Science.gov

Sample records for activated glial cells

  1. Plasmin Activation of Glial Cells through Protease-Activated Receptor 1.

    PubMed

    Greenidge, André R; Hall, Kiana R; Hambleton, Ian R; Thomas, Richelle; Monroe, Dougald M; Landis, R Clive

    2013-01-01

    The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury. PMID:23431500

  2. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters

    PubMed Central

    Newman, Eric A.

    2015-01-01

    Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells. PMID:26009774

  3. Brain but not retinal glial cells have carbonic anhydrase activity in the honeybee drone.

    PubMed

    Walz, B

    1988-02-15

    Carbonic anhydrase (CA) activity was localized histochemically in the retina and brain of the honeybee drone. A positive reaction that could be inhibited with 10(-5) M acetazolamide was found only in brain glial cells such as those in the lamina and medulla of the optic lobes. In the retina, neither the photoreceptors nor the pigmented glial cells showed CA activity. Hence, there is a marked difference between retinal and brain glial cells with respect to those functions thought to be performed by CA. This study extends the range of tissues in which CA has been shown to be localized in glial cells, but the absence of CA from the retina will impose constraints on a general explanation of the role of CA in nervous tissue.

  4. Transcriptional regulation of glial cell specification.

    PubMed

    Ragone, Gianluca; Van De Bor, Véronique; Sorrentino, Sandro; Kammerer, Martial; Galy, Anne; Schenck, Annette; Bernardoni, Roberto; Miller, Alita A; Roy, Nivedita; Giangrande, Angela

    2003-03-01

    Neuronal differentiation relies on proneural factors that also integrate positional information and contribute to the specification of the neuronal type. The molecular pathway triggering glial specification is not understood yet. In Drosophila, all lateral glial precursors and glial-promoting activity have been identified, which provides us with a unique opportunity to dissect the regulatory pathways controlling glial differentiation and specification. Although glial lineages are very heterogeneous with respect to position, time of differentiation, and lineage tree, they all express and require two homologous genes, glial cell deficient/glial cell missing (glide/gcm) and glide2, that act in concert, with glide/gcm constituting the major glial-promoting factor. Here, we show that glial specification resides in glide/gcm transcriptional regulation. The glide/gcm promoter contains lineage-specific elements as well as quantitative and turmoil elements scattered throughout several kilobases. Interestingly, there is no correlation between a specific regulatory element and the type of glial lineage. Thus, the glial-promoting factor acts as a naive switch-on button that triggers gliogenesis in response to multiple pathways converging onto its promoter. Both negative and positive regulation are required to control glide/gcm expression, indicating that gliogenesis is actively repressed in some neural lineages. PMID:12618139

  5. Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells.

    PubMed

    Hisaoka, Kazue; Takebayashi, Minoru; Tsuchioka, Mami; Maeda, Natsuko; Nakata, Yoshihiro; Yamawaki, Shigeto

    2007-04-01

    Recent studies show that neuronal and glial plasticity are important for therapeutic action of antidepressants. We previously reported that antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production in rat C6 glioma cells (C6 cells). Here, we found that amitriptyline, a tricyclic antidepressant, increased both GDNF mRNA expression and release, which were selectively and completely inhibited by mitogen-activated protein kinase kinase inhibitors. Indeed, treatment of amitriptyline rapidly increased extracellular signal-regulated kinase (ERK) activity, as well as p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase activities. Furthermore, different classes of antidepressants also rapidly increased ERK activity. The extent of acute ERK activation and GDNF release were significantly correlated to each other in individual antidepressants, suggesting an important role of acute ERK activation in GDNF production. Furthermore, antidepressants increased the acute ERK activation and GDNF mRNA expression in normal human astrocytes as well as C6 cells. Although 5-hydroxytryptamine (serotonin) (5-HT), but not noradrenaline or dopamine, increased ERK activation and GDNF release via 5-HT2A receptors, ketanserin, a 5-HT2A receptor antagonist, did not have any effect on the amitriptyline-induced ERK activation. Thus, GDNF production by amitriptyline was independent of monoamine. Both of the amitriptyline-induced ERK activation and GDNF mRNA expression were blocked by genistein, a general protein tyrosine kinase (PTK) inhibitor. Actually, we found that amitriptyline acutely increased phosphorylation levels of several phosphotyrosine-containing proteins. Taken together, these findings indicate that ERK activation through PTK regulates antidepressant-induced GDNF production and that the GDNF production in glial cells may be a novel action of the antidepressant, which is independent of monoamine. PMID:17210798

  6. Activity of JC virus archetype and PML-type regulatory regions in glial cells.

    PubMed

    Ault, G S

    1997-01-01

    Sequence variations are seen in the JC virus promoter/enhancer in virus taken from progressive multifocal leukoencephalopathy (PML) brains and it has been hypothesized that the variations arise in the host at some point in the development of PML. These rearrangements may be adaptations for enhanced growth in glial cells; if so, transcription or replication levels should differ between archetypal and rearranged PML-type promoters. The archetype and four PML-type promoters were analysed in human glial cells for early and late transcriptional activity in the absence or presence of virus T antigen, and for DNA replication. CAT reporter expression differed within a fivefold range and the archetype was intermediate in strength to the PML-type regulatory regions. The archetype differed from rearranged promoters in that the late promoter was less responsive to T antigen and the shift from early to late activity with T antigen was less pronounced. All five regulatory regions demonstrated similar levels of DNA replicating activity. Rearrangement of the archetype was not required for activity in glial cells, but the potential for differences in the regulation of the late capsid genes was found.

  7. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents

    PubMed Central

    Hanani, Menachem; Blum, Erez; Liu, Shuangmei; Peng, Lichao; Liang, Shangdong

    2014-01-01

    Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ-treatment the number of neurons surrounded with GFAP-positive SGCs in dorsal root ganglia increased 4-fold in mice and 5-fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2-fold in STZ-treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target. PMID:25312986

  8. Physiology of transformed glial cells.

    PubMed

    Brismar, T

    1995-11-01

    Much of our present knowledge of glial cell function stems from studies of glioma cell lines, both rodent (C6, C6 polyploid, and TR33B) and human (1321N1, 138MG, D384, R-111, T67, Tp-276MG, Tp-301MG, Tp-483MG, Tp-387MG, U-118MG, U-251MG, U-373MG, U-787MG, U-1242MG, and UC-11MG). New methods such as patch clamp and Ca2+ imaging have lead to rapid progress the last few years in our knowledge about glial cells, where an unexpected presence and diversity of receptors and ion channels have emerged. Basic mechanisms related to membrane potential and K+ transport and the presence of voltage gated ion channels (Na+, inwardly rectifying K+, Ca(2+)-activated K+, Ca2+, and Cl- channels) have been identified. Receptor function and intracellular signaling for glutamate, acetylcholine, histamine, serotonin, cathecolamines, and a large number of neuropeptides (bradykinin, cholecystokinin, endothelin, opioids, and tachykinins) have been characterized. Such studies are facilitated in cell lines which offer a more homogenous material than primary cultures. Although the expression of ion channels and receptors vary considerably between different cell lines and comparative studies are rare, a few differences (compared to astrocytes in primary culture) have been identified which may turn out to be characteristic for glioma cells. Future identification of specific markers for receptors on glial and glioma cells related to cell type and growth properties may have great potential in clinical diagnosis and therapy. PMID:8586460

  9. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium

    NASA Astrophysics Data System (ADS)

    Barbour, Boris; Brew, Helen; Attwell, David

    1988-09-01

    Uptake of glutamate into glial cells in the CNS maintains the extracellular glutamate concentration below neurotoxic levels and helps terminate its action as a neurotransmitter 1. The co-transport of two sodium ions on the glutamate carrier is thought to provide the energy needed to transport glutamate into cells2,3. We have shown recently that glutamate uptake can be detected electrically because the excess of Na+ ions transported with each glutamate anion results in a net current flow into the cell4. We took advantage of the control of the environment, both inside and outside the cell, provided by whole-cell patch-clamping and now report that glutamate uptake is activated by intracellular potassium and inhibited by extracellular potassium. Our results indicate that one K+ ion is transported out of the cell each time a glutamate anion and three Na+ ions are transported in. A carrier with this stoichiometry can accumulate glutamate against a much greater concentration gradient than a carrier co-transporting one glutamate anion and two Na+ ions. Pathological rises in extracellular potassium concentration will inhibit glutamate uptake by depolarizing glial cells and by preventing the loss of K+ from the glutamate carrier. This will facilitate a rise in the extracellular glutamate concentration to neurotoxic levels and contribute to the neuronal death occurring in brain anoxia and ischaemia.

  10. Glial Cells are Involved in Itch Processing.

    PubMed

    Andersen, Hjalte H; Arendt-Nielsen, Lars; Gazerani, Parisa

    2016-08-23

    Recent discoveries in itch neurophysiology include itch-selective neuronal pathways, the clinically relevant non-histaminergic pathway, and elucidation of the notable similarities and differences between itch and pain. Potential involvement of glial cells in itch processing and the possibility of glial modulation of chronic itch have recently been identified, similarly to the established glial modulation of pain processing. This review outlines the similarities and differences between itch and pain, and how different types of central and peripheral glial cells may be differentially involved in the development of chronic itch akin to their more investigated role in chronic pain. Improvements are needed in the management of chronic itch, and future basic and interventional studies on glial activity modulation would both enhance our understanding of mechanisms underlying the chronification of itch and provide novel opportunities for the prevention or treatment of this debilitating and common condition.

  11. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production.

    PubMed

    Hisaoka, Kazue; Tsuchioka, Mami; Yano, Ryoya; Maeda, Natsuko; Kajitani, Naoto; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2011-06-17

    Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway

  12. Electroacupuncture activates enteric glial cells and protects the gut barrier in hemorrhaged rats

    PubMed Central

    Hu, Sen; Zhao, Zeng-Kai; Liu, Rui; Wang, Hai-Bin; Gu, Chun-Yu; Luo, Hong-Min; Wang, Huan; Du, Ming-Hua; Lv, Yi; Shi, Xian

    2015-01-01

    AIM: To investigate whether electroacupuncture ST36 activates enteric glial cells, and alleviates gut inflammation and barrier dysfunction following hemorrhagic shock. METHODS: Sprague-Dawley rats were subjected to approximately 45% total blood loss and randomly divided into seven groups: (1) sham: cannulation, but no hemorrhage; (2) subjected to hemorrhagic shock (HS); (3) electroacupuncture (EA) ST36 after hemorrhage; (4) vagotomy (VGX)/EA: VGX before hemorrhage, then EA ST36; (5) VGX: VGX before hemorrhage; (6) α-bungarotoxin (BGT)/EA: intraperitoneal injection of α-BGT before hemorrhage, then EA ST36; and (7) α-BGT group: α-BGT injection before hemorrhage. Morphological changes in enteric glial cells (EGCs) were observed by immunofluorescence, and glial fibrillary acidic protein (GFAP; a protein marker of enteric glial activation) was evaluated using reverse transcriptase polymerase chain reaction and western blot analysis. Intestinal cytokine levels, gut permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran, and the expression and distribution of tight junction protein zona occludens (ZO)-1 were also determined. RESULTS: EGCs were distorted following hemorrhage and showed morphological abnormalities. EA ST36 attenuated the morphological changes in EGCs at 6 h, as compared with the VGX, α-BGT and HS groups. EA ST36 increased GFAP expression to a greater degree than in the other groups. EA ST36 decreased intestinal permeability to FITC-dextran (760.5 ± 96.43 ng/mL vs 2466.7 ± 131.60 ng/mL, P < 0.05) and preserved ZO-1 protein expression and localization at 6 h after hemorrhage compared with the HS group. However, abdominal VGX and α-BGT treatment weakened or eliminated the effects of EA ST36. EA ST36 reduced tumor necrosis factor-α levels in intestinal homogenates after blood loss, while vagotomy or intraperitoneal injection of α-BGT before EA ST36 abolished its anti-inflammatory effects. CONCLUSION: EA ST36 attenuates hemorrhage

  13. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation

    PubMed Central

    2014-01-01

    Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i

  14. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    PubMed Central

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M.; Matarredona, Esperanza R.; Sáez, Juan C.

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain. PMID:26528139

  15. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells.

    PubMed

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M; Matarredona, Esperanza R; Sáez, Juan C

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain.

  16. Rapid, Dynamic Activation of Müller Glial Stem Cell Responses in Zebrafish

    PubMed Central

    Sifuentes, Christopher J.; Kim, Jung-Woong; Swaroop, Anand; Raymond, Pamela A.

    2016-01-01

    Purpose Zebrafish neurons regenerate from Müller glia following retinal lesions. Genes and signaling pathways important for retinal regeneration in zebrafish have been described, but our understanding of how Müller glial stem cell properties are regulated is incomplete. Mammalian Müller glia possess a latent neurogenic capacity that might be enhanced in regenerative therapies to treat degenerative retinal diseases. Methods To identify transcriptional changes associated with stem cell properties in zebrafish Müller glia, we performed a comparative transcriptome analysis from isolated cells at 8 and 16 hours following an acute photic lesion, prior to the asymmetric division that produces retinal progenitors. Results We report a rapid, dynamic response of zebrafish Müller glia, characterized by activation of pathways related to stress, nuclear factor–κB (NF-κB) signaling, cytokine signaling, immunity, prostaglandin metabolism, circadian rhythm, and pluripotency, and an initial repression of Wnt signaling. When we compared publicly available transcriptomes of isolated mouse Müller glia from two retinal degeneration models, we found that mouse Müller glia showed evidence of oxidative stress, variable responses associated with immune regulation, and repression of pathways associated with pluripotency, development, and proliferation. Conclusions Categories of biological processes/pathways activated following photoreceptor loss in regeneration-competent zebrafish Müller glia, which distinguished them from mouse Müller glia in retinal degeneration models, included cytokine signaling (notably NF-κB), prostaglandin E2 synthesis, expression of core clock genes, and pathways/metabolic states associated with pluripotency. These regulatory mechanisms are relatively unexplored as potential mediators of stem cell properties likely to be important in Müller glial cells for successful retinal regeneration. PMID:27699411

  17. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells.

    PubMed

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT. PMID:26160345

  18. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  19. Early Blockade of Injured Primary Sensory Afferents Reduces Glial Cell Activation in Two Rat Neuropathic Pain Models

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Zhang, Jun-Ming

    2009-01-01

    Satellite glial cells in the dorsal root ganglion (DRG), like the better-studied glia cells in the spinal cord, react to peripheral nerve injury or inflammation by activation, proliferation, and release of messengers that contribute importantly to pathological pain. It is not known how information about nerve injury or peripheral inflammation is conveyed to the satellite glial cells. Abnormal spontaneous activity of sensory neurons, observed in the very early phase of many pain models, is one plausible mechanism by which injured sensory neurons could activate neighboring satellite glial cells. We tested effects of locally inhibiting sensory neuron activity with sodium channel blockers on satellite glial cell activation in a rat spinal nerve ligation (SNL) model. SNL caused extensive satellite glial cell activation (as defined by GFAP immunoreactivity) which peaked on day 1 and was still observed on day 10. Perfusion of the axotomized DRG with the Na channel blocker tetrodotoxin (TTX) significantly reduced this activation at all time points. Similar findings were made with a more distal injury (spared nerve injury model), using a different sodium channel blocker (bupivacaine depot) at the injury site. Local DRG perfusion with TTX also reduced levels of nerve growth factor (NGF) in the SNL model on day 3 (when activated glia are an important source of NGF), without affecting the initial drop of NGF on day 1 (which has been attributed to loss of transport from target tissues). Local perfusion in the SNL model also significantly reduced microglia activation (OX-42 immunoreactivity) on day 3 and astrocyte activation (GFAP immunoreactivity) on day 10 in the corresponding dorsal spinal cord. The results indicate that early spontaneous activity in injured sensory neurons may play important roles in glia activation and pathological pain. PMID:19303429

  20. Glial cell activity is maintained during prolonged inflammatory challenge in rats.

    PubMed

    Borges, B C; Rorato, R; Antunes-Rodrigues, J; Elias, L L K

    2012-08-01

    We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.

  1. Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers.

    PubMed

    Roberts, Simon C; Bianco, Antonio C; Stapleton, Heather M

    2015-06-15

    Polybrominated diphenyl ether (PBDE) flame retardants are endocrine disruptors and suspected neurodevelopmental toxicants. While the direct mechanisms of neurodevelopmental toxicity have not been fully elucidated, it is conceivable that alterations in thyroid hormone levels in the developing brain may contribute to these effects. Cells within the brain locally convert thyroxine (T4) to the biologically active triiodothyronine (T3) through the action of the selenodeiodinase type 2 iodothyronine deiodinase (DIO2). Previous studies have demonstrated that PBDEs can alter hepatic deiodinase activity both in vitro and in vivo; however, the effects of PBDEs on the deiodinase isoforms expressed in the brain are not well understood. Here, we studied the effects of several individual PBDEs and hydroxylated metabolites (OH-BDEs) on DIO2 activity in astrocytes, a specialized glial cell responsible for production of more than 50% of the T3 required by the brain. Primary human astrocytes and H4 glioma cells were exposed to individual PBDEs or OH-BDEs at concentrations up to 5 μM. BDE-99 decreased DIO2 activity by 50% in primary astrocyte cells and by up to 80% in the H4 cells at doses of ≥500 nM. 3-OH-BDE-47, 6-OH-BDE-47, and 5'-OH-BDE-99 also decreased DIO2 activity in cultured H4 glioma cells by 45-80% at doses of approximately 1-5 μM. Multiple mechanisms appear to contribute to the decreased DIO2 activity, including weakened expression of DIO2 mRNA, competitive inhibition of DIO2, and enhanced post-translational degradation of DIO2. We conclude that decreases in DIO2 activity caused by exposure to PBDEs may play a role in the neurodevelopmental deficits caused by these toxicants. PMID:26004626

  2. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice.

    PubMed

    Snider, Sarah E; Vunck, Sarah A; van den Oord, Edwin J C G; Adkins, Daniel E; McClay, Joseph L; Beardsley, Patrick M

    2012-03-15

    Over 800,000 Americans abuse the psychomotor stimulant, methamphetamine, yet its abuse is without an approved medication. Methamphetamine induces hypermotor activity, and sensitization to this effect is suggested to represent aspects of the addiction process. Methamphetamine's regulation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels may be partially responsible for its behavioral effects, and compounds that inhibit phosphodiesterase (PDE), the enzyme that degrades cAMP, can alter methamphetamine-induced behaviors. Methamphetamine also activates glial cells and causes a subsequent increase in pro-inflammatory cytokine levels. Modulation of glial cell activation is associated with changes in behavioral responses, and substances that oppose inflammatory activity can attenuate drug-induced behaviors. Ibudilast (aka AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), inhibits both PDE and glial pro-inflammatory activity. Ibudilast's amino analog, AV1013, modulates similar glial targets but negligibly inhibits PDE. The present study determined whether ibudilast and AV1013 would attenuate methamphetamine-induced locomotor activity and its sensitization in C57BL/6J mice. Mice were treated b.i.d. with ibudilast (1.8-13 mg/kg), AV1013 (10-56 mg/kg) or their vehicles intraperitoneally for 7 days, beginning 48 h before 5 days of daily 1-h locomotor activity tests. Each test was initiated by either a methamphetamine (3 mg/kg) or a saline injection. Ibudilast significantly (P<0.05) reduced the acute, chronic, and sensitization effects of methamphetamine's locomotor activity without significantly affecting activity by itself. AV1013 had similar anti-methamphetamine effects, suggesting that glial cell activity, by itself, can modulate methamphetamine's effects and perhaps serve as a medication target for its abuse.

  3. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells

    PubMed Central

    Xing, Lei; McDonald, Heather; Da Fonte, Dillon F.; Gutierrez-Villagomez, Juan M.; Trudeau, Vance L.

    2015-01-01

    Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell. PMID:26388722

  4. Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke.

    PubMed

    Kuric, Enida; Wieloch, Tadeusz; Ruscher, Karsten

    2013-09-01

    Treatment with levodopa enhances functional recovery after experimental stroke but its mechanisms of action are elusive. Reactive astrocytes in the ischemic hemisphere are involved in mechanisms promoting recovery and also express dopamine 1 (D1) and dopamine 2 (D2) receptors. Here we investigated if the activation of astrocytic dopamine receptors (D1 and D2) regulates the expression of glial cell line-derived neurotrophic factor (GDNF) after combined in vitro hypoxia/aglycemia (H/A) and studied the expression of GDNF in the ischemic brain after treatment with levodopa/benserazide following transient occlusion of the middle cerebral artery (tMCAO) in the rat. Twenty-four hours after H/A, GDNF levels were upregulated in exposed astrocytes compared to normoxic control cultures and further elevated by the addition of the selective D1 receptor agonist (R)-(+)-SKF-38393 hydrochloride while D1 receptor antagonism by R(+)-SCH-23390 hydrochloride significantly reduced GDNF. No effect on GDNF levels was observed by the application of the D2 receptor agonist R(-)-2,10,11-trihydroxy-N-propyl-noraporphine hydrobromide hydrate or S-(-)-eticlopride hydrochloride (D2 receptor antagonist). After tMCAO, GDNF was upregulated in D1 expressing reactive astrocytes in the peri-infarct area. In addition, treatment with levodopa/benserazide significantly increased GDNF levels in the infarct core and peri-infarct area after tMCAO without affecting the expression of glial fibrillar acidic protein (GFAP), an intermediate filament and marker of reactive gliosis. After stroke, GDNF levels increase in the ischemic hemisphere in rats treated with levodopa, implicating GDNF in the mechanisms of tissue reorganization and plasticity and in l-DOPA enhanced recovery of lost brain function. Our results support levodopa treatment as a potential recovery enhancing therapy in stroke patients.

  5. Glial Cell Regulation of Rhythmic Behavior

    PubMed Central

    Jackson, F. Rob; Ng, Fanny S.; Sengupta, Sukanya; You, Samantha; Huang, Yanmei

    2015-01-01

    Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia–glia or glia–neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia–neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia–neuron communication contributes to the regulation of rhythmic behavior. PMID:25707272

  6. The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation.

    PubMed

    Iravani, Mahmoud M; Leung, Clement C M; Sadeghian, Mona; Haddon, Claire O; Rose, Sarah; Jenner, Peter

    2005-07-01

    Sustained reactive microgliosis may contribute to the progressive degeneration of nigral dopaminergic neurons in Parkinson's disease (PD), in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposed human and in non-human primates. However, the temporal relationship between glial cell activation and nigral cell death is relatively unexplored. Consequently, the effects of acute (24 h) and chronic (30 days) glial cell activation induced by unilateral supranigral lipopolysaccharide (LPS) administration were studied in rats. At 24 h, LPS administration caused a marked reduction in the number of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra (SN) but striatal TH-ir was unaffected. By 30 days, the loss of TH-positive neurons in the LPS-treated nigra was no greater than at 24 h although a heterogeneous loss of striatal TH-ir was present. The loss of nigrostriatal neurons was of functional significance, as at 30 days, LPS-treated rats exhibited ipsiversive circling in response to (+)-amphetamine administration. At 24 h, there was a moderate increase in glial fibrillary acidic protein (GFAP)-ir astrocytes in the SN but a marked elevation of p47phox positive OX-42-ir microglia, and intense inducible nitric oxide synthase (iNOS)-ir and 3-nitrotyrosine (3-NT)-ir was present. However, by 30 days the morphology of OX-42-ir microglia returned to a resting state, the numbers were greatly reduced and no 3-NT-ir was present. At 30 days, GFAP-ir astrocytes were markedly increased in number and iNOS-ir was present in fibrillar astrocyte-like cells. This study shows that acute glial activation leading to dopaminergic neuron degeneration is an acute short-lasting response that does not itself perpetuate cell death or lead to prolonged microglial activation.

  7. [Studies on potassium transport through glial cell membranes (author's transl)].

    PubMed

    Coles, J A; Gardner-Medwin, A R; Tsacopoulos, M

    1980-04-01

    The retina of the honeybee drone is used as a model for the study of ion movements across the membranes of the glial cells caused by changes in the extracellular potassium concentration. The values found for changes in extracellular potential suggest that at least some of the potassium that enters glial cells in an active region of tissue is associated with an efflux of potassium from parts of the glial syncytium not affected by an increase in extracellular potassium concentration. In addition, it appears that ions other than K+ cross the glial membrane.

  8. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation.

    PubMed

    Coles, J A; Tsacopoulos, M

    1979-05-01

    1. A double-barrelled potassium-sensitive micro-electrode was developed that was fine enough to record intracellular electrical potentials and potassium activities (aK) in the drone retina. 2. aK was measured in the photoreceptor cells, in the pigment (glial) cells, and in the extracellular space, in the superfused, cut, retina. The effect of photostimulation was studied: 20 msec light flashes, intense enough to evoke receptor potentials of maximum amplitude were presented, 1/sec, in a train lasting about 2 min. 3. In photoreceptors with membrane potentials greater than or equal to 50 mV aK in the dark was 79 mM, S.D. = 27 mM, n = 11. During photostimulation aK fell by 21.5 +/- 9.5 mM with a half-time of 30 +/- 22 sec. (A tentative conversion from activities to free concentrations can be made by taking the activity coefficient as 0.70 its value in the Ringer solution). 4. In pigment cells with membrane potentials greater than or equal to 50 mV, aK in the dark was 52 mM, S.D. = 13 mM, n = 11. During photostimulation aK increased by 14 +/- 5 mM. 5. In the extracellular space aK increased during photostimulation with a mean half-time of less than 1.3 sec to a maximum (mean value 14 mM, S.D. = 8.4 mM, n = 22), and then fell to a plateau. 6. It is estimated from the anatomy that the photoreceptors occupy approximately 38% of the total volume of the retina, the pigment cells 57%, and extracellular space 5%. Hence, it seems possible that during photostimulation nearly all the net loss of potassium from the photoreceptors is temporarily stored in the pigment cells. 7. Recordings were made in the extracellular space of the intact animal by passing the electrode through a hole in the cornea. The mean aK in the dark was 7.7 mM, S.E. = 0.4 mM, n = 22. In the superfused retina, aK in the dark was 6.3 mM, S.E. = 0.7 mM, n = 22, even though aK in the Ringer solution was 2.2 mM. Increasing the aK of the Ringer solution to 7.0 mM had no apparent effect on aK in the extracellular

  9. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.

    PubMed

    Gwak, Young S; Kang, Jonghoon; Unabia, Geda C; Hulsebosch, Claire E

    2012-04-01

    In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors

  10. Enteric glial cells have specific immunosuppressive properties.

    PubMed

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  11. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  12. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration. PMID:27029404

  13. Glial cells: Old cells with new twists

    PubMed Central

    Ndubaku, Ugo; de Bellard, Maria Elena

    2008-01-01

    Summary Based on their characteristics and function – migration, neural protection, proliferation, axonal guidance and trophic effects – glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed – as true stem cells in the nervous system – and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells. PMID:18068219

  14. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  15. Loss of AMP-Activated Protein Kinase Induces Mitochondrial Dysfunction and Proinflammatory Response in Unstimulated Abcd1-Knockout Mice Mixed Glial Cells

    PubMed Central

    Suhail, Hamid; Giri, Shailendra

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations and/or deletions in the ABCD1 gene. Similar mutations/deletions can give rise to variable phenotypes ranging from mild adrenomyeloneuropathy (AMN) to inflammatory fatal cerebral adrenoleukodystrophy (ALD) via unknown mechanisms. We recently reported the loss of the anti-inflammatory protein adenosine monophosphate activated protein kinase (AMPKα1) exclusively in ALD patient-derived cells. X-ALD mouse model (Abcd1-knockout (KO) mice) mimics the human AMN phenotype and does not develop the cerebral inflammation characteristic of human ALD. In this study we document that AMPKα1 levels in vivo (in brain cortex and spinal cord) and in vitro in Abcd1-KO mixed glial cells are similar to that of wild type mice. Deletion of AMPKα1 in the mixed glial cells of Abcd1-KO mice induced spontaneous mitochondrial dysfunction (lower oxygen consumption rate and ATP levels). Mitochondrial dysfunction in ALD patient-derived cells and in AMPKα1-deleted Abcd1-KO mice mixed glial cells was accompanied by lower levels of mitochondrial complex (1-V) subunits. More importantly, AMPKα1 deletion induced proinflammatory inducible nitric oxide synthase levels in the unstimulated Abcd1-KO mice mixed glial cells. Taken together, this study provides novel direct evidence for a causal role for AMPK loss in the development of mitochondrial dysfunction and proinflammatory response in X-ALD. PMID:25861159

  16. Acute inhibition of glial cells in the NTS does not affect respiratory and sympathetic activities in rats exposed to chronic intermittent hypoxia.

    PubMed

    Costa, Kauê M; Moraes, Davi J A; Machado, Benedito H

    2013-02-16

    Recent studies suggest that neuron-glia interactions are involved in multiple aspects of neuronal activity regulation. In the nucleus tractus solitarius (NTS) neuron-glia interactions are thought to participate in the integration of autonomic responses to physiological challenges. However, it remains to be shown whether NTS glial cells might influence breathing and cardiovascular control, and also if they could be integral to the autonomic and respiratory responses to hypoxic challenges. Here, we investigated whether NTS glia play a tonic role in the modulation of central respiratory and sympathetic activities as well as in the changes in respiratory-sympathetic coupling induced by exposure to chronic intermittent hypoxia (CIH), a model of central autonomic and respiratory plasticity. We show that bilateral microinjections of fluorocitrate (FCt), a glial cell inhibitor, into the caudal and intermediate subnuclei of the NTS did not alter baseline respiratory and sympathetic parameters in in situ preparations of juvenile rats. Similar results were observed in rats previously exposed to CIH. Likewise, CIH-induced changes in respiratory-sympathetic coupling were unaffected by FCt-mediated inhibition. However, microinjection of FCt into the ventral medulla produced changes in respiratory frequency. Our results show that acute glial inhibition in the NTS does not affect baseline respiratory and sympathetic control. Additionally, we conclude that NTS glial cells may not be necessary for the continuous manifestation of sympathetic and respiratory adaptations to CIH. Our work provides evidence that neuron-glia interactions in the NTS do not participate in baseline respiratory and sympathetic control.

  17. Effects of that ATRA inhibits Nrf2-ARE pathway on glial cells activation after intracerebral hemorrhage

    PubMed Central

    Yin, Xiao-Ping; Zhou, Jun; Wu, Dan; Chen, Zhi-Ying; Bao, Bing

    2015-01-01

    Previous studies indicate that the Nrf2-ARE signaling pathway plays a neruo-protective role in glia cell, however, the mechanism was also elusive. This study aims to explore the inhibitive function of all-trans-retinoic (ATRA) on Nrf2-ARE pathway in intracerebral hemorrhage (ICH), and investigate the mechanism. In this study, the femoral artery injection method was employed to establish ICH model. The model rats were randomly divided into four groups, including Sham group, ICH group, ATRA group and DMSO group. The neurological scores were evaluated for the four groups at different time points. Hematoxylin-Eosin staining was used to stain the CD11b positive glia cells. Double immunofluorescence staining method was utilized to observe the co-expression of HO-1, NF-κB, Nrf2 and TNF-α and CD11b marker in glia cells. Western blot assay was used to detect the Nrf2 protein (total and binding Nrf2), HO-1, NF-κB and TNF-α proteins in every group. The results indicated that neurologiclal scores were significantly decreased in ATRA group compared to ICH gorup (P < 0.05). The glia cells were significantly activated and accumulated in ICH rats. ATRA significantly decreased co-expression of Nrf2, HO-1 and CD11b, and increased co-expression of NF-κB, TNF-α and CD11b of glia cells. ATRA significantly decreased total Nrf2 expression and increased binding Nrf2 expression in ATRA group compared to ICH group (P < 0.05). ATRA decreased anti-oxygen protein Nrf2 and HO-1, and increases inflammatory factors NF-κB and TNF-α. In conclusion, the application of ATRA could inhibit the neuro-protective function effectively by blocking the Nrf2-ARE pathway in glia cells. PMID:26617752

  18. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    SciTech Connect

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K. ); Rappaport, J.; Wong-Staal, F. )

    1990-05-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV{sub L}, in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own.

  19. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    PubMed

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation.

  20. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    PubMed

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation. PMID:27215802

  1. Strategies for metabolic exchange between glial cells and neurons.

    PubMed

    Deitmer, J W

    2001-12-01

    The brain is a major energy consumer and dependent on carbohydrate and oxygen supply. Electrical and synaptic activity of neurons can only be sustained given sufficient availability of ATP. Glial cells, which have long been assigned trophic functions, seem to play a pivotal role in meeting the energy requirements of active neurons. Under conditions of high neuronal activity, a number of glial functions, such as the maintenance of ion homeostasis, neurotransmitter clearance from synaptic domains, the supply of energetic compounds and calcium signalling, are challenged. In the vertebrate brain, astrocytes may increase glucose utilization and release lactate, which is taken up and consumed by neurons to generate ATP by oxidative metabolism. The CO(2) produced is processed primarily in astrocytes, which display the major activity of carboanhydrase in the brain. Protons and bicarbonate in turn may contribute to drive acid/base-coupled transporters. In the present article a scenario is discussed which couples the transfer of energy and the conversion of CO(2) with the high-affinity glutamate uptake and other transport processes at glial and neuronal cell membranes. The transporters can be linked to glial signalling and may cooperate with each other at the cellular level. This could save energy, and would render energy exchange processes between glial cells and neurons more effective. Functions implications and physiological responses, in particular in chemosensitive brain areas, are discussed.

  2. Strategies for metabolic exchange between glial cells and neurons.

    PubMed

    Deitmer, J W

    2001-12-01

    The brain is a major energy consumer and dependent on carbohydrate and oxygen supply. Electrical and synaptic activity of neurons can only be sustained given sufficient availability of ATP. Glial cells, which have long been assigned trophic functions, seem to play a pivotal role in meeting the energy requirements of active neurons. Under conditions of high neuronal activity, a number of glial functions, such as the maintenance of ion homeostasis, neurotransmitter clearance from synaptic domains, the supply of energetic compounds and calcium signalling, are challenged. In the vertebrate brain, astrocytes may increase glucose utilization and release lactate, which is taken up and consumed by neurons to generate ATP by oxidative metabolism. The CO(2) produced is processed primarily in astrocytes, which display the major activity of carboanhydrase in the brain. Protons and bicarbonate in turn may contribute to drive acid/base-coupled transporters. In the present article a scenario is discussed which couples the transfer of energy and the conversion of CO(2) with the high-affinity glutamate uptake and other transport processes at glial and neuronal cell membranes. The transporters can be linked to glial signalling and may cooperate with each other at the cellular level. This could save energy, and would render energy exchange processes between glial cells and neurons more effective. Functions implications and physiological responses, in particular in chemosensitive brain areas, are discussed. PMID:11738647

  3. Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation.

    PubMed

    Checa-Casalengua, P; Jiang, C; Bravo-Osuna, I; Tucker, B A; Molina-Martínez, I T; Young, M J; Herrero-Vanrell, R

    2012-10-15

    A main issue in controlled delivery of biotechnological products from injectable biodegradable microspheres is to preserve their integrity and functional activity after the microencapsulation process and final sterilization. The present experimental work tested different technological approaches to maintain the biological activity of an encapsulated biotechnological product within PLGA [poly (lactic-co-glycolic acid)] microspheres (MS) after their sterilization by gamma irradiation. GDNF (glial cell line-derived neurotrophic factor), useful in the treatment of several neurodegenerative diseases, was chosen as a labile model protein. In the particular case of optic nerve degeneration, GDNF has been demonstrated to improve the damaged retinal ganglion cells (RGC) survival. GDNF was encapsulated in its molecular state by the water-in-oil-in-water (W/O/W) technique or as solid according to the solid-in-oil-in-water (S/O/W) method. Based on the S/O/W technique, GDNF was included in the PLGA microspheres alone (S/O/W 1) or in combination with an antioxidant (vitamin E, Vit E) (S/O/W 2). Microspheres were sterilized by gamma-irradiation (dose of 25 kGy) at room and low (-78 °C) temperatures. Functional activity of GDNF released from the different microspheres was evaluated both before and after sterilization in their potential target cells (retinal cells). Although none of the systems proposed achieved with the goal of totally retain the structural stability of the GDNF-dimer, the protein released from the S/O/W 2 microspheres was clearly the most biologically active, showing significantly less retinal cell death than that released from either W/O/W or S/O/W 1 particles, even in low amounts of the neurotrophic factor. According to the results presented in this work, the biological activity of biotechnological products after microencapsulation and sterilization can be further preserved by the inclusion of the active molecule in its solid state in combination with

  4. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.

  5. The purinergic system and glial cells: emerging costars in nociception.

    PubMed

    Magni, Giulia; Ceruti, Stefania

    2014-01-01

    It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel "druggable" glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states. PMID:25276794

  6. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.

    PubMed

    Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari

    2016-06-01

    The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. PMID:27245308

  7. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling.

    PubMed

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A

    2015-06-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  8. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina.

    PubMed

    Marcaggi, Païkan; Jeanne, Marion; Coles, Jonathan A

    2004-02-01

    Ammonium (NH4+ and/or NH3) and K+ are released from active neurons and taken up by glial cells, and can modify glial cell behaviour. Study of these fluxes is most advanced in the retina of the honeybee drone, which consists essentially of identical neurons (photoreceptors) and identical glial cells (outer pigment cells). In isolated bee retinal glial cells, ammonium crosses the membrane as NH4+ on a Cl- cotransporter. We have now investigated, in the more physiological conditions of a retinal slice, whether the NH4+-Cl- cotransporter can transport K+ and whether the major K+ conductance can transport NH4+. We increased [NH4+] or [K+] in the superfusate and monitored uptake by recording from the glial cell syncytium or from interstitial space with microelectrodes selective for H+ or K+. In normal superfusate solution, ammonium acidified the glial cells but, after 6 min superfusion in low [Cl-] solution, ammonium alkalinized them. In the same low [Cl-] conditions, the rise in intraglial [K+] induced by an increase in superfusate [K+] was unchanged, i.e. no K+ flux on the Cl- cotransporter was detected. Ba2+ (5 mm) abolished the glial depolarization induced by K+ released from photoreceptors but did not reduce NH4+uptake. We estimate that when extracellular [NH4+] is increased, 62-100% is taken up by the NH4+-Cl- cotransporter and that when K+ is increased, 77-100% is taken up by routes selective for K+. This separation makes it possible that the glial uptake of NH4+ and of K+, and hence their signalling roles, might be regulated separately.

  9. Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors.

    PubMed

    Vogler, Stefanie; Winters, Helge; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-01-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17β-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells. PMID:26499958

  10. Modification of glial response in hibernation: a patch-clamp study on glial cells acutely isolated from hibernating land snail.

    PubMed

    Nikolic, Ljiljana; Bataveljic, Danijela; Andjus, Pavle R; Moldovan, Ivana; Nedeljkovic, Miodrag; Petkovic, Branka

    2014-12-01

    Hibernation is a dormant state of some animal species that enables them to survive harsh environmental conditions during the winter seasons. In the hibernating state, preservation of neuronal rhythmic activity at a low level is necessary for maintenance of suspended forms of behavior. As glial cells support rhythmic activity of neurons, preservation of brain function in the hibernating state implies accompanying modification of glial activity. A supportive role of glia in regulating neuronal activity is reflected through the activity of inwardly rectifying K+ channels (Kir). Therefore, we examined electrophysiological response, particularly Kir current response, of glial cells in mixture with neurons acutely isolated from active and hibernating land snail Helix pomatia. Our data show that hibernated glia have significantly lower inward current density, specific membrane conductance, and conductance density compared with active glia. The observed reduction could be attributed to the Kir currents, since the Ba2+-sensitive Kir current density was significantly lower in hibernated glia. Accordingly, a significant positive shift of the current reversal potential indicated a more depolarized state of hibernated glia. Data obtained show that modification of glial current response could be regulated by serotonin (5-HT) through an increase of cGMP as a secondary messenger, since extracellular addition of 5-HT or intracellular administration of cGMP to active glia induced a significant reduction of inward current density and thus mimicked the reduced response of hibernated glia. Lower Kir current density of hibernated glia accompanied the lower electrical activity of hibernated neurons, as revealed by a decrease in neuronal fast inward Na+ current density. Our findings reveal that glial response is reduced in the hibernating state and suggest seasonal modulation of glial activity. Maintenance of low glial activity in hibernation could be important for preservation of brain

  11. Glial Cell Contributions to Auditory Brainstem Development

    PubMed Central

    Cramer, Karina S.; Rubel, Edwin W

    2016-01-01

    Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits.

  12. Glial Cell-Elicited Activation of Brain Microvasculature in Response to Brucella abortus Infection Requires ASC Inflammasome-Dependent IL-1β Production.

    PubMed

    Miraglia, M Cruz; Costa Franco, Miriam M; Rodriguez, Ana M; Bellozi, Paula M Q; Ferrari, Carina C; Farias, Maria I; Dennis, Vida A; Barrionuevo, Paula; de Oliveira, Antonio C P; Pitossi, Fernando; Kim, Kwang Sik; Delpino, M Victoria; Oliveira, Sergio Costa; Giambartolomei, Guillermo H

    2016-05-01

    Blood-brain barrier activation and/or dysfunction are a common feature of human neurobrucellosis, but the underlying pathogenic mechanisms are largely unknown. In this article, we describe an immune mechanism for inflammatory activation of human brain microvascular endothelial cells (HBMEC) in response to infection with Brucella abortus Infection of HBMEC with B. abortus induced the secretion of IL-6, IL-8, and MCP-1, and the upregulation of CD54 (ICAM-1), consistent with a state of activation. Culture supernatants (CS) from glial cells (astrocytes and microglia) infected with B. abortus also induced activation of HBMEC, but to a greater extent. Although B. abortus-infected glial cells secreted IL-1β and TNF-α, activation of HBMEC was dependent on IL-1β because CS from B. abortus-infected astrocytes and microglia deficient in caspase-1 and apoptosis-associated speck-like protein containing a CARD failed to induce HBMEC activation. Consistently, treatment of CS with neutralizing anti-IL-1β inhibited HBMEC activation. Both absent in melanoma 2 and Nod-like receptor containing a pyrin domain 3 are partially required for caspase-1 activation and IL-1β secretion, suggesting that multiple apoptosis-associated speck-like protein containing CARD-dependent inflammasomes contribute to IL-1β-induced activation of the brain microvasculature. Inflammasome-mediated IL-1β secretion in glial cells depends on TLR2 and MyD88 adapter-like/TIRAP. Finally, neutrophil and monocyte migration across HBMEC monolayers was increased by CS from Brucella-infected glial cells in an IL-1β-dependent fashion, and the infiltration of neutrophils into the brain parenchyma upon intracranial injection of B. abortus was diminished in the absence of Nod-like receptor containing a pyrin domain 3 and absent in melanoma 2. Our results indicate that innate immunity of the CNS set in motion by B. abortus contributes to the activation of the blood-brain barrier in neurobrucellosis and IL-1β mediates

  13. Methylphenidate Increases Glutamate Uptake in Bergmann Glial Cells.

    PubMed

    Guillem, Alain M; Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; López-Bayghen, Esther; López-Bayghen, Bruno; Calleros, Oscar A; Campuzano, Marco R; Ortega, Arturo

    2015-11-01

    Glutamate, the main excitatory transmitter in the vertebrate brain, exerts its actions through the activation of specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of glutamate uptake systems, mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing an excessive glutamatergic stimulation and thus neuronal damage. Autism spectrum disorders comprise a group of syndromes characterized by impaired social interactions and anxiety. One or the most common drugs prescribed to treat these disorders is Methylphenidate, known to increase dopamine extracellular levels, although it is not clear if its sedative effects are related to a plausible regulation of the glutamatergic tone via the regulation of the glial glutamate uptake systems. To gain insight into this possibility, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity and protein levels of glutamate transporters was detected upon Methylphenidate exposure. Interestingly, this increase is the result of an augmentation of both the synthesis as well as the insertion of these protein complexes in the plasma membrane. These results favour the notion that glial cells are Methylphenidate targets, and that by these means could regulate dopamine turnover.

  14. Mechanisms of Aβ Clearance and Degradation by Glial Cells

    PubMed Central

    Ries, Miriam; Sastre, Magdalena

    2016-01-01

    Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field. PMID:27458370

  15. Mechanisms of Aβ Clearance and Degradation by Glial Cells.

    PubMed

    Ries, Miriam; Sastre, Magdalena

    2016-01-01

    Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field. PMID:27458370

  16. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks.

    PubMed

    Kiiski, Heikki; Aänismaa, Riikka; Tenhunen, Jyrki; Hagman, Sanna; Ylä-Outinen, Laura; Aho, Antti; Yli-Hankala, Arvi; Bendel, Stepani; Skottman, Heli; Narkilahti, Susanna

    2013-06-15

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC)-derived neural cells could be cultured in human cerebrospinal fluid (CSF) in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  17. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    PubMed

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.

  18. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation

    PubMed Central

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-01-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection. PMID:25075784

  19. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation.

    PubMed

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-07-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.

  20. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    PubMed

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength.

  1. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies

    PubMed Central

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N.; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression

  2. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    PubMed

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of

  3. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  4. In vivo long-term synaptic plasticity of glial cells.

    PubMed

    Bélair, Eve-Lyne; Vallée, Joanne; Robitaille, Richard

    2010-04-01

    Evidence showing the ability of glial cells to detect, respond to and modulate synaptic transmission and plasticity has contributed to the notion of glial cells as active synaptic partners. However, synaptically induced plasticity of glia themselves remains ill defined. Here we used the amphibian neuromuscular junction (NMJ) to study plasticity of perisynaptic Schwann cells (PSCs), glial cells at this synapse, following long-term in vivo modifications of synaptic activity. We used two models that altered synaptic activity in different manners. First, chronic blockade of postsynaptic nicotinic receptors using alpha-bungarotoxin (alpha-BTx) decreased facilitation, increased synaptic depression and decreased post-tetanic potentiation (PTP). Second, chronic nerve stimulation increased facilitation and resistance to synaptic depression, while leaving PTP unaltered. Our results indicate that there is no direct relationship between transmitter release and PSC calcium responses. Indeed, despite changes in transmitter release and plasticity in stimulated NMJs, nerve-evoked PSC calcium responses were similar to control. Similarly, PSC calcium responses in alpha-BTx treated NMJs were delayed and smaller in amplitude, even though basal level of transmitter release was increased. Also, when isolating purinergic and muscarinic components of PSC calcium responses, we found an increased sensitivity to ATP and a decreased sensitivity to muscarine in chronically stimulated NMJs. Conversely, in alpha-BTx treated NMJs, PSC sensitivity remained unaffected, but ATP- and muscarine-induced calcium responses were prolonged. Thus, our results reveal complex modifications of PSC properties, with differential modulation of signalling pathways that might underlie receptor regulation or changes in Ca(2+) handling. Importantly, similar to neurons, perisynaptic glial cells undergo plastic changes induced by altered synaptic activity.

  5. Nrf2 knockout: The effect on neurological dysfunction and the activation of glial cells of mice after brain injury.

    PubMed

    Zhang, Dongfeng; Teng, Junfang

    2016-07-01

    To investigate the protective role and possible mechanisms of Nrf2 gene in cerebral trauma in mice. The types Nrf2(-/-) and Nrf2(+/+) mice were confirmed by PCR, and the model of closed head injury was established. The severity of injury and the effect of the injury on neurological status were assessed by Neurological Severity Score (NSS) and fatality rate, and the activated conditions of microglia and astrocyte around the injured area were observed by immunohistochemical method. Compared with Nrf2(+/+) mice, the nerve dysfunction of the Nrf2(-/-) mice was obviously more severe (P<0.01). On the first day after injury, the activation of microglia around the injured area increased significantly in Nrf2 (-/-) mice, the difference was more significant on the third day, and there was still statistical difference until the 7th day (P<0.05). Moreover, On the days 1, 3, 7 after injury, the activation of astrocyte around the injured area also increased in Nrf2(-/-) mice, however, there was statistical difference only on the 3rd day (P<0.05). Nrf2 gene knockout can aggravate the nerve dysfunction after cerebral trauma, and this effect is achieved, at least partly, possibly via the effect of Nrf2 on glial activation. PMID:27592473

  6. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure. PMID:25687701

  7. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.

  8. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells*

    PubMed Central

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-01-01

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gαi/o inhibitor, but not by NF449, a Gαs inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gαο1 and Gαi3 by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKeyTM assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gαi/o activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gαi/o upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants. PMID:25869129

  9. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells.

    PubMed

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-05-29

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gα(i/o) inhibitor, but not by NF449, a Gα(s) inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gα(ο1) and Gα(i3) by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKey(TM) assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gα(i/o) activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gα(i/o) upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants.

  10. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures.

    PubMed

    Silva, Thayane Martins; França, Guilherme Rapozeiro; Ornelas, Isis Moraes; Loiola, Erick Correia; Ulrich, Henning; Ventura, Ana Lucia Marques

    2015-06-01

    When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPβS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.

  11. Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells.

    PubMed

    Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Krügel, Ute; Schulz, Angela; Färber, Katrin; Zahn, Dirk; Grosse, Johannes; Wiedemann, Peter; Chen, Ju; Schöneberg, Torsten; Illes, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2010-03-01

    Intense neuronal activity in the sensory retina is associated with a volume increase of neuronal cells (Uckermann et al., J. Neurosci. 2004, 24:10149) and a decrease in the osmolarity of the extracellular space fluid (Dmitriev et al., Vis. Neurosci. 1999, 16:1157). Here, we show the existence of an endogenous purinergic mechanism that prevents hypoosmotic swelling of retinal glial (Müller) cells in mice. In contrast to the cells from wild-type mice, hypoosmotic stress induced rapid swelling of glial cell somata in retinal slices from mice deficient in P2Y(1), adenosine A(1) receptors, or ecto-5'-nucleotidase (CD73). Consistently, glial cell bodies in retinal slices from wild-type mice displayed osmotic swelling when P2Y(1) or A(1) receptors, or CD73, were pharmacologically blocked. Exogenous ATP, UTP, and UDP inhibited glial swelling in retinal slices, while the swelling of isolated glial cells was prevented by ATP but not by UTP or UDP, suggesting that uracil nucleotides indirectly regulate the glial cell volume via activation of neuronal P2Y(4/6) and neuron-to-glia signaling. It is suggested that autocrine/paracrine activation of purinergic receptors and enzymes is crucially involved in the regulation of the glial cell volume. PMID:20002522

  12. Activated Scavenger Receptor A Promotes Glial Internalization of Aβ

    PubMed Central

    Zhou, Wei-wei; Wang, Shao-wei; Xu, Peng-xin; Yu, Xiao-lin; Liu, Rui-tian

    2014-01-01

    Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer’s disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A) on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A. PMID:24718459

  13. Role of satellite glial cells in gastrointestinal pain

    PubMed Central

    Hanani, Menachem

    2015-01-01

    Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons in rodent DRG become hyperexcitable in models of GI pain (e.g., gastric or colonic inflammation), and can serve as a source for chronic pain. Glial cells are another element in the pain signaling pathways, and there is evidence that spinal glial cells (microglia and astrocytes) undergo activation (gliosis) in various pain models and contribute to pain. Recently it was found that satellite glial cells (SGCs), the main type of glial cells in sensory ganglia, might also contribute to chronic pain in rodent models. Most of that work focused on somatic pain, but in several studies GI pain was also investigated, and these are discussed in the present review. We have shown that colonic inflammation induced by dinitrobenzene sulfonic acid (DNBS) in mice leads to the activation of SGCs in DRG and increases gap junction-mediated coupling among these cells. This coupling appears to contribute to the hyperexcitability of DRG neurons that innervate the colon. Blocking gap junctions (GJ) in vitro reduced neuronal hyperexcitability induced by inflammation, suggesting that glial GJ participate in SGC-neuron interactions. Moreover, blocking GJ by carbenoxolone and other agents reduces pain behavior. Similar changes in SGCs were also found in the mouse nodose ganglia (NG), which provide sensory innervation to most of the GI tract. Following systemic inflammation, SGCs in these ganglia were activated, and displayed augmented coupling and greater sensitivity to the pain mediator ATP. The contribution of these changes to visceral pain remains to be determined. These results indicate that although visceral pain is unique, it shares basic mechanisms with somatic pain

  14. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells

    PubMed Central

    Kim, Jong Youl; Park, Joohyun; Chang, Ji Young; Kim, Sa-Hyun

    2016-01-01

    The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leukocytes, including neutrophils, monocytes and lymphocyte. After ischemic stroke, activation of glial cells and subsequent release of pro- and anti-inflammatory signals are important for modulating both neuronal cell damage and wound healing. Infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby exacerbating brain injury. This review describes how the roles of glial cells and circulating leukocytes are a double-edged sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we will focus on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke. PMID:27790058

  15. Radial glial cells play a key role in echinoderm neural regeneration

    PubMed Central

    2013-01-01

    Background Unlike the mammalian central nervous system (CNS), the CNS of echinoderms is capable of fast and efficient regeneration following injury and constitutes one of the most promising model systems that can provide important insights into evolution of the cellular and molecular events involved in neural repair in deuterostomes. So far, the cellular mechanisms of neural regeneration in echinoderm remained obscure. In this study we show that radial glial cells are the main source of new cells in the regenerating radial nerve cord in these animals. Results We demonstrate that radial glial cells of the sea cucumber Holothuria glaberrima react to injury by dedifferentiation. Both glia and neurons undergo programmed cell death in the lesioned CNS, but it is the dedifferentiated glial subpopulation in the vicinity of the injury that accounts for the vast majority of cell divisions. Glial outgrowth leads to formation of a tubular scaffold at the growing tip, which is later populated by neural elements. Most importantly, radial glial cells themselves give rise to new neurons. At least some of the newly produced neurons survive for more than 4 months and express neuronal markers typical of the mature echinoderm CNS. Conclusions A hypothesis is formulated that CNS regeneration via activation of radial glial cells may represent a common capacity of the Deuterostomia, which is not invoked spontaneously in higher vertebrates, whose adult CNS does not retain radial glial cells. Potential implications for biomedical research aimed at finding the cure for human CNS injuries are discussed. PMID:23597108

  16. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2010-10-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  17. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  18. Dual polarization of microglia isolated from mixed glial cell cultures.

    PubMed

    Ju, Lili; Zeng, Hui; Chen, Yun; Wu, Yanhong; Wang, Beibei; Xu, Qunyuan

    2015-09-01

    Microglia are versatile immune effector cells of the CNS and are sensitive to various stimuli. The different methods used to isolate microglia may affect some of their characteristics, such as their polarization state. The influence of cell sorting methods on the polarization state of microglia has never been studied. Mixed glial culture system (MGCS) and magnetic activated cell sorting (MACS) are two methods that are commonly used to purify microglia. This study compares the immunological states between microglia isolated by MGCS and microglia isolated by MACS. We show that microglia isolated by MGCS exhibit a stronger immune-activated state than microglia isolated by MACS. They present an elevated phagocytic ability and high levels of markers associated with classical activation (M1) and alternative activation (M2). In addition, high levels of M1-type and M2-type chemokine (C-C motif) ligand 2 and transforming growth factor-β1 were detected in the culture medium of mixed glial cells. Our results show that microglia isolated by MGCS are in an immune-activated state, whereas microglia isolated by MACS appear to be closer to their primary in vivo state. Therefore, the immune status of microglia, depending on the protocol used to purify them, should be carefully considered in neuropathology research.

  19. Glial cells as drug targets: What does it take?

    PubMed

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754.

  20. Glial cells as drug targets: What does it take?

    PubMed

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754. PMID:27121701

  1. The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, E. V.; Neginskaya, M. A.; Kovaleva, V. D.; Rudkovskii, M. V.; Uzdensky, A. B.

    2015-03-01

    Photodynamic therapy (PDT) is used for selective destruction of cells, in particular, for treatment of brain tumors. However, photodynamic treatment damages not only tumor cells, but also healthy neurons and glial cells. To study the possible role of NF-κB in photodynamic injury of neurons and glial cells, we investigated the combined effect of photodynamic treatment and NF-κB modulators: activator betulinic acid, or inhibitors parthenolide and CAPE on an isolated crayfish stretch receptor consisting of a single neuron surrounded by glial cells. A laser diode (670 nm, 0.4 W/cm2) was used as a light source. The inhibition of NF-κB during PDT increased the duration of neuron firing and glial necrosis and decreased neuron necrosis and glial apoptosis. The activation of NF-κB during PDT increased neuron necrosis and glial apoptosis and decreased glial necrosis. The difference between the effects of NF-κB modulators on photosensitized neurons and glial cells indicates the difference in NF-κB-mediated signaling pathways in these cell types. Thus, NF-κB is involved in PDT-induced shortening of neuron firing, neuronal and glial necrosis, and apoptosis of glial cells.

  2. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  3. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  4. New advances on glial activation in health and disease

    PubMed Central

    Lee, Kim Mai; MacLean, Andrew G

    2015-01-01

    In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses. PMID:25964871

  5. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.

    PubMed

    Gardner-Medwin, A R; Coles, J A; Tsacopoulos, M

    1981-03-30

    Work with ion-selective microelectrodes on the retina of the honeybee drone has shown that potassium is released from photoreceptors during activity and enters glial cells. Measurements of the extracellular voltage gradients indicate that, in this preparation, currents flowing through the glial cells in the 'spatial buffer' pattern account for a large fraction of the glial K+ entry in the active region of the tissue.

  6. Guanosine protects glial cells against 6-hydroxydopamine toxicity.

    PubMed

    Giuliani, Patricia; Ballerini, Patrizia; Buccella, Silvana; Ciccarelli, Renata; Rathbone, Michel P; Romano, Silvia; D'Alimonte, Iolanda; Caciagli, Francesco; Di Iorio, Patrizia; Pokorski, Mieczyslaw

    2015-01-01

    Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinson's disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration. PMID:25310956

  7. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  8. [The effect of glial cells in the function and development of the nervous system in Caenorhabditis elegans].

    PubMed

    Yulan, X U; Yadan, Xue; Lijun, Kang

    2016-05-25

    There are three types of glial cells in Caenorhabditis elegans (C. elegans for short): sheath glia, socket glia and glutamate receptor glia. They are mainly located in four sensory organs including the amphid, the cephalic organ, the outer labial sensilla and the inner labial sensilla. C. elegans glial cells play key roles in dendrite extension, neurite guidance and extension, and are essential for synaptogenesis and maintain the normal morphology and the function of sensory nerve endings as well. A recent study shown that some nematode neurons are derived from the glial cells. Moreover, nematodes glial cells can directly modulate the function of sensory neurons. Some glial cells can also respond to certain external stimuli, such as mechanical stimulation, and adjust the accompanying neuronal activities.The article summarizes the progress on effects of nematodes glial cells on the nervous system development and function. PMID:27651199

  9. Photodynamic injury of isolated crayfish neuron and surrounding glial cells: the role of p53

    NASA Astrophysics Data System (ADS)

    Sharifulina, S. A.; Uzdensky, A. B.

    2015-03-01

    The pro-apoptotic transcription factor p53 is involved in cell responses to injurious impacts. Using its inhibitor pifithrin- α and activators tenovin-1, RITA and WR-1065, we studied its potential participation in inactivation and death of isolated crayfish mechanoreceptor neuron and satellite glial cells induced by photodynamic treatment, a strong inducer of oxidative stress. In dark, p53 activation by tenovin-1 or WR-1065 shortened activity of isolated neurons. Tenovin-1 and WR-1065 induced apoptosis of glial cells, whereas pifithrin-α was anti-apoptotic. Therefore, p53 mediated glial apoptosis and suppression of neuronal activity after axotomy. Tenovin-1 but not other p53 modulators induced necrosis of axotomized neurons and surrounding glia, possibly, through p53-independent pathway. Under photodynamic treatment, p53 activators tenovin-1 and RITA enhanced glial apoptosis indicating the pro-apoptotic activity of p53. Photoinduced necrosis of neurons and glia was suppressed by tenovin-1 and, paradoxically, by pifithrin-α. Modulation of photoinduced changes in the neuronal activity and necrosis of neurons and glia was possibly p53-independent. The different effects of p53 modulators on neuronal and glial responses to axotomy and photodynamic impact were apparently associated with different signaling pathways in neurons and glial cells.

  10. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule

    PubMed Central

    1984-01-01

    By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal

  11. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  12. The role of Ca 2+-related signaling in photodynamic injury of nerve and glial cells

    NASA Astrophysics Data System (ADS)

    Lobanov, A. V.; Petin, Y. O.; Uzdensky, A. B.

    2007-05-01

    Photodynamic therapy (PDT) inhibited and irreversibly abolished firing, caused necrosis of neurons, necrosis, apoptosis and proliferation of glial cells in the isolated crayfish stretch receptor. The role in these processes of the central components of Ca 2+-mediated signaling pathway: phospholipase C, calmodulin, calmodulin-dependent kinase II, and protein kinase C was studied using their inhibitors: ET-18, fluphenazine, KN-93, or staurosporine, respectively. ET-18 reduced functional inactivation of neurons, necrosis and apoptosis of glial cells. Fluphenazine and KN-93 reduced PDT-induced necrosis of neurons and glial cells. Staurosporine enhanced PDT-induced glial apoptosis. PDTinduced gliosis was prevented by KN-93 and staurosporine. Therefore, phospholipase C participated in neuron inactivation and glial necrosis and apoptosis. Calmodulin and calmodulin-dependent kinase II were involved in PDT-induced necrosis of neurons and glial cells but not in glial apoptosis. Protein kinase C protected glia from apoptosis and participated in PDT-induced gliosis and loss of neuronal activity. These data may be used for modulation of PDT of brain tumors.

  13. Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions.

    PubMed

    Heidinger, V; Hicks, D; Sahel, J; Dreyfus, H

    1999-02-01

    Glutamate is the most abundant excitatory amino acid in the central nervous system. It has also been described as a potent toxin when present in high concentrations because excessive stimulation of its receptors leads to neuronal death. Glial influence on neuronal survival has already been shown in the central nervous system, but the mechanisms underlying glial neuroprotection are only partly known. When cells isolated from newborn rat retina were maintained in culture as enriched neuronal populations, 80% of the cells were destroyed by application of excitotoxic concentrations of glutamate. Massive neuronal death was also observed in newborn retinal cultures containing large numbers of glia, or when neurons were seeded onto feeder layers of purified cells prepared from immature (postnatal 8 day) rat retina. When newborn retinal neurons were seeded onto feeder layers of purified glial cells prepared from adult retinas, application of excitotoxic amino acids no longer led to neuronal death. Furthermore, neuronal death was not observed in mixed neuron/glial cultures prepared from adult retina. However, in all cases (newborn and adult) application of kainate led to amacrine cell-specific death. Activity of glutamine synthetase, a key glial enzyme involved in glutamate detoxification, was assayed in these cultures in the presence or absence of exogenous glutamate. Whereas pure glial cultures alone (from young or adult retina) showed low activity that was not stimulated by glutamate addition, mixed or co-cultured neurons and adult glia exhibited up to threefold higher levels of activity following glutamate treatment. These data indicate that two conditions must be satisfied to observe glial neuroprotection: maturation of glutamine synthetase expression, and neuron-glial signalling through glutamate-elicited responses. PMID:9932869

  14. The involvement of MAP kinases JNK and p38 in photodynamic injury of crayfish neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Petin, Y. O.; Bibov, M. Y.; Uzdensky, A. B.

    2007-05-01

    The role of JNK and p38 MAP kinases in functional inactivation and necrosis of mechanoreceptor neurons as well as necrosis, apoptosis and proliferation of satellite glial cells induced by photodynamic treatment (10 -7 M Photosens, 30 min incubation, 670 nm laser irradiation at 0.4 W/cm2) in the isolated crayfish stretch receptor was studied using specific inhibitors SP600125 and SB202190, respectively. SP600125 enhanced PDT-induced apoptosis of photosensitized glial cells but did not influence PDT-induced changes in neuronal activity, density of glial nuclei around neuron body, and necrosis of receptor neurons and glial cells. SB202190 did not influence neuron activity and survival as well but reduced PDT-induced necrosis but not apoptosis of glial cells. Therefore, both MAP kinases influenced glial cells but not neurons. JNK protected glial cells from PDT-induced apoptosis but did not influence necrosis and proliferation of these cells. In contrast, p38 did not influence apoptosis but contributed into PDT-induced necrosis of glial cells and PDT-induced gliosis. These MAP kinase inhibitors may be used for modulation of photodynamic therapy of brain tumors.

  15. Delivery of AAV-IGF-1 to the CNS Extends Survival in ALS Mice Through Modification of Aberrant Glial Cell Activity

    PubMed Central

    Dodge, James C; Haidet, Amanda M; Yang, Wendy; Passini, Marco A; Hester, Mark; Clarke, Jennifer; Roskelley, Eric M; Treleaven, Christopher M; Rizo, Liza; Martin, Heather; Kim, Soo H; Kaspar, Rita; Taksir, Tatyana V; Griffiths, Denise A; Cheng, Seng H; Shihabuddin, Lamya S; Kaspar, Brian K

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. Recent work in rodent models of ALS has shown that insulin-like growth factor-1 (IGF-1) slows disease progression when delivered at disease onset. However, IGF-1’s mechanism of action along the neuromuscular axis remains unclear. In this study, symptomatic ALS mice received IGF-1 through stereotaxic injection of an IGF-1-expressing viral vector to the deep cerebellar nuclei (DCN), a region of the cerebellum with extensive brain stem and spinal cord connections. We found that delivery of IGF-1 to the central nervous system (CNS) reduced ALS neuropathology, improved muscle strength, and significantly extended life span in ALS mice. To explore the mechanism of action of IGF-1, we used a newly developed in vitro model of ALS. We demonstrate that IGF-1 is potently neuroprotective and attenuates glial cell–mediated release of tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Our results show that delivering IGF-1 to the CNS is sufficient to delay disease progression in a mouse model of familial ALS and demonstrate for the first time that IGF-1 attenuates the pathological activity of non-neuronal cells that contribute to disease progression. Our findings highlight an innovative approach for delivering IGF-1 to the CNS. PMID:18388910

  16. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  17. Early postnatal development of glial cells in the canine cervical spinal cord.

    PubMed

    Lord, K E; Duncan, I D

    1987-11-01

    To study qualitative and quantitative changes in the glial cell population of young postnatal dogs, the cervical spinal cords of 20 beagle pups, ranging in age from 1 to 28 days, were prepared for light and electron microscopy. Glial cells in the lateral corticospinal tract were classified and quantified directly on the electron microscope. Quantification was performed by means of a stereological method designed to correct for sampling bias, and glia were classified according to morphological criteria as immature glial cell precursors, light and dark oligodendrocytes, astrocytes, and microglia. Glial cell precursors, which include undifferentiated glioblasts, oligodendroblasts, and astroblasts, predominated in the first few days after birth, constituting 43% of the glial cell population, and then declined to less than 5% by 28 days. Light and dark oligodendrocytes differed morphologically in their electron density and the appearance of their organelles. Light oligodendrocytes increased slightly prior to myelination, and then declined, whereas dark oligodendrocytes continued to increase throughout the 4-week period and became the predominant cell type at 28 days (66%). In contrast to the oligodendroglial population, the sizes of the astroglial and microglial cell populations were relatively stable. This study shows that the population of immature glial cell precursors, abundant at birth in the lateral corticospinal tract, appear to be differentiating primarily into oligodendroglia, because this population exhibits a rapid increase in size, and relatively little change occurs in the astrocyte population. The trends in glial cell development in the dog are similar to those reported for rodents, although there may be some variation in the maturation and activity of oligodendrocytes.

  18. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    PubMed

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals. PMID:27409807

  19. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    PubMed

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.

  20. Regulation of Specific Functions of Glial Cells in Somatic Hybrids, II. Control of Inducibility of Glycerol-3-Phosphate Dehydrogenase

    PubMed Central

    Davidson, Richard L.; Benda, Philippe

    1970-01-01

    Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) is induced when glial cells are exposed to hydrocortisone in vitro. In contrast, the enzyme activity in fibroblasts is not affected by the steroid. In an attempt to elucidate the mechanisms controlling inducibility, hybrids between glial cells and fibroblasts were studied. It was found that the activity of the enzyme does not increase when the hybrids are exposed to hydrocortisone. It was also shown that inducibility and the noninduced activity of enzyme are controlled independently. Comparisons of S-100 and glycerol phosphate dehydrogenase activity in the hybrids suggest that all the specialized functions characteristics of glial cells are not coordinately controlled. PMID:4321349

  1. Evidence for brain glial activation in chronic pain patients.

    PubMed

    Loggia, Marco L; Chonde, Daniel B; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D; Zürcher, Nicole R; Albrecht, Daniel S; Vangel, Mark G; Rosen, Bruce R; Napadow, Vitaly; Hooker, Jacob M

    2015-03-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.

  2. Glial cell development and function in the Drosophila visual system

    PubMed Central

    CHOTARD, CAROLE; SALECKER, IRIS

    2008-01-01

    In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron–neuron and neuron–glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function. PMID:18333286

  3. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    PubMed Central

    Croft, Wayne; Dobson, Katharine L.; Bellamy, Tomas C.

    2015-01-01

    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology. PMID:26339509

  4. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  5. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells.

    PubMed

    Mendez-Flores, Orquidia G; Hernández-Kelly, Luisa C; Suárez-Pozos, Edna; Najimi, Mustapha; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology. PMID:27184733

  6. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).

    PubMed

    Brazitikos, P D; Tsacopoulos, M

    1991-12-13

    Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia. PMID:1815828

  7. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).

    PubMed

    Brazitikos, P D; Tsacopoulos, M

    1991-12-13

    Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia.

  8. Insulin-dependent regulation of GLAST/EAAT1 in Bergmann glial cells.

    PubMed

    Poblete-Naredo, Irais; Angulo, Carla; Hernández-Kelly, Luisa; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2009-02-20

    Glutamate is the major excitatory neurotransmitter in the central nervous system. Ionotropic and metabotropic glutamate receptors are present in neurons and glial cells and are involved in gene expression regulation. A family of sodium-dependent glutamate transporters carries out the removal of the neurotransmitter from the synaptic cleft. In the cerebellum, the bulk of glutamate transport is mediated through the excitatory amino acids transporter 1 (EAAT1/GLAST) expressed in Bergmann glial cells. Proper transporter function is critical for glutamate cycling and glucose turnover, as well as prevention of excitotoxic insult to Purkinje cells. In order to gain insight into the regulatory signals that modify this uptake activity, we investigated the effects of insulin exposure. Using the well-defined chick cerebellar Bergmann glial cell culture model, we observed a time and dose-dependent decrease in [(3)H]-d-aspartate uptake. As expected, this effect is mimicked by the tyrosine phosphatase inhibitor sodium orthovanadate, suggesting a receptor-mediated effect. Equilibrium [(3)H]-d-aspartate binding experiments as well as a reverse transcriptase/polymerase chain reaction strategy demonstrated that the decrease in the uptake activity is related to reduced numbers of transporter molecules in the plasma membrane. Accordingly, the transcriptional activity of the chick glast promoter diminished upon insulin treatment. The present findings suggest the involvement of insulin in neuronal/glial coupling in the cerebellum.

  9. Two forms of cerebellar glial cells interact differently with neurons in vitro

    PubMed Central

    1984-01-01

    Specific interactions between neurons and glia dissociated from early postnatal mouse cerebellar tissue were studied in vitro by indirect immunocytochemical staining with antisera raised against purified glial filament protein, galactocerebroside, and the NILE glycoprotein. Two forms of cells were stained with antisera raised against purified glial filament protein. The first, characterized by a cell body 9 microns diam and processes 130-150 microns long, usually had two to three neurons associated with them and resembled Bergmann glia. The second had a slightly larger cell body with markedly shorter arms among which were nestled several dozen neuronal cells, and resembled astrocytes of the granular layer. Staining with monoclonal antisera raised against purified galactocerebroside revealed the presence of immature oligodendroglia in the cultures. These glial cells constituted approximately 2% of the total cell population in the cultures and, in contrast to astroglia, did not form specific contacts with neurons. Staining with two neuronal markers, antisera raised against purified NILE glycoprotein and tetanus toxin, revealed that most cells associated with presumed astroglia were small neurons (5-8 microns). After 1-2 d in culture, some stained neurons had very fine, short processes. Nearly all of the processes greater than 10-20 micron long were glial in origin. Electron microscopy also demonstrated the presence of two forms of astroglia in the cultures, each with a different organizing influence on cerebellar neurons. Most neurons associated with astroglia were granule neurons, although a few larger neurons sometimes associated with them. Time-lapse video microscopy revealed extensive cell migration (approximately 10 microns/h) along the arms of Bergmann-like astroglia. In contrast, cells did not migrate along the arms of astrocyte-like astroglia, but remained stationary at or near branch points. Growth cone activity, pulsating movements of cell perikarya, and

  10. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture.

    PubMed

    Li, W-W; Guo, T-Z; Shi, X; Sun, Y; Wei, T; Clark, D J; Kingery, W S

    2015-12-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glial activation and central sensitization. At 4 weeks after tibia fracture and casting in rats, the cast was removed and hind paw allodynia, unweighting, warmth, and edema were measured, then the antinociceptive effects of microglia (minocycline) or astrocyte (L-2-aminoadipic acid (LAA)) inhibitors or an SP receptor antagonist (LY303870) were tested. Immunohistochemistry and PCR were used to evaluate microglial and astrocyte activation in the dorsal horn. Similar experiments were performed in intact rats after brief sciatic nerve electric stimulation at C-fiber intensity. Microglia and astrocytes were chronically activated at 4 weeks after fracture and contributed to the maintenance of hind paw allodynia and unweighting. Furthermore, LY303870 treatment initiated at 4 weeks after fracture partially reversed both spinal glial activation and nociceptive sensitization. Similarly, persistent spinal microglial activation and hind paw nociceptive sensitization were observed at 48 h after sciatic nerve C-fiber stimulation and this effect was inhibited by treatment with minocycline, LAA, or LY303870. These data support the hypothesis that C-fiber afferent SP signaling chronically supports spinal neuroglial activation after limb fracture and that glial activation contributes to the maintenance of central nociceptive sensitization in CRPS. Treatments inhibiting glial activation and spinal inflammation may be therapeutic for CRPS. PMID:26386297

  11. The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra.

    PubMed

    Kitamura, Yoshihisa; Inden, Masatoshi; Minamino, Hideaki; Abe, Mari; Takata, Kazuyuki; Taniguchi, Takashi

    2010-11-01

    Neuron/glial 2 (NG2)-expressing cells are often referred to as oligodendrocyte precursor cells. NG2-expressing cells have also been identified as multipotent progenitor cells. However, microglia-like NG2 glial cells have not been fully examined in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we chose two rat models of PD, i.e., intranigral or intrastriatal injection of 6-hydroxydopamine (6-OHDA), since the cell bodies of dopamine (DA) neurons, which form a nigrostriatal pathway, are in the substantia nigra pars compacta (SNpc) while their nerve terminals are in the striatum. In the nigral 6-OHDA-injected model, activated NG2-positive cells were detected in the SNpc but not in the striatum. In contrast, in the striatal 6-OHDA-injected model, these cells were detected in both the SNpc and the striatum. In both models, activated NG2-positive cells were located close to surviving tyrosine hydroxylase (TH)-positive neurons in the SNpc. In addition, activated NG2-positive cells in the SNpc coexpressed ionized calcium-binding adaptor molecule 1 (Iba1), a microglia/macrophage marker. Interestingly, these double-positive glial cells coexpressed glial cell line-derived neurotrophic factor (GDNF). These results suggest that microglia-like NG2 glial cells may help protect DA neurons and may lead to new therapeutic targets in PD.

  12. Enhanced release of plasminogen activator inhibitor(s) but not of plasminogen activators by cultured rat glial cells treated with interleukin-1.

    PubMed

    Rogister, B; Leprince, P; Delree, P; Van Damme, J; Billiau, A; Moonen, G

    1990-01-01

    Astroglial cells are known to proliferate during development of the nervous system, as well as during post-traumatic gliosis. We have previously shown that the proliferation of cultured astrocytes can be stimulated by the urokinase-type (uPA) of plasminogen activator (PA) and that astrocytes are able to release such uPA upon stimulation with basic fibroblast growth factor, which is known to act as a mitogen for these cells. Here we report studies on the effects of human interleukin-1 (IL-1) on the release of PA activity by cultured newborn rat astroglial cells. Whereas there is controversy in the literature as to whether IL-1 stimulates multiplication of astroglial cells, we failed to observe such an effect in our system. We did observe, however, a dose-dependent decrease in PA activity in the supernatant of the IL-1 treated cultures. Further analysis revealed that this apparent decrease in PA release was in fact due to an increased release of plasminogen activator inhibitor (PAI). A similar IL-1 induced increase in PAI release was also found to occur in cultures of transformed astrocytes (human glioma LN18) and in cultured Schwann cells, but not in cultures of neurons or neuronal tumour cells. Since protease inhibitors are known to possess neuritogenic properties, our results suggest that IL-1, by its capacity to induce PAI, may promote neuritogenesis.

  13. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment.

    PubMed

    Shi, Ming; Du, Fang; Liu, Yang; Li, Li; Cai, Jing; Zhang, Guo-Feng; Xu, Xiao-Fei; Lin, Tian; Cheng, Hao-Ran; Liu, Xue-Dong; Xiong, Li-Ze; Zhao, Gang

    2013-11-01

    Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca(2+)-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca(2+) influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment. PMID:24002225

  14. Potential primary roles of glial cells in the mechanisms of psychiatric disorders.

    PubMed

    Yamamuro, Kazuhiko; Kimoto, Sohei; Rosen, Kenneth M; Kishimoto, Toshifumi; Makinodan, Manabu

    2015-01-01

    While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a "glue" to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia. PMID:26029044

  15. Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina

    PubMed Central

    Agulhon, Cendra; Platel, Jean-Claude; Kolomiets, Bogdan; Forster, Valérie; Picaud, Serge; Brocard, Jacques; Faure, Philippe; Brulet, Philippe

    2007-01-01

    Glial Ca2+ excitability plays a key role in reciprocal neuron–glia communication. In the retina, neuron–glia signalling is expected to be maximal in the dark, but the glial Ca2+ signal characteristics under such conditions have not been evaluated. To address this question, we used bioluminescence imaging to monitor spontaneous Ca2+ changes under dark conditions selectively in Müller cells, the principal retinal glial cells. By combining this imaging approach with network analysis, we demonstrate that activity in Müller cells is organized in networks of coactive cells, involving 2–16 cells located distantly and/or in clusters. We also report that spontaneous activity of small networks (2–6 Müller cells) repeat over time, sometimes in the same sequential order, revealing specific temporal dynamics. In addition, we show that networks of coactive glial cells are inhibited by TTX, indicating that ganglion and/or amacrine neuronal cells probably regulate Müller cell network properties. These results represent the first demonstration that spontaneous activity in adult Müller cells is patterned into correlated networks that display repeated sequences of coactivations over time. Furthermore, our bioluminescence technique provides a novel tool to study the dynamic characteristics of glial Ca2+ events in the retina under dark conditions, which should greatly facilitate future investigations of retinal dark-adaptive processes. PMID:17627996

  16. Biomechanical properties of retinal glial cells: comparative and developmental data.

    PubMed

    Lu, Yun-Bi; Pannicke, Thomas; Wei, Er-Qing; Bringmann, Andreas; Wiedemann, Peter; Habermann, Gunnar; Buse, Eberhard; Käs, Josef A; Reichenbach, Andreas

    2013-08-01

    The biomechanical properties of Müller glial cells may have importance in understanding the retinal tissue alterations after retinal surgery with removal of the inner limiting membrane and during the ontogenetic development, respectively. Here, we compared the viscoelastic properties of Müller cells from man and monkey as well as from different postnatal developmental stages of the rat. We determined the complex Young's modulus E = E' + iE″ in a defined range of deforming frequencies (30, 100, and 200 Hz) using a scanning force microscope, where the real part E' reflects the elastic property (energy storage or elastic stiffness) and the imaginary part E″ reflects the viscous property (energy dissipation) of the cells. The viscoelastic properties were similar in Müller cells from man, monkey, and rat. In general, the elastic behavior dominated over the viscous behavior (E' > E″). The inner process of the Müller cell was the softest region, the soma the stiffest (Einnerprocess(')glial cells (Eneuron(')>Eglia(')). These relations were also observed during the postnatal development of the rat. It is concluded that, generally, retinal cells display mechanics of elastic solids. In addition, the data indicate that the rodent retina is a reliable model to investigate retinal mechanics and tissue alterations after retinal surgery. During retinal development, neuronal branching and synaptogenesis might be particularly stimulated by the viscoelastic properties of Müller cell processes in the inner plexiform layer.

  17. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress.

    PubMed

    Pannicke, Thomas; Wurm, Antje; Iandiev, Ianors; Hollborn, Margrit; Linnertz, Regina; Binder, Devin K; Kohen, Leon; Wiedemann, Peter; Steinhäuser, Christian; Reichenbach, Andreas; Bringmann, Andreas

    2010-10-01

    The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed. PMID:20544823

  18. Activation of microglia by endotoxin suppresses the secretion of glial cell line-derived neurotrophic factor (GDNF) through the action of protein kinase C alpha (PKCalpha) and mitogen-activated protein kinases (MAPKS).

    PubMed

    Matsushita, Yuichi; Nakajima, Kazuyuki; Tohyama, Yoko; Kurihara, Tadashi; Kohsaka, Shinichi

    2008-07-01

    The ability of microglia to produce/secrete glial cell line-derived neurotrophic factor (GDNF) in vitro was examined. Immunoblotting analysis revealed that nonstimulated microglia release limited amounts of GDNF with molecular sizes of 14 and 17 kDa. However, the secreted amounts significantly decreased when the microglia were activated with the endotoxin lipopolysaccharide (LPS). Comparison of the amounts of GDNF in the cells and the conditioned medium between the nonstimulated microglia and LPS-stimulated microglia clarified that the secretion of GDNF, but not its production, is strongly suppressed when the microglia are activated with LPS. The inhibitor experiments suggested that the GDNF secretion is depressed by a signaling cascade associated with protein kinase C alpha (PKCalpha) and/or mitogen-activated protein kinases (MAPKs). As expected from the above results, a PKC activator suppressed the secretion of GDNF in nonstimulated microglia. Taken together, these results demonstrated that microglia have the ability to produce and secrete GDNF in vitro, and that the secretion is suppressed by stimulation with endotoxin, probably due to a signaling mechanism involving PKCalpha and/or MAPKs.

  19. Stem cell therapy for central nerve system injuries: glial cells hold the key

    PubMed Central

    Xiao, Li; Saiki, Chikako; Ide, Ryoji

    2014-01-01

    Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permissive microenvironment for neuronal stem cells. PMID:25221575

  20. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System?

    PubMed Central

    Cullen, Carlie L.; Young, Kaylene M.

    2016-01-01

    Transcranial magnetic stimulation (TMS) is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signaling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell (NSPC) proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the central nervous system (CNS), the influence that TMS has on glial cells is certainly an area that warrants careful examination. PMID:27092058

  1. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  2. Distribution and Development of Peripheral Glial Cells in the Human Fetal Cochlea

    PubMed Central

    Locher, Heiko; de Groot, John C. M. J.; van Iperen, Liesbeth; Huisman, Margriet A.; Frijns, Johan H. M.; Chuva de Sousa Lopes, Susana M.

    2014-01-01

    The adult human cochlea contains various types of peripheral glial cells that envelop or myelinate the three different domains of the spiral ganglion neurons: the central processes in the cochlear nerve, the cell bodies in the spiral ganglia, and the peripheral processes in the osseous spiral lamina. Little is known about the distribution, lineage separation and maturation of these peripheral glial cells in the human fetal cochlea. In the current study, we observed peripheral glial cells expressing SOX10, SOX9 and S100B as early as 9 weeks of gestation (W9) in all three neuronal domains. We propose that these cells are the common precursor to both mature Schwann cells and satellite glial cells. Additionally, the peripheral glial cells located along the peripheral processes expressed NGFR, indicating a phenotype distinct from the peripheral glial cells located along the central processes. From W12, the spiral ganglion was gradually populated by satellite glial cells in a spatiotemporal gradient. In the cochlear nerve, radial sorting was accomplished by W22 and myelination started prior to myelination of the peripheral processes. The developmental dynamics of the peripheral glial cells in the human fetal cochlea is in support of a neural crest origin. Our study provides the first overview of the distribution and maturation of peripheral glial cells in the human fetal cochlea from W9 to W22. PMID:24498246

  3. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    SciTech Connect

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-04-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. (/sup 3/H)Quinuclidinyl-benzylate ((/sup 3/H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of (/sup 3/H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells.

  4. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish.

    PubMed

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation.

  5. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish.

    PubMed

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. PMID:27245768

  6. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  7. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    PubMed

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.

  8. Emerging role of glial cells in the control of body weight

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Argente, Jesús; Chowen, Julie A.

    2012-01-01

    Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field. PMID:24024117

  9. Indicators of glial activation and brain oxidative stress after intraventricular infusion of endotoxin.

    PubMed

    Sugaya, K; Chou, S; Xu, S J; McKinney, M

    1998-07-15

    Glial activation and oxidative stress are both consequences of brain aging. To investigate whether glial activation causes oxidative stress or not, the immune activator, lipopolysaccharide (LPS), was intraventricularly injected into the rat brain. The expression of candidate genes were examined by in situ hybridization histochemistry (ISHH) combined with immunohistochemistry for glial markers over a period of time up to 24 h after the LPS injection. The mRNA for glial fibrillary acidic protein (GFAP) was elevated around the injection site by 2 h, and the volume of elevated expression spread to the entire brain after 6 h, with higher levels present in the injected hemisphere. The level of inducible isoform of nitric oxide synthase (i-NOS) mRNA increased in a punctate-like pattern in the region of the injection by 6 h and this response spread to the entire brain after 12 h. These results indicate that the glia are activated for at least 24 h after a single LPS injection. The mRNAs for a heat-shock protein (HSP70) and for the manganese-dependent superoxide dismutase (Mn-SOD) were elevated in the ipsilateral hemisphere as early as 2 h post-injection, but these responses subsided nearly to basal levels by 4 h. These levels of mRNAs for these genes increased again after 6 h of the LPS injection; thus, the earlier increases of the messages appeared to be associated with the survival surgery procedure. With microautoradiographic analysis, scattered OX-42 positive cells expressed i-NOS mRNA after 6 h post-injection, but elevation of Mn-SOD mRNA was not detected in either microglia or astrocytes at any time point examined. The level for Cu/Zn-SOD mRNA did not alter at any time point. The beta-amyloid precursor protein (betaAPP) mRNAs were elevated beginning at 6 h. These results indicate that chronic glial activation leads to a condition of oxidative stress in the brain. The data also suggest that LPS injection could be used to study the effects of chronic glial activation

  10. Sox2 promotes survival of satellite glial cells in vitro

    SciTech Connect

    Koike, Taro Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  11. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  12. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    NASA Astrophysics Data System (ADS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  13. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate.

    PubMed

    Tsacopoulos, M; Evêquoz-Mercier, V; Perrottet, P; Buchner, E

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  14. Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone.

    PubMed

    Coles, J A; Tsacopoulos, M

    1981-12-01

    This is a review paper that includes original calculations and figures. The drone retina is composed of two essentially uniform populations of cells, the photoreceptors and the glial cells. The photoreceptors contain many mitochondria but no glycogen has been detected; the glial cells contain much glycogen and very few mitochondria. The oxygen consumption of the photoreceptors in the dark is 20 microliters min-1 per g of retinal tissue and in response to a single flash of light there is an extra consumption that reaches a maximum of 40 microliters min-1 per g. In addition, light stimulation of the photoreceptors leads to changes in the glycogen metabolism of the glial cells, and to movements of K+. Measurements with intracellular K+-sensitive micro-electrodes showed that during light stimulation with a series of flashes the K+ activity (alpha K) in the photoreceptors fell by an average of 27% while in the glial cells alpha K rose by an amount that is estimated to correspond to most of the quantity of K+ lost by the photoreceptors. The relative contributions to the clearance of extracellular K+ of extracellular diffusion, spatial buffering and possible net K+ uptake by glial cells are discussed.

  15. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia.

    PubMed

    Zhang, X; Chen, Y; Wang, C; Huang, L-Y M

    2007-06-01

    It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release events increases with the frequency of nerve stimulation; external Ca(2+) entry is required for the release. FM1-43 photoconversion analysis further reveals that small clear vesicles participate in exocytosis. In addition, the released ATP activates P2X7 receptors in satellite cells that enwrap each DRG neuron and triggers the communication between neuronal somata and glial cells. Blocking L-type Ca(2+) channels completely eliminates the neuron-glia communication. We further show that activation of P2X7 receptors can lead to the release of tumor necrosis factor-alpha (TNFalpha) from satellite cells. TNFalpha in turn potentiates the P2X3 receptor-mediated responses and increases the excitability of DRG neurons. This study provides strong evidence that somata of DRG neurons actively release transmitters and play a crucial role in bidirectional communication between neurons and surrounding satellite glial cells. These results also suggest that, contrary to the conventional view, neuronal somata have a significant role in cell-cell signaling.

  16. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases

    PubMed Central

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario

    2015-01-01

    Abstract: The word “glia” is derived from the Greek word “γλοια,” glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the “reactive glial phenotype” is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor–α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential. PMID:26689598

  17. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    PubMed

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  18. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  19. Glial cells generate neurons: the role of the transcription factor Pax6.

    PubMed

    Heins, Nico; Malatesta, Paolo; Cecconi, Francesco; Nakafuku, Masato; Tucker, Kerry Lee; Hack, Michael A; Chapouton, Prisca; Barde, Yves-Alain; Götz, Magdalena

    2002-04-01

    Radial glial cells, ubiquitous throughout the developing CNS, guide radially migrating neurons and are the precursors of astrocytes. Recent evidence indicates that radial glial cells also generate neurons in the developing cerebral cortex. Here we investigated the role of the transcription factor Pax6 expressed in cortical radial glia. We showed that radial glial cells isolated from the cortex of Pax6 mutant mice have a reduced neurogenic potential, whereas the neurogenic potential of non-radial glial precursors is not affected. Consistent with defects in only one neurogenic lineage, the number of neurons in the Pax6 mutant cortex in vivo is reduced by half. Conversely, retrovirally mediated Pax6 expression instructs neurogenesis even in astrocytes from postnatal cortex in vitro. These results demonstrated an important role of Pax6 as intrinsic fate determinant of the neurogenic potential of glial cells.

  20. APOE genotype alters glial activation and loss of synaptic markers in mice.

    PubMed

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B; Tai, Leon M; Yu, Chunjiang; Rebeck, G William; LaDu, Mary Jo

    2012-04-01

    The ε4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.

  1. Glial cells, but not neurons, exhibit a controllable response to a localized inflammatory microenvironment in vitro.

    PubMed

    Sommakia, Salah; Rickus, Jenna L; Otto, Kevin J

    2014-01-01

    The ability to design long-lasting intracortical implants hinges on understanding the factors leading to the loss of neuronal density and the formation of the glial scar. In this study, we modify a common in vitro mixed cortical culture model using lipopolysaccharide (LPS) to examine the responses of microglia, astrocytes, and neurons to microwire segments. We also use dip-coated polyethylene glycol (PEG), which we have previously shown can modulate impedance changes to neural microelectrodes, to control the cellular responses. We find that microglia, as expected, exhibit an elevated response to LPS-coated microwire for distances of up to 150 μm, and that this elevated response can be mitigated by co-depositing PEG with LPS. Astrocytes exhibit a more complex, distance-dependent response, whereas neurons do not appear to be affected by the type or magnitude of glial response within this in vitro model. The discrepancy between our in vitro responses and typically observed in vivo responses suggest the importance of using a systems approach to understand the responses of the various brain cell types in a chronic in vivo setting, as well as the necessity of studying the roles of cell types not native to the brain. Our results further indicate that the loss of neuronal density observed in vivo is not a necessary consequence of elevated glial activation. PMID:25452724

  2. Resveratrol attenuates inflammatory hyperalgesia by inhibiting glial activation in mice spinal cords.

    PubMed

    Wang, Lin-Lin; Shi, Dong-Ling; Gu, Hui-Yao; Zheng, Ming-Zhi; Hu, Jue; Song, Xing-Hui; Shen, Yue-Liang; Chen, Ying-Ying

    2016-05-01

    The present study aimed to investigate the effect of resveratrol on inflammatory pain. Mice were injected intraperitoneally with lipopolysaccharide (LPS) for 5 consecutive days to induce subacute systemic inflammation. Acetic acid‑induced writhing tests and tail‑flick tests were performed following the final LPS injection. Glial fibrillary acidic protein (GFAP; an astrocyte‑specific activation marker), ionized calcium binding adapter molecule 1 (Iba‑1; a microglia‑specific activation marker) and sirtuin 1 (SIRT1) protein expression levels were detected using immunohistochemistry analysis or western blotting. Following administration of LPS for 5 days, the number of writhes increased and the tail‑flick latency decreased. Resveratrol (10 or 20 mg/kg) partly inhibited LPS‑induced hyperalgesia and prevented the increase in tumor necrosis factor‑α and interleukin 6 levels induced by LPS. LPS injection reduced the SIRT1 protein expression and increased the number of GFAP‑positive and Iba‑1‑positive cells in the spinal cord. Resveratrol increased the SIRT1 protein expression levels and decreased the number of GFAP‑positive and Iba‑1‑positive cells in LPS‑treated mice. The protective effect of resveratrol was partly blocked by a selective SIRT1 inhibitor, EX‑257. Results from the present study suggest that subacute treatment with LPS induced the activation of glial cells and hyperalgesia. Resveratrol was demonstrated to inhibit the activation of glial cells and attenuate inflammatory hyperalgesia in a SIRT1‑dependent manner.

  3. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    PubMed

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. PMID:26851132

  4. Functions of glial cells in the retina of the honeybee drone.

    PubMed

    Coles, J A

    1989-01-01

    In the retina of the honey bee drone, Apis mellifera male, physiological interactions between glial cells and neurons (the photoreceptors) are exceptionally clear-cut and amenable to investigation. The principal glia (outer pigment cells) contribute to the homeostasis of extracellular [K+] and [Na+] by 1) spatial buffering of K+ and 2) net uptake of K+ and Cl-. The glia supply carbohydrate metabolic substrate to the neurons; only the glia take up and phosphorylate glucose. Neuronal activity 1) modifies glycogen metabolism in the glia, and 2) can be signalled to the glia in the absence of elevated extracellular [K+].

  5. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    PubMed

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.

  6. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity

    PubMed Central

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H. P.

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba2+-sensitive K+ inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K+ inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap–junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K+]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K+]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K+ uptake limiting activity-dependent [K+]o increase in the perisomatic neuron domain. PMID:27161034

  7. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    PubMed

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  8. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    PubMed

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  9. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells.

    PubMed

    Gale, Zoe; Cooper, Paul R; Scheven, Ben A

    2012-02-01

    Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.

  10. Cytoprotective and anti-inflammatory effects of PAL31 overexpression in glial cells

    PubMed Central

    2014-01-01

    Background Acute spinal cord injury (SCI) leads to a series of reactive changes and causes severe neurological deficits. A pronounced inflammation contributes to secondary pathology after SCI. Astroglia respond to SCI by proliferating, migrating, and altering phenotype. The impact of reactive gliosis on the pathogenesis of SCI is not fully understood. Our previous study has identified an inflammatory modulating protein, proliferation related acidic leucine-rich protein (PAL31) which is upregulated in the microglia/macrophage of injured cords. Because PAL31 participates in cell cycle progression and reactive astroglia often appears in the injured cord, we aim to examine whether PAL31 is involved in glial modulation after injury. Results Enhanced PAL31 expression was shown not only in microglia/macrophages but also in spinal astroglia after SCI. Cell culture study reveal that overexpression of PAL31 in mixed glial cells or in C6 astroglia significantly reduced LPS/IFNγ stimulation. Further, enhanced PAL31 expression in C6 astroglia protected cells from H2O2 toxicity; however, this did not affect its proliferative activity. The inhibiting effect of PAL31 on LPS/IFNγ stimulation was observed in glia or C6 after co-culture with neuronal cells. The results demonstrated that the overexpressed PAL31 in glial cells protected neuronal damages through inhibiting NF-kB signaling and iNOS. Conclusions Our data suggest that PAL31upregulation might be beneficial after spinal cord injury. Reactive gliosis might become a good target for future therapeutic interventions. PMID:25034417

  11. Effect of subpressor dose of angiotensin II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells in the rat dorsal root ganglia.

    PubMed

    Pavel, Jaroslav; Oroszova, Zuzana; Hricova, Ludmila; Lukacova, Nadezda

    2013-07-01

    To clarify the role of angiotensin II (Ang II) in the regulation of sensory signaling, we studied the effect of subpressor dose (150 ng/kg/min) of Ang II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRGs) after chronic constriction injury (CCI). Systemic continuous delivery of Ang II induced the tactile, heat and cold hyperlagesia, when measured at 7 days ofpost-injury. Blockade of the AT1 receptor with losartan (2.5 mg/kg/day) prevented tactile hyperalgesia and attenuated cold hyperalgesia, but did not affect the response to noxious heat stimulus. A marked increase of large-sized injured primary afferent neurons, detected by ATF3 immunolabeling, was seen in lower lumbar DRGs on ipsilateral side after Ang II treatment. Subpressor dose of Ang II induced an increase of activated SGCs (detected by GFAP immunolabeling) enveloping large-diameter neurons. Our results suggested that Ang II through the AT1 receptor activation is an important regulatory factor in neuropathic pain perception and plays an important role in the injury of large-sized primary afferent neurons and activation of SGCs elicited by the CCI.

  12. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  13. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  14. [Glial cells are involved in iron accumulation and degeneration of dopamine neurons in Parkinson's disease].

    PubMed

    Xu, Hua-Min; Wang, Jun; Song, Ning; Jiang, Hong; Xie, Jun-Xia

    2016-08-25

    A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD. Until now, most researches on nigral iron deposition in PD are focusing on DA neurons, but in fact glial cells in the central nervous system also play an important role in the regulation of iron homeostasis. Therefore, this review describes the role of iron metabolism of glial cells in death of DA neurons in PD, which could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD. PMID:27546505

  15. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  16. Comparison of the radiosensitivities of neurons and glial cells derived from the same rat brain

    PubMed Central

    KUDO, SHIGEHIRO; SUZUKI, YOSHIYUKI; NODA, SHIN-EI; MIZUI, TOSHIYUKI; SHIRAI, KATSUYUKI; OKAMOTO, MASAHIKO; KAMINUMA, TAKUYA; YOSHIDA, YUKARI; SHIRAO, TOMOAKI; NAKANO, TAKASHI

    2014-01-01

    Non-proliferating cells, such as mature neurons, are generally believed to be more resistant to X-rays than proliferating cells, such as glial and vascular endothelial cells. Therefore, the late adverse effects of radiotherapy on the brain have been attributed to the radiation-induced damage of glial and vascular endothelial cells. However, little is known about the radiosensitivities of neurons and glial cells due to difficulties in culturing these cells, particularly neurons, independently. In the present study, primary dissociated neurons and glial cultures were prepared separately from the hippocampi and cerebrum, respectively, which had been obtained from the same fetal rat on embryonic day 18. X-irradiations of 50 Gy were performed on the cultured neurons and glial cells at 7 and 21 days in vitro (DIV). The cells were fixed at 24 h after irradiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was then performed to measure the apoptotic indices (AIs). The AIs of non-irradiated and irradiated neurons at 7 DIV were 23.7±6.7 and 64.9±4.8%, and those at 21 DIV were 52.1±17.4 and 44.6±12.5%, respectively. The AIs of non-irradiated and irradiated glial cells at 7 DIV were 5.8±1.5 and 78.4±3.3% and those at 21 DIV were 9.6±2.6 and 86.3±4.9%, respectively. Glial cells and neurons were radiosensitive at 7 DIV. However, while glial cells were radiosensitive at 21 DIV, neurons were not. PMID:25120594

  17. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor

    PubMed Central

    Pauwels, Petrus J; Wurch, Thierry; Palmier, Christiane; Colpaert, Francis C

    1998-01-01

    The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPγS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions.Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H] - N- [4-methoxy-3,4 - methylpiperazin-1-yl) phenyl] -3 - methyl - 4-(4 - pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg−1 protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor.[35S]-GTPγS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethylsulphonamide (CP122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (±)-cyanopindolol and (2′-methyl-4′-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63).The ligands 1′-methyl-5-(2′-methyl-4′-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3-spiro-4′-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S

  18. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor.

    PubMed

    Pauwels, P J; Wurch, T; Palmier, C; Colpaert, F C

    1998-01-01

    1. The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPgammaS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H]-N-[4-methoxy-3,4-methylpiperazin-1-yl) phenyl]-3-methyl-4-(4-pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg(-1) protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor. 3. [35S]-GTPgammaS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulphonamide (CP 122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (+/-)-cyanopindolol and (2'-methyl-4'-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63). 4. The ligands 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7tetrahydrospiro [furo[2,3-f]indole-3-spiro-4'-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S]-GTPgammaS binding at concentrations

  19. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation.

    PubMed

    Lee, SeungHwan; Zhao, Yuan Qing; Ribeiro-da-Silva, Alfredo; Zhang, Ji

    2010-01-01

    Oro-facial pain following injury and infection is frequently observed in dental clinics. While neuropathic pain evoked by injury associated with nerve lesion has an involvement of glia/immune cells, inflammatory hyperalgesia has an exaggerated sensitization mediated by local and circulating immune mediators. To better understand the contribution of central nervous system (CNS) glial cells in these different pathological conditions, in this study we sought to characterize functional phenotypes of glial cells in response to trigeminal nerve injury (loose ligation of the mental branch), infection (subcutaneous injection of lipopolysaccharide--LPS) and to sterile inflammation (subcutaneous injection of complete Freund's adjuvant--CFA) on the lower lip. Each of the three insults triggered a specific pattern of mechanical allodynia. In parallel with changes in sensory response, CNS glial cells reacted distinctively to the challenges. Following ligation of the mental nerve, both microglia and astrocytes in the trigeminal nuclear complex were highly activated, more prominent in the principal sensory nucleus (Pr5) and subnucleus caudalis (Sp5C) area. Microglial response was initiated early (days 3-14), followed by delayed astrocytes activation (days 7-28). Although the temporal profile of microglial and astrocyte reaction corresponded respectively to the initiation and chronic stage of neuropathic pain, these activated glial cells exhibited a low profile of cytokine expression. Local injection of LPS in the lower lip skin also triggered a microglial reaction in the brain, which started in the circumventricular organs (CVOs) at 5 hours post-injection and diffused progressively into the brain parenchyma at 48 hours. This LPS-induced microglial reaction was accompanied by a robust induction of IκB-α mRNA and pro-inflammatory cytokines within the CVOs. However, LPS induced microglial activation did not specifically occur along the pain signaling pathway. In contrast, CFA

  20. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa

    PubMed Central

    1979-01-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug- depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon. PMID:512633

  1. Microbiota Controls the Homeostasis of Glial Cells in the Gut Lamina Propria

    PubMed Central

    Kabouridis, Panagiotis S.; Lasrado, Reena; McCallum, Sarah; Chng, Song Hui; Snippert, Hugo J.; Clevers, Hans; Pettersson, Sven; Pachnis, Vassilis

    2015-01-01

    Summary The intrinsic neural networks of the gastrointestinal tract are derived from dedicated neural crest progenitors that colonize the gut during embryogenesis and give rise to enteric neurons and glia. Here, we study how an essential subpopulation of enteric glial cells (EGCs) residing within the intestinal mucosa is integrated into the dynamic microenvironment of the alimentary tract. We find that under normal conditions colonization of the lamina propria by glial cells commences during early postnatal stages but reaches steady-state levels after weaning. By employing genetic lineage tracing, we provide evidence that in adult mice the network of mucosal EGCs is continuously renewed by incoming glial cells originating in the plexi of the gut wall. Finally, we demonstrate that both the initial colonization and homeostasis of glial cells in the intestinal mucosa are regulated by the indigenous gut microbiota. PMID:25578362

  2. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  3. Calcium responses mediated by type 2 IP3-receptors are required for osmotic volume regulation of retinal glial cells in mice.

    PubMed

    Lipp, Stephan; Wurm, Antje; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Chen, Ju; Bringmann, Andreas

    2009-06-26

    Prevention of osmotic swelling of retinal glial (Müller) cells is required to avoid detrimental decreases in the extracellular space volume during intense neuronal activity. Here, we show that glial cells in slices of the wildtype mouse retina maintain the volume of their somata constant up to approximately 4 min of perfusion with a hypoosmolar solution. However, calcium chelation with BAPTA/AM induced a rapid swelling of glial cell bodies. In glial cells of retinas from inositol-1,4,5-trisphosphate-receptor type 2-deficient (IP(3)R2(-/-)) mice, hypotonic conditions caused swelling of the cell bodies without delay. Exogenous ATP (acting at P2Y(1) receptors) prevented the swelling of glial cells in retinal slices from wildtype but not from IP(3)R2(-/-) mice. Müller cells from IP(3)R2(-/-) mice displayed a strongly reduced amplitude of the ATP-evoked calcium responses as compared to cells from wildtype mice. It is concluded that endogenous calcium signaling mediated by IP(3)R2 is required for the osmotic volume regulation of retinal glial cells. PMID:19429168

  4. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  5. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    PubMed Central

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  6. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury

    PubMed Central

    Laranjeira, Catia; Sandgren, Katarina; Kessaris, Nicoletta; Richardson, William; Potocnik, Alexandre; Vanden Berghe, Pieter; Pachnis, Vassilis

    2011-01-01

    The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are currently unknown. Using genetic fate mapping, we here demonstrate that mouse neural crest cells marked by SRY box–containing gene 10 (Sox10) generate the neuronal and glial lineages of enteric ganglia. Most neurons originated from progenitors residing in the gut during mid-gestation. Afterward, enteric neurogenesis was reduced, and it ceased between 1 and 3 months of postnatal life. Sox10-expressing cells present in the myenteric plexus of adult mice expressed glial markers, and we found no evidence that these cells participated in neurogenesis under steady-state conditions. However, they retained neurogenic potential, as they were capable of generating neurons with characteristics of enteric neurons in culture. Furthermore, enteric glia gave rise to neurons in vivo in response to chemical injury to the enteric ganglia. Our results indicate that despite the absence of constitutive neurogenesis in the adult gut, enteric glia maintain limited neurogenic potential, which can be activated by tissue dissociation or injury. PMID:21865647

  7. Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells.

    PubMed

    Barrera, Iliana; Flores-Méndez, Marco; Hernández-Kelly, Luisa C; Cid, Luis; Huerta, Miriam; Zinker, Samuel; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2010-12-01

    Glutamate, the major excitatory transmitter in the vertebrate brain, is involved in neuronal development and synaptic plasticity. Glutamatergic stimulation leads to differential gene expression patterns in neuronal and glial cells. A glutamate-dependent transcriptional control has been established for several genes. However, much less is known about the molecular events that modify the translational machinery upon exposure to this neurotransmitter. In a glial model of cerebellar cultured Bergmann cells, glutamate induces a biphasic effect on [(35)S]-methionine incorporation into proteins that suggests that the elongation phase of protein biosynthesis is the target for regulation. Indeed, after a 15 min exposure to glutamate a transient increase in elongation factor 2 phosphorylation has been reported, an effect mediated through the activation of the elongation factor 2 kinase. In this contribution, we sought to characterize the phosphorylation status of the eukaryotic elongation factor 1A (eEF1A) and the ribosomal transit time under glutamate exposure. A dose-dependent increase in eEF1A phosphorylation was found after a 60 min glutamate treatment; this phenomenon is Ca(2+)/CaM dependent, blocked with Src and phosphatidyl-inositol 3-kinase inhibitors and with rapamicyn. Concomitantly, the ribosomal transit time was increased with a 15 min glutamate exposure. After 60 more minutes, the average time used by the ribosomes to complete a polypeptide chain had almost returned to its initial level. These results strongly suggest that glutamate exerts an exquisite time-dependent translational control in glial cells, a process that might be critical for glia-neuron interactions.

  8. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-01

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. PMID:26079211

  9. The Proteome of Native Adult Müller Glial Cells From Murine Retina.

    PubMed

    Grosche, Antje; Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca; von Toerne, Christine; Merl-Pham, Juliane; Hauck, Stefanie M

    2016-02-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  10. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system

    PubMed Central

    1991-01-01

    The ability to move acid/base equivalents across the membrane of identified glial cells was investigated in isolated segmental ganglia of the leech Hirudo medicinalis. The intracellular pH (pHi) of the glial cells was measured with double-barreled, neutral-ligand, ion- sensitive microelectrodes during step changes of the external pH (pHo 7.4-7.0). The rate of intracellular acidification after the decrease in extracellular pH (pHo) was taken as a measure of the rate of acid/base transport across the glial membrane. Taking into account the total intracellular buffering power, the maximum rate of acid/base flux was 0.4 mM/min in CO2/HCO3-free saline, and 3.92 mM/min in the presence of 5% CO2/10 mM HCO-3, suggesting that the acid/base flux was dependent upon HCO3-. The rate of acid influx/base efflux increased both with the external HCO3- concentration and with increasing pHi (and hence HCO3- i). This suggested that the decrease in pHi was due to HCO3- efflux. The rapid decrease of pHi was accompanied by a HCO3--dependent depolarization of the glial membrane from -74 +/- 5 mV (n = 20) to -54 +/- 7 mV (n = 13). Both this depolarization and the rate of intracellular acidification were greatly reduced by the anion exchange inhibitor 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.3- 0.5 mM), but were not affected by the removal of external Cl-. Reduction of the external Na+ concentration to one-tenth normal affected the rate of intracellular acidification only in the presence of CO2/HCO3-: the rate increased within the first 3-5 min after lowering external Na+; after longer exposures in low external Na+ the rate decreased, presumably due to depletion of intracellular Na+. Amiloride (1 mM), which inhibits the Na+-H+ exchange in these cells, had no effect on the rate of intracellular acidification. The intracellular Na activity (aNai) of the glial cells was measured to be 5.2 +/- 1.0 mM (n = 8) in CO2/HCO3-free saline; aNai increased to 7.3 +/- 2.2 mM (n = 8

  11. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons

    PubMed Central

    Ukai, Junichi; Imagama, Shiro; Ohgomori, Tomohiro; Ito, Zenya; Ando, Kei; Ishiguro, Naoki; Kadomatsu, Kenji

    2016-01-01

    ABSTRACT Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR’s roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells. PMID:27578914

  12. C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment.

    PubMed

    Voss, Anne K; Britto, Joanne M; Dixon, Mathew P; Sheikh, Bilal N; Collin, Caitlin; Tan, Seong-Seng; Thomas, Tim

    2008-06-01

    Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.

  13. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons.

    PubMed

    Ukai, Junichi; Imagama, Shiro; Ohgomori, Tomohiro; Ito, Zenya; Ando, Kei; Ishiguro, Naoki; Kadomatsu, Kenji

    2016-08-01

    Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR's roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells. PMID:27578914

  14. Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells.

    PubMed

    Vidak, Marko; Rozman, Damjana; Komel, Radovan

    2015-10-23

    Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.

  15. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    NASA Astrophysics Data System (ADS)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  16. Expression and role of the TGF-β family in glial cells infected with Borna disease virus.

    PubMed

    Nishino, Yoshii; Murakami, Masaru; Funaba, Masayuki

    2016-02-01

    A previous study revealed that the expression of the Borna disease virus (BDV)-encoding phosphoprotein in glial cells was sufficient to induce neurobehavioral abnormalities resembling Borna disease. To evaluate the involvement of the TGF-β family in BDV-induced changes in cell responses by C6 glial cells, we examined the expression levels of the TGF-β family and effects of inhibiting the TGF-β family pathway in BDV-infected C6 (C6BV) cells. The expression of activin βA and BMP7 was markedly increased in BDV-infected cells. Expression of Smad7, a TGF-β family-inducible gene, was increased by BDV infection, and the expression was decreased by treatment with A-83-01 or LDN-193189, inhibitors of the TGF-β/activin or BMP pathway, respectively. These results suggest autocrine effects of activin A and BMP7 in C6BV cells. IGFBP-3 expression was also induced by BDV infection; it was below the detection limit in C6 cells. The expression level of IGFBP-3 was decreased by LDN-193189 in C6BV cells, suggesting that endogenous BMP activity is responsible for IGFBP-3 gene induction. Our results reveal the regulatory expression of genes related to the TGF-β family, and the role of the enhanced BMP pathway in modulating cell responses in BDV-infected glial cells. PMID:26482505

  17. Expression and role of the TGF-β family in glial cells infected with Borna disease virus.

    PubMed

    Nishino, Yoshii; Murakami, Masaru; Funaba, Masayuki

    2016-02-01

    A previous study revealed that the expression of the Borna disease virus (BDV)-encoding phosphoprotein in glial cells was sufficient to induce neurobehavioral abnormalities resembling Borna disease. To evaluate the involvement of the TGF-β family in BDV-induced changes in cell responses by C6 glial cells, we examined the expression levels of the TGF-β family and effects of inhibiting the TGF-β family pathway in BDV-infected C6 (C6BV) cells. The expression of activin βA and BMP7 was markedly increased in BDV-infected cells. Expression of Smad7, a TGF-β family-inducible gene, was increased by BDV infection, and the expression was decreased by treatment with A-83-01 or LDN-193189, inhibitors of the TGF-β/activin or BMP pathway, respectively. These results suggest autocrine effects of activin A and BMP7 in C6BV cells. IGFBP-3 expression was also induced by BDV infection; it was below the detection limit in C6 cells. The expression level of IGFBP-3 was decreased by LDN-193189 in C6BV cells, suggesting that endogenous BMP activity is responsible for IGFBP-3 gene induction. Our results reveal the regulatory expression of genes related to the TGF-β family, and the role of the enhanced BMP pathway in modulating cell responses in BDV-infected glial cells.

  18. Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain.

    PubMed Central

    Hunter, K E; Hatten, M E

    1995-01-01

    During development of mammalian cerebral cortex, two classes of glial cells are thought to underlie the establishment of cell patterning. In the embryonic period, migration of young neurons is supported by a system of radial glial cells spanning the thickness of the cortical wall. In the neonatal period, neuronal function is assisted by the physiological support of a second class of astroglial cell, the astrocyte. Here, we show that expression of embryonic radial glial identity requires extrinsic soluble signals present in embryonic forebrain. Moreover, astrocytes reexpress features of radial glia in vitro in the presence of the embryonic cortical signals and in vivo after transplantation into embryonic neocortex. These findings suggest that the transformation of radial glia cells into astrocytes is regulated by availability of inducing signals rather than by changes in cell potential. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7892225

  19. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells

    PubMed Central

    Rhee, Kun Do; Nusinowitz, Steven; Chao, Kevin; Yu, Fei; Bok, Dean; Yang, Xian-Jie

    2013-01-01

    Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective agent in multiple retinal degeneration animal models. Recently, CNTF has been evaluated in clinical trials for the inherited degenerative disease retinitis pigmentosa (RP) and for dry age-related macular degeneration (AMD). Despite its potential as a broad-spectrum therapeutic treatment for blinding diseases, the target cells of exogenous CNTF and its mechanism of action remain poorly understood. We have shown previously that constitutive expression of CNTF prevents photoreceptor death but alters the retinal transcriptome and suppresses visual function. Here, we use a lentivirus to deliver the same secreted human CNTF used in clinical trials to a mouse model of RP. We found that low levels of CNTF halt photoreceptor death, improve photoreceptor morphology, and correct opsin mislocalization. However, we did not detect corresponding improvement of retinal function as measured by the electroretinogram. Disruption of the cytokine receptor gp130 gene in Müller glia reduces CNTF-dependent photoreceptor survival and prevents phosphorylation of STAT3 and ERK in Müller glia and the rest of the retina. Targeted deletion of gp130 in rods also demolishes neuroprotection by CNTF and prevents further activation of Müller glia. Moreover, CNTF elevates the expression of LIF and endothelin 2, thus positively promoting Müller and photoreceptor interactions. We propose that exogenous CNTF initially targets Müller glia, and subsequently induces cytokines acting through gp130 in photoreceptors to promote neuronal survival. These results elucidate a cellular mechanism for exogenous CNTF-triggered neuroprotection and provide insight into the complex cellular responses induced by CNTF in diseased retinas. PMID:24191003

  20. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus.

    PubMed

    Park, Hyun-Jung; Bolton, Eric C

    2015-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a TGFβ family member, and GDNF signals through a glycosyl-phosphatidylinositol-linked cell surface receptor (GFRα1) and RET receptor tyrosine kinase. GDNF signaling plays crucial roles in urogenital processes, ranging from cell fate decisions in germline progenitors to ureteric bud outgrowth and renal branching morphogenesis. Gene ablation studies in mice have revealed essential roles for GDNF signaling in urogenital development, although its role in prostate development is unclear. We investigated the functional role of GDNF signaling in the urogenital sinus (UGS) and the developing prostate of mice. GDNF, GFRα1, and RET show time-specific and cell-specific expression during prostate development in vivo. In the UGS, GDNF and GFRα1 are expressed in the urethral mesenchyme (UrM) and epithelium (UrE), whereas RET is restricted to the UrM. In each lobe of the developing prostate, GDNF and GFRα1 expression declines in the epithelium and becomes restricted to the stroma. Using a well-established organ culture system, we determined that exogenous GDNF increases proliferation of UrM and UrE cells, altering UGS morphology. With regard to mechanism, GDNF signaling in the UrM increased RET expression and phosphorylation of ERK1/2. Furthermore, inhibition of RET kinase activity or ERK kinases suppressed GDNF-induced proliferation of UrM cells but not UrE cells. We therefore propose that GDNF signaling in the UGS increases proliferation of UrM and UrE cells by different mechanisms, which are distinguished by the role of RET receptor tyrosine kinase and ERK kinase signaling, thus implicating GDNF signaling in prostate development and growth.

  1. Mcidas and GemC1/Lynkeas specify embryonic radial glial cells.

    PubMed

    Kyrousi, Christina; Lalioti, Maria-Eleni; Skavatsou, Eleni; Lygerou, Zoi; Taraviras, Stavros

    2016-01-01

    Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1. PMID:27606337

  2. Modulation of the expression of integrins on glial cells during experimental autoimmune encephalomyelitis. A central role for TNF-alpha.

    PubMed Central

    Previtali, S. C.; Archelos, J. J.; Hartung, H. P.

    1997-01-01

    Integrins comprise a group of adhesion receptors involved in cell-cell and cell-extracellular matrix interactions. Evidence is accumulating that integrins expressed on mononuclear cells play a central role in the induction of autoimmune diseases of the central nervous system. The effects of integrins on glial cell behavior, myelination, and angiogenesis suggest that they may also have a role in resolving inflammation in the nervous system and in promoting tissue repair. We investigated the temporospatial expression of integrins in the rat central nervous system during the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. A higher expression of alpha v- and beta 4-integrin subunits in astrocytes and alpha 2 integrin in oligodendrocytes was observed in active lesions of experimental autoimmune encephalomyelitis, in comparison with controls. Proinflammatory cytokines, primarily TNF-alpha, also enhanced alpha v, beta 4, and alpha 2 expression in purified glial cells ex vivo. Furthermore, we observed that the expression of some integrin subunits was modulated in the cerebral vasculature during inflammation. Our results suggest an active role for glial and vascular integrins in the regulation of autoimmune diseases of the central nervous system, opening an avenue for new potential immunotherapies. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 9 PMID:9358769

  3. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles

    PubMed Central

    Giaume, Christian; Leybaert, Luc; C. Naus, Christian; C. Sáez, Juan

    2013-01-01

    Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease. PMID:23882216

  4. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  5. [The role of the glial cells in the maintenance of the ionic environment of the photoreceptors of the retina of the drone (author's transl)].

    PubMed

    Tsacopoulos, M; Coles, J A

    1978-04-01

    A double-barrelled potassium sensitive microelectrode was used to record electrical potentials and K+ activities in the retina of the drone Apis Mellifera during stimulation with trains of flashes, 1 per sec, intense enough to produce receptor potentials of near maximal amplitude. During the stimulation photoreceptors lose about 25% of their intracellular potassium concentration. During stimulation the potassium activity in the extracellular space increased transitorily up to 20 mM and then fell to a plateau. By this time the potassium concentration increased by about 20% in the glial cells. These results suggest that the glial cells may participate in the regulation of K+ activity in the extracellular space. The increase of potassium activity in the glial cells may be a stimulus for activation of cellular metabolism.

  6. Radial glial cell: critical functions and new perspective as a steroid synthetic cell.

    PubMed

    Xing, L; Goswami, M; Trudeau, V L

    2014-07-01

    The radial glial cell (RGC) is a glial cell type in the central nervous system of all vertebrates. Adult teleost fish have abundant RGCs in the brain in contrast to mammals. Adult fish RGCs have many important functions, including forming a structural scaffold to guide neuronal migration and serving as the progenitor cells in the brain to generate neurons. The role of the RGC in adult neurogenesis explains the high regenerative capacity of adult fish brain. There is increasing evidence from several species that some glial cells produce or metabolize steroids. It is now well-known that teleost RGCs express aromatase and produce estrogens from androgen precursors, which may be important for local neuroendocrine functions and regulation of neurogenesis. The question of whether RGCs are capable of de novo steroid synthesis from cholesterol remains unanswered. However, the expression of steroidogenic acute regulatory protein, and the key enzyme cytochrome P450 17alpha-hydroxylase in primary cultures of goldfish RGCs indicate the potential to produce 17α-hydroxy-pregnenolone and thus other steroid intermediates. The possibility of synthesizing additional non-estrogenic steroids may indicate new functions for the RGC.

  7. Communication between neuronal somata and satellite glial cells in sensory ganglia

    PubMed Central

    Huang, Li-Yen M.; Gu, Yanping; Chen, Yong

    2013-01-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. “What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia” and “how do tissue or nerve injuries affect the communication?” are the main questions addressed in this review. PMID:23918214

  8. Temporal control of glial cell migration in the Drosophila eye requires gilgamesh, hedgehog, and eye specification genes.

    PubMed

    Hummel, Thomas; Attix, Suzanne; Gunning, Dorian; Zipursky, S Lawrence

    2002-01-17

    In the Drosophila visual system, photoreceptor neurons (R cells) extend axons towards glial cells located at the posterior edge of the eye disc. In gilgamesh (gish) mutants, glial cells invade anterior regions of the eye disc prior to R cell differentiation and R cell axons extend anteriorly along these cells. gish encodes casein kinase Igamma. gish, sine oculis, eyeless, and hedgehog (hh) act in the posterior region of the eye disc to prevent precocious glial cell migration. Targeted expression of Hh in this region rescues the gish phenotype, though the glial cells do not require the canonical Hh signaling pathway to respond. We propose that the spatiotemporal control of glial cell migration plays a critical role in determining the directionality of R cell axon outgrowth. PMID:11804568

  9. Effects of dextromethorphan on glial cell function: proliferation, maturation, and protection from cytotoxic molecules.

    PubMed

    Lisak, Robert P; Nedelkoska, Liljana; Benjamins, Joyce A

    2014-05-01

    Dextromethorphan (DM), a sigma receptor agonist and NMDA receptor antagonist, protects neurons from glutamate excitotoxicity, hypoxia and ischemia, and inhibits microglial activation, but its effects on differentiation and protection of cells in the oligodendroglial lineage are unknown. It is important to protect oligodendroglia (OL) to prevent demyelination and preserve axons, and to protect oligodendroglial progenitors (OPC) to optimize myelination during development and remyelination following damage. Enriched glial cultures from newborn rat brain were used 1-2 days or 6-8 days after shakeoff for OPC or mature OL. DM had large effects on glial proliferation in less mature cultures in contrast to small variable effects in mature cultures; 1 μM DM stimulated proliferation of OPC by 4-fold, microglia (MG) by 2.5-fold and astroglia (AS) by 2-fold. In agreement with increased OPC proliferation, treatment of OPC with DM for 3 days increased the % of OPC relative to OL, with a smaller difference by 5 days, suggesting that maturation of OPC to OL was "catching up" by 5 days. DM at 2 and 20 μM protected both OL and OPC from killing by glutamate as well as NMDA, AMPA, quinolinic acid, staurosporine, and reactive oxygen species (ROS). DM did not protect against kynurenic acid, and only modestly against NO. These agents and DM were not toxic to AS or MG at the concentrations used. Thus, DM stimulates proliferation of OPC, and protects both OL and OPC against excitotoxic and inflammatory insults. PMID:24526455

  10. Systemic inflammation alters satellite glial cell function and structure. A possible contribution to pain.

    PubMed

    Blum, E; Procacci, P; Conte, V; Hanani, M

    2014-08-22

    Local peripheral injury activates satellite glial cells (SGCs) in sensory ganglia, which may contribute to chronic pain. We hypothesized that systemic inflammation affects sensory ganglia like local injury. We induced systemic inflammation in mice by injecting lipopolysaccharide (LPS) intraperitoneally, and characterized SGCs and neurons in dorsal root ganglia (DRG), using dye injection, calcium imaging, electron microscopy (EM), immunohistochemistry, and electrical recordings. Several days post-LPS, SGCs were activated, and dye coupling among SGCs increased 3-4.5-fold. EM showed abnormal growth of SGC processes and the formation of new gap junctions. Sensitivity of SGCs to ATP increased twofold, and neuronal excitability was augmented. Blocking gap junctions reduced pain behavior in LPS-treated mice. Thus, changes in DRG due to systemic inflammation are similar to those due to local injury, which may explain the pain in sickness behavior and in other systemic diseases.

  11. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells.

    PubMed

    Castro-Coronel, Yaneth; Del Razo, Luz María; Huerta, Miriam; Hernandez-Lopez, Angeles; Ortega, Arturo; López-Bayghen, Esther

    2011-08-01

    Chronic exposure to inorganic arsenic severely damages the central nervous system (CNS). Glutamate (GLU) is the major excitatory amino acid and is highly neurotoxic when levels in the synaptic cleft are not properly regulated by a family of Na⁺-dependent excitatory amino acid transporters. Within the cerebellum, the activity of the Bergmann glia Na⁺-dependent GLU/aspartate transporter (GLAST) excitatory amino acid transporter 1 (EAAT1/GLAST) accounts for more than 90% of GLU uptake. Because exposure to the metalloid arsenite results in CNS toxicity, we examined whether EAAT1/GLAST constitutes a molecular target. To this end, primary cultures of chick cerebellar Bergmann glial cells were exposed to sodium arsenite for 24 h, and EAAT1/GLAST activity was evaluated via ³H-D-aspartate uptake. A sharp decrease in GLU transport was observed, and kinetic studies revealed protein kinase A, protein kinase C, and p38 mitogen-activated protein kinase-dependent decreases in K(M) and V(max) concomitant with diminished chglast transcription. To gain insight into the molecular mechanisms involved in these phenomena, we investigated the generation of reactive oxidative species and the lipid peroxidative damage caused by arsenite exposure. None of these responses were found, although we did observe an increase in nuclear factor (erythroid-derived 2)-like 2 DNA-binding activity correlated with a rise in total glutathione levels. Our results clearly suggest that EAAT1/GLAST is a molecular target of arsenite and support the critical involvement of glial cells in brain function and dysfunction.

  12. Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia.

    PubMed

    Feldman-Goriachnik, Rachel; Hanani, Menachem

    2011-07-13

    There is immunohistochemical evidence for endothelin (ET) receptors in satellite glial cells in sensory ganglia, but there is no information on the function of these receptors. We used calcium imaging to study this question in isolated mouse trigeminal ganglia and found that satellite glial cells are highly sensitive to ET-1, with threshold at 0.05 nM. Responses displayed strong desensitization at ET-1 concentrations of more than 1 nM. A large component of the response persisted when Ca was deleted from the external medium, consistent with Ca release from internal stores. The use of receptor selective agents showed that the responses were mediated by ETB receptors. We conclude that satellite glial cells display endothelin receptors, which may participate in neuron-glia communications in the trigeminal ganglia.

  13. Viscoelastic properties of individual glial cells and neurons in the CNS

    PubMed Central

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-01-01

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word “γλια” means “glue”) or provide a robust scaffold for them (“support cells”). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft (“rubber elastic”), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  14. Roscovitine reduces neuronal loss, glial activation and neurological deficits after brain trauma

    PubMed Central

    Hilton, Genell D.; Stoica, Bogdan A.; Byrnes, Kimberly R.; Faden, Alan I.

    2008-01-01

    TBI causes both direct and delayed tissue damage. The latter is associated with secondary biochemical changes such as cell cycle activation that lead to neuronal death, inflammation and glial scarring. Flavopiridol — a CDK inhibitor that is neither specific nor selective — is neuroprotective. To examine the role of more specific CDK inhibitors as potential neuroprotective agents, we studied the effects of roscovitine in TBI. Central administration of roscovitine 30 minutes after injury resulted in significantly decreased lesion volume, as well as improved motor and cognitive recovery. Roscovitine attenuated neuronal death and inhibited activation of cell cycle pathways in neurons after TBI, as indicated by attenuated cyclin G1 accumulation and phosphorylation of retinoblastoma protein. Treatment also decreased microglial activation after TBI, as reflected by reductions in ED1, Galectin-3, p22PHOX and Iba-1 levels, and attenuated astrogliosis as shown by decreased GFAP accumulation. In primary cortical microglia and neuronal cultures, roscovitine and other selective CDK inhibitors attenuated neuronal cell death, as well as decreasing microglial activation and microglial-dependent neurotoxicity. These data support a multi-factorial neuroprotective effect of cell cycle inhibition after TBI-likely related to inhibition of neuronal apoptosis, microglial-induced inflammation and gliosis-and suggest that multiple CDKs are potentially involved in this process. PMID:18612315

  15. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    PubMed

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (P<0.001) higher energy expenditure than WT mice and increased expression in skeletal muscle and brown adipose tissue of peroxisome proliferator activated receptor-α and β1- and β3-adrenergic receptor genes, which are associated with increased lipolysis and enhanced lipid β-oxidation. In vitro, GDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  16. The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity.

    PubMed

    Rodrigues, Floriano; Thuma, Leila; Klämbt, Christian

    2012-05-01

    The differentiation of the blood-brain barrier (BBB) is an essential process in the development of a complex nervous system and depends on alternative splicing. In the fly BBB, glial cells establish intensive septate junctions that require the cell-adhesion molecule Neurexin IV. Alternative splicing generates two different Neurexin IV isoforms: Neurexin IV(exon3), which is found in cells that form septate junctions, and Neurexin IV(exon4), which is found in neurons that form no septate junctions. Here, we show that the formation of the BBB depends on the RNA-binding protein HOW (Held out wings), which triggers glial specific splicing of Neurexin IV(exon3). Using a set of splice reporters, we show that one HOW-binding site is needed to include one of the two mutually exclusive exons 3 and 4, whereas binding at the three further motifs is needed to exclude exon 4. The differential splicing is controlled by nuclear access of HOW and can be induced in neurons following expression of nuclear HOW. Using a novel in vivo two-color splicing detector, we then screened for genes required for full HOW activity. This approach identified Cyclin-dependent kinase 12 (Cdk12) and the splicesosomal component Prp40 as major determinants in regulating HOW-dependent splicing of Neurexin IV. Thus, in addition to the control of nuclear localization of HOW, the phosphorylation of the C-terminal domain of the RNA polymerase II by Cdk12 provides an elegant mechanism in regulating timed splicing of newly synthesized mRNA molecules.

  17. Glial cells suppress postencephalitic CD8+ T lymphocytes through PD-L1.

    PubMed

    Schachtele, Scott J; Hu, Shuxian; Sheng, Wen S; Mutnal, Manohar B; Lokensgard, James R

    2014-10-01

    Engagement of the programmed death (PD)-1 receptor on activated cells by its ligand (PD-L1) is a mechanism for suppression of activated T-lymphocytes. Microglia, the resident inflammatory cells of the brain, are important for pathogen detection and initiation of innate immunity, however, a novel role for these cells as immune regulators has also emerged. PD-L1 on microglia has been shown to negatively regulate T-cell activation in models of multiple sclerosis and acute viral encephalitis. In this study, we investigated the role of glial cell PD-L1 in controlling encephalitogenic CD8(+) T-lymphocytes, which infiltrate the brain to manage viral infection, but remain to produce chronic neuroinflammation. Using a model of chronic neuroinflammation following murine cytomegalovirus (MCMV)-induced encephalitis, we found that CD8(+) T-cells persisting within the brain expressed PD-1. Conversely, activated microglia expressed PD-L1. In vitro, primary murine microglia, which express low basal levels of PD-L1, upregulated the co-inhibitory ligand on IFN-γ-treatment. Blockade of the PD-1: PD-L1 pathway in microglial: CD8(+) T-cell co-cultures increased T-cell IFN-γ and interleukin (IL)-2 production. We observed a similar phenomenon following blockade of this co-inhibitory pathway in astrocyte: CD8(+) T-cell co-cultures. Using ex vivo cultures of brain leukocytes, including microglia and CD8(+) T-cells, obtained from mice with MCMV-induced chronic neuroinflammation, we found that neutralization of either PD-1 or PD-L1 increased IFN-γ production from virus-specific CD8(+) T-cells stimulated with MCMV IE1168-176 peptide. These data demonstrate that microglia and astrocytes control antiviral T-cell responses and suggest a therapeutic potential of PD1: PD-L1 modulation to manage the deleterious consequences of uncontrolled neuroinflammation.

  18. Spatial Organization of NG2 Glial Cells and Astrocytes in Rat Hippocampal CA1 Region

    PubMed Central

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-01-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ~ 178, 364 μm3. The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and post-recording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. PMID:24339242

  19. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells

    PubMed Central

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells. PMID:26696822

  20. Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina.

    PubMed

    Tsacopoulos, M; Veuthey, A L; Saravelos, S G; Perrottet, P; Tsoupras, G

    1994-03-01

    The retina of honeybee drone is a nervous tissue with a crystal-like structure in which glial cells and photoreceptor neurons constitute two distinct metabolic compartments. The phosphorylation of glucose and its subsequent incorporation into glycogen occur in glia, whereas O2 consumption (QO2) occurs in the photoreceptors. Experimental evidence showed that glia phosphorylate glucose and supply the photoreceptors with metabolic substrates. We aimed to identify these transferred substrates. Using ion-exchange and reversed-phase HPLC and gas chromatography-mass spectrometry, we demonstrated that more than 50% of 14C(U)-glucose entering the glia is transformed to alanine by transamination of pyruvate with glutamate. In the absence of extracellular glucose, glycogen is used to make alanine; thus, its pool size in isolated retinas is maintained stable or even increased. Our model proposes that the formation of alanine occurs in the glia, thereby maintaining the redox potential of this cell and contributing to NH3 homeostasis. Alanine is released into the extracellular space and is then transported into photoreceptors using an Na(+)-dependent transport system. Purified suspensions of photoreceptors have similar alanine aminotransferase activity as glial cells and transform 14C-alanine to glutamate, aspartate, and CO2. Therefore, the alanine entering photoreceptors is transaminated to pyruvate, which in turn enters the Krebs cycle. Proline also supplies the Krebs cycle by making glutamate and, in turn, the intermediate alpha-ketoglutarate. Light stimulation caused a 200% increase of QO2 and a 50% decrease of proline and of glutamate. Also, the production of 14CO2 from 14C-proline was increased. The use of these amino acids would sustain about half of the light-induced delta QO2, the other half being sustained by glycogen via alanine formation. The use of proline meets a necessary anaplerotic function in the Krebs cycle, but implies high NH3 production. The results showed

  1. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    PubMed Central

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  2. Multipotent adult hippocampal progenitor cells maintained as neurospheres favor differentiation toward glial lineages

    PubMed Central

    Oh, Jisun; Daniels, Gabrielle J.; Chiou, Lawrence S.; Ye, Eun-Ah; Jeong, Yong-Seob; Sakaguchi, Donald S.

    2014-01-01

    Adult hippocampal progenitor cells (AHPCs) are generally maintained as a dispersed monolayer population of multipotent neural progenitors. To better understand cell-cell interactions among neural progenitors and their influences on cellular characteristics, we generated free-floating cellular aggregates, or neurospheres, from the adherent monolayer population of AHPCs. Results from in vitro analyses demonstrated that both populations of AHPCs were highly proliferative under maintenance conditions, but AHPCs formed in neurospheres favored differentiation along a glial lineage and displayed greater migrational activity, than the traditionally cultured AHPCs. To study the plasticity of AHPCs from both populations in vivo, we transplanted GFP-expressing AHPCs via intraocular injection into the developing rat eyes. Both AHPC populations were capable of surviving and integrating into the developing host central nervous system, but considerably more GFP-positive cells were observed in the retinas transplanted with neurosphere AHPCs, compared to adherent AHPCs. These results suggest that the culture configuration during maintenance for neural progenitor cells (NPCs) influences cell fate and motility in vitro as well as in vivo. Our findings have implication for understanding different cellular characteristics of NPCs according to distinct intercellular architectures and for developing cell-based therapeutic strategies using lineage-committed NPCs. PMID:24844209

  3. Regulation of serotonin transporter gene expression in human glial cells by growth factors.

    PubMed

    Kubota, N; Kiuchi, Y; Nemoto, M; Oyamada, H; Ohno, M; Funahashi, H; Shioda, S; Oguchi, K

    2001-04-01

    The aims of this study were to identify monoamine transporters expressed in human glial cells, and to examine the regulation of their expression by stress-related growth factors. The expression of serotonin transporter mRNA was detected by reverse transcriptase-polymerase chain reaction in normal human astrocytes, whereas the dopamine transporter (DAT) and the norepinephrine transporter (NET) were not detected. The cDNA sequence of the "glial" serotonin transporter in astrocytes was consistent with that reported for the "neuronal" serotonin transporter (SERT). Moreover, we also demonstrated SERT expression in glial fibrillary acidic protein-positive cells by immunocytochemical staining in normal human astrocytes. Serotonin transporter gene expression was also detected in glioma-derived cell lines (A172, KG-1-C and KGK). Addition of basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF) for 2 days increased serotonin transporter gene expression in astrocytes and JAR (human choriocarcinoma cell line). Basic fibroblast growth factor, but not epidermal growth factor, increased specific [3H]serotonin uptake in astrocytes in a time (1-4 days)- and concentration (20-100 ng/ml)-dependent manner. The expression of genes for basic fibroblast growth factor and epidermal growth factor receptors was detected in astrocytes. These findings suggest that the expression of the serotonin transporter in human glial cells is positively regulated by basic fibroblast growth factor. PMID:11301061

  4. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells

    PubMed Central

    Alghamdi, Badrah; Fern, Robert

    2015-01-01

    The extent to which NG-2(+) cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC) or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labeling. This first ultrastructural characterization of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+) astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs may arise from misidentification. PMID:26106302

  5. Modulation of metallothionein-III mRNA content and growth rate of rat C6-glial cells by transfection with human 5-HT1D receptor genes.

    PubMed

    Amoureux, M C; Wurch, T; Pauwels, P J

    1995-09-14

    The mRNA content of the brain-specific metallothionein-III (MT-III) protein was measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) in two transformed glial cell lines: rat C6-glial and human U-373 MG cells. Low levels of MT-III mRNA were detected compared to a high expression of this mRNA in primary cultures of rat astrocytes. C6-glial cell lines stably transfected with a human 5-HT1D alpha or 5-HT1D beta receptor gene showed a decrease (87 to 93%) in basal [3H]thymidine incorporation, whereas their MT-III mRNA content was more than 30-fold increased compared to plasmid transfected C6-glial cells. The inverse proportion between mitogenic activity and MT-III mRNA content suggests that MT-III may act as a growth inhibitory factor in rat C6-glial cells. PMID:7677777

  6. Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells

    PubMed Central

    Young, Fraser I.; Telezhkin, Vsevolod; Youde, Sarah J.; Langley, Martin S.; Stack, Maria; Kemp, Paul J.; Waddington, Rachel J.; Sloan, Alastair J.; Song, Bing

    2016-01-01

    Cellular heterogeneity presents an important challenge to the development of cell-based therapies where there is a fundamental requirement for predictable and reproducible outcomes. Transplanted Dental Pulp Stem/Progenitor Cells (DPSCs) have demonstrated early promise in experimental models of spinal cord injury and stroke, despite limited evidence of neuronal and glial-like differentiation after transplantation. Here, we report, for the first time, on the ability of single cell-derived clonal cultures of murine DPSCs to differentiate in vitro into immature neuronal-like and oligodendrocyte-like cells. Importantly, only DPSC clones with high nestin mRNA expression levels were found to successfully differentiate into Map2 and NF-positive neuronal-like cells. Neuronally differentiated DPSCs possessed a membrane capacitance comparable with primary cultured striatal neurons and small inward voltage-activated K+ but not outward Na+ currents were recorded suggesting a functionally immature phenotype. Similarly, only high nestin-expressing clones demonstrated the ability to adopt Olig1, Olig2, and MBP-positive immature oligodendrocyte-like phenotype. Together, these results demonstrate that appropriate markers may be used to provide an early indication of the suitability of a cell population for purposes where differentiation into a specific lineage may be beneficial and highlight that further understanding of heterogeneity within mixed cellular populations is required. PMID:27313623

  7. Activated caspase-9 immunoreactivity in glial and neuronal cytoplasmic inclusions in multiple system atrophy.

    PubMed

    Kawamoto, Yasuhiro; Ayaki, Takashi; Urushitani, Makoto; Ito, Hidefumi; Takahashi, Ryosuke

    2016-08-15

    The mitochondria play an important role in apoptotic cell death, and the released cytochrome c from the mitochondria promotes the formation of the apoptosome, which contains cytochrome c, Apaf-1 and caspase-9, resulting in the activation of caspase-9 and the promotion of the apoptotic cascade. To investigate the role of mitochondria-dependent apoptotic cell death in patients with multiple system atrophy (MSA), we performed immunohistochemical studies on apoptosome-related proteins in formalin-fixed, paraffin-embedded sections from 8 normal subjects and 10 patients with MSA. We then performed double-labeling immunohistochemistry for activated caspase-9 and α-synuclein in some sections from 10 patients with MSA. In the brains with MSA, glial cytoplasmic inclusions (GCIs) and neuronal cytoplasmic inclusions (NCIs) were intensely immunoreactive for cytochrome c, Apaf-1 and caspase-9. Activated caspase-9 immunoreactivities were also confirmed to be densely localized to both GCIs and NCIs using two types of anti-cleaved caspase-9 antibodies. The semiquantitative analyses using the upper pontine sections double-immunostained with cleaved caspase-9 and α-synuclein demonstrated that approximately 80% of GCIs and NCIs were immunopositive for cleaved caspase-9. Our results suggest that the formation of the apoptosome accompanied by the activation of caspase-9 may occur in brains affected by MSA, and that a mitochondria-dependent apoptotic pathway may be partially associated with the pathogenesis of MSA. PMID:27345387

  8. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  9. Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

    PubMed Central

    Barbosa de Matos, Rosan; Braga-de-Souza, Suzana; Pena Seara Pitanga, Bruno; Amaral da Silva, Victor Diógenes; Viana de Jesus, Erica Etelvina; Morales Pinheiro, Alexandre; Dias Costa, Maria de Fátima; dos Santos El-Bacha, Ramon; de Oliveira Ribeiro, Cátia Suse

    2014-01-01

    Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation. PMID:25548412

  10. Regulation of glial cell number and differentiation by ecdysone and Fos signaling.

    PubMed

    Giesen, Kay; Lammel, Uwe; Langehans, Dirk; Krukkert, Karin; Bunse, Ingrid; Klämbt, Christian

    2003-04-01

    In the midline glia of the embryonic ventral nerve cord of Drosophila, differentiation as well as the subsequent regulation of cell number is under the control of EGF-receptor signaling. During pupal stages apoptosis of all midline glial cells is initiated by ecdysone signaling. In a genetic screen we have identified mutations in disembodied, rippchen, spook, shade, shadow, shroud and tramtrack that all share a number of phenotypic traits, including defects in cuticle differentiation and nervous system development. Some of these genes were previously placed in the so-called 'Halloween-group' and were shown to affect ecdysone synthesis during embryogenesis. Here we demonstrate that the Halloween mutations not only affect glial differentiation but also lead to an increase in the number of midline glial cells, suggesting that during embryogenesis ecdysone signaling is required to adjust glial cell number similar to pupal stages. Finally we isolated a P-element-induced mutation of shroud, which controls the expression of ecdysone inducible genes. The P-element insertion occurs in one of the promoters of the Drosophila fos gene for which we present a yet undescribed complex genomic organization. The recently described kayak alleles affect only one of the six different Fos isoforms. This work for the first time links ecydsone signaling to Fos function and shows that during embryonic and pupal stages similar developmental mechanisms control midline glia survival. PMID:12676319

  11. Regulation of glial cell number and differentiation by ecdysone and Fos signaling.

    PubMed

    Giesen, Kay; Lammel, Uwe; Langehans, Dirk; Krukkert, Karin; Bunse, Ingrid; Klämbt, Christian

    2003-04-01

    In the midline glia of the embryonic ventral nerve cord of Drosophila, differentiation as well as the subsequent regulation of cell number is under the control of EGF-receptor signaling. During pupal stages apoptosis of all midline glial cells is initiated by ecdysone signaling. In a genetic screen we have identified mutations in disembodied, rippchen, spook, shade, shadow, shroud and tramtrack that all share a number of phenotypic traits, including defects in cuticle differentiation and nervous system development. Some of these genes were previously placed in the so-called 'Halloween-group' and were shown to affect ecdysone synthesis during embryogenesis. Here we demonstrate that the Halloween mutations not only affect glial differentiation but also lead to an increase in the number of midline glial cells, suggesting that during embryogenesis ecdysone signaling is required to adjust glial cell number similar to pupal stages. Finally we isolated a P-element-induced mutation of shroud, which controls the expression of ecdysone inducible genes. The P-element insertion occurs in one of the promoters of the Drosophila fos gene for which we present a yet undescribed complex genomic organization. The recently described kayak alleles affect only one of the six different Fos isoforms. This work for the first time links ecydsone signaling to Fos function and shows that during embryonic and pupal stages similar developmental mechanisms control midline glia survival.

  12. Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells.

    PubMed

    López-Bayghen, Esther; Espinoza-Rojo, Mónica; Ortega, Arturo

    2003-07-01

    The Na(+)-dependent glutamate/aspartate transporter GLAST plays a major role in the removal of glutamate from the synaptic cleft. Short-, as well as long-term changes in transporter activity are triggered by glutamate. An important locus of regulation is the density of transporter molecules at the plasma membrane. A substrate-dependent change in the translocation rate accounts for the short-term effect, whereas the mechanisms of long-term modulation are less understood. Using cultured chick cerebellar Bergmann glial cells, we report here that glutamate receptors mediate a substantial reduction in GLAST mRNA levels, suggesting a transcriptional level of regulation. Moreover, when the 5' proximal region of the GLAST gene was cloned and transfected into Bergmann glia cells, a decrease in promoter activity was induced by glutamate exposure. The use of specific pharmacological tools established the involvement of Ca(2+)-permeable alpha-amino 3-hydroxy-5-methyl-4-isoaxazolepropionate (AMPA) receptors via protein kinase C and c-Jun. These results demonstrate that GLAST is under transcriptional control through glutamate receptors activation, and further supports the participation of Bergmann glia cells in the modulation of glutamatergic transmission.

  13. Enhanced Prostacyclin Synthesis by Adenoviral Gene Transfer Reduced Glial Activation and Ameliorated Dopaminergic Dysfunction in Hemiparkinsonian Rats

    PubMed Central

    Tsai, May-Jywan; Weng, Ching-Feng; Yu, Nien-Chu; Liou, Dann-Ying; Kuo, Fu-San; Huang, Ming-Chao; Huang, Wen-Cheng; Tam, Kabik; Shyue, Song-Kun; Cheng, Henrich

    2013-01-01

    Prostacyclin (PGI2), a potent vasodilator and platelet antiaggregatory eicosanoid, is cytoprotective in cerebral circulation. It is synthesized from arachidonic acid (AA) by the sequential action of cyclooxygenase- (COX-) 1 or 2 and prostacyclin synthase (PGIS). Because prostacyclin is unstable in vivo, PGI2 analogs have been developed and demonstrated to protect against brain ischemia. This work attempts to selectively augment PGI2 synthesis in mixed glial culture or in a model of Parkinson's disease (PD) by direct adenoviral gene transfer of prostacyclin biosynthetic enzymes and examines whether it confers protection in cultures or in vivo. Confluent mixed glial cultures actively metabolized exogenous AA into PGE2 and PGD2. These PGs were largely NS398 sensitive and considered as COX-2 products. Gene transfer of AdPGIS to the cultures effectively shunted the AA catabolism to prostacyclin synthesis and concurrently reduced cell proliferation. Furthermore, PGIS overexpression significantly reduced LPS stimulation in cultures. In vivo, adenoviral gene transfer of bicistronic COX-1/PGIS to substantia nigra protected 6-OHDA- induced dopamine depletion and ameliorated behavioral deficits. Taken together, this study shows that enhanced prostacyclin synthesis reduced glial activation and ameliorated motor dysfunction in hemiparkinsonian rats. Prostacyclin may have a neuroprotective role in modulating the inflammatory response in degenerating nigra-striatal pathway. PMID:23691265

  14. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.

    PubMed

    Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis

    2015-02-01

    Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease.

  15. Glial Cell Missing 1 Regulates Placental Growth Factor (PGF) Gene Transcription in Human Trophoblast1

    PubMed Central

    Chang, Miao; Mukherjea, Debashree; Gobble, Ryan M.; Groesch, Kathleen A.; Torry, Ronald J.; Torry, Donald S.

    2008-01-01

    Placental growth factor (PGF, previously known as PlGF) is prominently expressed by trophoblasts in human placenta, whereas most nontrophoblast cells express low levels of PGF mRNA under normal physiological conditions. We have shown that hypoxia decreases PGF expression in the trophoblast, but little is known about transcriptional regulation of PGF gene expression. We sought to determine promoter regions of the human PGF gene that contribute to its restricted high constitutive expression in the trophoblast. Overlapping putative promoter regions of human PGF gene encompassing −1.5 kb were cloned into reporter vectors and co-transfected into trophoblast and nontrophoblast cell lines. Promoter activity generated by a −1.5-kb clone was significantly higher in trophoblasts than in nontrophoblasts. Selective deletion mutants showed that a clone encompassing the PGF (−828/+34) region generated promoter activity similar to the −1.5-kb region in the trophoblast. However, deletion of another 131 bp from this subclone (−698/+34) resulted in significantly less promoter activity in the trophoblast. The (−828/−698) region significantly enhanced activity of a minimal promoter construct in trophoblast but not in nontrophoblast cells, suggesting that this region contributes to regulating PGF transcription in the trophoblast. Site-directed mutagenesis of a glial cell missing 1 (GCM1) motif in the 131-bp region significantly decreased enhancer activity in the trophoblast. Furthermore, overexpression of GCM1 significantly increased PGF −1.5-kb promoter activity and PGF mRNA expression in trophoblast and nontrophoblast cells. Forced overexpression of GCM1 restored PGF expression in the hypoxic trophoblast. These data support a functional role for GCM1 contributing to constitutively high trophoblast PGF expression and is the first direct evidence of an oxygen-responsive, trophoblast-specific transcription factor contributing to the regulation of PGF expression. PMID

  16. Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development.

    PubMed

    Perucho, Juan; Gómez, Ana; Muñoz, María Paz; de Yébenes, Justo García; Mena, María Ángeles; Casarejos, María José

    2016-07-01

    The pathological hallmark of Huntington disease (HD) is the intracellular aggregation of mutant huntingtin (mHTT) in striatal neurons and glia associated with the selective loss of striatal medium-sized spiny neurons. Up to the present, the role of glia in HD is poorly understood and has been classically considered secondary to neuronal disorder. Trehalose is a disaccharide known to possess many pharmacological properties, acting as an antioxidant, a chemical chaperone, and an inducer of autophagy. In this study, we analyzed at an early postnatal development stage the abnormalities observed in striatal glial cell cultures of postnatal R6/1 mice (HD glia), under baseline and stressing conditions and the protective effects of trehalose. Our data demonstrate that glial HD alterations already occur at early stages of postnatal development. After 20 postnatal days in vitro, striatal HD glia cultures showed more reactive astrocytes with increased expression of glial fibrillary acidic protein (GFAP) but with less replication capacity, less A2B5(+) glial progenitors and more microglia than wild-type (WT) cultures. HD glia had lower levels of intracellular glutathione (GSH) and was more susceptible to H2O2 and epoxomicin insults. The amount of expressed GDNF and secreted mature-BDNF by HD astrocytes were much lower than by WT astrocytes. In addition, HD glial cultures showed a deregulation of the major proteolytic systems, the ubiquitin-proteasomal system (UPS), and the autophagic pathway. This produces a defective protein quality control, indicated by the elevated levels of ubiquitination and p62 protein. Interestingly, we show that trehalose, through its capacity to induce autophagy, inhibited p62/SQSTM1 accumulation and facilitated the degradation of cytoplasmic aggregates from mHTT and α-synuclein proteins. Trehalose also reduced microglia activation and reversed the disrupted cytoskeleton of astrocytes accompanied with an increase in the replication capacity. In

  17. Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+.

    PubMed

    Coles, J A; Marcaggi, P; Véga, C; Cotillon, N

    1996-09-01

    1. Measurements were made with pH microelectrodes in superfused slices of the retina of the honey-bee drone. In the dark, the mean +/- S.E.M. pH values in the three compartments of the tissue were: neurones (photoreceptors), 6.99 +/- 0.04; glial cells (outer pigment cells), 7.31 +/- 0.03; extracellular space, 6.60 +/- 0.03. 2. Stimulation of the photoreceptors with light caused transient pH changes: a decrease in the photoreceptors (pHn) and in the glial cells (pHg), and an increase in the interstitial clefts (pHo). 3. The effects of inhibition and activation of aerobic metabolism showed that part, perhaps all, of the light-induced delta pHo resulted from the increased aerobic metabolism in the photoreceptors. 4. Addition of 2 mM NH4+ to the superfusate produced changes in pHo and pHg of the same sign as and similar amplitude to those caused by light stimulation. Manipulation of transmembrane pH gradients had similar effects on changes in pHo induced by light or by exogenous NH4+. 5. Measurements with NH(4+)-sensitive microelectrodes showed that stimulation of aerobic metabolism in the photoreceptors increased [NH4+]o and also that exogenous NH4+/NH3 was taken up by cells, presumably the glial cells. 6. We conclude that within seconds of an increase in the aerobic metabolism in the photoreceptors, they release an increased amount of NH4+/NH3 which affects pHo and enters glial cells. Other evidence suggests that in drone retina the glial cells supply the neurones with amino acids as substrates of energy metabolism; the present results suggest that fixed nitrogen is returned to the glial cells as NH4+/NH3.

  18. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    NASA Astrophysics Data System (ADS)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  19. The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells

    PubMed Central

    Rao, Sudheendra; Morales, Alejo A.; Pearse, Damien D.

    2015-01-01

    The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000) lipoplex or polyethylenimine (Viromer RED) polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability. PMID:26539498

  20. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    PubMed

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  1. Fine Surface Images That Reflect Cytoskeletal Structures in Cultured Glial Cells by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Yamane, Yukako; Hatakeyama, Dai; Tojima, Takuro; Kawabata, Kazushige; Ushiki, Tatsuo; Ogura, Shigeaki; Abe, Kazuhiro; Ito, Etsuro

    1998-06-01

    The morphology of cultured glial cells was examined using a combination of atomic force microscopy (AFM) and immunofluorescence staining for cytoskeletons. The meshwork of type-1 astrocytes consisted of thick longitudinal and thin lateral lines on the cell surfaces observed by AFM; the former lines were confirmed to be reflections of actin filaments. The astrocytic processes of type-2 astrocytes were observed to be rugged on AFM. These structures were mainly affected by microtubules. Immunofluorescence imaging of microglia revealed that actin filaments and microtubules were arranged radially and wavily along the cell edge, respectively. AFM could detect these radial and wavy structures clearly. These results show that AFM can provide information on the cytoskeletons of glial cells, indicating that AFM is a useful tool for the morphological characterization of cells.

  2. Stress proteins and glial cell functions during chronic aluminium exposures: protective role of curcumin.

    PubMed

    Sood, Pooja Khanna; Nahar, Uma; Nehru, Bimla

    2012-03-01

    Involved in the ongoing debate is the speculation that aluminium is somehow toxic for neurons. Glial cells cope up to protect neurons from this toxic insult by maintaining the glutathione homeostasis. Of late newer and newer roles of glial cells have been depicted. The present work looks into the other regulatory mechanisms that show the glial cells response to pro-oxidant effects of aluminium exposure. In the present investigation we have evaluated the inflammatory responses of the glial cells as well as HSP70-induction during aluminium exposure. Further, the protective role of curcumin is also evaluated. Aluminium was administered by oral gavage at a dose level of 100 mg/kg b.wt/day for a period of 8 weeks. Curcumin was administered i.p. at a dose of 50 mg/kg b.wt./day on alternate days. Enhanced gene and protein expression of HSP70 in the glial fractions of the aluminium exposed animals as compared to the corresponding neuronal population. Aluminium exposure resulted in a significant increase in the NF-κB and TNF-α expression suggesting inflammatory responses. In the conjunctive treatment group of aluminium and curcumin exposure marked reduction in the gene and protein expression of NF-κB and TNF-α was observed. This was further reflected in histopathological studies showing no evidence of inflammation in conjunctive group as compared to aluminium treatment. From the present study, it can be concluded that curcumin has a potential anti-inflammatory action and can be exploited in other toxicological conditions also.

  3. Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells.

    PubMed

    Farias, Santiago E; Zarini, Simona; Precht, Thomas; Murphy, Robert C; Heidenreich, Kim A

    2007-11-01

    Leukotrienes are mediators of inflammation that belong to a family of lipids derived from arachidonic acid by the action of 5-lipoxygenase. Leukotrienes have been detected in the central nervous system in association with different pathological events, but little is known about their biosynthesis or function in the brain. When rat neurons and glial cells in primary culture were stimulated with the calcium ionophore, no significant biosynthesis of leukotrienes was detected using liquid chromatography/mass spectrometry (LC/MS) techniques. However, when exogenous LTA(4) was added to these cultured cells, both neurons and glia were able to synthesize LTC(4). Activated neutrophils are known to supply LTA(4) to other cells for transcellular biosynthesis of cysteinyl-leukotrienes. Since neutrophils can infiltrate brain tissue after stroke or traumatic brain injury, we examined whether neutrophils play a similar role in the central nervous system. When peripheral blood neutrophils were co-cultured with rat neurons, glia cells, and then stimulated with calcium ionophore, a robust production of LTC(4), LTD(4), and LTE(4) was observed, revealing that neurons and glia can participate in the transcellular mechanism of leukotriene biosynthesis. The formation of LTC(4) through this mechanism may be relevant in the genesis and progression of the inflammatory response as a result of brain injury.

  4. Effects of Blast Overpressure on Neurons and Glial Cells in Rat Organotypic Hippocampal Slice Cultures

    PubMed Central

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Budde, Matthew D.; Pintar, Frank A.; Tarima, Sergey; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2015-01-01

    Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure. PMID:25729377

  5. Glial-, neuronal- and photoreceptor-specific cell markers in rosettes of retinoblastoma and retinal dysplasia.

    PubMed

    Ohira, A; Yamamoto, M; Honda, O; Ohnishi, Y; Inomata, H; Honda, Y

    1994-11-01

    Previous studies have shown that a rosette formation represents an attempt to form embryonic retinal tissue, primarily rods and cones. To test the theories as to the origin and characteristics of retinoblastoma cells, we compared the characteristics of tumor rosettes with those of dysplastic rosettes seen in retinal dysplasia using the glial, neuronal and photoreceptor markers. Forty-four retinoblastoma and one retinal dysplasia specimens were analyzed by indirect immunohistochemistry, using specific antibodies against glial fibrillary acidic protein, S-100 protein, myelin basic protein, neuron-specific enolase, neurofilament, retinal S-antigen and retinal pigment epithelial antigen. In human retinoblastoma, all the glial, neuronal, retinal pigment epithelial, and photoreceptor cell markers, except for the neurofilament, were present in parts of rosette-forming tumor cells. However, their localization was different for each antigen and it was not clear whether each tumor cell possesses several antigens. These immuno-positive tumor cells were cytologically indistinguishable from other rosette-forming cells at the light microscopic level. In retinal dysplasia, neuron specific enolase and retinal S-antigen were diffusely expressed in the dysplastic rosettes, however, other antigen were not seen in those rosettes. The staining pattern by immunocytochemistry is totally different in tumor rosettes from dysplastic ones. We found varying localizations of different immunoreactivities within tumor rosettes. These results led us to suggest that tumor cells in the rosettes of retinoblastoma may have the ability to differentiate into neural and glial cells. To prove the theory that retinoblastoma cells may have originated from a primitive neuroectodermal cell capable of multipotentiality, further investigation is needed.

  6. Alterations in glial cell metabolism during recovery from chronic osmotic stress.

    PubMed

    Flögel, U; Leibfritz, D

    1998-12-01

    NMR spectroscopy of F98 glioma cell extracts showed that chronic hypertonic conditions largely increased the intracellular content of small, osmotically active molecules. Moreover, hypertonic stress decreased the incorporation of 13C-labeled amino acids into the cellular proteins albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. Reincubation with isotonic medium restored almost completely the control values for the cytosolic metabolites but not for amino acid incorporation into the protein. An increased amount of 13C label was found in the phospholipids, which indicates stimulation of membrane synthesis processes due to the recovery-induced cell swelling. On the other hand, chronic hypotonic conditions largely decreased the steady state concentration and synthesis of small, cytosolic molecules, whereas the effect on the incorporation of 13C-labeled amino acids into the cellular proteins was variable. Reincubation with isotonic medium partially restored the depressed cytosolic metabolite content and also the incorporation of labeled amino acids into cellular protein, but induced an inhibition of phospholipid synthesis. The results verify that 'readaptation' of glial cell metabolism during recovery from chronic osmotic stress is impaired or at least seriously retarded.

  7. Regulation of intracellular pH in neuronal and glial tumour cells, studied by multinuclear NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1994-06-01

    The effect of extracellular pH (pHe) on intracellular pH (pHi) and cellular metabolism was examined by multinuclear NMR spectroscopy of cells in vivo and in vitro. A decrease in pHe from 7.4 to 6.4 led to a significant drop in pHi, in both neuronal and glial tumour cells, as detected by in vivo 31P NMR of cells embedded in basement membrane gel threads. A more than 50% decrease in both the phosphocreatine (PCr) level and derivatives of glycolysis (i.e., glycerol 3-phosphate) was observed, concomitantly to the fall in pHi. A 50% decrease in intracellular lactate levels was seen in in vivo 1H NMR spectra under these conditions. Reperfusion with fresh medium (pHe 7.4) resulted in the full recovery of pHi, simultaneously with an increase in both PCr and intracellular lactate back to their control levels. Perchloric acid and lipid extract measurements confirmed the observations made by in vivo 31P and 1H NMR spectroscopy and further showed a decrease both in tricarboxylic acid cycle activity and phospholipid synthesis. The data revealed no significant differences between the neuronal and glial tumour cells investigated. pHi measurements in the presence of inhibitors of the various pH regulatory mechanisms showed that the Na+/H+ exchanger, the carbonic anhydrase and at least one of the bicarbonate-transport systems are involved in pH regulation of both cell types. The results suggest that Na+/H+ exchange is the preferred mechanism by which both neuronal and glial cells regulate their pHi after extracellular acidification.

  8. Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells.

    PubMed

    Sánchez-Armáss, Sergio; Sennoune, Souad R; Maiti, Debasish; Ortega, Filiberta; Martínez-Zaguilán, Raul

    2006-02-01

    Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pH(cyt)) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pH(cyt) using spectral imaging microscopy. This approach allowed us to study pH(cyt) in discrete cellular domains with high temporal, spatial, and spectral resolution. Because there are differences in the cell microenvironment that may affect the behavior of SNARF-1, we performed in situ titrations in discrete cellular regions of single cells encompassing the somata and filopodia. The in situ titration parameters apparent acid-base dissociation constant (pK'(a)), maximum ratio (R(max)), and minimum ratio (R(min)) had a mean coefficient of variation approximately six times greater than those measured in vitro. Therefore, the individual in situ titration parameters obtained from specific cellular domains were used to estimate the pH(cyt) of each region. These studies indicated that glial cells exhibit pH(cyt) heterogeneities and pH(cyt) oscillations in both the absence and presence of physiological HCO(3)(-). The amplitude and frequency of the pH(cyt) oscillations were affected by alkalosis, by acidosis, and by inhibitors of the ubiquitous Na(+)/H(+) exchanger- and HCO(3)(-)-based H(+)-transporting mechanisms. Optical imaging approaches used in conjunction with BCECF as a pH probe corroborated the existence of pH(cyt) oscillations in glial cells. PMID:16135543

  9. Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells.

    PubMed

    Ko, Chien-Ping; Robitaille, Richard

    2015-10-01

    The neuromuscular junction (NMJ) is engineered to be a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury and adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by the intricate regulation of perisynaptic Schwann cells, glial cells at this synapse. They regulate both the efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions via trophic-related factors.

  10. Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells.

    PubMed

    Ko, Chien-Ping; Robitaille, Richard

    2015-10-01

    The neuromuscular junction (NMJ) is engineered to be a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury and adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by the intricate regulation of perisynaptic Schwann cells, glial cells at this synapse. They regulate both the efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions via trophic-related factors. PMID:26430218

  11. Effect of cold plasma on glial cell morphology studied by atomic force microscopy.

    PubMed

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.

  12. Effect of Cold Plasma on Glial Cell Morphology Studied by Atomic Force Microscopy

    PubMed Central

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment. PMID:25803024

  13. Glial cell and fibroblast cytotoxicity study on 4026-cyclotene photosensitive benzocyclobutene (BCB) polymer films.

    PubMed

    Ehteshami, Gholamreza; Singh, Amarjit; Coryell, Gene; Massia, Stephen; He, Jiping; Raupp, Gregory

    2003-01-01

    Photosensitive benzocyclobutene (photo-BCB) is a class of polymers with the trade name Cyclotene. The photoimagable property of Cyclotene makes it suitable for the manufacture of microelectronic devices. The motivation behind this study is that we see an exciting application of photo-BCB as substrates in implantable microelectronic biomedical devices due to several desirable properties distinctive from other polymer materials. To our knowledge, however, photo-BCB has never been tested for biomedical implant applications, as evidenced by the lack reported data on its biocompatibility. This study takes the first step towards assessing photo-BCB biocompatibility by evaluating the cytotoxicity and cell adhesion behavior of Cyclotene 4026 coatings exposed to monolayers of glial and fibroblast cells in vitro. It can be concluded from these studies that photo-BCB films deposited on silicon wafers using microfabrication processes did not adversely affect 3T3 fibroblast and T98-G glial cell function in vitro. We also successfully rendered photo-BCB films non-adhesive (no significant fibroblast or glial cell adhesion) with surface immobilized dextran using methods developed for other biomaterials and applications. Future work will further develop prototype photo-BCB microelectrode devices for chronic neural implant applications. PMID:14661882

  14. Glial cells and blood-brain barrier in the human cerebral cortex.

    PubMed

    Ambrosi, G; Virgintino, D; Benagiano, V; Maiorano, E; Bertossi, M; Roncali, L

    1995-01-01

    The spatial relationship established between glial cells and microvasculature in the human cerebral cortex was analysed on peritumoral tissue of the parietal lobe removed during surgery. Observations performed by light microscope immunocytochemistry demonstrated that processes of astrocytes, strongly immunoreactive to both glial fibrillary acidic protein and S-100 protein, form sheaths to the capillaries, and that isolated cells positive to the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase are detectable in perivascular areas. Morphometrical analysis by transmission electron microscopy showed that 80% of the vascular endothelium-pericyte layer is invested by small endfeet of astrocyte processes. This study demonstrates that either astrocyte bodies or oligodendrocytes as well as microgliocytes may substitute the astrocytic endfeet adhering to the capillary basement lamina.

  15. Excessive alcohol consumption is blocked by glial cell line-derived neurotrophic factor.

    PubMed

    Carnicella, Sebastien; Amamoto, Ryoji; Ron, Dorit

    2009-02-01

    We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces moderate alcohol (ethanol) intake in a rat operant self-administration paradigm. Here, we set out to assess the effect of GDNF in the VTA on excessive voluntary consumption of ethanol. Long-Evans rats were trained to drink large quantities of a 20% ethanol solution in an intermittent-access two-bottle choice drinking paradigm. The rats were given three 24-h sessions per week, and GDNF's actions were measured when rats achieved a baseline of ethanol consumption of 5.5g/kg/24h. We found that microinjection of GDNF into the VTA 10min before the beginning of an ethanol-drinking session significantly reduced ethanol intake and preference, but did not affect total fluid intake. We further show that GDNF greatly decreased both the first bout of excessive ethanol intake at the beginning of the session, and the later consummatory activity occurring during the dark cycle. These data suggest that GDNF is a rapid and long-lasting inhibitor of "binge-like" ethanol consumption.

  16. The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse

    PubMed Central

    Beardsley, Patrick M.; Shelton, Keith L.; Hendrick, Elizabeth; Johnson, Kirk W.

    2010-01-01

    Stress and renewed contact with drug (a “slip”) have been linked to persisting relapse of methamphetamine abuse. Human brain microglial activation has been linked with methamphetamine abuse, and inhibitors of glial cell activation, certain phosphodiesterase (PDE) inhibitors, and glial cell derived neurotrophic factor (GDNF) have been reported to modulate drug abuse effects. Our objective was to determine whether the glial cell attenuator, 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine (AV411, ibudilast), a non-selective PDE inhibitor and promoter of GDNF, could reduce stress- and methamphetamine prime-induced reinstatement of methamphetamine-seeking behavior. Male Long-Evans hooded rats were trained to lever press reinforced with 0.1 mg/kg i.v. methamphetamine infusion according to fixed-ratio 1 (FR1) reinforcement schedules during daily, 2-h experimental sessions. After performance had stabilized, lever pressing was extinguished for 12 consecutive sessions and doses of 0 (vehicle), 2.5 and 7.5 mg/kg AV411 were then administered intraperitoneally b.i.d. on the last two days of extinction and then once on the testday to separate groups of 12 rats. During testing, the rats were given 15 min of intermittent footshock or a 1 mg/kg i.p. methamphetamine prime followed by a 2-h reinstatement test session. AV411 significantly reduced response levels of footshock-induced (2.5 and 7.5 mg/kg) and prime-induced (7.5 mg/kg) reinstatement of extinguished methamphetamine-maintained responding. AV411 has properties consistent with the ability to attenuate relapse precipitated by stress and methamphetamine “slips” during abstinence. These results thus reinforce interest in atypical neurobiological mechanisms which could be exploited for developing novel medications for treating drug abuse disorders. PMID:20399770

  17. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    PubMed

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development.

  18. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione.

    PubMed

    Abdo, Hind; Derkinderen, Pascal; Gomes, Priya; Chevalier, Julien; Aubert, Philippe; Masson, Damien; Galmiche, Jean-Paul; Vanden Berghe, Pieter; Neunlist, Michel; Lardeux, Bernard

    2010-04-01

    Enteric glial cells (EGCs) are essential in the control of gastrointestinal functions. Although lesions of EGCs are associated with neuronal degeneration in animal models, their direct neuroprotective role remains unknown. Therefore, the aims of this study were to demonstrate the direct neuroprotective effects of EGCs and to identify putative glial mediators involved. First, viral targeted ablation of EGCs in primary cultures of enteric nervous system increased neuronal death both under basal conditions and in the presence of oxidative stress (dopamine, hydrogen peroxide). Second, direct or indirect coculture experiments of EGC lines with primary cultures of enteric nervous system or neuroblastoma cell lines (SH-SY5Y) prevented neurotoxic effects induced by oxidative stress (increased membrane permeability, release of neuronal specific enolase, caspase-3 immunoreactivity, changes in [Ca(2+)](i) response). Finally, combining pharmacological inhibition and mRNA silencing methods, we demonstrated that neuroprotective effects of EGCs were mediated in part by reduced glutathione but not by oxidized glutathione or by S-nitrosoglutathione. Our study identified the neuroprotective effects of EGCs via their release of reduced glutathione, extending their critical role in physiological contexts and in enteric neuropathies.-Abdo, H., Derkinderen, P., Gomes, P., Chevalier, J., Aubert, P., Masson, D., Galmiche, J.-P., Vanden Berghe, P., Neunlist, M., Lardeux, B. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione.

  19. Identification of Glial Activation Markers by Comparison of Transcriptome Changes between Astrocytes and Microglia following Innate Immune Stimulation

    PubMed Central

    Madeddu, Silvia; Woods, Tyson A.; Mukherjee, Piyali; Sturdevant, Dan; Peterson, Karin E.

    2015-01-01

    The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS. PMID:26214311

  20. Coevolution of radial glial cells and the cerebral cortex

    PubMed Central

    De Juan Romero, Camino

    2015-01-01

    Abstract Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a remarkable diversity of additional cortical progenitor cell types, including a variety of basal radial glia cells with key roles in cortical expansion and folding, both in ontogeny and phylogeny. In this review, we summarize the main cellular and molecular mechanisms known to be involved in cerebral cortex development in mouse, as the currently preferred animal model, and then compare these with known mechanisms in other vertebrates, both mammal and nonmammal, including human. This allows us to present a global picture of how radial glia cells and the cerebral cortex seem to have coevolved, from reptiles to primates, leading to the remarkable diversity of vertebrate cortical phenotypes. GLIA 2015;63:1303–1319 PMID:25808466

  1. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    PubMed

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  2. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures

    PubMed Central

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K.; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-01-01

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes. PMID:27304968

  3. Glia maturation factor modulates β-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage

    PubMed Central

    Zaheer, Asgar; Zaheer, Smita; Thangavel, Ramasamy; Wu, Yanghong; Sahu, Shailendra K.; Yang, Baoli

    2008-01-01

    Glia maturation factor (GMF), discovered and characterized in our laboratory, is a highly conserved protein primarily localized in mammalian central nervous system. Previously we demonstrated that GMF is required in the induced production of proinflammatory cytokines and chemokines in brain cells. We now report that ventricular infusion of human amyloid beta peptide1-42 (Aβ1-42) in mouse brain caused glial activation and large increases in the levels of GMF as well as induction of inflammatory cytokine/chemokine known for launching the neuro inflammatory cascade in Alzheimer’s disease (AD). To test the hypothesis that GMF is involved in the pathogenesis of AD, we infused Aβ1-42 in the brain of GMF-deficient (GMF-KO) mice, recently prepared in our laboratory. GMF-deficient mice showed reduced glial activation and significantly suppressed proinflammatory cytokine/chemokine production following Aβ infusion compared to wild type (Wt) mice. The decrease in glial activation in the GMF-KO mice is also associated with significant reduction in Aβ induced loss of pre-synaptic marker, synaptophysin, and post-synaptic density protein-95 (PSD 95). We also examined the potential relationship between GMF or lack of it with learning and memory using the T-maze, Y-maze, and water maze, hippocampal-dependent spatial memory tasks. Our results show that memory retention was improved in GMF-KO mice compared to Wt controls following Aβ infusion. Diminution of these Aβ1-42 effects in primary cultures of GMF-KO astrocyte and microglia were reversed by reconstituted expression of GMF. Taken together, our results indicate a novel mediatory role of GMF in neuro-inflammatory pathway of Aβ and its pro-inflammatory functions. PMID:18395194

  4. Chronic glial activation, neurodegeneration, and APP immunoreactive deposits following acute administration of double-stranded RNA.

    PubMed

    Melton, Lisa M; Keith, Alexander B; Davis, Sue; Oakley, Arthur E; Edwardson, James A; Morris, Christopher M

    2003-10-01

    Several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, are associated with immunocompetent microglia, leading to the suggestion that chronic glial-mediated inflammation contributes to the neurodegeneration seen in these diseases. Little direct evidence supports this hypothesis, and no suitable rodent models exist that do not involve the use of blunt trauma or ischaemia, events that are infrequently encountered in the human disease state. In the present study, we report that administration of double-stranded RNA, a classical inducer of interferon-gamma (IFN-gamma), causes rapid and persistent activation of microglia and astrocytes, as well as induction of interleukin-1beta (IL-beta) and nitric oxide synthase. In close temporal succession to glial activation, there is neurodegeneration, with neuron loss involving apoptosis in selected brain regions including the septal nucleus, hippocampus, cortex and thalamus, along with hippocampal atrophy. This neuronal loss is accompanied by punctate deposits of material that are immunoreactive for amyloid precursor protein, beta-amyloid peptide (Abeta), and apolipoprotein E. The findings may have clinical relevance, since the administration of the nonsteroidal antiinflammatory agent (NSAID) ibuprofen markedly reduces the neurodegeneration observed in the absence of significant glial inhibition. These findings may be relevant to the pathogenesis of Alzheimer's disease in particular, and to other neurodegenerative diseases involving inflammation.

  5. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration

    PubMed Central

    Sekiya, Tetsuji; Holley, Matthew C.; Hashido, Kento; Ono, Kazuya; Shimomura, Koichiro; Horie, Rie T.; Hamaguchi, Kiyomi; Yoshida, Atsuhiro; Sakamoto, Tatsunori; Ito, Juichi

    2015-01-01

    Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson’s disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts. PMID:26080415

  6. A Distinct Perisynaptic Glial Cell Type Forms Tripartite Neuromuscular Synapses in the Drosophila Adult

    PubMed Central

    Strauss, Alexandra L.; Kawasaki, Fumiko; Ordway, Richard W.

    2015-01-01

    Previous studies of Drosophila flight muscle neuromuscular synapses have revealed their tripartite architecture and established an attractive experimental model for genetic analysis of glial function in synaptic transmission. Here we extend these findings by defining a new Drosophila glial cell type, designated peripheral perisynaptic glia (PPG), which resides in the periphery and interacts specifically with fine motor axon branches forming neuromuscular synapses. Identification and specific labeling of PPG was achieved through cell type-specific RNAi-mediated knockdown (KD) of a glial marker, Glutamine Synthetase 2 (GS2). In addition, comparison among different Drosophila neuromuscular synapse models from adult and larval developmental stages indicated the presence of tripartite synapses on several different muscle types in the adult. In contrast, PPG appear to be absent from larval body wall neuromuscular synapses, which do not exhibit a tripartite architecture but rather are imbedded in the muscle plasma membrane. Evolutionary conservation of tripartite synapse architecture and peripheral perisynaptic glia in vertebrates and Drosophila suggests ancient and conserved roles for glia-synapse interactions in synaptic transmission. PMID:26053860

  7. Glial enriched gene expression profiling identifies novel factors regulating the proliferation of specific glial subtypes in the Drosophila brain

    PubMed Central

    Avet-Rochex, Amélie; Maierbrugger, Katja T.; Bateman, Joseph M.

    2014-01-01

    Glial cells constitute a large proportion of the central nervous system (CNS) and are critical for the correct development and function of the adult CNS. Recent studies have shown that specific subtypes of glia are generated through the proliferation of differentiated glial cells in both the developing invertebrate and vertebrate nervous systems. However, the factors that regulate glial proliferation in specific glial subtypes are poorly understood. To address this we have performed global gene expression analysis of Drosophila post-embryonic CNS tissue enriched in glial cells, through glial specific overexpression of either the FGF or insulin receptor. Analysis of the differentially regulated genes in these tissues shows that the expression of known glial genes is significantly increased in both cases. Conversely, the expression of neuronal genes is significantly decreased. FGF and insulin signalling drive the expression of overlapping sets of genes in glial cells that then activate proliferation. We then used these data to identify novel transcription factors that are expressed in glia in the brain. We show that two of the transcription factors identified in the glial enriched gene expression profiles, foxO and tramtrack69, have novel roles in regulating the proliferation of cortex and perineurial glia. These studies provide new insight into the genes and molecular pathways that regulate the proliferation of specific glial subtypes in the Drosophila post-embryonic brain. PMID:25217886

  8. Inhibition of spinal UCHL1 attenuates pain facilitation in a cancer-induced bone pain model by inhibiting ubiquitin and glial activation.

    PubMed

    Cheng, Wei; Chen, Yuan-Li; Wu, Liang; Miao, Bei; Yin, Qin; Wang, Jin-Feng; Fu, Zhi-Jian

    2016-01-01

    The present study examined alterations of spinal ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin expression and glial activation in the cancer-induced bone pain rats. Furthermore, whether inhibition of spinal UCHL1 could alleviate cancer-induced bone pain was observed. The CIBP model was established by intrathecal Walker 256 mammary gland carcinoma cells in SD rats. The rats of CIBP developed significant pain facilitation in the Von Frey test. Double immunofluorescence analyses revealed that in the spines of CIBP rats, ubiquitin co-localized with NeuN, Iba-1 or GFAP; UCHL1 and NeuN were co-expressed and UCHL1 also co-localized with ubiquitin. The CIBP model induced up-regulation of ubiquitin and UCHL1 in the spines, as well as glial activation. Inhibition of spinal UCHL1 attenuated pain facilitation by down-regulation of ubiquitin expression and glial activation. in the CIBP rats. Our data suggests that UCHL1/ubiquitin distributed and increased in the spines of CIBP rats, that glial activation also increased in the CIBP model and that inhibition of spinal UCHL1 may be an effective method to alleviate cancer-induced bone pain. PMID:27508024

  9. Inhibition of spinal UCHL1 attenuates pain facilitation in a cancer-induced bone pain model by inhibiting ubiquitin and glial activation

    PubMed Central

    Cheng, Wei; Chen, Yuan-Li; Wu, Liang; Miao, Bei; Yin, Qin; Wang, Jin-Feng; Fu, Zhi-Jian

    2016-01-01

    The present study examined alterations of spinal ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin expression and glial activation in the cancer-induced bone pain rats. Furthermore, whether inhibition of spinal UCHL1 could alleviate cancer-induced bone pain was observed. The CIBP model was established by intrathecal Walker 256 mammary gland carcinoma cells in SD rats. The rats of CIBP developed significant pain facilitation in the Von Frey test. Double immunofluorescence analyses revealed that in the spines of CIBP rats, ubiquitin co-localized with NeuN, Iba-1 or GFAP; UCHL1 and NeuN were co-expressed and UCHL1 also co-localized with ubiquitin. The CIBP model induced up-regulation of ubiquitin and UCHL1 in the spines, as well as glial activation. Inhibition of spinal UCHL1 attenuated pain facilitation by down-regulation of ubiquitin expression and glial activation. in the CIBP rats. Our data suggests that UCHL1/ubiquitin distributed and increased in the spines of CIBP rats, that glial activation also increased in the CIBP model and that inhibition of spinal UCHL1 may be an effective method to alleviate cancer-induced bone pain. PMID:27508024

  10. Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

    PubMed Central

    Ramesh, Geeta; Borda, Juan T.; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A.; Philipp, Mario T.

    2008-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-α and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1β, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  11. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis.

    PubMed

    Ramesh, Geeta; Borda, Juan T; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A; Philipp, Mario T

    2008-11-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  12. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain

    PubMed Central

    Pan, Lin

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  13. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain

    PubMed Central

    Pan, Lin

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats. PMID:27642352

  14. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    PubMed

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats. PMID:27642352

  15. Glial fibrillary acidic protein-immunoreactive enteroglial cells in the jejunum of cattle.

    PubMed

    Costagliola, Anna

    2015-07-01

    Enteroglial cells (EGCs) play critical roles in human health and disease, however, EGC-dependent neuropathies also affect commercially important animal species. Due to the lack of data on the distribution and phenotypic characterization of the EGCs throughout the bovine gastrointestinal tract, in this study the topographic localization of EGCs in the jejunum of healthy cattle was investigated by immunofluorescence using the glial specific marker glial fibrillary acidic protein (GFAP) and the panneuronal marker PGP 9.5. This analysis was conducted on both cryosections and whole mount preparations including the myenteric and the submucous plexuses of the bovine jejunum. The results obtained showed the presence of a large subpopulation of GFAP-expressing EGCs in the main plexuses and within the muscle layers, whereas only few GFAP-positive glial processes were found within the deeper layer of the mucosa, and they never reached the mucosal epithelium. Three different EGC subtypes, namely I, III and IV types were recognized in the examined tract of the bovine intestine. Overall, our results provide the basis for future investigations aimed at elucidating the functional role of the GFAP-containing EGCs which is crucial for a better understanding of the physio-pathology of the bovine intestine.

  16. The “Toll” of Opioid-Induced Glial Activation: Improving the Clinical Efficacy of Opioids by Targeting Glia

    PubMed Central

    Watkins, Linda R.; Hutchinson, Mark R.; Rice, Kenner C.; Maier, Steven F.

    2009-01-01

    Glial activation participates in the mediation of pain including neuropathic pain, due to release of neuroexcitatory, proinflammatory products. Glial activation is now known to occur in response to opioids as well. Opioid-induced glial activation opposes opioid analgesia and enhances opioid tolerance, dependence, reward and respiratory depression. Such effects can occur, not via classical opioid receptors, but rather via non-stereoselective activation of toll-like receptor 4 (TLR4), a recently recognized key glial receptor participating in neuropathic pain as well. This discovery identifies a means for separating the beneficial actions of opioids (opioid receptor mediated) from the unwanted side-effects (TLR4/glial mediated) by pharmacologically targeting TLR4. Such a drug should be a stand-alone therapeutic for treating neuropathic pain as well. Excitingly, with newly-established clinical trials of two glial modulators for treating neuropathic pain and improving the utility of opioids, translation from rats-to-humans now begins with the promise of improved clinical pain control. PMID:19762094

  17. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression.

    PubMed

    Kim, Yong-Ku; Na, Kyoung-Sae

    2016-10-01

    Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel

  18. Glial cells missing homologue 1 is induced in differentiating equine chorionic girdle trophoblast cells.

    PubMed

    de Mestre, Amanda M; Miller, Donald; Roberson, Mark S; Liford, Jenny; Chizmar, Lisay C; McLaughlin, Kristin E; Antczak, Douglas F

    2009-02-01

    The objective of this study was to identify transcription factors associated with differentiation of the chorionic girdle, the invasive form of equine trophoblast. The expression patterns of five transcription factors were determined on a panel of conceptus tissues from early horse pregnancy. Tissues from Days 15 through 46 were tested. Eomesodermin (EOMES), glial cells missing homologue 1 (GCM1), heart and neural crest derivatives expressed transcript 1 (HAND1), caudal type homeobox 2 (CDX2), and distal-less homeobox 3 (DLX3) were detected in horse trophoblast, but the expression patterns for these genes varied. EOMES had the most restricted distribution, while DLX3 CDX2, and HAND1 were widely expressed. GCM1 seemed to increase in the developing chorionic girdle, and this was confirmed by quantitative RT-PCR assays. GCM1 expression preceded a striking increase in expression of equine chorionic gonadotropin beta (CGB) in the chorionic girdle, and binding sites for GCM1 were discovered in the promoter region of the CGB gene. GCM1, CGB, and CGA mRNA were expressed preferentially in binucleate cells as opposed to uninucleate cells of the chorionic girdle. Based on these findings, it is likely that GCM1 has a role in differentiation and function of the invasive trophoblast of the equine chorionic girdle and endometrial cups. The equine binucleate chorionic girdle (CG) secreting trophoblast shares molecular, morphological, and functional characteristics with human syncytiotrophoblast and represents a model for studies of human placental function.

  19. Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF).

    PubMed

    Salio, Chiara; Ferrini, Francesco; Muthuraju, Sangu; Merighi, Adalberto

    2014-10-01

    The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.

  20. Endothelial cell loss is not a major cause of neuronal and glial cell death following contusion injury of the spinal cord.

    PubMed

    Casella, Gizelda T B; Bunge, Mary Bartlett; Wood, Patrick M

    2006-11-01

    Contusion of the spinal cord causes an immediate local loss of neurons and disruption of vasculature; additional loss continues thereafter. To explore the possibility of a causal link between delayed endothelial cell (EC) death and secondary neural cell loss, we evaluated neural and endothelial cell survival, and measured inflammatory cell infiltration, at times up to 48 h after contusion injury to the adult rat thoracic spinal cord. Female Fischer rats (200 g), subjected to moderate (10 g x 12.5 mm) weight drop injuries by the MASCIS (NYU) impactor, were analyzed at 15 min and at 1, 8, 24 and 48 h. ECs, neurons, astrocytes, oligodendrocytes, neutrophils and activated macrophages/microglia were counted in transverse sections. At the injury site, 90% of all neurons died within 48 h of injury; no medium-large diameter neurons survived beyond 48 h. EC death occurred with kinetics similar to glial cell death. Because, in the injury site, most cell death occurred before 8 h, it preceded inflammatory cell infiltration. Three millimeters rostral and caudal to the injury epicenter neuronal numbers were stable for 8 h, and a sharp decrease in neuronal numbers beginning at 8 h strongly correlated with the onset of inflammatory cell infiltration. Glial and blood vessel numbers remained relatively stable in these areas up to 48 h. These results suggest that the loss of ECs during the first 48 h after a contusion injury is not a major cause of neuronal and glial cell death and, in tissue adjacent to the epicenter, inflammatory cell infiltration leads to neuronal loss. PMID:16872600

  1. Gene Expression Changes under Cyclic Mechanical Stretching in Rat Retinal Glial (Müller) Cells

    PubMed Central

    Wang, Xin; Fan, Jiawen; Zhang, Meng; Sun, Zhongcui; Xu, Gezhi

    2013-01-01

    Objective The retina is subjected to tractional forces in various conditions. As the predominant glial element in the retina, Müller cells are active players in all forms of retinal injury and disease. In this study, we aim to identify patterns of gene expression changes induced by cyclic mechanical stretching in Müller cells. Methods Rat Müller cells were seeded onto flexible bottom culture plates and subjected to a cyclic stretching regimen of 15% equibiaxial stretching for 1 and 24 h. RNA was extracted and amplified, labeled, and hybridized to rat genome microarrays. The expression profiles were analyzed using GeneSpring software, and gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to select, annotate, and visualize genes by function and pathway. The selected genes of interest were further validated by Quantitative Real-time PCR (qPCR). Results Microarray data analysis showed that at 1 and 24 h, the expression of 532 and 991 genes in the Müller cells significantly (t-test, p<0.05) differed between the mechanically stretched and unstretched groups. Of these genes, 56 genes at 1 h and 62 genes at 24 h showed more than a twofold change in expression. Several genes related to response to stimulus (e.g., Egr2, IL6), cell proliferation (e.g., Areg, Atf3), tissue remodeling (e.g., PVR, Loxl2), and vasculogenesis (e.g., Epha2, Nrn1) were selected and validated by qPCR. KEGG pathway analysis showed significant changes in MAPK signaling at both time points. Conclusions Cyclic mechanical strain induces extensive changes in the gene expression in Müller cells through multiple molecular pathways. These results indicate the complex mechanoresponsive nature of Müller cells, and they provide novel insights into possible molecular mechanisms that would account for many retinal diseases in which the retina is often subjected to mechanical forces, such as pathological myopia and proliferative vitreoretinopathy. PMID:23723984

  2. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  3. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein trnasfer hypothesis.

    PubMed

    Lasek, R J; Gainer, H; Barker, J L

    1977-08-01

    The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport

  4. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    PubMed

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology.

  5. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    PubMed

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  6. Glial-restricted precursors as potential candidates for ALS cell-replacement therapy.

    PubMed

    Kruminis-Kaszkiel, Ewa; Wojtkiewicz, Joanna; Maksymowicz, Wojciech

    2014-01-01

    Amyotrophic lateral sclerosis is a multifactorial progressive neurodegenerative disorder leading to severe disability and death within 3-5 years after diagnosis. The main mechanisms underlying the disease progression are poorly known but according to the current knowledge, neuroinflammation is a key player in motor neurons damage. Astrocytes constitute an important cell population involved in neuroinflammatory reaction. Many studies confirmed their striking connection with motor neuron pathology and therefore they might be a target for the treatment of ALS. Cell-based therapy appears to be a promising strategy. Since direct replacement or restoring of motor neurons using various stem cells is challenging, enrichment of healthy donor-derived astrocytes appears to be a more realistic and beneficial approach. The effects of astrocytes have been examined using transplantation of glial-restricted precursors (GRPs) that represent one of the earliest precursors within the oligodendrocytic and astrocytic cell lineage. In this review, we focused on evidence-based data on astrocyte replacement transplantation therapy using GRPs in animal models of motor neuron diseases. The efficacy of GRPs engrafting is very encouraging. Furthermore, the lesson learned from application of lineage-restricted precursors in spinal cord injury (SCI) indicates that differentiation of GRPs into astrocytes before transplantation might be more advantageous in the context of axon regeneration. To sum up, the studies of glial-restricted precursors have made a step forward to ALS research and might bring breakthroughs to the field of ALS therapy in the future.

  7. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy.

    PubMed

    Bernstein, Hans-Gert; Steiner, Johann; Guest, Paul C; Dobrowolny, Henrik; Bogerts, Bernhard

    2015-01-01

    The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

  8. Enterocolitis induced by autoimmune targeting of enteric glial cells: A possible mechanism in Crohn's disease?

    NASA Astrophysics Data System (ADS)

    Cornet, Anne; Savidge, Tor C.; Cabarrocas, Julie; Deng, Wen-Lin; Colombel, Jean-Frederic; Lassmann, Hans; Desreumaux, Pierre; Liblau, Roland S.

    2001-11-01

    Early pathological manifestations of Crohn's disease (CD) include vascular disruption, T cell infiltration of nerve plexi, neuronal degeneration, and induction of T helper 1 cytokine responses. This study demonstrates that disruption of the enteric glial cell network in CD patients represents another early pathological feature that may be modeled after CD8+ T cell-mediated autoimmune targeting of enteric glia in double transgenic mice. Mice expressing a viral neoself antigen in astrocytes and enteric glia were crossed with specific T cell receptor transgenic mice, resulting in apoptotic depletion of enteric glia to levels comparable in CD patients. Intestinal and mesenteric T cell infiltration, vasculitis, T helper 1 cytokine production, and fulminant bowel inflammation were characteristic hallmarks of disease progression. Immune-mediated damage to enteric glia therefore may participate in the initiation and/or the progression of human inflammatory bowel disease.

  9. Localization of a GABA transporter to glial cells in the developing and adult olfactory pathway of the moth Manduca sexta1

    PubMed Central

    Oland, Lynne A; Gibson, Nicholas J; Tolbert, Leslie P

    2010-01-01

    Glial cells have several critical roles in the developing and adult olfactory (antennal) lobe of the moth Manduca sexta. Early in development, glial cells occupy discrete regions of the developing olfactory pathway and processes of GABAergic neurons extend into some of these regions. Because GABA is known to have developmental effects in a variety of systems, we explored the possibility that the glial cells express a GABA transporter that could regulate GABA levels to which olfactory neurons and glial cells are exposed. Using an antibody raised against a characterized high-affinity M. sexta GABA transporter with high sequence homology to known mammalian GABA transporters (Mbungu et al., 1995; Umesh and Gill, 2002), we found that the GABA transporter is localized to subsets of centrally derived glial cells during metamorphic adult development. The transporter persists into adulthood in a subset of the neuropil-associated glial cells, but its distribution pattern as determined by light- and electron-microscopic-level immunocytochemistry indicates that it could not serve to regulate GABA concentration in the synaptic cleft. Rather its role is more likely to regulate extracellular GABA levels within the glomerular neuropil. Expression in the sorting zone glial cells disappears after the period of olfactory receptor axon ingrowth, but may be important during ingrowth if GABA regulates axon growth. Glial cells take up GABA, and that uptake can be blocked by DABA. This is the first molecular evidence that the central glial cell population in this pathway is heterogeneous. PMID:20058309

  10. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  11. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  12. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  13. Treatment with UDP-glucose, GDNF, and memantine promotes SVZ and white matter self-repair by endogenous glial progenitor cells in neonatal rats with ischemic PVL.

    PubMed

    Li, W-J; Mao, F-X; Chen, H-J; Qian, L-H; Buzby, J S

    2015-01-22

    Periventricular leukomalacia (PVL) is one of the foremost neurological conditions leading to long-term abnormalities in premature infants. Since it is difficult to prevent initiation of this damage in utero, promoting the innate regenerative potential of the brain after birth may provide a more feasible, prospective therapy for PVL. Treatment with UDP-glucose (UDPG), an endogenous agonist of G protein-coupled receptor 17 (GPR17) that may enhance endogenous self-repair potentiality, glial cell line-derived neurotrophic factor (GDNF), a neurotrophic factor associated with the growth and survival of nerve cells, and memantine, a noncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptors that block ischemia-induced glutamate signal transduction, has been reported to achieve functional, neurological improvement in neonatal rats with PVL. The aim of the present study was to further explore whether UDPG, GDNF and/or memantine could promote corresponding self-repair of the subventricular zone (SVZ) and white matter (WM) in neonatal rats with ischemia-induced PVL. SVZ or WM tissue samples and cultured glial progenitor cells derived from a 5 day-old neonatal rat model of PVL were utilized for studying response to UDPG, GDNF and memantine in vivo and in vitro, respectively. Labeling with 5'-bromo-2'-deoxyuridine and immunofluorescent cell lineage markers after hypoxia-ischemia or oxygen-glucose deprivation (OGD) revealed that UDPG, GDNF and memantine each significantly increased glial progenitor cells and preoligodendrocytes (preOLs), as well as more differentiated immature and mature oligodendrocyte (OL), in both the SVZ and WM in vivo or in vitro. SVZ and WM glial cell apoptosis was also significantly reduced by UDPG, GDNF or memantine, both in vivo and in vitro. These results indicated that UDPG, GDNF or memantine may promote endogenous self-repair by stimulating proliferation of glial progenitor cells derived from both the SVZ and WM, activating their

  14. Radial glial cells, proliferating periventricular cells, and microglia might contribute to successful structural repair in the cerebral cortex of the lizard Gallotia galloti.

    PubMed

    Romero-Alemán, M M; Monzón-Mayor, M; Yanes, C; Lang, D

    2004-07-01

    Reptiles are the only amniotic vertebrates known to be capable of spontaneous regeneration of the central nervous system (CNS). In this study, we analyzed the reactive changes of glial cells in response to a unilateral physical lesion in the cerebral cortex of the lizard Gallotia galloti, at 1, 3, 15, 30, 120, and 240 days postlesion. The glial cell markers glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), S100 protein, and tomato lectin, as well as proliferating cell nuclear antigen (PCNA) were used to evaluate glial changes occurring because of cortical lesions. A transitory and unilateral upregulation of GFAP and GS in reactive radial glial cells were observed from 15 to 120 days postlesion. In addition, reactive lectin-positive macrophage/microglia were observed from 1 to 120 days postlesion, whereas the expression of S100 protein remained unchanged throughout the examined postlesion period. The matricial zones closest to the lesion site, the sulcus lateralis (SL) and the sulcus septomedialis (SSM), showed significantly increased numbers of dividing cells at 30 days postlesion. At 240 days postlesion, the staining pattern for PCNA, GFAP, GS, and tomato lectin in the lesion site became similar to that observed in unlesioned controls. In addition, ultrastructural data of the lesioned cortex at 240 days postlesion indicated a structural repair process. We conclude that restoration of the glial framework and generation of new neurons and glial cells in the ventricular wall play a key role in the successful structural repair of the cerebral cortex of the adult lizard.

  15. Extracellular amyloid-beta and cytotoxic glial activation induce significant entorhinal neuron loss in young PS1(M146L)/APP(751SL) mice.

    PubMed

    Moreno-Gonzalez, Ines; Baglietto-Vargas, David; Sanchez-Varo, Raquel; Jimenez, Sebastian; Trujillo-Estrada, Laura; Sanchez-Mejias, Elisabeth; Del Rio, Juan Carlos; Torres, Manuel; Romero-Acebal, Manuel; Ruano, Diego; Vizuete, Marisa; Vitorica, Javier; Gutierrez, Antonia

    2009-01-01

    Here we demonstrated that extracellular, not intracellular, amyloid-beta (Abeta) and the associated cytotoxic glial neuroinflammatory response are major contributors to early neuronal loss in a PS1xAPP model. A significant loss of principal (27%) and SOM/NPY (56-46%) neurons was found in the entorhinal cortex at 6 months of age. Loss of principal cells occurred selectively in deep layers (primarily layer V) whereas SOM/NPY cell loss was evenly distributed along the cortical column. Neither layer V pyramidal neurons nor SOM/NPY interneurons displayed intracellular Abeta immunoreactivity, even after formic acid retrieval; thus, extracellular factors should be preferentially implicated in this selective neurodegeneration. Amyloid deposits were mainly concentrated in deep layers at 4-6 months, and of relevance was the existence of a potentially cytotoxic inflammatory response (TNFalpha, TRAIL, and iNOS mRNAs were upregulated). Moreover, non-plaque associated activated microglial cells and reactive astrocytes expressed TNFalpha and iNOS, respectively. At this age, in the hippocampus of same animals, extracellular Abeta induced a non-cytotoxic glial activation. The opposite glial activation, at the same chronological age, in entorhinal cortex and hippocampus strongly support different mechanisms of disease progression in these two regions highly affected by Abeta pathology.

  16. Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation.

    PubMed

    Huang, Jinghan; Vogel, Gillian; Yu, Zhenbao; Almazan, Guillermina; Richard, Stéphane

    2011-12-30

    PRMT5 is a type II protein arginine methyltranferase that catalyzes monomethylation and symmetric dimethylation of arginine residues. PRMT5 is functionally involved in a variety of biological processes including embryo development and circadian clock regulation. However, the role of PRMT5 in oligodendrocyte differentiation and central nervous system myelination is unknown. Here we show that PRMT5 expression gradually increases throughout postnatal brain development, coinciding with the period of active myelination. PRMT5 expression was observed in neurons, astrocytes, and oligodendrocytes. siRNA-mediated depletion of PRMT5 in mouse primary oligodendrocyte progenitor cells abrogated oligodendrocyte differentiation. In addition, the PRMT5-depleted oligodendrocyte progenitor and C6 glioma cells expressed high levels of the inhibitors of differentiation/DNA binding, Id2 and Id4, known repressors of glial cell differentiation. We observed that CpG-rich islands within the Id2 and Id4 genes were bound by PRMT5 and were hypomethylated in PRMT5-deficient cells, suggesting that PRMT5 plays a role in gene silencing during glial cell differentiation. Our findings define a role of PRMT5 in glial cell differentiation and link PRMT5 to epigenetic changes during oligodendrocyte differentiation. PMID:22041901

  17. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    PubMed Central

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders. PMID:26089777

  18. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders.

    PubMed

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders. PMID:26089777

  19. Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors.

    PubMed

    Dzamba, David; Honsa, Pavel; Valny, Martin; Kriska, Jan; Valihrach, Lukas; Novosadova, Vendula; Kubista, Mikael; Anderova, Miroslava

    2015-11-01

    Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP(+) glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP(+) glial cells and that its expression is increased after ischemia. In situ and in vitro Ca(2+) imaging revealed that Ca(2+) elevations evoked by the application of NMDA were diminished in GFAP/EGFP(+) glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP(+) glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.

  20. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    PubMed

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  1. Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats

    PubMed Central

    Quan, Fu-Shi; Chen, Jian; Zhong, Yuan; Ren, Wen-Zhi

    2016-01-01

    The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment

  2. Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats

    PubMed Central

    Quan, Fu-Shi; Chen, Jian; Zhong, Yuan; Ren, Wen-Zhi

    2016-01-01

    The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment

  3. Visualization of Müller (retinal glial) cells by bulk filling with procion yellow.

    PubMed

    Reichenbach, A; Grimm, D; Mozhaiskaja, N; Distler, C

    1995-01-01

    A method is presented that allows for an easy and reliable demonstration of retinal glial (Müller) cell morphology. When a 3% solution of the fluorescent dye Procion Yellow (reactive yellow, Sigma) is placed on isolated living retinae for 2 hrs, many Müller cells take up the dye. In paraffin sections, the cells can be observed by confocal microscopy in great detail. As the cells are filled throughout their length, the method has advantages over most immunocytochemical methods which label only parts of the cells. The method was applied to retinae of frogs, rats, guinea pigs, and rabbits. The vitread trunks of the cells differed in diameter. Those of frogs and rats were thin (less than 1 to 2 microns diameter) whereas those of guinea pigs and rabbits were thicker (2 to 5 microns). In all species studied the following rule was found. In thick central regions of the retina, Müller cells were long with slender trunks whereas in the thin retinal periphery, the Müller cells had thick short trunks. There was an inverse relationship between length and diameter of Müller cell trunks. Mammalian Müller cells were densely packed and had rather cylindrical endfeet. In the frog retina, Müller cells were more sparsely distributed, and the endfeet formed wide, flat funnels. It is concluded that the higher metabolic rate of mammalian retinae requires more densely packed Müller cells than occur in the amphibian retina.

  4. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    SciTech Connect

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  5. THE FINE STRUCTURAL ORGANIZATION OF NERVE FIBERS, SHEATHS, AND GLIAL CELLS IN THE PRAWN, PALAEMONETES VULGARIS

    PubMed Central

    Heuser, John E.; Doggenweiler, Carlos F.

    1966-01-01

    In view of reports that the nerve fibers of the sea prawn conduct impulses more rapidly than other invertebrate nerves and look like myelinated vertebrate nerves in the light microscope, prawn nerve fibers were studied with the electron microscope. Their sheaths are found to have a consistent and unique structure that is unlike vertebrate myelin in four respects: (1) The sheath is composed of 10 to 50 thin (200- to 1000-A) layers or laminae; each lamina is a cellular process that contains cytoplasm and wraps concentrically around the axon. The laminae do not connect to form a spiral; in fact, no cytoplasmic continuity has been demonstrated among them. (2) Nuclei of sheath cells occur only in the innermost lamina of the sheath; thus, they lie between the sheath and the axon rather than outside the sheath as in vertebrate myelinated fibers. (3) In regions in which the structural integrity of the sheath is most prominent, radially oriented stacks of desmosomes are formed between adjacent laminae. (4) An ∼200-A extracellular gap occurs around the axon and between the innermost sheath laminae, but it is separated from surrounding extracellular spaces by gap closure between the outer sheath laminae, as the membranes of adjacent laminae adhere to form external compound membranes (ECM's). Sheaths are interrupted periodically to form nodes, analogous to vertebrate nodes of Ranvier, where a new type of glial cell called the "nodal cell" loosely enmeshes the axon and intermittently forms tight junctions (ECM's) with it. This nodal cell, in turn, forms tight junctions with other glial cells which ramify widely within the cord, suggesting the possibility of functional axon-glia interaction. PMID:5968976

  6. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway.

    PubMed

    Xu, Pin; Rosen, Kenneth M; Hedstrom, Kristian; Rey, Osvaldo; Guha, Sushovan; Hart, Courtney; Corfas, Gabriel

    2013-07-01

    Upon peripheral nerve injury, specific molecular events, including increases in the expression of selected neurotrophic factors, are initiated to prepare the tissue for regeneration. However, the mechanisms underlying these events and the nature of the cells involved are poorly understood. We used the injury-induced upregulation of glial cell-derived neurotrophic factor (GDNF) expression as a tool to gain insights into these processes. We found that both myelinating and nonmyelinating Schwann cells are responsible for the dramatic increase in GDNF expression after injury. We also demonstrate that the GDNF upregulation is mediated by a signaling cascade involving activation of Schwann cell purinergic receptors, followed by protein kinase C signaling which activates protein kinase D (PKD), which leads to increased GDNF transcription. Given the potent effects of GDNF on survival and repair of injured peripheral neurons, we propose that targeting these pathways may yield therapeutic tools to treat peripheral nerve injury and neuropathies.

  7. Interactive properties of human glioblastoma cells with brain neurons in culture and neuronal modulation of glial laminin organization.

    PubMed

    Faria, Jane; Romão, Luciana; Martins, Sheila; Alves, Tércia; Mendes, Fabio A; de Faria, Giselle Pinto; Hollanda, Rosenilde; Takiya, Christina; Chimelli, Leila; Morandi, Veronica; de Souza, Jorge Marcondes; Abreu, Jose Garcia; Moura Neto, Vivaldo

    2006-12-01

    The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.

  8. Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer's disease.

    PubMed

    Van Everbroeck, Bart; Dobbeleir, Itte; De Waele, Michèle; De Leenheir, Evelyn; Lübke, Ursula; Martin, Jean-Jacques; Cras, Patrick

    2004-09-01

    The relation of protein deposition with glial cells and oxidative stress was studied in Creutzfeldt-Jakob disease (CJD), Alzheimer's disease (AD) and neurologically healthy control patients. Three neocortical areas, the hippocampus, and the cerebellum of 20 CJD, 10 AD and 10 control patients were immunohistochemically examined for the presence of astroglia, microglia, and protein depositions. To investigate the level of oxidative stress the percentage of neurons with cytoplasmic hydroxylated DNA was determined. Astroglia, microglia and oxidative stress were located around amyloid-beta depositions and a clear quantitative relation was identified. These markers were only increased in the hippocampus of AD compared to controls. Quantitative analysis in these groups showed a correlation between the oxidative stress level and the number of microglia in the grey matter. All markers were increased in the grey matter and the cerebellum of CJD when compared to AD and controls. The highest numbers of lesions were observed in a CJD population with a rapid disease progression. Quantitative analysis showed a correlation between the oxidative stress level and all glial cells. Further analysis showed that the number of microglia was related to the intensity of the prion depositions. Glial cells in the brain are thought to be the main producers of oxidative stress, resulting in neuronal death. Our results confirm that this close relationship exists in both AD and CJD. We also show that an increased number of glial cells and therefore possibly oxidative stress is associated with the disease progression.

  9. A label-free and high-throughput separation of neuron and glial cells using an inertial microfluidic platform.

    PubMed

    Jin, Tiantian; Yan, Sheng; Zhang, Jun; Yuan, Dan; Huang, Xu-Feng; Li, Weihua

    2016-05-01

    While neurons and glial cells both play significant roles in the development and therapy of schizophrenia, their specific contributions are difficult to differentiate because the methods used to separate neurons and glial cells are ineffective and inefficient. In this study, we reported a high-throughput microfluidic platform based on the inertial microfluidic technique to rapidly and continuously separate neurons and glial cells from dissected brain tissues. The optimal working condition for an inertial biochip was investigated and evaluated by measuring its separation under different flow rates. Purified and enriched neurons in a primary neuron culture were verified by confocal immunofluorescence imaging, and neurons performed neurite growth after separation, indicating the feasibility and biocompatibility of an inertial separation. Phencyclidine disturbed the neuroplasticity and neuron metabolism in the separated and the unseparated neurons, with no significant difference. Apart from isolating the neurons, purified and enriched viable glial cells were collected simultaneously. This work demonstrates that an inertial microchip can provide a label-free, high throughput, and harmless tool to separate neurological primary cells. PMID:27190569

  10. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    PubMed Central

    De Zeeuw, Chris I.; Hoogland, Tycho M.

    2015-01-01

    Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the BG in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum. PMID:26190972

  11. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture.

    PubMed

    Shea, T B; Fischer, I; Sapirstein, V

    1986-09-01

    Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane. PMID:3016181

  12. Glioma-associated Oncogene 2 Is Essential for Trophoblastic Fusion by Forming a Transcriptional Complex with Glial Cell Missing-a.

    PubMed

    Tang, Chao; Tang, Lanfang; Wu, Xiaokai; Xiong, Wenyi; Ruan, Hongfeng; Hussain, Musaddique; Wu, Junsong; Zou, Chaochun; Wu, Ximei

    2016-03-11

    Cell-cell fusion of human villous trophoblasts, referred to as a process of syncytialization, acts as a prerequisite for the proper development and functional maintenance of the human placenta. Given the fact that the main components of the Hedgehog signaling pathway are expressed predominantly in the syncytial layer of human placental villi, in this study, we investigated the potential roles and underlying mechanisms of Hedgehog signaling in trophoblastic fusion. Activation of Hedgehog signaling by a variety of approaches robustly induced cell fusion and the expression of syncytial markers, whereas suppression of Hedgehog signaling significantly attenuated cell fusion and the expression of syncytial markers in both human primary cytotrophoblasts and trophoblast-like BeWo cells. Moreover, among glioma-associated oncogene (GLI) family transcriptional factors in Hedgehog signaling, knockdown of GLI2 but not GLI1 and GLI3 significantly attenuated Hedgehog-induced cell fusion, whereas overexpression of the GLI2 activator alone was sufficient to induce cell fusion. Finally, GLI2 not only stabilized glial cell missing-a, a pivotal transcriptional factor for trophoblastic syncytialization, but also formed a transcriptional heterodimer with glial cell missing-a to transactivate syncytin-1, a trophoblastic fusogen, and promote trophoblastic syncytialization. Taken together, this study uncovered a so far uncharacterized role of Hedgehog/GLI2 signaling in trophoblastic fusion, implicating that Hedgehog signaling, through GLI2, could be required for human placental development and pregnancy maintenance.

  13. Knockdown of apoptosis signal-regulating kinase 1 affects ischaemia-induced astrocyte activation and glial scar formation.

    PubMed

    Cheon, So Yeong; Cho, Kyoung Joo; Song, Juhyun; Kim, Gyung Whan

    2016-04-01

    Reactive astrocytes play an essential role in determining the tissue response to ischaemia. Formation of a glial scar can block the neuronal outgrowth that is required for restoration of damaged tissue. Therefore, regulation of astrocyte activation is important; however, the mediator of this process has not been fully elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is an early responder to oxidative stress, and plays a pivotal role in the intracellular signalling pathway of apoptosis, inflammation, and differentiation. To confirm whether ASK1 mediates astrocyte activation and leads to glial scar formation after cerebral ischaemia, we conducted in vivo and in vitro experiments. C57BL/6 mice were subjected to occlusion of the middle cerebral artery, and astrocyte cultures were exposed to oxygen-glucose deprivation. After silencing of ASK1 , astrocyte-associated genes were downregulated, as seen with the use of microarrays. The glial fibrillary acidic protein (GFAP) level was decreased, and correlated with the reduction in the ASK1 level. In astrocytes, reduction in the ASK1 level decreased the activity of the p38 pathway, and the levels of transcription factors for GFAP and GFAP transcripts after hypoxia. In the chronic phase, ASK1 depletion reduced glial scar formation and conserved neuronal structure, which may lead to better functional recovery. These data suggest that ASK1 may be an important mediator of ischaemia-induced astrocyte activation and scar formation, and could provide a potential therapeutic target for treatment after ischaemic stroke. PMID:26797817

  14. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    PubMed

    Yamamoto, Hideaki; Maruo, Tomohiko; Majima, Takashi; Ishizaki, Hiroyoshi; Tanaka-Okamoto, Miki; Miyoshi, Jun; Mandai, Kenji; Takai, Yoshimi

    2013-01-01

    Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  15. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system.

    PubMed

    Kim, H J; Ahn, H J; Lee, S; Kim, J H; Park, J; Jeon, S-H; Kim, S H

    2015-10-29

    Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system.

  16. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system.

    PubMed

    Kim, H J; Ahn, H J; Lee, S; Kim, J H; Park, J; Jeon, S-H; Kim, S H

    2015-10-29

    Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system. PMID:26318336

  17. Acquisition of glial cells missing 2 Enhancers Contributes to a Diversity of Ionocytes in Zebrafish

    PubMed Central

    Shono, Takanori; Kurokawa, Daisuke; Miyake, Tsutomu; Okabe, Masataka

    2011-01-01

    Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H+-ATPase–rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na+-Cl− co-transporter–rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution. PMID:21858216

  18. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.

    PubMed

    Reichenbach, A; Eberhardt, W

    1988-01-01

    Müller (radial glial) cells were isolated from rabbit retinae by means of papaine and mechanical dissociation. Regional membrane properties of these cells were studied by intracellular microelectrode recordings of potential responses to local application of high K+ solutions. When different parts of the cell membrane were exposed to high K+, the amplitude of the depolarizing responses varied greatly, indicating a strong regional specialization of the membrane properties. Using morphometrical data of isolated rabbit Müller cells, and a simple circuit model, we calculated the endfoot membrane to constitute more than 80% of the total K+ conductance of the cell; the specific resistivity of the endfoot membrane was about 400 omega cm2, i.e., more than 40 times less than that of the membrane of the vitread process, which is immediately adjacent. This kind of regional membrane specialization seems to be optimized in respect to the Müller cells' ability to carry spatial buffering K+ currents.

  19. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    PubMed

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment. PMID:25471830

  20. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    PubMed

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment.

  1. Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: combined velocity and directionality analysis.

    PubMed

    Méhes, Elöd; Czirók, András; Hegedüs, Balázs; Szabó, Bálint; Vicsek, Tamás; Satz, Jakob; Campbell, Kevin; Jancsik, Veronika

    2005-03-01

    We investigate the role of dystroglycan, a major laminin-1 receptor and central member of the dystrophin-glycoprotein complex, in the laminin-1 induced motility of cultured Muller glial cells. Binding of laminin-1 to dystroglycan was prevented by IIH6, a function-blocking monoclonal antibody against alpha-dystroglycan. As an alternative means of inhibition, we used heparin to mask the dystroglycan binding site of the laminin-1, known to overlap with heparin binding sites. Cell motility was characterized in a two-dimensional motility assay based on computer-controlled videomicroscopy and statistical analysis of cellular trajectories. We obtained data on both the cell velocity and the diffusion index, a measure of direction-changing frequency. Both means of inhibition of dystroglycan function led to a significant decrease in the ability of laminin-1 to stimulate cell migration. At the same time, dystroglycan function does not appear to be involved in laminin-1-dependent increase in process dynamism and direction-changing activity.

  2. The regulation of proenkephalin expression in a distinct population of glial cells.

    PubMed Central

    Melner, M H; Low, K G; Allen, R G; Nielsen, C P; Young, S L; Saneto, R P

    1990-01-01

    The expression of opioid genes was examined in isolated populations of glial cells in primary culture. Northern blot analysis of purified type I astrocytes, oligodendrocytes and mixed oligodendrocyte-type-2-astrocyte lineage cells derived from cerebral cortex demonstrated robust expression of proenkephalin mRNA exclusively in type I astrocytes. The expression of proenkephalin mRNA was stimulated by the beta-adrenergic agonist isoproterenol, and 8-(4-chlorophenyl thio)adenosine 3'-5'-cyclic monophosphate (cpt-cAMP). Both of these compounds regulated a proenkephalin-chloramphenicol acetyltransferase fusion gene transiently transfected into type I astrocytes. HPLC and immunoassay of the cell culture media revealed significant levels of unprocessed proenkephalin secreted by the cell and this secretion was stimulated by isoproterenol and cpt-cAMP. The relatively high levels of proenkephalin expressed suggest that enhanced expression in astrocytes may be important during neural development, in trauma-induced gliosis and in neuroimmune interactions. Images Fig. 1. Fig. 2. Fig. 3. PMID:2311581

  3. Disposition of axonal caspr with respect to glial cell membranes: Implications for the process of myelination.

    PubMed

    Pedraza, Liliana; Huang, Jeffrey K; Colman, David

    2009-11-15

    Neurofascin-155 (NF155) and caspr are transmembrane proteins found at discrete locations early during development of the nervous system. NF155 is present in the oligodendrocyte cell body and processes, whereas caspr is on the axonal surface. In mature nerves, these proteins are clustered at paranodes, flanking the node of Ranvier. To understand how NF155 and caspr become localized to the paranodal regions of myelinated nerves, we have studied their distribution over time in myelinating cultures. Our observations indicate that these two proteins are recruited to the cell surface at the contact zone between axons and oligodendrocytes, where they trans-interact. This association explains the early pattern of caspr distribution, a helical coil that winds around the axon, resembling the turns of the myelin sheath. Caspr, an axonal membrane protein, therefore seems to move in register with the overlying myelinating cell via its interactions with myelin proteins. We suggest that NF155 is the glial cell membrane protein responsible for caspr distribution. The pair act as interacting partners on either side of the axoglial contact area. Most likely, there are other proteins on the axonal surface whose distribution is equally influenced by interaction with the nascent myelin sheath. The fact that caspr follows the movement of the spiraling membrane has a direct affect on the interpretation of the way in which myelin is formed. PMID:19170162

  4. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Suárez-Pozos, Edna; Melgarejo, Yaaziel; González-Mejia, Elba; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2009-09-01

    Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.

  5. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.

    PubMed

    Chvátal, A; Andĕrová, M; Ziak, D; Orkand, R K; Syková, E

    2001-05-01

    Using the patch-clamp technique in the whole-cell configuration combined with intracellular dialysis of the fluorescent dye Lucifer yellow (LY), the membrane properties of cells in slices of the lumbar portion of the frog spinal cord (n=64) and the filum terminale (FT, n=48) have been characterized and correlated with their morphology. Four types of cells were found in lumbar spinal cord and FT with membrane and morphological properties similar to those of cells that were previously identified in the rat spinal cord (Chvátal, A., Pastor, A., Mauch, M., Syková, E., Kettenmann, H., 1995. Distinct populations of identified glial cells in the developing rat spinal cord: Ion channel properties and cell morphology. Eur. J. Neurosci. 7, 129-142). Neurons, in response to a series of symmetrical voltage steps, displayed large repetitive voltage-dependent Na(+) inward currents and K(+) delayed rectifying outward currents. Three distinct types of non-neuronal cells were found. First, cells that exhibited passive symmetrical non-decaying currents were identified as astrocytes. These cells immunostained for GFAP and typically had at least one thick process and a number of fine processes. Second, cells with the characteristic properties of rat spinal cord oligodendrocytes, with passive symmetrical decaying currents and large tail currents after the end of the voltage step. These cells exhibited either long parallel or short hairy processes. Third, cells that expressed small brief inward currents in response to depolarizing steps, delayed rectifier outward currents and small sustained inward currents identical to rat glial precursor cells. Morphologically, they were characterized by round cell bodies with a number of finely branched processes. LY dye-coupling in the frog spinal cord gray matter and FT was observed in neurons and in all glial populations. All four cell types were found in both the spinal cord gray matter and FT. The glia/neuron ratio in the spinal cord was 0

  6. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.

    PubMed

    Chvátal, A; Andĕrová, M; Ziak, D; Orkand, R K; Syková, E

    2001-05-01

    Using the patch-clamp technique in the whole-cell configuration combined with intracellular dialysis of the fluorescent dye Lucifer yellow (LY), the membrane properties of cells in slices of the lumbar portion of the frog spinal cord (n=64) and the filum terminale (FT, n=48) have been characterized and correlated with their morphology. Four types of cells were found in lumbar spinal cord and FT with membrane and morphological properties similar to those of cells that were previously identified in the rat spinal cord (Chvátal, A., Pastor, A., Mauch, M., Syková, E., Kettenmann, H., 1995. Distinct populations of identified glial cells in the developing rat spinal cord: Ion channel properties and cell morphology. Eur. J. Neurosci. 7, 129-142). Neurons, in response to a series of symmetrical voltage steps, displayed large repetitive voltage-dependent Na(+) inward currents and K(+) delayed rectifying outward currents. Three distinct types of non-neuronal cells were found. First, cells that exhibited passive symmetrical non-decaying currents were identified as astrocytes. These cells immunostained for GFAP and typically had at least one thick process and a number of fine processes. Second, cells with the characteristic properties of rat spinal cord oligodendrocytes, with passive symmetrical decaying currents and large tail currents after the end of the voltage step. These cells exhibited either long parallel or short hairy processes. Third, cells that expressed small brief inward currents in response to depolarizing steps, delayed rectifier outward currents and small sustained inward currents identical to rat glial precursor cells. Morphologically, they were characterized by round cell bodies with a number of finely branched processes. LY dye-coupling in the frog spinal cord gray matter and FT was observed in neurons and in all glial populations. All four cell types were found in both the spinal cord gray matter and FT. The glia/neuron ratio in the spinal cord was 0

  7. Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity.

    PubMed

    Purice, Maria D; Speese, Sean D; Logan, Mary A

    2016-01-01

    Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia-axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. PMID:27647497

  8. Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity

    PubMed Central

    Purice, Maria D.; Speese, Sean D.; Logan, Mary A.

    2016-01-01

    Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia–axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. PMID:27647497

  9. Glial U87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing oxidative stress and apoptosis.

    PubMed

    Saeed, Yasmeen; Xie, Bingjie; Xu, Jin; Rehman, Abdur; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-04-01

    Recent studies have demonstrated the role of indirect effect of radiation in neurodegeneration. However, the role of glial cells in neuroprotection against indirect effect of radiation is still not clear, although they are known to protect neurons under stress conditions in central nervous system. Our study showed that indirect effect of radiation increased the oxidative stress that further enhances the expression of key apoptotic proteins and leads to neuronal cell death. We also investigated the indirect effect of radiation on neuronal cells in the presence of glial cells in a transwell co-culture system, while our analysis was focused on neuronal cells. Irradiated cell-conditioned medium (ICCM) was used as source of indirect radiation and neuroprotective effect was analyzed by various endpoints. It was observed that ICCM-induced reactive oxidative species level was significantly reduced in SH-SY5Y cells co-cultured with glial U87 cells, which might help to maintain the integrity of mitochondrial membrane potential. Increased levels of antioxidant enzyme superoxide dismutase and antioxidant glutathione were observed in SH-SY5Y cells co-cultured with glial U87 cells. Moreover, it was also observed that co-culture with glial cells inhibits the expression of ICCM-induced apoptotic proteins, i.e. Bax, cytochrome c, and caspase-3 in SH-SY5Y cells. Hence, it can be speculated that in co-culture system glial cells may protect the neuronal SH-SY5Y cells by reducing the ICCM-induced oxidative stress and apoptotic death.

  10. Administration of activated glial condition medium in the nucleus accumbens extended extinction and intensified reinstatement of methamphetamine-induced conditioned place preference.

    PubMed

    Arezoomandan, Reza; Moradi, Marzieh; Attarzadeh-Yazdi, Ghassem; Tomaz, Carlos; Haghparast, Abbas

    2016-07-01

    Methamphetamine (METH) is a psychostimulant drug with significant abuse potential and neurotoxic effects. A high percentage of users relapse to use after detoxification and no effective medication has been developed for treatment of METH addiction. Developing evidences indicated the role of glial cells in drugs abused related phenomena. However, little is known about the role of these cells in the maintenance and reinstatement of METH-seeking behaviors. Therefore, the current study was conducted to clarify the role of glial cells in the maintenance and reinstatement of METH-induced conditioned place preference (CPP) in rats. Astrocyte condition medium (ACM) and neuroglia conditioned medium (NCM) are liquid mediums prepared from primary astrocyte and neuroglia cells. These mediums seem to contain many factors that release by glia cells. CPP was induced by systemic administration of METH (1mg/kg for 5days, s.c.). Following the establishment of CPP, the rats were given daily bilateral injections (0.5μl/side) of either vehicle, ACM or NCM into the nucleus accumbens (NAc) and then were tested for the maintenance and reinstatement. Intra-NAc administration of ACM treated with METH, could extend the extinction period and also, intensified the magnitude of METH reinstatement. Furthermore, intra-accumbal administration of NCM treated with METH notably delayed the extinction period by four days and significantly increased the magnitude of CPP score in the reinstatement phase compared to the post-test phase. Collectively, these findings suggested that activation of glial cells may be involved in the maintenance and reinstatement of METH-seeking behaviors. It provides new evidence that glia cells might be considered as a potential target for the treatment of METH addiction. PMID:27346277

  11. Radial glial cell-specific ablation in the adult Zebrafish brain.

    PubMed

    Shimizu, Yuki; Ito, Yoko; Tanaka, Hideomi; Ohshima, Toshio

    2015-07-01

    The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs.

  12. Lead induces COX-2 expression in glial cells in a NFAT-dependent, AP-1/NFκB-independent manner.

    PubMed

    Wei, Jinlong; Du, Kejun; Cai, Qinzhen; Ma, Lisha; Jiao, Zhenzhen; Tan, Jinrong; Xu, Zhou; Li, Jingxia; Luo, Wenjin; Chen, Jingyuan; Gao, Jimin; Zhang, Dongyun; Huang, Chuanshu

    2014-11-01

    Epidemiologic studies have provided solid evidence for the neurotoxic effect of lead for decades of years. In view of the fact that children are more vulnerable to the neurotoxicity of lead, lead exposure has been an urgent public health concern. The modes of action of lead neurotoxic effects include disturbance of neurotransmitter storage and release, damage of mitochondria, as well as induction of apoptosis in neurons, cerebrovascular endothelial cells, astroglia and oligodendroglia. Our studies here, from a novel point of view, demonstrates that lead specifically caused induction of COX-2, a well known inflammatory mediator in neurons and glia cells. Furthermore, we revealed that COX-2 was induced by lead in a transcription-dependent manner, which relayed on transcription factor NFAT, rather than AP-1 and NFκB, in glial cells. Considering the important functions of COX-2 in mediation of inflammation reaction and oxidative stress, our studies here provide a mechanistic insight into the understanding of lead-associated inflammatory neurotoxicity effect via activation of pro-inflammatory NFAT3/COX-2 axis. PMID:25193092

  13. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  14. Glial cells modulate the synaptic transmission of NTS neurons sending projections to ventral medulla of Wistar rats.

    PubMed

    Accorsi-Mendonça, Daniela; Zoccal, Daniel B; Bonagamba, Leni G H; Machado, Benedito H

    2013-09-01

    There is evidence that sympathoexcitatory and respiratory responses to chemoreflex activation involve ventrolateral medulla-projecting nucleus tractus solitarius (NTS) neurons (NTS-VLM neurons) and also that ATP modulates this neurotransmission. Here, we evaluated whether or not astrocytes is the source of endogenous ATP modulating the synaptic transmission in NTS-VLM neurons. Synaptic activities of putative astrocytes or NTS-VLM neurons were recorded using whole cell patch clamp. Tractus solitarius (TS) stimulation induced TS-evoked excitatory postsynaptic currents (TS-eEPSCs) in NTS-VLM neurons as well in NTS putative astrocytes, which were also identified by previous labeling. Fluoracetate (FAC), an inhibitor of glial metabolism, reduced TS-eEPSCs amplitude (-85.6 ± 16 vs. -39 ± 7.1 pA, n = 12) and sEPSCs frequency (2.8 ± 0.5 vs. 1.8 ± 0.46 Hz, n = 10) in recorded NTS-VLM neurons, indicating a gliomodulation of glutamatergic currents. To verify the involvement of endogenous ATP a purinergic antagonist was used, which reduced the TS-eEPSCs amplitude (-207 ± 50 vs. -149 ± 50 pA, n = 6), the sEPSCs frequency (1.19 ± 0.2 vs. 0.62 ± 0.11 Hz, n = 6), and increased the paired-pulse ratio (PPR) values (∼20%) in NTS-VLM neurons. Simultaneous perfusion of Pyridoxalphosphate-6-azophenyl-2',5'-disulfonic acid (iso-PPADS) and FAC produced reduction in TS-eEPSCs similar to that observed with iso-PPADS or FAC alone, indicating that glial cells are the source of ATP released after TS stimulation. Extracellular ATP measurement showed that FAC reduced evoked and spontaneous ATP release. All together these data show that putative astrocytes are the source of endogenous ATP, which via activation of presynaptic P2X receptors, facilitates the evoked glutamate release and increases the synaptic transmission efficacy in the NTS-VLM neurons probably involved with the peripheral chemoreflex pathways.

  15. Mechanisms underlying the protective effects of myricetin and quercetin following oxygen/glucose deprivation-induced cell swelling and the reduction in glutamate uptake in glial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    C6 glial cells were exposed to oxygen-glucose deprivation (OGD) in cell culture for 5 hr and cell swelling was determined 90 min after the end of OGD. The OGD-induced increase in swelling was significantly blocked by the two flavonoids studied, quercetin and myricetin. The OGD-induced increase in ...

  16. The niche-derived glial cell line-derived neurotrophic factor (GDNF) induces migration of mouse spermatogonial stem/progenitor cells.

    PubMed

    Dovere, Lisa; Fera, Stefania; Grasso, Margherita; Lamberti, Dante; Gargioli, Cesare; Muciaccia, Barbara; Lustri, Anna Maria; Stefanini, Mario; Vicini, Elena

    2013-01-01

    In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  17. Pax6 mediates ß-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells.

    PubMed

    Gan, Qini; Lee, Albert; Suzuki, Ryusuke; Yamagami, Takashi; Stokes, Arjun; Nguyen, Bao Chau; Pleasure, David; Wang, Junjiang; Chen, Hong-Wu; Zhou, Chengji J

    2014-01-01

    The Wnt/ß-catenin pathway is a critical stem cell regulator and plays important roles in neuroepithelial cells during early gestation. However, the role of Wnt/ß-catenin signaling in radial glia, a major neural stem cell population expanded by midgestation, remains poorly understood. This study shows that genetic ablation of ß-catenin with hGFAP-Cre mice inhibits neocortical formation by disrupting radial glial development. Reduced radial glia and intermediate progenitors are found in the ß-catenin-deficient neocortex during late gestation. Increased apoptosis and divergent localization of radial glia in the subventricular zone are also observed in the mutant neocortex. In vivo and in vitro proliferation and neurogenesis as well as oligodendrogenesis by cortical radial glia or by dissociated neural stem cells are significantly defective in the mutants. Neocortical layer patterning is not apparently altered, while astrogliogenesis is ectopically increased in the mutants. At the molecular level, the expression of the transcription factor Pax6 is dramatically diminished in the cortical radial glia and the sphere-forming neural stem cells of ß-catenin-deficient mutants. Chromatin immunoprecipitation and luciferase assays demonstrate that ß-catenin/Tcf complex binds to Pax6 promoter and induces its transcriptional activities. The forced expression of Pax6 through lentiviral transduction partially rescues the defective proliferation and neurogenesis by ß-catenin-deficient neural stem cells. Thus, Pax6 is a novel downstream target of the Wnt/ß-catenin pathway, and ß-catenin/Pax6 signaling plays critical roles in self-renewal and neurogenesis of radial glia/neural stem cells during neocortical development.

  18. Osmotic sensitivity of taurine release from hippocampal neuronal and glial cells.

    PubMed

    Olson, J E; Li, G Z

    2000-01-01

    cells of the hippocampus in vivo, could lead to net transfer of taurine from neurons to glial cells during pathological conditions which cause cell swelling. PMID:11787600

  19. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    PubMed

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  20. Disruption of Dnmt1/PCNA/UHRF1 Interactions Promotes Tumorigenesis from Human and Mice Glial Cells

    PubMed Central

    Hervouet, Eric; Lalier, Lisenn; Debien, Emilie; Cheray, Mathilde; Geairon, Audrey; Rogniaux, Hélène; Loussouarn, Delphine; Martin, Stéphane A.; Vallette, François M.; Cartron, Pierre-François

    2010-01-01

    Global DNA hypomethylation is a hallmark of cancer cells, but its molecular mechanisms have not been elucidated. Here, we show that the disruption of Dnmt1/PCNA/UHRF1 interactions promotes a global DNA hypomethylation in human gliomas. We then demonstrate that the Dnmt1 phosphorylations by Akt and/or PKC abrogate the interactions of Dnmt1 with PCNA and UHRF1 in cellular and acelluar studies including mass spectrometric analyses and the use of primary cultured patient-derived glioma. By using methylated DNA immunoprecipitation, methylation and CGH arrays, we show that global DNA hypomethylation is associated with genes hypomethylation, hypomethylation of DNA repeat element and chromosomal instability. Our results reveal that the disruption of Dnmt1/PCNA/UHRF1 interactions acts as an oncogenic event and that one of its signatures (i.e. the low level of mMTase activity) is a molecular biomarker associated with a poor prognosis in GBM patients. We identify the genetic and epigenetic alterations which collectively promote the acquisition of tumor/glioma traits by human astrocytes and glial progenitor cells as that promoting high proliferation and apoptosis evasion. PMID:20613874

  1. Radial Glial Cell-Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site.

    PubMed

    Xu, Chundi; Funahashi, Yasuhiro; Watanabe, Takashi; Takano, Tetsuya; Nakamuta, Shinichi; Namba, Takashi; Kaibuchi, Kozo

    2015-10-28

    How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.

  2. Guiding migration of transplanted glial progenitor cells in the injured spinal cord

    PubMed Central

    Yuan, Xiao-bing; Jin, Ying; Haas, Christopher; Yao, Lihua; Hayakawa, Kazuo; Wang, Yue; Wang, Chunlei; Fischer, Itzhak

    2016-01-01

    Transplantation of glial-restricted progenitors (GRPs) is a promising strategy for generating a supportive environment for axon growth in the injured spinal cord. Here we explored the possibility of producing a migratory stream of GRPs via directional cues to create a supportive pathway for axon regeneration. We found that the axon growth inhibitor chondroitin sulfate proteoglycan (CSPG) strongly inhibited the adhesion and migration of GRPs, an effect that could be modulated by the adhesion molecule laminin. Digesting glycosaminoglycan side chains of CSPG with chondroitinase improved GRP migration on stripes of CSPG printed on cover glass, although GRPs were still responsive to the remaining repulsive signals of CSPG. Of all factors tested, the basic fibroblast growth factor (bFGF) had the most significant effect in promoting the migration of cultured GRPs. When GRPs were transplanted into either normal spinal cord of adult rats or the injury site in a dorsal column hemisection model of spinal cord injury, a population of transplanted cells migrated toward the region that was injected with the lentivirus expressing chondroitinase or bFGF. These findings suggest that removing CSPG-mediated inhibition, in combination with guidance by attractive factors, can be a promising strategy to produce a migratory stream of supportive GRPs. PMID:26971438

  3. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    PubMed

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  4. LncRNA analysis of mouse spermatogonial stem cells following glial cell-derived neurotrophic factor treatment.

    PubMed

    Li, Lufan; Wang, Min; Wang, Mei; Wu, Xiaoxi; Geng, Lei; Xue, Yuanyuan; Wei, Xiang; Jia, Yuanyuan; Wu, Xin

    2015-09-01

    Spermatonial stem cells (SSCs) are the foundation of spermatogenesis. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with at least 200 bp in length, which play important roles in various biological processes. Growth factor glial cell line-derived neurotrophic factor (GDNF), secreted from testis niches, is critical for self-renewal of SSCs in vitro and in vivo. Using Illumina HiSeq™ 2000 high throughput sequencing, we found 55924 lncRNAs which were regulated by GDNF in SSCs in vitro; these included 21,929 known lncRNAs from NONCODE library (version 3.0) and 33,975 predicted lncRNAs which were identified using Coding Potential Calculator. Analyses of these data should provide new insights into regulated mechanism in SSC self-renewal and proliferation. The data have been deposited in the Gene Expression Omnibus (series GSE66998).

  5. Sigma Receptor 1 activation attenuates release of inflammatory cytokines MIP1γ, MIP2, MIP3α and IL12 (p40/p70) by retinal Müller glial cells

    PubMed Central

    Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.

    2015-01-01

    The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327

  6. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression.

    PubMed

    Maheu, M; Lopez, J P; Crapper, L; Davoli, M A; Turecki, G; Mechawar, N

    2015-02-17

    Although multiple studies have reported that peripheral glial cell line-derived neurotrophic factor (GDNF) is reduced in depression, cerebral GDNF signalling has yet to be examined in this condition. Here, we report an isoform-specific decrease in GDNF family receptor alpha 1 (GFRA1) mRNA expression, resulting in lowered GFRα1a protein levels in basolateral amygdala (BLA) samples from depressed subjects. Downregulation of GFRα1a was associated with increased expression of microRNAs, including miR-511, predicted to bind to long 3' untranslated region (3'-UTR)-containing transcripts (GFRA1-L) coding for GFRα1a. Transfection of human neural progenitor cells (NPCs) with a miR-511 mimic was sufficient to repress GFRA1-L/GFRα1a without altering GFRα1b, and resulted in pathway-specific changes in immediate early gene activity. Unexpectedly, GFRα1a knockdown did not reduce NPC responses to GDNF. Rather, it greatly enhanced mitogen-activated protein kinase signalling. This effect appeared to be mediated by GDNF/soluble GFRα1/neural cell adhesion molecule binding, and substituting the soluble GFRα1a/GFRα1b content of miR-511-transfected NPCs with that of controls rescued signalling. In light of previous reports suggesting that GFRα1b can inhibit GFRα1a-induced neuroplasticity, we also assessed the association between GFRα1 and doublecortin (DCX; a hyperplastic marker) in human BLA. Although controls displayed coordinated expression of GFRα1a and b isoforms and these correlated positively with DCX, the only significant association observed among depressed subjects was a strongly negative correlation between GFRα1b and DCX. Taken together, these results suggest that microRNA-mediated reductions of GFRα1a in depression change the quality, rather than the quantity, of GDNF signalling. They also suggest that central GDNF signalling may represent a novel target for antidepressant treatment.

  7. Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise.

    PubMed

    Gyorkos, A M; McCullough, M J; Spitsbergen, J M

    2014-01-17

    Glial cell line-derived neurotrophic factor (GDNF) supports and maintains the neuromuscular system during development and through adulthood by promoting neuroplasticity. The aim of this study was to determine if different modes of exercise can promote changes in GDNF expression and neuromuscular junction (NMJ) morphology in slow- and fast-twitch muscles. Rats were randomly assigned to a run training (run group), swim training (swim group), or sedentary control group. GDNF protein content was determined by enzyme-linked immunosorbant assay. GDNF protein content increased significantly in soleus (SOL) following both training protocols (P<0.05). Although not significant, an increase of 60% in the extensor digitorum longus (EDL) followed swim-training (NS; P<0.06). NMJ morphology was analyzed by measuring α-bungarotoxin labeled post-synaptic end plates. GDNF content and total end plate area were positively correlated. End plate area decreased in EDL of the run group and increased in SOL of the swim group. The results indicate that GDNF expression and NMJ morphological changes are activity dependent and that different changes may be observed by varying the exercise intensity in slow- and fast-twitch fibers.

  8. Learning, memory, and glial cell changes following recovery from chronic unpredictable stress.

    PubMed

    Bian, Yanqing; Pan, Zhuo; Hou, Ziyuan; Huang, Cui; Li, Wei; Zhao, Baohua

    2012-08-01

    Previous research has indicated that chronic stress induces inflammatory responses, cognitive impairments, and changes in microglia and astrocytes. However, whether stress-induced changes following recovery are reversible is unclear. The present study examined the effects of chronic unpredictable stress (CUS) following recovery on spatial learning and memory impairments, changes in microglia and astrocytes, and interleukine-1β (IL-1β) and glial-derived neurotrophic factor (GDNF) levels. Mice were randomly divided into control, stress, and recovery groups, and CUS was applied to mice in the stress and recovery groups for 40 days. Following the application of CUS, the recovery group was allowed 40 days without stress. The results of the Morris water maze illustrated that CUS-induced spatial learning and memory impairments could be reversed or even improved by a period of recovery. Immunohistochemical tests revealed that CUS-induced alterations in microglia could dissipate with time in the CA3 region of the hippocampus and prelimbic areas. However, CUS-induced activation of astrocytes was sustained in the CA3 area following recovery. Western blot analyses revealed that CUS induced a significant increase of GDNF and a significant decrease in IL-1β. Additionally, increased GDNF levels were sustained in the hippocampus during recovery. In conclusion, this study provides evidence that CUS-induced learning and memory impairments could be reversible following recovery. However, activated astrocytes and increased GDNF levels in the hippocampus remained elevated after recovery, suggesting that activated astrocytes and increased GDNF play important roles in the adaptation of the brain to CUS and in repairing CUS-induced impairments during recovery.

  9. A thermoreversible polymer mediates controlled release of glial cell line-derived neurotrophic factor to enhance kidney regeneration.

    PubMed

    Gheisari, Yousof; Yokoo, Takashi; Matsumoto, Kei; Fukui, Akira; Sugimoto, Naomi; Ohashi, Toya; Kawamura, Tetsuya; Hosoya, Tatsuo; Kobayashi, Eiji

    2010-08-01

    Previously, we reported that human mesenchymal stem cells (hMSCs) that were cultivated in growing embryos differentiated in an appropriate developmental milieu, thereby facilitating the development of a functional renal unit. However, this approach required transfection with an adenovirus that expressed glial cell line-derived neurotrophic factor (GDNF) to enhance the development of hMSC-derived renal tissue, and safety issues restrict the clinical use of such viral vectors. To circumvent this problem, we tested an artificial polymer as a means to diffuse GDNF. This GDNF-polymer, which exists in liquid form at 4 degrees C but becomes a hydrogel upon heating to 37 degrees C, was used as a thermoreversible switch, allowing the injection of hMSCs at low viscosity using a mouth pipette, with subsequent slow diffusion of GDNF as it solidified. The polymer, which was dissolved in a solution of GDNF at 4 degrees C and then maintained at 37 degrees C, acted as a diffuser of GDNF for more than 48 h. LacZ-transfected hMSCs and the GDNF-polymer (at 4 degrees C) were placed in the nephrogenic sites of growing rat embryos that were maintained at 37 degrees C. Forty-eight hours later, the resultant kidney anlagen were dissected out and allowed to continue developing for 6 days in vitro. Whole-organ X-Gal staining and fluorescence activated cell sorter analysis showed that the number of hMSC-derived cells was significantly increased in developed anlagen that have been generated from hMSCs plus GDNF-polymer compared with those from hMSCs plus GDNF-containing medium and was comparable to those from adenovirus-transfected hMSCs. These findings suggest that the GDNF-polymer can be used as a diffuser of GDNF for kidney organogenesis.

  10. Micropit: A New Cell Culturing Approach for Characterization of Solitary Astrocytes and Small Networks of these Glial Cells

    PubMed Central

    Lee, William; Malarkey, Erik B.; Reyes, Reno C.; Parpura, Vladimir

    2008-01-01

    Astrocytes play an important role in cell–cell signaling in the mammalian central nervous system. The ability of astrocytes to communicate with surrounding cells through gap-junctional coupling or signaling via the release of transmitters makes characterization of these cells difficult in vitro and even more so in vivo. To simplify the complexity of common in vitro systems, introduced by intercellular communication between astrocytes, we developed a novel cell culturing method, in which purified rat visual cortical astrocytes were grown in spatially defined cell-adhesion wells which we termed micropits. We showed that astrocytes cultured in micropit regions were viable and exhibited similar characteristics of Ca2+ dynamics and astrocytic marker expression to those of cells cultured in non-micropit regions. Examination of intracellular Ca2+ oscillations in solitary astrocytes cultured in micropits revealed less variable oscillations than those of non-micropit grouped astrocytes, which were in contact with their neighbors. Solitary cells in micropit regions can undergo ATP-mediated astrocyte-microglia signaling, demonstrating that this culturing method can also be used to investigate glial–glial interactions in a spatially well-defined microenvironment. PMID:19129909

  11. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    PubMed Central

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease. PMID:25061293

  12. Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety.

    PubMed

    Kotyuk, Eszter; Keszler, Gergely; Nemeth, Nora; Ronai, Zsolt; Sasvari-Szekely, Maria; Szekely, Anna

    2013-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample.

  13. The Neurogenic Factor NeuroD1 Is Expressed in Post-Mitotic Cells during Juvenile and Adult Xenopus Neurogenesis and Not in Progenitor or Radial Glial Cells

    PubMed Central

    D'Amico, Laure Anne; Boujard, Daniel; Coumailleau, Pascal

    2013-01-01

    In contrast to mammals that have limited proliferation and neurogenesis capacities, the Xenopus frog exhibit a great potential regarding proliferation and production of new cells in the adult brain. This ability makes Xenopus a useful model for understanding the molecular programs required for adult neurogenesis. Transcriptional factors that control adult neurogenesis in vertebrate species undergoing widespread neurogenesis are unknown. NeuroD1 is a member of the family of proneural genes, which function during embryonic neurogenesis as a potent neuronal differentiation factor. Here, we study in detail the expression of NeuroD1 gene in the juvenile and adult Xenopus brains by in situ hybridization combined with immunodetections for proliferation markers (PCNA, BrdU) or in situ hybridizations for cell type markers (Vimentin, Sox2). We found NeuroD1 gene activity in many brain regions, including olfactory bulbs, pallial regions of cerebral hemispheres, preoptic area, habenula, hypothalamus, cerebellum and medulla oblongata. We also demonstrated by double staining NeuroD1/BrdU experiments, after long post-BrdU administration survival times, that NeuroD1 gene activity was turned on in new born neurons during post-metamorphic neurogenesis. Importantly, we provided evidence that NeuroD1-expressing cells at this brain developmental stage were post-mitotic (PCNA-) cells and not radial glial (Vimentin+) or progenitors (Sox2+) cells. PMID:23799108

  14. Overexpression of glial cell line-derived neurotrophic factor induces genes regulating migration and differentiation of neuronal progenitor cells.

    PubMed

    Pahnke, Jens; Mix, Eilhard; Knoblich, Rupert; Müller, Jana; Zschiesche, Marlies; Schubert, Beke; Koczan, Dirk; Bauer, Peter; Böttcher, Tobias; Thiesen, Hans-Jürgen; Lazarov, Ludmil; Wree, Andreas; Rolfs, Arndt

    2004-07-15

    The glial cell line-derived neurotrophic factor (GDNF) is involved in the development and maintenance of neural tissues. Mutations in components of its signaling pathway lead to severe migration deficits of neuronal crest stem cells, tumor formation, or ablation of the urinary system. In animal models of Parkinson's disease, GDNF has been recognized to be neuroprotective and to improve motor function when delivered into the cerebral ventricles or into the substantia nigra. Here, we characterize the network of 43 genes induced by GDNF overproduction of neuronal progenitor cells (ST14A), which mainly regulate migration and differentiation of neuronal progenitor cells. GDNF down-regulates doublecortin, Paf-ah1b (Lis1), dynamin, and alpha-tubulin, which are involved in neocortical lamination and cytoskeletal reorganization. Axonal guidance depends on cell-surface molecules and extracellular matrix proteins. Laminin, Mpl3, Alcam, Bin1, Id1, Id2, Id3, neuregulin1, the ephrinB2-receptor, neuritin, focal adhesion kinase (FAK), Tc10, Pdpk1, clusterin, GTP-cyclooxygenase1, and follistatin are genes up-regulated by GDNF overexpression. Moreover, we found four key enzymes of the cholesterol-synthesis pathway to be down-regulated leading to decreased farnesyl-pyrophospate production. Many proteins are anchored by farnesyl-derivates at the cell membrane. The identification of these GDNF-regulated genes may open new opportunities for directly influencing differentiation and developmental processes of neurons. PMID:15212950

  15. Increased mRNA expression of peripheral glial cell markers in bipolar disorder: The effect of long-term lithium treatment.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Tarnowski, Maciej; Samochowiec, Jerzy; Michalak, Michal; Ratajczak, Mariusz Z; Rybakowski, Janusz K

    2016-09-01

    Neuroinflammation, with microglial activation as an important element, plays a role in the pathogenesis of bipolar disorder (BD). Also, in mood disorders, pathological changes have been demonstrated in macroglial cells, such as astrocyctes and oligodendrocytes. Postmortem brain studies of BD patients to assess glial cells, such as astrocytes and oligodendrocytes and their markers such as glial fibrillary acidic protein (GFAP), Olig1 and Olig2, produced controversial results. On the other hand, investigation of these markers in the peripheral blood of such patients has not been performed so far. In this study, we examined the mRNA levels of GFAP, Olig1 and Olig2, in the peripheral blood of three groups: 15 BD subjects with a duration of illness at least 10 years (mean 20±9 years) but never treated with lithium, 15 subjects with BD treated continuously with lithium for 8-40 years (mean 16±8 years), and 15 control subjects. The groups were age-and sex-matched. Expression of mRNA markers was measured by real-time quantitative reverse transcription PCR (RQ-PCR). We observed increased mRNA levels of the Olig1 and Olig 2 glial markers studied in the BD patients not taking lithium, compared with the control subjects and increased mRNA level of GFAP, compared with lithium-treated patients. In the lithium-treated BD patients GFAP and Olig1 expression was at similar levels to that in the control group. However, Olig 2 expression was even higher than in the BD patients not taking lithium. The possible mechanisms concerning the higher expression of peripheral mRNA markers in BD patients may involve ongoing inflammatory process, compensatory mechanisms and regenerative responses. The beneficial effect of lithium may be related to its anti-inflammatory properties.

  16. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.

  17. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS. PMID:26780491

  18. The Bone Morphogenetic Protein Type Ib Receptor Is a Major Mediator of Glial Differentiation and Cell Survival in Adult Hippocampal Progenitor Cell Culture

    PubMed Central

    Brederlau, A.; Faigle, R.; Elmi, M.; Zarebski, A.; Sjöberg, S.; Fujii, M.; Miyazono, K.; Funa, K.

    2004-01-01

    Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture. PMID:15194807

  19. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices : cell culture and flow studies with glial cells.

    SciTech Connect

    Peterson, Sophie Louise; Sasaki, Darryl Yoshio; Gourley, Paul Lee; McDonald, Anthony Eugene

    2004-06-01

    Oxygen plasma treatment of poly(dimethylsiloxane) (PDMS) thin films produced a hydrophilic surface that was biocompatible and resistant to biofouling in microfluidic studies. Thin film coatings of PDMS were previously developed to provide protection for semiconductor-based microoptical devices from rapid degradation by biofluids. However, the hydrophobic surface of native PDMS induced rapid clogging of microfluidic channels with glial cells. To evaluate the various issues of surface hydrophobicity and chemistry on material biocompatibility, we tested both native and oxidized PDMS (ox-PDMS) coatings as well as bare silicon and hydrophobic alkane and hydrophilic oligoethylene glycol silane monolayer coated under both cell culture and microfluidic studies. For the culture studies, the observed trend was that the hydrophilic surfaces supported cell adhesion and growth, whereas the hydrophobic ones were inhibitive. However, for the fluidic studies, a glass-silicon microfluidic device coated with the hydrophilic ox-PDMS had an unperturbed flow rate over 14 min of operation, whereas the uncoated device suffered a loss in rate of 12%, and the native PDMS coating showed a loss of nearly 40%. Possible protein modification of the surfaces from the culture medium also were examined with adsorbed films of albumin, collagen, and fibrinogen to evaluate their effect on cell adhesion.

  20. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    PubMed Central

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  1. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation.

    PubMed

    López-Gallardo, M; Antón-Fernández, A; Llorente, R; Mela, V; Llorente-Berzal, A; Prada, C; Viveros, M P

    2015-08-01

    The present study aimed to better understand the role of the neonatal leptin surge, which peaks on postnatal day (PND)9-10, on the development of the hippocampal formation. Accordingly, male and female rats were administered with a pegylated leptin antagonist on PND9 and the expression of neurones, glial cells and diverse markers of synaptic plasticity was then analysed by immunohistochemistry in the hippocampal formation. Antagonism of the actions of leptin at this specific postnatal stage altered the number of glial fibrillary acidic protein positive cells, and also affected type 1 cannabinoid receptors, synaptophysin and brain-derived neurotrophic factor (BDNF), with the latter effect being sexually dimorphic. The results indicate that the physiological leptin surge occurring around PND 9-10 is critical for hippocampal formation development and that the dynamics of leptin activity might be different in males and females. The data obtained also suggest that some but not all the previously reported effects of maternal deprivation on hippocampal formation development (which markedly reduces leptin levels at PND 9-10) might be mediated by leptin deficiency in these animals.

  2. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes.

    PubMed

    Adameyko, Igor; Lallemend, Francois

    2010-09-01

    Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.

  3. Juliprosopine and juliprosine from prosopis juliflora leaves induce mitochondrial damage and cytoplasmic vacuolation on cocultured glial cells and neurons.

    PubMed

    Silva, Victor Diogenes A; Pitanga, Bruno P S; Nascimento, Ravena P; Souza, Cleide S; Coelho, Paulo Lucas C; Menezes-Filho, Noélio; Silva, André Mário M; Costa, Maria de Fátima D; El-Bachá, Ramon S; Velozo, Eudes S; Costa, Silvia L

    2013-12-16

    Prosopis juliflora is a shrub largely used for animal and human consumption. However, ingestion has been shown to induce intoxication in animals, which is characterized by neuromuscular alterations induced by mechanisms that are not yet well understood. In this study, we investigated the cytotoxicity of a total alkaloid extract (TAE) and one alkaloid fraction (F32) obtained from P. juliflora leaves to rat cortical neurons and glial cells. Nuclear magnetic resonance characterization of F32 showed that this fraction is composed of a mixture of two piperidine alkaloids, juliprosopine (majority constituent) and juliprosine. TAE and F32 at concentrations between 0.3 and 45 μg/mL were tested for 24 h on neuron/glial cell primary cocultures. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test revealed that TAE and F32 were cytotoxic to cocultures, and their IC50 values were 31.07 and 7.362 μg/mL, respectively. Exposure to a subtoxic concentration of TAE or F32 (0.3-3 μg/mL) induced vacuolation and disruption of the astrocyte monolayer and neurite network, ultrastructural changes, characterized by formation of double-membrane vacuoles, and mitochondrial damage, associated with changes in β-tubulin III and glial fibrillary acidic protein expression. Microglial proliferation was also observed in cultures exposed to TAE or F32, with increasing levels of OX-42-positive cells. Considering that F32 was more cytotoxic than TAE and that F32 reproduced in vitro the main morphologic and ultrastructural changes of "cara torta" disease, we can also suggest that piperidine alkaloids juliprosopine and juliprosine are primarily responsible for the neurotoxic damage observed in animals after they have consumed the plant.

  4. Chloride enters glial cells and photoreceptors in response to light stimulation in the retina of the honey bee drone.

    PubMed

    Coles, J A; Orkand, R K; Yamate, C L

    1989-01-01

    Double-barrelled ion-selective microelectrodes were used to measure free [Cl-] in photoreceptors, extracellular space, and glial cells in superfused slices of drone retina. Tests indicated that with normal superfusate the intracellular electrode signal was due essentially to Cl- and not to some other interfering anion. The results indicate that Cl- is more concentrated in both photoreceptors and glial cells than would be predicted for a passive electrochemical distribution. When the photoreceptors were stimulated by a standard train of 20 ms flashes, 1/s for 90 s, their intracellular free [Cl-] (Cli) rose by 8 +/- 1 mM. At the end of stimulation Cli usually continued to rise for up to a further 2 min and then returned toward the baseline over about 10 min. During light stimulation Cli in the glia rose. The magnitude of the increase was 5.1 +/- 0.4 mM, about half the increase in Ki. In some extracellular recording sites, light stimulation caused [Cl-] to increase and in others to decrease. The mean change was -0.7 mM, SD 6.5 mM. The Cl- that entered the photoreceptors and the glia was presumably made available by the shrinking of the extracellular space. When the cells were depolarized by increasing [K+] in the superfusate from 7.5 mM to 18 mM, Cli increased. The half-time of the change in Cli was longer than the half-time of the depolarization by 10-30 s in the glia and 50-250s in the photoreceptors. During superfusion with 0 Cl- Ringer's solution, the light-induced rise in extracellular [K+] was greater by a factor of 1.4-2.7, and the clearance after the end of the stimulation was slower. The rate of increase in glial Ki during light stimulation fell; the rate of increase of glial Ki caused by superfusion with raised [K+] (in the absence of Cl-) fell more. We conclude that when extracellular [K+] is increased, entry of Cl- into the glia is necessary for part, but not all, of the net uptake of K+. During light stimulation, the observed movement of CL- into glia

  5. Glial fibrillary acidic protein as a marker of astrocytic activation in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis.

    PubMed

    Benninger, Felix; Glat, Micaela J; Offen, Daniel; Steiner, Israel

    2016-04-01

    Glial fibrillary acidic protein (GFAP) has been shown to be increased in the cerebrospinal fluid (CSF) of patients suffering from neurological diseases involving the activation of astrocytes, but has not been studied in amyotrophic lateral sclerosis (ALS) patients to our knowledge. CSF samples of patients with definite ALS and of those with other neurological diseases were evaluated for their GFAP concentrations. CSF-GFAP concentrations of patients with ALS were significantly elevated by 53% compared to patients with other neurologic diseases. GFAP might serve as a biomarker in ALS. Our findings support the concept that astrocytes play a role in ALS pathogenesis.

  6. Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Sinclair, Michael S; Perea-Martinez, Isabel; Wang, Tong; Chaudhari, Nirupa

    2009-11-01

    Cells in taste buds are closely packed, with little extracellular space. Tight junctions and other barriers further limit permeability and may result in buildup of extracellular K(+) following action potentials. In many tissues, inwardly rectifying K channels such as the renal outer medullary K (ROMK) channel (also called Kir1.1 and derived from the Kcnj1 gene) help to redistribute K(+). Using reverse-transcription polymerase chain reaction (RT-PCR), we defined ROMK splice variants in mouse kidney and report here the expression of a single one of these, ROMK2, in a subset of mouse taste cells. With quantitative (q)RT-PCR, we show the abundance of ROMK mRNA in taste buds is vallate > foliate > > palate > > fungiform. ROMK protein follows the same pattern of prevalence as mRNA, and is essentially undetectable by immunohistochemistry in fungiform taste buds. ROMK protein is localized to the apical tips of a subset of taste cells. Using tissues from PLCbeta2-GFP and GAD1-GFP transgenic mice, we show that ROMK is not found in PLCbeta2-expressing type II/receptor cells or in GAD1-expressing type III/presynaptic cells. Instead, ROMK is found, by single-cell RT-PCR and immunofluorescence, in most cells that are positive for the taste glial cell marker, Ectonucleotidase2. ROMK is precisely localized to the apical tips of these cells, at and above apical tight junctions. We propose that in taste buds, ROMK in type I/glial-like cells may serve a homeostatic function, excreting excess K(+) through the apical pore, and allowing excitable taste cells to maintain a hyperpolarized resting membrane potential. PMID:19708028

  7. Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina

    PubMed Central

    Agte, Silke; Junek, Stephan; Matthias, Sabrina; Ulbricht, Elke; Erdmann, Ines; Wurm, Antje; Schild, Detlev; Käs, Josef A.; Reichenbach, Andreas

    2011-01-01

    In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones—responsible for acute vision—is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide. PMID:22261048

  8. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    PubMed

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  9. Transplantation of Glial Cells Enhances Action Potential Conduction of Amyelinated Spinal Cord Axons in the Myelin-Deficient Rat

    NASA Astrophysics Data System (ADS)

    Utzschneider, David A.; Archer, David R.; Kocsis, Jeffery D.; Waxman, Stephen G.; Duncan, Ian D.

    1994-01-01

    A central issue in transplantation research is to determine how and when transplantation of neural tissue can influence the development and function of the mammalian central nervous system. Of particular interest is whether electrophysiological function in the traumatized or diseased mammalian central nervous system can be improved by the replacement of cellular elements that are missing or damaged. Although it is known that transplantation of neural tissue can lead to functional improvement in models of neurological disease characterized by neuronal loss, less is known about results of transplantation in disorders of myelin. We report here that transplantation of glial cells into the dorsal columns of neonatal myelin-deficient rat spinal cords leads to myelination and a 3-fold increase in conduction velocity. We also show that impulses can propagate into and out of the transplant region and that axons myelinated by transplanted cells do not have impaired frequency-response properties. These results demonstrate that myelination following central nervous system glial cell transplantation enhances action potential conduction in myelin-deficient axons, with conduction velocity approaching normal values.

  10. A Preliminary Investigation into the Impact of a Pesticide Combination on Human Neuronal and Glial Cell Lines In Vitro

    PubMed Central

    Coleman, Michael D.; O'Neil, John D.; Woehrling, Elizabeth K.; Ndunge, Oscar Bate Akide; Hill, Eric J.; Menache, Andre; Reiss, Claude J.

    2012-01-01

    Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health. PMID:22880100

  11. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro.

    PubMed

    Coleman, Michael D; O'Neil, John D; Woehrling, Elizabeth K; Ndunge, Oscar Bate Akide; Hill, Eric J; Menache, Andre; Reiss, Claude J

    2012-01-01

    Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health. PMID:22880100

  12. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism.

    PubMed Central

    Martínez-Galán, J R; Pedraza, P; Santacana, M; Escobar del Ray, F; Morreale de Escobar, G; Ruiz-Marcos, A

    1997-01-01

    The most severe brain damage associated with thyroid dysfunction during development is observed in neurological cretins from areas with marked iodine deficiency. The damage is irreversible by birth and related to maternal hypothyroxinemia before mid gestation. However, direct evidence of this etiopathogenic mechanism is lacking. Rats were fed diets with a very low iodine content (LID), or LID supplemented with KI. Other rats were fed the breeding diet with a normal iodine content plus a goitrogen, methimazole (MMI). The concentrations of -thyroxine (T4) and 3,5,3'triiodo--thyronine (T3) were determined in the brain of 21-d-old fetuses. The proportion of radial glial cell fibers expressing nestin and glial fibrillary acidic protein was determined in the CA1 region of the hippocampus. T4 and T3 were decreased in the brain of the LID and MMI fetuses, as compared to their respective controls. The number of immature glial cell fibers, expressing nestin, was not affected, but the proportion of mature glial cell fibers, expressing glial fibrillary acidic protein, was significantly decreased by both LID and MMI treatment of the dams. These results show impaired maturation of cells involved in neuronal migration in the hippocampus, a region known to be affected in cretinism, at a stage of development equivalent to mid gestation in humans. The impairment is related to fetal cerebral thyroid hormone deficiency during a period of development when maternal thyroxinemia is believed to play an important role. PMID:9169500

  13. Glial cell line-derived neurotrophic factor (GDNF) induces neuritogenesis in the cochlear spiral ganglion via neural cell adhesion molecule (NCAM).

    PubMed

    Euteneuer, Sara; Yang, Kuo H; Chavez, Eduardo; Leichtle, Anke; Loers, Gabriele; Olshansky, Adel; Pak, Kwang; Schachner, Melitta; Ryan, Allen F

    2013-05-01

    Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.

  14. [Increase in cell metabolism in normal, diploid human glial cells in stationary cell cultures induced by meclofenoxate].

    PubMed

    Ludwig-Festl, M; Gräter, B; Bayreuther, K

    1983-01-01

    Quantitative biochemical studies were undertaken in order to examine the influence of the accumulation of lipofuscin in secondary lysosomes on cell metabolic activities of normal diploid human glia cells in a stationary cell culture system. Glia cells accumulate lipofuscin as a function of the duration of the stationary cultivation in vitro. The accumulation of lipofuscin can be decreased by the long-term treatment with the pharmacon meclofenoxate (centrophenoxine, Helfergin). Concomitant with the reduction of the accumulated lipofuscin, meclofenoxate-treated glia cells show enhanced rates of RNA synthesis, protein synthesis and glucose uptake. Most likely, in meclofenoxate-treated normal diploid human glia cells in vitro, the utilisation of glucose is shifted from glycolysis to the pentose phosphate pathway. The data suggest that the meclofenoxate-induced reduction of lipofuscin accumulation has a positive effect on cell metabolic functions and causes a delay of the cellular aging of the human glia cells in vitro.

  15. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin.

    PubMed

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-12-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3-0.5 µg/mL (1.4-2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca(2+)-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  16. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin

    PubMed Central

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-01-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3–0.5 µg/mL (1.4–2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca2+-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  17. Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook!

    PubMed

    Becker, Catherina G; Becker, Thomas

    2015-02-23

    Adult fish and salamanders regenerate specific neurons as well as entire CNS areas after injury. Recent studies shed light on how these anamniotes activate progenitor cells, generate the required cell types, and functionally integrate these into a complex environment. Some developmental signals and mechanisms are recapitulated during neuronal regeneration, whereas others are unique to the regeneration process. The use of genetic techniques, such as cell ablation and lineage-tracing, in combination with cell-type-specific expression profiling reveal factors that initiate, fine-tune, and terminate the regenerative response in anamniotes, with a view to translating findings to non-regenerating species.

  18. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    PubMed Central

    2012-01-01

    Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS). Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL) region of the lumbar spinal cord (LSC) in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM) resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration. PMID:22793996

  19. Radiosensitisation by pharmacological ascorbate in glioblastoma multiforme cells, human glial cells, and HUVECs depends on their antioxidant and DNA repair capabilities and is not cancer specific.

    PubMed

    Castro, M Leticia; McConnell, Melanie J; Herst, Patries M

    2014-09-01

    We previously showed that 5 mM ascorbate radiosensitized early passage radioresistant glioblastoma multiforme (GBM) cells derived from one patient tumor. Here we investigate the sensitivity of a panel of cell lines to 5 mM ascorbate and 6 Gy ionizing radiation, made up of three primary human GBM cells, three GBM cell lines, a human glial cell line, and primary human vascular endothelial cells. The response of different cells lines to ascorbate and/or radiation was determined by measuring viability, colony-forming ability, generation and repair of double-stranded DNA breaks (DSBs), cell cycle progression, antioxidant capacity and generation of reactive oxygen species. Individually, radiation and ascorbate both decreased viability and clonogenicity by inducing DNA damage, but had differential effects on cell cycle progression. Radiation led to G2/M arrest in most cells whereas ascorbate caused accumulation in S phase, which was moderately associated with poor DSB repair. While high dose ascorbate radiosensitized all cell lines in clonogenic assays, the sensitivity to radiation, high dose ascorbate, and combined treatment varied between cell lines. Normal glial cells were similar to GBM cells with respect to free radical scavenging potential and effect of treatment on DNA damage and repair, viability, and clonogenicity. Both GBM cells and normal cells coped equally poorly with oxidative stress caused by radiation and/or high dose ascorbate, dependent primarily on their antioxidant and DSB repair capacity.

  20. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy.

    PubMed

    Cui, Weigang; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Yuan, Guoyan

    2016-01-01

    The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus. PMID:26549420

  1. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model

    PubMed Central

    Wang, Liqun; Colodner, Kenneth J.; Feany, Mel B.

    2011-01-01

    Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration. PMID:21414908

  2. Impaired Purinergic Regulation of the Glial (Müller) Cell Volume in the Retina of Transgenic Rats Expressing Defective Polycystin-2.

    PubMed

    Vogler, Stefanie; Pannicke, Thomas; Hollborn, Margrit; Kolibabka, Matthias; Wiedemann, Peter; Reichenbach, Andreas; Hammes, Hans-Peter; Bringmann, Andreas

    2016-07-01

    Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague-Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative-nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative-nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic

  3. The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells

    PubMed Central

    Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi

  4. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    SciTech Connect

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P. . E-mail: Bressler@kennedykrieger.org

    2007-05-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

  5. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system.

    PubMed

    Kabouridis, Panagiotis S; Lasrado, Reena; McCallum, Sarah; Chng, Song Hui; Snippert, Hugo J; Clevers, Hans; Pettersson, Sven; Pachnis, Vassilis

    2015-01-01

    The enteric nervous system (ENS) coordinates the major functions of the gastrointestinal tract. Its development takes place within a constantly changing environment which, after birth, culminates in the establishment of a complex gut microbiota. How such changes affect ENS development and its subsequent function throughout life is an emerging field of study that holds great interest but which is inadequately explored thus far. In this addendum, we discuss our recent findings showing that a component of the ENS, the enteric glial cell network that resides in the gut lamina propria, develops after birth and parallels the evolution of the gut microbiota. Importantly, this network was found to be malleable throughout life by incorporating new cells that arrive from the area of the gut wall in a process of directional movement which was controlled by the lumen gut microbiota. Finally, we postulate on the roles of the intestinal epithelium and the immune system as potential intermediaries between gut microbiota and ENS responses.

  6. Nitric oxide-induced neuronal to glial lineage fate-change depends on NRSF/REST function in neural progenitor cells.

    PubMed

    Bergsland, Maria; Covacu, Ruxandra; Perez Estrada, Cynthia; Svensson, Mikael; Brundin, Lou

    2014-09-01

    Degeneration of central nervous system tissue commonly occurs during neuroinflammatory conditions, such as multiple sclerosis and neurotrauma. During such conditions, neural stem/progenitor cell (NPC) populations have been suggested to provide new cells to degenerated areas. In the normal brain, NPCs from the subventricular zone generate neurons that settle in the olfactory bulb or striatum. However, during neuroinflammatory conditions NPCs migrate toward the site of injury to form oligodendrocytes and astrocytes, whereas newly formed neurons are less abundant. Thus, the specific NPC lineage fate decisions appear to respond to signals from the local environment. The instructive signals from inflammation have been suggested to rely on excessive levels of the free radical nitric oxide (NO), which is an essential component of the innate immune response, as NO promotes neuronal to glial cell fate conversion of differentiating rat NPCs in vitro. Here, we demonstrate that the NO-induced neuronal to glial fate conversion is dependent on the transcription factor neuron-restrictive silencing factor-1 (NRSF)/repressor element-1 silencing transcription (REST). Chromatin modification status of a number of neuronal and glial lineage restricted genes was altered upon NO-exposure. These changes coincided with gene expression alterations, demonstrating a global shift toward glial potential. Interestingly, by blocking the function of NRSF/REST, alterations in chromatin modifications were lost and the NO-induced neuronal to glial switch was suppressed. This implicates NRSF/REST as a key factor in the NPC-specific response to innate immunity and suggests a novel mechanism by which signaling from inflamed tissue promotes the formation of glial cells. PMID:24807147

  7. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  8. MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting Connective Tissue Growth Factor

    PubMed Central

    Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M.; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A.; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors. PMID:23390502

  9. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas.

    PubMed

    Yao, Kai; Qiu, Suo; Tian, Lin; Snider, William D; Flannery, John G; Schaffer, David V; Chen, Bo

    2016-09-27

    In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina. PMID:27681429

  10. Protection of Radial Glial-Like Cells in the Hippocampus of APP/PS1 Mice: a Novel Mechanism of Memantine in the Treatment of Alzheimer's Disease.

    PubMed

    Sun, Dayu; Chen, Junhua; Bao, Xiaohang; Cai, Yulong; Zhao, Jinghui; Huang, Jing; Huang, Wei; Fan, Xiaotang; Xu, Haiwei

    2015-08-01

    The failure of adult neurogenesis in the hippocampal dentate gyrus (DG) is closely correlated with memory decline in Alzheimer's disease (AD). Radial glial-like cells (RGLs) localized to the adult DG generate intermediate progenitor cells and immature neurons and thus contribute to adult hippocampus neurogenesis. Memantine (MEM) has been indicated to dramatically increase hippocampal neurogenesis by promoting the proliferation of RGLs. In this study, we examined the effect of MEM on the capacity for hippocampal cell proliferation and the amount of RGLs in APPswe/PS1∆E9 transgenic (APP/PS1) mice between 9 and 13 months of age. MEM could enhance hippocampal neurogenesis and increase the number of RGLs in the DG subgranular zone (DG-SGZ) of APP/PS1 mice of both ages. Moreover, MEM decreased amyloidogenesis in 13-month-old APP/PS1 mice and protected cultured radial glia cells (RGCs, L2.3 cells) from apoptosis induced by the β amyloid peptide (Aβ). Additionally, MEM inhibited microglial activation in a vertical process in DG-SGZ of APP/PS1 mice and decreased interacting with RGL processes. Reelin is involved in the proliferation of RGLs in the hippocampus, which was typically upregulated in the hippocampus of APP/PS1 mice by MEM and thought to be an active signaling pathway associated with the MEM-induced increase in RGLs. Our data suggest a previously uncharacterized role for MEM in treating AD.

  11. Quetiapine Attenuates Glial Activation and Proinflammatory Cytokines in APP/PS1 Transgenic Mice via Inhibition of Nuclear Factor-κB Pathway

    PubMed Central

    Zhu, Shenghua; Shi, Ruoyang; Li, Victor; Wang, Junhui; Zhang, Ruiguo; Tempier, Adrien; He, Jue; Kong, Jiming; Wang, Jun-Feng

    2015-01-01

    Background: In Alzheimer’s disease, growing evidence has shown that uncontrolled glial activation and neuroinflammation may contribute independently to neurodegeneration. Antiinflammatory strategies might provide benefits for this devastating disease. The aims of the present study are to address the issue of whether glial activation and proinflammatory cytokine increases could be modulated by quetiapine in vivo and in vitro and to explore the underlying mechanism. Methods: Four-month–old amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic and nontransgenic mice were treated with quetiapine (5mg/kg/d) in drinking water for 8 months. Animal behaviors, total Aβ levels, and glial activation were evaluated by behavioral tests, enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot accordingly. Inflammatory cytokines and the nuclear factor kappa B pathway were analyzed in vivo and in vitro. Results: Quetiapine improves behavioral performance, marginally affects total Aβ40 and Aβ42 levels, attenuates glial activation, and reduces proinflammatory cytokines in APP/PS1 mice. Quetiapine suppresses Aβ1-42-induced activation of primary microglia by decresing proinflammatory cytokines. Quetiapine inhibits the activation of nuclear factor kappa B p65 pathway in both transgenic mice and primary microglia stimulated by Aβ1–42. Conclusions: The antiinflammatory effects of quetiapine in Alzheimer’s disease may be involved in the nuclear factor kappa B pathway. Quetiapine may be an efficacious and promising treatment for Alzheimer’s disease targeting on neuroinflammation. PMID:25618401

  12. Glial regulation of neuronal function: from synapse to systems physiology.

    PubMed

    Tasker, J G; Oliet, S H R; Bains, J S; Brown, C H; Stern, J E

    2012-04-01

    Classically, glia have been regarded as non-excitable cells that provide nourishment and physical scaffolding for neurones. However, it is now generally accepted that glia are active participants in brain function that can modulate neuronal communication via several mechanisms. Investigations of anatomical plasticity in the magnocellular neuroendocrine system of the hypothalamic paraventricular and supraoptic nuclei led the way in the development of much of our understanding of glial regulation of neuronal activity. In this review, we provide an overview of glial regulation of magnocellular neurone activity from a historical perspective of the development of our knowledge of the morphological changes that are evident in the paraventricular and supraoptic nuclei. We also focus on recent data from the authors' laboratories presented at the 9th World Congress on Neurohypophysial Hormones that have contributed to our understanding of the multiple mechanisms by which glia modulate the activity of neurones, including: gliotransmitter modulation of synaptic transmission; trans-synaptic modulation by glial neurotransmitter transporter regulation of neurotransmitter spillover; and glial neurotransmitter transporter modulation of excitability by regulation of ambient neurotransmitter levels and their action on extrasynaptic receptors. The magnocellular neuroendocrine system secretes oxytocin and vasopressin from the posterior pituitary gland to control birth, lactation and body fluid balance, and we finally speculate as to whether glial regulation of individual magnocellular neurones might co-ordinate population activity to respond appropriately to altered physiological circumstances.

  13. Gas1 Knockdown Increases the Neuroprotective Effect of Glial Cell-Derived Neurotrophic Factor Against Glutamate-Induced Cell Injury in Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhou, Fanfan; Zhu, Ling

    2016-05-01

    Growth arrest-specific 1 (Gas1) protein acts as an inhibitor of cell growth and a mediator of cell death in nervous system during development and is also re-expressed in adult neurons during excitotoxic insult. Due to its structural similarity to the glial cell-derived neurotrophic factor family receptors α (GFRα), Gas1 is likely to interfere with the neuroprotective effect of GDNF. In the present study, we investigated the expression profile of Gas1 during glutamate insults in human SH-SY5Y neuroblastoma cells as well as the influence of Gas1 inhibition on the protective effect of GDNF against glutamate-induced cell injury. Our data showed that Gas1 expression was significantly increased with the treatment of glutamate in SH-SY5Y cells. The silencing of Gas1 by small interfering RNA promoted the protective effect of GDNF against glutamate-induced cytotoxicity as well as cell apoptosis, which effect was likely mediated through activating Akt/PI3 K-dependent cell survival signaling pathway and inhibiting mitochondrial-dependent cell apoptosis signaling pathway via Bad dephosphorylation blockade. In summary, this study showed the synergistic effect of Gas1 inhibition and GDNF against glutamate-induced cell injury in human SH-SY5Y neuroblastoma cells, which information might significantly contribute to better understanding the function of Gas1 in neuronal cells and form the basis of the therapeutic development of GDNF in treating human neurodegenerative diseases in the future.

  14. Glial control of neuronal development.

    PubMed

    Lemke, G

    2001-01-01

    Reciprocal interactions between differentiating glial cells and neurons define the course of nervous system development even before the point at which these two cell types become definitively recognizable. Glial cells control the survival of associated neurons in both Drosophila and mammals, but this control is dependent on the prior neuronal triggering of glial cell fate commitment and trophic factor expression. In mammals, the growth factor neuregulin-1 and its receptors of the ErbB family play crucial roles in both events. Similarly, early differentiating neurons and their associated glia rely on reciprocal signaling to establish the basic axon scaffolds from which neuronal connections evolve. The importance of this interactive signaling is illustrated by the action of glial transcription factors and of glial axon guidance cues such as netrin and slit, which together regulate the commissural crossing of pioneer axons at the neural midline. In these and related events, the defining principle is one of mutually reinforced and mutually dependent signaling that occurs in a network of developing neurons and glia.

  15. Ape1/Ref-1 induces glial cell-derived neurotropic factor (GDNF) responsiveness by upregulating GDNF receptor alpha1 expression.

    PubMed

    Kim, Mi-Hwa; Kim, Hong-Beum; Acharya, Samudra; Sohn, Hong-Moon; Jun, Jae Yeoul; Chang, In-Youb; You, Ho Jin

    2009-04-01

    Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) dysregulation has been identified in several human tumors and in patients with a variety of neurodegenerative diseases. However, the function of Ape1/Ref-1 is unclear. We show here that Ape1/Ref-1 increases the expression of glial cell-derived neurotropic factor (GDNF) receptor alpha1 (GFRalpha1), a key receptor for GDNF. Expression of Ape1/Ref-1 led to an increase in the GDNF responsiveness in human fibroblast. Ape1/Ref-1 induced GFRalpha1 transcription through enhanced binding of NF-kappaB complexes to the GFRalpha1 promoter. GFRalpha1 levels correlate proportionally with Ape1/Ref-1 in cancer cells. The knockdown of endogenous Ape1/Ref-1 in pancreatic cancer cells markedly suppressed GFRalpha1 expression and invasion in response to GNDF, while overexpression of GFRalpha1 restored invasion. In neuronal cells, the Ape1/Ref-1-mediated increase in GDNF responsiveness not only stimulated neurite outgrowth but also protected the cells from beta-amyloid peptide and oxidative stress. Our results show that Ape1/Ref-1 is a novel physiological regulator of GDNF responsiveness, and they also suggest that Ape1/Ref-1-induced GFRalpha1 expression may play important roles in pancreatic cancer progression and neuronal cell survival.

  16. Post-injury treatment with lipopolysaccharide or lipooligosaccharide protects rat neuronal and glial cell cultures.

    PubMed

    Bingham, Deborah; John, Constance M; Panter, S Scott; Jarvis, Gary A

    2011-07-15

    Traumatic brain injury (TBI) is a major cause of disability in civilians and military personnel worldwide that is caused by the acceleration force of a primary shockwave, blast wind or the force of a direct contact. Following the primary injury, secondary injury is caused by activation of the immune response due to an influx of neuro-inflammatory cells, increased production of inflammatory cytokines, and edema. In ischemia models pre-conditioning with lipopolysaccharide (LPS) has been shown to be neuroprotective, and post-injury conditioning with LPS was found to be protective in a spinal cord and an acute brain injury model. In this study, we utilized an in vitro scratch model of TBI to assess the effect of post-injury treatment with Escherichia coli LPS and Neisseria meningitidis lipooligosaccharide (LOS) on cell death and cytokine induction by assessing the level of lactate dehydrogenase released from cells and rat multiplex cytokine assays. Our results showed that post-injury treatment of C6 glioma cells with either the LPS or the LOS reduced cell death when compared to scratched controls treated with media only. Post-injury treatment of the primary mixed neuronal cultures with LPS reduced cell death and resulted in a significant up-regulation in IL-10 when compared to controls. With LOS post-scratch treatment of the primary cell cultures, we found that IL-1α, IL-1β, IL-6, and TNF-α were significantly upregulated in addition to IL-10 compared to the media-only controls. The results strongly support additional testing of the neuroprotective ability of post-injury treatment with LPS or LOS in models of TBI.

  17. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. PMID:25953554

  18. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells.

  19. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    PubMed

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  20. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    PubMed

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  1. Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes.

    PubMed

    Ojeda, Diego; López-Costa, Juan José; Sede, Mariano; López, Ester María; Berria, María Isabel; Quarleri, Jorge

    2014-02-01

    Although HIV-associated neurocognitive disorders (HAND) result from injury and loss of neurons, productive infection routinely takes place in cells of macrophage lineage. In such a complex context, astrocytosis induced by local chemokines/cytokines is one of the hallmarks of HIV neuropathology. Whether this sustained astrocyte activation is able to alter telomere-aging process is unknown. We hypothesized that interaction of HIV with astrocytes may impact astrocyte telomerase activity (TA) and telomere length in a scenario of astrocytic activation measured by expression of glial fibrillary acidic protein (GFAP). To test this hypothesis, cultured murine astrocytes were challenged with pseudotyped HIV/vesicular stomatitis virus (HIV/VSV) to circumvent the absence of viral receptors; and GFAP, telomerase activity, and telomere length were quantified. As an early and transient event after HIV infection, both TA activity and telomere length were significantly augmented (P < 0.001). Later, a strong negative correlation (-0.8616, P < 0.0001) between virus production and telomerase activity was demonstrated. Once HIV production had reached a peak (7 dpi), the TA decreased, showing levels similar to those of noninfected cells. In contrast, the astrocyte became activated, exhibiting significantly increased levels of GFAP expression directly related to the level of HIV/VSV replication (P < 0.0001). Our results suggest that HIV-infected astrocytes exhibit early disturbance in their cellular functions, such as telomerase activity and telomere length, that may attenuate cell proliferation and enhance the astrocyte dysregulation, contributing to HIV neuropathogenesis. Understanding the mechanisms involved in HIV-mediated persistence by altering the telomere-related aging processes could aid in the development of therapeutic modalities for neurological complications of HIV infection.

  2. Effects of therapeutic hypothermia on the glial proteome and phenotype.

    PubMed

    Kim, Jong-Heon; Seo, Minchul; Suk, Kyoungho

    2013-02-01

    Therapeutic hypothermia is a useful intervention against brain injury in experimental models and patients, but its therapeutic applications are limited due to its ill-defined mode of action. Glia cells maintain homeostasis and protect the central nervous system from environmental change, but after brain injury, glia are activated and induce glial scar formation and secondary injury. On the other hand, therapeutic hypothermia has been shown to modulate glial hyperactivation under various brain injury conditions. We considered that knowledge of the effect of hypothermia on the molecular profiles of glia and on their phenotypes would improve our understanding of the neuroprotective mechanism of hypothermia. Here, we review the findings of recent studies that examined the effect of hypothermia on proteome changes in reactive glial cells in vitro and in vivo. The therapeutic effects of hypothermia are associated with the inhibition of reactive oxygen species generation, the maintenance of ion homeostasis, and the protection of neurovascular units in cultured glial cells. In an animal model, a distinct pattern of protein alterations was detected in glia following hypothermia under ischemic/reperfusion conditions. In particular, hypothermia was found to exert a neuroprotective effect against ischemic brain injury by regulating specific glial signaling pathways, such as, glutamate signaling, cell death, and stress response, and by influencing neural dysfunction, neurogenesis, neural plasticity, cell differentiation, and neurotrophic activity. Furthermore, the proteins that were differentially expressed belonged to various pathways and could mediate diverse phenotypic changes of glia in vitro or in vivo. Therefore, hypothermia-modulated glial proteins and subsequent phenotypic changes may form the basis of the therapeutic effects of hypothermia. PMID:23441897

  3. Aquaporin 4-dependent expression of glial fibrillary acidic protein and tenascin-C in activated astrocytes in stab wound mouse brain and in primary culture.

    PubMed

    Ikeshima-Kataoka, Hiroko; Abe, Yoichiro; Yasui, Masato

    2015-01-01

    We previously reported that aquaporin 4 (AQP4) has a neuroimmunological function via astrocytes and microglial cells involving osteopontin. AQP4 is a water channel localized in the endofoot of astrocytes in the brain, and its expression is upregulated after a stab wound to the mouse brain or the injection of methylmercury in common marmosets. In this study, the correlation between the expression of AQP4 and the expression of glial fibrillary acidic protein (GFAP) or tenascin-C (TN-C) in reactive astrocytes was examined in primary cultures and brain tissues of AQP4-deficient mice (AQP4/KO). In the absence of a stab wound to the brain or of any stimulation of the cells, the expressions of both GFAP and TN-C were lower in astrocytes from AQP4/KO mice than in those from wild-type (WT) mice. High levels of GFAP and TN-C expression were observed in activated astrocytes after a stab wound to the brain in WT mice; however, the expressions of GFAP and TN-C were insignificant in AQP4/KO mice. Furthermore, lipopolysaccharide (LPS) stimulation activated primary culture of astrocytes and upregulated GFAP and TN-C expression in cells from WT mice, whereas the expressions of GFAP and TN-C were slightly upregulated in cells from AQP4/KO mice. Moreover, the stimulation of primary culture of astrocytes with LPS also upregulated inflammatory cytokines in cells from WT mice, whereas modest increases were observed in cells from AQP4/KO mice. These results suggest that AQP4 expression accelerates GFAP and TN-C expression in activated astrocytes induced by a stab wound in the mouse brain and LPS-stimulated primary culture of astrocytes.

  4. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells

    PubMed Central

    Sariyer, Ilker Kudret; Sariyer, Rahsan; Otte, Jessica; Gordon, Jennifer

    2016-01-01

    Objective PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV), which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs). We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF). SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen. Methods and Results Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins. Conclusions Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral

  5. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    PubMed

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.

  6. Dexamethasone reduces steady state insulin-like growth factor I messenger ribonucleic acid levels in rat neuronal and glial cells in primary culture.

    PubMed

    Adamo, M; Werner, H; Farnsworth, W; Roberts, C T; Raizada, M; LeRoith, D

    1988-11-01

    Insulin-like growth factor I (IGF-I) mRNA was demonstrated in primary cultures of neuronal and glial cells from rat brain. On Northern blots, a rat IGF-I cDNA probe hybridized to RNA species of 7.5, 1.7, and 0.8-1.2 kilobases in total and poly(A)+ RNA from both cell types. Solution hybridization/RNase protection assays were performed using an antisense riboprobe complementary to the 5'-untranslated region as well as part of the coding region of rat IGF-I mRNA. These studies indicated that two of the previously described three possible alternative 5'-untranslated splicing variants (classes A and C) were expressed in neuronal and glial cells, with class C transcripts predominating. Neuronal cells also possessed extremely low levels of class B transcripts. Treatment of neuronal cell cultures with the synthetic glucocorticoid dexamethasone reduced IGF-I mRNA levels by 60%. Glial cell IGF-I mRNA levels were reduced by dexamethasone by up to 40%. These results suggest that glucocorticoid-induced reductions in IGF-I production could occur at the level of transcription and may underlie some of the actions of glucocorticoids in causing growth retardation and inhibition of cell proliferation. PMID:2458916

  7. How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines.

    PubMed

    Pauwels, P J; Tardif, S; Palmier, C; Wurch, T; Colpaert, F C

    1997-01-01

    The intrinsic activity of a series of 5-hydroxytryptamine (serotonin, 5-HT) receptor ligands was analysed at recombinant h5-HT1B and h5-HT1D receptor sites using a [35S]GTP gamma S binding assay and membrane preparations of stably transfected C6-glial cell lines. Compounds either stimulated or inhibited [35S]GTP gamma S binding to a membrane preparation containing either h5-HT1B or h5-HT1D receptors. The potencies observed for most of the compounds at the h5-HT1B receptor subtype correlated with their potencies measured by inhibition of stimulated cAMP formation on intact cells. Apparent agonist potencies in the [35S]GTP gamma S binding assay to C6-glial/h5-HT1D membranes were, with the exception of 2-[5-[3-(4-methylsulphonylamino)benzyl-1 2,4-oxadiazol-5-yl]-1H-indol-3-yl] ethanamine (L694247), 5- to 13-times lower than in the cAMP assay on intact cells. This suggests that receptor coupling in the h5-HT1D membrane preparation is less efficient than that in the intact cell. It further appeared that 6-times more h5-HT1D than h5-HT1B binding sites were required to attain a similar, maximal (73%), 5-HT-stimulated [35S]GTP gamma S binding response: Hence, the h5-HT1B receptor in C6-glial cell membranes could be more efficiently coupled, even though some compounds more readily displayed intrinsic activity at h5-HT1D receptor sites [e.g. dihydroergotamine and (2'-methyl-4'-(5-methyl[1,2,4]oxadiazol-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR127935)]. Efficacy differences were apparent for most of the compounds (sumatriptan, zolmitriptan, rizatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulfonamide (CP122638), dihydroergotamine, naratriptan and GR127935) that stimulated [35S]GTP gamma S binding compared to the native agonist 5-HT. The observed maximal responses were different for the h5-HT1B and h5-HT1D receptor subtypes. Few compounds behaved as full agonists: L694247, zolmitriptan and sumatriptan did so at

  8. K+ Channel density increases selectively in the endfoot of retinal glial cells during development of Rana catesbiana.

    PubMed

    Rojas, L; Orkand, R K

    1999-01-15

    The radial glial cells that span the retina, described by Müller in 1851, have a remarkable distribution of ion channels in adult amphibia that mediate extracellular K+ spatial buffering. 94% of the total membrane conductance of these cells resides in inward rectifier K+ channels in the endfoot processes apposed to the vitreous humour. We now report that this regional specialization is found in Müller cells isolated from adult (>120 day old) bullfrogs but to a far less extent in those from 10-20 day old tadpoles (stages 34-36). Using the cell attached configuration of the patch-clamp technique, we found, in agreement with previous studies in salamanders, that the endfoot of adult cells had 19.2+/-2.4 (mean +/- S.E., n = 81) channels/patch, whereas the soma had 1.81+/-0.28 (n = 21) channels/patch. In the tadpole, the respective values were 4.29+/-0.26 (n = 79) for the endfoot and 2.26+/-0.24 (n = 27) for the soma. The slope conductance of the inward rectifier K+ channel in 115 mM K+, 19.2+/-0.25 pS (n = 205), channel kinetics and the resting membrane potential (-69+/-2.7 mV, n = 224) were similar at both the endfoot and soma of both adults and embryos. We conclude that during development, the K+ conductance of the Müller cell endfoot, but not of the soma, increases due to a selective clustering of inwardly rectifying K+ channels in that specific region of the cell membrane. The properties of the channels change little during the transformation from tadpole to adult bullfrog. PMID:9890634

  9. Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord

    PubMed Central

    Li, Xiao-Qian; Zhang, Zai-Li; Tan, Wen-Fei; Sun, Xi-Jia; Ma, Hong

    2016-01-01

    Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that

  10. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger.

    PubMed

    Wang, Jing; Shanmugam, Arul; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Smith, Sylvia B

    2015-09-01

    Oxidative stress figures prominently in retinal diseases, including diabetic retinopathy, and glaucoma. Ligands for σ1R, a unique transmembrane protein localized to the endoplasmic reticulum, mitochondria, and nuclear and plasma membranes, have profound retinal neuroprotective properties in vitro and in vivo. Studies to determine the mechanism of σ1R-mediated retinal neuroprotection have focused mainly on neurons. Little is known about the effects of σ1R on Müller cell function, yet these radial glial cells are essential for homeostatic support of the retina. Here we investigated whether σ1R mediates the oxidative stress response of Müller cells using wild-type (WT) and σ1R-knockout (σ1RKO) mice. We observed increased endogenous reactive oxygen species (ROS) levels in σ1RKO Müller cells compared to WT, which was accompanied by decreased expression of Sod1, catalase, Nqo1, Hmox1, Gstm6, and Gpx1. The protein levels of SOD1, CAT, NQO1, and GPX1 were also significantly decreased. The genes encoding these antioxidants contain an antioxidant response element (ARE), which under stress is activated by NRF2, a transcription factor that typically resides in the cytoplasm bound by KEAP1. In the σ1RKO Müller cells Nrf2 expression was decreased significantly at the gene (and protein) level, whereas Keap1 gene (and protein) levels were markedly increased. NRF2-ARE binding affinity was decreased markedly in σ1RKO Müller cells. We investigated system xc(-), the cystine-glutamate exchanger important for synthesis of glutathione (GSH), and observed decreased function in σ1RKO Müller cells compared to WT as well as decreased GSH and GSH/GSSG ratios. This was accompanied by decreased gene and protein levels of xCT, the unique component of system xc(-). We conclude that Müller glial cells lacking σ1R manifest elevated ROS, perturbation of antioxidant balance, suppression of NRF2 signaling, and impaired function of system xc(-). The data suggest that the oxidative

  11. ALUMINUM STIMULATES UPTAKE OF NON-TRANSFERRIN BOUND IRON AND TRANSFERRIN BOUND IRON IN HUMAN GLIAL CELLS

    PubMed Central

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2011-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer’s Disease, and findings of higher levels of iron in Alzheimer’s disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in the brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin. PMID:17376497

  12. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice.

    PubMed

    Yamada, Hiromi; Ito, Daisuke; Oki, Yoshinao; Kitagawa, Masato; Matsumoto, Taro; Watari, Tosihiro; Kano, Koichiro

    2014-11-14

    Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n=22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord. PMID:25451251

  13. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy

    PubMed Central

    Capdevila-Nortes, Xavier; Jeworutzki, Elena; Elorza-Vidal, Xabier; Barrallo-Gimeno, Alejandro; Pusch, Michael; Estévez, Raúl

    2015-01-01

    Abstract Mutations in the genes encoding the astrocytic protein MLC1, the cell adhesion molecule GlialCAM or the Cl− channel ClC-2 underlie human leukodystrophies. GlialCAM binds to itself, to MLC1 and to ClC-2, and directs these proteins to cell–cell contacts. In addition, GlialCAM dramatically activates ClC-2 mediated currents. In the present study, we used mutagenesis studies combined with functional and biochemical analyses to determine which parts of GlialCAM are required to perform these cellular functions. We found that the extracellular domain of GlialCAM is necessary for cell junction targeting and for mediating interactions with itself or with MLC1 and ClC-2. The C-terminus is also necessary for proper targeting to cell–cell junctions but is not required for the biochemical interaction. Finally, we identified the first three amino acids of the transmembrane segment of GlialCAM as being essential for the activation of ClC-2 currents but not for targeting or biochemical interaction. Our results provide new mechanistic insights concerning the regulation of the cell biology and function of MLC1 and ClC-2 by GlialCAM. Key points The extracellular domain of GlialCAM is necessary for its targeting to cell junctions, as well as for interactions with itself and MLC1 and ClC-2. The C-terminus of GlialCAM is not necessary for interaction but is required for targeting to cell junctions. The first three residues of the transmembrane segment of GlialCAM are required for GlialCAM-mediated ClC-2 activation. PMID:26033718

  14. A simple method to quickly and simultaneously purify and enrich intact rat brain microcapillaries and endothelial and glial cells for ex vivo studies and cell culture.

    PubMed

    Lenhard, Thorsten; Hülsermann, Uta; Martinez-Torres, Francisco; Fricker, Gert; Meyding-Lamadé, Uta

    2013-06-26

    The blood-brain barrier is morphologically composed of cerebral microcapillary endothelium through its tight junctions. It serves as a mechanical, metabolic and cellular barrier and can also protect the brain from pathogen invasion. Many brain diseases involve a disturbance of blood-brain barrier function either as a consequence of a noxa or as primary failure. In vitro models of the blood-brain barrier are suitable tools to study drug transport, pathogen transmigration and leukocyte diapedesis across the cerebral endothelium. Such models have previously been derived mainly from porcine or bovine brain tissues. We describe here a simple method by which rat cerebral microcapillaries and cells of glial origin can be quickly and simultaneously purified. By using a capillary fragment size restriction method based on glass bead columns different fractions can be separated: vital, long capillary fragments for ex vivo uptake studies and smaller capillary fragments for endothelial culture. Furthermore, fractions can be obtained for astroglial and oligodendroglial cell cultures. With this method both microcapillary enrichment and glial cell purification are quickly achieved, which reduces expenditure, number of required animals and laboratory working time. PMID:23665392

  15. A simple method to quickly and simultaneously purify and enrich intact rat brain microcapillaries and endothelial and glial cells for ex vivo studies and cell culture.

    PubMed

    Lenhard, Thorsten; Hülsermann, Uta; Martinez-Torres, Francisco; Fricker, Gert; Meyding-Lamadé, Uta

    2013-06-26

    The blood-brain barrier is morphologically composed of cerebral microcapillary endothelium through its tight junctions. It serves as a mechanical, metabolic and cellular barrier and can also protect the brain from pathogen invasion. Many brain diseases involve a disturbance of blood-brain barrier function either as a consequence of a noxa or as primary failure. In vitro models of the blood-brain barrier are suitable tools to study drug transport, pathogen transmigration and leukocyte diapedesis across the cerebral endothelium. Such models have previously been derived mainly from porcine or bovine brain tissues. We describe here a simple method by which rat cerebral microcapillaries and cells of glial origin can be quickly and simultaneously purified. By using a capillary fragment size restriction method based on glass bead columns different fractions can be separated: vital, long capillary fragments for ex vivo uptake studies and smaller capillary fragments for endothelial culture. Furthermore, fractions can be obtained for astroglial and oligodendroglial cell cultures. With this method both microcapillary enrichment and glial cell purification are quickly achieved, which reduces expenditure, number of required animals and laboratory working time.

  16. Brucella abortus Induces the Secretion of Proinflammatory Mediators from Glial Cells Leading to Astrocyte Apoptosis

    PubMed Central

    García Samartino, Clara; Delpino, M. Victoria; Pott Godoy, Clara; Di Genaro, María Silvia; Pasquevich, Karina A.; Zwerdling, Astrid; Barrionuevo, Paula; Mathieu, Patricia; Cassataro, Juliana; Pitossi, Fernando; Giambartolomei, Guillermo H.

    2010-01-01

    Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. In this study we present in vivo and in vitro evidence that B. abortus and its lipoproteins activate the innate immunity of the CNS, eliciting an inflammatory response that leads to astrogliosis, a characteristic feature of neurobrucellosis. Intracranial injection of heat-killed B. abortus (HKBA) or outer membrane protein 19 (Omp19), a B. abortus lipoprotein model, induced astrogliosis in mouse striatum. Moreover, infection of astrocytes and microglia with B. abortus induced the secretion of interleukin (IL)−6, IL-1β, tumor necrosis factor (TNF)-α, macrophage chemoattractant protein−1, and KC (CXCL1). HKBA also induced these inflammatory mediators, suggesting the involvement of a structural component of the bacterium. Accordingly, Omp19 induced the same cytokine and chemokine secretion pattern. B. abortus infection induced astrocyte, but not microglia, apoptosis. Indeed, HKBA and Omp19 elicited not only astrocyte apoptosis but also proliferation, two features observed during astrogliosis. Apoptosis induced by HKBA and L-Omp19 was completely suppressed in cells of TNF receptor p55−/− mice or when the general caspase inhibitor Z-VAD-FMK was added to cultures. Hence, TNF-α signaling via TNF receptor (TNFR) 1 through the coupling of caspases determines apoptosis. Our results provide proof of the principle that Brucella lipoproteins could be key virulence factors in neurobrucellosis and that astrogliosis might contribute to neurobrucellosis pathogenesis. PMID:20093491

  17. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio

    2015-10-15

    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs.

  18. Control of Extracellular Potassium Levels by Retinal Glial Cell K+ Siphoning

    NASA Astrophysics Data System (ADS)

    Newman, Eric A.; Frambach, Donald A.; Odette, Louis L.

    1984-09-01

    Efflux of K+ from dissociated salamander Muller cells was measured with ion-selective microelectrodes. When the distal end of an isolated cell was exposed to high concentrations of extracellular K+, efflux occurred primarily from the endfoot, a cell process previously shown to contain most of the K+ conductance of the cell membrane. Computer simulations of K+ dynamics in the retina indicate that shunting ions through the Muller cell endfoot process is more effective in clearing local increases in extracellular K+ from the retina than is diffusion through extracellular space.

  19. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    SciTech Connect

    Gallo, V.; Bertolotto, A. )

    1990-04-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with (3H)glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various (3H)glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space.

  20. Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor α-3 in colorectal afferents

    PubMed Central

    Shinoda, M.; Feng, B.; Albers, K. M.; Gebhart, G. F.

    2011-01-01

    Irritable bowel syndrome is characterized by colorectal hypersensitivity and contributed to by sensitized mechanosensitive primary afferents and recruitment of mechanoinsensitive (silent) afferents. Neurotrophic factors are well known to orchestrate dynamic changes in the properties of sensory neurons. Although pain modulation by proteins in the glial cell line-derived neurotrophic factor (GDNF) family has been documented in various pathophysiological states, their role in colorectal hypersensitivity remains unexplored. Therefore, we investigated the involvement of the GDNF family receptor α-3 (GFRα3) signaling in visceral hypersensitivity by quantifying visceromotor responses (VMR) to colorectal distension before and after intracolonic treatment with 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baseline responses to colorectal distension did not differ between C57BL/6 and GFRα3 knockout (KO) mice. Relative to intracolonic saline treatment, TNBS significantly enhanced the VMR to colorectal distension in C57BL/6 mice 2, 7, 10, and 14 days posttreatment, whereas TNBS-induced visceral hypersensitivity was significantly suppressed in GFRα3 KO mice. The proportion of GFRα3 immunopositive thoracolumbar and lumbosacral colorectal dorsal root ganglion neurons was significantly elevated 2 days after TNBS treatment. In single fiber recordings, responses to circumferential stretch of colorectal afferent endings in C57BL/6 mice were significantly increased (sensitized) after exposure to an inflammatory soup, whereas responses to stretch did not sensitize in GFRα3 KO mice. These findings suggest that enhanced GFRα3 signaling in visceral afferents may contribute to development of colorectal hypersensitivity. PMID:21193524

  1. The role of glial cells and the complement system in retinal diseases and Alzheimer's disease: common neural degeneration mechanisms.

    PubMed

    Harvey, Hannah; Durant, Szonya

    2014-11-01

    Many age-related degenerative diseases of the central nervous system (CNS) increasingly appear to have similarities in their underlying causes. By applying knowledge between disorders, and in particular between degenerative diseases of different components of the CNS (e.g. the eye and the brain), we can begin to elucidate general mechanisms of neural degeneration. Age-related macular degeneration and glaucoma, two diseases of retinal neurons, which have recently been discussed in view of their common mechanisms with Alzheimer's disease, highlight this perspective. This review discusses the common roles of the complement system (an immunological system) and glial cells (providing, amongst other functions, trophic support to neurons) in these three disorders. A number of facets of these systems would seem to be involved in the mechanisms of degeneration in at least two of the three diseases considered here. Regulatory proteins of the complement system (such as factor H), neurotrophin levels, and the interaction of microglia with the complement system in particular may be general to all three presentations of neural degeneration. Investigating the functioning of these fundamental systems across different diseases exemplifies the importance of considering advances in knowledge across a wider base than specific disease pathology. This may give insights both for understanding the function of these supporting systems and providing an avenue for developing future therapeutic targets general to neural degenerative diseases.

  2. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    PubMed

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  3. Calcitonin gene-related peptide regulation of glial cell-line derived neurotrophic factor in differentiated rat myotubes.

    PubMed

    Rosa, Elyse; Cha, Jieun; Bain, James R; Fahnestock, Margaret

    2015-03-01

    Glial cell-line derived neurotrophic factor (GDNF) is the most potent trophic factor for motoneuron survival and neuromuscular junction formation. GDNF is upregulated in injured or denervated skeletal muscle and returns to normal levels following reinnervation. However, the mechanism by which GDNF is regulated in denervated muscle is not well understood. The nerve-derived neurotransmitter calcitonin gene-related peptide (CGRP) is upregulated following neuromuscular injury and is subsequently released from motoneurons at the neuromuscular junction. CGRP also promotes nerve regeneration, but the mechanism is not well understood. The current study investigates whether this increase in CGRP regulates GDNF, thus playing a key role in promoting regeneration of injured nerves. This study demonstrates that CGRP increases GDNF secretion without affecting its transcription or translation. Rat L6 myoblasts were differentiated into myotubes and subsequently treated with CGRP. GDNF mRNA expression levels were quantified by quantitative real-time reverse transcription-polymerase chain reaction, and secreted GDNF was quantified in the conditioned medium by ELISA. CGRP treatment increased secreted GDNF protein without altering GDNF mRNA levels. The translational inhibitor cycloheximide did not affect CGRP-induced GDNF secreted protein levels, whereas the secretional inhibitor brefeldin A blocked the CGRP-induced increase in GDNF. This study highlights the importance of injury-induced upregulation of CGRP by exposing its ability to increase GDNF levels and demonstrates a secretional mechanism for regulation of this key regeneration-promoting neurotrophic factor.

  4. Association between serum levels of glial cell-line derived neurotrophic factor and attention deficits in schizophrenia.

    PubMed

    Niitsu, Tomihisa; Shirayama, Yukihiko; Matsuzawa, Daisuke; Shimizu, Eiji; Hashimoto, Kenji; Iyo, Masaomi

    2014-07-11

    Several lines of evidence suggest that glial cell-line derived neurotrophic factor (GDNF) plays an important role in the pathophysiology of neuropsychiatric and neurodegenerative disorders. In this study, we investigated the association between GDNF serum levels and the clinical status of medicated patients with schizophrenia. Sixty-three medicated patients with schizophrenia and 52 age- and sex-matched healthy controls were recruited. Patients were evaluated using the brief psychiatry rating scale, the scale for the assessment of negative symptoms (SANS) and neuropsychological tests. Serum levels of GDNF were determined using an ELISA method. Serum levels of GDNF did not differ between schizophrenia patients and controls. Higher GDNF serum levels were associated with better performances on the Digit Span in healthy controls but not in schizophrenics. At the same time, higher GDNF serum levels were associated with severe attention deficits on the SANS subscale, in schizophrenics. Our preliminary study suggests that serum levels of GDNF may be an unsuitable biomarker for schizophrenia, although it may be associated with working memory in healthy controls and the pathophysiology of attention deficits in schizophrenia.

  5. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult.

    PubMed Central

    Tomac, A; Widenfalk, J; Lin, L F; Kohno, T; Ebendal, T; Hoffer, B J; Olson, L

    1995-01-01

    The recently cloned, distant member of the transforming growth factor beta (TGF-beta) family, glial cell line-derived neurotrophic factor (GDNF), has potent trophic actions on fetal mesencephalic dopamine neurons. GDNF also has protective and restorative activity on adult mesencephalic dopaminergic neurons and potently protects motoneurons from axotomy-induced cell death. However, evidence for a role for endogenous GDNF as a target-derived trophic factor in adult midbrain dopaminergic circuits requires documentation of specific transport from the sites of synthesis in the target areas to the nerve cell bodies themselves. Here, we demonstrate that GDNF is retrogradely transported by mesencephalic dopamine neurons of the nigrostriatal pathway. The pattern of retrograde transport following intrastriatal injections indicates that there may be subpopulations of neurons that are GDNF responsive. Retrograde axonal transport of biologically active 125I-labeled GDNF was inhibited by an excess of unlabeled GDNF but not by an excess of cytochrome c. Specificity was further documented by demonstrating that another TGF-beta family member, TGF-beta 1, did not appear to affect retrograde transport. Retrograde transport was also demonstrated by immunohistochemistry by using intrastriatal injections of unlabeled GDNF. GDNF immunoreactivity was found specifically in dopamine nerve cell bodies of the substantia nigra pars compacta distributed in granules in the soma and proximal dendrites. Our data implicate a specific receptor-mediated uptake mechanism operating in the adult. Taken together, the present findings suggest that GDNF acts endogenously as a target-derived physiological survival/maintenance factor for dopaminergic neurons. Images Fig. 2 Fig. 3 Fig. 4 PMID:7667281

  6. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo.

    PubMed

    Tsui, Cynthia C; Gabreski, Nicole A; Hein, Sarah J; Pierchala, Brian A

    2015-09-23

    Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex

  7. Characterization of glial fibrillary acidic protein (GFAP)-expressing hepatic stellate cells and myofibroblasts in thioacetamide (TAA)-induced rat liver injury.

    PubMed

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Wijesundera, Kavindra Kumara; Golbar, Hossain M; Tanaka, Miyuu; Ichikawa, Chisa; Kuwamura, Mitsuru; Yamate, Jyoji

    2013-11-01

    Hepatic stellate cells (HSCs), which can express glial fibrillary acidic protein (GFAP) in normal rat livers, play important roles in hepatic fibrogenesis through the conversion into myofibroblasts (MFs). Cellular properties and possible derivation of GFAP-expressing MFs were investigated in thioacetamide (TAA)-induced rat liver injury and subsequent fibrosis. Seven-week-old male F344 rats were injected with TAA (300mg/kg BW, once, intraperitoneally), and were examined on post single injection (PSI) days 1-10 by the single and double immunolabeling with MF and stem cell marker antibodies. After hepatocyte injury in the perivenular areas on PSI days 1 and 2, the fibrotic lesion consisting of MF developed at a peak on PSI day 3, and then recovered gradually by PSI day 10. MFs expressed GFAP, and also showed co-expressions such cytoskeletons (MF markers) as vimentin, desmin and α-SMA in varying degrees. Besides MFs co-expressing vimentin/desmin, desmin/α-SMA or α-SMA/vimentin, some GFAP positive MFs co-expressed with nestin or A3 (both, stem cell markers), and there were also MFs co-expressing nestin/A3. However, there were no GFAP positive MFs co-expressing RECA-1 (endothelial marker) or Thy-1 (immature mesenchymal cell marker). GFAP positive MFs showed the proliferating activity, but they did not undergo apoptosis. However, α-SMA positive MFs underwent apoptosis. These findings indicate that HSCs can proliferate and then convert into MFs with co-expressing various cytoskeletons for MF markers, and that the converted MFs may be derived partly from the stem cell lineage. Additionally, well-differentiated MFs expressing α-SMA may disappear by apoptosis for healing. These findings shed some light on the pathogenesis of chemically induced hepatic fibrosis.

  8. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    PubMed Central

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  9. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  10. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  11. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines

    SciTech Connect

    Flaskos, J.; Harris, W.; Sachana, M.; Munoz, D.; Tack, J.; Hargreaves, A.J. . E-mail: alan.hargreaves@ntu.ac.uk

    2007-03-15

    Diazinon and cypermethrin are pesticides extensively used in sheep dipping. Diazinon is a known anti-cholinesterase, but there is limited information regarding its molecular mechanism of action. This paper describes the effects of diazinon and cypermethrin at a morphological and molecular level on differentiating mouse N2a neuroblastoma and rat C6 glioma cell lines. Concentrations up to 10 {mu}M of both compounds and their mixture had no effect on the viability of either cell line, as determined by methyl blue tetrazolium reduction and total protein assays. Microscopic analysis revealed that 1 {mu}M and 10 {mu}M diazinon but not cypermethrin inhibited the outgrowth of axon-like processes in N2a cells after a 24-h exposure but neither compound affected process outgrowth by differentiating C6 cells at these concentrations. Under these conditions, 10 {mu}M diazinon inhibited AChE slightly compared to the control after a 4-h exposure but not after 24 h. Western blotting analysis showed that morphological changes were associated with reduced cross-reactivity with antibodies that recognize the neurofilament heavy chain (NFH), microtubule associated protein MAP 1B and HSP-70 compared to control cell extracts, whereas reactivity with anti-{alpha}-tubulin antibodies was unchanged. Aggregation of NFH was observed in cell bodies of diazinon-treated N2a cells, as determined by indirect immunofluorescence staining. These data demonstrate that diazinon specifically targets neurite outgrowth in neuronal cells and that this effect is associated with disruption of axonal cytoskeleton proteins, whereas cypermethrin has no effect on the same parameters.

  12. Physiology of neuronal-glial networking.

    PubMed

    Verkhratsky, Alexei

    2010-11-01

    Neuronal-glial networks are the substrate for the brain function. Evolution of the nervous system resulted in the appearance of highly specialized neuronal web optimized for rapid information transfer. This neuronal web is embedded into glial syncytium, thereby creating sophisticated neuronal-glial circuitry were both types of neural cells are working in concert, ensuring amplification of brain computational power. In addition neuroglial cells are fundamental for control of brain homeostasis and they represent the intrinsic brain defence system, being thus intimately involved in pathogenesis of neurological diseases.

  13. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [11C]-PBR28

    PubMed Central

    Zürcher, Nicole R.; Loggia, Marco L.; Lawson, Robert; Chonde, Daniel B.; Izquierdo-Garcia, David; Yasek, Julia E.; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R.; Cudkowicz, Merit E.; Hooker, Jacob M.; Atassi, Nazem

    2015-01-01

    Evidence from human post mortem, in vivo and animal model studies implicates the neuroimmune system and activated microglia in the pathology of amyotrophic lateral sclerosis. The study aim was to further evaluate in vivo neuroinflammation in individuals with amyotrophic lateral sclerosis using [11C]-PBR28 positron emission tomography. Ten patients with amyotrophic lateral sclerosis (seven males, three females, 38–68 years) and ten age- and [11C]-PBR28 binding affinity-matched healthy volunteers (six males, four females, 33–65 years) completed a positron emission tomography scan. Standardized uptake values were calculated from 60 to 90 min post-injection and normalized to whole brain mean. Voxel-wise analysis showed increased binding in the motor cortices and corticospinal tracts in patients with amyotrophic lateral sclerosis compared to healthy controls (pFWE < 0.05). Region of interest analysis revealed increased [11C]-PBR28 binding in the precentral gyrus in patients (normalized standardized uptake value = 1.15) compared to controls (1.03, p < 0.05). In patients those values were positively correlated with upper motor neuron burden scores (r = 0.69, p < 0.05), and negatively correlated with the amyotrophic lateral sclerosis functional rating scale (r = –0.66, p < 0.05). Increased in vivo glial activation in motor cortices, that correlates with phenotype, complements previous histopathological reports. Further studies will determine the role of [11C]-PBR28 as a marker of treatments that target neuroinflammation. PMID:25685708

  14. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28.

    PubMed

    Zürcher, Nicole R; Loggia, Marco L; Lawson, Robert; Chonde, Daniel B; Izquierdo-Garcia, David; Yasek, Julia E; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem

    2015-01-01

    Evidence from human post mortem, in vivo and animal model studies implicates the neuroimmune system and activated microglia in the pathology of amyotrophic lateral sclerosis. The study aim was to further evaluate in vivo neuroinflammation in individuals with amyotrophic lateral sclerosis using [(11)C]-PBR28 positron emission tomography. Ten patients with amyotrophic lateral sclerosis (seven males, three females, 38-68 years) and ten age- and [(11)C]-PBR28 binding affinity-matched healthy volunteers (six males, four females, 33-65 years) completed a positron emission tomography scan. Standardized uptake values were calculated from 60 to 90 min post-injection and normalized to whole brain mean. Voxel-wise analysis showed increased binding in the motor cortices and corticospinal tracts in patients with amyotrophic lateral sclerosis compared to healthy controls (p FWE < 0.05). Region of interest analysis revealed increased [(11)C]-PBR28 binding in the precentral gyrus in patients (normalized standardized uptake value = 1.15) compared to controls (1.03, p < 0.05). In patients those values were positively correlated with upper motor neuron burden scores (r = 0.69, p < 0.05), and negatively correlated with the amyotrophic lateral sclerosis functional rating scale (r = -0.66, p < 0.05). Increased in vivo glial activation in motor cortices, that correlates with phenotype, complements previous histopathological reports. Further studies will determine the role of [(11)C]-PBR28 as a marker of treatments that target neuroinflammation.

  15. Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors

    PubMed Central

    2015-01-01

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874

  16. Baicalein protects C6 glial cells against hydrogen peroxide-induced oxidative stress and apoptosis through regulation of the Nrf2 signaling pathway.

    PubMed

    Choi, Eun-Ok; Jeong, Jin-Woo; Park, Cheol; Hong, Su Hyun; Kim, Gi-Young; Hwang, Hye-Jin; Cho, Eun-Ju; Choi, Yung Hyun

    2016-03-01

    Baicalein, a flavonoid originally obtained from the roots of Scutellaria baicalensis Georgi, has been reported to possess various biological properties. Although several studies have demonstrated the anti-oxidative activity of baicalein, its neuroprotective mechanisms have not been clearly established. The present study aimed to detect the effects of baicalein against hydrogen peroxide (H2O2)-induced neuronal damage in C6 glial cells and to investigate the molecular mechanisms involved in this process. The results demonstrated that baicalein effectively inhibited H2O2-induced growth and reactive oxygen species (ROS) generation. We noted that Baicalein also attenuated the H2O2‑induced formation of comet tail, phosphorylation of p-γH2A.X, loss of mitochondrial membrane potential (MMP or ΔΨm), and changes to apoptosis‑related protein expression, which suggests that it can prevent H2O2‑induced cellular DNA damage and apoptotic cell death. Furthermore, treatment with baicalein effectively induced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as heme oxygenase-1 (HO-1) and thioredoxin reductase 1 (TrxR1) in a concentration and time-dependent manner. Moreover, the protective effects of baicalein against H2O2‑induced DNA damage and apoptosis were abolished by zinc protoporphyrin (ZnPP) IX, a HO-1 inhibitor, and auranofin, a TrxR inhibitor. In addition, we noted that the cytoprotective effects of baicalein were attenuated by transient transfection with Nrf2-specific small interfering RNA (siRNA). The findings of our present study suggest that baicalein enhances cellular antioxidant defense capacity through the inhibition of ROS generation and the activation of the Nrf2 signaling pathway, thus protecting C6 cells from H2O2-induced neuronal damage.

  17. The light-induced increase of carbohydrate metabolism in glial cells of the honeybee retina is not mediated by K+ movement nor by cAMP.

    PubMed

    Evêquoz-Mercier, V; Tsacopoulos, M

    1991-09-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor neurons constitute two distinct metabolic compartments. The phosphorylation of glucose and its subsequent incorporation into glycogen occur essentially in glia, whereas O2 consumption occurs in the photoreceptors. After [3H] glucose loading of superfused retinal slices, light stimulation induced a significant rise in [3H] glycogen turnover in the glia. This occurs without a concomitant covalent modification of glycogen enzymes. Probably only an increase or a decrease of the availability of [3H] glycosyls that are incorporated into glycogen is necessary. As only photoreceptors are directly excitable by light, we searched for a signal that stimulates glycogen metabolism in the glia. Although K+ in extracellular space and glia increases after repetitive light stimulation, increasing bath K+ in the dark did not mimic the metabolic effects of light, despite an equivalent increase of K+ in the extracellular space and glia. We subsequently explored the role of cAMP, a universal intracellular second messenger. Exposure of retinal slices to the adenylate-cyclase activator forskolin induced an expected increase in the rate of formation of cAMP, but only partially mimicked the metabolic effects of light. Furthermore, light stimulation failed to induce a rise in the rate of formation of cAMP. We conclude that in this nervous system, without synapses, neither K+ nor cAMP mediates the effect of light stimulation on intraglial glucose metabolism.

  18. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    SciTech Connect

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  19. Sexual Dimorphism in the Human Olfactory Bulb: Females Have More Neurons and Glial Cells than Males

    PubMed Central

    Oliveira-Pinto, Ana V.; Santos, Raquel M.; Coutinho, Renan A.; Oliveira, Lays M.; Santos, Gláucia B.; Alho, Ana T. L.; Leite, Renata E. P.; Farfel, José M.; Suemoto, Claudia K.; Grinberg, Lea T.; Pasqualucci, Carlos A.; Jacob-Filho, Wilson; Lent, Roberto

    2014-01-01

    Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55–94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40–50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb. PMID:25372872

  20. Expression of glial cell line-derived neurotrophic factor and its receptors in cultured retinal Müller cells under high glucose circumstance.

    PubMed

    Zhu, Xinping; Sun, Yan; Wang, Zhongping; Cui, Weigang; Peng, Yuwen; Li, Ruixi

    2012-03-01

    This study aimed to explore the effect of high glucose concentration on the expression of glial cell line-derived neurotrophic factor (GDNF) and its family ligand receptors (GFRs) GFRα1 and GFRα2 in Müller cells and the protective role of GDNF in cultured Müller cells under high glucose circumstance. Cultured Müller cells (untreated or treated with 200 ng/mL of GDNF) were exposed to high glucose conditions (20 mmol/L glucose). We found that the expression levels of GDNF and GFRα1 mRNA and protein increased gradually over time under high glucose and exogenous GDNF-treated conditions, whereas the upregulation in GFRα2 expression was observed only in the early stage of high glucose conditions. Exogenous GDNF not only decreased apoptosis in cultured Müller cells under high glucose circumstance, but also accelerated the levels and speed of synthesis of GDNF and GFRα1 proteins in Müller cells. These results suggest that Müller cells can synthesize GDNF and GFRs under high glucose conditions, and GDNF may play important role in protecting Müller cells during the early stage of diabetic retinopathy. The difference in GFRs expression indicated that GDNF and neurturin may exert different effects on Müller cells under high glucose circumstance.

  1. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    PubMed Central

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a disc