminopropyltriethoxysilane on glassy carbon as a molecular glue to improve the mechanical stability of the silica film on the electrode surface without disturbing the vertical orientation and the order of the mesoporous silica obtained by electrochemically assisted self-assembly. These findings are supported by a series of surface chemistry techniques such as X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and cyclic voltammetry. Finally, methylviologen was used as a model redox probe to investigate the cathodic potential region of both glassy carbon and indium tin oxide electrodes modified with mesoporous silica in order to demonstrate further the interest in the approach developed here. PMID:27065214

  4. Effect of Nitric Acid ``Washing'' Procedure on Electrochemical Behavior of Carbon Nanotubes and Glassy Carbon μ-Particles

    NASA Astrophysics Data System (ADS)

    Anik, Ülkü; Çevik, Serdar; Pumera, Martin

    2010-05-01

    The electroanalytic performances of glassy carbon paste electrode (GCPE), multi-walled carbon nanotube (MWCNT)-GCPE and double-walled carbon nanotube (DWCNT)-GCPE, which include HNO3 washed/unwashed materials, were compared by monitoring cyclic voltammograms of potassium ferricyanide and catechol. Electrodes were prepared by introducing proper amount of DWCNT and MWCNT into GCPE. First untreated materials (DWCNT, MWCNT, GC μ-particles) were used in the electrodes and then HNO3-treated materials were utilized for comparing difference in electrochemical performances. The effect of treatment procedure was also examined by applying Raman spectroscopy to treated and untreated materials. Moreover, TEM images were obtained for further investigation of MWCNT and DWCNT.

  5. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode

    PubMed Central

    Radi, Abd-Elgawad; Abd El-Ghany, Nadia; Wahdan, Tarek

    2016-01-01

    A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy) film onto a glassy carbon electrode (GCE) surface, was developed for the detection of flunixin (FXN). The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV) square wave voltammetry (SWV). The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples. PMID:27242945

  6. Electrocatalytic determination of paraquat using a nafion film coated glassy carbon electrode.

    PubMed

    Lu, T H; Sun, I W

    2000-11-01

    A nafion film coated glassy carbon electrode (NFGCE) was employed for the determination of paraquat. Paraquat was accumulated onto NFGCE by the cation-exchange feature of nafion at open circuit potential in basic medium followed by cathodic differential pulse voltammetric (CDPV) determination in a medium containing permanganate ions. The sensitivity for the determination of paraquat was improved through the electrocatalytic reduction of permanganate by the reduced paraquat. With 3-min accumulation, the analytical signal versus concentration dependence was linear from 1.0 to 100 ppb with a detection limit of 0.5 ppb. The interference from common metal ions was minimized by addition of ethylenediaminetetraacetate (EDTA) into the sample solution. The use of nafion also improves the resistance to interference from surfactants.

  7. Oxygen determination in organic fluorine compounds by means of a glassy-carbon pyrolysis tube.

    PubMed

    Imaeda, K; Kuriki, T; Ohsawa, K

    1977-07-01

    A conventional apparatus for determination of oxygen in organic compounds has been improved for application to organic fluorine compounds. A feature of the apparatus is the use of a pyrolysis tube made of glassy carbon instead of quartz, which eliminates effects due to hydrogen fluoride produced in pyrolysis of the sample. Ten analyses of dexamethasone with the apparatus gave a mean value of 20.44% for oxygen (theory, 20.38%), with a standard deviation of 0.16%. Oxygen in 9 organic fluorine compounds was accurately determined by using the apparatus, with an average error of +0.1%. One analysis by a gravimetric or a coulometric method took about 40 or 25 min, respectively.

  8. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    PubMed

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  9. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma.

    PubMed

    Bagheri, Akbar; Hosseini, Hadi

    2012-12-01

    The electrochemical behavior of raloxifene (RLX) on the surface of a glassy carbon electrode (GCE) has been studied by cyclic voltammetry (CV). The CV studies were performed in various supporting electrolytes, wide range of potential scan rates, and pHs. The results showed an adsorption-controlled and quasi-reversible process for the electrochemical reaction of RLX, and a probable redox mechanism was suggested. Under the optimum conditions, differential pulse voltammetry (DPV) was applied for quantitative determination of the RLX in pharmaceutical formulations. The DPV measurements showed that the anodic peak current of the RLX was linear to its concentration in the range of 0.2-50.0μM with a detection limit of 0.0750μM, relative standard deviation (RSD %) below 3.0%, and a good sensitivity. The proposed method was successfully applied for determination of the RLX in pharmaceutical and human plasma samples with a good selectivity and suitable recovery.

  10. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    SciTech Connect

    Sophia, J.; Muralidharan, G.

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayed excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.

  11. Determination of trimebutine in pharmaceuticals by differential pulse voltammetry at a glassy carbon electrode.

    PubMed

    Adhoum, Nafaâ; Monser, Lotfi

    2005-07-15

    The differential pulse voltammetric (DPV) determination of trimebutine (TMB) was achieved at a glassy carbon electrode in acetonitrile/0.1 M LiClO4. Trimebutine gave two irreversible, diffusion controlled peaks at 740 and 1318 mV versus Ag/AgCl reference electrode, respectively. The second oxidation peak was used to determine trimebutine concentrations in the range 1-50 microg ml(-1) with a detection limit (3sigmam) of 0.3 microg ml(-1). Precision of the method (RSD, n=6) within- and between-days obtained from six determinations at 5 microg ml(-1) was found to be 0.7 and 1.1%, respectively. The method was successfully applied to the quantitation of TMB in granule dosage form (Debridat) and recoveries between 98.4 and 101% were obtained. Excipients did not interfere with the assay and the results agreed well with those determined by previously established HPLC method. PMID:15967289

  12. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    PubMed

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution. PMID:26637108

  13. Amperometric determination of phenazopyridine hydrochloride in a flowing stream at the glassy carbon electrode.

    PubMed

    Belal, F

    1985-01-01

    A flow-injection method is described for the determination of phenazopyridine hydrochloride, based on electrochemical oxidation at the glassy carbon electrode. The suggested method is highly specific and can be used to determine phenazopyridine HCl in the presence of most drugs commonly found in pharmaceutical dosage forms or administered therapeutically. Applying a constant potential of +950 mV vs Ag/AgCl/3.5M KCl reference electrode, the calibration curve was linear in the 1-30 micrograms/mL range, with minimum detectability of 0.2 ng (signal-to-noise ratio 2). Good accuracy and precision were obtained when the method was applied to some dosage forms containing phenazopyridine HCl. Although automation was not used in this study, an automated system could be incorporated because the method uses the technique of continuous analysis in a flowing stream.

  14. Multilevel micro-structuring of glassy carbon molds for precision glass molding

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-09-01

    Replication techniques for diffractive optical elements (DOEs) in soft materials such as plastic injection molding are state of the art. For precision glass molding in glasses with high transition temperatures, molds with extreme thermal resistivity, low chemical reactivity and high mechanical strength are needed. Glassy Carbon can be operated up to 2000°C making it possible to mold almost all glasses including Fused Silica with a transition temperatures above 1060°C. For the structuring of Glassy Carbon wafers photolithography and a RIE process is used. We have developed a process using Si as a hard mask material. If the flow rates of the etching gases O2 and SF6 are chosen properly, high selectivity of GC to Si 19:1 can be achieved, which provides excellent conditions to realize high resolution elements with feature size down to 1 micron and fulfills requirements for optical applications. We fabricated several multilevel GC molds with 8 levels of structuring. Two different optical functionalities were implemented: 6x6 array beamsplitter and 1x4 linear beamsplitter. The molds were applied for precision glass molding of a low Tg glass L-BAL 42 (from Ohara) with a transition temperature of 565°C. Their optical performance was measured. A more detailed analysis of the impact of mold fabrication defects on optical performance is done. Rigorous coupled wave analysis simulations are performed, where we included fabrication constrains such as duty cycle, edge depth errors, wall verticality and misalignment errors. We will compare the results with the design specifications and discuss the influence of fabrication errors introduced during the different process steps.

  15. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    NASA Astrophysics Data System (ADS)

    Radhi, M. M.; Amir, Y. K. A.; Alwan, S. H.; Tee, T. W.

    2013-04-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C60/GCE and AC/GCE, these electrodes were modified in Li+ solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg2+, Cd2+, and Mn2+. Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (Df) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  16. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    PubMed

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. PMID:26652361

  17. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    PubMed

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility.

  18. Bucky-gel coated glassy carbon electrodes, for voltammetric detection of femtomolar leveled lead ions.

    PubMed

    Wan, Qijin; Yu, Fen; Zhu, Lina; Wang, Xiaoxia; Yang, Nianjun

    2010-10-15

    Femtomolar (fM) leveled lead ions were electrochemically detected using a bucky-gel coated glassy carbon electrode and differential pulse anodic stripping voltammetry. The bucky-gel was composed of dithizone, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate), and multi-walled carbon nanotubes (MWCNTs). The fabrication of the bucky-gel coated electrode was optimized. The modified electrode was characterized with voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. After the accumulation of lead ions into the bucky-gel modified electrode at -1.2V vs. saturated calomel electrode (SCE) for 5 min in a pH 4.4 sodium acetate-acetate acid buffer solution, differential pulse anodic stripping voltammograms of the accumulated lead show an anodic wave at -0.58 V. The anodic peak current is detectable for lead ions in the concentration range from 1.0 μM down to 500 fM. The detection limit is calculated to be 100 fM. The proposed method was successfully applied for the detection of lead ions in lake water. PMID:20875583

  19. Structural Modifications And Mechanical Degradation Of Ion Irradiated Glassy Polymer Carbon

    NASA Astrophysics Data System (ADS)

    Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Muntele, Claudiu; Ila, Daryush

    2011-06-01

    The TRISO fuel has been used in some of the Generation IV nuclear reactor designs. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. GPC is used for artificial heart valves, heat-exchangers, and other high-tech products developed for the space and medical industries. This lightweight material can maintain dimensional and chemical stability in adverse environment and very high temperatures (up to 3000 °C). In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Ag equivalent to a 1 displacement per atom (dpa) at samples prepared at 1000, 1500 and 2000 °C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University. Transmission electron microscopy (TEM) and Raman spectroscopy were used for analysis.

  20. Microscopic theory of the glassy dynamics of passive and active network materials.

    PubMed

    Wang, Shenshen; Wolynes, Peter G

    2013-03-28

    Signatures of glassy dynamics have been identified experimentally for a rich variety of materials in which molecular networks provide rigidity. Here we present a theoretical framework to study the glassy behavior of both passive and active network materials. We construct a general microscopic network model that incorporates nonlinear elasticity of individual filaments and steric constraints due to crowding. Based on constructive analogies between structural glass forming liquids and random field Ising magnets implemented using a heterogeneous self-consistent phonon method, our scheme provides a microscopic approach to determine the mismatch surface tension and the configurational entropy, which compete in determining the barrier for structural rearrangements within the random first order transition theory of escape from a local energy minimum. The influence of crosslinking on the fragility of inorganic network glass formers is recapitulated by the model. For active network materials, the mapping, which correlates the glassy characteristics to the network architecture and properties of nonequilibrium motor processes, is shown to capture several key experimental observations on the cytoskeleton of living cells: Highly connected tense networks behave as strong glass formers; intense motor action promotes reconfiguration. The fact that our model assuming a negative motor susceptibility predicts the latter suggests that on average the motorized processes in living cells do resist the imposed mechanical load. Our calculations also identify a spinodal point where simultaneously the mismatch penalty vanishes and the mechanical stability of amorphous packing disappears.

  1. Investigations of low-energy ion irradiation influence on glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Abidzina, V.; Tereshko, I.; Elkin, I.; Muntele, I.; Muntele, C.; Minamisawa, R. A.; Ila, D.

    2007-04-01

    Glassy polymeric carbon (GPC), which is made from phenolic resins, has a high chemical inertness and is used as high temperature and radiation resistant coatings, as high temperature heat-exchangers, as well as a biomaterial in medicine for the manufacture of heart valves and prosthetic devices [G.M. Jenkins, D. Ila, H. Maleki, Mater. Res. Soc. Symp. Proc. 394 (1995) 181]. GPC is also used for the harsh environment of space, as well as for protective coating against extreme environments such as high temperature, highly ionizing radiation, as well as corrosive environments. In this work, we present the results of our investigation of the influence of the low-energy ion irradiation in glow-discharge plasma on GPC. Chemical changes in GPC prepared at 1000 °C were studied using FTIR, micro-Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Porosity changes were monitored through introducing lithium from a molten LiCl salt into GPC and using the (p, α) nuclear reaction analysis (NRA) to measure Li concentration in treated GPC.

  2. Voltammetric determination of Δ9-THC in glassy carbon electrode: An important contribution to forensic electroanalysis.

    PubMed

    Balbino, Marco Antonio; de Menezes, Matheus Manoel Teles; Eleotério, Izabel Cristina; Saczk, Adelir Aparecida; Okumura, Leonardo Luiz; Tristão, Heloísa Maria; de Oliveira, Marcelo Firmino

    2012-09-10

    A new voltammetric method for the determination of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is described. The voltammetric experiments were accomplished in N-N dimethylformamide/water (9:1, v/v), using tetrabutylammonium tetrafluoroborate (TBATFB) 0.1mol/L as supporting electrolyte and a glassy carbon disk electrode as the working electrode. The anodic peak current was observed at 0.0V (vs. Ag/AgCl) after a 30s pre-concentration step under an applied potential of -1.2V (vs. Ag/AgCl). A linear dependence of Δ(9)-THC detection was obtained in the concentration range 2.4-11.3ng/mL, with a linear correlation coefficient of 0.999 and a detection limit of 0.34ng/mL. The voltammetric method was used to measure the content of Δ(9)-THC in samples (hemp and hashish) confiscated by the police. The elimination of chemical interferences from the samples was promptly achieved through prior purification using the TLC technique, by employing methanol/water (4:1, v/v) as the mobile phase. The results showed excellent correlation with results attained by HPLC.

  3. Pulse Laser Deposition Fabricating Gold Nanoclusters on a Glassy Carbon Surface for Nonenzymatic Glucose Sensing.

    PubMed

    Shu, Honghui; Chang, Gang; Wang, Zhiqiang; Li, Pai; Zhang, Yuting; He, Yunbin

    2015-01-01

    A One-step technique for depositing gold nanoclusters (GNCs) onto the surface of a glassy carbon (GC) plate was developed by using pulse laser deposition (PLD) with appropriate process parameters. The method is simple and clean without using any templates, surfactants, or stabilizers. The experimental factors (pulse laser number and the pressure of inert gas (Ar)) that affect the morphology and structure of GNCs, and thus affect the electrocatalytic oxidation performance towards glucose were systematically investigated by means of transmission electron microscopy (TEM) and electrochemical methods (cyclic voltammograms (CV) and chronoamperometry methods). The GC electrode modified by GNCs exhibited a rapid response time (about 2 s), a broad linear range (0.1 to 20 mM), and good stability. The sensitivity was estimated to be 31.18 μA cm(-2) mM(-1) (vs. geometric area), which is higher than that of the Au bulk electrode. It has a good resistance to the common interfering species, such as ascorbic acid (AA), uric acid (UA) and 4-acetaminophen (AP). Therefore, this work has demonstrated a simple and effective sensing platform for the nonenzymatic detection of glucose, and can be used as a new material for a novel non-enzymatic glucose sensor. PMID:26165282

  4. A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode.

    PubMed

    Hajihosseini, Saeedeh; Nasirizadeh, Navid; Hejazi, Mohammad Saeid; Yaghmaei, Parichereh

    2016-04-01

    A sensitive electrochemical DNA biosensor was developed for Helicobacter pylori (H. pylori) detection using differential pulse voltammetry. Single-stranded DNA probe was immobilized on a graphene oxide/gold nanoparticles modified glassy carbon electrode (GO/AuNPs/GCE). A hybridization reaction was conducted with the target DNA and the immobilized DNA on the electrode surface. Oracet blue (OB) was selected for the first time as a redox indicator for amplifying the electrochemical signal of DNA. Enhanced sensitivity was achieved through combining the excellent electric conductivity of GO/AuNPs and the electroactivity of the OB. The DNA biosensor displayed excellent performance to demonstrate the differences between the voltammetric signals of the OB obtained from different hybridization samples (non-complementary, mismatch and complementary DNAs). The proposed biosensor has a linear range of 60.0-600.0 pM and a detection limit of 27.0 pM for detection of H. pylori. In addition, the biosensor have responded very well in the simulated real sample evaluations, signifying its potential to be used in future clinical detection of the H. pylori bacteria.

  5. Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    PubMed Central

    Piech, Robert; Rumin, Martyna; Paczosa-Bator, Beata

    2015-01-01

    A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1) to 15 µM (4.5 mg·L−1) concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n = 5). The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples. PMID:25741451

  6. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    PubMed

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit.

  7. Voltammetric determination of vitamin D3 with a rotating glassy carbon electrode.

    PubMed

    Hernández Méndez, J; Sánchez Pérez, A; Delgado Zamarreño, M; Hernández Garcia, M L

    1988-01-01

    A voltamperometric study (DC and DP) on the electroanalytical behaviour of vitamin D(3) in a methanolic solution using LiClO(4) as the supporting electrolyte and working with a glassy carbon electrode was carried out. Vitamin D(3) exhibits an oxidation wave (DC) or peak (DP) at potentials close to +1.1 V (versus SCE). The optimum experimental conditions for the best reproducibility of the voltamperometric signal were determined and the different parameters affecting the electrochemical process were studied. The electrochemical process was seen to be irreversible and, under certain conditions, adsorption of vitamin D(3) onto the electrode surface was observed. A voltamperometric procedure for the determination of vitamin D(3) in a concentration range of 2 x 10(-6) - 2 x 10(-4) M is proposed. The detection limit is of the order of 2 x 10(-6) M and the relative standard deviations are 1.1% (DC) and 2.6% (DP), respectively.

  8. Structure, texture, and properties of superconductive electrolytic niobium coatings on glassy carbon

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Shevyrev, A. A.

    2016-01-01

    Superconductive electrolytic niobium coatings 0.1-100 μm thick are prepared via electrochemical deposition onto SU-2000 glassy carbon substrates in (LiF + NaF + KF)eut-K2NbF7 molten salt. Their structure, texture, and residual stresses are investigated by X-ray diffraction methods. It is shown that, when depositing the coatings, the diffusion superconductive layer of niobium carbide is formed at the substrate-coating interface. The sequence of changes in the axis of the texture of niobium coating from <100> through <211> to a textureless state with an increase in their thickness is established. It is found that, in the interval 0.5-5 μm, the sign of the stress changes (compressive stresses change into tensile stresses) and it reaches its maximum value. With an increase in the coating thickness from 5 to 100 μm, tensile stresses decrease from 345 to 80 MPa. It is shown that the coatings formed can be used as the material for creating a working layer of a superconducting cryogenic gyroscope rotor.

  9. MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim.

    PubMed

    da Silva, Hélder; Pacheco, João G; Magalhães, Júlia M C S; Viswanathan, Subramanian; Delerue-Matos, Cristina

    2014-02-15

    A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole (PY) and molecularly imprinted polymer (MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore, a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0 × 10(-6) and 1.0 × 10(-4)M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3 × 10(-7)M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urine samples.

  10. Pulse Laser Deposition Fabricating Gold Nanoclusters on a Glassy Carbon Surface for Nonenzymatic Glucose Sensing.

    PubMed

    Shu, Honghui; Chang, Gang; Wang, Zhiqiang; Li, Pai; Zhang, Yuting; He, Yunbin

    2015-01-01

    A One-step technique for depositing gold nanoclusters (GNCs) onto the surface of a glassy carbon (GC) plate was developed by using pulse laser deposition (PLD) with appropriate process parameters. The method is simple and clean without using any templates, surfactants, or stabilizers. The experimental factors (pulse laser number and the pressure of inert gas (Ar)) that affect the morphology and structure of GNCs, and thus affect the electrocatalytic oxidation performance towards glucose were systematically investigated by means of transmission electron microscopy (TEM) and electrochemical methods (cyclic voltammograms (CV) and chronoamperometry methods). The GC electrode modified by GNCs exhibited a rapid response time (about 2 s), a broad linear range (0.1 to 20 mM), and good stability. The sensitivity was estimated to be 31.18 μA cm(-2) mM(-1) (vs. geometric area), which is higher than that of the Au bulk electrode. It has a good resistance to the common interfering species, such as ascorbic acid (AA), uric acid (UA) and 4-acetaminophen (AP). Therefore, this work has demonstrated a simple and effective sensing platform for the nonenzymatic detection of glucose, and can be used as a new material for a novel non-enzymatic glucose sensor.

  11. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples.

    PubMed

    Kiss, Laszlo; David, Vasile; David, Iulia Gabriela; Lazăr, Paul; Mihailciuc, Constantin; Stamatin, Ioan; Ciobanu, Adela; Ştefănescu, Cristian Dragoş; Nagy, Livia; Nagy, Géza; Ciucu, Anton Alexandru

    2016-11-01

    A simple and reliable method for preparing a selective dopamine (DA) sensor based on a molecularly imprinted polymer of ethacridine was proposed. The molecularly imprinted polymer electrode was prepared through electrodepositing polyethacridine-dopamine film on the glassy carbon electrode and then removing DA from the film via chemical induced elution. The molecular imprinted sensor was tested by cyclic voltammetry as well as by differential pulse voltammetry (DPV) to verify the changes in oxidative currents of DA. In optimized DPV conditions the oxidation peak current was well-proportional to the concentration of DA in the range from 2.0×10(-8)M up to 1×10(-6)M. The limit of detection (3σ) of DA was found to be as low as 4.4nM, by the proposed sensor that could be considered a sensitive marker of DA depletion in Parkinson's disease. Good reproducibility with relative standard deviation of 1.4% and long term stability within two weeks were also observed. The modified sensor was validated for the analysis of DA in deproteinized human serum samples using differential pulse voltammetric technique. PMID:27591643

  12. Application of low-temperature glassy carbon films in solid-phase microextraction.

    PubMed

    Giardina, M; Olesik, S V

    2001-12-15

    Low-temperature glassy carbon (LTGC) films were investigated as a sorbent coating for solid-phase microextraction because of its uniquely selective adsorptive characteristics. The selectivity of these coatings is primarily controlled by shape characteristics of the solute molecule and the final processing temperature used to form the LTGC, demonstrating unique adsorptive characteristics compared to commercial phases. The LTGC films were prepared by first coating porous silica particles with a diethylnyl oligomer precursor and then heat curing at temperatures between 300 and 1000 degrees C to form the LTGC. Then, using a sol-gel process, the LTGC-coated silica particles were immobilized onto stainless steel fibers and subsequently used for headspace and liquid extractions followed by GC-FID analysis. The selectivity of the LTGC is demonstrated by the extraction of a variety of aromatic hydrocarbons as well as the taste and odor contaminants geosmin, 2-methylisoborneol, and 2,4,6-trichloroanisole commonly found in water supplies. The data show that the LTGC coating has the highest affinity for molecules with the greatest cross-sectional surface area and polarizability and that this selective mechanism increases as a function of LTGC processing temperature. PMID:11791552

  13. Glassy carbon/multi walled carbon nanotube/cadmium sulphide photoanode for light energy storage in vanadium photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Peimanifard, Zahra; Rashid-Nadimi, Sahar

    2015-12-01

    The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ to VO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.

  14. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. PMID:26478378

  15. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility.

  16. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown. PMID:26452862

  17. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  18. Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode.

    PubMed

    Erden, Pınar Esra; Kaçar, Ceren; Öztürk, Funda; Kılıç, Esma

    2015-03-01

    In this study, a new uric acid biosensor was constructed based on ferrocene containing polymer poly(vinylferrocene) (PVF), carboxylated multiwalled carbon nanotubes (c-MWCNT) and gelatin (GEL) modified glassy carbon electrode (GCE). Uricase enzyme (UOx) was immobilized covalently through N-ethyl-N'-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS) chemistry onto c-MWCNT/GEL/PVF/GCE. The c-MWCNT/GEL/PVF composite was characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Various experimental parameters such as pH, applied potential, enzyme loading, PVF and c-MWCNT concentration were investigated in detail. Under the optimal conditions the dynamic linear range of uric acid was 2.0×10(-7) M-7.1×10(-4) M (R=0.9993) with the detection limit low to 2.3×10(-8) M. With good selectivity and sensitivity, the biosensor was successfully applied to determine the uric acid in human serum. The results of the biosensor were in good agreement with those obtained from standard method. Therefore, the presented biosensor could be a good promise for practical applications in real samples.

  19. Development of glassy carbon electrode modified with ruthenium red-multiwalled carbon nanotubes for simultaneous determination of epinephrine and acetaminophen.

    PubMed

    Nadiki, Hadi Hassani; Noroozifar, Meissam; Khorasani-Motlagh, Mozhgan

    2014-01-01

    A glassy carbon electrode modified with ruthenium red and functionalized multi-walled carbon nanotube has been developed. The electrochemical response characteristics of the modified electrode toward epinephrine (EP) and acetaminophen (AC) was investigated by differential pulse voltammetry (DPV). Linear calibration plots were obtained over the range of 0.3 - 333.3 μM for both EP and AC with sensitivities of 0.221 and 0.174 μA μM(-1) for EP and AC, respectively. The detection limits for EP and AC were 0.04 and 0.06 μM, respectively. The diffusion coefficients for the oxidation of EP and AC at the modified electrode were calculated as 2.74 ± 0.05 × 10(-5) and 1.75 ± 0.07 × 10(-5) cm(2) s(-1), respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of EP and AC in human urine and serum as well as AC tablet samples.

  20. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    PubMed

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

  1. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    PubMed

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  2. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown.

  3. Structural and mechanical characterization of ion-irradiated glassy polymeric carbon for TRISO fuel nuclear application

    NASA Astrophysics Data System (ADS)

    Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Ila, Daryush

    2012-08-01

    Tristructural isotropic (TRISO) fuel is considered as the fuel design of choice for the next generation of nuclear reactors (Generation IV). Its design consists of a fuel kernel of UO x coated with several layers having different functions. One of these functions is a containment shell/diffusion barrier for the fission fragments. Normally, the material of choice for this shell is pyrolytic carbon (PyC). The material does not offer a perfect barrier, due to its inherent crystalline structure, which is planar (like graphite) and therefore impossible to mold in one continuous sheet around the spherical fuel bead. Plane boundaries allow fragment diffusion at a much higher rate than through the plane. In this study, we investigate the possibility of replacing PyC with a different form of carbon, glassy polymeric carbon (GPC). We prepared samples of GPC and studied the evolution of their physical properties and structure as a function of the radiation environment that they were exposed to. The temperature at which the samples were held during irradiation was very similar to the Generation IV nuclear reactor (∼1000°C). During the fission of U235, the fission fragment mass distribution has two maxima around 98 and 137 amu, which would best correspond to elements Rb and Cs, respectively. However, both ions are hard to produce from our SNICS ion source at the Center for Irradiation of Materials; therefore, we used 107Ag and 197Au as best replacements. The irradiation sessions consisted in various fluences of 5 MeV Ag, and 5 MeV Au. For elemental sample analysis, we used transmission electron microscopy. For mechanical analysis, we used nano-indentation. It is of prime importance to measure the penetration of the implanted 107Ag.and 197Au and the evolution of mechanical properties of GPC irradiated with these ions. A procedure for manufacturing GPC with analysis is presented. This will show how the GPC structure differs as the temperature that it is prepared at increases

  4. Surface observation for seed-mediated growth attachment of gold nanoparticles on a glassy carbon substrate.

    PubMed

    Oyama, Munetaka; Yamaguchi, Shin-Ya; Zhang, Jingdong

    2009-02-01

    A seed-mediated growth method for surface modification was applied to the attachment of gold nanoparticles (AuNPs) to glassy carbon (GC) surfaces. By simply immersing a GC plate at first into a seed solution containing 4 nm Au nano-seed particles and then into a growth solution containing HAuCl(4), ascorbic acid and cetyltrimethyammonium bromide, AuNPs could be successfully attached to the GC surface via the growth of nanoparticles. A possible control of the size and density of AuNPs on GC was examined by observing surface images with a field-emission scanning electron microscope (FE-SEM) after several preparations with different immersion times. Compared with previous results on the growth of AuNPs on indium tin oxide (ITO) surfaces, it was characteristic that the AuNPs attached to GC surfaces exhibited smaller size and higher density as well as a flatter and non-crystal-like morphology. In addition, for performing the dense attachment of regular nano-sized AuNPs on GC surfaces, immersion for 2 h into the growth solution was sufficient. Longer immersion for 24 h caused an irregular growth of bold Au micro-crystals, while 24 h was necessary in the case of AuNPs on ITO surfaces. Shorter seeding and growth times were found to be effective for a sparse attachment of smaller Au nanoparticles whose size was ca. 20 nm. It was clarified that the seed-mediated growth method for surface modification was valid for fabricating a nanointerface composed of AuNPs on GC surfaces.

  5. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    SciTech Connect

    Mohebbi, Sajjad Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT and new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.

  6. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)-phtalocyanine modified glassy carbon electrode.

    PubMed

    Kurd, Masoumeh; Salimi, Abdollah; Hallaj, Rahman

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized Fe(II)-Pc were calculated as 1.26×10(-10) mol cm(-2) and 28.13 s(-1), respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl3COOH to CH3COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM(-1) cm(-2), respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection.

  7. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour.

  8. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. PMID:25435239

  9. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    PubMed

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  10. Electrode-nanoparticle collisions: The measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Ge; Rees, Neil V.; Compton, Richard G.

    2011-10-01

    In this communication, we combine anodic particle coulometry (APC) with anodic stripping voltammetry, to find the proportion of NP impacts that result in adsorbed NPs, using AgNPs in collision with glassy carbon electrode. Sticking coefficients are reported for AgNP radii of 14, 29, and 45 nm, measured at electrode biases ranging from OCV to -0.2 to -1.2 V (vs. Ag/AgCl). No significant systematic trends were found in either case. We suggest that this methodology may be widely applicable to measuring the sticking coefficient of any oxidisable metal nanoparticle on an electrode surface in solution.

  11. A highly sensitive hydrogen peroxide sensor based on (Ag-Au NPs)/poly[o-phenylenediamine] modified glassy carbon electrode.

    PubMed

    Shamsipur, Mojtaba; Karimi, Ziba; Amouzadeh Tabrizi, Mahmoud

    2015-11-01

    Herein, the poly(o-phenylenediamine) decorated with gold-silver nanoparticle (Ag-Au NPs) nanocomposite modified glassy carbon was used for the determination of hydrogen peroxide. Electrochemical experiments indicated that the proposed sensor possesses an excellent sensitivity toward the reduction of hydrogen peroxide. The resulting sensor exhibited a good response to hydrogen peroxide over linear range from 0.2 to 60.0μM with a limit of detection of 0.08μM, good reproducibility, long-term stability and negligible interference from ascorbic acid, uric acid and dopamine. The proposed sensor was successfully applied to the determination of hydrogen peroxide in human serum sample.

  12. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    PubMed Central

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. PMID:25621613

  13. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode.

    PubMed

    Peik-See, Teo; Pandikumar, Alagarsamy; Nay-Ming, Huang; Hong-Ngee, Lim; Sulaiman, Yusran

    2014-08-19

    The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE) and its simultaneous detection of dopamine (DA) and ascorbic acid (AA) is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1-9 mM and 0.5-100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3) was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  14. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    NASA Astrophysics Data System (ADS)

    Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin

    2016-10-01

    Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.

  15. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    PubMed Central

    Peik-See, Teo; Pandikumar, Alagarsamy; Nay-Ming, Huang; Hong-Ngee, Lim; Sulaiman, Yusran

    2014-01-01

    The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE) and its simultaneous detection of dopamine (DA) and ascorbic acid (AA) is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 μM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3) was found to be 0.42 and 0.12 μM for AA and DA, respectively. PMID:25195850

  16. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes.

    PubMed

    Uslu, Bengi; Topal, Burcu Dogan; Ozkan, Sibel A

    2008-02-15

    The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2x10(-6) to 2x10(-4)M in 0.5M H(2)SO(4) at about +1.20V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.

  17. Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine.

    PubMed

    Enache, T A; Oliveira-Brett, A M

    2011-04-01

    The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amino acid cysteine undergoes similar three consecutive oxidation reactions at both electrodes. The first step involves the oxidation of the sulfhydryl group with radical formation, that undergoes nucleophilic attack by water to give an intermediate species that is oxidized in the second step to cysteic acid. The oxidation of the sulfhydryl group leads to a disulfide bridge between two similar cysteine moieties forming cysteine. The subsequent oxidation of cystine occurs at a higher potential, due to the strong disulfide bridge covalent bond. The electro-oxidation of methionine at a glassy carbon electrode occurs in two steps, corresponding to the formation of sulfoxide and sulfone, involving the adsorption and protonation/deprotonation of the thiol group, followed by electrochemical oxidation. Methionine undergoes a one-step oxidation reaction at boron doped diamond electrodes due to the negligible adsorption, and the oxidation also leads to the formation of methionine sulfone. PMID:21377428

  18. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    PubMed Central

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  19. Characterization of Au Irradiated Glassy Polymeric Carbon at 2,000°C for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Abunaemeh, M.; Seif, M.; Batra, A.; Elsamadicy, A.; Yang, Y.; Wang, L.; Muntele, C.; Ila, D.

    The TRISO fuel has been used in some of the Generation IV nuclear reactor designs [1]. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Au equivalent to a 1 displacement per atom (dpa) for GPC prepared at 2,000°C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University using Transmission electron microscopy (TEM) and stopping range of ions in matter (SRIM) software.

  20. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    NASA Astrophysics Data System (ADS)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  1. Covalent modification of glassy carbon spheres through ball milling under solvent free conditions: A novel electrochemical interface for mercury(II) quantification.

    PubMed

    Kempegowda, Raghu G; Malingappa, Pandurangappa

    2014-08-01

    A simple and green chemistry protocol has been proposed based on the covalent anchoring of benzamide molecule on glassy carbon spheres through ball milling under solvent free condition. The modification proceeds through the formation of an amide bond between carboxylic group of glassy carbon spheres and the amino group of modifier molecule. The formation of covalent bond was ascertained using X-ray photoelectron spectroscopy. Scanning electron microscopy was used to study the surface morphology of milled glassy carbon spheres. The aqueous colloidal solution of modified glassy carbon spheres was used in the preparation of thin film electrodes and subsequently used as a novel electrochemical interface in the quantification of mercury at trace level using a differential pulse anodic stripping voltammetric technique. The modified electrode showed good sensitivity and selectivity towards mercury with a detection limit of 1nM with least interference from most of the ions. The analytical utility of the proposed electrode has been validated by determining the mercury levels in number of sample matrices. PMID:24881534

  2. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-03-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1–400 ng·mL‑1, with a detection limit of 0.1 ng·mL‑1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.

  3. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    PubMed Central

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-01-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1–400 ng·mL−1, with a detection limit of 0.1 ng·mL−1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples. PMID:27003798

  4. Study of the voltammetric behavior of jatrorrhizine and its sensitive determination at electrochemical pretreatment glassy carbon electrode.

    PubMed

    Ye, Zhuo; Li, Yinfeng; Wen, Jianguo; Li, Kunjing; Ye, Baoxian

    2014-08-01

    A simple, inexpensive and highly sensitive electrochemical method for the determination of jatrorrhizine was developed using an electrochemically pretreated glassy carbon electrode (EPGCE). The electrochemical behavior of jatrorrhizine was systematically investigated in detail and some kinetic parameters were calculated for the first time. A reasonable reaction mechanism of jatrorrhizine on the EPGCE was also discussed and proposed, which could be a reference for the pharmacological action of jatrorrhizine in clinical study. And the first electroanalytical method of jatrorrhizine was established with a wide linear range from 7.0×10(-8) to 2.0×10(-5)mol L(-1) and a low detection limit of 5.0×10(-8)mol L(-1). The proposed method was successfully applied in determination of jatrorrhizine in pharmaceutical sample, Tinospora capillipes Gagnep (a traditional Chinese medicine), with satisfactory results. PMID:24881532

  5. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Dong, Yongping; Gao, Tingting; Zhou, Ying; Chu, Xiangfeng; Wang, Chengming

    2015-01-01

    Gold nanoparticle/graphene (GNP/GR) nanocomposite was one-pot synthesized from water soluble graphene and HAuCl4 by hydrothermal method and characterized by TEM, Raman spectroscopy, XRD, XPS, UV-vis spectroscopy, and electrochemical impedance spectroscopy (EIS). Electrogenerated chemiluminescence (ECL) of luminol was investigated at the GNP/GR modified glassy carbon electrode (GNP/GR/GCE) and the GNP modified glassy carbon electrode (GNP/GCE) in aqueous solution respectively. The results revealed that one strong anodic ECL peak could be observed at ∼0.8 V at two modified electrodes compared with that at the bare electrode. The intensity of the anodic ECL at the GNP/GR/GCE is weaker than that at the GNP/GCE, which should be due to the synergic effect of the enhancing effect of gold nanoparticles and the inhibiting effect of graphene on anodic luminol ECL. One strong cathodic ECL peak located at ∼-0.8 V could be observed at the GNP/GR/GCE but not at the GNP/GCE, which should be result from the adsorbed oxygen at the graphene film. In the presence of ascorbic acid, the anodic ECL at the GNP/GR/GCE was enhanced more than 8-times, which is more apparent than that at the GNP/GCE. Whereas, the cathodic ECL peak was seriously inhibited at the GNP/GR/GCE. The enhanced ECL intensity at the GNP/GR/GCE varied linearly with the logarithm of ascorbic acid concentration in the range of 1.0 × 10-8 to 1.0 × 10-6 mol L-1 with a detection limit of 1.0 × 10-9 mol L-1. The possible ECL mechanism was also discussed.

  6. Determination of mutagenic amines in water and food samples by high pressure liquid chromatography with amperometric detection using a multiwall carbon nanotubes-glassy carbon electrode.

    PubMed

    Bueno, Ana María; Marín, Miguel Ángel; Contento, Ana María; Ríos, Ángel

    2016-02-01

    A chromatographic method, using amperometric detection, for the sensitive determination of six representative mutagenic amines was developed. A glassy carbon electrode (GCE), modified with multiwall carbon nanotubes (GCE-CNTs), was prepared and its response compared to a conventional glassy carbon electrode. The chromatographic method (HPLC-GCE-CNTs) allowed the separation and the determination of heterocyclic aromatic amines (HAAs) classified as mutagenic amines by the International Agency for Research of Cancer. The new electrode was systematically studied in terms of stability, sensitivity, and reproducibility. Statistical analysis of the obtained data demonstrated that the modified electrode provided better sensitivity than the conventional unmodified ones. Detection limits were in the 3.0 and 7.5 ng/mL range, whereas quantification limits ranged between 9.5 and 25.0 ng/mL were obtained. The applicability of the method was demonstrated by the determination of the amines in several types of samples (water and food samples). Recoveries indicate very good agreement between amounts added and those found for all HAAs (recoveries in the 92% and 105% range).

  7. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes.

    PubMed

    Dai, Xuan; Wildgoose, Gregory G; Salter, Chris; Crossley, Alison; Compton, Richard G

    2006-09-01

    Gold nanoparticles (approximately 30-60 nm in diameter) were deposited onto the surface of glassy carbon microspheres (10-20 microm) through electroless plating to produce bulk (i.e., gram) quantities of nanoparticle surface-modified microspheres. The gold nanoparticle-modified powder was then characterized by means of scanning electron microscopy and cyclic voltammetry. The voltammetric response of a macroelectrode consisting of a film of gold nanoparticle-modified glassy carbon microspheres, bound together and "wired-up" using multiwalled carbon nanotubes (MWCNTs), was investigated. We demonstrate that by intelligently exploiting both nano- and microchemical architectures and wiring up the electroactive centers using MWCNTs in this way, we can obtain macroelectrode voltammetric behavior while only using approximately 1% by mass of the expensive gold material that would be required to construct the equivalent gold film macrodisk electrode. The potential utility of electrodes constructed using chemical architectures such as this was demonstrated by applying them to the analytical determination of arsenic(III) concentration. An optimized limit of detection of 2.5 ppb was obtained.

  8. A simple and sensitive method for the determination of 4-n-octylphenol based on multi-walled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Zheng, Qiaoli; Yang, Ping; Xu, He; Liu, Jianshe; Jin, Litong

    2012-01-01

    A simple and sensitive electroanalytical method was presented for the determination of 4-n-octylphenol (OP) based on multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). OP was directly oxidized on the MWCNTs/GCE, and the electrochemical oxidation mechanism was demonstrated by a one-electron and one-proton process in the reaction. The oxidation peak current of OP was significantly enhanced by the use of MWCNTs/GCE compared with those of bare glassy carbon electrode, suggesting that the modified electrode can remarkably improve the performance for OP determination. Factors influencing the detection processes were optimized. Under these optimal conditions, a linear relationship between concentration of OP and current response was obtained in the range of 5 x 10(-8) to 1 x 10(-5) mol/L with a detection limit of 1.5 x 10(-8) mol/L and correlation coefficient 0.9986. The modified electrode showed good selectivity, sensitivity, reproducibility and high stability.

  9. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    PubMed

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1).

  10. A Voltammetric Biosensor Based on Glassy Carbon Electrodes Modified with Single-Walled Carbon Nanotubes/Hemoglobin for Detection of Acrylamide in Water Extracts from Potato Crisps

    PubMed Central

    Krajewska, Agnieszka; Radecki, Jerzy; Radecka, Hanna

    2008-01-01

    The presence of toxic acrylamide in a wide range of food products such as potato crisps, French fries or bread has been confirmed by Swedish scientists from Stockholm University. The neurotoxicity, possible carcinogenicity of this compound and its metabolites compels us to control them by quantitative and qualitative assays. Acrylamide forms adduct with hemoglobin (Hb) as a result of the reaction the -NH2 group of the N-terminal valine with acrylamide. In this work we present the use of glassy carbon electrodes coated with single-walled carbon nanotubes (SWCNTs) and Hb for voltammetric detection of acrylamide in water solutions. The electrodes presented a very low detection limit (1.0×10-9 M). The validation made in the matrix obtained by water extraction of potato crisps showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.

  11. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2013-01-01

    A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (−0.07 V versus Ag/AgCl) on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 μM. The limit of detection was calculated to be 2.54 μM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10−5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods. PMID:24348034

  12. Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples.

    PubMed

    Haghshenas, Esmaeel; Madrakian, Tayyebeh; Afkhami, Abbas

    2016-04-01

    A facile and effective approach of fabricating oxidized multiwalled carbon nanotube/glassy carbon electrode (OMWCNT/GCE) is herein reported. The OMWCNT/GCE was prepared by electrochemical oxidation method in basic media (0.5 mol L(-1) NaOH solution) and used as a sensor for simultaneous determination of dopamine (DA) and doxorubicin (DOX). Scanning electron microscopy, energy dispersive X-ray spectroscopy and cyclic voltammetry were used for characterization and performance study of the OMWCNT/GCE. The modified electrode exhibited good electrocatalytic properties toward the oxidation of DA and DOX. Peaks potential difference of 240 mV between DA and DOX was large enough to determine DA and DOX individually and simultaneously. Square wave voltammetry (SWV) was used for the simultaneous determination of DA and DOX in their binary mixture. Under the optimum conditions, the linear concentration dependences of SW peak current responses were observed for DA and DOX in the concentration ranges of 0.03-55 μmol L(-1) and 0.04-90 μmol L(-1), respectively. The detection limits (S/N = 3) were 8.5 × 10(-3) μmol L(-1), and 9.4 × 10(-3) μmol L(-1) for DA and DOX, respectively. The analytical utility of OMWCNT/GCE was also successfully demonstrated for the simultaneous determination of DA and DOX in human blood serum and urine samples. Graphical Abstract Fabrication of new oxidized multiwalled carbon nanotube/glassy carbon electrode for simultaneous determination of dopamine and doxorubicin.

  13. Electrodeposition From Acidic Solutions of Nickel Bis(benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon

    SciTech Connect

    Fang, Ming; Engelhard, Mark H.; Zhu, Zihua; Helm, Monte L.; Roberts, John A.

    2014-01-03

    Films electrodeposited onto glassy carbon electrodes from acidic acetonitrile solutions of [Bu4N][Ni(bdt)2] (bdt = 1,2-benzenedithiolate) are active toward electrocatalytic hydrogen production at potentials 0.2-0.4 V positive of untreated electrodes. This activity is preserved on rinsing the electrode and transfer to fresh acid solution. X-ray photoelectron spectra indicate that the deposited material contains Ni and S. Correlations between voltammetric and spectroscopic results indicate that the deposited material is active, i.e. that catalysis is heterogeneous rather than homogeneous. Control experiments establish that obtaining the observed catalytic response requires both Ni and the 1,2 benzenedithiolate ligand to be present during deposition. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a 17 national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  14. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2006-08-15

    On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated. PMID:16893249

  15. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2006-08-15

    On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated.

  16. Localized avidin/biotin derivatization of glassy carbon electrodes using SECM.

    PubMed

    Nowall, W B; Wipf, D O; Kuhr, W G

    1998-07-01

    Different forms of the microreagent mode of SECM were used to attach biotin or make "clean" spots on micron-sized regions on the surface of a carbon electrode. In the direct-write mode, the SECM probe tip is used as an electrochemical "pen" depositing biotin in micron-sized lines on the carbon substrate as it is scanned across its surface. In the negative microreagent mode, the SECM probe tip is used as an electrochemical "eraser" cleaning of the surface attached molecules and leaving clean spots on the surface of a globally derivatized carbon surface. This type of simple micromodification of the surface of a carbon electrode will allow the fabrication of biosensors that can potentially be tailor-made for a variety of applications.

  17. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Lavanya, N.; Radhakrishnan, S.; Sudhan, N.; Sekar, C.; Leonardi, S. G.; Cannilla, C.; Neri, G.

    2014-07-01

    A novel folic acid biosensor has been fabricated using Cu doped SnO2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10-10 to 6.7 × 10-5 M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery.

  18. Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode.

    PubMed

    Prabakaran, E; Pandian, K

    2015-01-01

    A simple and sensitive electrochemical method was developed to determine the concentration of Sudan I in chili powder based on silver nanoparticles decorated graphene oxide modified glassy carbon electrode (AgNPs@GO/GCE). The voltammetry behaviour of Sudan I on modified GCE was investigated in phosphate buffer medium (PBS) with various pH ranges and the electron transfer properties were studied. It is found that the AgNPs@GO/GCE can catalyse the reduction of azo group, -N=N- followed by electrochemical oxidation of (-)OH group present in Sudan I dye molecule. Quantitative detection of Sudan I present in food products was carried out by amperometry method in which reduction potential was fixed at -0.77 V vs. Ag/AgCl. The amperometry method showed an excellent performance with a sensitivity of 6.83 μA mM(-1) and a detection limit of 11.4 × 10(-7)ML(-1). A linear calibration graph was constructed in the ranging 3.90 × 10(-6) to 3.19 × 10(-5)ML(-1). The method was successfully applied for the determination of Sudan I in red chili powder samples. PMID:25053046

  19. Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry.

    PubMed

    Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John

    2012-06-18

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  20. A simple electrochemical platform for detection of nitrobenzene in water samples using an alumina polished glassy carbon electrode.

    PubMed

    Thirumalraj, Balamurugan; Palanisamy, Selvakumar; Chen, Shen-Ming; Thangavelu, Kokulnathan; Periakaruppan, Prakash; Liu, Xiao-Heng

    2016-08-01

    In this work, we report a selective electrochemical sensing of nitrobenzene (NB) using an alumina (γ-Al2O3) polished glassy carbon electrode (GCE) for the first time. The scanning electron microscopy studies confirm the presence of alumina particles on the GCE surface. X-ray photoelectron spectroscopy studies reveal that the utilized alumina is γ-Al2O3. The alumina polished GCE shows an enhanced sensitivity and lower overpotential toward the reduction of NB compared to unpolished GCE. The differential pulse voltammetry response was used for the determination of NB and it shows that the reduction peak current of NB is linearly proportional to the concentrations of NB ranging from 0.5 to 145.5μM. The limit of detection is found to be 0.15μM based on 3σ. The fabricated electrode exhibits its appropriate selectivity towards NB in the presence of a range of nitro compounds and metal ions. The good practicality of the sensor in various water samples reveals that it can be a promising electrode material for practical applications. In addition, the proposed NB sensor is simple and cost effective one when compared with previously reported NB sensors in the literature.

  1. Electrocatalytic oxidation of ascorbic acid using a poly(aniline-co-m-ferrocenylaniline) modified glassy carbon electrode.

    PubMed

    Chairam, Sanoe; Sriraksa, Worawit; Amatatongchai, Maliwan; Somsook, Ekasith

    2011-01-01

    A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from -0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 μM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA).

  2. Fabrication of Glassy Carbon Molds Using Hydrogen Silsequioxane Patterned by Electron Beam Lithography as O2 Dry Etching Mask

    NASA Astrophysics Data System (ADS)

    Yasui, Manabu; Sugiyama, Yoshinari; Takahashi, Masaharu; Kaneko, Satoru; Uegaki, Jun-ichi; Hirabayashi, Yasuo; Sugimoto, Koh-ichi; Maeda, Ryutaro

    2008-06-01

    Glass is a good candidate material for optical devices because of its enhanced optical properties, the technique of die machining has not been established for the hot embossing of glass. In this study, we used the glassy carbon (GC) mold for the hot embossing of glass. An inductively coupled plasma reactive ion etching (ICP-RIE) using oxygen plasma was employed for the submicron structuring of the GC mold. Hydrogen silsesquioxane (HSQ) is a negative-type electron beam (EB) resist used to be resistant to oxygen plasma. HSQ patterns drawn by electron beam lithography (EBL) were used as the O2 dry etching mask. The etching selectivity between HSQ and GC was 35. The average of the extent of side etching was 40 nm at a depth of 300 nm. The side etching functioning as the draft angle was caused mainly by oxygen radicals, because HSQ patterns remained even after GC patterns were side-etched. We confirmed that the GC mold fabricated by O2 dry etching can be used for glass hot embossing. Since the mold lubricant was not rubbed on the mold surface, GC is the appropriate mold material for Pyrex glass.

  3. Square wave voltammetric detection by direct electroreduction of paranitrophenol (PNP) using an organosmectite film-modified glassy carbon electrode.

    PubMed

    Ngassa, Guy B P; Tonlé, Ignas K; Ngameni, Emmanuel

    2016-01-15

    This work describes the development of a low-cost and reliable adsorptive stripping voltammetric method for the detection of PNP in water. Organoclays were prepared by intercalation in various loading amounts of cetyltrimethylammonium ions (CTA(+)) in the interlayer space of a smectite-type clay mineral. Their structural characterization was achieved using several techniques including X-ray diffraction (XRD), N2 adsorption-desorption (BET method) and Fourier Transform Infrared spectroscopy (FTIR) that confirmed the intercalation process and the presence of the surfactant ions within the clay mineral layers. Using [Fe(CN)6](3-) and [Ru(NH3)6](3+) as redox probes, the surface charge and the permeability of the starting clay mineral and its modified counterparts were assessed by multisweep cyclic voltammetry, when these materials were coated on the surface of a glassy carbon electrode (GCE). In comparison with the bare GCE, the organoclay modified electrodes exhibited more sensitive response towards the reduction of paranitrophenol (PNP). Under optimized conditions, a calibration curve was obtained in the concentration range from 0.2 to 5.2µmolL(-1); leading to a detection limit of 3.75×10(-8)molL(-1) (S/N=3). After the study of some interfering species on the electrochemical response of PNP, the developed sensor was successfully applied to the electroanalytical quantification of the same pollutant in spring water.

  4. Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode.

    PubMed

    Zhang, Huajie

    2006-05-01

    The electrochemical behavior of colchicine at an acetylene black-dihexadecyl hydrogen phosphate (denoted as AB-DHP) composite film coated glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of colchicine at the AB-DHP film modified GCE was greatly improved, as confirmed from the significant peak current enhancement. The remarkable peak current enhancement indicates that the AB-DHP modified GCE has great potential in the sensitive determination of colchicine. Thus, all the experimental conditions, which influence the electrochemical response of colchicine, were studied and the optimum conditions were achieved. Finally, a sensitive and simple voltammetric method with a good linear relationship in the range of 1.0 x 10(-7) approximately 4.0 x 10(-5) mol/L, was developed for the determination of colchicine. The detection limit of colchicine was also examined and a low value of 4.0 x 10(-8) mol/L for 4-min accumulation was obtained (S/N=3). This electrode was successfully applied to detect colchicine in human urine samples.

  5. Potential of Glassy Carbon and Silicon Carbide Photonic Structures as Electromagnetic Radiation Shields for Atmospheric Re-entry

    NASA Technical Reports Server (NTRS)

    Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.

    2012-01-01

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  6. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode.

    PubMed

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H2O2) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV-Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H2O2. Amperometric study using ERGO/GCE showed high sensitivity (0.3μA/μM) and faster response upon the addition of H2O2 at an applied potential of -0.25V vs. Ag/AgCl. The detection limit is assessed to be 0.7μM (S/N=3) and the time to reach a stable study state current is <3s for a linear range of H2O2 concentration (1-16μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. PMID:27612728

  7. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    PubMed

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  8. Simple, Rapid and Selective Chronopotentiometric Method for the Determination of Riboflavin in Pharmaceutical Preparations Using a Glassy Carbon Electrode.

    PubMed

    Brezo, Tanja; Stojanovič, Zorica; Suturovič, Zvonimir; Kravić, Snežana; Kos, Jovana; Đurović, Ana

    2015-01-01

    A novel, simple, sensitive and reliable electrochemical method for the riboflavin determination using chronopotentiomery with glassy carbon electrode was developed. The most important instrumental parameters of chronopotentiometry including type and concentration of supporting electrolyte, initial potential and current range were examined and optimised in respect to riboflavin analytical signal. Riboflavin provided well defined reduction signal at -0.12 V vs. Ag/AgCl (3.5 mol/L KCl) electrode in 0.025 mol/L HCl. Under optimal conditions, linear response of riboflavin was observed in the concentration range of 0.2 - 70 mg/L with achieved limit of detection of 0.076 mg/L and limit of quantitation of 0.23 mg/L of riboflavin. Common vitamins and filing materials did not interfere in the determination. The proposed method was successfully applied for determination of riboflavin in commercially available pharmaceutical preparations. The obtained results were in statistical agreement to the contents declared by manufacturer and to those obtained by HPLC used as comparative method.

  9. Amino-functionalized mesoporous silica modified glassy carbon electrode for ultra-trace copper(II) determination.

    PubMed

    Dai, Xingxin; Qiu, Fagui; Zhou, Xuan; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2014-10-27

    This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu(2+) by employing amino-functionalized mesoporous silica (NH2-MCM-41) as enhanced sensing platform. NH2-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH2-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu(2+) than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu(2+) concentration in the range from 5 to 1000 ng L(-1) with a detection limit of 0.9 ng L(-1) (S/N=3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed sensor was applied for determining Cu(2+) in real samples and the accuracy of the results were comparable to those obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) method.

  10. Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode.

    PubMed

    Prabakaran, E; Pandian, K

    2015-01-01

    A simple and sensitive electrochemical method was developed to determine the concentration of Sudan I in chili powder based on silver nanoparticles decorated graphene oxide modified glassy carbon electrode (AgNPs@GO/GCE). The voltammetry behaviour of Sudan I on modified GCE was investigated in phosphate buffer medium (PBS) with various pH ranges and the electron transfer properties were studied. It is found that the AgNPs@GO/GCE can catalyse the reduction of azo group, -N=N- followed by electrochemical oxidation of (-)OH group present in Sudan I dye molecule. Quantitative detection of Sudan I present in food products was carried out by amperometry method in which reduction potential was fixed at -0.77 V vs. Ag/AgCl. The amperometry method showed an excellent performance with a sensitivity of 6.83 μA mM(-1) and a detection limit of 11.4 × 10(-7)ML(-1). A linear calibration graph was constructed in the ranging 3.90 × 10(-6) to 3.19 × 10(-5)ML(-1). The method was successfully applied for the determination of Sudan I in red chili powder samples.

  11. Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry.

    PubMed

    Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John

    2012-06-18

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range. PMID:22714482

  12. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode.

    PubMed

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy

    2013-10-01

    A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible. PMID:23897002

  13. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode.

    PubMed

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy

    2013-10-01

    A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible.

  14. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  15. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    PubMed

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets.

  16. Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode.

    PubMed

    Roushani, Mahmoud; Shahdost-Fard, Faezeh

    2015-11-01

    The paper reports the development of an ultrasensitive nanoaptasensor based on the covalent attachment of an aptamer (Apt) to gold-nanoparticles (AuNPs) deposited on the surface of a glassy carbon electrode (GCE) as the unique platform. The developed nanoaptasensor was utilized to assay the anti-inflammatory drug, ibuprofen (IBP). The sensing platform was fabricated using a single-stage electrodeposite approach. It is worth noting that the proposed nanoaptasensor combines the advantages of the deposition of neatly arranged AuNPs (enlarged active surface area and strengthened electrochemical signal) and the elimination of enzymes or antibodies for the amplified detection of IBP, with the covalent attachment of the Apt to the surface of the modified electrode. Moreover, the newly developed nanoaptasensor embraces a number of attractive features such as ease of fabrication, low detection limit, excellent selectivity, good stability and a wide linear range with respect to IBP. Meanwhile, interference of common interfering analgesic drugs was effectively avoided. In optimized empirical conditions, the response current of the nanoaptasensor is linear to IBP concentrations from 0.005 nmol(-1) to 7 nmol(-1) with the detection limit (LOD) as accurate as 0.5 pmol(-1). This LOD value proves more sensitive in comparison with previously reported methods. Thus, the fabricated nanoaptasensor can serve as a powerful sensor for rapid diagnosis of IBP in human blood samples and shows great potential for practical bioapplication.

  17. Sensitive voltammetric sensor based on isopropanol-Nafion-PSS-GR nanocomposite modified glassy carbon electrode for determination of clenbuterol in pork.

    PubMed

    Wang, Ling; Yang, Ran; Chen, Jing; Li, Jianjun; Qu, Lingbo; de B Harrington, Peter

    2014-12-01

    In the present study, poly(sodium 4-styrenesulfonate) (PSS) functionalized graphene (GR) was synthesised via a simple one-step chemical reduction of exfoliated graphite oxides in the presence of PSS. Characterisation of as-made nanocomposite using Fourier transform infrared spectroscopy (FT-IR) and ultraviolet and visible spectroscopy (UV-vis) clearly demonstrate the successful attachment of PSS to graphene sheets. A novel clenbuterol (CLB) electrochemical sensor was fabricated based on isopropanol-Nafion-PSS-GR composite film modified glassy carbon electrode. In the Britton-Robinson buffer (pH 1.2), the sensor exhibited superior electrocatalytic activity towards the oxidation of CLB. Applying linear sweep voltammetry, a good linear relationship of the oxidation peak current with respect to concentrations of CLB cross the range of 7.5 × 10(-8)-2.5 × 10(-5)mol L(-1) and a detection limit of 2.2 × 10(-8) mol L(-1) were achieved. The proposed method was successfully applied for the determination of CLB in pork.

  18. Immobilization of Ni-Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection.

    PubMed

    Yu, Huicheng; Ma, Zhenzhen; Wu, Zhaoyang

    2015-10-01

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni-Pd/core-shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni-Pd/core-shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM(-1) cm(-2)), and a wide, useful linear range (0.1-500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages.

  19. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate.

    PubMed

    Ma, Xinying; Chao, Mingyong; Wang, Zhaoxia

    2013-06-01

    This paper describes a novel electrochemical method for the determination of Sudan I in food samples based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GMGCE) and the enhancement effect of an anionic surfactant: sodium dodecyl sulphonate (SDS). Using pH 6.0 phosphate buffer solution (PBS) as supporting electrolyte and in the presence of 1.5 × 10(-4)mol L(-1) SDS, Sudan I yielded a well-defined and sensitive oxidation peak at a GMGCE. The oxidation peak current of Sudan I remarkably increased in the presence of SDS. The experimental parameters, such as supporting electrolyte, concentration of SDS, and accumulation time, were optimised for Sudan I determination. The oxidation peak current showed a linear relationship with the concentrations of Sudan I in the range of 7.50 × 10(-8)-7.50 × 10(-6)mol L(-1), with the detection limit of 4.0 × 10(-8)mol L(-1). This new voltammetric method was successfully used to determine Sudan I in food products such as ketchup and chili sauce with satisfactory results. PMID:23411169

  20. Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.

    2015-07-01

    The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ibd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.

  1. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.

    PubMed

    Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao

    2007-07-16

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.

  2. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  3. Determination of Anthracene on Ag-Au Alloy Nanoparticles/Overoxidized-Polypyrrole Composite Modified Glassy Carbon Electrodes

    PubMed Central

    Mailu, Stephen N.; Waryo, Tesfaye T.; Ndangili, Peter M.; Ngece, Fanelwa R.; Baleg, Abd A.; Baker, Priscilla G.; Iwuoha, Emmanuel I.

    2010-01-01

    A novel electrochemical sensor for the detection of anthracene was prepared by modifying a glassy carbon electrode (GCE) with over-oxidized polypyrrole (PPyox) and Ag-Au (1:3) bimetallic nanoparticles (Ag-AuNPs). The composite electrode (PPyox/Ag-AuNPs/GCE) was prepared by potentiodynamic polymerization of pyrrole on GCE followed by its overoxidation in 0.1 M NaOH. Ag-Au bimetallic nanoparticles were chemically prepared by the reduction of AgNO3 and HAuCl4 using C6H5O7Na3 as the reducing agent as well as the capping agent and then immobilized on the surface of the PPyox/GCE. The nanoparticles were characterized by UV-visible spectroscopy technique which confirmed the homogeneous formation of the bimetallic alloy nanoparticles. Transmission electron microscopy showed that the synthesized bimetallic nanoparticles were in the range of 20–50 nm. The electrochemical behaviour of anthracene at the PPyox/Ag-AuNPs/GCE with Ag: Au atomic ratio 25:75 (1:3) exhibited a higher electrocatalytic effect compared to that observed when GCE was modified with each constituent of the composite (i.e., PPyox, Ag-AuNPs) and bare GCE. A linear relationship between anodic current and anthracene concentration was attained over the range of 3.0 × 10−6 to 3.56 × 10−4 M with a detection limit of 1.69 × 10−7 M. The proposed method was simple, less time consuming and showed a high sensitivity. PMID:22163419

  4. Fibre laser machining for glassy carbon master mould and soft lithography based two-step printing for Ag nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Hu, Qin; Chopra, Pranav

    2011-04-01

    Traditional manufacturing techniques widely used in semiconductor industries involve many processing steps that consume both time and material and lead to high cost. Soft Lithography (SL) offers a new way to print micro/nano structures, which is a fast and low cost alternative to the conventional route, although the high processing temperature of metals, semiconductors and ceramics limits the application SL techniques. In this paper we report the use of Ag nanoparticles as building blocks to make structures by combing the merits of SL, nanotechnology and laser engineering, which provide a simple additive route with low capital investment. Glassy carbon (GC) was chosen as the material for the rigid master mould, as no release coating is needed for replicating the polydimethylsiloxane (PDMS) mould. GC moulds were machined by a nanosecond-pulsed Yb fibre laser. The machined GC moulds were further cleaned by PDMS and the same fibre laser system to remove the process debris. The master mould was further replicated by PDMS. PDMS replicas with either positive or negative features from the master mould were attainable. A two-step strategy was used to print patterns using PDMS mould and Ag nanoparticle paste. Metal patterns were formed on various substrates, and the PDMS mould was left clean and ready for reuse. The resultant printed patterns were found to be uniform over millimetre range, with negligible residual layer, and the thickness of up to several micrometres. The thermal responses of Ag nanoparticles at various sintering temperatures were investigated. The factors affecting the resolution of printed structures were discussed.

  5. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes.

    PubMed

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2014-06-01

    Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection.

  6. Electrochemical determination of estrogenic compound bisphenol F in food packaging using carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Wang, Xin; Yang, Lijun; Jin, Xudong; Zhang, Lei

    2014-08-15

    A simple and highly sensitive electroanalytical method for the determination of bisphenol F (BPF) was developed, which was carried out on multi-walled carbon nanotubes-COOH (MWCNT-COOH) modified glassy carbon electrode (GCE) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that MWCNT-COOH remarkably enhanced the oxidation of BPF, which improved the anodic peak current of BPF significantly. The mechanism was oxidation of BPF lose electrons on the electrode surface via adsorption-controlled process, electrode reaction is the two electrons/two protons process. Under the optimised conditions, the oxidation peak current was proportional to BPF concentration the range from 0.12 to 6.01 μg mL(-1). The detection limit was 0.11 μg mL(-1) (S/N=3), and the relative standard deviation (R.S.D.) was 3.5% (n=9). Moreover, the MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. Therefore, the proposed method was successfully applied to determine BPF in food packing and the results were satisfactory.

  7. Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime.

    PubMed

    Shahrokhian, Saeed; Salimian, Razieh; Rastgar, Shokoufeh

    2014-01-01

    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT, time and potential of deposition of metal nanoparticles and the pH of the buffered solution on the electrode response are optimized. The proposed electrode showed a linear dynamic range of 0.05-50μM and the detection limit of 1nM for the CFZ. The modified electrode successfully supports the sensitive detection of trace amounts of the CFZ in pharmaceutical and clinical preparations.

  8. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir.

    PubMed

    Shahrokhian, Saeed; Azimzadeh, Mahnaz; Amini, Mohammad K

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03-10.0μ M) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations.

  9. Cyclic voltammetric determination of free and total sulfite in muscle foods using an acetylferrocene-carbon black-poly(vinyl butyral) modified glassy carbon electrode.

    PubMed

    Wang, Li; Xu, Lei

    2014-10-22

    A novel method for the selective extraction of free (pH 8.4) and total sulfite (pH 11.0) from muscle foods and the following determination by a voltammetric sensor was reported. The proposed method was based on the eletrocatalytic oxidation of sulfite at modified glassy carbon electrode (GCE) fabricated by immobilizing 9 μg of acetylferrocene on the surface of GCE along with 35 μg of carbon black to improve the electron transfer within poly(vinyl butyral) membrane matrix. The external standard calibration curve was linear in the range of 0.03-4.0 mmol L(-1) with a detection limit of 15 μmol L(-1). This method had been applied to the determination of free and total sulfite in shrimp muscle fortified samples and compared with an ion chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate, and rapid and exhibited very good reproducibility and stability under the used conditions.

  10. Determination of serotonin on a glassy carbon electrode modified by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin and single walled carbon nanotubes.

    PubMed

    Kim, Seul Ki; Ahmed, Mohammad Shamsuddin; Jeong, Haesang; You, Jung-Min; Jeon, Seungwon

    2011-03-01

    A chemically modified electrode [poly(TAPP)-SWNT/GCE] was prepared by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP)-single walled carbon nanotubes (SWNT) on the surface of a glassy carbon electrode (GCE). This modified electrode was employed as an electrochemical biosensor for the determination of serotonin concentration and exhibited a typical enhance effect on the current response of serotonin and lower oxidation overpotential. The biosensor was very effective to determined 5-HT in a mixture. The linear response was in the range 2.0 x 10(-7) to 1.0 x 10(-5) M, with a correlation coefficient of 0.999 [i(p)(microA) = 3.406 C (microM)+0.132] on the anodic current, with a detection limit of 1 x 10(-9) M. Due to the relatively low currents and different potentials in the electrochemical responses to ascorbic acid and dopamine, the modified electrode is a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of ascorbic acid and dopamine.

  11. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir.

    PubMed

    Shahrokhian, Saeed; Azimzadeh, Mahnaz; Amini, Mohammad K

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03-10.0μ M) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations. PMID:26042700

  12. Facile synthesis of β-lactoglobulin-functionalized multi-wall carbon nanotubes and gold nanoparticles on glassy carbon electrode for electrochemical sensing.

    PubMed

    Du, Xin; Miao, Zhiying; Zhang, Di; Fang, Yuxin; Ma, Min; Chen, Qiang

    2014-12-15

    A facile approach was developed for the preparation of nanocomposite based on β-lactoglobulin (BLG)-functionalized multi-wall carbon nanotubes (MWCNTs) and gold nanoparticles (GNPs) for the first time. Owing to the amphipathic nature, BLG can be adopted onto the surface of MWCNTs to form BLG-MWCNTs with uniform dispersion in water. Taking advantage of sulfhydryl groups on BLG-MWCNTs, GNPs were decorated on the BLG-MWCNTs-modified glassy carbon electrode (GCE) by electrodeposition. The nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy and X-ray spectroscopy analysis. Cyclic voltammetry and chronoamperometric method were used to evaluate the electrocatalytic ability of the nanocomposite. Furthermore, a glucose biosensor was developed based on the immobilization of glucose oxidase with cross-linking in the matrix of bovine serum albumin (BSA) on the nanocomposite modified GCE. The resulting biosensor exhibited high sensitivity (3.98 μA mM(-1)), wider linear range (0.025-5.5 mM), low detection limit (1.1 μM at the signal-to-noise ratio of 3) and fast response time (within 7s) for glucose detection.

  13. A nitrite biosensor based on co-immobilization of nitrite reductase and viologen-modified chitosan on a glassy carbon electrode.

    PubMed

    Quan, De; Shin, Woonsup

    2010-01-01

    An electrochemical nitrite biosensor based on co-immobilization of copper-containing nitrite reductase (Cu-NiR, from Rhodopseudomonas sphaeroides forma sp. denitrificans) and viologen-modified chitosan (CHIT-V) on a glassy carbon electrode (GCE) is presented. Electron transfer (ET) between a conventional GCE and immobilized Cu-NiR was mediated by the co-immobilized CHIT-V. Redox-active viologen was covalently linked to a chitosan backbone, and the thus produced CHIT-V was co-immobilized with Cu-NiR on the GCE surface by drop-coating of hydrophilic polyurethane (HPU). The electrode responded to nitrite with a limit of detection (LOD) of 40 nM (S/N = 3). The sensitivity, linear response range, and response time (t(90%)) were 14.9 nA/μM, 0.04-11 μM (r(2) = 0.999) and 15 s, respectively. The corresponding Lineweaver-Burk plot showed that the apparent Michaelis-Menten constant (K(M) (app)) was 65 μM. Storage stability of the biosensor (retaining 80% of initial activity) was 65 days under ambient air and room temperature storage conditions. Reproducibility of the sensor showed a relative standard deviation (RSD) of 2.8% (n = 5) for detection of 1 μM of nitrite. An interference study showed that anions commonly found in water samples such as chlorate, chloride, sulfate and sulfite did not interfere with the nitrite detection. However, nitrate interfered with a relative sensitivity of 64% and this interference effect was due to the intrinsic character of the NiR employed in this study. PMID:22219710

  14. Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine-aniline) film modified glassy carbon electrode.

    PubMed

    Sağlam, Şener; Üzer, Ayşem; Tekdemir, Yasemin; Erçağ, Erol; Apak, Reşat

    2015-07-01

    In this work, a novel electrochemical sensor was developed for the detection of nitroaromatic explosive materials, based on a gold nanoparticle-modified glassy carbon (GC) electrode coated with poly(o-phenylenediamine-aniline film) (GC/P(o-PDA-co-ANI)-Aunano electrode). Nitroaromatic compounds were detected through their π-acceptor/donor interactions with o-phenylenediamine-aniline functionalities on the modified electrode surface. The enhanced sensitivities were achieved through π-π and charge-transfer (CT) interactions between the electron-deficient nitroaromatic compounds and σ-/π-donor amine/aniline groups linked to gold nanoparticles (Au-NPs), providing increased binding and preconcentration onto the modified GC-electrodes. Selective determination of nitroaromatic type explosives in the presence of nitramines was enabled by o-PDA and reusability of the electrode achieved by Au-NPs. Calibration curves of current intensity versus concentration were linear in the range of 2.5-40mgL(-1) for 2,4,6-trinitrotoluene (TNT) with a detection limit (LOD) of 2.1mgL(-1), 2-40mgL(-1) for 2,4-dinitrotoluene (DNT) (LOD=1.28mgL(-1)), 5-100mgL(-1) for tetryl (LOD=3.8mgL(-1)) with the use of the GC/P(o-PDA-co-ANI)-Aunano electrode. For sensor measurements, coefficients of variation of intra- and inter-assay measurements were 0.6% and 1.2%, respectively (N=5), confirming the high reproducibility of the proposed assay. Deconvolution of current contributions of synthetic (TNT+DNT) mixtures at peak potentials of constituents was performed by multiple linear regression analysis to provide high sensitivity for the determination of each constituent. Determination options for all possible mixture combinations of nitroaromatic explosives are presented in this work. The proposed methods were successfully applied to the analysis of nitroaromatics in military explosives, namely comp B, octol, and tetrytol. Method validation was performed against GC-MS on real post-blast residual samples

  15. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  16. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  17. Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film.

    PubMed

    Sartori, Elen Romão; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2011-12-15

    The modification of a glassy carbon electrode with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film for the development of a biosensor is proposed. This approach provides an efficient method used to immobilize polyphenol oxidase (PPO) obtained from the crude extract of sweet potato (Ipomoea batatas (L.) Lam.). The principle of the analytical method is based on the inhibitory effect of sulfite on the activity of PPO, in the reduction reaction of o-quinone to catechol and/or the reaction of o-quinone with sulfite. Under the optimum experimental conditions using the differential pulse voltammetry technique, the analytical curve obtained was linear in the concentration of sulfite in the range from 0.5 to 22 μmol L(-1) with a detection limit of 0.4 μmol L(-1). The biosensor was applied for the determination of sulfite in white and red wine samples with results in close agreement with those results obtained using a reference iodometric method (at a 95% confidence level). PMID:22099673

  18. Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode.

    PubMed

    Cerovac, Sandra; Guzsvány, Valéria; Kónya, Zoltán; Ashrafi, Amir M; Švancara, Ivan; Rončević, Srđan; Kukovecz, Ákos; Dalmacija, Božo; Vytřas, Karel

    2015-03-01

    Two multiwalled carbon nanotubes-based composites modified with bismuth and bismuth-oxychloride particles were synthesized and attached to the glassy carbon electrode substrate. The resultant configurations, Bi/MWCNT-GCE and BiOCl/MWNT-GCE, were then characterized with respect to their physicochemical properties and electroanalytical performance in combination with square-wave anodic stripping voltammetry (SWASV). Further, some key experimental conditions and instrumental parameters were optimized; namely: the supporting electrolyte composition, accumulation potential and time, together with the parameters of the SWV-ramp. The respective method with both electrode configurations has then been examined for the trace level determination of Pb(2+) and Cd(2+) ions and the results compared to those obtained with classical bismuth-film modified GCE. The different intensities of analytical signals obtained at the three electrodes for Pb(2+) and Cd(2+) vs. the saturated calomel reference electrode had indicated that the nature of the modifiers and the choice of the supporting electrolyte influenced significantly the corresponding stripping signals. The most promising procedure involved the BiOCl/MWCNT-GCE and the acetate buffer (pH 4.0) offering limits of determination of 4.0 μg L(-1) Cd(2+) and 1.9 μg L(-1) Pb(2+) when accumulating for 120 s at a potential of -1.20 V vs. ref. The BiOCl/MWCNT electrode was tested for the determination of target ions in the pore water of a selected sediment sample and the results agreed well with those obtained by graphite furnace atomic absorption spectrometry.

  19. Highly selective differential pulse voltammetric determination of phenazopyridine using MgCr2O4 nanoparticles decorated MWCNTs-modified glassy carbon electrode.

    PubMed

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2013-11-01

    A selective modified glassy carbon electrode based on multiwall carbon nanotubes decorated with MgCr2O4 nanoparticles was fabricated and used for the determination of phenazopyridine using differential pulse voltammetry. The electrochemical response of the modified electrode toward phenazopyridine was characterized by different electrochemical methods including differential pulse voltammetry (DPV), cyclic voltammetry (CV), and impedance spectroscopy. The prepared electrode showed an efficient synergic effect on the oxidation of phenazopyridine at pH 6.0. The oxidation peak current was proportional to the concentration of phenazopyridine from 0.05 to 7.5 μmol L(-1). The detection limit was 0.025 μmol L(-1). The applicability of the method was confirmed with satisfactory results obtained through the assay of phenazopyridine in human plasma, urine samples, and pharmaceuticals.

  20. Glassy carbon electrodes sequentially modified by cysteamine-capped gold nanoparticles and poly(amidoamine) dendrimers generation 4.5 for detecting uric acid in human serum without ascorbic acid interference.

    PubMed

    Ramírez-Segovia, A S; Banda-Alemán, J A; Gutiérrez-Granados, S; Rodríguez, A; Rodríguez, F J; Godínez, Luis A; Bustos, E; Manríquez, J

    2014-02-17

    Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7×10(-4) and 5.8×10(-4) mg dL(-1), respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles. PMID:24491759

  1. Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin-film modified glassy carbon electrode.

    PubMed

    Meenakshi, S; Pandian, K; Jayakumari, L S; Inbasekaran, S

    2016-02-01

    An enhanced electrocatalytic reduction of metronidazole antibiotic drug molecule using chitosan protected tetrasulfonated copper phthalocyanine (Chit/CuTsPc) thin-film modified glassy carbon electrode (GCE) has been developed. An irreversible reduction occurs at -0.47V (vs. Ag/AgCl) using Chit/CuTsPc modified GCE. A maximum peak current value is obtained at pH1 and the electrochemical reduction reaction is a diffusion controlled one. The detection limit is found to be 0.41nM from differential pulse voltammetry (DPV) method. This present investigation method is adopted for electrochemical detection of metronidazole in drug formulation and urine samples by using DPV method.

  2. Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin-film modified glassy carbon electrode.

    PubMed

    Meenakshi, S; Pandian, K; Jayakumari, L S; Inbasekaran, S

    2016-02-01

    An enhanced electrocatalytic reduction of metronidazole antibiotic drug molecule using chitosan protected tetrasulfonated copper phthalocyanine (Chit/CuTsPc) thin-film modified glassy carbon electrode (GCE) has been developed. An irreversible reduction occurs at -0.47V (vs. Ag/AgCl) using Chit/CuTsPc modified GCE. A maximum peak current value is obtained at pH1 and the electrochemical reduction reaction is a diffusion controlled one. The detection limit is found to be 0.41nM from differential pulse voltammetry (DPV) method. This present investigation method is adopted for electrochemical detection of metronidazole in drug formulation and urine samples by using DPV method. PMID:26652358

  3. Determining activated carbon performance

    SciTech Connect

    Naylor, W.F.; Rester, D.O.

    1995-07-01

    This article discusses the key elements involved in evaluating a system`s performance. Empty bed contact time (EBCT) is a term used to describe the length of time a liquid stream being treated is in contact with a granular activated carbon bed. The EBCT is the time required for a fluid to pass through the volume equivalent of the media bed, without the media being present. In a bed of granular activated carbon, the void volume or space between particles is usually about 45 percent. Therefore, the EBCT is about twice the true or actual time of contact between the fluid being treated and the GAC particles. The EBCT plays an important role in determining the effectiveness and longevity of granular activated carbon (GAC) used to treat liquids in a fixed-bed adsorber. Factors that influence and are influenced by EBCT, and their relationship to GAC performance in a treatment scheme include: adsorption, mass transfer zone, impurity concentration, adsorption affinity, flow rate and system design considerations.

  4. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(II).

    PubMed

    Das, Atanu K; Engelhard, Mark H; Lense, Sheri; Roberts, John A S; Bullock, R Morris

    2015-07-21

    Covalent tethering of P(Ph)2N(C6H4C≡CH)2 ligands (P(Ph)2N(C6H4C≡CH)2 = 1,5-di-(4-ethynylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) to planar, azide-terminated glassy carbon electrode surfaces has been accomplished using a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) coupling reaction, using a BH3←P protection-deprotection strategy. Deprotected, surface-confined ligands were metallated using [Ni(II)(MeCN)6](BF4)2. X-ray photoelectron spectroscopic measurements demonstrate that metallation introduced 1.3 equivalents Ni(II) per diphosphine onto the electrode surface. Exposure of the surface to a second diphosphine ligand, P(Ph)2N(Ph)2, resulted in the removal of Ni from the surface. Protection, coupling, deprotection, and metallation conditions were optimized using solution-phase model systems, with benzyl azide as a model for the azide-terminated carbon surface; these reactions generate a [Ni(II)(diphosphine)2](2+) complex. PMID:25811536

  5. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    SciTech Connect

    Sturchio, N.C.; Seitz, M.G.

    1984-12-31

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through detailed geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant mobility of U, Sr, Sb, Cs, and Ba is found, and the role of sorption processes in their observed behavior is identified. Th, Zr, and Sm are relatively immobile, except on a microscopic scale. 9 references, 2 figures, 2 tables.

  6. Study of the overall behavior of thin films of the 7,7,8,8-tetracyanoquinodimethane neutral/anion couple on glassy carbon electrodes in the presence of cesium ion.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2008-10-01

    The overall electrochemistry of 7,7,8,8-tetracyanoquinodimethane thin films on glassy carbon electrodes in media containing Cs+ ions is explained in light of a layer-by-layer nucleation and growth model, and kinetic data for the processes involved are reported. Using in situ UV-vis spectroelectrochemistry allowed available mechanistic knowledge on such processes to be expanded and the presence of various intermediates in the redox reactions confirmed. PMID:18785713

  7. Study of the overall behavior of thin films of the 7,7,8,8-tetracyanoquinodimethane neutral/anion couple on glassy carbon electrodes in the presence of cesium ion.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2008-10-01

    The overall electrochemistry of 7,7,8,8-tetracyanoquinodimethane thin films on glassy carbon electrodes in media containing Cs+ ions is explained in light of a layer-by-layer nucleation and growth model, and kinetic data for the processes involved are reported. Using in situ UV-vis spectroelectrochemistry allowed available mechanistic knowledge on such processes to be expanded and the presence of various intermediates in the redox reactions confirmed.

  8. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  9. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    PubMed

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples.

  10. A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode.

    PubMed

    Soleymani, Jafar; Hasanzadeh, Mohammad; Shadjou, Nasrin; Khoubnasab Jafari, Maryam; Gharamaleki, Jalil Vaez; Yadollahi, Mehdi; Jouyban, Abolghasem

    2016-04-01

    A novel magnetic nanocomposite was synthesized in one step using polymerization of magnetic graph oxide grafted with chlorosulfonic acid (Fe3O4-GO-SO3H) in the presence of polystyrene. The prepared magnetic nanocomposite was characterized using transmission electron microscopy (TEM), dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), (Thermo-gravimetric/differential thermal analysis (DTA)), Fourier transform infrared (FTIR), and UV-Vis techniques. Magnetic nanocomposite was casted on the surface of the glassy carbon electrode (PS/Fe3O4-GO-SO3H/GCE) and used for the detection and determination of doxorubicin hydrochloride (DOX) in human biological fluids. The cyclic voltammograms (CVs) of the modified electrode in aqueous solution displayed a pair of well-defined, stable and irreversible reductive/oxidation redox systems. CV study indicated that the oxidation process is irreversible and adsorption controlled. In addition, CV results indicated that DOX is oxidized via two electrons and three protons which is an unusual approach for the oxidation of DOX. A sensitive and time-saving procedure was developed for the analysis of DOX in plasma, cerebrospinal fluid, and urine with detection limit of 4.9 nM, 14 nM and 4.3 nM, respectively. PMID:26838892

  11. Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode.

    PubMed

    Xie, Lingling; Xu, Yuandong; Cao, Xiaoyu

    2013-07-01

    In this work, a highly sensitive hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) at Au nanoparticles (AuNPs)/flower-like zinc oxide/graphene (AuNPs/ZnO/Gr) composite modified glassy carbon electrode (GCE) was constructed, where ZnO and Au nanoparticles were modified through layer-by-layer onto Gr/GCE. Flower-like ZnO nanoparticles could be easily prepared by adding ethanol to the precursor solution having higher concentration of hydroxide ions. The Hb/AuNPs/ZnO/Gr composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E(0)) of -0.367 V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.3 s(-1). The developed biosensor showed a very fast response (<2 s) toward H2O2 with good sensitivity, wide linear range, and low detection limit of 0.8 μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of Gr, and good biocompatibility of ZnO and AuNPs. The fabrication method of this biosensor was simple and effective for determination of H2O2 in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery.

  12. Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase.

    PubMed

    Pan, Hong-zhi; Yu, Hong-wei; Wang, Na; Zhang, Ze; Wan, Guang-cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-11-20

    We describe the fabrication of a sensitive electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase (KPC). The highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-NPs) and graphene (Gr). Then Au-NPs/Gr/GCE was characterized by scanning electro microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization detection was measured by diffierential pulse voltammetry (DPV) using methylene blue (MB) as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-12) to 1 × 10(-7)mol/L, with a detection limit of 2 × 10(-13)mol/L. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The results demonstrated that the Au-NPs/Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for determination of KPC.

  13. Electroanalytical determination of donepezil HCl in tablets and human serum by differential pulse and osteryoung square wave voltammetry at a glassy carbon electrode.

    PubMed

    Golcu, A; Ozkan, S A

    2006-09-01

    Donepezil hydrochloride (DNP) is used for the treatment of mild to moderate dementia of the Alzheimer's type. The voltammetric behavior of DNP was studied at a glassy carbon electrode using cyclic, linear sweep, differential pulse (DPV) and square-wave (OSWV) voltammetric techniques. DNP exhibited irreversible anodic waves within the pH range 1.80 and 9.00 in different supporting electrolytes. The peak was characterized as being irreversible and diffusion-controlled. The possible mechanism of the oxidation process is discussed. The current-concentration plot was rectilinear over the range from 1 x 10(-6) to 1 x 10(-4) M in Britton-Robinson buffer at pH 7.0 with a correlation coefficient between 0.997 and 0.999 in supporting electrolyte and human serum samples using the DPV and SWV techniques. The repeatability and reproducibility of the methods for both media (supporting electrolyte and serum sample) were determined. Precision and accuracy of the developed methods were demonstrated by recovery studies. The standard addition method was used for the recovery studies. No electroactive interferences were found in biological fluids from endogenous substances or additives present in tablets. The methods developed were successfully applied to the determination of DNP in tablets and in spiked human serum.

  14. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang

    2016-01-01

    Non-enzymatic hydrogen peroxide (H2O2) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM(-1) cm(-2)), low detection limit (0.027 μM), wider linear range (0.005-0.5mM) and rapid response time (within 5s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors. PMID:26478428

  15. Determination of Silver(I) by Differential Pulse Voltammetry Using a Glassy Carbon Electrode Modified with Synthesized N-(2-Aminoethyl)-4,4′-Bipyridine

    PubMed Central

    Radulescu, Maria-Cristina; Chira, Ana; Radulescu, Medeea; Bucur, Bogdan; Bucur, Madalina Petruta; Radu, Gabriel Lucian

    2010-01-01

    A new modified glassy carbon electrode (GCE) based on a synthesized N-(2-aminoethyl)-4,4′-bipyridine (ABP) was developed for the determination of Ag(I) by differential pulse voltammetry (DPV). ABP was covalently immobilized on GC electrodes surface using 4-nitrobenzendiazonium (4-NBD) and glutaraldehyde (GA). The Ag(I) ions were preconcentrated by chemical interaction with bipyridine under a negative potential (−0.6 V); then the reduced ions were oxidized by differential pulse voltammetry and a peak was observed at 0.34 V. The calibration curve was linear in the concentration range from 0.05 μM to 1 μM Ag(I) with a detection limit of 0.025 μM and RSD = 3.6%, for 0.4 μM Ag(I). The presence of several common ions in more than 125-fold excess had no effect on the determination of Ag(I). The developed sensor was applied to the determination of Ag(I) in water samples using a standard addition method. PMID:22163530

  16. Synergy of Cobalt and Silver Microparticles Electrodeposited on Glassy Carbon for the Electrocatalysis of the Oxygen Reduction Reaction: An Electrochemical Investigation.

    PubMed

    Zafferoni, Claudio; Cioncoloni, Giacomo; Foresti, Maria Luisa; Dei, Luigi; Carretti, Emiliano; Vizza, Francesco; Lavacchi, Alessandro; Innocenti, Massimo

    2015-08-07

    The combination of two different metals, each of them acting on different steps of the oxygen reduction reaction (ORR), yields synergic catalytic effects. In this respect, the electrocatalytic effect of silver is enhanced by the addition of cobalt, which is able to break the O-O bond of molecular oxygen, thus accelerating the first step of the reduction mechanism. At the same time, research is to further reduce the catalyst's cost, reducing the amount of Ag, which, even though being much less expensive than Pt, is still a noble metal. From this point of view, using a small amount of Ag together with an inexpensive material, such as graphite, represents a good compromise. The aim of this work was to verify if the synergic effects are still operating when very small amounts of cobalt (2-10 μg·cm(-2)) are added to the microparticles of silver electrodeposited on glassy carbon, described in a preceding paper from us. To better stress the different behaviour observed when cobalt and silver are contemporarily present in the deposit, the catalytic properties of cobalt alone were investigated. The analysis was completed by the Levich plots to evaluate the number of electrons involved and by Tafel plots to show the effects on the reaction mechanism.

  17. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step.

    PubMed

    Laffont, Laure; Hezard, Teddy; Gros, Pierre; Heimbürger, Lars-Eric; Sonke, Jeroen E; Behra, Philippe; Evrard, David

    2015-08-15

    Gold nanoparticles (AuNPs) were deposited on a glassy carbon (GC) substrate by constant potential electrolysis and characterized by cyclic voltammetry in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The modified AuNPs-GC electrode was used for low Hg(II) concentration detection using a Square Wave Anodic Stripping Voltammetry (SWASV) procedure which included a chloride desorption step. The comparison of the obtained results with our previous work in which no desorption step was used showed that this latter step significantly improved the analytical performances, providing a three time higher sensitivity and a limit of detection of 80pM for 300s preconcentration, as well as a lower average standard deviation. The influence of chloride concentration on the AuNPs-GC electrode response to Hg(II) trace amounts was also studied and its optimal value confirmed to be in the 10(-2)M range. Finally, the AuNPs-GC electrode was used for the determination of Hg(II) in a natural groundwater sample from south of France. By using a preconcentration time of 3000s, a Hg(II) concentration of 19±3pM was found, which compared well with the result obtained by cold vapor atomic fluorescence spectroscopy (22±2pM). PMID:25966376

  18. Voltammetric analysis with the use of a novel electro-polymerised graphene-nafion film modified glassy carbon electrode: simultaneous analysis of noxious nitroaniline isomers.

    PubMed

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2012-12-01

    A new modified electrode was constructed by the electro-polymerization of 7-[(2,4-dihydroxy-5-carboxybenzene)azo]-8-hydroxyquinoline-5-sulfonic acid (DHCBAQS) at a graphene-nafion modified glassy carbon electrode (GCE). The construction process was performed stepwise and at each step the electrochemical characteristics were investigated particularly with respect to the oxidation of the three noxious analytes, 2-nitroaniline (2-NA), 3-nitroaniline (3-NA), 4-nitroaniline (4-NA); the electrode treated with the fluorescence reagent DHCBAQS performed best. At this electrode, the differential pulse voltammetry peak currents of the three isomers increased linearly with their concentrations in the range of 0.05-0.60 μg mL(-1), respectively, and their corresponding limits of detection (LODs) were all about 0.022 μg mL(-1). Furthermore, satisfactory results were obtained when this electrode was applied for the simultaneous quantitative analysis of the nitroaniline isomer mixtures by Principal component regression (PCR) and Partial least squares (PLS) as calibration methods (relative prediction error (PRE(T)) - 9.04% and 9.23%) and average recoveries (101.0% and 101.7%), respectively. The above novel poly-DHCBAQS/graphene-nafion/GCE was successfully employed for the simultaneous analysis of the three noxious nitroaniline isomers in water and sewage samples.

  19. A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode.

    PubMed

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2013-09-15

    A novel modified electrode was constructed by the electro-polymerization of 4,5-dihydroxy-3-[(2-hydroxy-5-sulfophenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt (acid chrome blue K (ACBK)) at a graphene oxide (GO)-nafion modified glassy carbon electrode (GCE). The characterization of an electrochemically synthesized poly-ACBK/GO-nafion film was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques, and the results were interpreted and compared at each stage of the electrode construction. Electrochemical oxidation of eight β-agonists - clenbuterol, salbutamol, terbutaline, ractopamine, dopamine, dobutamine, adrenaline, and isoprenaline, was investigated by CV at the different electrodes. At the poly-ACBK/GO-nafion/GCE, the linear sweep voltammetry peak currents of the eight β-agonists increased linearly with their concentrations in the range of 1.0-36.0 ng mL(-1), respectively, and their corresponding limits of detection (LODs) were within the 0.58-1.46 ng mL(-1) range. This electrode showed satisfactory reproducibility and stability, and was used successfully for the quantitative analysis of clenbuterol in pork samples.

  20. A novel method for simultaneous analysis of three β2-agonists in foods with the use of a gold-nanoparticle modified glassy carbon electrode and chemometrics.

    PubMed

    Lin, Xiaoyun; Ni, Yongnian; Li, Shuzhen; Kokot, Serge

    2012-05-01

    An electrochemical method involving a gold nanoparticle modified glassy carbon electrode (AuNPs/GCE) was researched and developed for the simultaneous analysis of three β(2)-agonists, ractopamine (RAC), salbutamol (SAL) and clenbuterol (CLB). The three analytes were electrocatalytically oxidized at the AuNP/GCE, which enhanced the oxidation peak current and influenced the shift of the oxidation potentials to lower values in comparison with the analysis involving only the GCE. The differential pulse stripping voltammetry (DPSV) voltammograms from the drug mixture produced complex, overlapping profiles, and chemometrics methods were applied for calibration modeling. The peak currents associated with RAC, SAL and CLB measurements were linear as a function of their concentrations (ranges within 0.005-0.150 μg mL(-1)); the detection limits for RAC, SAL and CLB were 2.4, 5.8 and 2.6 ng mL(-1), respectively. It was shown that satisfactory quantitative results were obtained with the use of the MVC1 package of chemometrics methods e.g. the PLS1 calibration model produced a relative prediction error (RPE(T)) of 7.0% and an average recovery of 97.6%. The above AuNP/GCE was successfully employed for the simultaneous analysis of RAC, SAL and CLB in pork meat, liver and pig feed samples.

  1. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang

    2016-01-01

    Non-enzymatic hydrogen peroxide (H2O2) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM(-1) cm(-2)), low detection limit (0.027 μM), wider linear range (0.005-0.5mM) and rapid response time (within 5s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors.

  2. Synergy of Cobalt and Silver Microparticles Electrodeposited on Glassy Carbon for the Electrocatalysis of the Oxygen Reduction Reaction: An Electrochemical Investigation.

    PubMed

    Zafferoni, Claudio; Cioncoloni, Giacomo; Foresti, Maria Luisa; Dei, Luigi; Carretti, Emiliano; Vizza, Francesco; Lavacchi, Alessandro; Innocenti, Massimo

    2015-01-01

    The combination of two different metals, each of them acting on different steps of the oxygen reduction reaction (ORR), yields synergic catalytic effects. In this respect, the electrocatalytic effect of silver is enhanced by the addition of cobalt, which is able to break the O-O bond of molecular oxygen, thus accelerating the first step of the reduction mechanism. At the same time, research is to further reduce the catalyst's cost, reducing the amount of Ag, which, even though being much less expensive than Pt, is still a noble metal. From this point of view, using a small amount of Ag together with an inexpensive material, such as graphite, represents a good compromise. The aim of this work was to verify if the synergic effects are still operating when very small amounts of cobalt (2-10 μg·cm(-2)) are added to the microparticles of silver electrodeposited on glassy carbon, described in a preceding paper from us. To better stress the different behaviour observed when cobalt and silver are contemporarily present in the deposit, the catalytic properties of cobalt alone were investigated. The analysis was completed by the Levich plots to evaluate the number of electrons involved and by Tafel plots to show the effects on the reaction mechanism. PMID:26262603

  3. Reductive electropolymerization of a vinyl-containing poly-pyridyl complex on glassy carbon and fluorine-doped tin oxide electrodes.

    PubMed

    Harrison, Daniel P; Carpenter, Logan S; Hyde, Jacob T

    2015-01-30

    Controllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate. Here, we highlight a procedure for coating electrodes with an inorganic complex by performing reductive electropolymerization of the vinyl-containing poly-pyridyl complex onto glassy carbon and fluorine doped tin oxide coated electrodes. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization but are far less sensitive to oxygen and water.

  4. Reductive electropolymerization of a vinyl-containing poly-pyridyl complex on glassy carbon and fluorine-doped tin oxide electrodes.

    PubMed

    Harrison, Daniel P; Carpenter, Logan S; Hyde, Jacob T

    2015-01-01

    Controllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate. Here, we highlight a procedure for coating electrodes with an inorganic complex by performing reductive electropolymerization of the vinyl-containing poly-pyridyl complex onto glassy carbon and fluorine doped tin oxide coated electrodes. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization but are far less sensitive to oxygen and water. PMID:25741745

  5. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer.

    PubMed

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Heydari, Abolfazl; Ghanei-Motlagh, Reza; Gupta, Vinod K

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2'-((9E,10E)-1,4-dihydroxyanthracene-9,10-diylidene) bis(hydrazine-1-carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO-IIP was characterized by means of Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO-IIP. The prepared RGO-IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO-IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L(-1). The limit of detection (LOD) was found to be 0.02 μg L(-1) (S/N=3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. PMID:27040231

  6. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDs<5%) with minimal interference from the coexisting electroactive compounds such as ascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples.

  7. Development of an analytical method for the determination of polyphenolic compounds in vegetable origin samples by liquid chromatography and pulsed amperometric detection at a glassy carbon electrode.

    PubMed

    Natale, Anna; Nardiello, Donatella; Palermo, Carmen; Muscarella, Marilena; Quinto, Maurizio; Centonze, Diego

    2015-11-13

    A sensitive and accurate method for the determination of polyphenolic compounds in artichoke bract extracts and olive mill wastewaters by liquid chromatography coupled with pulsed amperometric detection at a glassy carbon working electrode was developed. Preliminary experiments were carried out by cyclic voltammetry to investigate the electrochemical behavior of polyphenols under different mobile phase compositions, and to test the detection and cleaning electrode potentials. Chromatographic separations were performed by using a core-shell C18 column, eluted with acetic acid and acetonitrile, by combined concave-linear binary gradients. Under the optimized experimental conditions, a good column efficiency and peak symmetry were observed, also for stereo and positional isomeric compounds. The developed three-step potential waveform for pulsed amperometric detection was successfully applied for the sensitive chromatographic determination of polyphenols in artichoke extracts and olive mill wastewaters. Linearity, precision and sensitivity of the proposed method have been evaluated. A wide linear range of response (up to 20 mg/L) has been obtained for all the investigated compounds. Detection and quantification limits in the vegetable origin sample extracts were in the range 0.004-0.6 mg/L and 0.01-2mg/L, respectively, while the injection-to-injection repeatability (n=6) ranged from 5 to 13%. The obtained results confirmed the excellent sensitivity of the electrochemical detection, and its suitability for the determination of electroactive polyphenolic compounds at low concentration levels.

  8. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    PubMed

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. PMID:27211634

  9. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.

    PubMed

    Xu, Yuanhong; Cao, Mengmei; Liu, Huihui; Zong, Xidan; Kong, Na; Zhang, Jizhen; Liu, Jingquan

    2015-07-01

    In this study, electron transfer behavior of the graphene nanosheets attachment on glassy carbon electrode (GCE) via direct electrochemical reduction of graphene oxide (GO) is investigated for the first time. The graphene modified electrode was achieved by simply dipping the GCE in GO suspension, followed by cyclic voltammetric scanning in the potential window from 0V to -1.5V. Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] was immobilized on the graphene modified electrode and used as the redox probe to evaluate the electron transfer behavior. The electron transfer rate constant (Ks) was calculated to be 61.9±5.8s(-1), which is much faster than that of tiled graphene modified GCE (7.1±0.6s(-1)). The enhanced electron transfer property observed with the GCE modified by reductively deposited graphene is probably due to its standing configuration, which is beneficial to the electron transfer comparing with the tiled one. Because the abundant oxygen-containing groups are mainly located at the edges of GO, which should be much easier for the reduction to start from, the reduced GO should tend to stand on the electrode surface as evidenced by scanning electron microscopy analysis. In addition, due to the favored electron transfer and standing configuration, the Ru(bpy)3(2+) electrochemiluminescence sensor fabricated with standing graphene modified GCE provided much higher and more stable efficiency than that fabricated with tiled graphene.

  10. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor.

    PubMed

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2016-08-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template-monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32μM for the dynamic range of 0.4 to 17μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets.

  11. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.

  12. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media. PMID:26540539

  13. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid.

    PubMed

    Li, Jing; Lin, Xiang-Qin

    2007-07-23

    A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0x10(-7) to 2.1x10(-5) M and 5.0x10(-8) to 2.8x10(-5) M with a detection limit of 3.0x10(-8) and 1.2x10(-8) M (s/n=3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.

  14. Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing.

    PubMed

    Li, Jiangwen; Yu, Jingjing; Zhao, Faqiong; Zeng, Baizhao

    2007-03-21

    The direct electrochemistry of glucose oxidase (GOD) entrapped in nano gold particles (NAs)-N,N-dimethylformamide (DMF)-1-butyl-3-methylimidazolium hexafluophosphate (BMIMPF(6)) composite film on a glassy carbon electrode (NAs-DMF-GOD (BMIMPF(6))/GC) has been investigated for first time. The immobilized GOD exhibits a pair of well-defined reversible peaks in 0.050 M pH 5 phosphate solutions (PS), resulting from the redox of flavin adenine dinucleotide (FAD) in GOD. The peak currents are three times as large as those of GOD-NAs-DMF film coated GC electrode (i.e. NAs-DMF-GOD (water)/GC). In addition, the NAs-DMF-GOD (BMIMPF(6)) composite material has higher thermal stability than NAs-DMF-GOD (water). Results show that ionic liquid BMIMPF(6), DMF and NAs are requisite for GOD to exhibit a pair of stable and reversible peaks. Without any of them, the peaks of GOD become small and unstable. Upon the addition of glucose, the peak currents of GOD decrease and a new cathodic peak occurs at -0.8 V (versus SCE), which corresponds to the reduction of hydrogen peroxide (H(2)O(2)) generated by the catalytic oxidation of glucose. The peak current of the new cathodic peak and the glucose concentration show a linear relationship in the ranges of 1.0 x 10(-7) to 1.0 x 10(-6)M and 2.0 x 10(-6) to 2.0 x 10(-5) M. The kinetic parameter I(max) of H(2)O(2) is estimated to be 1.19 x 10(-6)A and the apparent K(m) (Michaelis-Menten constant) for the enzymatic reaction is 3.49 microM. This method has been successfully applied to the determination of glucose in human plasma and beer samples, and the average recoveries are 97.2% and 99%, respectively.

  15. Protein/ionic liquid/glassy carbon sensors following analyte focusing by ionic liquid micelle collapse for simultaneous determination of water soluble vitamins in plasma matrices.

    PubMed

    Abd El-Hady, D; Albishri, H M

    2015-07-01

    Two novel sensors based on human serum albumin (HSA)-ionic liquid (IL) and bovine serum albumin (BSA)-ionic liquid (IL) composites modified glassy carbon electrode (GCE) were produced for simultaneous determination of water soluble vitamins B2, B6 and C in human plasma following analytes focusing by IL micelles collapse (AFILMC). For selective and efficient extraction, vitamins were dissolved in 3.0molL(-1) micellar solution of 1-octyl-3-methyl imidazolium bromide IL. The extracted vitamins were hydrodynamically injected by 25mbar for 20s into a running buffer of 12.5mmolL(-1) phosphate at pH 6.0 followed by electrochemical detection (ECD) on protein/1-octyl-3-methyl imidazolium hexafluorophosphate IL/GC sensors. The chemical stability of proposed sensors was achieved up to 7 days without any decomposition of PF6-based IL/protein and adsorption of interfering ions. In the current work, the sensitivity enhancement factor (SEF) up to 5000-fold was achieved using the AFILMC/ECD setup compared to conventional CE/UV. Under optimal conditions, linear calibration graphs were obtained from 0.5, 0.5 and 1.0 to 1500.0µgmL(-1) of vitamins B2, B6 and C, respectively. Detection limits of analytes were ranged from 180.0 to 520.0ngmL(-1). The proposed AFILMC/ECD setup was successfully applied to the assay of trace level quantification of vitamins in human plasma samples and also their binding constants with HSA and BSA were determined. The concurrent use of IL micelles for the proposed separation and detection processes exhibited some advantages, such as, a reduction of use toxic solvents, an efficient extraction and a direct injection of samples with a short-single run. Furthermore, IL micelles, having variable possibility of interactions, facilitated the successful achievements of AFILMC/ECD setup for the quantification of vitamins in plasma matrices.

  16. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  17. Fluidisation and plastic activity in a model soft-glassy material flowing in micro-channels with rough walls

    NASA Astrophysics Data System (ADS)

    Scagliarini, A.; Lulli, M.; Sbragaglia, M.; Bernaschi, M.

    2016-06-01

    By means of mesoscopic numerical simulations of a model soft-glassy material, we investigate the role of boundary roughness on the flow behaviour of the material, probing the bulk/wall and global/local rheologies. We show that the roughness reduces the wall slip induced by wettability properties and acts as a source of fluidisation for the material. A direct inspection of the plastic events suggests that their rate of occurrence grows with the fluidity field, reconciling our simulations with kinetic elasto-plastic descriptions of jammed materials. Notwithstanding, we observe qualitative and quantitative differences in the scaling, depending on the distance from the rough wall and on the imposed shear. The impact of roughness on the orientational statistics is also studied.

  18. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  19. Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine

    NASA Astrophysics Data System (ADS)

    Murugavelu, M.; Karthikeyan, B.

    2014-11-01

    Ag-Pd bimetallic nanoparticles (Ag-Pd BNPs) as an enhanced sensing material with improved electronic transmission rates in the electrochemical sensing of L-cysteine (L-cys) has been reported. The morphology of Ag-Pd BNPs was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Oxidation of L-cys on Ag-Pd BNPs is investigated in detail by discussing the effect of the structure and from the electrocatalytic oxidation of L-cys. We found that the Ag-Pd BNPs exhibited high electrocatalytic activity towards L-cys oxidation in neutral condition and could be used for the development of nonenzymatic L-cys sensor. Based on the efficient catalytic ability of Ag-Pd BNPs, the fabricated biosensor exhibited a wide linear range of responses to the L-cys with the concentration detection limit of nearly down to 2 mM with fast response time.

  20. Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III).

    PubMed

    Huang, Jing-Fang; Chen, Hsiao-Hua

    2013-11-15

    A Cu(I)-ion-mediating Au reduction is proposed for preparing an Au-nanoparticle-embedded nafion (NF(Aunano)) composite. The NF(Aunano) composite consisted of highly dense, well-dispersed, and protecting-agent-free Au nanocrystals with a narrow particle size (4.8±0.1 nm) distribution. The NF(Aunano) composite was characterized as a function of composition and particle size distribution using powder X-ray diffraction, transmission electron microscopy, and electrochemical measurements. It was demonstrated that the NF(Aunano) composite provided high activity in the redox behavior of As(III), and was used as a potential sensing material with low Au loading for As(III) detection. An NF(Aunano)-composite-modified electrode is easy to prepare and regenerate. The dynamic range of a calibration curve from 0.1 to 12.0 μg L(-1) (from 1.3 to 160 nM), y=23.98x (in μA μM(-1))+0.42 (R(2)=0.999), showed linear behavior with a slope of 23.98 μA μM(-1). The detection limit is as low as 0.047 μg L(-1) (0.63 nM). The chelating agent ethylenediaminetetraacetate (EDTA) can selectively chelate with interfering metal ions, forming bulky complexes or bulky anions that are excluded from the NF film. The presence of EDTA effectively eliminated interference from several metal ions, particularly Cu(II) and Hg(II), which are generally considered to be major interferents in the electroanalysis of As(III). This method was applicable to As(III) analysis in three real water samples, namely groundwater, lake, and drinking waters.

  1. Hydrodynamic voltammetry at tubular electrodes-III Determination of traces of bismuth by differential-pulse anodic-stripping voltammetry at a glassy-carbon tubular electrode with in situ mercury plating.

    PubMed

    Zhen, W; Qiang, C

    1987-07-01

    An equation for the current in differential-pulse anodic-stripping voltammetry at tubular electrodes is derived. Application of a glassy-carbon tubular electrode to determination of traces of bismuth in environmental water samples by differential-pulse anodic-stripping voltammetry is described. In hydrochloric acid medium, the stripping peak current is proportional to the concentration of bismuth in the range 2-100 ng/ml, with a deposition time of 3-10 min. The detection limit is 0.5 ng/ml. PMID:18964381

  2. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT. PMID:16376966

  3. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  4. Investigation of electrochemical behavior of lipid lowering agent atorvastatin calcium in aqueous media and its determination from pharmaceutical dosage forms and biological fluids using boron-doped diamond and glassy carbon electrodes.

    PubMed

    Dogan-Topal, Burcu; Uslu, Bengi; Ozkan, Sibel A

    2007-08-01

    The electrochemical behavior of atorvastatin calcium at glassy carbon and boron-doped diamond electrodes has been studied using voltammetric techniques. The possible mechanism of oxidation was discussed with model compounds. The dependence of the peak current and potentials on pH, concentration, scan rate and nature of the buffer were investigated for both electrodes. The oxidation of atorvastatin was irreversible and exhibited a diffusion-controlled fashion on the diamond electrode. A linear response was obtained within the range of 9.65 x 10(-7) - 3.86 x 10(-5) M in 0.1 M H(2)SO(4) solution for both electrodes. The detection limits of a standard solution are estimated to be 2.11 x 10(-7) M with differential pulse voltammetry (DPV) and 2.05 x 10(-7)M with square wave voltammetry (SWV) for glassy carbon electrode, and 2.27 x 10(-7) M with DPV and 1.31 x 10(-7)M with SWV for diamond electrodes in 0.1 M H(2)SO(4) solution. The repeatability of the methods was found good for both electrodes. The methods were fully validated and successfully applied to the high-throughput determination of the drug in tablets, human serum and human urine with good recoveries.

  5. Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode.

    PubMed

    Taei, M; Hasanpour, F; Salavati, H; Banitaba, S H; Kazemi, F

    2016-02-01

    A novel Au nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol (AuNPs/PTAT) film modified glassy carbon electrode (AuNPs/PTAT/GCE) was fabricated for the simultaneous determination of three antioxidants named, cysteine (Cys), uric acid (UA) and tyrosine (Tyr). The bare glassy carbon electrode (GCE) fails to separate the oxidation peak potentials of these molecules, while PTAT film modified electrode can resolve them. Electrochemical impedance spectroscopy (EIS) study indicates that the charge transfer resistance of bare electrode increased as (E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol was electropolymerized at the bare electrode. Furthermore, EIS exhibits enhancement of electron transfer kinetics between analytes and electrode after electrodeposition of Au nanoparticles. Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 2-540μmolL(-1) for Cys, 5-820μmolL(-1) for UA and 10-560μmolL(-1) for Tyr with detection limits (S/N=3) of 0.04μmolL(-1), 0.1μmolL(-1) and 2μmolL(-1) for Cys, UA and Tyr, respectively. The proposed method was successfully applied for simultaneous determination of Cys, UA and Tyr in human urine samples.

  6. Metalloradical-catalyzed aliphatic carbon-carbon activation of cyclooctane.

    PubMed

    Chan, Yun Wai; Chan, Kin Shing

    2010-05-26

    The aliphatic carbon-carbon activation of c-octane was achieved via the addition of Rh(ttp)H to give Rh(ttp)(n-octyl) in good yield under mild reaction conditions. The aliphatic carbon-carbon activation was Rh(II)(ttp)-catalyzed and was very sensitive to porphyrin sterics.

  7. Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs base on electrochemical oxidation of L-cysteine.

    PubMed

    Wang, Chengyin; Shao, Xiaoqiu; Liu, Qingxiu; Qu, Qishu; Yang, Gongjun; Hu, Xiaoya

    2006-09-18

    Carbon nanotubes (CNTs) and cysteic acid based on electrochemical oxidation of L-cysteine (CySH) to form a novel composite thin film material at a glassy carbon electrode (GCE) for electroanalytical determination of nimesulide. The determination of nimesulide at the composite modified electrode with strong accumulation of nimesulide was studied by differential pulse voltammetry (DPV). The peak current obtained at +1.251 V (versus SCE) from DPV was linearly dependent on the nimesulide concentration in the range of 1.0 x 10(-7) -1.0 x 10(-5) M in 0.05 M H(2)SO(4) solution with a correlation coefficient of 0.997. The detection limit (S/N = 3) was found to be 5.0 x 10(-8) M. The low-cost modified electrode showed good sensitivity, selectivity, stability and had been applied to the determination of nimesulide in pharmaceutical formulation and human serum samples with satisfactory results.

  8. Electrochemical preparation of sodium dodecylsulfate doped over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application on sensitive and selective determination of anticancer drug: pemetrexed.

    PubMed

    Karadas, Nurgul; Ozkan, Sibel A

    2014-02-01

    Electrochemical oxidation of pemetrexed (PMX) was studied on bare, carboxylic acid functionalized multi-walled carbon nanotubes and over-oxidized polypyrrole modified (oo-PPy/MWCNTs-COOH/GCE) glassy carbon electrodes by cyclic and adsorptive stripping differential pulse voltammetric techniques. The oo-PPy/MWCNTs-COOH/GCE is very sensitive to the oxidation of PMX. The results proved that the over-oxidation of the PPy film gave a negative charge density on porous layer that improved the adsorption for PMX. The effects of pH, concentrations of MWCNTs and monomer, the number of cycles for the electropolymerization and the scan rate for sensor preparation were optimized. The MWCNTs-COOH and oo-PPy based sensor showed an excellent recognition capacity toward PMX. The linear responses have been obtained in the range from 8.00 × 10(-7)M to 1.00 × 10(-4)M with 2.04 × 10(-7)M detection limit for the bare GCE and from 1.00 × 10(-8)M to 1.00 × 10(-7)M with 3.28 × 10(-9)M detection limit for the modified GCE. The oxidation of PMX was controlled by the adsorption process on both types of electrode surfaces. The proposed methods were compared with the literature on UV spectrophotometric assay, which was carried out at an absorption maximum of 225 nm. The proposed method and the designed sensors have been successfully applied for the determination of PMX in pharmaceuticals.

  9. Electrochemical preparation of sodium dodecylsulfate doped over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application on sensitive and selective determination of anticancer drug: pemetrexed.

    PubMed

    Karadas, Nurgul; Ozkan, Sibel A

    2014-02-01

    Electrochemical oxidation of pemetrexed (PMX) was studied on bare, carboxylic acid functionalized multi-walled carbon nanotubes and over-oxidized polypyrrole modified (oo-PPy/MWCNTs-COOH/GCE) glassy carbon electrodes by cyclic and adsorptive stripping differential pulse voltammetric techniques. The oo-PPy/MWCNTs-COOH/GCE is very sensitive to the oxidation of PMX. The results proved that the over-oxidation of the PPy film gave a negative charge density on porous layer that improved the adsorption for PMX. The effects of pH, concentrations of MWCNTs and monomer, the number of cycles for the electropolymerization and the scan rate for sensor preparation were optimized. The MWCNTs-COOH and oo-PPy based sensor showed an excellent recognition capacity toward PMX. The linear responses have been obtained in the range from 8.00 × 10(-7)M to 1.00 × 10(-4)M with 2.04 × 10(-7)M detection limit for the bare GCE and from 1.00 × 10(-8)M to 1.00 × 10(-7)M with 3.28 × 10(-9)M detection limit for the modified GCE. The oxidation of PMX was controlled by the adsorption process on both types of electrode surfaces. The proposed methods were compared with the literature on UV spectrophotometric assay, which was carried out at an absorption maximum of 225 nm. The proposed method and the designed sensors have been successfully applied for the determination of PMX in pharmaceuticals. PMID:24401411

  10. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  11. A Hydrogen-Evolving Ni(P2N2)2 Electrocatalyst Covalently Attached to a Glassy Carbon Electrode: Preparation, Characterization, and Catalysis. Comparisons With the Homogeneous Analog

    SciTech Connect

    Das, Atanu K.; Engelhard, Mark H.; Bullock, R. Morris; Roberts, John A.

    2014-07-07

    A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated glassy carbon electrode. The surface-confined complex is an electroctalyst for hydrogen evolution, showing onset of catalytic current at the same potential as the soluble parent complex. X-ray photoemission spectra show excellent agreement between the coupled and homogeneous species. Coverage approaches a dense monolayer. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. The XPS measurements were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  12. Catalytic carbide formation at aluminium-carbon interfaces

    NASA Technical Reports Server (NTRS)

    Maruyama, B.; Rabenberg, L.; Ohuchi, F. S.

    1990-01-01

    X-ray photoelectron spectroscopy investigations of the reaction of several monolayer-thick films of aluminum with glassy carbon substrates are presented. The influence of molecular oxygen and water vapor on the rate of reaction is examined. It is concluded that water vapor catalyzed the formation of aluminum carbide from aluminum and carbon by forming active sites which weakened carbon-carbon bonds at the glassy carbon surface, thus assisting their cleavage. The rate of carbide formation for undosed and molecular oxygen-dosed examples was less as neither metallic aluminum nor oxygen-formed alumina could bond to the carbon atom with sufficient strength to dissociate it quickly.

  13. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  14. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  15. Plastic flow modeling in glassy polymers

    SciTech Connect

    Clements, Brad

    2010-12-13

    Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression, a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our recently

  16. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  17. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  18. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  19. Glassy correlations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Goldbart, Paul; Mao, Xiaoming

    2009-03-01

    We address the physical properties of an isotropic melt or solution of nematogenic polymers that is then cross-linked beyond the vulcanization point. To do this, we construct a replica Landau theory involving a coupled pair of order- parameter fields: one describing vulcanization, the other describing local nematic order. Thermal nematic fluctuations, present at the time of cross-linking, are trapped by cross- linking into the vulcanized network. The resulting glassy nematic fluctuations are analyzed in the Gaussian approximation in two regimes. When the localization length is shorter than the thermal nematic correlation length, the nematic correlations are well captured as glassy correlations. In the opposite regime, fluctuations in the positions of the localized polymers partially wash out the glassy nematic correlations.

  20. Preparation of activated carbon by chemical activation under vacuum.

    PubMed

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  1. A hydrogen-evolving Ni(P2N2)2 electrocatalyst covalently attached to a glassy carbon electrode: preparation, characterization, and catalysis. comparisons with the homogeneous analogue.

    PubMed

    Das, Atanu K; Engelhard, Mark H; Bullock, R Morris; Roberts, John A S

    2014-07-01

    A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated planar glassy carbon electrode surface. Coupling proceeds with both the Ni(0) and the Ni(II) complexes. X-ray photoemission spectra show excellent agreement between the Ni(0) coupling product and its parent complex, and voltammetry of the surface-confined system shows that a single species predominates with a surface density of 1.3 × 10(-10) mol cm(-2), approaching the value estimated for a densely packed monolayer. With the Ni(II) system, both photoemission and voltammetric data show speciation to unidentified products on coupling, and the surface density is 6.7 × 10(-11) mol cm(-2). The surface-confined Ni(0) complex is an electroctalyst for hydrogen evolution, showing the onset of catalytic current at the same potential as the soluble parent complex. Decomposition of the surface-confined species is observed in acidic acetonitrile. This is interpreted to reflect the lability of the Ni(II)-phosphine interaction and the basicity of the free phosphine and bears on concurrent efforts to implement surface-confined Ni(P2N2)2 complexes in electrochemical or photoelectrochemical devices.

  2. Sorption of boron trifluoride by activated carbons

    SciTech Connect

    Polevoi, A.S.; Petrenko, A.E.

    1988-01-10

    The sorption of born trifluoride on AG-3, SKT, SKT-3, SKT-7, SKT-4A, SKT-6A, and SKT-2B carbons was investigated. The sorption isotherms for both vapors and gas were determined volumetrically. The coefficients of two equations described the sorption of BF/sub 3/ in the sorption of BF/sub 3/ on active carbons. Heats of sorption of BF/sub 3/ on the activated carbons are shown and the sorption isotherms and temperature dependences of the equilibrium pressure of BF/sub 3/ for activated carbons were presented. The values of the heats of sorption indicated the weak character of the reaction of BF/sub 3/ with the surface of the carbons. The equations can be used for calculating the phase equilibrium of BF/sub 3/ on carbons in a wider range of temperatures and pressures.

  3. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  4. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  5. Glassy composition for hermetic seals

    DOEpatents

    Wilder, Jr., James A.

    1980-01-01

    The invention relates to a glassy composition adaptable for sealing to aluminum-based alloys to form a hermetically-sealed insulator body. The composition may either be employed as a glass or, after devitrifying heat treatment, as a glass-ceramic.

  6. Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles.

    PubMed

    Dai, Xuan; Wildgoose, Gregory G; Compton, Richard G

    2006-08-01

    The electrocatalytic detection of the anaesthetic halothane on a multiwalled carbon nanotube modified glassy carbon electrode is reported with a low limit of detection of 4.6 microM. A thorough investigation of the underlying cause of this apparent catalytic effect is undertaken by comparing the response of various carbon electrodes including glassy carbon, basal- and edge-plane pyrolytic graphite electrodes (bppg and eppg respectively) to increasing additions of halothane. The reduction of halothane is shifted by 250-300 mV to more negative potentials at an eppg electrode than that observed at the GC-CNT electrode. Therefore the results of this investigation show that, surprisingly, the electrocatalysis is not solely due to the introduction of edge-plane-like defect sites on the carbon nanotubes as is commonly found for many other substrates showing favourable voltammetry at nanotube modified electrodes. Instead, we reveal that in this unusual case the electroactive sites for the reduction of halothane are due to the presence of copper nanoparticles occluded within the carbon nanotubes during their production, which are never completely removed by standard purification techniques such as acid washing. This is only the third known case where apparent electrocatalysis by carbon nanotube modified electrodes is due to occluded metal-related nanoparticles within the nanotube structure, rather than the active sites being the edge-plane-like defect sites on the nanotubes. Furthermore this is the first case where the active sites are nanoparticles of copper metal, rather than metal oxide nanoparticles (namely oxides of iron(II)/(III)) as was found to be the case in the previous examples.

  7. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  8. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  9. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  10. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyen, M.; Lafferty, C.; Kimber, G.

    1996-12-31

    This paper describes the results of research in which novel activated carbons have been examined for their efficacy in water treatment and, specifically, for the adsorption of a common herbicide and wood preservative, sodium pentachlorophenolate. To place this work in context, the introduction will discuss first some of the considerations of using activated carbons for water treatment, and then certain aspects of the authors research that has led to this particular topic.

  11. Water sorption and diffusion in glassy polymers

    NASA Astrophysics Data System (ADS)

    Davis, Eric Mikel

    Water sorption and diffusion in glassy polymers is important in many fields, including drug delivery, desalination, energy storage and delivery, and packaging. Accurately measuring and understanding the underlying transport mechanisms of water in these glassy polymers is often complex due to both the nonequilibrium state of the polymer and the self-associating nature of water (e.g., hydrogen bonding). In this work, water sorption and diffusion in a number of glassy polymers were measured using gravimetric and spectroscopic techniques, including quartz spring microbalance, quartz crystal microbalance, and in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian diffusion was observed in all polymers studied, indicated by an initial stage of water uptake, followed by a second stage of continuous, gradual uptake of water at later experimental times. These phenomena were attributed to diffusion driven by a concentration gradient, as well as diffusion driven by slow polymer relaxation resulting in additional water ingress over time. In order to gain additional insight into these phenomena, which are a product of nonequilibrium state of the polymers, diffusion-relaxation models were developed and employed to determine the time scales for both diffusion and polymer relaxation, where the ratio of these values (Deborah number) confirmed the observed non-Fickian water diffusion. In addition, the solubility of water in these polymers was predicted using two nonequilibrium thermodynamic models: the nonequilibrium lattice fluid (NELF) model and the nonequilibrium statistical associating fluid theory (NE-SAFT), where excellent agreement between the NE-SAFT predictions and experimental data was obtained over the entire water vapor activity range explored. Furthermore, the states of water were analyzed using the Zimm-Lundberg clustering theory, as well as in situ FTIR-ATR spectroscopy, where the latter technique provides a

  12. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine.

    PubMed

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-05-24

    We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant kb, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0×10(-8) to 2.0×10(-5) mol L(-1), with a low limit of detection (LOD) of 1.25×10(-8) mol L(-1) for SY and 1.43×10(-8) mol L(-1) for TT (SN(-1)=3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the experimental data, the electrochemical reaction mechanisms of SY and TT both involved a one-electron-one-proton-transfer process. PMID:23663668

  13. A method for the quantification of low concentration sulfamethazine residues in milk based on molecularly imprinted clean-up and surface preconcentration at a Nafion-modified glassy carbon electrode.

    PubMed

    Guzmán-Vázquez de Prada, A; Reviejo, A J; Pingarrón, J M

    2006-02-13

    An electrochemical method for the determination of sulfamethazine at a low concentration level (25 microgl(-1)) in milk is reported. The method involves sample clean-up and selective preconcentration of sulfamethazine with a molecularly imprinted polymer (MIP), and a further electrode surface preconcentration of the analyte at a Nafion-coated glassy carbon electrode (GCE). Square wave (SW) oxidative voltammetry of accumulated sulfamethazine was employed for its quantification. Sulfamethazine electrode preconcentration was carried out in 0.1 moll(-1) Britton-Robinson buffer of pH 1.5, and by applying 5 min of accumulation at open circuit. A linear calibration graph was obtained for sulfamethazine at the Nafion-modified GCE over the 1.0x10(-8) to 1.0x10(-6)moll(-1) concentration range, with a detection limit of 6.8x10(-9)moll(-1) (1.9 microgl(-1)). This detection limit is remarkably better than those reported previously in the literature using electroanalytical techniques. Although the detection limit achieved was sufficient to allow the direct determination of sulfamethazine at the concentration level required in milk, a sample clean-up was shown to be necessary to obtain analytically useful SW voltammograms. This was accomplished by processing the deproteinized milk through a cartridge containing a molecularly imprinted polymer for sulfamethazine, also allowing a selective preconcentration of the analyte. Elution of the analyte from the MIP cartridges was carried out with 2 ml of a (9:1) MeOH:acetic acid mixture. Determination of sulfamethazine in milk samples was accomplished by interpolation into a calibration graph constructed with sulfamethazine standard solutions which were subjected to the same procedure than the deproteinized milk samples. Results obtained for five samples, spiked at the 25 microgl(-1) level, showed a mean recovery of (100+/-3)%.

  14. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    PubMed Central

    Pedano, M. L.; Rivas, G. A.

    2005-01-01

    In this work we present a critical study of the nucleic acid layer immobilized at glassy carbon electrodes. Different studies were performed in order to assess the nature of the interaction between DNA and the electrode surface. The adsorption and electrooxidation of DNA demonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. The DNA layer immobilized at a freshly polished glassy carbon electrode was very stable even after applying highly negative potentials. The electron transfer of potassium ferricyanide, catechol and dopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlled potential conditions) and thick (obtained by casting the glassy carbon surface with highly concentrated DNA solutions) DNA layers was slower than that at the bare glassy carbon electrode, although this effect was dependent on the thickness of the layer and was not charge selective. Raman experiments showed an important decrease of the vibrational modes assigned to the nucleobases residues, suggesting a strong interaction of these residues with the electrode surface. The hybridization of oligo(dG)21 and oligo(dC)21 was evaluated from the guanine oxidation signal and the reduction of the redox indicator Co(phen)33+. In both cases the chronopotentiometric response indicated that the compromise of the bases in the interaction of DNA with the electrode surface is too strong, preventing further hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in a direct and very sensitive way, but not to be used for the preparation of biorecognition layers by direct adsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  15. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  16. Adsorption of methyl mercaptan on activated carbons.

    PubMed

    Bashkova, Svetlana; Bagreev, Andrey; Bandosz, Teresa J

    2002-06-15

    Activated carbons of different origins were studied as methyl mercaptan adsorbents in wet, dry, and oxidizing conditions. The materials were characterized using adsorption of nitrogen, Boehm titration, and thermal analysis. Investigation was focused on the feasibility of the removal of methyl mercaptan on activated carbons and on the role of surface chemistry and porosity in the adsorption/oxidation processes. The results showed relatively high capacities of carbons for removal of CH3SH. The amount adsorbed depends on the surface features. Methyl mercaptan, in general, is oxidized to disulfides, which, depending on the chemistry of the carbon surface, can be converted to sulfonic acid due to the presence of water and active radicals.

  17. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  18. Microwave-assisted regeneration of activated carbon.

    PubMed

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.

  19. The nonequilibrium glassy dynamics of self-propelled particles.

    PubMed

    Flenner, Elijah; Szamel, Grzegorz; Berthier, Ludovic

    2016-09-14

    We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, which is obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the general features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers. PMID:27499055

  20. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  1. Effect of glassy modes on electron spin-lattice relaxation in solid ethanol

    NASA Astrophysics Data System (ADS)

    Merunka, Dalibor; Kveder, Marina; Jokić, Milan; Rakvin, Boris

    2013-03-01

    Electron spin-lattice relaxation (SLR) of TEMPO radical was measured in the crystalline and glassy states of deuterated ethanol in the temperature range 5-80 K using X-band electron paramagnetic resonance (EPR). The measured SLR rates are higher in the glassy than in crystalline state and the excess SLR rate in glassy state is much lower than in ethanol. This result suggests that extra modes in glassy state, i.e. glassy modes, produce the excess SLR rate via the electron-nuclear dipolar (END) interaction between the electron spin of radical and the matrix protons or deuterons. Using the soft-potential model and assuming the END interaction between the electron spin and the matrix protons, the contributions to SLR rate of various mechanisms of glassy modes were theoretically analyzed. The evaluations of SLR rates in glassy ethanol indicate two main mechanisms of glassy modes: thermally activated relaxation of double-well systems and phonon-induced relaxation of quasi-harmonic local modes. The SLR rates induced by these mechanisms correlate well with the experimental data.

  2. Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Hemoglobin on a Glassy Carbon Electrode Modified with Fe3O4/Chitosan Core-Shell Microspheres

    PubMed Central

    Tan, Xue-Cai; Zhang, Jin-Lei; Tan, Sheng-Wei; Zhao, Dan-Dan; Huang, Zen-Wei; Mi, Yan; Huang, Zai-Yin

    2009-01-01

    Novel magnetic Fe3O4/chitosan (CS) microspheres were prepared using magnetic Fe3O4 nanoparticles and the natural macromolecule chitosan. Then, using an easy and effective hemoglobin (Hb) immobilization method, an innovative biosensor with a Fe3O4/CS-Hb-Fe3O4/CS “sandwich” configuration was constructed. This biosensor had a fast (less than 10 s) response to H2O2 and excellent linear relationships were obtained in the concentration range of 5.0 × 10−5 to 1.8 × 10−3 M and 1.8 × 10−3 to 6.8 × 10−3 M with a detection limit of 4.0 × 10−6 M (s/n = 3) under the optimum conditions. The apparent Michaelis-Menten constant Km was 0.29 mM and it showed the excellent biological activity of the fixed Hb. Moreover, the biosensor had long-time stability and good reproducibility. The method was used to determine H2O2 concentration in real samples. PMID:22454579

  3. A novel activated carbon for supercapacitors

    SciTech Connect

    Shen, Haijie; Liu, Enhui; Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  4. Glassy features of crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  5. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  6. In-Situ Platinum Deposition on Nitrogen-Doped Carbon Films as a Source of Catalytic Activity in a Hydrogen Evolution Reaction.

    PubMed

    Gottlieb, Eric; Kopeć, Maciej; Banerjee, Manali; Mohin, Jacob; Yaron, David; Matyjaszewski, Krzysztof; Kowalewski, Tomasz

    2016-08-24

    Copolymer-templated nitrogen-doped carbon (CTNC) films deposited on glassy carbon were used as electrodes to study electrochemically driven hydrogen evolution reaction (HER) in 0.5 M H2SO4. The activity of these materials was extremely enhanced when a platinum counter electrode was used instead of a graphite rod and reached the level of commercial Pt/C electrodes. Postreaction scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements of electrode surfaces revealed that incorporation of even extremely low amounts of Pt resulted in this considerable gain of HER activity. High resolution XPS analysis and density functional theory (DFT) calculations confirmed that pyridinic nitrogen atoms act as active sites for Pt coordination and deposition. The Pt can be incorporated in both molecular (Pt(2+)) and metallic (Pt(0)) form. This study shows that great caution must be taken when designing "metal-free" HER catalysts based on N-doped carbons.

  7. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  8. Structural order in glassy water.

    PubMed

    Giovambattista, Nicolas; Debenedetti, Pablo G; Sciortino, Francesco; Stanley, H Eugene

    2005-06-01

    We investigate structural order in glassy water by performing classical molecular dynamics simulations using the extended simple point charge (SPC/E) model of water. We perform isochoric cooling simulations across the glass transition temperature at different cooling rates and densities. We quantify structural order by orientational and translational order metrics. Upon cooling the liquid into the glassy state, both the orientational order parameter Q and translational order parameter tau increase. At T=0 K, the glasses fall on a line in the Q-tau plane or order map. The position of this line depends only on density and coincides with the location in the order map of the inherent structures (IS) sampled upon cooling. We evaluate the energy of the IS, eIS(T), and find that both order parameters for the IS are proportional to eIS. We also study the structural order during the transformation of low-density amorphous ice (LDA) to high-density amorphous ice (HDA) upon isothermal compression and are able to identify distinct regions in the order map corresponding to these glasses. Comparison of the order parameters for LDA and HDA with those obtained upon isochoric cooling indicates major structural differences between glasses obtained by cooling and glasses obtained by compression. These structural differences are only weakly reflected in the pair correlation function. We also characterize the evolution of structural order upon isobaric annealing, leading at high pressure to very-high density amorphous ice (VHDA). PMID:16089741

  9. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  10. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  11. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  12. Deformation and failure of glassy materials

    NASA Astrophysics Data System (ADS)

    Rottler, Joerg Gerhard

    Elastoplastic deformation of disordered solids and the formation of polymer crazes in amorphous polymer glasses are studied using large-scale molecular dynamics simulations. It is shown that the pressure-modified von Mises criterion accurately describes the maximum shear yield stress under general loading conditions. The pressure coefficient is insensitive to most model parameters, but is related to the bead geometry in analogy to friction coefficients. The yield stress decreases linearly with rising temperature and the strain rate dependence can be described by a power-law, or in a limited range, by a logarithm. The rate dependence does not vary with temperature, which is inconsistent with simple rate-state models of thermal activation such as the Eyring model. An analysis of the dynamics of the local stress distribution as well as modern phenomenological theories of rheology of glassy materials are discussed in light of these findings. We then present a comprehensive investigation of the deformation of glassy polymeric systems into a dense load-bearing network of fibrils and voids called a craze at large strains. This expansion takes place in the form of a drawing process, where the strain rate is strongly localized in a narrow interface region between dense polymer and craze. The expansion is controlled by some polymer chain segments between entanglements that are stretched taut during crazing. We also find that the distribution of tension in the craze develops an exponential force tail in close analogy to compressed jammed systems such as granular media. This highly anisotropic stress distribution and the localization of large forces on relatively few chains indicate that earlier models of the crazing process that treat the polymer as a viscous fluid with hydrodynamic interactions are incorrect. Simulations and simple scaling arguments are presented that describe craze breakdown through disentanglement or chain scission. Glassy polymers exhibit an unusually

  13. Ending Aging in Super Glassy Polymer Membranes

    SciTech Connect

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  14. Synergy between Printex nano-carbons and silver nanoparticles for sensitive estimation of antioxidant activity.

    PubMed

    Raymundo-Pereira, Paulo A; Campos, Anderson M; Prado, Thiago M; Furini, Leonardo N; Boas, Naiza V; Calegaro, Marcelo L; Machado, Sergio A S

    2016-07-01

    We report on the synthesis, characterization and applications of a Printex L6 carbon-silver hybrid nanomaterial (PC-Ag), which was obtained using a polyol method. In addition, we also highlight the use of Printex L6 nano-carbon as a much cheaper alternative to the use of carbon nanotubes and graphene. The silver nanoparticles (AgNP) were prepared directly on the surface of the Printex 6L carbon "nanocarbon" material using ethylene glycol as the reducing agent. The hybrid nanomaterial was characterized by High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), Raman spectroscopy and cyclic voltammetry. Optimized electrocatalytic activity on glassy carbon electrode was reached for the architecture GC/PC-Ag, the silver nanoparticles with size ranging between 1 and 2 nm were well-distributed throughout the hybrid material. The synergy between PC nano-carbons and AgNPs was verified by detection of gallic acid (GA) at a low applied potential (0.091 V vs. Ag/AgCl). GA detection was performed in a concentration range between 5.0 × 10(-7) and 8.5 × 10(-6) mol L(-1), with a detection limit of 6.63 × 10(-8) mol L(-1) (66.3 nmol L(-1)), which is considerably lower than similar devices. The approach for fabricating the reproducible GC/PC-Ag electrodes is entirely generic and may be explored for other types of (bio)sensors and devices. PMID:27216397

  15. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  16. Cooperative strings and glassy interfaces.

    PubMed

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-01

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908

  17. Cooperative strings and glassy interfaces.

    PubMed

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-01

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.

  18. Relationships between structure and activity of carbon as a multifunctional support for electrocatalysts.

    PubMed

    Stevanović, Sanja I; Panić, Vladimir V; Dekanski, Aleksandar B; Tripković, Amalija V; Jovanović, Vladislava M

    2012-07-14

    We report on new insights into the relationships between structure and activity of glassy carbon (GC), as a model material for electrocatalyst support, during its anodization in acid solution. Our investigation strongly confirms the role of CFGs in promotion of Pt activity by the "spill-over" effect related to CO(ads) for methanol electrooxidation (MEO) on a carbon-supported Pt catalyst. Combined analysis of voltammetric and impedance behaviour as well as changes in GC surface morphology induced by intensification of anodizing conditions reveal an intrinsic influence of the carbon functionalization and the structure of a graphene oxide (GO) layer on the electrical and electrocatalytic properties of activated GC. Although GO continuously grows during anodization, it structurally changes from being a graphite inter-layer within graphite ribbons toward a continuous GO surface layer that deteriorates the native structure of GC. As a consequence of the increased distance between GO-spaced graphite layers, the GC conductivity decreases until the case of profound GO exfoliation under drastic anodizing conditions. This exposes the native, yet abundantly functionalized, GC texture. While GC capacitance continuously increases with intensification of anodizing conditions, the surface nano-roughness and GO resistance reach the highest values at modest anodizing conditions, and then decrease upon drastic anodization due to the onset of GO exfoliation. We found for the first time that the activity of a GC-supported Pt catalyst in MEO, as one of the promising half-reactions in polymer electrolyte fuel cells, strictly follows the changes in GC nano-roughness and GO-induced GC resistance. The highest GC/Pt MEO activity is reached when optimal distance between graphite layers and optimal degree of GC functionalization bring the highest amount of CFGs into intimate contact with the Pt surface. This confirms the promoting role of CFGs in MEO catalysis. PMID:22648036

  19. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄.

  20. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄. PMID:27483572

  1. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  2. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  3. Aqueous mercury adsorption by activated carbons.

    PubMed

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  4. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  5. Hierarchically structured activated carbon for ultracapacitors

    PubMed Central

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-01-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g−1, exhibited an extremely high specific capacitance of 157 F g−1 (95 F cc−1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors. PMID:26878820

  6. Molecular mobility in glassy dispersions.

    PubMed

    Mehta, Mehak; McKenna, Gregory B; Suryanarayanan, Raj

    2016-05-28

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  7. Molecular mobility in glassy dispersions

    NASA Astrophysics Data System (ADS)

    Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj

    2016-05-01

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  8. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  9. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N.

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  10. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  11. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  12. Non-Equilibrium Water-Glassy Polymer Dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Minelli, Matteo; Baschetti, Marco; Sarti, Giulio; Elabd, Yossef

    2012-02-01

    For many applications (e.g., medical implants, packaging), an accurate assessment and fundamental understanding of the dynamics of water-glassy polymer interactions is of great interest. In this study, sorption and diffusion of pure water in several glassy polymers films, such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), poly(lactide) (PLA), were measured over a wide range of vapor activities and temperatures using several experimental techniques, including quartz spring microbalance (QSM), quartz crystal microbalance (QCM), and time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian behavior (diffusion-relaxation phenomena) was observed by all three techniques, while FTIR-ATR spectroscopy also provides information about the distribution of the states of water and water transport mechanisms on a molecular-level. Specifically, the states of water are significantly different in PS compared to PMMA and PLA. Additionally, a purely predictive non-equilibrium lattice fluid (NELF) model was applied to predict the sorption isotherms of water in these glassy polymers.

  13. Reduction of bromate by granular activated carbon

    SciTech Connect

    Kirisits, M.J.; Snoeyink, V.L.; Kruithof, J.C.

    1998-07-01

    Ozonation of waters containing bromide can lead to the formation of bromate, a probable human carcinogen. Since bromate will be regulated at 10 {micro}g/L by the Stage 1 Disinfectants/Disinfection By-Products Rule, there is considerable interest in finding a suitable method of bromate reduction. Granular activated carbon (GAC) can be used to chemically reduce bromate to bromide, but interference from organic matter and anions present in natural water render this process inefficient. In an effort to improve bromate reduction by GAC, several modifications were made to the GAC filtration process. The use of a biologically active carbon (BAC) filter ahead of a fresh GAC filter with and without preozonation, to remove the biodegradable organic matter, did not substantially improve the bromate removal of the GAC filter. The use of the BAC filter for biological bromate reduction proved to be the most encouraging experiment. By lowering the dissolved oxygen in the influent to the BAC from 8.0 mg/L to 2.0 mg/L, the percent bromate removal increased from 42% to 61%.

  14. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  15. Shatter the Glassy Stare: Implementing Experiential Learning in Higher Education--"A Companion Piece to Place as Text: Approaches to Active Learning." National Collegiate Honors Council Monograph Series

    ERIC Educational Resources Information Center

    Machonis, Peter A., Ed.

    2008-01-01

    This monograph presents in some detail the ways in which Faculty Institutes--professional development opportunities where instructors immerse themselves in site-specific learning activities exactly as students would, though only for several days--allow participants to acquire the skill to design such adventures elsewhere for their own students.…

  16. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  17. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  18. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  19. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  20. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    NASA Astrophysics Data System (ADS)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  1. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    PubMed Central

    Herawan, S. G.; Hadi, M. S.; Ayob, Md. R.; Putra, A.

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced. PMID:23737721

  2. On the Marginal Stability of Glassy Systems

    NASA Astrophysics Data System (ADS)

    Yan, Le; Baity-Jesi, Marco; Müller, Markus; Wyart, Matthieu

    2015-03-01

    In various glassy systems that are out of equilibrium, like spin glasses and granular packings, the dynamics appears to be critical: avalanches involving almost the whole system could happen. A recent conceptual breakthrough argues that such glassy systems sample the ensemble of marginal stable states, which inevitably results into critical dynamics. However, it is unclear how the marginal stability is dynamically guaranteed. We investigate this marginal stability assumption by studying specifically the critical athermal dynamics of the Sherrington-Kirkpatrick model. We discuss how a pseudo-gap in the density distribution of local fields characterizing the marginal stability arises dynamically.

  3. Relation between the activation energy of oxygen diffusion and the instantaneous shear modulus in propylene carbonate near the glass transition temperature.

    PubMed

    Syutkin, V M

    2013-09-21

    We discuss the transport of small gas molecules in organic glassy matrices using oxygen diffusion in propylene carbonate as an example. The jumps of a penetrant from one interstitial cavity to another require energy to expand the channel between cavities to the size of the penetrant. It has been established that at temperatures below and slightly above the glass transition temperature, the activation energy of oxygen diffusion, E, is related to the instantaneous shear modulus G∞ of propylene carbonate via the equation E = V × G∞, where V is the temperature-independent parameter that characterizes the volume of the channel. Consequently, the E value is the work necessary for elastic deformation of the surrounding matrix to expand the channel available for oxygen diffusion.

  4. Record Methane Storage in Monolithic and Powdered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Nordwald, E.; Hester, B.; Romanos, J.; Isaacson, B.; Stalla, D.; Moore, D.; Kraus, M.; Burress, J.; Dohnke, E.; Pfeifer, P.

    2010-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) has developed activated carbons from corn cob as adsorbent materials for methane gas storage by physisorption at low pressures. KOH activated carbons were compressed into carbon monolith using chemical binders. High pressure methane isotherms up to 250 bar at room temperature on monolithic and powdered activated carbons were measured gravimetrically and volumetrically. Record methane storage capacities of 250 g CH4/kg carbon and 130 g CH4/liter carbon at 35 bar and 293 K have been achieved. BET surface area, porosity, and pore size distributions were measured from sub-critical nitrogen isotherms. Pore entrances were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths, was tested in Kansas City.

  5. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment

    SciTech Connect

    Li, Haitao; He, Xiaodie; Liu, Yang; Yu, Hang; Kang, Zhenhui; Lee, Shuit-Tong

    2011-01-15

    Water-soluble fluorescent carbon nanoparticles were synthesized directly from active carbon by a one-step hydrogen peroxide-assisted ultrasonic treatment. The carbon nanoparticles were characterized by transmission electron microscopy, optical fluorescent microscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer. The results showed that the surface of carbon nanoparticles was rich of hydroxyl groups resulting in high hydrophilicity. The carbon nanoparticles could emit bright and colorful photoluminescence covering the entire visible-to-near infrared spectral range. Furthermore, these carbon nanoparticles also had excellent up-conversion fluorescent properties.

  6. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  7. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  8. Shear banding in soft glassy materials

    NASA Astrophysics Data System (ADS)

    Fielding, S. M.

    2014-10-01

    Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic ‘glassy’ features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  9. Deformation and Fracture Behavior of Metallic Glassy Alloys and Glassy-Crystal Composites

    NASA Astrophysics Data System (ADS)

    Louzguine-Luzgin, D. V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A. R.; Inoue, A.

    2011-06-01

    The present work demonstrates the deformation behavior of Zr-Cu-Ni-Al bulk glassy alloys and Zr-Ni-Cu-Al-Pd glassy foils as well as Ni-Cu-Ti-Zr bulk crystal-glassy composites. Fracture of Zr60Cu16Ni14Al10 and Zr64.13Ni10.12Cu15.75Al10 bulk glassy alloys is featured by nearly equal fraction areas of cleavage-like and vein-type relief. The observed pattern of alternating cleavage-like and vein-type patterns illustrates a result of dynamically self-organizing shear propagation at the final catastrophic stage. The deformation behavior of Zr64.13Ni10.12Cu15.75Al10 alloy has also been tested at LN2 temperature. The strength of the sample decreases with temperature, and no clear serrated flow typical for bulk glassy samples tested at room temperature is observed in the case of the samples tested at LN2 temperature. We also studied the deformation behavior of Zr-Ni-Cu-Al-Pd glassy foils thinned to electron transparency in situ in tension in a transmission electron microscope. We also present a Ni-Cu-Ti-Zr crystal-glassy composite material having a superior strength paired with a considerable ductility exceeding 10 pct. The metastable cP2 crystalline phase promotes a strain-induced martensitic transformation leading to pseudoelastic behavior as well as enhanced plasticity at room temperature. Underlying mechanisms of plastic deformation are discussed in terms of the interplay between the dislocation slip in the crystalline phase and the shear deformation in the glassy matrix.

  10. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  11. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  12. Broadband terahertz time-domain spectroscopy : crystalline and glassy drug materials

    NASA Astrophysics Data System (ADS)

    Kojima, Seiji; Shibata, Tomohiko; Igawa, Hikaru; Mori, Tatsuya

    2014-03-01

    Low-energy IR active modes of glassy and crystalline drug materials were studied by the broadband Terahertz Time Domain Spectroscopy (THz-TDS) in the frequency range from 0.5 to 6.5 THz using a Cherenkov type THz generator. In order to determine the real and imaginary parts of complex dielectric constant, all samples were measured by the transmission using a pure pellet without mixing polyethylene. For glassy indomethacine, the broadband THz spectrum of real part of dielectric constant shows step-wise decrease with the increase of frequency, while the imaginary part shows a broad peak at about 3 THz reflecting quenched glassy disordered structure. The observed spectra of crystalline racemic ketoprofen show the noncoincidence of peak frequencies between low-frequency Raman scattering and THz absorbance spectra. It can be attributed to the fact that the mutual exclusion principle between Raman and IR activities holds below 6 THz.

  13. Palladium Nanoparticle Incorporated Porous Activated Carbon: Electrochemical Detection of Toxic Metal Ions.

    PubMed

    Veerakumar, Pitchaimani; Veeramani, Vediyappan; Chen, Shen-Ming; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-20

    A facile method has been developed for fabricating selective and sensitive electrochemical sensors for the detection of toxic metal ions, which invokes incorporation of palladium nanoparticles (Pd NPs) on porous activated carbons (PACs). The PACs, which were derived from waste biomass feedstock (fruit peels), possess desirable textural properties and porosities favorable for dispersion of Pd NPs (ca. 3-4 nm) on the graphitic PAC substrate. The Pd/PAC composite materials so fabricated were characterized by a variety of different techniques, such as X-ray diffraction, field-emission transmission electron microscopy, gas physisorption/chemisorption, thermogravimetric analysis, and Raman, Fourier-transform infrared, and X-ray photon spectroscopies. The Pd/PAC-modified glassy carbon electrodes (GCEs) were exploited as electrochemical sensors for the detection of toxic heavy metal ions, viz., Cd(2+), Pb(2+), Cu(2+), and Hg(2+), which showed superior performances for both individual as well as simultaneous detections. For simultaneous detection of Cd(2+), Pb(2+), Cu(2+), and Hg(2+), a linear response in the ion concentration range of 0.5-5.5, 0.5-8.9, 0.5-5.0, and 0.24-7.5 μM, with sensitivity of 66.7, 53.8, 41.1, and 50.3 μA μM(-1) cm(-2), and detection limit of 41, 50, 66, and 54 nM, respectively, was observed. Moreover, the Pd/PAC-modified GCEs also show perspective applications in detection of metal ions in real samples, as illustrated in this study for a milk sample.

  14. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    SciTech Connect

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  15. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  16. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The process of manufacturing a carbonized and activated nonwoven made by cotton fiber was investigated in this paper. The study was focused on the acoustic application and nonwoven composites with cotton nonwoven as a base layer and glass fiber nonwoven, cotton nonwoven, and carbonized and activated...

  17. A Magnesium-Activated Carbon Hybrid Capacitor

    SciTech Connect

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  18. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  19. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  20. Fractal analysis of granular activated carbons using isotherm data

    SciTech Connect

    Khalili, N.R.; Pan, M.; Sandi, G.

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  1. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  2. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  3. Grain-based activated carbons for natural gas storage.

    PubMed

    Zhang, Tengyan; Walawender, Walter P; Fan, L T

    2010-03-01

    Natural gas has emerged as a potential alternative to gasoline due to the increase in global energy demand and environmental concerns. An investigation was undertaken to explore the technical feasibility of implementing the adsorbed natural gas (ANG) storage in the fuel tanks of motor vehicles with activated carbons from biomass, e.g., sorghum and wheat. The grain-based activated carbons were prepared by chemical activation; the experimental parameters were varied to identify the optimum conditions. The porosity of the resultant activated carbons was evaluated through nitrogen adsorption; and the storage capacity, through methane adsorption. A comparative study was also carried out with commercial activated carbons from charcoal. The highest storage factor attained was 89 for compacted grain-based activated carbons from grain sorghum with a bulk density of 0.65 g/cm(3), and the highest storage factor attained is 106 for compacted commercial activated carbons (Calgon) with a bulk density of 0.70 g/cm(3). The storage factor was found to increase approximately linearly with increasing bulk density and to be independent of the extent of compaction. This implies that the grain-based activated carbons are the ideal candidates for the ANG storage.

  4. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  5. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  6. CCN activation of pure and coated carbon black particles.

    PubMed

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  7. Soil Inorganic Carbon in Deserts: Active Carbon Sink or Inert Reservoir?

    NASA Astrophysics Data System (ADS)

    Monger, H. C.; Cole, D. R.

    2011-12-01

    Soil inorganic carbon is the third largest C pool in the active global carbon cycle, containing at least 800 petagrams of carbon. Although carbonate dissolution-precipitation reactions have been understood for over a century, the role of soil inorganic carbon in carbon sequestration, and in particular pedogenic carbonate, is a deceptively complex process because it involves interdependent connections among climate, plants, microorganisms, silicate minerals, soil moisture, pH, and Ca supply via rain, dust, or in situ weathering. An understanding of soil inorganic carbon as a sink or reservoir also requires examination of the system at local to continental scales and at seasonal to millennial time scales. In desert soils studied in North America, carbon isotope ratios and radiocarbon dates were measured in combination with electron microscopy, lab and field experiments with biological calcite formation, and field measurements of carbon dioxide emissions. These investigations reveal that soil inorganic carbon is both an active sink and a inert reservoir depending on the spatial and temporal scale and source of calcium.

  8. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  9. Ocean bottom sediments as an active carbon pool.

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2015-12-01

    Bottom deposits of oceans, seas and lakes are long term carbon sinks - particulate organic carbon falls to the bottom where it is covered by sediments and preserved by anoxic conditions. However, the upper horizons of these deep sediments ('active layer') interact with bottom waters through diffusion, bubbling of gasses and bioturbation and can thus also act as temporary carbon sources given favorable environment conditions. Oxygen diffusion is the main factor that limits organic decomposition in bottom deposits. Depth of diffusion depends on porosity of sediments and rates of oxygen consumption in the upper horizons. Amplified organic rain leads to higher oxygen demand and, consequently, to a thinner oxic horizon in the bottom sediments. Declined ocean productivity, in contrast, allows oxygen to diffuse deeper into the bottom sediments and remobilizes previously preserved carbon. Therefore a substantial decline in ocean productivity during glacial periods could cause ocean sediments to shift abruptly from a carbon sink to a considerable carbon source. To estimate the effects of the phenomena described above, we present a model of the dynamics and vertical distribution of organic carbon in ocean sediments that considers the input of organic rain, sediments porosity, oxygen availability, rates of sedimentation to the ocean floor and bioturbation. The model enables quantification of bulk carbon storage, carbon distribution within the 'active layer', and the flux of carbon from the upper sediment horizons to deeper deposits as sediments accumulate on the ocean floor. Applying our model, we find that during glacial periods, decreased ocean productivity led to the mobilization of old carbon previously stored within anoxic horizons. Under this scenario, carbon transfer from sediments to ocean waters would have exceeded 10 kg/m2. Our study therefore, suggests that the ocean floor is not merely a passive buffer in the global carbon cycle, but instead an active pool which

  10. Photoluminescence of silver in glassy matrices

    SciTech Connect

    Garcia, M.A.; Garcia-Heras, M.; Cano, E.; Bastidas, J.M.; Villegas, M.A.; Montero, E.; Llopis, J.; Sada, C.; Marchi, G. de; Battaglin, G.; Mazzoldi, P.

    2004-10-01

    This work studies the behavior of Ag{sup +} ions incorporated in different silica-based glassy matrices. To this end, Ag-doped silica coatings, prepared via sol-gel and deposited on pure silica and soda-lime glasses, are investigated by means of structural and optical spectroscopy techniques. Silver tends to segregate towards the interface during the annealing process, but in the case of soda-lime glassy substrates the exchange process favors its diffusion into the substrate. The environment of Ag{sup +} ions during the annealing process determines their final oxidation state. In the pure silica matrix, Ag{sup +} ions are found to be unstable and tend to reduce to Ag{sup 0}, with the subsequent formation of metallic nanoparticles. However, the presence of network formers and modifiers gives rise to the appearance of nonbridging oxygen, which allows the stabilization of Ag{sup +} ions in the matrix.

  11. Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers

    SciTech Connect

    Lin, S.H.; Hsu, F.M.

    1995-06-01

    Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

  12. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  13. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  14. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  15. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  16. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  17. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  18. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  19. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  20. Physical and electrochemical study of halide-modified activated carbons

    NASA Astrophysics Data System (ADS)

    Barpanda, Prabeer

    The current thesis aims to improve the electrochemical capacity of activated carbon electrodes, which enjoy prominent position in commercial electrochemical capacitors. Our approach was to develop electrochemical capacity by developing faradaic pseudocapacitance in carbon through a novel mechanochemical modification using iodine and bromine. Various commercial carbons were mechanochemically modified via solid-state iodation and vapour phase iodine-incorporation. The halidation-induced changes in the structure, composition, morphology, electrical and electrochemical properties of carbon materials were studied using different characterization techniques encompassing XRD, XRF, XPS, Raman spectroscopy, BET study, TEM, SAXS and electrochemical testing followed by an intensive battery of physical and electrochemical characterization. The introduction of iodine into carbon system led to the formation of polyiodide species that were preferentially reacted within the micropore voids within the carbon leading to the development of a faradaic reaction at 3.1V. In spite of the lower surface area of modified carbon, we observed manyfold increase in its electrochemical capacity. Parallel inception of non-faradaic development and faradaic pseudocapacitive reaction led to promising gravimetric, surface area normalized and volumetric capacity in iodated carbons. With promising electrochemical improvement post halidation process, the chemical halidation method was extended to different class of carbons and halides. Carbons ranging from amorphous (activated) carbons to crystalline carbons (graphites, fluorographites) were iodine-modified to gain further insight on the local graphite-iodine chemical interaction. In addition, the effect of pore size distribution on chemical iodation process was studied by using in-house fabricated microporous carbon. A comparative study of commercial mesoporous carbons and in-house fabricated microporous carbons showed higher iodine-uptake ability and

  1. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A.

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  2. Production and characterization of activated carbons from cereal grains

    SciTech Connect

    Venkatraman, A.; Walawender, W.P.; Fan, L.T.

    1996-12-31

    The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

  3. Microstructure and surface properties of lignocellulosic-based activated carbons

    NASA Astrophysics Data System (ADS)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  4. Mechanism of phenol adsorption onto electro-activated carbon granules.

    PubMed

    Lounici, H; Aioueche, F; Belhocine, D; Drouiche, M; Pauss, A; Mameri, N

    2004-01-01

    The main purpose of this paper is to determine the mechanisms which govern the adsorption of the phenol onto electro-activated carbon granules. This new activation technique allowed an increase of the performance of the adsorbent. Two models were utilised to understand the improvement in the performance of electroactivated carbon granules. The first, a simple external resistance model based on film resistance, gave acceptable predictions, with an error of less than 15%, between the theoretical results and experimental data independent of the activation potential and phenol initial concentration. The second linear model, based on diffusion phenomena, was more representative in describing the experiment than the first model. It was observed that the electro-activation method did not change the mechanism which governs phenol adsorption onto granular carbon. Indeed, the same mathematical model based on diffusion phenomena made it possible to predict with a very low error (less than 5%) the experimental data obtained for the favourable activation potential, without activation potential and with an unfavourable activation potential. The electro-activation technique makes it possible to increase the number of active sites that improve the performance of the electro-activated granular carbon compared with conventional granular activated carbon.

  5. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  6. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  7. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  8. Complement activation and protein adsorption by carbon nanotubes.

    PubMed

    Salvador-Morales, Carolina; Flahaut, Emmanuel; Sim, Edith; Sloan, Jeremy; Green, Malcolm L H; Sim, Robert B

    2006-02-01

    As a first step to validate the use of carbon nanotubes as novel vaccine or drug delivery devices, their interaction with a part of the human immune system, complement, has been explored. Haemolytic assays were conducted to investigate the activation of the human serum complement system via the classical and alternative pathways. Western blot and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques were used to elucidate the mechanism of activation of complement via the classical pathway, and to analyse the interaction of complement and other plasma proteins with carbon nanotubes. We report for the first time that carbon nanotubes activate human complement via both classical and alternative pathways. We conclude that complement activation by nanotubes is consistent with reported adjuvant effects, and might also in various circumstances promote damaging effects of excessive complement activation, such as inflammation and granuloma formation. C1q binds directly to carbon nanotubes. Protein binding to carbon nanotubes is highly selective, since out of the many different proteins in plasma, very few bind to the carbon nanotubes. Fibrinogen and apolipoproteins (AI, AIV and CIII) were the proteins that bound to carbon nanotubes in greatest quantity.

  9. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  10. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    EPA Science Inventory

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  11. GRANULAR ACTIVATED CARBON ADSORPTION AND INFRARED REACTIVATION: A CASE STUDY

    EPA Science Inventory

    A study evaluated the effectiveness and cost of removing trace organic contaminants and surrogates from drinking water by granular activated carbon (GAC) adsorption. The effect of multiple reactivations of spent GAC was also evaluated. Results indicated that reactivated GAC eff...

  12. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  13. Adsorption of dichlorodifluoromethane, chlorodifluoromethane, and chloropentafluoroethane on activated carbon

    SciTech Connect

    Berlier, K.; Frere, M.; Bougard, J.

    1995-09-01

    The CFCs (chlorofluorocarbons) are used as working refrigerant fluids. Recent concerns of the effects of CFCs on the ozone layer requires the development of efficient recovery methods. One technique is to adsorb the fluids onto a porous medium such as silica gel or activated carbon. Isotherms and enthalpies of adsorption curves of dichlorodifluoromethane (R12), chlorodifluoromethane (R22), and chloropentafluoroethane (R115) on three different activated carbons have been obtained at 303 K and at pressures to 602 kPa.

  14. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  15. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    NASA Astrophysics Data System (ADS)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  16. Production of activated carbon from rice husk Vietnam

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  17. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  18. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  19. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  20. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  1. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  2. The Formation of Carbon Nanofibers on Powdered Activated Carbon Impregnated with Nickel

    NASA Astrophysics Data System (ADS)

    Ahmed, Y. M.; Al-Mamun, A. A.; Muyibi, S. A.; Al-Khatib, M. F. R.; Jameel, A. T.; AlSaadi, M. A.

    2009-06-01

    In the present work, the production and characterization of carbon nanofibers (CNFs) composite is reported. Carbon nanofibers (CNF) were produced on powdered activated carbon PAC—impregnated with nickel—by Chemical Vapor Deposition (CVD) of a hydrocarbon in the presence of hydrogen at ˜780° C. The flow rates of carbon source and hydrogen were fixed. The CNFs were formed directly over the impregnated AC. Variable weight percentage ratios of the catalyst salt (Ni+2) were used for the impregnation (1, 3, 5, 7 and 9%, respectively). The product displays a relatively high surface area, essentially constituted by the external surface, and the absence of the bottled pores encountered with activated carbon. FSEM, TEM and TGA were used for the characterization of the product.

  3. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  4. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution.

  5. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution. PMID:11942707

  6. Glassy aerosols heterogeneously nucleate cirrus ice particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Murray, Benjamin J.; Dobbie, Steven; Cui, Zhiqiang; Al-Jumur, Sardar M. R. K.; Möhler, Ottmar; Schnaiter, Martin; Wagner, Robert; Benz, Stefan; Niemand, Monika; Saathoff, Harald; Ebert, Volker; Wagner, Steven; Kärcher, Bernd

    2010-05-01

    Ice clouds in the tropical tropopause layer (TTL, ~12-18 km, ~180-200 K) play a key role in dehydrating air entering the stratosphere. However, in-situ measurements show that air within these clouds is unexpectedly supersaturated(1); normally the growth of ice crystals rapidly quenches any supersaturation. A number of explanations for high in-cloud humidity have been put forward, but recent research suggests high humidity may be related to the low numbers of ice crystals found within these clouds(1). Low ice number densities can be produced through selective nucleation by a small subset of aerosol particles. This is inconsistent with homogeneous nucleation of ice in liquid aerosols. However, droplets rich in organic material, ubiquitous in the TTL, are known to become glassy (amorphous, non-crystalline solid) under TTL conditions(2,3). Here we show, using a large cloud simulation chamber, that glassy solution droplets nucleate ice heterogeneously at low supersaturations. Using a one-dimensional cirrus model we also show that nucleation by glassy aerosol in the TTL may explain low TTL ice number densities and high in-cloud humidity. Recent measurements of the composition of TTL cirrus residues are consistent with our findings(4). (1) Krämer, M. et al. Ice supersaturations and cirrus cloud crystal numbers. Atm. Chem. Phys. 9, 3505-3522 (2009). (2) Murray, B. J. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atm. Chem. Phys. 8, 5423-5433 (2008). (3) Zobrist, B., Marcolli, C., Pedernera, D. A. & Koop, T. Do atmospheric aerosols form glasses? Atm. Chem. Phys. 8, 5221-5244 (2008). (4) Froyd, K. D., Murphy, D. M., Lawson, P., Baumgardner, D. & Herman, R. L. Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys. 10, 209-218 (2010).

  7. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  8. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  9. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  10. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  11. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  12. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  13. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Tsouris, Costas; McFarlane, Joanna

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  14. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Prof. Harold H. Schobert; Dr. M. Mercedes Maroto-Valer; Ms. Zhe Lu

    2001-09-29

    The implementation of increasingly stringent Clean Air Act Regulations by the coal utility industry has resulted in an increase in the concentration of unburned carbon in coal combustion fly ash. In 1999, around 6 million tons of unburned carbon were disposed in the US, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, this report evaluates and compares several routes for the production of activated carbons from unburned carbon, including physical activation with steam or CO{sub 2}, and chemical activation using KOH pretreatment. During the present reporting period (June 30, 2000--June 29, 2001), Task 1 ''Procurement and characterization of CCBPs'' was concluded, including samples from pulverized utility boilers, a utility cyclone unit equipped with a beneficiation technology, a suspension-fired research boiler, and a class C fly ash. The characterization studies showed that the samples collected have significantly different carbon contents, as determined by the ASTM C114 procedure, with the sample from the cyclone unit containing the highest carbon content (LOI of {approx} 80%), since this unit has been retrofitted with a technology to separate the unburned carbon from the fly ash. The porosity of the samples assembled was characterized by N{sub 2} adsorption isotherms at 77K. The surface areas of the class F fly ash samples from pulverized coal combustors are between 30-40 m{sup 2}/g, while the samples from the suspension-fired research boiler had surface area around 115 m{sup 2}/g. As expected, the surface areas of the class C ash is much higher than that of the class F ashes, with values up to 390 m{sup 2}/g. In addition, during the current reporting period, also Task 2 ''Development of activated carbons'' and Task 3

  15. Porous texture evolution in Nomex-derived activated carbon fibers.

    PubMed

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  16. A comparison of the electrochemical behavior of carbon aerogels and activated carbon fiber cloths

    SciTech Connect

    Tran, T.D.; Alviso, C.T.; Hulsey, S.S.; Nielsen, J.K.; Pekala, R.W.

    1996-05-10

    Electrochemical capacitative behavior of carbon aerogels and commercial carbon fiber cloths was studied in 5M KOH, 3M sulfuric acid, and 0.5M tetrethylammonium tetrafluoroborate/propylene carbonate electrolytes. The resorcinol-formaldehyde based carbon aerogels with a range of denisty (0.2-0.85 g/cc) have open-cell structures with ultrafine pore sizes (5-50 nm), high surface area (400-700 m{sup 2}/g), and a solid matrix composed of interconnected particles or fibers with characteristic diameters of 10 nm. The commercial fiber cloths in the density range 0.2-04g/cc have high surface areas (1000-2500 m{sup 2}/g). The volumetric capacitances of high-density aerogels are shown to be comparable to or exceeding those from activated carbon fibers. Electrochemical behavior of these materials in various electrolytes is compared and related to their physical properties.

  17. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion. PMID:21936376

  18. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  19. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  20. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  1. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  2. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey. PMID:25704972

  3. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey.

  4. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  5. Modified Activated Carbon to be Used in Clinical Applications

    NASA Astrophysics Data System (ADS)

    Fernando, M. S.; de Silva, W. R. M.; de Silva, K. M. N.

    2014-11-01

    In this study a novel nano composite of hydroxyapatite nano particles impregnated activated carbon (C-HAp), which was synthesized in our own method, was used in iron adsorption studies. The study was conducted in order to investigate the potential of using C-HAp nanocomposite to be used in clinical detoxifications such as acute iron toxicity where the use of Activated carbon (GAC) is not very effective. Adsorption studies were conducted for synthetic solutions of Fe2+, Fe3+ and iron syrup using GAC, C-HAp and neat HAp as adsorbents. According to the results C-HAp nano composite showed improved properties than GAC in adsorbing Fe2+, Fe3+ and also Fe ions in iron syrup solutions. Thus the results of the in-vitro studies of iron adsorption studies indicated the potential of using C-HAp as an alternative to activated carbon in such clinical applications.

  6. Chars pyrolyzed from oil palm wastes for activated carbon preparation

    SciTech Connect

    Lua, A.C.; Guo, J.

    1999-01-01

    Chars pyrolyzed from extracted oil palm fibers for the preparation of activated carbons were studied. The effects of pyrolysis temperature and hold time on density, porosity, yield, BET and micropore surface areas, total pore volume, and pore size distributions of chars were investigated. The optimum conditions for pyrolysis were found to be at a pyrolysis temperature of 850 C for a hold time of 3.5 h. Scanning electron micrographs of the char surfaces verified the presence of porosities. The experimental results showed that it was feasible to produce chars with high BET and micropore surface areas from extracted oil palm fibers. The resulting chars will be subjected to steam or carbon dioxide activation to prepare activated carbons for use as gas adsorbents for air pollution control.

  7. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  8. Improved granular activated carbon for the stabilization of wastewater PH

    SciTech Connect

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    1996-12-31

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.

  9. Carbon-Based Supercapacitors Produced by Activation of Graphene

    SciTech Connect

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  10. Carbon-based Supercapacitors Produced by Activation of Graphene

    SciTech Connect

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  11. Removing lead in drinking water with activated carbon

    SciTech Connect

    Taylor, R.M.; Kuennen, R.W. )

    1994-02-01

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction was demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.

  12. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  13. Pore structure of the activated coconut shell charcoal carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  14. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  15. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  16. Glassy Behavior in a Micellar Polyelectrolyte System

    NASA Astrophysics Data System (ADS)

    Bhatia, Surita; Crichton, Mark; Mourchid, Ahmed

    2003-03-01

    We present SANS and rheology for micellar solutions of polystyrene-poly(acrylic acid) block copolymers that can be regarded as attractive colloids. These systems form gels at high effective micellar volume fractions that are suggestive of disordered colloidal glasses. At the gel point, the solution rheology follows the scaling predicted by classical percolation theory. We argue that this scaling could be due either to formation of a percolated network or a pre-transitional glassy phase. The addition of cationic and anionic surfactants (DTAB and SDS) can be used to modify the intermicellar interactions and solution rheology. Addition of an anionic surfactant acts to screen attractive interactions and causes a monotonic decrease in the elastic modulus. However, the addition of a cationic surfactant appears to initially induce a stronger intermicellar attraction, leading to gels with a higher elastic modulus. At higher surfactant concentrations, the cationic surfactant begins to screen intermicellar association, leading to a decrease in elasticity.

  17. Plastic and glassy crystal states of caffeine.

    PubMed

    Descamps, Marc; Correia, Natalia T; Derollez, Patrick; Danede, Florence; Capet, Frédéric

    2005-08-25

    The present paper focuses on the high temperature form I of caffeine and on its low temperature metastable form. Structural, dynamic, and kinetic information has been obtained by X-ray, dielectric, and calorimetric investigations. This study shows the following features: (1) The high temperature phase (I) of caffeine is in a state of dynamically orientationally disordered crystalline state (so-called "plastic, or rotator, phase"). (2) This high-symmetry hexagonal phase can be maintained at low temperature in a metastable situation. (3) Under deep undercooling of form I a glass transition occurs in the disordered crystalline state near room temperature. It is associated with the orientational freezing in of the molecular motions. Otherwise stated, the metastable state I enters into a nonergodic unstable state, so-called "glassy crystal" state. These findings rationalize the difficulties seen with caffeine in pharmaceutical science.

  18. Biaxial stress relaxation in glassy polymers - Polymethylmethacrylate.

    NASA Technical Reports Server (NTRS)

    Sternstein, S. S.; Ho, T. C.

    1972-01-01

    Biaxial stress relaxation studies were performed on glassy polymethylmethacrylate in combined torsion-tension strain fields using a specially designed apparatus with exceptionally high stiffness and low cross talk between the torsional and tensile load measuring transducers. It was found that at low strain levels uniaxial tension relaxation is slower than pure torsion relaxation; tensile-component relaxation rates are unaffected by the level of torsional strain; torsional-component relaxation rates decrease as tensile strain is increased; uniaxial tension relaxation rates approach the pure torsion rates at higher strains (about 2%). A phenomenological treatment is presented which shows that relaxation rates can be coupled to the strain fields in which they are observed and yet be consistent with the concepts of linear viscoelasticity and the Boltzmann superposition integral.

  19. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].

    PubMed

    Liu, Xiao-hong; Wang, Xing-wei; Zhao, Bo; Lü, Jun-fang; Kang, Ni-na; Zhang, Yao-jun

    2014-12-01

    Walnut peel as raw material, zinc chloride was used as activating agent for preparation walnut peel activated carbon in the muffle furnace in this experiment, using orthogonal design. Yield, the specific surface area and iodine number of walnut peel activated carbon were determined at all designed experimental conditions and the optimum technological condition of preparation was obtained. By analysis of aperture, infrared spectra and the content of acidic group in surface with Boehm, walnut peel activated carbon of prepared at the optimum condition was characterized. The results showed the optimum technological parameters of preparation: activation temperature (600 °C), activation time (1 h), the concentration of zinc chloride (50%), the particle size (60 mesh). The specific surface area of walnut peel activated carbon obtained at optimum condition was mounting to 1258.05 m2 · g(-1), the ratio of medium porous 32.18%. Therefore, walnut peel can be used in the preparation of the high-quality activated carbon of large surface area. Agricultural wastes, as walnut peel, not only were implemented recycle, but also didn't make any pollution. Meanwhile, a cheap adsorbent was provided and it was of great significance to open a new source of activated carbon.

  20. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].

    PubMed

    Liu, Xiao-hong; Wang, Xing-wei; Zhao, Bo; Lü, Jun-fang; Kang, Ni-na; Zhang, Yao-jun

    2014-12-01

    Walnut peel as raw material, zinc chloride was used as activating agent for preparation walnut peel activated carbon in the muffle furnace in this experiment, using orthogonal design. Yield, the specific surface area and iodine number of walnut peel activated carbon were determined at all designed experimental conditions and the optimum technological condition of preparation was obtained. By analysis of aperture, infrared spectra and the content of acidic group in surface with Boehm, walnut peel activated carbon of prepared at the optimum condition was characterized. The results showed the optimum technological parameters of preparation: activation temperature (600 °C), activation time (1 h), the concentration of zinc chloride (50%), the particle size (60 mesh). The specific surface area of walnut peel activated carbon obtained at optimum condition was mounting to 1258.05 m2 · g(-1), the ratio of medium porous 32.18%. Therefore, walnut peel can be used in the preparation of the high-quality activated carbon of large surface area. Agricultural wastes, as walnut peel, not only were implemented recycle, but also didn't make any pollution. Meanwhile, a cheap adsorbent was provided and it was of great significance to open a new source of activated carbon. PMID:25881437

  1. Synthesis and characterization of activated carbon from asphalt

    NASA Astrophysics Data System (ADS)

    Kandah, Munther Issa; Shawabkeh, Reyad; Al-Zboon, Mahmoud Ar'ef

    2006-11-01

    Asphalt (cheap and available in huge amount in Jordan) was converted into activated carbon powder by chemical treatment with sulphuric and nitric acids at 450 °C. The final product was characterized and found effective as adsorbent material. Its cation exchange capacity reaches 191.2 meq/100-g carbons when treated with 30 wt% acid/asphalt ratio without airflow rate injection and 208 meq/100-g carbons when 6.5 ml air/min was injected into the surface of the asphalt during activation at the same acid/asphalt weight ratio of 30 and temperature 450 °C. The zero point of charge for this product was found to be stable at pH value around 3 in the range of initial pH between 3 and 10.

  2. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    PubMed

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  3. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  4. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  5. Overview of EPA activities and research related to black carbon

    EPA Science Inventory

    The purpose of this international presentation is to give an overview of EPA activities related to black carbon (BC). This overview includes some summary information on how EPA defines BC, current knowledge on United States emissions and forecasted emission reductions, and ongoin...

  6. Preparation and characterization of activated carbon from demineralized tyre char

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  7. Activated carbon injection - a mercury control success story

    SciTech Connect

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  8. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...

  9. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. PMID:26141882

  10. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  11. Activation and micropore structure of carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  12. Petroleum pollutants in surface and groundwater as indicated by the carbon-14 activity of dissolved organic carbon.

    PubMed

    Spiker, E C; Rubin, M

    1975-01-10

    The (14)C activity of dissolved organic carbon (DOC) can be used to distinguish between the fossil organic carbon due to petrochemical effluents and modern organic carbon due to domestic wastes and natural decaying organic matter. Rivers polluted by petrochemical effluents show varying amounts of depression of the DOC (14)C activity, reflecting concentrations of (14)C-deficient fossil carbon of as much as about 40 percent of the total DOC.

  13. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    PubMed

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.

  14. Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame.

    PubMed

    Bathinapatla, Ayyappa; Kanchi, Suvardhan; Singh, Parvesh; Sabela, Myalowenkosi I; Bisetty, Krishna

    2015-05-15

    A highly sensitive and novel electrochemical sensor for the detection of neotame using differential pulse voltammetry with a modified glassy carbon electrode is presented. The method was further customized by the fabrication of the electrode surface with copper nanoparticles-ammonium piperidine dithiocarbamate-mutiwalled carbon nanotubes assimilated with β-cyclodextrin. The multiwalled carbon nanotubes assimilated with β-cyclodextrin/glassy carbon electrode exhibited catalytic activity towards the oxidation of neotame at a potential of 1.3 V at pH 3.0. The transmission electron microscopy, thermogravimetric analysis, frontier transform infrared spectroscopy and cyclic voltammetry were employed to characterize the electrochemical sensor. The sensitivity and detection limits of the electrode increased two-fold in contrast to the β-CD-MWCNTs/GCE sensor. The developed method was successfully applied for the determination of neotame in food samples, with results similar to those achieved by our modified capillary electrophoresis method with a 96% confidence level.

  15. Determining water content in activated carbon for double-layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  16. Esterase activity of carbonic anhydrases serves as surrogate for selecting antibodies blocking hydratase activity.

    PubMed

    Uda, Narasimha Rao; Seibert, Volker; Stenner-Liewen, Frank; Müller, Philipp; Herzig, Petra; Gondi, Gabor; Zeidler, Reinhard; van Dijk, Marc; Zippelius, Alfred; Renner, Christoph

    2015-12-01

    Carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) were proposed as potential targets for cancer therapy more than 20 years ago. However, to date, there are only very few antibodies that have been described to specifically target CA9 and CA12 and also block the enzymatic activity of their targets. One of the early stage bottlenecks in identifying CA9- and CA12-inhibiting antibodies has been the lack of a high-throughput screening system that would allow for rapid assessment of inhibition of the targeted carbon dioxide hydratase activity of carbonic anhydrases. In this study, we show that measuring the esterase activity of carbonic anhydrase offers a robust and inexpensive screening method for identifying antibody candidates that block both hydratase and esterase activities of carbonic anhydrase's. To our knowledge, this is the first implementation of a facile surrogate-screening assay to identify potential therapeutic antibodies that block the clinically relevant hydratase activity of carbonic anhydrases. PMID:25775095

  17. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    PubMed

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. PMID:22370231

  18. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or... dioxins/furans and mercury stack test, determine the average carbon feed rate in kilograms (or pounds)...

  19. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs. PMID:17157493

  20. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  1. Modeling trapping mechanism for PCB adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Jensen, Bjørnar; Kvamme, Bjørn; Kuznetsova, Tatyana; Oterhals, A.˚ge

    2012-12-01

    The levels of polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran (PCDD/F) and dioxin-like polychlorinated biphenyl (DL-PCB) in fishmeal and fish oil produced for use in feed for salmon is above present European legislation levels in some regions of the world and different decontamination approaches have been proposed [1]. One of these is adsorption on activated carbon. This approach appears to be efficient for adsorption of PCDD/F but less efficient for DL-PCB [2]. Activated carbon consists of slit pores with average sizes of 20 - 50 Ångstroms. One hypothesis [2] for the mechanism of trapping DL-PCB is reduced ability for intramolecular movements of the PCB molecules inside the slit pores. In order to investigate this hypothesis we have used quantum mechanics [3] to characterize two DL-PCB congeners, respectively congener 77 (3,3',4,4'-Tetrachlorobiphenyl) and congener 118 (2,3',4,4',5-Pentachlorobiphenyl) and Triolein (18:1) [4] as a major constituent of the solvent fish oil. A model for activated carbon was constructed using a crystal structure of graphite from the American Mineralogist Crystal Structure Database [5]. The crystal structure used was originally from Wyckoff [6]. A small program had to be written to generate the desired graphite structure as it contains no less than 31232 Carbon atoms. Partial atomic charges were estimated using QM with DFT/B3LYP/6-311+g** and SM6 [7].

  2. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-01

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions. PMID:22663136

  3. Formation of continuous activated carbon fibers for barrier fabrics

    NASA Astrophysics Data System (ADS)

    Liang, Ying

    1997-08-01

    Commercial protective suits made of active carbon granules or nonwoven fabrics are heavy, have low moisture vapor transport rate, and are uncomfortable. Inherent problems due to construction of barrier fabrics lead to severe heat stress when worn for even short time in warm environments. One proposed method to eliminate these problems is to facilitate the construction of a fabric made of continuous activated carbon fibers (CACF). This study is directed toward investigating the possibility of developing CAFC from two precursors: aramid and fibrillated PAN fiber. It was shown in this study that Kevlar-29 fibers could be quickly carbonized and activated to CACF with high adsorptivity and relatively low weight loss. CACF with high surface area (>500 msp2/g) and reasonable tenacity (≈1g/denier) were successfully prepared from Kevlar fibers through a three-step process: pretreatment, carbonization, and activation. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis were conducted to understand the evolution of physical and chemical properties during pretreatment. The influence of temperature, heating rate, and pyrolysis environment on the thermal behavior was determined by DSC and TGA/DTA and used as an indicator for optimizing the pyrolysis conditions. Surface analysis by nitrogen isotherms indicated that the resultant fibers had micropores and mesopores on the surface of CACF. This was also inferred by studies on the surface morphology through Scanning Electron Microscopy (SEM) and Scanning Tunneling Microscopy (STM). An investigation of the surface chemical structure by X-ray photoelectron spectroscopy (XPS) before and after activation and elemental analysis confirmed that adsorption of Kevlar based CACF mainly arises due to the physisorption instead of chemisorption. A multistep stabilization along with carbonization and activation was used to prepare active carbon fiber from fibrillated PAN fiber. The resultant fiber retained

  4. Nitric acid vapor removal by activated, impregnated carbons

    SciTech Connect

    Wood, G.O.

    1996-12-31

    Laboratory and industrial workers can be exposed to vapors of nitric acid, especially in accidents, such as spills. Nitric acid can also be a product of incineration for energy production or waste (e.g., CW agent) disposal. Activated carbons containing impregnants for enhancing vapor and gas removal have been tested for effectiveness in removing vapors of nitric acid from air. The nitric acid vapor was generated from concentrated acid solutions and detected by trapping in a water bubbler for pH measurements. Both low and moderate relative humidity conditions were used. All carbons were effective at vapor contact times representative of air-purifying respirator use. One surprising observation was the desorption of low levels of ammonia from impregnated carbons. This was apparently due to residual ammonia from the impregnation processes.

  5. Sorption of cobalt on activated carbons from aqueous solutions

    SciTech Connect

    Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P.

    1997-01-01

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  6. Structural characteristics of modified activated carbons and adsorption of explosives.

    PubMed

    Tomaszewski, W; Gun'ko, V M; Skubiszewska-Zieba, J; Leboda, R

    2003-10-15

    Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.

  7. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R.; Trois, C.

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  8. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  9. Authigenic carbonates from active methane seeps offshore southwest Africa

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 < δ13C ‰ V-PDB < -40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4 < δ18O ‰ V-PDB < +6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby

  10. Activated carbons obtained from sewage sludge by chemical activation: gas-phase environmental applications.

    PubMed

    Boualem, T; Debab, A; Martínez de Yuso, A; Izquierdo, M T

    2014-07-01

    The objective of this study was to evaluate the adsorption capacity for toluene and SO2 of low cost activated carbons prepared from sewage sludge by chemical activation at different impregnation ratios. Samples were characterized by proximate and ultimate analyses, thermogravimetry, infrared spectroscopy and N2 adsorption. Because of the low carbon content of the raw material, the development of porosity in the activated carbons was mainly of a mesoporous nature, with surface areas lower than 300 m(2)/g. The study of gas-phase applications for activated carbons from sewage sludge was carried out using both an organic and an inorganic compound in order to screen for possible applications. Toluene adsorption capacity at saturation was around 280 mg/g, which is a good level of performance given the high ash content of the activated carbons. However, dynamic experiments at low toluene concentration presented diffusion problems resulting from low porosity development. SO2 adsorption capacity is associated with average micropore size, which can be controlled by the impregnation ratio used to prepare the activated carbons.

  11. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation

    SciTech Connect

    Tam, M.S.; Antal, M.J. Jr.

    1999-11-01

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

  12. A structural approach to relaxation in glassy liquids

    NASA Astrophysics Data System (ADS)

    Schoenholz, S. S.; Cubuk, E. D.; Sussman, D. M.; Kaxiras, E.; Liu, A. J.

    2016-05-01

    In contrast with crystallization, there is no noticeable structural change at the glass transition. Characteristic features of glassy dynamics that appear below an onset temperature, T0 (refs ,,), are qualitatively captured by mean field theory, which assumes uniform local structure. Studies of more realistic systems have found only weak correlations between structure and dynamics. This raises the question: is structure important to glassy dynamics in three dimensions? We answer this question affirmatively, using machine learning to identify a new field, `softness' which characterizes local structure and is strongly correlated with dynamics. We find that the onset of glassy dynamics at T0 corresponds to the onset of correlations between softness (that is, structure) and dynamics. Moreover, we construct a simple model of relaxation that agrees well with our simulation results, showing that a theory of the evolution of softness in time would constitute a theory of glassy dynamics.

  13. Characterization and metal sorptive properties of oxidized active carbon.

    PubMed

    Strelko, Vladimir; Malik, Danish J

    2002-06-01

    A commercial activated carbon Chemviron F 400 has been oxidized using nitric acid in order to introduce a variety of acidic surface functional groups. Both unoxidized and oxidized carbon samples were characterized using nitrogen porosimetry, elemental analysis, pH titration, Boehm's titration, and electrophoretic mobility measurements. Results show that oxidation treatment reduced surface area and pore volume. However, the carbon surface acquires an acidic character with carboxylic groups being the dominant surface functional groups. The modified sample displays cation-exchange properties over a wide range of pH values and exhibits polyfunctional nature. Both carbon samples were challenged for the removal of transition metals such as copper(II), nickel(II), cobalt(II), zinc(II), and manganese(II). The affinity series Mn2+Zn2+ has been found to coincide with the general stability sequence of metal complexes (the Irving-Williams series). The higher preference displayed by carbons toward copper(II) is a consequence of the fact that copper(II) often forms distorted and more stable octahedral complexes. PMID:16290653

  14. Carbon Limited Heterotrophic Activity in an Urban Stream

    NASA Astrophysics Data System (ADS)

    Hassett, B.; Bernhardt, E.; Palmer, M.

    2005-05-01

    Urban streams are characterized by flashy hydrographs, heavily incised channels, and scoured bed materials. Because of frequent scour, benthic organic matter in urban streams tends to be extremely low relative to nonurban streams. Recent research has related low organic matter availability to low rates of nitrogen uptake. We hypothesized that urban streams are carbon limited, and tested this hypothesis by adding a pulse of labile carbon (as potassium acetate) to the Stewart April tributary of Paint Branch, which drains a heavily urbanized watershed 73% impervious cover) in the suburbs of Washington, D.C. We predicted that the magnitude of the carbon effect on stream metabolism and N processing would be reduced as a result of litter inputs, and compared the stream response before and after peak litterfall. Adding labile dissolved organic carbon to the stream immediately increased metabolism in the stream channel during both additions, but this increase in heterotrophic activity did not lead to reductions in dissolved inorganic nitrogen concentrations. This indicates that while heterotrophs in this stream are carbon limited, the microbial community was not able to respond quickly enough to the pulse addition to appreciably reduce DIN concentrations in this eutrophic stream.

  15. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.

    PubMed

    Dong, Qiang; Wang, Gang; Wu, Tingting; Peng, Senpei; Qiu, Jieshan

    2015-05-15

    Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF.

  16. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    NASA Astrophysics Data System (ADS)

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  17. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  18. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    PubMed

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. PMID:27612835

  19. Synthesis and characterization of novel glassy liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Huang-Ming Philip

    As an emerging class of photonic and electronic materials, glassy liquid crystals are capable of preserving in the solid state molecular order characteristic of liquid crystals. Because of superior chemical purity and favorable rheological properties, glassy liquid crystals can be readily processed into large-area monodomain films. This thesis aimed at deterministic synthesis of glassy chiral nematics, photochromic glassy nematics, and glassy discotics. The most significant contributions are recapitulated as follows: (1) Through deterministic synthesis of multifunctional materials via enzymatic and chemical approaches, enantiomeric glassy chiral nematics were prepared efficiently and shown to possess a glass transition temperature over 60°C and a cholesteric fluid temperature range wider than 100°C. Device concepts were also demonstrated for high-performance circular polarizers, notch filters and reflectors in the ultraviolet, across the visible, and to the infrared region. (2) The first photochromic glassy nematic liquid crystal was successfully designed, synthesized and characterized to possess a glass transition temperature over 100°C and a clearing point over 200°C. A large-area solid film was prepared through melt processing to demonstrate high-speed switching of anisotropic refractive indices and optical birefringence as a novel approach to rewritable optical memory and photonic switching in solid films. (3) Glassy discotic liquid crystals were synthesized and characterized by x-ray diffraction, polarizing optical microscopy, differential scanning calorimetry, and dynamic mechanical analysis to reveal sub-freezing glass transition temperatures. However, the absence of recrystallization at room temperature over a period of over four years was a manifestation of morphological stability of the discotics.

  20. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  1. Production of charcoal and activated carbon at elevated pressure

    SciTech Connect

    Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr.

    1995-12-31

    With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

  2. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    PubMed

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance. PMID:27337069

  3. Activated carbon from flash pyrolysis of eucalyptus residue.

    PubMed

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity. PMID:27668291

  4. Activated carbon from flash pyrolysis of eucalyptus residue.

    PubMed

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  5. Wetting and Non-Wetting Models of Black Carbon Activation

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  6. Effects of molecular architecture on fluid ingress behavior of glassy polymer networks

    NASA Astrophysics Data System (ADS)

    Jaskson, Matthew Blaine

    This manuscript demonstrates the synthesis of glassy polymer network isomers to control morphological variations and study solvent ingress behavior independent of chemical affinity. Well-controlled network architectures with varying free volume average hole-sizes have been shown to substantially influence solvent ingress within glassy polymer networks. Bisphenol-A diglycidyl ether (DGEBA), bisphenol-F diglycidyl ether (DGEBF), Triglycidyl p-aminophenol (pAP, MY0510), Triglycidyl maminophenol (mAP, MY0610), and tetraglydicyl-4,4'-diamino-diphenyl methane (TGDDM, MY721) were cured with 3,3'- and 4,4'-diaminodiphenyl sulfone (DDS) at a stoichiometric ratio of 1:1 oxirane to amine active hydrogen to generate a series of network architectures with an average free volume hole-size (Vh) ranging between 54-82 A3. Polymer networks were exposed to water and a broad range of organic solvents ranging in van der Waals (vdW) volumes from 18-88 A3 for up to 10,000h time. A clear relationship between glassy polymer network Vh and fluid penetration has been established. As penetrant vdW volume approached Vh, uptake kinetics significantly decreased, and as penetrant vdW volume exceeded Vh, a blocking mechanism dominated ingress and prevented penetrant transport. These results suggest that reducing the free volume hole-size is a reasonable approach to control solvent properties for glassy polymer networks. New techniques to monitor and predict the diffusion behavior of liquids through glassy networks are also presented. Digital Image Correlation (DIC) was employed to accurately measure the strain developed during case II diffusion. This technique also presented a new theory for a relationship between sample topology and irreversible macroscopic brittle failure induced by solvent absorption. A new modeling technique has been developed which can accurately predict the chemical and physical interactions a solvent may have with a glassy network. This new model can be used as a

  7. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    SciTech Connect

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  8. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGES

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  9. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    PubMed

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. PMID:23794416

  10. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.

    PubMed

    Izquierdo, M T; Rubio, B

    2008-06-30

    Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.

  11. Effect of chemical substituents on the structure of glassy diphenyl polycarbonates.

    PubMed

    Sulatha, M S; Natarajan, Upendra

    2011-02-24

    Polycarbonates offer a wide variety of physical property behavior that is difficult to predict due to complexities at the molecular scale. Here, the physical structure of amorphous glassy polycarbonates having aliphatic and cycloaliphatic chemical groups is explored through atomistic simulations. The influence of chemical structure on solubility parameter, torsion distributions, radial distribution function, scattering structure factor, orientation distributions of phenylene rings and carbonate groups, and free volume distributions, leading to interchain packing effects, are shown. The effect of the cyclohexyl ring at the isopropylidene carbon as compared to the effect of the methyl groups positioned on the phenylene rings results in a larger reduction in the solubility parameter (δ). The interchain distance estimated for polycarbonates in this work is in the range of 5-5.8 Å. The o-methyl groups on the phenylene rings, as compared to a cyclohexyl ring, lead to higher interchain distances. The highest interchain distance is observed with a trimethylcyclohexylidene group at the isopropylidene carbon. Atomistic simulations reveal two different types of packing arrangement of nearest-neighbor chains in the glassy state, one type of which agrees with the NMR experimental data. The fundamental insights provided here can be utilized for design of chemical structures for tailored macroscopic properties.

  12. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  13. Removal of carbonyl sulfide using activated carbon adsorption.

    PubMed

    Sattler, Melanie L; Rosenberk, Ranjith Samuel

    2006-02-01

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.

  14. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    NASA Astrophysics Data System (ADS)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  15. Cost and performance of activated carbon injection for mercury control

    SciTech Connect

    2006-08-15

    Activated carbon injection (ACI) is one technology being developed to absorb mercury from mercury emitted from coal-fired power plants. In 2003/04, the USDOE and NETL selected 14 projects to test and evaluate mercury control technologies. While field testing is still ongoing, DOE/NETL recently completed an economic analysis of mercury control for six test sites spanning three ACI variations - conventional powdered activated carbon (PAC), brominated PAC and conventional PAC combined with a sorbent enhancement additive (SEA) applied to the coal. To evaluate the progress of the field testing program and discern the performance of ACI, a data adjustment methodology was developed to account for baseline methane capture. This data were used to perform economic analyses to achieve low, mid and high levels of mercury control. The costs are given in the article. Full details are available on the DOE/NETL website, www.netl.doe.gov. 2 figs., 1 photo.

  16. Predictions of adsorption equilibria of nonpolar hydrocarbons onto activated carbon

    SciTech Connect

    Do, D.D.; Wang, K.

    1998-12-08

    This paper presents a new approach to analyze the adsorption equilibria of nonpolar hydrocarbons onto activated carbon. The kinetic theory of gases and the 10-4-3 potential energy were employed to describe the adsorption process inside micropores. On the basis of this theory, a general isotherm model was proposed which possesses the potential capability of predicting the adsorption equilibria of an adsorbent by using the knowledge of its microporous structure and molecular properties of adsorbates. Experimental data of gases and vapors on Ajax activated carbon were employed to examine the model. Adsorption equilibria of binary mixtures were also investigated with the model, and it is shown that the model is capable of simulating the nonideal, or azeotropic, adsorption behaviors resulting from the structural heterogeneity of the adsorbent.

  17. Activated carbon treatment of municipal solid waste incineration flue gas.

    PubMed

    Lu, Shengyong; Ji, Ya; Buekens, Alfons; Ma, Zengyi; Jin, Yuqi; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Activated carbon injection is widely used to control dioxins and mercury emissions. Surprisingly little attention has been paid to its modelling. This paper proposes an expansion of the classical Everaerts-Baeyens model, introducing the expression of fraction of free adsorption sites, f (s), and asserting the significant contribution of fly ash to dioxins removal. Moreover, the model monitors dioxins partitioning between vapour and particulate phase, as well as removal efficiency for each congener separately. The effects of the principal parameters affecting adsorption are analysed according to a semi-analytical, semi-empirical model. These parameters include temperature, contact time during entrained-flow, characteristics (grain-size, pore structure, specific surface area) and dosage of activated carbon, lignite cokes or mineral adsorbent, fly ash characteristics and concentration, and type of incinerator plant. PMID:23179511

  18. Structural Properties of Defects in Glassy Liquids.

    PubMed

    Cubuk, Ekin D; Schoenholz, Samuel S; Kaxiras, Efthimios; Liu, Andrea J

    2016-07-01

    At zero temperature a disordered solid corresponds to a local minimum in the energy landscape. As the temperature is raised or the system is driven with a mechanical load, the system explores different minima via dynamical events in which particles rearrange their relative positions. We have shown recently that the dynamics of particle rearrangements are strongly correlated with a structural quantity associated with each particle, "softness", which we can identify using supervised machine learning. Particles of a given softness have a well-defined energy scale that governs local rearrangements; because of this property, softness greatly simplifies our understanding of glassy dynamics. Here we investigate the correlation of softness with other commonly used structural quantities, such as coordination number and local potential energy. We show that although softness strongly correlates with these properties, its predictive power for rearrangement dynamics is much higher. We introduce a useful metric for quantifying the quality of structural quantities as predictors of dynamics. We hope that, in the future, authors introducing new structural measures of dynamics will compare their proposals quantitatively to softness using this metric. We also show how softness correlations give insight into rearrangements. Finally, we explore the physical meaning of softness using unsupervised dimensionality reduction and reduced curve-fitting models, and show that softness can be recast in a form that is amenable to analytical treatment.

  19. Liquid Phase Adsorption of α-Tocopherol by Activated Carbon

    NASA Astrophysics Data System (ADS)

    Bono, Awang; Ming, Chu Chi; Sundang, Murni

    α-Tocopherol or commonly called vitamin E can be found in major commercial vegetable oils such as soya oil and palm oil. However the existence in these oil is in low concentration. The recovery of low concentration of α-tocopherol from palm oils is increasingly popular. Adsorption technique for the recovery of α-tocopherol from palm oil is believed to be much lower in cost and more effective. As a case study in this work, activated carbon is chosen as the adsorbent and ethanol as the solvent. The adsorption equilibria of α-tocopherol onto activated carbon was conducted in batch and the concentration of α-tocopherol was identified by LCMS. Langmuirian monolayer adsorption theory was used for the analysis of the isotherm equilibria. The adsorptivity of α-tocopherol onto activated carbon was identified. The adsorption equilibria at low concentration found to be linear. The breakthrough curve was then generated using model assuming isothermal, single transition trace component with intraparticle diffusion. Sensitivity test on the curve indicated that the system is very sensitive to changes in diffusitivity and passive to changes on the equilibrium constant.

  20. Adsorption of dyes onto activated carbon prepared from olive stones.

    PubMed

    Najar-Souissi, Souad; Ouederni, Abdelmottaleb; Ratel, Abdelhamid

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue (MB), Rhodamine B (RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30 degrees C, which were well described by Langmuir model. The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C0(0.51). PMID:16465895

  1. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  2. Restricted dynamics of molecular hydrogen confined in activated carbon nanopores

    SciTech Connect

    Contescu, Cristian I; Saha, Dipendu; Gallego, Nidia C; Mamontov, Eugene; Kolesnikov, Alexander I; Bhat, Vinay V

    2012-01-01

    Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: PFAC (derived from polyfurfuryl alcohol) and UMC (ultramicroporous carbon). Fast, but incomplete ortho-para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 ) were immobile below 22-25 K. Mobility increased rapidly with temperature above this threshold, which is 8 K higher than the melting point of bulk hydrogen. Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between ~22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H2 confined in narrow nanopores.

  3. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    NASA Astrophysics Data System (ADS)

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  4. Liquid-Phase Adsorption of Phenol onto Activated Carbons Prepared with Different Activation Levels.

    PubMed

    Hsieh; Teng

    2000-10-01

    The influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions was explored. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons, determined according to the Dubinin-Stoeckli equation, were found to vary with the burn-off level. By incorporating the distribution with the Dubinin-Radushkevich equation using an inverse proportionality between the micropore size and the adsorption energy, the isotherms for the adsorption of phenol onto these carbons can be well predicted. The present study has demonstrated that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores. Copyright 2000 Academic Press. PMID:10998301

  5. Preparation of functionalized and metal-impregnated activated carbon by a single-step activation method

    NASA Astrophysics Data System (ADS)

    Dastgheib, Seyed A.; Ren, Jianli; Rostam-Abadi, Massoud; Chang, Ramsay

    2014-01-01

    A rapid method to prepare functionalized and metal-impregnated activated carbon from coal is described in this paper. A mixture of ferric chloride and a sub-bituminous coal was used to demonstrate simultaneous coal activation, chlorine functionalization, and iron/iron oxides impregnation in the resulting porous carbon products. The FeCl3 concentration in the mixture, the method to prepare the FeCl3-coal mixture (solid mixing or liquid impregnation), and activation atmosphere and temperature impacted the surface area and porosity development, Cl functionalization, and iron species impregnation and dispersion in the carbon products. Samples activated in nitrogen or a simulated flue gas at 600 or 1000 °C for 1-2 min had surface areas up to ∼800 m2/g, bulk iron contents up to 18 wt%, and surface chlorine contents up to 27 wt%. Potential catalytic and adsorption application of the carbon materials was explored in catalytic wet air oxidation (CWAO) of phenol and adsorption of ionic mercury from aqueous solutions. Results indicated that impregnated activated carbons outperformed their non-impregnated counterparts in both the CWAO and adsorption tests.

  6. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  7. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  8. System and method for coproduction of activated carbon and steam/electricity

    DOEpatents

    Srinivasachar, Srivats; Benson, Steven; Crocker, Charlene; Mackenzie, Jill

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  9. Preparation and characterization of activated carbon from marine macro-algal biomass.

    PubMed

    Aravindhan, R; Raghava Rao, J; Unni Nair, B

    2009-03-15

    Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (S(BET)) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m(2)g(-1), respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon.

  10. Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon.

    PubMed

    Surdo, Erin M; Khan, Iftheker A; Choudhury, Atif A; Saleh, Navid B; Arnold, William A

    2011-04-15

    Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations. PMID:21349636

  11. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  12. An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue

    SciTech Connect

    Fukuyama, H.; Terai, S.

    2007-07-01

    Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

  13. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    PubMed

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review. PMID:26654592

  14. Passive, integrated measurement of indoor radon using activated carbon.

    PubMed

    George, A C

    1984-04-01

    Activated carbon canisters were tested to determine their adsorption and retention characteristics for radon. Our tests conducted indoors under typical conditions of temperature and relative humidity indicate that simple, inexpensive and maintenance-free passive devices containing 150-200 g of activated carbon can measure radon conveniently and adequately. The amount of radon absorbed in the collector is determined by counting the gamma rays from the decay products of radon. The lower limit of detection for radon is 0.2 pCi/l. for an exposure of 72 hr. Greater sensitivity can be obtained with larger counting systems and devices containing carbon with more surface area. Tests in a residential building and in a test chamber indicate that the measured radon in the canister is proportional to the mean concentration of radon during the period of exposure when correction for relative humidity is made. For practical situations encountered indoors, the device yields results accurate to within +/- 20%. Results from field measurements indicate that the use of the device is feasible.

  15. Novel electro-fenton approach for regeneration of activated carbon.

    PubMed

    Bañuelos, Jennifer A; Rodríguez, Francisco J; Manríquez Rocha, Juan; Bustos, Erika; Rodríguez, Adrián; Cruz, Julio C; Arriaga, L G; Godínez, Luis A

    2013-07-16

    An electro-Fenton-based method was used to promote the regeneration of granular activated carbon (GAC) previously adsorbed with toluene. Electrochemical regeneration experiments were carried out using a standard laboratory electrochemical cell with carbon paste electrodes and a batch electrochemical reactor. For each system, a comparison was made using FeSO4 as a precursor salt in solution (homogeneous system) and an Fe-loaded ion-exchange resin (Purolite C-100, heterogeneous system), both in combination with electrogenerated H2O2 at the GAC cathode. In the two cases, high regeneration efficiencies were obtained in the presence of iron using appropriate conditions of applied potential and adsorption-polarization time. Consecutive loading and regeneration cycles of GAC were performed in the reactor without great loss of the adsorption properties, only reducing the regeneration efficiency by 1% per cycle during 10 cycles of treatment. Considering that, in the proposed resin-containing process, the use of Fe salts is avoided and that GAC cathodic polarization results in efficient cleaning and regeneration of the adsorbent material, this novel electro-Fenton approach could constitute an excellent alternative for regenerating activated carbon when compared to conventional methods. PMID:23782426

  16. Laser light triggered-activated carbon nanosystem for cancer therapy.

    PubMed

    Chu, Maoquan; Peng, Jinliang; Zhao, Jiajia; Liang, Shanlu; Shao, Yuxiang; Wu, Qiang

    2013-02-01

    Among carbon-based nanomaterials, activated carbon (AC) may be an ideal candidate as a carrier for tumor therapeutic agents. Here we found a new property of nanoscale activated carbon (NAC) with narrow size distribution, namely the rapid conversion of light to thermal energy both in vitro and in vivo. An aqueous suspension of 200 μL of NAC (1 mg/mL) exhibited a rapid temperature increase of more than 35 °C after irradiation for 20 min with a 655-nm laser; this was within the temperature range for effective tumor treatment. We demonstrated that lung cancer cells (H-1299) incubated with bamboo nano-AC (BNAC) were killed with high efficiency after laser irradiation. In addition, mouse tumors with sizes smaller than the laser spot that had been injected with BNAC disappeared after irradiation. For tumors larger than the laser spot area, the incorporation of the photosensitizer ZnPc obviously increased the tumor growth inhibition efficiency of BNAC. BNAC-ZnPc was found to exhibit a synergistic effect when photothermal and photodynamic therapies were administered in combination. These results indicated that NAC can be used for high efficiency cancer phototherapy.

  17. Removal of bromate and assimilable organic carbon from drinking water using granular activated carbon.

    PubMed

    Huang, W J; Peng, H S; Peng, M Y; Chen, L Y

    2004-01-01

    This study investigated the feasibility of using granular activated carbon (GAC) to remove bromate ion (BrO3-) and assimilable organic carbon (AOC) from drinking water through a rapid small-scale column test (RSSCT) method and a pilot-scale study. Results from RSSCT indicated that the GAC capacity for BrO3- removal was dependent on the GAC type, empty bed contact time (EBCT), and source water quality. The GAC with a high number of basic groups and higher pHpzc values showed an increased BrO3- removal capacity. BrO3- removal was improved by increasing EBCT. The high EBCT provides a greater opportunity for BrO3- to be adsorbed and reduced to Br- on the GAC surface. On the other hand, the presence of dissolved organic carbon (DOC) and anions, such as chloride, bromide, and sulfate, resulted in poor BrO3- reduction. In the GAC pilot plant, a GAC column preloaded for 12 months achieved a BrO3- and AOC removal range from 79-96% and 41-75%, respectively. The BrO3- amount removed was found to be proportional to the influent BrO3- concentration. However, the BrO3- removal rate apparently decreased with increasing operation time. In contrast, the AOC apparently increased during the long-term operation period. This may be a result of the contribution due to new GAC being gradually transformed into biological activated carbon (BAC), and the bacterial biomass adsorbed on GAC surface hindering BrO3- reduction by GAC either by blocking pores or adsorbing at the activated sites for BrO3- reduction. PMID:15566189

  18. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  19. Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation

    NASA Astrophysics Data System (ADS)

    Górka, Joanna; Zawislak, Aleksandra; Choma, Jerzy; Jaroniec, Mietek

    2010-06-01

    Two series of phenolic resin-based mesoporous carbons were prepared by soft-templating strategy, which involves the formation of thermosetting carbon precursor by polymerization of phloroglucinol and formaldehyde in hydrophilic mesodomains of a thermally decomposable triblock copolymer used as a soft-template. It was shown that the volumes of mesopores and micropores in the resulting carbons can be tuned by varying carbonization temperature of phenolic resins in the range from 400 to 1000 °C followed by the post-synthesis KOH activation at 700 °C. The highly microporous carbons were obtained by KOH activation of phenolic resins pyrolyzed at lower temperature (˜500 °C), while high temperature KOH activation (˜800 °C) afforded microporous carbons with preserved mesoporosity.

  20. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    NASA Astrophysics Data System (ADS)

    Pinto, Susana; D'Ornelas, Lindora; Betancourt, Paulino

    2008-06-01

    Vanadium nanoparticles (˜7 nm) stabilized on activated carbon were synthesized by the reduction of VCl 3·3THF with K[BEt 3H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 °C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.