Science.gov

Sample records for activated human protein

  1. Efficient expression and purification of biologically active human cystatin proteins.

    PubMed

    Chauhan, Sakshi; Tomar, Raghuvir S

    2016-02-01

    Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization. In this study, we cloned and expressed human stefin A, stefin B and cystatin C in Escherichia coli. Human stefin A, stefin B and cystatin C were purified from soluble fraction. For cystatin C, we used various chaperone plasmids to make cystatin C soluble, as it is reported to localize in inclusion bodies. Trigger factor, GroES-GroEL, DnaK-DnaJ-GrpE chaperones lead to the presence of cystatin C in the soluble fraction. Immobilized metal affinity chromatography, glutathione sepharose and anion exchange chromatography techniques were employed for efficient purification of these proteins. Their biological activities were tested by inhibition assays against cathepsin L and H3 protease.

  2. C-reactive protein activates complement in infarcted human myocardium.

    PubMed

    Nijmeijer, Remco; Lagrand, Wim K; Lubbers, Yvonne T P; Visser, Cees A; Meijer, Chris J L M; Niessen, Hans W M; Hack, C Erik

    2003-07-01

    Circulating levels of C-reactive protein (CRP) constitute a cardiovascular risk marker. Immunohistochemical studies have revealed co-localization of CRP and activated complement in human infarcted myocardium suggesting CRP to enhance inflammation in ischemic myocardium by inducing local complement activation. The aim was to establish whether CRP activates complement in infarcted human myocardium and to assess the relationship between this activation and the duration of infarction. Myocardial tissue samples from 56 patients that had died from acute myocardial infarction were evaluated. Specimens were taken from infarcted as well as noninfarcted sites of the heart. CRP-mediated complement activation was assessed by immunohistochemistry and by measuring levels of complement, CRP, and CRP-complement complexes, specific markers for CRP-mediated activation, in homogenates of the heart. Infarctions of 12 hours to 5 days had significantly more extensive depositions of complement and CRP and contained significantly more CRP, activated complement, and CRP-complement complexes than infarctions that were less than 12 hours old. Levels of CRP complexes correlated significantly with CRP and complement concentrations in the infarctions, as well as with the extent of complement and CRP depositions as measured via immunohistochemistry. Specific activation products of CRP-mediated activation of complement are increased in infarcts of more than 12 hours in duration and correlate with the extent of complement depositions. Hence, CRP seems to enhance local inflammatory reactions ensuing in human myocardial infarcts of more than 12 hours duration.

  3. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity

    PubMed Central

    Bugreev, Dmitry V.; Mazin, Alexander V.

    2004-01-01

    Human Rad51 (hRad51) protein plays a key role in homologous recombination and DNA repair. hRad51 protein forms a helical filament on single-stranded DNA (ssDNA), which performs the basic steps of homologous recombination: a search for homologous double-stranded DNA (dsDNA) and DNA strand exchange. hRad51 protein possesses DNA-dependent ATPase activity; however, the role of this activity has not been understood. Our current results show that Ca2+ greatly stimulates DNA strand exchange activity of hRad51 protein. We found that Ca2+ exerts its stimulatory effect by modulating the ATPase activity of hRad51 protein. Our data demonstrate that, in the presence of Mg2+, the hRad51-ATP-ssDNA filament is quickly converted to an inactive hRad51-ADP-ssDNA form, due to relatively rapid ATP hydrolysis and slow dissociation of ADP. Ca2+ maintains the active hRad51-ATP-ssDNA filament by reducing the ATP hydrolysis rate. These findings demonstrate a crucial role of the ATPase activity in regulation of DNA strand exchange activity of hRad51 protein. This mechanism of Rad51 protein regulation by modulating its ATPase activity is evolutionarily recent; we found no such mechanism for yeast Rad51 (yRad51) protein. PMID:15226506

  4. Early events of human T lymphocyte activation are associated with type I protein kinase A activity.

    PubMed Central

    Laxminarayana, D; Berrada, A; Kammer, G M

    1993-01-01

    Human T lymphocytes possess both the type I and II isozymes of protein kinase A (PKA). The type I (PKA-I) isozyme is predominantly associated with the plasma membrane, whereas the type II (PKA-II) isozyme is primarily localized to the cytosol. Because the functions of both PKA-I and PKA-II isozymes in the biochemical events of T lymphocyte activation have not been clearly elucidated, we tested the hypothesis that very early events of normal human T lymphocyte activation are mediated by the PKA-I and/or PKA-II isozyme(s). Fresh normal human T cells and a normal human CD4+ T cell line (GK606) activated with anti-CD3-epsilon and recombinant interleukin 1 alpha (rIL-1 alpha) exhibited a peak six- to sevenfold increase of PKA phosphotransferase activity at 5 min that returned to baseline by 60 min. Similarly, both fresh T cells and the T cell line activated by phorbol myristate acetate and ionomycin demonstrated a peak eightfold increase of PKA activity by 15 min that returned toward baseline by 60 min. Chromatographic separation of the PKA isozymes and quantification of phosphotransferase activities after T cell activation by either agonist pair showed preferential activation of the PKA-I isozyme, resulting in a significant reduction in the ratio of PKA-I to PKA-II isozyme activity from 3.1:1-6.2:1 to 1.1:1-3.2:1. PKA-I isozyme activation resulted in the release of free catalytic (C) subunit, an increase in C subunit phosphotransferase activity, and the phosphorylation of T cell plasma membrane-associated proteins, p14, p17, p20, p21, p38, and p48. However, activation of the PKA-I isozyme did not appear to be required for the transcription of IL-2 mRNA, an event necessary for mitosis. These data indicate that ligand-induced T cell activation is associated with rapid activation of the PKA-I, but not PKA-II, isozyme that results in phosphorylation of plasma membrane-associated proteins. The involvement of the PKA-I isozyme during the very early events of T cell

  5. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  6. Mapping the Homodimer Interface of an Optimized, Artificial, Transmembrane Protein Activator of the Human Erythropoietin Receptor

    PubMed Central

    Bears, Zachary; Barrera, Francisco N.; Alonso, Miriam; Engelman, Donald M.; DiMaio, Daniel

    2014-01-01

    Transmembrane proteins constitute a large fraction of cellular proteins, and specific interactions involving membrane-spanning protein segments play an important role in protein oligomerization, folding, and function. We previously isolated an artificial, dimeric, 44-amino acid transmembrane protein that activates the human erythropoietin receptor (hEPOR) in trans. This artificial protein supports limited erythroid differentiation of primary human hematopoietic progenitor cells in vitro, even though it does not resemble erythropoietin, the natural ligand of this receptor. Here, we used a directed-evolution approach to explore the structural basis for the ability of transmembrane proteins to activate the hEPOR. A library that expresses thousands of mutants of the transmembrane activator was screened for variants that were more active than the original isolate at inducing growth factor independence in mouse cells expressing the hEPOR. The most active mutant, EBC5-16, supports erythroid differentiation in human cells with activity approaching that of EPO, as assessed by cell-surface expression of glycophorin A, a late-stage marker of erythroid differentiation. EBC5-16 contains a single isoleucine to serine substitution at position 25, which increases its ability to form dimers. Genetic studies confirmed the importance of dimerization for activity and identified the residues constituting the homodimer interface of EBC5-16. The interface requires a GxxxG dimer packing motif and a small amino acid at position 25 for maximal activity, implying that tight packing of the EBC5-16 dimer is a crucial determinant of activity. These experiments identified an artificial protein that causes robust activation of its target in a natural host cell, demonstrated the importance of dimerization of this protein for engagement of the hEPOR, and provided the framework for future structure-function studies of this novel mechanism of receptor activation. PMID:24788775

  7. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation.

    PubMed

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-08-27

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  8. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation

    PubMed Central

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-01-01

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  9. Multiple protein-protein interactions converging on the Prp38 protein during activation of the human spliceosome.

    PubMed

    Schütze, Tonio; Ulrich, Alexander K C; Apelt, Luise; Will, Cindy L; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C

    2016-02-01

    Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein-protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein-protein interaction platform that might organize the relative positioning of other proteins during splicing. PMID:26673105

  10. Activation of protein kinase C in permeabilized human neuroblastoma SH-SY5Y cells.

    PubMed

    Larsson, C; Saermark, T; Mau, S; Simonsson, P

    1992-08-01

    The activation of protein kinase C was investigated in digitonin-permeabilized human neuroblastoma SH-SY5Y cells by measuring the phosphorylation of the specific protein kinase C substrate myelin basic protein4-14. The phosphorylation was inhibited by the protein kinase C inhibitory peptide PKC19-36 and was associated to a translocation of the enzyme to the membrane fractions of the SH-SY5Y cells. 1,2-Dioctanoyl-sn-glycerol had no effect on protein kinase C activity unless the calcium concentration was raised to concentrations found in stimulated cells (above 100 nM). Calcium in the absence of other activators did not stimulate protein kinase C. Phorbol 12-myristate 13-acetate was not dependent on calcium for the activation or the translocation of protein kinase C. The induced activation was sustained for 10 min, and thereafter only a small net phosphorylation of the substrate could be detected. Calcium or dioctanoylglycerol, when applied alone, only caused a minor translocation, whereas in combination a marked translocation was observed. Arachidonic acid (10 microM) enhanced protein kinase C activity in the presence of submaximal concentrations of calcium and dioctanoylglycerol. Quinacrine and p-bromophenacyl bromide did not inhibit calcium- and dioctanoylglycerol-induced protein kinase C activity at concentrations which are considered to be sufficient for phospholipase A2 inhibition.

  11. Tryptase Activation of Immortalized Human Urothelial Cell Mitogen-Activated Protein Kinase

    PubMed Central

    Marentette, John O.; Hauser, Paul J.; Hurst, Robert E.; Klumpp, David J.; Rickard, Alice; McHowat, Jane

    2013-01-01

    The pathogenesis of interstitial cystitis/painful bladder syndrome (IC/PBS) is multifactorial, but likely involves urothelial cell dysfunction and mast cell accumulation in the bladder wall. Activated mast cells in the bladder wall release several inflammatory mediators, including histamine and tryptase. We determined whether mitogen-activated protein (MAP) kinases are activated in response to tryptase stimulation of urothelial cells derived from human normal and IC/PBS bladders. Tryptase stimulation of normal urothelial cells resulted in a 2.5-fold increase in extracellular signal regulated kinase 1/2 (ERK 1/2). A 5.5-fold increase in ERK 1/2 activity was observed in urothelial cells isolated from IC/PBS bladders. No significant change in p38 MAP kinase was observed in tryptase-stimulated normal urothelial cells but a 2.5-fold increase was observed in cells isolated from IC/PBS bladders. Inhibition of ERK 1/2 with PD98059 or inhibition of p38 MAP kinase with SB203580 did not block tryptase-stimulated iPLA2 activation. Incubation with the membrane phospholipid-derived PLA2 hydrolysis product lysoplasmenylcholine increased ERK 1/2 activity, suggesting the iPLA2 activation is upstream of ERK 1/2. Real time measurements of impedance to evaluate wound healing of cell cultures indicated increased healing rates in normal and IC/PBS urothelial cells in the presence of tryptase, with inhibition of ERK 1/2 significantly decreasing the wound healing rate of IC/PBS urothelium. We conclude that activation of ERK 1/2 in response to tryptase stimulation may facilitate wound healing or cell motility in areas of inflammation in the bladder associated with IC/PBS. PMID:23922867

  12. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    PubMed Central

    Salazar, Ma Isabel; Pérez-García, Marissa; Terreros-Tinoco, Marisol; Castro-Mussot, María Eugenia; Diegopérez-Ramírez, Jaime; Ramírez-Reyes, Alma Griselda; Aguilera, Penélope; Cedillo-Barrón, Leticia; García-Flores, María Martha

    2013-01-01

    An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2. PMID:24302878

  13. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  14. The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets

    PubMed Central

    Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.

    1972-01-01

    Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802

  15. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Chan, Wai Yee

    2015-12-01

    Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.

  16. Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors

    SciTech Connect

    Xu, Shihua; McKeever, Brian M.; Wisniewski, Douglas; Miller, Douglas K.; Spencer, Robert H.; Chu, Lin; Ujjainwalla, Feroze; Yamin, Ting-Ting; Evans, Jilly F.; Becker, Joseph W.; Ferguson, Andrew D.

    2007-12-01

    The expression, purification and crystallization of human 5-lipoxygenase-activating protein in complex with two leukotriene-biosynthesis inhibitors is decribed. The processes that were used to generate diffraction quality crystals are presented in detail. The nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) plays an essential role in leukotriene synthesis. Recombinant full-length human FLAP with a C-terminal hexahistidine tag has been expressed and purified from the cytoplasmic membrane of Escherichia coli. Diffraction-quality crystals of FLAP in complex with leukotriene-synthesis inhibitor MK-591 and with an iodinated analogue of MK-591 have been grown using the sitting-drop vapor-diffusion method. The crystals exhibit tetragonal symmetry (P42{sub 1}2) and diffracted to a resolution limit of 4 Å.

  17. Impaired telomerase activity in human cells expressing GFP-Ku86 fusion proteins.

    PubMed

    Badie, C; Yáñez-Muñoz, R J; Muller, C; Salles, B; Porter, A C G

    2008-01-01

    The Ku heterodimer is a DNA end-binding protein that promotes the non-homologous end joining (NHEJ) pathway of DNA double strand break (DSB) repair by recruiting the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). Ku is also a normal component of telomeres where it is required for telomere maintenance, interacting not only with the DNA but also with various telomere proteins including telomerase. The way in which Ku simultaneously plays such distinct roles, end-joining at DSBs and end-maintenance at telomeres, is unclear. One way to address this is to study cells in which the NHEJ and telomeric roles of Ku have been separated. Here we describe human cells that express fusions between the large human Ku subunit (Ku86) and a fluorescent protein tag. These cells have reduced telomerase activity and increased sensitivity to ionizing radiation (IR) but no change in their DNA-PK activity or in the DNA end-binding of endogenous Ku. Cells with particularly large amounts of one fusion protein undergo progressive telomere shortening and cellular senescence. These data are consistent with models in which Ku recruits telomerase to telomeres or activates recruited telomerase and suggest that the Ku86 fusion proteins specifically block this role. PMID:19188702

  18. Inhibition by ajoene of protein tyrosine phosphatase activity in human platelets.

    PubMed

    Villar, R; Alvariño, M T; Flores, R

    1997-02-01

    The effects of ajoene (a potent antithrombotic agent obtained from garlic) on the tyrosine phosphorylation status of human platelet proteins were investigated by immunoblotting-based experiments using an anti-phosphotyrosine antibody. Incubation of platelets with ajoene enhanced the phosphorylation of at least four proteins (estimated MWs 76, 80, 84 and 120 kDa), both in resting platelets and in platelets subsequently stimulated with thrombin (0.1 U/ml). This effect was both dose- and incubation-time-dependent. High concentrations of ajoene (50 microM) or long periods of incubation (10 min) led to nonselective 'hyperphosphorylation' of numerous proteins. The effects of ajoene on protein tyrosine phosphatase (PTP) activity in platelet lysates were also investigated, PTP activity was inhibited when platelets were incubated with ajoene before lysis, but not when ajoene was added to lysates of platelets which had not been pre-exposed to ajoene.

  19. SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms

    PubMed Central

    Ji, Hong-Long; Song, Weifeng; Gao, Zhiqian; Su, Xue-Feng; Nie, Hong-Guang; Jiang, Yi; Peng, Ji-Bin; He, Yu-Xian; Liao, Ying; Zhou, Yong-Jian; Tousson, Albert; Matalon, Sadis

    2009-01-01

    Among the multiple organ disorders caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), acute lung failure following atypical pneumonia is the most serious and often fatal event. We hypothesized that two of the hydrophilic structural coronoviral proteins (S and E) would regulate alveolar fluid clearance by decreasing the cell surface expression and activity of amiloride-sensitive epithelial sodium (Na+) channels (ENaC), the rate-limiting protein in transepithelial Na+ vectorial transport across distal lung epithelial cells. Coexpression of either S or E protein with human α-, β-, and γ-ENaC in Xenopus oocytes led to significant decreases of both amiloride-sensitive Na+ currents and γ-ENaC protein levels at their plasma membranes. S and E proteins decreased the rate of ENaC exocytosis and either had no effect (S) or decreased (E) rates of endocytosis. No direct interactions among SARS-CoV E protein with either α- or γ-ENaC were indentified. Instead, the downregulation of ENaC activity by SARS proteins was partially or completely restored by administration of inhibitors of PKCα/β1 and PKCζ. Consistent with the whole cell data, expression of S and E proteins decreased ENaC single-channel activity in oocytes, and these effects were partially abrogated by PKCα/β1 inhibitors. Finally, transfection of human airway epithelial (H441) cells with SARS E protein decreased whole cell amiloride-sensitive currents. These findings indicate that lung edema in SARS infection may be due at least in part to activation of PKC by SARS proteins, leading to decreasing levels and activity of ENaC at the apical surfaces of lung epithelial cells. PMID:19112100

  20. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cells.

    PubMed

    Nishimoto, Arata; Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2013-08-30

    Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cell line COLO205.

  1. Beta 2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils

    PubMed Central

    1994-01-01

    Stimulation of adherent human neutrophils (PMN) with tumor necrosis factor (TNF) triggers protein tyrosine phosphorylation (Fuortes, M., W. W. Jin, and C. Nathan. 1993. J. Cell Biol. 120:777-784). We investigated the dependence of this response on beta 2 integrins by using PMN isolated from a leukocyte adhesion deficiency (LAD) patient, which do not express beta 2 integrins, and by plating PMN on surface bound anti-beta 2 (CD18) antibodies. Protein tyrosine phosphorylation increased in PMN plated on fibrinogen and this phosphorylation was enhanced by TNF. Triggering of protein tyrosine phosphorylation did not occur in LAD PMN plated on fibrinogen either in the absence or the presence of TNF. Surface bound anti-CD18, but not isotype-matched anti- Class I major histocompatibility complex (MHC) antigens, antibodies triggered tyrosine phosphorylation in normal, but not in LAD PMN. As the major tyrosine phosphorylated proteins we found in our assay conditions migrated with an apparent molecular mass of 56-60 kD, we investigated whether beta 2 integrins are implicated in activation of members of the src family of intracellular protein-tyrosine kinases. We found that the fgr protein-tyrosine kinase (p58fgr) activity, and its extent of phosphorylation in tyrosine, in PMN adherent to fibrinogen, was enhanced by TNF. Activation of p58fgr in response to TNF was evident within 10 min of treatment and increased with times up to 30 min. Also other activators of beta 2 integrins such as phorbol-12- myristate 13-acetate (PMA), and formyl methionyl-leucyl-phenylalanine (FMLP), induced activation of p58fgr kinase activity. Activation of p58fgr kinase activity, and phosphorylation in tyrosine, did not occur in PMN of a LAD patient in response to TNF. Soluble anti-CD18, but not anti-Class I MHC antigens, antibodies inhibited activation of p58fgr kinase activity in PMN adherent to fibrinogen in response to TNF, PMA, and FMLP. These findings demonstrate that, in PMN, beta 2 integrins

  2. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity.

    PubMed Central

    Mroczkowski, B; Reich, M; Chen, K; Bell, G I; Cohen, S

    1989-01-01

    NIH 3T3 cells were transfected with cDNA corresponding to human kidney prepro-epidermal growth factor (preproEGF) under control of the inducible mouse metallothionein promoter. The synthesis of recombinant human EGF precursor by these cells has provided us with a model system for analysis of the structure and activity of this precursor. In transfected cells, the precursor was present as an intrinsic 170-kilodalton membrane protein as well as a soluble protein in the extracellular medium; both forms were N glycosylated. Glycosylation of the EGF precursor was determined by (i) the direct incorporation of [3H]mannose and [3H]glucosamine, (ii) metabolic labeling in the presence or absence of glycosylation inhibitors, (iii) enzymatic cleavage of the precursor by N-glycanase or endoglycosidase II, and (iv) lectin chromatography. Recombinant human preproEGF was purified by affinity chromatography, using wheat germ lectin and antibodies to human EGF. The intact precursor was biologically active. Purified preparations of preproEGF (i) competed with 125I-labeled EGF for binding to the EGF receptor in intact fibroblast cells, (ii) activated the intrinsic tyrosine kinase activity of the EGF receptor in membrane preparations, and (iii) sustained the growth of a mouse keratinocyte cell line that is dependent on EGF for growth. These results suggest that proteolytic processing of the precursor may not be essential for its biological function. Images PMID:2789334

  3. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    PubMed Central

    Brumlik, Michael J.; Pandeswara, Srilakshmi; Ludwig, Sara M.; Murthy, Kruthi; Curiel, Tyler J.

    2011-01-01

    Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known. PMID:21637385

  4. Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity

    PubMed Central

    Yan, Wenjun; Wei, Jianchao; Shao, Donghua; Deng, Xufang; Wang, Shaohui; Li, Beibei; Tong, Guangzhi; Ma, Zhiyong

    2013-01-01

    Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was essential for inhibition of IAV replication. Mutation of K51 resulted in an hGBP1 that was unable to inhibit IAV replication. The viral nonstructural protein 1 (NS1) was found to interact directly with hGBP1. K51 of hGBP1 and a region between residues 123 and 144 in NS1 were demonstrated to be essential for the interaction between NS1 and hGBP1. Binding of NS1 to hGBP1 resulted in a significant reduction in both GTPase activity and the anti-IAV activity of hGBP1. These findings indicated that hGBP1 contributed to the host immune response against IAV replication and that hGBP1-mediated antiviral activity was antagonized by NS1 via binding to hGBP1. PMID:23405236

  5. Nonstructural protein 1 of influenza A virus interacts with human guanylate-binding protein 1 to antagonize antiviral activity.

    PubMed

    Zhu, Zixiang; Shi, Zixue; Yan, Wenjun; Wei, Jianchao; Shao, Donghua; Deng, Xufang; Wang, Shaohui; Li, Beibei; Tong, Guangzhi; Ma, Zhiyong

    2013-01-01

    Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was essential for inhibition of IAV replication. Mutation of K51 resulted in an hGBP1 that was unable to inhibit IAV replication. The viral nonstructural protein 1 (NS1) was found to interact directly with hGBP1. K51 of hGBP1 and a region between residues 123 and 144 in NS1 were demonstrated to be essential for the interaction between NS1 and hGBP1. Binding of NS1 to hGBP1 resulted in a significant reduction in both GTPase activity and the anti-IAV activity of hGBP1. These findings indicated that hGBP1 contributed to the host immune response against IAV replication and that hGBP1-mediated antiviral activity was antagonized by NS1 via binding to hGBP1.

  6. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells.

    PubMed

    Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta

    2014-01-01

    Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002-2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.

  7. Short communication: Bovine-derived proteins activate STAT3 in human skeletal muscle in vitro.

    PubMed

    Caldow, M K; Digby, M R; Cameron-Smith, D

    2015-05-01

    Bovine milk contains biologically active peptides that may modulate growth and development within humans. In this study, targeted bovine-derived proteins were evaluated for their effects on signal transducer and activator of transcription-3 (STAT3) phosphorylation in human skeletal muscle cells. Following an acute exposure, bovine-derived acidic fibroblast growth factor-1 (FGF) and leukemia inhibitory factor (LIF) activated STAT3 in differentiating myotubes. Chronic exposure to FGF and LIF during the proliferative phase reduced myoblast proliferation and elevated MyoD and creatine kinase (CKM) mRNA expression without altering apoptotic genes. In mature myotubes, neither FGF nor LIF elicited any action. Together, these data indicate that a reduction in proliferation in the presence of bovine-derived FGF or LIF may stimulate early maturation of myoblasts. PMID:25726111

  8. Human platelet calmodulin-binding proteins: Ca/sup 2 +/-dependent proteolysis upon platelet activation

    SciTech Connect

    Wallace, R.W.; Tallant, E.A.; McManus, M.C.

    1986-05-01

    Calmodulin (CaM)-binding proteins have been identified in human platelets using Western blotting techniques and /sup 125/I-CaM. Ten distinct proteins with molecular weights of 245, 225K, 175K, 150K, 90K, 82K(2), 60K and 41K(2) bound /sup 125/I-CaM in a Ca/sup 2 +/-dependent manner; the binding was blocked by both trifluoperazine and nonradiolabeled CaM. The 225K and 90K proteins were labeled by antisera against myosin light chain kinase (MLCK); the 60K and one of the 82K proteins were identified as the CaM-dependent phosphatase and caldesmon. The remaining proteins have not yet been identified. Most of the CaM-binding proteins were degraded upon addition of Ca/sup 2 +/ to a platelet homogenate; the degradation could be blocked by either EGTA, leupeptin or N-ethyl-maleimide which suggests that it was due to a Ca/sup 2 +/-dependent protease. Activation of intact platelets by thrombin, ADP, collagen and the Ca/sup 2 +/-ionophores A23187 and ionomycin under conditions which promote platelet aggregation (i.e. stirring with extracellular Ca/sup 2 +/) also resulted in limited proteolysis of CaM-binding proteins including those labeled with anti-MLCK and the phosphatase. Many Ca/sup 2 +//CaM-regulated enzymes have been shown to be irreversibly activated in vitro by limited proteolysis. Their data indicates that limited proteolysis also occurs in vivo; under certain conditions proteolysis may be an important physiological mechanism for irreversibly activating Ca/sup 2 +//CaM-regulated enzymes.

  9. The HERV-K Human Endogenous Retrovirus Envelope Protein Antagonizes Tetherin Antiviral Activity

    PubMed Central

    Lemaître, Cécile; Harper, Francis; Pierron, Gérard

    2014-01-01

    ABSTRACT Endogenous retroviruses are the remnants of past retroviral infections that are scattered within mammalian genomes. In humans, most of these elements are old degenerate sequences that have lost their coding properties. The HERV-K(HML2) family is an exception: it recently amplified in the human genome and corresponds to the most active proviruses, with some intact open reading frames and the potential to encode viral particles. Here, using a reconstructed consensus element, we show that HERV-K(HML2) proviruses are able to inhibit Tetherin, a cellular restriction factor that is active against most enveloped viruses and acts by keeping the viral particles attached to the cell surface. More precisely, we identify the Envelope protein (Env) as the viral effector active against Tetherin. Through immunoprecipitation experiments, we show that the recognition of Tetherin is mediated by the surface subunit of Env. Similar to Ebola glycoprotein, HERV-K(HML2) Env does not mediate Tetherin degradation or cell surface removal; therefore, it uses a yet-undescribed mechanism to inactivate Tetherin. We also assessed all natural complete alleles of endogenous HERV-K(HML2) Env described to date for their ability to inhibit Tetherin and found that two of them (out of six) can block Tetherin restriction. However, due to their recent amplification, HERV-K(HML2) elements are extremely polymorphic in the human population, and it is likely that individuals will not all possess the same anti-Tetherin potential. Because of Tetherin's role as a restriction factor capable of inducing innate immune responses, this could have functional consequences for individual responses to infection. IMPORTANCE Tetherin, a cellular protein initially characterized for its role against HIV-1, has been proven to counteract numerous enveloped viruses. It blocks the release of viral particles from producer cells, keeping them tethered to the cell surface. Several viruses have developed strategies to

  10. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo

    PubMed Central

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-01-01

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines. PMID:26635233

  11. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo.

    PubMed

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-12-04

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines.

  12. High-level expression and characterization of a glycosylated human cementum protein 1 with lectin activity.

    PubMed

    Romo-Arévalo, Enrique; Arzate, Higinio; Montoya-Ayala, Gonzalo; Rodríguez-Romero, Adela

    2016-01-01

    This work aims to contribute to the knowledge of human cementum protein 1 (CEMP1), its conformational characteristics and influence during the biomineralization process. The results revealed that hrCEMP1 expressed in Pichia pastoris is a 2.4% glycosylated, thermostable protein which possesses a molecular mass of 28,770 Da. The circular dichroism spectrum indicated a secondary structure content of 28.6% of alpha-helix, 9.9% of beta-sheet and 61.5% of random-coil forms. Biological activity assays demonstrated that hrCEMP1 nucleates and regulates hydroxyapatite crystal growth. Hereby, it is demonstrated for the first time that CEMP1 has a (C-type) lectin-like activity and specifically recognizes mannopyranoside. The information produced by this biochemical and structural characterization may contribute to understand more fully the biological functions of CEMP1.

  13. Protein Kinase C Regulation of 12-Lipoxygenase-Mediated Human Platelet Activation

    PubMed Central

    Yeung, Jennifer; Apopa, Patrick L.; Vesci, Joanne; Kenyon, Victor; Rai, Ganesha; Jadhav, Ajit; Simeonov, Anton; Holman, Theodore R.; Maloney, David J.; Boutaud, Olivier

    2012-01-01

    Platelet activation is important in the regulation of hemostasis and thrombosis. Uncontrolled activation of platelets may lead to arterial thrombosis, which is a major cause of myocardial infarction and stroke. After activation, metabolism of arachidonic acid (AA) by 12-lipoxygenase (12-LOX) may play a significant role in regulating the degree and stability of platelet activation because inhibition of 12-LOX significantly attenuates platelet aggregation in response to various agonists. Protein kinase C (PKC) activation is also known to be an important regulator of platelet activity. Using a newly developed selective inhibitor for 12-LOX and a pan-PKC inhibitor, we investigated the role of PKC in 12-LOX-mediated regulation of agonist signaling in the platelet. To determine the role of PKC within the 12-LOX pathway, a number of biochemical endpoints were measured, including platelet aggregation, calcium mobilization, and integrin activation. Inhibition of 12-LOX or PKC resulted in inhibition of dense granule secretion and attenuation of both aggregation and αIIbβ3 activation. However, activation of PKC downstream of 12-LOX inhibition rescued agonist-induced aggregation and integrin activation. Furthermore, inhibition of 12-LOX had no effect on PKC-mediated aggregation, indicating that 12-LOX is upstream of PKC. These studies support an essential role for PKC downstream of 12-LOX activation in human platelets and suggest 12-LOX as a possible target for antiplatelet therapy. PMID:22155783

  14. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  15. Monosodium urate activates Src/Pyk2/PI3 kinase and cathepsin dependent unconventional protein secretion from human primary macrophages.

    PubMed

    Välimäki, Elina; Miettinen, Juho J; Lietzén, Niina; Matikainen, Sampsa; Nyman, Tuula A

    2013-03-01

    Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1β and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of

  16. Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity.

    PubMed Central

    Greenway, A; Azad, A; Mills, J; McPhee, D

    1996-01-01

    It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis. PMID:8794306

  17. Human T-cell activation by 14- and 18-kilodalton nuclear proteins of Leishmania infantum.

    PubMed Central

    Suffia, I; Quaranta, J F; Eulalio, M C; Ferrua, B; Marty, P; Le Fichoux, Y; Kubar, J

    1995-01-01

    Leishmanial antigens which stimulate T lymphocytes from primed individuals may be candidates for a vaccine. We recently found a significant concordance between the humoral response specific for two proteins from Leishmania infantum promastigotes, p14 and p18, and a positive leishmanin delayed-type hypersensitivity reaction, testifying to the occurrence of cell-mediated immunity. In this communication, we describe a partial characterization of these antigens and an in vitro analysis of their capacity to activate primed human T cells. We showed, by immunofluorescent staining and through analysis of subcellular fractions by Western immunoblotting, that in stationary-phase promastigotes, p14 and p18 were located only in the parasite nuclei; in the middle of the log phase, a transitory and only weak expression outside the nucleus was detected. We then showed that p14 and p18 antigens shared a common epitope(s). Finally, we analyzed the in vitro proliferation and interleukin-2 production induced by leishmanial proteins in human peripheral blood mononuclear cells from sensitized subjects. We showed that in some individuals who have been exposed to L. infantum the specific response to the whole lysate was mostly due to the nuclear antigens. We demonstrated directly the capacity of nitrocellulose-bound p14 and p18 to activate in vitro all of the tested primed peripheral blood mononuclear cells, which contrasted with a lack of stimulatory activity of other membrane-bound leishmanial proteins. Taken together, our results suggest that an antigenic determinant(s) dominant for some individuals might exist on both antigens. PMID:7558278

  18. Intrinsic relative activities of κ opioid agonists in activatingproteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  19. Intrinsic Relative Activities of Opioid Agonists in Activatingproteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  20. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    PubMed

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  1. Protein kinase C activates non-capacitative calcium entry in human platelets

    PubMed Central

    Rosado, Juan A; Sage, Stewart O

    2000-01-01

    In many non-excitable cells Ca2+ influx is mainly controlled by the filling state of the intracellular Ca2+ stores. It has been suggested that this store-mediated or capacitative Ca2+ entry is brought about by a physical and reversible coupling of the endoplasmic reticulum with the plasma membrane. Here we provide evidence for an additional, non-capacitative Ca2+ entry mechanism in human platelets. Changes in cytosolic Ca2+ and Sr2+ were measured in human platelets loaded with the fluorescent indicator fura-2. Depletion of the internal Ca2+ stores with thapsigargin plus a low concentration of ionomycin stimulated store-mediated cation entry, as demonstrated upon Ca2+ or Sr2+ addition. Subsequent treatment with thrombin stimulated further divalent cation entry in a concentration-dependent manner. Direct activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate or 1-oleoyl-2-acetyl-sn-glycerol also stimulated divalent cation entry, without evoking the release of Ca2+ from intracellular stores. Cation entry evoked by thrombin or activators of PKC was abolished by the PKC inhibitor Ro-31-8220. Unlike store-mediated Ca2+ entry, jasplakinolide, which reorganises actin filaments into a tight cortical layer adjacent to the plasma membrane, did not inhibit divalent cation influx evoked by thrombin when applied after Ca2+ store depletion, or by activators of PKC. Thrombin also activated Ca2+ entry in platelets in which the release from intracellular stores and store-mediated Ca2+ entry were blocked by xestospongin C. These results indicate that the non-capacitative divalent cation entry pathway is regulated independently of store-mediated entry and does not require coupling of the endoplasmic reticulum and the plasma membrane. These results support the existence of a mechanism for receptor-evoked Ca2+ entry in human platelets that is independent of Ca2+ store depletion. This Ca2+ entry mechanism may be activated by occupation of G-protein-coupled receptors

  2. Regulation of Human CYP2C9 Expression by Electrophilic Stress Involves Activator Protein 1 Activation and DNA Looping

    PubMed Central

    Makia, Ngome L.; Surapureddi, Sailesh; Monostory, Katalin; Prough, Russell A.

    2014-01-01

    Cytochrome P450 (CYP)2C9 and CYP2C19 are important human enzymes that metabolize therapeutic drugs, environmental chemicals, and physiologically important endogenous compounds. Initial studies using primary human hepatocytes showed induction of both the CYP2C9 and CYP2C19 genes by tert-butylhydroquinone (tBHQ). As a pro-oxidant, tBHQ regulates the expression of cytoprotective genes by activation of redox-sensing transcription factors, such as the nuclear factor E2-related factor 2 (Nrf2) and members of the activator protein 1 (AP-1) family of proteins. The promoter region of CYP2C9 contains two putative AP-1 sites (TGAGTCA) at positions −2201 and −1930, which are also highly conserved in CYP2C19. The CYP2C9 promoter is activated by ectopic expression of cFos and JunD, whereas Nrf2 had no effect. Using specific kinase inhibitors for mitogen-activated protein kinase, we showed that extracellular signal-regulated kinase and Jun N-terminal kinase are essential for tBHQ-induced expression of CYP2C9. Electrophoretic mobility shift assays demonstrate that cFos distinctly interacts with the distal AP-1 site and JunD with the proximal site. Because cFos regulates target genes as heterodimers with Jun proteins, we hypothesized that DNA looping might be required to bring the distal and proximal AP-1 sites together to activate the CYP2C9 promoter. Chromosome conformation capture analyses confirmed the formation of a DNA loop in the CYP2C9 promoter, possibly allowing interaction between cFos at the distal site and JunD at the proximal site to activate CYP2C9 transcription in response to electrophiles. These results indicate that oxidative stress generated by exposure to electrophilic xenobiotics and metabolites induces the expression of CYP2C9 and CYP2C19 in human hepatocytes. PMID:24830941

  3. Histamine induces activation of protein kinase D that mediates tissue factor expression and activity in human aortic smooth muscle cells.

    PubMed

    Hao, Feng; Wu, Daniel Dongwei; Xu, Xuemin; Cui, Mei-Zhen

    2012-12-01

    Histamine, an inflammatory mediator, has been shown to influence the pathogenesis of vascular wall cells. However, the molecular basis of its influence is not well understood. Our data reveal that histamine markedly induces protein kinase D (PKD) activation in human aortic smooth muscle cells. PKD belongs to a family of serine/threonine protein kinases, and its function in vascular disease is largely unknown. Our data show that histamine-induced PKD phosphorylation is dependent on the activation of histamine receptor 1 and protein kinase C (PKC). To determine the role of PKD in the histamine pathway, we employed a small-interfering RNA approach to downregulate PKD expression and found that PKD1 and PKD2 are key mediators for expression of tissue factor (TF), which is the key initiator of blood coagulation and is important for thrombosis. Our results show that PKD2 predominantly mediates histamine-induced TF expression via the p38 mitogen-activated protein kinase (MAPK) pathway, whereas PKD1 mediates histamine-induced TF expression through a p38 MAPK-independent pathway. We demonstrate that histamine induces TF expression via the PKC-dependent PKD activation. Our data provide the first evidence that PKD is a new component in histamine signaling in live cells and that PKD has a novel function in the histamine signaling pathway leading to gene expression, as evidenced by TF expression. Importantly, our data reveal a regulatory link from histamine to PKD and TF, providing new insights into the mechanisms of coagulation and the development of atherothrombosis.

  4. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  5. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  6. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  7. A human chromosome 12-associated 83-kilodalton cellular protein specifically binds to the loop region of human immunodeficiency virus type 1 trans-activation response element RNA.

    PubMed Central

    Hart, C E; Saltrelli, M J; Galphin, J C; Schochetman, G

    1995-01-01

    trans activation of human immunodeficiency virus type 1 (HIV-1) involves the viral trans-activator protein (Tat) and a cellular factor(s) encoded on human chromosome 12 (HuChr12) that targets the trans-activation response element (TAR) in the viral long terminal repeat. Because nascent TAR RNA is predicted to form a secondary structure that specifically binds cellular proteins, we investigated the composition of the TAR RNA-protein complex for HuChr12-specific proteins. UV cross-linking of TAR RNA-nuclear protein complexes formed in vitro identified an 83-kDa protein in human cells and in a human-hamster hybrid cell containing only HuChr12. The 83-kDa TAR RNA-binding protein was absent in the parental hamster cells. TAR RNA mutations that inhibited binding of the 83-kDa protein in vitro also inhibited HuChr12-dependent Tat trans activation. These TAR mutations changed the native sequence or secondary structure of the TAR loop. The TAR RNA binding activity of the 83-kDa protein also correlated with a HuChr12-dependent increase in steady-state HIV-1 RNA expression during Tat trans activation. Our results suggest that either a species-specific 83-kDa TAR RNA loop-binding protein is directly encoded on HuChr12 or a HuChr12 protein(s) induces the expression of an 83-kDa TAR-binding protein in nonprimate cells. PMID:7666565

  8. Human keratin 8 variants promote mouse acetaminophen hepatotoxicity coupled with JNK activation and protein adduct formation

    PubMed Central

    Guldiken, Nurdan; Zhou, Qin; Kucukoglu, Ozlem; Rehm, Melanie; Levada, Kateryna; Gross, Annika; Kwan, Raymond; James, Laura P.; Trautwein, Christian; Omary, M. Bishr; Strnad, Pavel

    2015-01-01

    Background and aims Keratins 8 and 18 (K8/K18) are the intermediate filaments proteins of simple-type digestive epithelia, and provide important cytoprotective function. K8/K18 variants predispose humans to chronic liver disease progression and to poor outcomes in acute acetaminophen (APAP)-related liver failure. Given that K8 G62C and R341H/R341C are common K8 variants in European and North American populations, we studied their biological significance using transgenic mice. Methods Mice that overexpress the human K8 variants R341H or R341C were generated and used together with previously described mice that overexpress wild-type (WT) K8 or K8 G62C. Mice were injected with 600 mg/kg APAP, or underwent bile duct ligation (BDL). Livers were evaluated by microarray analysis, quantitative RT-PCR, immunoblotting, histological and immunological staining, and biochemical assays. Results Under basal conditions, the K8 G62C/R341H/R341C variant-expressing mice did not show an obvious liver phenotype or altered keratin filament distribution, while K8 G62C/R341C animals had aberrant disulphide-crosslinked keratins. Animals carrying the K8 variants displayed limited gene expression changes but had lower nicotinamide N-methyl transferase (NNMT) levels and were predisposed to APAP-induced hepatotoxicity. NNMT represents a novel K8/K18-associated protein that becomes upregulated after K8/K18 transfection. The more pronounced liver damage was accompanied by increased and prolonged JNK activation; elevated APAP protein adducts; K8 hyperphosphorylation at S74/S432 with enhanced K8 solubility; and prominent pericentral keratin network disruption. No differences in APAP serum levels, glutathione or ATP levels were noted. BDL resulted in similar liver injury and biliary fibrosis in all mouse genotypes. Conclusion Expression of human K8 variants G62C, R341H, or R341C in mice predisposes to acute acetaminophen hepatotoxicity, thereby providing direct evidence for the importance of these

  9. Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1

    PubMed Central

    2014-01-01

    Background Whereas severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is associated with severe disease, human coronavirus HKU1 (HCoV-HKU1) commonly circulates in the human populations causing generally milder illness. Spike (S) protein of SARS-CoV activates the unfolded protein response (UPR). It is not understood whether HCoV-HKU1 S protein has similar activity. In addition, the UPR-activating domain in SARS-CoV S protein remains to be identified. Results In this study we compared S proteins of SARS-CoV and HCoV-HKU1 for their ability to activate the UPR. Both S proteins were found in the endoplasmic reticulum. Transmembrane serine protease TMPRSS2 catalyzed the cleavage of SARS-CoV S protein, but not the counterpart in HCoV-HKU1. Both S proteins showed a similar pattern of UPR-activating activity. Through PERK kinase they activated the transcription of UPR effector genes such as Grp78, Grp94 and CHOP. N-linked glycosylation was not required for the activation of the UPR by S proteins. S1 subunit of SARS-CoV but not its counterpart in HCoV-HKU1 was capable of activating the UPR. A central region (amino acids 201–400) of SARS-CoV S1 was required for this activity. Conclusions SARS-CoV and HCoV-HKU1 S proteins use distinct UPR-activating domains to exert the same modulatory effects on UPR signaling. PMID:24410900

  10. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  11. Modeling anhydrobiosis: activation of the mitogen-activated protein kinase ERK by dehydration in both human cells and nematodes.

    PubMed

    Huang, Zebo; Banton, Matthew C; Tunnacliffe, Alan

    2010-12-01

    Anhydrobiosis ("life without water") is the state of suspended animation that certain organisms, including some nematodes, tardigrades, and bdelloid rotifers, enter during desiccation. Extreme water loss imposes considerable stress on biomolecules, cells, and tissues, and must require specific sensing and response mechanisms for survival. However, these mechanisms are poorly understood, in part owing to the lack of amenable model systems. We have, therefore, begun to develop mammalian cell lines as tools for investigating the eukaryotic response to desiccation, and have an additional long-term goal of generating a desiccation-tolerant mammalian cell. Here, we investigate the role of the mitogen-activated protein kinases (MAPKs) in controlling gene expression in response to evaporative water loss. We report that the ERK MAPK pathway inhibitor U0126 can almost completely block induction of desiccation early response genes in a human cell line, suggesting a role for the ERK signal transduction pathway in the stress response. Accordingly, ERK is activated by phosphorylation during desiccation of human cells. Importantly, nematodes also activate ERK on drying, showing that the mammalian cell model behaves similarly to invertebrates experiencing similar stress conditions. We further reveal that, in response to desiccation, human cells can rapidly initiate complex stress signaling networks involving all three MAPK pathways, with transient activation of ERK and sustained activation of JNK and p38. These results are consistent with a role for MAPK pathways in anhydrobiotic adaptation and suggest that non-anhydrobiotes are able to sense and, at least to some extent, respond appropriately to evaporative water loss.

  12. Induction of the Gene Encoding Macrophage Chemoattractant Protein 1 by Orientia tsutsugamushi in Human Endothelial Cells Involves Activation of Transcription Factor Activator Protein 1

    PubMed Central

    Cho, Nam-Hyuk; Seong, Seung-Yong; Huh, Myung-Sook; Kim, Na-Hyun; Choi, Myung-sik; Kim, Ik-sang

    2002-01-01

    Human macrophage chemoattractant protein 1 (MCP-1) is a potent mediator of macrophage migration and therefore plays an essential role in early events of inflammation. In endothelial cells, at least three independent pathways regulate MCP-1 expression by NF-κB and AP-1. Orientia tsutsugamushi causes vasculitis in humans by replicating inside macrophages and endothelial cells. In the present study, we investigated the cis-acting and trans-acting elements involved in O. tsutsugamushi-induced MCP-1 gene expression in human umbilical vein endothelial cells (HUVEC). Although NF-κB activation was observed in HUVEC infected with O. tsutsugamushi, inhibition of NF-κB activation did not affect the MCP-1 expression. However, treatment of HUVEC with extracellular signal-regulated kinase (ERK) kinase inhibitor or p38 mitogen-activated protein kinase (MAPK) inhibitor suppressed expression of MCP-1 mRNA concomitant with downregulation of activator protein 1 (AP-1) activation. Deletion of triphorbol acetate response elements (TRE) at position −69 to −63 of MCP-1 gene abolished inducible promoter activity. Deletion of TRE at position −69 to −63−96 to −90 or deletion of NF-κB-binding site at position −69 to −63−88 to −79 did not affect the inducibility of promoter. Site-directed mutagenesis of the NF-κB binding sites at positions −2640 to −2632, −2612 to −2603 in the enhancer region, or the AP-1 biding site at position −2276 to −2270 decreased the inducible activity of the promoter. Taken together, AP-1 activation by both the ERK pathway and the p38 MAPK pathway as well as their binding to TRE at position −69 to −63 in proximal promoter and TRE at position −2276 to −2270 in enhancer region is altogether essential in induction of MCP-1 mRNA in HUVEC infected with O. tsutsugamushi. Although NF-κB activation is not essential per se, the κB site in the enhancer region is important in MCP-1 induction of HUVEC. This discrepancy in the

  13. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone

    PubMed Central

    Cheng, Shu-Meng; Lin, Wei-Hsiang; Lin, Chin-Sheng; Ho, Ling-Jun; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lai, Jenn-Haung

    2015-01-01

    Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-κB) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-κB in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH2-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-κB signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders. PMID:25073960

  14. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases.

    PubMed Central

    Ito, T; Sasaki, Y; Wands, J R

    1996-01-01

    The receptor insulin substrate 1 protein (IRS-1) is a specific substrate for insulin receptor tyrosine kinase. Expression and tyrosyl phosphorylation of IRS-1 play an important role during normal hepatocyte growth, and the gene is overexpressed in hepatocellular carcinoma tissue. We determined if IRS-1 overexpression directly contributes to cellular transformation. The human IRS-1 gene was subcloned into a mammalian expression vector driven by the cytomegalovirus early promoter. NIH 3T3 cells transiently transfected with this vector subsequently developed transformed foci. Several stably transfected cell lines were established, and they grew efficiently under low-serum conditions and formed colonies when plated in soft agar. Cell lines overexpressing IRS-1 displayed increased tyrosyl phosphorylation of IRS-1 and association with Grb2 but not with the p85 subunit of phosphatidylinositol 3' kinase. Since Grb2 is a component of the son-of-sevenless-Ras pathway and upstream in the mitogen-activated protein kinase (MAPK) cascade, enzymatic activities of the major components of this cascade, such as MAPK kinase and MAPK were evaluated and found to be substantially increased in three independent cell lines with IRS-1 protein overexpression. Such cells, when injected into nude mice, were highly tumorigenic, and there may be a correlation between the degree of MAPK activation and tumor growth rate. This report describes the generation of a transformed phenotype by overexpression of a molecule without a catalytic domain far upstream in the signal transduction cascade and suggests that prolonged activation of MAPKs by this mechanism may be one of the molecular events related to hepatocellular transformation. PMID:8622697

  15. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  16. Sleep Loss Activates Cellular Inflammation and Signal Transducer and Activator of Transcription (STAT) Family Proteins in Humans

    PubMed Central

    Irwin, Michael R.; Witarama, Tuff; Caudill, Marissa; Olmstead, Richard; Breen, Elizabeth Crabb

    2014-01-01

    Sleep disturbance and short sleep duration are associated with inflammation and related disorders including cardiovascular disease, arthritis, diabetes mellitus, and certain cancers. This study was undertaken to test the effects of experimental sleep loss on spontaneous cellular inflammation and activation of signal transducer and activator of transcription (STAT) family proteins, which together promote an inflammatory microenvironment. In 24 healthy adults (16 females; 8 males), spontaneous production of IL-6 and TNF in monocytes and spontaneous intranuclear expression of activated STAT1, STAT3, and STAT5 in peripheral blood mononuclear cells (PBMC), monocyte-, and lymphocyte populations were measured in the morning after uninterrupted baseline sleep, partial sleep deprivation (PSD, sleep period from 3 a.m. to 7 a.m.), and recovery sleep. Relative to baseline, spontaneous monocytic expression of IL-6 and TNF-α was significantly greater after PSD (P<0.02) and after recovery sleep (P<0.01). Relative to baseline, spontaneous monocytic expression of activated STAT 1 and STAT 5 was significantly greater after recovery sleep (P<0.007P<0.02, respectively) but not STAT 3 (P=0.09). No changes in STAT1, STAT3, or STAT5 were found in lymphocyte populations. Sleep loss induces activation of spontaneous cellular innate immunity and of STAT family proteins, which together map the dynamics of sleep loss on the molecular signaling pathways that regulate inflammatory and other immune responses. Treatments that target short sleep duration have the potential to constrain inflammation and reduce the risk for inflammatory disorders and some cancers in humans. PMID:25451613

  17. Exploring the interaction between picoplatin and human serum albumin: The effects on protein structure and activity.

    PubMed

    Wang, Yanqing; Wu, Peirong; Zhou, Xinchun; Zhang, Hongmei; Qiu, Ligan; Cao, Jian

    2016-09-01

    For the first time, the effects of picoplatin on the structure and esterase-like catalytic activity of human serum albumin (HSA) have been investigated by spectroscopic approaches and molecular modeling. The circular dichroism (CD) spectral examinations indicated that the binding of picoplatin with HSA induced a slight decrease of a-helix content of protein and unfolded the constituent polypeptides of the protein. The synchronous fluorescence and three-dimensional fluorescence spectral methods were used to estimate the effect of picoplatin on the micro-environmental changes of the Trp and Tyr residues of HSA, indicating that the micro-environment around the Tyr and Trp residue is partly disturbed by picoplatin. UV-vis absorption spectral result indicated the formation of the ground state complex between picoplatin with HSA. The ANS binding assay indicated the existence of competitive combination of picoplatin and ANS with HSA. The studies on the effects of picoplatin on the binding of HSA with bilirubin and heme showed that picoplatin binding caused a change of angle between two chromophores of bound bilirubin and the binding site of picoplatin does not locate in subdomain IB in HSA that bound with heme. The molecular modeling results showed that picoplatin binds to the connection between domain I and domain II by hydrophobic, hydrogen bonds, and van der Waals forces. In addition, HSA maintains most of its esterase activity in the presence of picoplatin. The investigations on how picoplatin interacts with HSA are important for the understanding of the anticancer mechanism and toxicity of platinum-based anticancer drug. PMID:27484966

  18. Fibroblast Activation Protein Expression by Stromal Cells and Tumor-Associated Macrophages in Human Breast Cancer

    PubMed Central

    Julia, Tchou; Zhang Paul, J; Yingtao, Bi; Celine, Satija; Rajrupa, Marjumdar; Stephen, TL; Lo, A; Haiying, Chen; Carolyn, Mies; June, Carl H; Jose, Conejo-Garcia; Ellen, Puré

    2013-01-01

    Summary Fibroblast activation protein (FAP) has long been known to be expressed in the stroma of breast cancer. However, very little is known if the magnitude of FAP expression within the stroma may have prognostic value and reflect the heterogeneous biology of the tumor cell. An earlier study had suggested that stromal FAP expression in breast cancer was inversely proportional to prognosis. We, therefore, hypothesized that stromal FAP expression may correlate with clinicopathologic variables and may serve as an adjunct prognostic factor in breast cancer. We evaluated the expression of FAP in a panel of breast cancer tissues (n=52) using a combination of immunostain analyses at the tissue and single cell level using freshly frozen or freshly digested human breast tumor samples respectively. Our results showed that FAP expression was abundantly expressed in the stroma across all breast cancer subtypes without significant correlation with clinicopathologic factors. We further identified a subset of FAP positive or FAP+ stromal cells that also expressed CD45, a pan-leukocyte marker. Using freshly dissociated human breast tumor specimens (n=5), we demonstrated that some of these FAP+ CD45+ cells were CD11b+CD14+MHC-II+ indicating that they were likely tumor associated macrophages (TAMs). Although FAP+CD45+ cells have been demonstrated in the mouse tumor stroma, our results demonstrating that human breast TAMs expressed FAP was novel and suggested that existing and future FAP directed therapy may have dual therapeutic benefits targeting both stromal mesenchymal cells and immune cells such as TAMs. More work is needed to explore the role of FAP as a potential targetable molecule in breast cancer treatment. PMID:24074532

  19. Human T-lymphotropic virus tax activates human cytomegalovirus major-immediate early promoter and improves production of recombinant proteins in HEK293 cells.

    PubMed

    Lwa, Teng Rhui; Lee, Jialing; Ng, Chew Har; Lew, Qiao Jing; Hia, Hui Ching; Chao, Sheng-Hao

    2011-01-01

    The human cytomegalovirus (CMV) major immediate-early (MIE) promoter is widely used in mammalian cells for production of recombinant proteins. It is of great interest to further enhance protein production driven by the CMV promoter. Here, we report that the Tax protein of human T-lymphotropic virus stimulates the transgene expression under the control of CMV MIE promoter in HEK293 cells. At least threefold increases in transient production of recombinant proteins, including luciferase and two biopharmaceutical proteins (erythropoietin and interferon-γ), were detected. Furthermore, cyclic adenosine monophosphate (AMP)-response element binding protein 2 (CREB2) was identified as a cellular cofactor, which might be responsible for Tax transactivation of the CMV MIE promoter. Our results not only demonstrate the potential use of this novel expression strategy for improvement of recombinant protein production in HEK293 cells but also provide the molecular mechanism for Tax-mediated activation of CMV MIE promoter. PMID:21425252

  20. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    PubMed Central

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  1. Human endogenous retrovirus HERV-K(HML-2) proviruses with Rec protein coding capacity and transcriptional activity.

    PubMed

    Mayer, Jens; Ehlhardt, Sandra; Seifert, Markus; Sauter, Marlies; Müller-Lantzsch, Nikolaus; Mehraein, Yasmin; Zang, Klaus-Dieter; Meese, Eckart

    2004-04-25

    The human endogenous retrovirus family HERV-K(HML-2) encodes the so-called Rec protein that displays functional similarities to the HIV(REV) protein. The number of proviruses producing Rec protein was hitherto unknown. We therefore analyzed the human genome sequence data and determined seven HERV-K(HML-2) proviruses potentially capable of producing Rec both on the mRNA and the protein level. We analyzed Rec mRNA expression in the Tera-1 cell line and in synovial tissue, and in the expressed sequence tag (EST) database. Diagnostic nucleotides assigned transcriptionally active and Rec-encoding proviruses to human chromosomes 6, 7, 11, and 12. Differently spliced mRNAs were also identified. The various active proviruses encode almost identical Rec proteins. Our study contributes to the understanding of the biology of HERV-K(HML-2) Rec protein. Our study further demonstrates that minor sequence differences among proviruses allow assigning HERV transcripts to particular proviral loci. Extended studies will eventually yield a more complete image of HERV transcription, regulation, and biological significance in diverse human tissues.

  2. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells.

    PubMed

    Pérez-Pérez, Antonio; Maymó, Julieta; Gambino, Yésica; Dueñas, José L; Goberna, Raimundo; Varone, Cecilia; Sánchez-Margalet, Víctor

    2009-11-01

    Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [(3)H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.

  3. Phorbol ester-induced activation of protein kinase C leads to increased formation of diacylglycerol in human neutrophils

    SciTech Connect

    Faellman, M.; Stendahl, O.; Andersson, T. )

    1989-03-01

    Human neutrophils stimulated with a phorbol ester (phorbol 12-myristate 13-acetate or phorbol 12,13-dibutyrate) responded with an increase in diacylglycerol, considered the natural activator of protein kinase C. The amounts of diacylglycerol formed were considerable, reaching 700-900% of basal after 20 minutes. In contrast, 4-{alpha}-phorbol 12-myristate 13-acetate did not induce any detectable formation of diacylglycerol. Simultaneously, phorbol 12-myristate 13-acetate exposure caused increased breakdown of both phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. These results suggest that once activated, protein kinase C can positively modulate its own activity by inducing additional formation of diacylglycerol from at least two different sources.

  4. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    SciTech Connect

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A.; Lees-Miller, S.P.; Lintott, L.G.; Sakaguchi, Kazuyasu; Appella, E.

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  5. APCAP - activated protein C in acute pancreatitis: a double-blind randomized human pilot trial

    PubMed Central

    2010-01-01

    Introduction Previous human studies have shown low activity of protein C (APC) in severe acute pancreatitis (SAP). This, together with the findings in animal models, suggests that activated protein C (APC) may protect against pancreatic injury and ameliorate the disease. We, therefore, evaluated its effect on multiple organ dysfunction (MOD) measured by the SOFA (Sequential Organ Failure Assessment) and on organ-failure-free days, and the safety of APC in SAP. Methods A prospective double blind randomized pilot study was use. The study occurred in one university hospital tertiary intensive care unit (ICU) with eight beds. The patients were chosen according to the following inclusion criteria: 1) Those admitted to the hospital < 96 h from the onset of pain, 2) Those who had a three-fold increase in serum amylase over normal upper range or/and in whom computed tomography (CT) verification of SAP was noted, 3) Those who had one or more organ dysfunction (OD), and 4) Those in whom less than 48 hours had passed since their first OD. Of a total of 215 adult patients with SAP screened between June 2003 and August 2007, 158 fulfilled the study inclusion criteria. After exclusions 32 patients were randomized to the study. The intervention consisted of APC (N = 16) administered intravenously for 96 hours with a dose of 24 μg/kg/hour or placebo (N = 16) with a similar infusion rate. The sample size for the study was calculated according to the primary end-point: the change in SOFA during study drug infusion (Days 0 and 5). Comparisons between the study groups were performed using patient-related changes and calculation of difference in means (DIM, 95% CIs) and regarding categorical variables with Fisher's exact test. For all comparisons P < 0.05 was considered significant. Results No serious bleeding was detected clinically or by CT scans in either group. No significant difference in SOFA score change between the APC and placebo groups was found (difference in means (DIM) +2

  6. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    PubMed Central

    Yang, Jing; Ye, Ling; Hui, Tian-Qian; Yang, Dong-Mei; Huang, Ding-Ming; Zhou, Xue-Dong; Mao, Jeremy J; Wang, Cheng-Lin

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/β-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/β-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/β-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of β-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced β-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of β-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation. PMID:26047580

  7. Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a.

    PubMed Central

    Ziemiecki, A; Müller, R G; Fu, X C; Hynes, N E; Kozma, S

    1990-01-01

    The trk-2h oncogene, isolated from the human breast carcinoma cell line MDA-MB 231 by genomic DNA-transfection into NIH3T3 cells, consists of the trk proto-oncogene receptor kinase domain fused to a N-terminal 41 amino acid activating sequence (Kozma, S.C., Redmond, S.M.S., Xiao-Chang, F., Saurer, S.M., Groner, B. and Hynes, N.E. (1988) EMBO J., 7, 147-154). Antibodies raised against a bacterially produced beta gal-trk receptor kinase fusion protein recognized a 44 kd phosphoprotein phosphorylated on serine, threonine and tyrosine in extracts of trk-2h transformed NIH3T3 cells. In vitro, in the presence of Mn2+/gamma ATP, this protein became phosphorylated extensively on tyrosine. Cells transformed by trk-2h did not, however, show an elevation in total phosphotyrosine. We have cloned and sequenced the cDNA encoding the amino terminal activating sequences of trk-2h (Kozma et al., 1988). The encoded protein has a high basic amino acid content and the gene is expressed as an abundant 1.2 kb mRNA in human, rat and mouse cells. Antipeptide antibodies raised against a C-terminal peptide recognized specifically a 30 kd protein on Western blots of human, rat and mouse cell extracts. Immunofluorescence revealed, in addition to granular cytoplasmic fluorescence, intense nucleolar staining. The high basic amino acid content and nucleolar staining prompted us to investigate whether the 30 kd protein could be a ribosomal protein. Western immunoblotting analysis of 2D-electrophoretically resolved ribosomal proteins indicated that the 30 kd protein is the ribosomal large subunit protein L7a.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 9. PMID:2403926

  8. Altered CYP2C9 Activity Following Modulation of CYP3A4 Levels in Human Hepatocytes: an Example of Protein-Protein Interactions

    PubMed Central

    Tweedie, Donald J.; Chan, Tom S.; Tracy, Timothy S.

    2014-01-01

    Cytochrome P450 (P450) protein-protein interactions resulting in modulation of enzyme activities have been well documented using recombinant isoforms. This interaction has been less clearly demonstrated in a more physiologic in vitro system such as human hepatocytes. As an expansion of earlier work (Subramanian et al., 2010), in which recombinant CYP2C9 activity decreased with increasing levels of CYP3A4, the current study modulated CYP3A4 content in human hepatocytes to determine the impact on CYP2C9. Modulation of CYP3A4 levels in situ was enabled by the use of a long-term human hepatocyte culture model (HepatoPac) shown to retain phenotypic hepatocyte function over a number of weeks. The extended period of culture allowed time for knockdown of CYP3A4 protein by small interfering RNA (siRNA) with subsequent recovery, as well as upregulation through induction with a recovery period. CYP3A4 gene silencing resulted in a 60% decrease in CYP3A4 activity and protein levels with a concomitant 74% increase in CYP2C9 activity, with no change in CYP2C9 mRNA levels. Upon removal of siRNA, both CYP2C9 and CYP3A4 activities returned to pre-knockdown levels. Importantly, modulation of CYP3A4 protein levels had no impact on cytochrome P450 reductase activities or levels. However, the possibility for competition for limiting reductase cannot be ruled out. Interestingly, lowering CYP3A4 levels also increased UDP-glucuronosyltransferase 2B7 activity. These studies clearly demonstrate that alterations in CYP3A4 levels can modulate CYP2C9 activity in situ and suggest that further studies are warranted to evaluate the possible clinical consequences of these findings. PMID:25157098

  9. Anti-immunoglobulin M activates nuclear calcium/calmodulin-dependent protein kinase II in human B lymphocytes

    PubMed Central

    1995-01-01

    We and others have previously shown that the nuclear protein, Ets-1, is phosphorylated in a calcium-dependent manner after ligation of immunoglobulin (Ig) M on B lymphocytes. As this phosphorylation was independent of protein kinase C activity, we tested whether a calcium/calmodulin-dependent protein kinase (CaM kinase) might phosphorylate the Ets-1 protein after elevation of intracellular free calcium concentrations. The dephosphorylated form of Ets-1 has been shown to bind to chromatin, suggesting that the operative kinase should be detectable in the nucleus. We prepared nuclear extracts from two human B cell lines in which increased intracellular free calcium levels correlated with increased phosphorylation of the Ets-1 protein. Activity of the CaM kinases was determined using a synthetic peptide substrate both in the absence and presence of an inhibitor specific for the CaM kinase family, KN-62. Stimulation of cells with anti-IgM led to increased activity of a nuclear kinase that could phosphorylate the peptide, and this activity was reduced by 10 microM KN-62. Kinase activity was reduced in lysates preadsorbed using an antibody specific for CaM kinase II. Two-dimensional phosphopeptide maps of the Ets-1 protein from cells incubated with ionomycin or anti-IgM contained two unique phosphopeptides that were absent in untreated cells. Incubation of isolated Ets-1 protein with purified CaM kinase II produced phosphorylation of peptides that migrated identically to those found in cells incubated with either anti-IgM or ionomycin. These data suggest a model of signal transduction by the antigen receptor on B lymphocytes in which increased intracellular free calcium can rapidly activate nuclear CaM kinase II, potentially resulting in phosphorylation and regulation of DNA-binding proteins. PMID:7500040

  10. Activated protein C: A regulator of human skin epidermal keratinocyte function.

    PubMed

    McKelvey, Kelly; Jackson, Christopher John; Xue, Meilang

    2014-05-26

    Activated protein C (APC) is a physiological anticoagulant, derived from its precursor protein C (PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor (EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC's function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.

  11. Residues in human respiratory syncytial virus P protein that are essential for its activity on RNA viral synthesis.

    PubMed

    Asenjo, Ana; Mendieta, Jesús; Gómez-Puertas, Paulino; Villanueva, Nieves

    2008-03-01

    Human respiratory syncytial virus (HRSV) P protein, 241 amino acid long, is a structural homotetrameric phosphoprotein. Viral transcription and replication processes are dependent on functional P protein interactions inside viral ribonucleoprotein complexes (RNPs). Binding capacity to RNPs proteins and transcription and replication complementation analyses, using inactive P protein variants, have identified residues essential for functional interactions with itself, L, N and M2-1 proteins. P protein may establish some of these interactions as monomer, but efficient viral transcription and replication requires P protein oligomerization through the central region of the molecule. A structurally stable three-dimensional model has been generated in silico for this region (residues 98-158). Our analysis has indicated that P protein residues L135, D139, E140 and L142 are involved in homotetramerization. Additionally, the residues D136, S156, T160 and E179 appear to be essential for P protein activity on viral RNA synthesis and very high turnover phosphorylation at S143, T160 and T210 could regulate it. Thus, compounds targeted to those of these residues, located in the modeled three-dimensional structure, could have specific anti-HRSV effect.

  12. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  13. Activated Protein C Enhances Human Keratinocyte Barrier Integrity via Sequential Activation of Epidermal Growth Factor Receptor and Tie2*

    PubMed Central

    Xue, Meilang; Chow, Shu-Oi; Dervish, Suat; Chan, Yee-Ka Agnes; Julovi, Sohel M.; Jackson, Christopher J.

    2011-01-01

    Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability. PMID:21173154

  14. Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I.

    PubMed Central

    Slamon, D J; Boyle, W J; Keith, D E; Press, M F; Golde, D W; Souza, L M

    1988-01-01

    Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40xI protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40xI was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40xI with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription. Images PMID:2828664

  15. Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I

    SciTech Connect

    Slamon, D.J.; Keith, D.E.; Golde, D.W. ); Boyle, W.J. ); Press, M.F. ); Souza, L.M. )

    1988-03-01

    Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40{sup xI} protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40{sup xI} was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40{sup xI} with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription.

  16. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    SciTech Connect

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J. . E-mail: pestka@msu.edu

    2006-06-15

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1{beta} intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38{sup +} cells. DON-induced p38 activation occurred exclusively in the CD14{sup +} monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response.

  17. In vitro activation of transcription by the human T-cell leukemia virus type I Tax protein.

    PubMed Central

    Matthews, M A; Markowitz, R B; Dynan, W S

    1992-01-01

    The human T-cell leukemia virus type I (HTLV-I) regulatory protein Tax activates transcription of the proviral long terminal repeats and a number of cellular promoters. We have developed an in vitro system to characterize the mechanism by which Tax interacts with the host cell transcription machinery. Tax was purified from cells infected with a baculovirus expression vector. Addition of these Tax preparations to nuclear extracts from uninfected human T lymphocytes activated transcription of the HTLV-I long terminal repeat approximately 10-fold. Transcription-stimulatory activity copurified with the immunoreactive 40-kDa Tax polypeptide on gel filtration chromatography, and, as expected, the effect of recombinant Tax was diminished in HTLV-I-infected T-lymphocyte extracts containing endogenous Tax. Tax-mediated transactivation in vivo has been previously shown to require 21-bp-repeat Tax-responsive elements (TxREs) in the promoter DNA. Stimulation of transcription in vitro was also strongly dependent on these sequences. To investigate the mechanism of Tax transactivation, cellular proteins that bind the 21-bp-repeat TxREs were prepared by DNA affinity chromatography. Recombinant Tax markedly increased the formation of a specific host protein-DNA complex detected in an electrophoretic mobility shift assay. These data suggest that Tax activates transcription through a direct interaction with cellular proteins that bind to the 21-bp-repeat TxREs. Images PMID:1569936

  18. Structural studies of human Naked2: A biologically active intrinsically unstructured protein

    SciTech Connect

    Hu Tianhui; Krezel, Andrzej M.; Li Cunxi; Coffey, Robert J. . E-mail: robert.coffey@vanderbilt.edu

    2006-12-01

    Naked1 and 2 are two mammalian orthologs of Naked Cuticle, a canonical Wnt signaling antagonist in Drosophila. Naked2, but not Naked1, interacts with transforming growth factor-{alpha} (TGF{alpha}) and escorts TGF{alpha}-containing vesicles to the basolateral membrane of polarized epithelial cells. Full-length Naked2 is poorly soluble. Since most functional domains, including the Dishevelled binding region, EF-hand, vesicle recognition, and membrane targeting motifs, reside in the N-terminal half of the protein, we expressed and purified the first 217 residues of human Naked2 and performed a functional analysis of this fragment. Its circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra showed no evidence of secondary and/or tertiary structure. The fragment did not bind calcium or zinc. These results indicate that the N-terminal half of Naked2 behaves as an intrinsically unstructured protein.

  19. Structure of the asparagine-linked sugar chains of porcine kidney and human urine cerebroside sulfate activator protein.

    PubMed

    Faull, K F; Johnson, J; Kim, M J; To, T; Whitelegge, J P; Stevens, R L; Fluharty, C B; Fluharty, A L

    2000-12-01

    The specific sugar residues and their linkages in the oligosaccharides from pig kidney and human urine cerebroside sulfate activator proteins (saposin B), although previously hypothesized, have been unambiguously characterized. Exhaustive sequential exoglycosidase digestion of the trimethyl-p-aminophenyl derivatives, followed by either matrix-assisted laser desorption/ionization and/or mass spectrometry, was used to define the residues and their linkages. The oligosaccharides were enzymatically released from the proteins by treatment with peptidyl-N-glycosidase F and separated from the proteins by reversed-phase high-performance liquid chromatography (HPLC). Reducing termini were converted to the trimethyl-p-aminophenyl derivative and the samples were further purified by normal-phase HPLC. The derivatized carbohydrates were then treated sequentially with a series of exoglycosidases of defined specificity, and the products of each digestion were examined by mass spectrometry. The pentasaccharides from pig kidney and human urine protein were shown to be of the asparagine-linked complex type composed of mannose-alpha 1-6-mannose-beta 1-4-N-acetylglucosamine-N-acetylglucosamine(alpha 1-6-fucose). This highly degraded structure probably represents the final product of intra-lysosomal exoglycosidase digestion. Oligosaccharide sequencing by specific exoglycosidase degradation coupled with mass spectrometry is more rapid than conventional oligosaccharide sequencing. The procedures developed will be useful for sequencing other oligosaccharides including those from other members of the lipid-binding protein class to which cerebroside sulfate activator belongs. (c) 2000 John Wiley & Sons, Ltd.

  20. Stimulus-dependent triggering or inhibition of cytotoxicity in human cytotoxic T lymphocytes by activators of protein kinase C.

    PubMed Central

    Schrezenmeier, H; Kurrle, R; Fleischer, B

    1986-01-01

    The influence of activators of protein kinase C (PKC) on the delivery of the lethal hit by human cytotoxic T lymphocyte (CTL) clones was studied. In the absence of other signals, short-term incubation with two structurally unrelated activators of PKC, but not with a non-activating phorbolester, resulted in significant triggering of CTL, whereas overnight incubation with PKC activators led to reduction of cytotoxic activity. Furthermore, activation of PKC had an inhibitory effect on simultaneous triggering by anti-T3 monoclonal antibodies or by phytohaemagglutinin, but strongly enhanced the activating effect of anti-T11 antibodies. These results suggest that PKC is part of the cascade of signals transmitted within a CTL after triggering. PMID:3491782

  1. Tax-interacting protein 1 coordinates the spatiotemporal activation of Rho GTPases and regulates the infiltrative growth of human glioblastoma

    PubMed Central

    Wang, Hailun; Han, Miaojun; Whetsell, William; Wang, Jialiang; Rich, Jeremy; Hallahan, Dennis; Han, Zhaozhong

    2014-01-01

    PDZ domains represent one group of the major structural units that mediate protein interactions in intercellular contact, signal transduction and assembly of biological machineries. TIP-1 protein is composed of a single PDZ domain that distinguishes TIP-1 from other PDZ domain proteins that more often contain multiple protein domains and function as scaffolds for protein complex assembly. However, the biological functions of TIP-1, especially in cell transformation and tumor progression, are still controversial as observed in a variety of cell types. In this study, we have identified ARHGEF7, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as one novel TIP-1 interacting protein in human glioblastoma cells. We found that the presence of TIP-1 protein is essential to the intracellular redistribution of ARHGEF7 and rhotekin, one Rho effector, and the spatiotemporally coordinated activation of Rho GTPases (RhoA, Cdc42 and Rac1) in migrating glioblastoma cells. TIP-1 knockdown resulted in both aberrant localization of ARHGEF7 and rhotekin, as well as abnormal activation of Rho GTPases that was accompanied with impaired motility of glioblastoma cells. Furthermore, TIP-1 knockdown suppressed tumor cell dispersal in orthotopic glioblastoma murine models. We also observed high levels of TIP-1 expression in human glioblastoma specimens, and the elevated TIP-1 levels are associated with advanced staging and poor prognosis in glioma patients. Although more studies are needed to further dissect the mechanism(s) by which TIP-1 modulates the intracellular redistribution and activation of Rho GTPases, this study suggests that TIP-1 holds potential as both a prognostic biomarker and a therapeutic target of malignant gliomas. PMID:23563176

  2. Controls of Nuclear Factor-Kappa B Signaling Activity by 5’-AMP-Activated Protein Kinase Activation With Examples in Human Bladder Cancer Cells

    PubMed Central

    Kim, Jin

    2016-01-01

    Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-κB) effects are alleviated through differential posttranslational modification of NF-κB phosphorylation after pretreatment with 5´-AMP-activated protein kinase (AMPK) activators such as 5´-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent metformin. We found that AICAR or metformin acts as a regulator of LPS/NF-κB-or hypoxia/NF-κB-mediated cyclooxygenase induction by an AMPK-dependent mechanism with interactions between p65-NF-κB phosphorylation and acetylation, including in a human bladder cancer cell line (T24). In summary, we highlighted the regulatory interactions of AMPK activity on NF-κB induction, particularly in posttranslational phosphorylation and acetylation of NF-κB under inflammatory conditions or hypoxia environment. PMID:27706018

  3. Human Immunodeficiency Virus Integration Protein Expressed in Escherichia Coli Possesses Selective DNA Cleaving Activity

    NASA Astrophysics Data System (ADS)

    Sherman, Paula A.; Fyfe, James A.

    1990-07-01

    The human immunodeficiency virus (HIV) integration protein, a potential target for selective antiviral therapy, was expressed in Escherichia coli. The purified protein, free of detectable contaminating endonucleases, selectively cleaved double-stranded DNA oligonucleotides that mimic the U3 and the U5 termini of linear HIV DNA. Two nucleotides were removed from the 3' ends of both the U5 plus strand and the U3 minus strand; in both cases, cleavage was adjacent to a conserved CA dinucleotide. The reaction was metal-ion dependent, with a preference for Mn2+ over Mg2+. Reaction selectivity was further demonstrated by the lack of cleavage of an HIV U5 substrate on the complementary (minus) strand, an analogous substrate that mimics the U3 terminus of an avian retrovirus, and an HIV U5 substrate in which the conserved CA dinucleotide was replaced with a TA dinucleotide. Such an integration protein-mediated cleavage reaction is expected to occur as part of the integration event in the retroviral life cycle, in which a double-stranded DNA copy of the viral RNA genome is inserted into the host cell DNA.

  4. Thymine and guanine base specificity of human myeloma proteins with anti-DNA activity.

    PubMed Central

    Zouali, M; Stollar, B D

    1986-01-01

    To further our understanding of the molecular basis of DNA-autoantibody interactions, we have characterized the specificities of three IgG human myeloma proteins that bind DNA. We measured their binding to synthetic single- and double-stranded homopolynucleotides, random and alternating copolymers, oligonucleotides, and nucleotides or nucleosides conjugated to non-nucleic acid carriers. All three antibodies bound single-stranded nucleic acids, including both polyribonucleotides and polydeoxyribonucleotides. They varied in relative affinities for polynucleotides of varying base composition. Polymers containing the purines guanine or hypoxanthine and/or the pyrimidine thymine were most reactive with all three proteins. A myeloma protein that reacted with poly(G), poly(I), or poly(dT) also bound to the corresponding nucleosides or nucleotides conjugated to bovine serum albumin. None of the antibodies reacted with base-paired double-helical polynucleotides (double-stranded RNA, RNA-DNA hybrid or double-stranded DNA). The results indicate that base specificity is prominent in their reactions and that the accessible epitopes in single-stranded polynucleotides become masked upon base pairing in double-stranded helices. These findings suggest a model in which positions N1 and O6 of guanine and hypoxanthine and N3 and O4 of thymine interact with amino acids of the antibody-combining site. PMID:3771789

  5. Analysis of the c-src gene product structure, abundance, and protein kinase activity in human neuroblastoma and glioblastoma cells.

    PubMed

    O'Shaughnessy, J; Deseau, V; Amini, S; Rosen, N; Bolen, J B

    1987-01-01

    We have compared in different human neuroblastoma cell lines and human glioblastoma cells the expression level, structure, and tyrosine-specific protein kinase activity of pp60c-src. Our results show that not all human neuroblastoma cell lines express pp60c-src molecules with amino-terminal structural alterations. In neuroblastoma cells which possess pp60c-src with altered gel migration, the diminished polyacrylamide gel mobility of pp60c-src was found not to be dependent upon amino-terminal phosphorylations since extensive treatment of these molecules with phosphatase did not significantly change their gel migration properties. Similar differences in gel migration were observed when RNA from the various neuroblastoma and glioblastoma cells was translated in vitro using either rabbit reticulocyte or wheat germ lysates. White the level of c-src mRNA in the different cells analyzed was found to be similar, the abundance of pp60c-src in these same cells was found to vary by as much as 12-fold. This suggests that the abundance of pp60c-src in human neuroendocrine tumors is regulated through post-transcriptional and/or post-translational events which may be related to the stage of neuronal differentiation of the cells. Based upon determination of pp60c-src abundance by immunoblot analysis, we demonstrate that pp60c-src molecules derived from human neuroblastoma and glioblastoma cells have very similar in vitro protein kinase activities.

  6. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  7. Increasing discordant antioxidant protein levels and enzymatic activities contribute to increasing redox imbalance observed during human prostate cancer progression

    PubMed Central

    Chaiswing, Luksana; Zhong, Weixiong; Oberley, Terry D.

    2014-01-01

    A metabolomics study demonstrated a decrease in glutathione and an increase in cysteine (Cys) levels in human prostate cancer (PCa) tissues as Gleason scores increased, indicating redox imbalance with PCa progression. These results were extended in the present study by analyzing redox state of the protein thioredoxin 1 (Trx1) and sulfinylation (SO3) of peroxiredoxins (Prxs) (PrxsSO3) in PCa tissues and cell lines. Lysates of paired human PCa tissues with varying degree of aggressiveness and adjacent benign (BN) tissues were used for analysis. Redox western blot analysis of Trx1 demonstrated low levels of reduced and high levels of oxidized Trx1 (functional and non-functional, respectively) in high grade PCa (Gleason scores 4+4 to 4+5) in comparison to intermediate grade PCa (Gleason scores 3+3 to 3+4) or BN tissues. PrxsSO3 were increased in high grade PCa. Oxidized Trx1 and PrxsSO3 are indicators of oxidative stress. To study whether redox imbalance may potentially affect enzyme activities of antioxidant proteins (AP), we determined levels of selected AP in PCa tissues by western blot analysis and found that mitochondrial manganese superoxide dismutase (MnSOD), Prx 3, and Trx1 were increased in high grade PCa tissues when compared with BN tissues. Enzyme activities of MnSOD in high grade PCa tissues were significantly increased but at a lower magnitude when compared with the levels of MnSOD protein (0.5 folds vs. 2 folds increase). Trx1 activity was not changed in high grade PCa tissues despite a large increase in Trx1 protein expression. Further studies demonstrated a significant increase in posttranslational modifications of tyrosine and lysine residues in MnSOD protein and oxidation of Cys at active site (Cys 32 and Cys 35) and regulatory site (Cys 62 and Cys 69) of Trx1 in high grade PCa compared to BN tissues. These discordant changes between protein levels and enzyme activities are consistent with protein inactivation by redox imbalance and

  8. Changes in diacylglycerol labeling, cell shape, and protein phosphorylation distinguish triggering from activation of human neutrophils

    SciTech Connect

    Reibman, J.; Korchak, H.M.; Vosshall, L.B.; Haines, K.A.; Rich, A.M.; Weissmann, G.

    1988-05-05

    Upon activation neutrophils release reactive oxygen intermediates such as superoxide anion (O/sub 2//sup -/) which are potent mediators of inflammation. Various agents elicit different responses. In contrast, phorbol myristate acetate (PMA, 1.6 ..mu..M) acting directly via protein kinase C is a potent stimulus for O/sub 2//sup -/. The authors compared the kinetics of appearance of various second messengers with the capacity of these ligands to elicit O/sub 2//sup -/ generation. Kinetic analysis showed a two-phase response to membrane ligands; both an early (greater than or equal to 15 s) and a late (>15 s) increase in (/sup 3/H)- and (/sup 14/C)diacylglycerol (DG) was noted in response to fMLP. In contrast, LTB/sub 4/ elicited only a rapid early increase in DG. The rise in DG evoked by PMA was late. Moreover, comparison of increases in (/sup 3/H)DG versus those of (/sup 14/C)DG at early and late time points suggested that DG was not formed exclusively from the hydrolysis of polyphosphoinositides. Kinetic analysis of protein phosphorylation was compared to the early and late increments of DG labeling. A 47,000 M/sub r/ protein was phosphorylated with kinetics consistent with the production of O/sub 2//sup -/ and DG in response to fMLP and PMA. The temporal pattern of the formation of diacylglycerol and the phosphorylation of proteins describe a dual signal. The data suggest that neutrophils require not only triggering (the rapid generation of a signal) but also activation (the maintenance of a signal) to sustain responses.

  9. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro

    NASA Technical Reports Server (NTRS)

    Lio, Yi-Ching; Mazin, Alexander V.; Kowalczykowski, Stephen C.; Chen, David J.

    2003-01-01

    The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.

  10. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes.

    PubMed Central

    Ahmad, F; Azevedo, J L; Cortright, R; Dohm, G L; Goldstein, B J

    1997-01-01

    Obese human subjects have increased protein-tyrosine phosphatase (PTPase) activity in adipose tissue that can dephosphorylate and inactivate the insulin receptor kinase. To extend these findings to skeletal muscle, we measured PTPase activity in the skeletal muscle particulate fraction and cytosol from a series of lean controls, insulin-resistant obese (body mass index > 30) nondiabetic subjects, and obese individuals with non-insulin-dependent diabetes. PTPase activities in subcellular fractions from the nondiabetic obese subjects were increased to 140-170% of the level in lean controls (P < 0.05). In contrast, PTPase activity in both fractions from the obese subjects with non-insulin-dependent diabetes was significantly decreased to 39% of the level in controls (P < 0.05). By immunoblot analysis, leukocyte antigen related (LAR) and protein-tyrosine phosphatase 1B had the greatest increase (threefold) in the particulate fraction from obese, nondiabetic subjects, and immunodepletion of this fraction using an affinity-purified antibody directed at the cytoplasmic domain of leukocyte antigen related normalized the PTPase activity when compared to the activity from control subjects. These findings provide further support for negative regulation of insulin action by specific PTPases in the pathogenesis of insulin resistance in human obesity, while other regulatory mechanisms may be operative in the diabetic state. PMID:9218523

  11. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. PMID:25782915

  12. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia.

  13. Human platelet calmodulin-binding proteins: identification and Ca/sup 2 +/-dependent proteolysis upon platelet activation

    SciTech Connect

    Wallace, R.W.; Tallant, E.A.; McManus, M.C.

    1987-05-19

    Calmodulin-binding proteins have been identified in human platelets by using Western blotting techniques and /sup 125/I-calmodulin. Ten distinct proteins of 245, 225, 175, 150, 90, 82 (2), 60, and 41 (2) kilodaltons (kDa) bound /sup 125/I-calmodulin in a Ca/sup 2 +/-dependent manner; the binding was blocked by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), trifluoperazine, and nonradiolabeled calmodulin. Proteins of 225 and 90 kDa were labeled by antisera against myosin light chain kinase; 60- and 82-kDa proteins were labeled by antisera against the calmodulin-dependent phosphatase and caldesmon, respectively. The remaining calmodulin-binding proteins have not been identified. Calmodulin-binding proteins were degraded upon addition of Ca/sup 2 +/ to a platelet homogenate; the degradation could be blocked by either EGTA, leupeptin, or N-ethylmaleimide which suggests that the degradation was due to a Ca/sup 2 +/-dependent protease. Activation of intact platelets by thrombin, adenosine 5'-diphosphate, and collagen under conditions which promote platelet aggregation also resulted in limited proteolysis of calmodulin-binding proteins including those labeled with antisera against myosin light chain kinase and the calmodulin-dependent phosphatase. Activation by the Ca/sup 2 +/ ionophores A23187 and ionomycin also promoted degradation of the calmodulin-binding proteins in the presence of extracellular Ca/sup 2 +/. The data indicate that limited proteolysis of Ca/sup 2 +//calmodulin-regulated enzymes also occurs in the intact platelet and suggest that the proteolysis is triggered by an influx of extracellular Ca/sup 2 +/ associated with platelet aggregation.

  14. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia.

    PubMed

    Branger, Judith; van den Blink, Bernt; Weijer, Sebastiaan; Madwed, Jeffrey; Bos, Carina L; Gupta, Abhya; Yong, Chan-Loi; Polmar, Stephen H; Olszyna, Dariusz P; Hack, C Erik; van Deventer, Sander J H; Peppelenbosch, Maikel P; van der Poll, Tom

    2002-04-15

    The p38 mitogen-activated protein kinase (MAPK) participates in intracellular signaling cascades resulting in inflammatory responses. Therefore, inhibition of the p38 MAPK pathway may form the basis of a new strategy for treatment of inflammatory diseases. However, p38 MAPK activation during systemic inflammation in humans has not yet been shown, and its functional significance in vivo remains unclear. Hence, we exposed 24 healthy male subjects to an i.v. dose of LPS (4 ng/kg), preceded 3 h earlier by orally administered 600 or 50 mg BIRB 796 BS (an in vitro p38 MAPK inhibitor) or placebo. Both doses of BIRB 796 BS significantly inhibited LPS-induced p38 MAPK activation in the leukocyte fraction of the volunteers. Cytokine production (TNF-alpha, IL-6, IL-10, and IL-1R antagonist) was strongly inhibited by both low and high dose p38 MAPK inhibitor. In addition, p38 MAPK inhibition diminished leukocyte responses, including neutrophilia, release of elastase-alpha(1)-antitrypsin complexes, and up-regulation of CD11b with down-regulation of L-selectin. Finally, blocking p38 MAPK decreased C-reactive protein release. These data identify p38 MAPK as a principal mediator of the inflammatory response to LPS in humans. Furthermore, the anti-inflammatory potential of an oral p38 MAPK inhibitor in humans in vivo suggests that p38 MAPK inhibitors may provide a new therapeutic option in the treatment of inflammatory diseases.

  15. Activities of Human Immunodeficiency Virus (HIV) Integration Protein In vitro: Specific Cleavage and Integration of HIV DNA

    NASA Astrophysics Data System (ADS)

    Bushman, Frederic D.; Craigie, Robert

    1991-02-01

    Growth of human immunodeficiency virus (HIV) after infection requires the integration of a DNA copy of the viral RNA genome into a chromosome of the host. Here we present a simple in vitro system that carries out the integration reaction and the use of this system to probe the mechanism of integration. The only HIV protein necessary is the integration (IN) protein, which has been overexpressed in insect cells and then partially purified. DNA substrates are supplied as oligonucleotides that match the termini of the linear DNA product of reverse transcription. In the presence of HIV IN protein, oligonucleotide substrates are cleaved to generate the recessed 3' ends that are the precursor for integration, and the cleaved molecules are efficiently inserted into a DNA target. Analysis of reaction products reveals that HIV IN protein joins 3' ends of the viral DNA to 5' ends of cuts made by IN protein in the DNA target. We have also used this assay to characterize the sequences at the ends of the viral DNA involved in integration. The assay provides a simple screen for testing candidate inhibitors of HIV IN protein; some such inhibitors might have useful antiviral activity.

  16. Protein Secretion in Human Mammary Epithelial Cells following HER1 Receptor Activation: Influence of HER2 and HER3 Expression

    SciTech Connect

    Zhang, Yi; Gonzalez-Hernandez, Rachel M.; Zangar, Richard C.

    2011-02-14

    Background: Secretion of proteins by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a very limited understanding of the cellular regulatory processes that regulate protein secretion. Method: In this study, we utilize an ELISA microarray platform to evaluate the effects of epidermal growth factor receptor (HER) expression on protein secretion in human epithelial mammary cells (HMEC). These secreted proteins included several HER1 ligands, interleukins 1α and 18, RANTES, vascular endothelial and platelet derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. Result: We utilized HMEC lines that were engineered to express different levels of HER1, HER2 and HER3. We determined the effects of these receptors on the secretion of a variety of growth factors, cytokines, and proteases. Conclusion: Overall, this study suggests that HER overexpression orchestrate broad affects on the tumor microenvironment by altering the secretion of a diverse group of biologically active proteins.

  17. Defect of vacuolar protein sorting stimulates proteolytic processing of human urokinase-type plasminogen activator in the yeast Hansenula polymorpha.

    PubMed

    Agaphonov, Michael; Romanova, Nina; Sokolov, Sviatoslav; Iline, Anna; Kalebina, Tatyana; Gellissen, Gerd; Ter-Avanesyan, Michael

    2005-11-01

    Human urokinase-type plasminogen activator (uPA) is poorly secreted by yeast cells. Here, we have selected Hansenula polymorpha mutants with increased productivity of active extracellular uPA. Several of the obtained mutants also demonstrated a defect of sorting of carboxypeptidase Y to the vacuole and the mutant loci have been identified in six of them. All these mutations damaged genes involved in protein traffic between the Golgi apparatus and the vacuole, namely PEP3, VPS8, VPS10, VPS17, and VPS35. We have shown that inactivation of the VPS10 gene encoding the vacuolar protein sorting receptor does not increase uPA secretion but stimulates its proteolytic processing. PMID:16181812

  18. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo.

    PubMed

    Fisher, G J; Talwar, H S; Lin, J; Lin, P; McPhillips, F; Wang, Z; Li, X; Wan, Y; Kang, S; Voorhees, J J

    1998-03-15

    Human skin is exposed daily to solar ultraviolet (UV) radiation. UV induces the matrix metalloproteinases collagenase, 92-kD gelatinase, and stromelysin, which degrade skin connective tissue and may contribute to premature skin aging (photoaging). Pretreatment of skin with all-trans retinoic acid (tRA) inhibits UV induction of matrix metalloproteinases. We investigated upstream signal transduction pathways and the mechanism of tRA inhibition of UV induction of matrix metalloproteinases in human skin in vivo. Exposure of human skin in vivo to low doses of UV activated EGF receptors, the GTP-binding regulatory protein p21Ras, and stimulated mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38. Both JNK and p38 phosphorylated, and thereby activated transcription factors c-Jun and activating transcription factor 2 (ATF-2), which bound to the c-Jun promoter and upregulated c-Jun gene expression. Elevated c-Jun, in association with constitutively expressed c-Fos, formed increased levels of transcription factor activator protein (AP) 1, which is required for transcription of matrix metalloproteinases. Pretreatment of human skin with tRA inhibited UV induction of c-Jun protein and, consequently, AP-1. c-Jun protein inhibition occurred via a posttranscriptional mechanism, since tRA did not inhibit UV induction of c-Jun mRNA. These data demonstrate, for the first time, activation of MAP kinase pathways in humans in vivo, and reveal a novel posttranscriptional mechanism by which tRA antagonizes UV activation of AP-1 by inhibiting c-Jun protein induction. Inhibition of c-Jun induction likely contributes to the previously reported prevention by tRA of UV induction of AP-1-regulated matrix-degrading metalloproteinases in human skin.

  19. Acute activation of AMP-activated protein kinase prevents H2O2-induced premature senescence in primary human keratinocytes.

    PubMed

    Ido, Yasuo; Duranton, Albert; Lan, Fan; Cacicedo, Jose M; Chen, Tai C; Breton, Lionel; Ruderman, Neil B

    2012-01-01

    We investigated the effects of AMPK on H(2)O(2)-induced premature senescence in primary human keratinocytes. Incubation with 50 µM H(2)O(2) for 2 h resulted in premature senescence with characteristic increases in senescence-associated ß-galactosidase (SA-gal) staining 3 days later and no changes in AMPK or p38 MAPK activity. The increase in SA-gal staining was preceded by increases in both p53 phosphorylation (S15) (1 h) and transactivation (6 h) and the abundance of the cyclin inhibitor p21(CIP1) (16 h). Incubation with AICAR or resveratrol, both of which activated AMPK, prevented the H(2)O(2)-induced increases in both SA-Gal staining and p21 abundance. In addition, AICAR diminished the increase in p53 transactivation. The decreases in SA-Gal expression induced by resveratrol and AICAR were prevented by the pharmacological AMPK inhibitor Compound C, expression of a DN-AMPK or AMPK knock-down with shRNA. Likewise, both knockdown of AMPK and expression of DN-AMPK were sufficient to induce senescence, even in the absence of exogenous H(2)O(2). As reported by others, we found that AMPK activation by itself increased p53 phosphorylation at S15 in embryonic fibroblasts (MEF), whereas under the same conditions it decreased p53 phosphorylation in the keratinocytes, human aortic endothelial cells, and human HT1080 fibrosarcoma cells. In conclusion, the results indicate that H(2)O(2) at low concentrations causes premature senescence in human keratinocytes by activating p53-p21(CIP1) signaling and that these effects can be prevented by acute AMPK activation and enhanced by AMPK downregulation. They also suggest that this action of AMPK may be cell or context-specific. PMID:22514710

  20. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.

    PubMed

    Xie, Shan-Bu; He, Xing-Xing; Yao, Shu-Kun

    2015-08-01

    Matrine, one of the main extract components of Sophora flavescens, has been shown to exhibit inhibitory effects on some tumors through autophagy. However, the mechanism underlying the effect of matrine remains unclear. The cultured human hepatocellular carcinoma cell line HepG2 and SMMC‑7721 were treated with matrine. Signal transduction and gene expression profile were determined. Matrine stimulated autophagy in SMMC‑7721 cells in a mammalian target of rapamycin (mTOR)-dependent manner, but in an mTOR-independent manner in HepG2 cells. Next, in HepG2 cells, autophagy induced by matrine was regulated by p53 inactivation through AMP-activated protein kinase (AMPK) signaling transduction, then AMPK suppression switched autophagy to apoptosis. Furthermore, the interferon (IFN)-inducible genes, including interferon α-inducible protein 27 (IFI27) and interferon induced transmembrane protein 1 (IFITM1), which are downstream effector of p53, might be modulated by matrine-induced autophagy. In addition, we found that the p53 protein isoforms, p53β, p53γ, ∆133p53, and ∆133p53γ, due to alternative splicing of intron 9, might be regulated by the p53-mediated autophagy. These results show that matrine induces autophagy in human hepatoma cells through a novel mechanism, which is p53/AMPK signaling pathway involvement in matrine-promoted autophagy.

  1. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice.

    PubMed

    Wang, Yaoming; Zhao, Zhen; Rege, Sanket V; Wang, Min; Si, Gabriel; Zhou, Yi; Wang, Su; Griffin, John H; Goldman, Steven A; Zlokovic, Berislav V

    2016-09-01

    Activated protein C (APC) is a blood protease with anticoagulant activity and cell-signaling activities mediated by the activation of protease-activated receptor 1 (F2R, also known as PAR1) and F2RL1 (also known as PAR3) via noncanonical cleavage. Recombinant variants of APC, such as the 3K3A-APC (Lys191-193Ala) mutant in which three Lys residues (KKK191-193) were replaced with alanine, and/or its other mutants with reduced (>90%) anticoagulant activity, engineered to reduce APC-associated bleeding risk while retaining normal cell-signaling activity, have shown benefits in preclinical models of ischemic stroke, brain trauma, multiple sclerosis, amyotrophic lateral sclerosis, sepsis, ischemic and reperfusion injury of heart, kidney and liver, pulmonary, kidney and gastrointestinal inflammation, diabetes and lethal body radiation. On the basis of proof-of-concept studies and an excellent safety profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro via a PAR1-PAR3-sphingosine-1-phosphate-receptor 1-Akt pathway, which suggests the potential for APC-based treatment as a strategy for structural repair in the human central nervous (CNS) system. Here we report that late postischemic treatment of mice with 3K3A-APC stimulates neuronal production by transplanted human NSCs, promotes circuit restoration and improves functional recovery. Thus, 3K3A-APC-potentiated neuronal recruitment from engrafted NSCs might offer a new approach to the treatment of stroke and related neurological disorders. PMID:27548576

  2. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  3. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Rizvi, Syed Husain Mustafa; Parveen, Arshiya; Ahmad, Israr; Ahmad, Iqbal; Verma, Anoop K; Arshad, Md; Mahdi, Abbas Ali

    2016-07-01

    Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells. PMID:26546554

  4. Protein Inhibitor of NOS1 Plays a Central Role in the Regulation of NOS1 Activity in Human Dilated Hearts

    PubMed Central

    Roselló-Lletí, Esther; Tarazón, Estefanía; Ortega, Ana; Gil-Cayuela, Carolina; Carnicer, Ricardo; Lago, Francisca; González-Juanatey, Jose Ramón; Portolés, Manuel; Rivera, Miguel

    2016-01-01

    An essential factor for the production of nitric oxide by nitric oxide synthase 1 (NOS1), major modulator of cardiac function, is the cofactor tetrahydrobiopterin (BH4). BH4 is regulated by GTP cyclohydrolase 1, the rate-limiting enzyme in BH4 biosynthesis which catalyses the formation of dihydroneopterin 3′triphosfate from GTP, producing BH4 after two further steps catalyzed by 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. However, there are other essential factors involved in the regulation of NOS1 activity, such as protein inhibitor of NOS1 (PIN), calmodulin, heat shock protein 90, and NOS interacting protein. All these molecules have never been analysed in human non-ischemic dilated hearts (DCM). In this study we demonstrated that the upregulation of cardiac NOS1 is not accompanied by increased NOS1 activity in DCM, partly due to the elevated PIN levels and not because of alterations in biopterin biosynthesis. Notably, the PIN concentration was significantly associated with impaired ventricular function, highlighting the importance of this NOS1 activity inhibitor in Ca2+ homeostasis. These results take a central role in the current list of targets for future studies focused on the complex cardiac dysfunction processes through more efficient harnessing of NOS1 signalling. PMID:27481317

  5. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    SciTech Connect

    Nishimoto, Arata; Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target

  6. Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages.

    PubMed

    Minutti, Carlos M; García-Fojeda, Belén; Sáenz, Alejandra; de Las Casas-Engel, Mateo; Guillamat-Prats, Raquel; de Lorenzo, Alba; Serrano-Mollar, Anna; Corbí, Ángel L; Casals, Cristina

    2016-07-15

    Lung surfactant protein A (SP-A) plays an important function in modulating inflammation in the lung. However, the exact role of SP-A and the mechanism by which SP-A affects IFN-γ-induced activation of alveolar macrophages (aMϕs) remains unknown. To address these questions, we studied the effect of human SP-A on rat and human aMϕs stimulated with IFN-γ, LPS, and combinations thereof and measured the induction of proinflammatory mediators as well as SP-A's ability to bind to IFN-γ or IFN-γR1. We found that SP-A inhibited (IFN-γ + LPS)-induced TNF-α, iNOS, and CXCL10 production by rat aMϕs. When rat macrophages were stimulated with LPS and IFN-γ separately, SP-A inhibited both LPS-induced signaling and IFN-γ-elicited STAT1 phosphorylation. SP-A also decreased TNF-α and CXCL10 secretion by ex vivo-cultured human aMϕs and M-CSF-derived macrophages stimulated by either LPS or IFN-γ or both. Hence, SP-A inhibited upregulation of IFN-γ-inducible genes (CXCL10, RARRES3, and ETV7) as well as STAT1 phosphorylation in human M-CSF-derived macrophages. In addition, we found that SP-A bound to human IFN-γ (KD = 11 ± 0.5 nM) in a Ca(2+)-dependent manner and prevented IFN-γ interaction with IFN-γR1 on human aMϕs. We conclude that SP-A inhibition of (IFN-γ + LPS) stimulation is due to SP-A attenuation of both inflammatory agents and that the binding of SP-A to IFN-γ abrogates IFN-γ effects on human macrophages, suppressing their classical activation and subsequent inflammatory response.

  7. Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction

    SciTech Connect

    King, Lauren E.; Dornan, Edward S.; Donaldson, Mary M.; Morgan, Iain M.

    2011-05-25

    Human papillomavirus 16 E1 and E2 interact with cellular factors to replicate the viral genome. E2 forms homodimers and binds to 12 bp palindromic sequences adjacent to the viral origin and recruits E1 to the origin. E1 forms a di-hexameric helicase complex that replicates the viral genome. This manuscript demonstrates that E1 stabilises the E2 protein, increasing the half life in both C33a and 293 T cells respectively. This stabilisation requires a direct protein--protein interaction. In addition, the E1 protein enhances E2 transcription function in a manner that suggests the E1 protein itself can contribute to transcriptional regulation not simply by E2 stabilisation but by direct stimulation of transcription. This activation of E2 transcription is again dependent upon an interaction with E1. Overall the results suggest that in the viral life cycle, co-expression of E1 with E2 can increase E2 stability and enhance E2 function.

  8. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    PubMed

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  9. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines

    PubMed Central

    Clemente-Vicario, Francisco; Alvarez, Carlos E.; Rowell, Jennie L.; Roy, Satavisha; London, Cheryl A.; Kisseberth, William C.; Lorch, Gwendolen

    2015-01-01

    Background It has been an open question how similar human and canine lung cancers are. This has major implications in availability of human treatments for dogs and in establishing translational models to test new therapies in pet dogs. The prognosis for canine advanced lung cancer is poor and new treatments are needed. Heat shock protein 90 (HSP90) is an ATPase-dependent molecular chaperone ubiquitously expressed in eukaryotic cells. HSP90 is essential for posttranslational conformational maturation and stability of client proteins including protein kinases and transcription factors, many of which are important for the proliferation and survival of cancer cells. We investigated the activity of STA-1474, a HSP90 inhibitor, in two canine lung cancer cell lines, BACA and CLAC. Results Comparative genomic hybridization analysis of both cell lines revealed genetic relevance to human non-small cell lung cancer. STA-1474 inhibited growth and induced apoptosis of both cell lines in a dose- and time-dependent manner. The ICs50 after 72 h treatment with STA-1474 were 0.08 and 0.11 μM for BACA and CLAC, respectively. When grown as spheroids, the IC50 of STA-1474 for BACA cells was approximately two-fold higher than when grown as a monolayer (0.348 μM vs. 0.168 μM), whereas CLAC spheroids were relatively drug resistant. Treatment of tumor-stromal fibroblasts with STA-1474 resulted in a dose-dependent decrease in their relative cell viability with a low IC50 of 0.28 μM. Conclusions Here we first established that lung adenocarcinoma in people and dogs are genetically and biochemically similar. STA1474 demonstrated biological activity in both canine lung cancer cell lines and tumor-stromal fibroblasts. As significant decreases in relative cell viability can be achieved with nanomolar concentrations of STA-1474, investigation into the clinical efficacy of this drug in canine lung cancer patients is warranted. PMID:26560147

  10. TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells.

    PubMed

    Sartain, Sarah E; Turner, Nancy A; Moake, Joel L

    2016-01-15

    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy with severe renal injury secondary to an overactive alternative complement pathway (AP). aHUS episodes are often initiated or recur during inflammation. We investigated gene expression of the surface complement regulatory proteins (CD55, CD59, CD46, and CD141 [thrombomodulin]) and AP components in human glomerular microvascular endothelial cells (GMVECs) and in HUVECs, a frequently used investigational model of endothelial cells. Surface complement regulatory proteins were also quantified by flow cytometry. All experiments were done with and without exposure to IL-1β or TNF. Without cytokine stimulation, we found that GMVECs had greater AP activation than did HUVECs. With TNF stimulation, THBD gene expression and corresponding CD141 surface presence in HUVECs and GMVECs were reduced, and gene expression of complement components C3 (C3) and factor B (CFB) was increased. Consequently, AP activation, measured by Ba production, was increased, and conversion of protein C (PC) to activated PC by CD141-bound thrombin was decreased, in GMVECs and HUVECs exposed to TNF. IL-1β had similar, albeit lesser, effects on HUVEC gene expression, and it only slightly affected GMVEC gene expression. To our knowledge, this is the first detailed study of the expression/display of AP components and surface regulatory proteins in GMVECs with and without cytokine stimulation. In aHUS patients with an underlying overactive AP, additional stimulation of the AP and inhibition of activated PC-mediated anticoagulation in GMVECs by the inflammatory cytokine TNF are likely to provoke episodes of renal failure. PMID:26673143

  11. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells.

    PubMed

    Nguyen Ho-Bouldoires, Thanh Huong; Clapéron, Audrey; Mergey, Martine; Wendum, Dominique; Desbois-Mouthon, Christèle; Tahraoui, Sylvana; Fartoux, Laetitia; Chettouh, Hamza; Merabtene, Fatiha; Scatton, Olivier; Gaestel, Matthias; Praz, Françoise; Housset, Chantal; Fouassier, Laura

    2015-12-01

    The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied. We identified the MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) signaling pathway mediating defenses against oxidative stress. In addition to MK2 and Hsp27 overexpression in primary liver tumors compared to adjacent nontumorous tissues, the MK2/Hsp27 pathway is activated by hydrogen peroxide-induced oxidative stress in hepatobiliary cancer cells. MK2 inactivation or inhibition of MK2 or Hsp27 expression increases caspase-3 and PARP cleavage and DNA breaks and therefore cell death. Interestingly, MK2/Hsp27 inhibition decreases antioxidant defenses such as heme oxygenase 1 through downregulation of the transcription factor nuclear factor erythroid-derived 2-like 2. Moreover, MK2/Hsp27 inhibition decreases both phosphorylation of epidermal growth factor receptor (EGFR) and expression of its ligand, heparin-binding EGF-like growth factor. A new identified partner of MK2, the scaffold PDZ protein EBP50, could facilitate these effects through MK2/Hsp27 pathway regulation. These findings demonstrate that the MK2/Hsp27 pathway actively participates in resistance to oxidative stress and may contribute to liver cancer progression.

  12. The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT).

    PubMed

    Hanke, Kirsten; Chudak, Claudia; Kurth, Reinhard; Bannert, Norbert

    2013-02-01

    The expression of endogenous retroviruses of the HERV-K(HML-2) family is strongly upregulated in germ cell tumors and several other cancers. Although the accessory Rec protein of HERV-K(HML-2) has been shown to induce carcinoma in situ in transgenic mice, to increase the activity of c-myc and to interact with the androgen receptor (AR), whether or not Rec expression is indeed implicated causally in the initiation or progression of any human malignancies remains unclear. We used the yeast two-hybrid system involving the Rec protein of a recently integrated HERV-K(HML-2) element in an effort to identify potential Rec-related oncogenic mechanisms. This revealed the human small glutamine-rich tetratricopeptide repeat (TPR)-containing protein (hSGT) to be a cellular binding partner. The interaction of Rec with this known negative regulator of the AR was confirmed by coimmunoprecipitation, pull-down assays and colocalization studies. The interaction involves the TPR motif of hSGT and takes place in the cytoplasm and in the nucleoli. Using an AR-responsive promoter and gene we could demonstrate that Rec interference with hSGT resulted in an up to five-fold increase in the activity of AR. Furthermore, in AR positive cells, Rec was shown to act as transactivator by enhancing AR-mediated activation of the HERV-K(HML-2) LTR promoter. This is in line with previous observations of elevated HERV-K(HML-2) expression in steroid-regulated tissues. On the basis of our findings we propose a "vicious cycle" model of Rec-driven hyperactivation of the AR leading to increased cell proliferation, inhibition of apoptosis and eventually to tumor induction or promotion.

  13. Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors.

    PubMed Central

    Uckun, F M; Schieven, G L; Tuel-Ahlgren, L M; Dibirdik, I; Myers, D E; Ledbetter, J A; Song, C W

    1993-01-01

    Ionizing radiation triggers a signal in human B-lymphocyte precursors that is intimately linked to an active protein-tyrosine kinase regulatory pathway. We show that in B-lymphocyte precursors, irradiation with gamma-rays leads to (i) stimulation of phosphatidylinositol turnover; (ii) downstream activation by covalent modification of multiple serine-specific protein kinases, including protein kinase C; and (iii) activation of nuclear factor kappa B. All of the radiation-induced signals were effectively prevented by the protein-tyrosine kinase inhibitors genistein and herbimycin A. Thus, tyrosine phosphorylation is an important and perhaps mandatory proximal step in the activation of the protein kinase C signaling cascade in human B-lymphocyte precursors. Our report expands current knowledge of the radiation-induced signaling cascade by clarifying the chronological sequence of biochemical events that follow irradiation. Images PMID:8419931

  14. Zinc Binding Activity of Human Metapneumovirus M2-1 Protein Is Indispensable for Viral Replication and Pathogenesis In Vivo

    PubMed Central

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya

    2015-01-01

    ABSTRACT Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the

  15. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    PubMed Central

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  16. Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF.

    PubMed

    Söderholm, H; Olsson, A; Lavenius, E; Rönnstrand, L; Nånberg, E

    2001-02-01

    The human neuroblastoma cell line SH-SY5Y/TrkA differentiates in vitro and acquires a sympathetic phenotype in response to phorbolester (activator of protein kinase C, PKC) in the presence of serum or growth factors, or nerve growth factor (NGF). We have now investigated to what extent phorbolester and NGF cause activation of Ras and Raf-1 and the involvement of PKC in this response in differentiating SH-SY5Y/TrkA cells. NGF stimulated increased accumulation of Ras-GTP and a threefold activation of Raf-1. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect on the amount of Ras-GTP but led to a smaller activation of Raf-1. NGF caused a limited increase in phosphorylation of Raf-1 compared with TPA, and NGF-induced Raf activity was independent of PKC. Analysis of phosphorylation of the endogenous PKC substrate myristoylated alanine-rich C-kinase substrate (MARCKS), and of subcellular distribution of PKC-alpha, -delta, and -epsilon revealed that NGF only caused a very small activation of PKC in SH-SY5Y/TrkA cells. The results identify Raf-1 as a target for both TPA- and NGF-induced signals in differentiating SH-SY5Y/TrkA cells and demonstrate that signalling to Raf-1 was mediated via distinct mechanisms.

  17. meso-Dihydroguaiaretic acid inhibits hepatic lipid accumulation by activating AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Lee, Myoung-Su; Kim, Kyung Jin; Kim, Daeyoung; Lee, Kyung-Eun; Hwang, Jae-Kwan

    2011-01-01

    Hepatic lipid accumulation is a major risk factor for dyslipidemia, nonalcoholic fatty liver disease, and insulin resistance. The present study was conducted to evaluate hypolipidemic effects of meso-dihydroguaiaretic acid (MDA), anti-oxidative and anti-inflammatory compound isolated from the Myristica fragrans HOUTT., by oil red O staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot. MDA significantly inhibited insulin-induced hepatic lipid accumulation in a dose-dependent manner. The lipid-lowering effect of MDA was accompanied by increased expression of proteins involved in fatty acid oxidation and decreased expression of lipid synthetic proteins. In addition, MDA activated AMP-activated protein kinase (AMPK) as determined by phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK. The effects of MDA on lipogenic protein expression were suppressed by pretreatment with compound C, an AMPK inhibitor. Taken together, these findings show that MDA inhibits insulin-induced lipid accumulation in human HepG2 cells by suppressing expression of lipogenic proteins through AMPK signaling, suggesting a potent lipid-lowering agent. PMID:21963507

  18. Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via Its Iron-Sulfur Cluster.

    PubMed

    Golinelli-Cohen, Marie-Pierre; Lescop, Ewen; Mons, Cécile; Gonçalves, Sergio; Clémancey, Martin; Santolini, Jérôme; Guittet, Eric; Blondin, Geneviève; Latour, Jean-Marc; Bouton, Cécile

    2016-04-01

    Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S](+)with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the "active state," which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a "dormant form." Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury.

  19. Pharmacokinetics of human activated protein C. 1st communication: plasma concentration and excretion of a lyophilized purified human activated protein C after intravenous administration in the mouse and the rabbit.

    PubMed

    Ishii, S; Mochizuki, T; Nagao, T; Sugiki, S; Kudo, S; Harakawa, N; Taniguchi, K; Igarashi, Y; Kondo, S; Kiyoki, M

    1995-05-01

    Pharmacokinetic studies of human activated protein C (CAS 42617-41-4, APC) were investigated in mice and rabbits with 125I-labeled compound. Plasma levels of APC were determined by three different assays: total radioactivity, APC antigenicity determined by sandwich enzyme-linked immunosorbent assay (ELISA), and the amidolytic activity which was performed by immunologically captured APC. APC concentration obtained from these assays were shown to be correlated well at early times post-dose. After intravenous administration, total radioactivity in the plasma declined tri-exponentially, but antigenicity and amidolytic activity in the plasma declined biexponentially. Plasma AUC increased proportionally with the dose, and the total body clearance and t1/2 did not change significantly. In addition, no significant difference was observed between the pharmacokinetics in male and female mice. In rabbit study, the profiles of times vs APC concentration in the plasma was similar to those in mice after single bolus injection. The plasma concentrations of APC during and after infusion in rabbits were also determined. APC concentration increased during infusion and reached almost steady state at the end of infusion. The profiles of the APC concentration in benzamidine citrate plasma corresponded to the simulated curves which were characterized by the parameters obtained from the single bolus experiment. Plasma disposition profiles of the protein were studied with high performance gel chromatography method. The radioactivity in the unchanged APC was observed at 15 min after administration. At 1 h, most of the radioactivity was observed in larger molecule fraction than the intact APC. These results corresponded to the decrease of amidolytic activity in the plasma.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7612068

  20. Disparate Proteome Responses of Pathogenic and Non-pathogenic Aspergilli to Human Serum Measured by Activity-Based Protein Profiling (ABPP)

    SciTech Connect

    Wiedner, Susan D.; Ansong, Charles; Webb-Robertson, Bobbie-Jo M.; Pederson, Leeanna M.; Fortuin, Suereta; Hofstad, Beth A.; Shukla, Anil K.; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2013-07-01

    Aspergillus fumigatus is the primary pathogen causing the devastating pulmonary disease Invasive Aspergillosis in immunocompromised individuals. Genomic analysis shows high synteny between A. fumigatus and closely related rarely pathogenic Neosartorya fischeri and Aspergillus clavatus genomes. To investigate the presence of unique or highly inducible protein reactivity in the pathogen, we applied activity-based protein profiling to compare protein reactivity of all three fungi over time in minimal media growth and in response to human serum. We found 350 probe-reactive proteins exclusive to A. fumigatus, including known virulence associated proteins, and 13 proteins associated with stress response exclusive to A. fumigatus culture in serum. Though the fungi are highly orthologous, A. fumigatus has significantly more activity across varied biological process. Only 50% of expected orthologs of measured A. fumigatus reactive proteins were observed in N. fischeri and A. clavatus. Human serum induced processes uniquely or significantly represented in A. fumigatus include actin organization and assembly, transport, and fatty acid, cell membrane, and cell wall synthesis. Additionally, signaling proteins regulating vegetative growth, conidiation, and cell wall integrity, required for appropriate cellular response to external stimuli, had higher reactivity over time in A. fumigatus and N. fisheri, but not in A. clavatus. Together, we show that measured proteins and physiological processes identified solely or significantly over-represented in A. fumigatus reveal a unique adaptive response to human protein not found in closely related, but rarely aspergilli. These unique protein reactivity responses may reveal how A. fumigatus initiates pulmonary invasion leading to Invasive Aspergillosis.

  1. Mutation of the protein-O-mannosyltransferase enhances secretion of the human urokinase-type plasminogen activator in Hansenula polymorpha.

    PubMed

    Agaphonov, Michael O; Sokolov, Sviatoslav S; Romanova, Nina V; Sohn, Jung-Hoon; Kim, So-Young; Kalebina, Tatyana S; Choi, Eui-Sung; Ter-Avanesyan, Michael D

    2005-10-15

    Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal. PMID:16200504

  2. Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38γ.

    PubMed

    Maisonneuve, Pierre; Caillet-Saguy, Célia; Vaney, Marie-Christine; Bibi-Zainab, Edoo; Sawyer, Kristi; Raynal, Bertrand; Haouz, Ahmed; Delepierre, Muriel; Lafon, Monique; Cordier, Florence; Wolff, Nicolas

    2016-08-01

    The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction.

  3. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  4. Activation of p38 mitogen-activated protein kinase by celecoxib oppositely regulates survivin and gamma-H2AX in human colorectal cancer cells

    SciTech Connect

    Hsiao, P.-W.; Chang, C.-C.; Liu, H.-F.; Tsai, C.-M.; Chiu, Ted H.; Chao, J.-I . E-mail: chaoji@mail.tcu.edu.tw

    2007-07-01

    Cancer cells express survivin that facilitates tumorigenesis. Celecoxib has been shown to reduce human colorectal cancers. However, the role and regulation of survivin by celecoxib in colorectal carcinoma cells remain unclear. Treatment with 40-80 {mu}M celecoxib for 24 h induced cytotoxicity and proliferation inhibition via a concentration-dependent manner in RKO colorectal carcinoma cells. Celecoxib blocked the survivin protein expression and increased the phosphorylation of H2AX at serine-193 ({gamma}-H2AX). The survivin gene knockdown by transfection with a survivin siRNA revealed that the loss of survivin correlated with the expression of {gamma}-H2AX. Meanwhile, celecoxib increased caspase-3 activation and apoptosis. Celecoxib activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The phosphorylated proteins of p38 MAP kinase and {gamma}-H2AX were observed in the apoptotic cells. SB203580, a specific p38 MAP kinase inhibitor, protected the survivin protein expression and decreased the levels of {gamma}-H2AX and apoptosis in the celecoxib-exposed cells. The blockade of survivin expression increased the celecoxib-induced cytotoxicity; conversely, overexpression of survivin by transfection with a survivin-expressing vector raised the cancer cell proliferation and resisted the celecoxib-induced cell death. Our results provide for the first time that p38 MAP kinase participates in the down-regulation of survivin and subsequently induces the activation of {gamma}-H2AX for mediating apoptosis following treatment with celecoxib in human colorectal cancer cells.

  5. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    PubMed

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  6. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification.

    PubMed

    Liberman, Marcel; Johnson, Rebecca C; Handy, Diane E; Loscalzo, Joseph; Leopold, Jane A

    2011-09-30

    Bone morphogenetic protein-2 (BMP-2) increases oxidant stress and endoplasmic reticulum (ER) stress to stimulate differentiation of osteoblasts; however, the role of these signaling pathways in the transition of smooth muscle cells to a calcifying osteoblast-like phenotype remains incompletely characterized. We, therefore, treated human coronary artery smooth muscle cells (HCSMC) with BMP-2 (100ng/mL) and found an increase in NADPH oxidase activity and oxidant stress that occurred via activation of the bone morphogenetic protein receptor 2 and Smad 1 signaling. BMP-2-mediated oxidant stress also increased endoplasmic reticulum (ER) stress demonstrated by increased expression of GRP78, phospho-IRE1α, and the transcription factor XBP1. Analysis of a 1kb segment of the Runx2 promoter revealed an XBP1 binding site; electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that XBP1 bound to the Runx2 promoter at this site in BMP-2-treated HCSMC. Inhibition of oxidant stress or ER stress decreased Runx2 expression, intracellular calcium deposition, and mineralization of BMP-2-treated HCSMC. Thus, in HCSMC, BMP-2 increases oxidant stress and ER stress to increase Runx2 expression and promote vascular smooth muscle cell calcification.

  7. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease.

    PubMed

    Grahame Hardie, D

    2014-12-01

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that regulates cellular and whole-body energy balance. A recently reported crystal structure has illuminated the complex regulatory mechanisms by which AMP and ADP cause activation of AMPK, involving phosphorylation by the upstream kinase LKB1. Once activated by falling cellular energy status, AMPK activates catabolic pathways that generate ATP whilst inhibiting anabolic pathways and other cellular processes that consume ATP. A role of AMPK is implicated in many human diseases. Mutations in the γ2 subunit cause heart disease due to excessive glycogen storage in cardiac myocytes, leading to ventricular pre-excitation. AMPK-activating drugs reverse many of the metabolic defects associated with insulin resistance, and recent findings suggest that the insulin-sensitizing effects of the widely used antidiabetic drug metformin are mediated by AMPK. The upstream kinase LKB1 is a tumour suppressor, and AMPK may exert many of its antitumour effects. AMPK activation promotes the oxidative metabolism typical of quiescent cells, rather than the aerobic glycolysis observed in tumour cells and cells involved in inflammation, explaining in part why AMPK activators have both antitumour and anti-inflammatory effects. Salicylate (the major in vivo metabolite of aspirin) activates AMPK, and this could be responsible for at least some of the anticancer and anti-inflammatory effects of aspirin. In addition to metformin and salicylates, novel drugs that modulate AMPK are likely to enter clinical trials soon. Finally, AMPK may be involved in viral infection: downregulation of AMPK during hepatitis C virus infection appears to be essential for efficient viral replication. PMID:24824502

  8. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E. M.

    2004-01-01

    Serinehhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we resolved the mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a con served Aspn-271-M(sub 1):M(sub 2)-W(sup 1)-His-427-His-304-Asp-274 catalytic motif. The structure of PPSc provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  9. Comparison of alkylacylglycerol vs. diacylglycerol as activators of mitogen-activated protein kinase and cytosolic phospholipase A2 in human neutrophil priming.

    PubMed

    Nixon, A B; Seeds, M C; Bass, D A; Smitherman, P K; O'Flaherty, J T; Daniel, L W; Wykle, R L

    1997-08-16

    In human neutrophils, the choline-containing phosphoglycerides contain almost equal amounts of alkylacyl- and diacyl-linked subclasses. In contrast to phosphatidylinositol hydrolysis which yields diacylglycerol, hydrolysis of choline-containing phosphoglycerides by phospholipase D coupled with phosphohydrolase yields both alkylacyl- and diacylglycerol. While diacylglycerol activates protein kinase C, alkylacylglycerol does not, and its role is unclear. Yet previous studies have shown that exogenous alkylacyl- and diacylglycerols can prime for the release of radiolabeled arachidonic acid (AA) in intact neutrophils stimulated by formyl-methionyl-leucyl-phenylalanine. We have now examined the effects of both diacylglycerol (1-oleoyl-2-acetylglycerol; OAG) and alkylacylglycerol (1-O-hexadecyl-2-acetylglycerol; EAG) on the activation of mitogen-activated protein (MAP) kinase and the 85-kDa cytosolic phospholipase A2 (cPLA2) in human neutrophils. We observed that while OAG could effectively activate p42 and p44 MAP kinases along with cPLA2 in a time- and concentration-dependent manner, EAG could not. A novel p40 MAP kinase isoform is also present and activated in response to OAG treatment; the behavior of this MAP kinase isoform is discussed. The activation of cPLA2 and MAP kinase by 20 microM OAG could be inhibited by pretreatment with 1 microM GF-109203X, a selective inhibitor of protein kinase C. Although only OAG activated cPLA2, both OAG and EAG primed for the release of AA mass as determined by gas chromatography/mass spectrometry. The priming of AA release by OAG may be explained by the phosphorylation of cPLA2 through the activation of protein kinase C linked to MAP kinase. However, priming by EAG appears to involve a separate mechanism that is dependent on a different PLA2. Our results support a role for phospholipase D-derived products modulating the activation of cPLA2, further supporting the idea of cross-talk among various phospholipases.

  10. Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation.

    PubMed Central

    Schiemann, W P; Graves, L M; Baumann, H; Morella, K K; Gearing, D P; Nielsen, M D; Krebs, E G; Nathanson, N M

    1995-01-01

    We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044. Images Fig. 2 Fig. 4 PMID:7777512

  11. Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation*♦

    PubMed Central

    Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.

    2012-01-01

    The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050

  12. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  13. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase

    PubMed Central

    GUO, QIANQIAN; LIU, ZHIYAN; JIANG, LILI; LIU, MENGJIE; MA, JIEQUN; YANG, CHENGCHENG; HAN, LILI; NAN, KEJUN; LIANG, XUAN

    2016-01-01

    Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of

  14. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways.

    PubMed

    Brama, M; Politi, L; Santini, P; Migliaccio, S; Scandurra, R

    2012-02-01

    Cadmium is a widespread environmental pollutant which induces severe toxic alterations, including osteomalacia and osteoporosis, likely by estrogen receptor-dependent mechanisms. Indeed, cadmium has been described to act as an endocrine disruptor and its toxicity is exerted both in vivo and in vitro through induction of apoptosis and/or necrosis by not fully clarified intracellular mechanism(s) of action. Aim of the present study was to further investigate the molecular mechanism by which cadmium might alter homeostasis of estrogen target cells, such as osteoblast homeostasis, inducing cell apoptosis and/or necrosis. Human osteoblastic cells (hFOB 1.19) in culture were used as an in vitro model to characterize the intracellular mechanisms induced by this heavy metal. Cells were incubated in the presence/ absence of 10-50 μM cadmium chloride at different times and DNA fragmentation and activation of procaspases- 8 and -3 were induced upon CdCl(2) treatment triggering apoptotic and necrotic pathways. Addition of caspase-8 and -3 inhibitors (Z-IETD-FMK and Z-DQMD-FMK) partially blocked these effects. No activation of procaspase-9 was observed. To determine the role of mitogen-activated protein kinases (MAPK) in these events, we investigated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated protein kinase (ERK1/2) phosphorylation which were activated by 10 μM CdCl(2). Chemical inhibitors of JNK, p38, and ERK1/2, SP600125, SB202190, and PD98059, significantly reduced the phosphorylation of the kinases and blunted apoptosis. In contrast, caspase inhibitors did not reduce the cadmium-induced MAPK phosphorylation, suggesting an independent activation of these pathways. In conclusion, at least 2 pathways appear activated by cadmium in osteoblasts: a direct induction of caspase-8 followed by activation of caspase-3 and an indirect induction by phosphorylation of ERK1/2, p38, and JNK MAPK triggering activation of caspase-8 and -3.

  15. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2015-01-01

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation. PMID:25714881

  16. A quantitative receptor assay using Triton X-114 for plasminogen activator binding proteins in solubilized membranes from human liver and placenta.

    PubMed

    Nguyen, G; Kruithof, E K

    1993-02-01

    Cell surface binding proteins play an important role in the localization of plasminogen activator (PA) activity at the cell surface or in the clearance of PAs. We describe a rapid and quantitative receptor assay applicable to the quantification and affinity determination of binding proteins for tissue-type PA and urokinase-type PA in solubilized membranes obtained from human liver, human placenta, or human monocyte-like cells. The method is based on the ability of a solution of the nonionic detergent Triton X-114 to phase separate at temperatures above 20 degrees C. After incubation of integral membrane proteins with radiolabeled ligand, a solution of Triton X-114 is added at 4 degrees C and warmed to 37 degrees C to allow phase partitioning. Radiolabeled ligand bound to membrane protein is recovered in the detergent-rich lower phase which is separated by centrifugation from the detergent-poor upper phase containing free radiolabeled ligand.

  17. Body weight management effect of burdock (Arctium lappa L.) root is associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der

    2012-10-01

    Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management.

  18. Body weight management effect of burdock (Arctium lappa L.) root is associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der

    2012-10-01

    Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management. PMID:25005949

  19. Cultivated ginseng suppresses ultraviolet B-induced collagenase activation via mitogen-activated protein kinases and nuclear factor κB/activator protein-1-dependent signaling in human dermal fibroblasts.

    PubMed

    Hwang, Yong Pil; Choi, Jae Ho; Kim, Hyung Gyun; Choi, Jun Min; Hwang, Sang Kyu; Chung, Young Chul; Jeong, Hye Gwang

    2012-06-01

    Cultivated ginseng (CG) (Panax ginseng C.A. Meyer), an herb used in Korean herbal medicine, has been widely used in China and Japan to treat fatigue and to enhance resistance to many diseases. It contains many bioactive constituents, including various ginsenosides that are believed to have antioxidant, immunostimulatory, and antiaging activities. Previous studies have revealed that treatment with Panax ginseng is significantly associated with reduced photoaging, but the underlying mode of action has not been elucidated. In this study, we hypothesized that CG inhibits ultraviolet B (UVB)-induced collagenase activation through mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB)/activator protein-1 (AP-1)-dependent signaling in human skin fibroblasts. HS68 cells were treated with CG, followed by irradiation with UVB. Those effects were assessed by semiquantitative polymerase chain reaction, Western blotting, and enzymic activity assays. We found that CG increased cell viability and inhibited the production of reactive oxygen species in HS68 cells exposed to UVB irradiation. Pretreatment of HS68 cells with CG inhibited UVB-induced production of matrix metalloproteinase (MMP) 1 and MMP-13. Western blot analysis further revealed that CG markedly suppressed the enhancement of collagen degradation in UVB-exposed HS68 cells. Cultivated ginseng also suppressed UVB-induced activation of NF-κB, c-Jun, and c-Fos and the phosphorylation of MAPKs, which are upstream modulators of NF-κB and AP-1. These results indicate that CG inhibits UVB-induced collagenolytic MMP production by interfering with MAPK/AP-1 and NF-κB signaling and thus may be useful in the prevention and treatment of skin photoaging.

  20. Recombinant Expression of a Novel Fungal Immunomodulatory Protein with Human Tumor Cell Antiproliferative Activity from Nectria haematococca

    PubMed Central

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-01-01

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products. PMID:25272229

  1. Recombinant expression of a novel fungal immunomodulatory protein with human tumor cell antiproliferative activity from Nectria haematococca.

    PubMed

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-09-30

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products.

  2. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  3. XBP-1, a novel human T-lymphotropic virus type 1 (HTLV-1) tax binding protein, activates HTLV-1 basal and tax-activated transcription.

    PubMed

    Ku, Sebastian C Y; Lee, Jialing; Lau, Joanne; Gurumurthy, Meera; Ng, Raymond; Lwa, Siew Hui; Lee, Joseph; Klase, Zachary; Kashanchi, Fatah; Chao, Sheng-Hao

    2008-05-01

    X-box binding protein 1 (XBP-1), a basic leucine zipper transcription factor, plays a key role in the cellular unfolded protein response (UPR). There are two XBP-1 isoforms in cells, spliced XBP-1S and unspliced XBP-1U. XBP-1U has been shown to bind to the 21-bp Tax-responsive element of the human T-lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR) in vitro and transactivate HTLV-1 transcription. Here we identify XBP-1S as a transcription activator of HTLV-1. Compared to XBP-1U, XBP-1S demonstrates stronger activating effects on both basal and Tax-activated HTLV-1 transcription in cells. Our results show that both XBP-1S and XBP-1U interact with Tax and bind to the HTLV-1 LTR in vivo. In addition, elevated mRNA levels of the gene for XBP-1 and several UPR genes were detected in the HTLV-1-infected C10/MJ and MT2 T-cell lines, suggesting that HTLV-1 infection may trigger the UPR in host cells. We also identify Tax as a positive regulator of the expression of the gene for XBP-1. Activation of the UPR by tunicamycin showed no effect on the HTLV-1 LTR, suggesting that HTLV-1 transcription is specifically regulated by XBP-1. Collectively, our study demonstrates a novel host-virus interaction between a cellular factor XBP-1 and transcriptional regulation of HTLV-1. PMID:18287238

  4. TATA-binding Protein (TBP)-like Protein Is Engaged in Etoposide-induced Apoptosis through Transcriptional Activation of Human TAp63 Gene.

    PubMed

    Suenaga, Yusuke; Ozaki, Toshinori; Tanaka, Yuji; Bu, Youquan; Kamijo, Takehiko; Tokuhisa, Takeshi; Nakagawara, Akira; Tamura, Taka-Aki

    2009-12-18

    Accumulating evidence indicates that TBP (TATA-binding protein)-like protein (TLP) contributes to the regulation of stress-mediated cell cycle checkpoint and apoptotic pathways, although its physiological target genes have remained elusive. In the present study, we have demonstrated that human TAp63 is one of the direct transcriptional target genes of TLP. Enforced expression of TLP results in the transcriptional induction of the endogenous TAp63, but not of the other p53 family members such as TAp73 and p53. Consistent with these results, small interference RNA-mediated knockdown led to a significant down-regulation of the endogenous TAp63. Luciferase reporter assay and chromatin immunoprecipitation analysis revealed that the genomic region located at positions -487 to -29, where +1 represents the transcriptional initiation site of TAp63, is required for TLP-dependent transcriptional activation of TAp63 and also TLP is efficiently recruited onto this region. Additionally, cells treated with anti-cancer drug etoposide underwent apoptosis in association with the transcriptional enhancement of TAp63 in a p53-independent manner, and the knockdown of the endogenous TLP reduced etoposide-induced apoptosis through repression of TAp63 expression. Taken together, our present study identifies a TLP-TAp63 pathway that is further implicated in stress-induced apoptosis.

  5. Inhibition of protein kinase C catalytic activity by additional regions within the human protein kinase Calpha-regulatory domain lying outside of the pseudosubstrate sequence.

    PubMed Central

    Kirwan, Angie F; Bibby, Ashley C; Mvilongo, Thierry; Riedel, Heimo; Burke, Thomas; Millis, Sherri Z; Parissenti, Amadeo M

    2003-01-01

    The N-terminal pseudosubstrate site within the protein kinase Calpha (PKCalpha)-regulatory domain has long been regarded as the major determinant for autoinhibition of catalytic domain activity. Previously, we observed that the PKC-inhibitory capacity of the human PKCalpha-regulatory domain was only reduced partially on removal of the pseudosubstrate sequence [Parissenti, Kirwan, Kim, Colantonio and Schimmer (1998) J. Biol. Chem. 273, 8940-8945]. This finding suggested that one or more additional region(s) contributes to the inhibition of catalytic domain activity. To assess this hypothesis, we first examined the PKC-inhibitory capacity of a smaller fragment of the PKCalpha-regulatory domain consisting of the C1a, C1b and V2 regions [GST-Ralpha(39-177): this protein contained the full regulatory domain of human PKCalpha fused to glutathione S-transferase (GST), but lacked amino acids 1-38 (including the pseudosubstrate sequence) and amino acids 178-270 (including the C2 region)]. GST-Ralpha(39-177) significantly inhibited PKC in a phorbol-independent manner and could not bind the peptide substrate used in our assays. These results suggested that a region within C1/V2 directly inhibits catalytic domain activity. Providing further in vivo support for this hypothesis, we found that expression of N-terminally truncated pseudosubstrate-less bovine PKCalpha holoenzymes in yeast was capable of inhibiting cell growth in a phorbol-dependent manner. This suggested that additional autoinhibitory force(s) remained within the truncated holoenzymes that could be relieved by phorbol ester. Using tandem PCR-mediated mutagenesis, we observed that mutation of amino acids 33-86 within GST-Ralpha(39-177) dramatically reduced its PKC-inhibitory capacity when protamine was used as substrate. Mutagenesis of a broad range of sequences within C2 (amino acids 159-242) also significantly reduced PKC-inhibitory capacity. Taken together, these observations support strongly the existence of

  6. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ.

    PubMed

    Wang, Xiaoxiao; Zhang, Sufang; Zheng, Rong; Yue, Fu; Lin, Szu Hua Sharon; Rahmeh, Amal A; Lee, Ernest Y C; Zhang, Zhongtao; Lee, Marietta Y W T

    2016-02-01

    PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.

  7. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  8. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A

    SciTech Connect

    Van Hoof, C.; Cayla, X.; Merlevede, W.; Goris, J.

    1995-07-20

    The PTPA gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. PTPA, cloned from human genomic libraries, is encoded by one single-copy gene, composed of 10 exons and 9 introns with a total length of about 60 kb. The transcription start site was determined, and the 5{prime} flanking sequence was analyzed for its potential as a promotor. This region lacks a TATA sequence in the appropriate position relative to the transcription start, is very GC-rich, and contains upstream of the transcription start four Sp1 sites, a feature common to many TATA-less promotors. Based on the homology with DNA binding consensus sequences of transcription factors, we identified in this promotor region several putative DNA binding sites for transcription factors, such as NF-{kappa}B, Myb, Ets-1, Myc, and ATF. Transfection experiments with a construct containing the PTPA promotor region inserted 5{prime} of a luciferase reporter gene revealed that the 5{prime} flanking sequence of the PTPA gene indeed displayed promotor activity that seems to be cell-line dependent. By fluorescence in situ hybridization and G-banding, the PTPA gene was localized to the 9q34 region. The PTPA gene is positioned centromeric of c-abl in a region embracing several genes implicated in oncogenesis. 28 refs., 8 figs., 1 tab.

  9. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells.

    PubMed

    Mattox, Mildred L; D'Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L

    2012-11-30

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

  10. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells

    PubMed Central

    Mattox, Mildred L; D’Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs. PMID:23243629

  11. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  12. Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility.

    PubMed

    Aparicio, I M; Espino, J; Bejarano, I; Gallardo-Soler, A; Campo, M L; Salido, G M; Pariente, J A; Peña, F J; Tapia, J A

    2016-01-01

    Macroautophagy (hereafter autophagy) is an evolutionarily highly conserved cellular process that participates in the maintenance of intracellular homeostasis through the degradation of most long-lived proteins and entire organelles. Autophagy participates in some reproductive events; however, there are not reports regarding the role of autophagy in the regulation of sperm physiology. Hence, the aim of this study was to investigate whether autophagy-related proteins are present and functionally active in human spermatozoa. Proteins related to autophagy/mitophagy process (LC3, Atg5, Atg16, Beclin 1, p62, m-TOR, AMPKα 1/2, and PINK1) were present in human spermatozoa. LC3 colocalized with p62 in the middle piece of the spermatozoa. Autophagy activation induced a significant increase in motility and a decrease in PINK1, TOM20 expression and caspase 3/7 activation. In contrast, autophagy inhibition resulted in decreased motility, viability, ATP and intracellular calcium concentration whereas PINK1, TOM20 expression, AMPK phosphorylation and caspase 3/7 activation were significantly increased. In conclusion our results show that autophagy related proteins and upstream regulators are present and functional in human spermatozoa. Modification of mitochondrial proteins expression after autophagy activation/inhibition may be indicating that a specialized form of autophagy named mitophagy may be regulating sperm function such as motility and viability and may be cooperating with apoptosis. PMID:27633131

  13. Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility

    PubMed Central

    Aparicio, I. M.; Espino, J.; Bejarano, I.; Gallardo-Soler, A.; Campo, M. L.; Salido, G. M.; Pariente, J. A.; Peña, F. J.; Tapia, J. A.

    2016-01-01

    Macroautophagy (hereafter autophagy) is an evolutionarily highly conserved cellular process that participates in the maintenance of intracellular homeostasis through the degradation of most long-lived proteins and entire organelles. Autophagy participates in some reproductive events; however, there are not reports regarding the role of autophagy in the regulation of sperm physiology. Hence, the aim of this study was to investigate whether autophagy-related proteins are present and functionally active in human spermatozoa. Proteins related to autophagy/mitophagy process (LC3, Atg5, Atg16, Beclin 1, p62, m-TOR, AMPKα 1/2, and PINK1) were present in human spermatozoa. LC3 colocalized with p62 in the middle piece of the spermatozoa. Autophagy activation induced a significant increase in motility and a decrease in PINK1, TOM20 expression and caspase 3/7 activation. In contrast, autophagy inhibition resulted in decreased motility, viability, ATP and intracellular calcium concentration whereas PINK1, TOM20 expression, AMPK phosphorylation and caspase 3/7 activation were significantly increased. In conclusion our results show that autophagy related proteins and upstream regulators are present and functional in human spermatozoa. Modification of mitochondrial proteins expression after autophagy activation/inhibition may be indicating that a specialized form of autophagy named mitophagy may be regulating sperm function such as motility and viability and may be cooperating with apoptosis. PMID:27633131

  14. Protein phosphorylation systems in postmortem human brain

    SciTech Connect

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. )

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

  15. Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominantly localized to the distal nephron.

    PubMed

    Wetzel, P; Haag, J; Câmpean, V; Goldschmeding, R; Atalla, A; Amann, K; Aigner, T

    2006-08-01

    Bone morphogenetic protein-7 (BMP)-7 plays an important role during fetal kidney development. In the adult, BMP-7 is most strongly expressed in the kidney compared to other organs, but the exact expression pattern as well as the function of BMP-7 is unclear. The major aim of the present study was to define which parts of the human kidney do physiologically express BMP-7 and which cells appear to be targets of BMP activity by showing phosphorylated BMP-receptor-associated Smads 1, 5, or 8 and inhibitor of differentiation factor 1 (ID1) expression. BMP-7 expression was localized by immunohistology to the epithelia of the distal tubule as well as the collecting ducts (CDs). Phospho-Smads 1/5/8 and ID1 expression largely colocalized with BMP-7 and was also localized in the epithelia of the distal tubule and the CDs. This was confirmed by polymerase chain reaction-based mRNA expression analysis. In vitro, proximal tubular cells (PTCs) expressed BMP receptors and BMP-receptor-associated Smads and were reactive to BMP-7. Our data indicate that BMP-7 expression in the adult human kidney appears to be more restricted than in the fetal situation and predominantly found in the distal nephron. Also, evidence of in vivo BMP signalling (i.e. phospho-Smads and ID1 expression) was found there. These findings suggest that BMP-7 plays a physiological role mostly in this part of the kidney. Still, as reported previously, PTCs are responsive to BMP-7, but presumably not in an autocrine or paracrine mode in normal adult kidneys. PMID:16807538

  16. Retinoic acid induced growth arrest of human breast carcinoma cells requires protein kinase C alpha expression and activity.

    PubMed

    Cho, Y; Tighe, A P; Talmage, D A

    1997-09-01

    Retinoic acid inhibits proliferation of hormone-dependent, but not hormone-independent breast cancer cells. Retinoic acid-induced changes in cellular proliferation and differentiation are associated with disturbances in growth factor signaling and frequently with changes in protein kinase C expression. PKC delta, epsilon, and zeta are expressed in both hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) cell lines. Retinoic acid arrested T-47D proliferation, induced PKC alpha expression and concomitantly repressed PKC zeta expression. The changes in PKC alpha and PKC zeta reflect retinoic acid-induced changes in mRNA. In contrast, retinoic acid had no effect on growth, or PKC expression in MDA-MB-231 cells. Growth arrest and the induction of PKC alpha, but not the reduction in PKC zeta, resulted from selective activation of RAR alpha. In total, these results support an important role for PKC alpha in mediating the anti-proliferative action of retinoids on human breast carcinoma cells.

  17. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway.

    PubMed

    Li, Maolan; Lu, Jianhua; Zhang, Fei; Li, Huaifeng; Zhang, Bingtai; Wu, Xiangsong; Tan, Zhujun; Zhang, Lin; Gao, Guofeng; Mu, Jiasheng; Shu, Yijun; Bao, Runfa; Ding, Qichen; Wu, Wenguang; Dong, Ping; Gu, Jun; Liu, Yingbin

    2014-12-28

    The transcriptional coactivator Yes-associated protein 1 (YAP1), a key regulator of cell proliferation and organ size in vertebrates, has been implicated in various malignancies. However, little is known about the expression and biological function of YAP1 in human gallbladder cancer (GBC). In this study we examined the clinical significance and biological functions of YAP1 in GBC and found that nuclear YAP1 and its target gene AXL were overexpressed in GBC tissues. We also observed a significant correlation between high YAP1 and AXL expression levels and worse prognosis. The depletion of YAP1 using lentivirus shRNAs significantly inhibited cell proliferation by inducing cell cycle arrest in S phase in concordance with the decrease of CDK2, CDC25A, and cyclin A, and resulted in increased cell apoptosis and invasive repression in GBC cell lines in vitro. Furthermore, knockdown of YAP1 also inhibited tumor growth in vivo. Additionally, we demonstrated that the activation of the AXL/MAPK pathway was involved in the oncogenic functions of YAP1 in GBC. These results demonstrated that YAP1 is a putative oncogene and represents a prognostic marker and potentially a novel therapeutic target for GBC.

  18. The RAP1GA1 locus for human Rap1-GTPase activating protein 1 maps to chromosome 1p36.1-->p35.

    PubMed

    Weiss, J; Rubinfeld, B; Polakis, P G; McCormick, F; Cavenee, W K; Arden, K C

    1994-01-01

    Using a panel of somatic cell hybrids we have mapped the locus for Rap1-GTPase activating protein 1 (RAP1GA1) to human chromosome 1. Fluorescence in situ hybridization experiments independently confirmed the chromosomal localization and refined it to 1p36.1-->p35.

  19. Intrinsically disordered human C/EBP homologous protein regulates biological activity of colon cancer cells during calcium stress

    PubMed Central

    Singh, Vinay K.; Pacheco, Ivan; Uversky, Vladimir N.; Smith, Steven P.; MacLeod, R John; Jia, Zongchao

    2009-01-01

    Intrinsically disordered proteins are emerging as substantial functional constituents of mammalian proteomes. Although the abundance of these proteins has been established by bioinformatics approaches, the vast majority have not been characterized structurally and functionally. C/EBP homologous protein (CHOP) is a proto-oncogene, traditionally shown as a dominant-negative inhibitor of C/EBPs and a transcriptional activator of Activating Protein-1. We report here the in vitro characterization of CHOP, where our computational analyses and experimental evidences show for the first time that CHOP is an intrinsically disordered protein. Intrinsic fluorescence, NMR spectroscopy, and analytical size exclusion chromatography studies indicate that CHOP contains extensive disordered regions and self-associate in solution. Interestingly, the disordered N-terminal region plays a key role in the oligomerization of CHOP and is vital for its biological activity. We report the novel mechanistic role of CHOP in the inhibition of Wnt/TCF signaling and stimulation of c-Jun and sucrase-isomaltase reporter activity in intestinal colon cancer cells. These findings are discussed in the context of oligomerization of intrinsically disordered proteins as one of the mechanisms through which they exert their biological function. PMID:18534616

  20. High yield expression of biologically active recombinant full length human tuftelin protein in baculovirus-infected insect cells.

    PubMed

    Shay, B; Gruenbaum-Cohen, Y; Tucker, A S; Taylor, A L; Rosenfeld, E; Haze, A; Dafni, L; Leiser, Y; Fermon, E; Danieli, T; Blumenfeld, A; Deutsch, D

    2009-11-01

    Tuftelin is an acidic protein expressed at very early stages of mouse odontogenesis. It was suggested to play a role during epithelial-mesenchymal interactions, and later, when enamel formation commences, to be involved in enamel mineralization. Tuftelin was also detected in several normal soft tissues of different origins and some of their corresponding cancerous tissues. Tuftelin is expressed in low quantities, and undergoes degradation in the enamel extracellular matrix. To investigate the structure and function of tuftelin, the full length recombinant human tuftelin protein was produced. The full length human tuftelin cDNA was cloned using Gateway recombination into the Bac-to-Bac system compatible transfer vector pDest10. This vector adds a hexahistidine tag to the N-terminus of the expressed protein, enabling one-step affinity purification on nickel column. The recombinant human tuftelin protein was transposed into the bacmid and expressed in Spodoptera frugiperda (Sf9) insect cells. The yield of the purified, his-tagged recombinant full length human Tuftelin (rHTuft+) was 5-8 mg/L culture. rHTuft+ was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, restriction mapping and MS/MS sequencing. The availability of the purified, full length recombinant human tuftelin protein opened up the possibility to investigate novel functions of tuftelin. Application of rHTuft+ agarose beads onto embryonic mouse mandibular explants caused changes in the surrounding epithelial cells, including morphology, orientation and spatial organization. Further studies using DiI labeling, revealed that rHTuft+, placed on the tooth germ region, brought about recruitment of adjacent embryonic mesenchymal cells. These findings support the hypothesis that tuftelin plays an important role during embryogenesis.

  1. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway.

    PubMed

    Yao, Z; Zhou, G; Wang, X S; Brown, A; Diener, K; Gan, H; Tan, T H

    1999-01-22

    The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. Using degenerate polymerase chain reaction, we have isolated a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK was a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but it did not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK-induced JNK activation was inhibited by the dominant-negative MKK4 and MKK7 mutants. The dominant-negative mutant of TAK1, but not MEKK1 or MAPK upstream kinase (MUK), strongly inhibited HGK-induced JNK activation. TNF-alpha activated HGK in 293T cells, as well as the dominant-negative HGK mutants, inhibited TNF-alpha-induced JNK activation. These results indicate that HGK, a novel activator of the JNK pathway, may function through TAK1, and that the HGK --> TAK1 --> MKK4, MKK7 --> JNK kinase cascade may mediate the TNF-alpha signaling pathway. PMID:9890973

  2. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar) Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    PubMed Central

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E.; Minkiewicz, Piotr; Iwaniak, Anna

    2014-01-01

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes. PMID:25123137

  3. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes.

    PubMed

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E; Minkiewicz, Piotr; Iwaniak, Anna

    2014-08-13

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  4. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    SciTech Connect

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-05-28

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  5. Expression of human milk proteins in plants.

    PubMed

    Lönnerdal, Bo

    2002-06-01

    Human milk proteins are believed to have a multitude of biological activities benefiting the newborn infant. Such functions include antibacterial and antiviral activities, enhancement of the immune system and increased nutrient absorption. To date, only breast-fed infants have been exposed to these proteins. However, by using genetic engineering it is now possible to express these proteins in plants, such as rice, at very high levels. Recombinant human milk proteins can subsequently be added to infant formula and baby foods. Prior to such addition, safety tests and efficacy trials need to be conducted. The safety tests will initially be done in rats and then in humans. The efficacy trials should also evaluate stability against heat treatment (processing), pH (stomach conditions) and proteolytic enzymes (digestion). To date, we have expressed recombinant human lactoferrin, lysozyme and alpha1-antitrypsin in rice at very high expression levels. These recombinant proteins showed a stability and activities similar to those of the native milk proteins, suggesting that they may be able to exert biological activities in infants when added to formula or baby foods.

  6. The region around residue 115 of human bactericidal/permeability-increasing protein is not involved in lipopolysaccharide binding or bactericidal activity. Chemical synthesis and expression of a gene coding for the active domain and characterization of recombinant proteins.

    PubMed

    Qi, S Y; Li, Y; O'Connor, C D

    1994-03-15

    Bactericidal/permeability-increasing protein (BPI) is a potent antimicrobial agent produced by polymorphonuclear leucocytes that specifically interacts with and kills Gram-negative bacteria. An 825 bp gene determining the bactericidal N-terminal domain of human BPI was chemically synthesized and expressed as inclusion bodies in Escherichia coli. The recombinant polypeptide, BPI', was solubilized and conditions under which it folded to give the active protein were determined. Folding was critically dependent on the urea and salt concentrations as well as the pH. BPI' bound with high affinity to Salmonella typhimurium cells (apparent Kd = 36 nM), permeabilized their outer membranes to actinomycin D, specifically activated a synovial fluid phospholipase A2 and showed potent bactericidal activity. In contrast with the native protein, however, it could not be efficiently released from the cell surface by the addition of high concentrations of Mg2+ ions. Pre-incubation of the protein with lipopolysaccharide or trypsin prevented cytotoxicity. However, boiling BPI' immediately before its addition to cells did not block its bactericidal activity, suggesting that it may be able to function even when presented to cells in an unfolded form. A BPI' derivative, containing a 13-residue foreign antigenic determinant genetically inserted between Ala115 and Asp116, was also produced. The derivative was functional in the above assays and bound with high affinity to S. typhimurium (apparent Kd = 74 nM). These results imply that the region defined by these residues is not involved in the lipopolysaccharide-binding or bactericidal activities of BPI. The availability of functional, nonglycosylated recombinant derivatives of BPI should greatly aid detailed studies on its structure, interactions with lipopolysaccharide and mechanism of action.

  7. Effects of a single exposure to UVB radiation on the activities and protein levels of copper-zinc and manganese superoxide dismutase in cultured human keratinocytes.

    PubMed

    Sasaki, H; Akamatsu, H; Horio, T

    1997-04-01

    Ultraviolet B irradiation has been believed to decrease or impair the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) in the skin. It has been recently reported that two isozymes of SOD, namely copper-zinc SOD (Cu-Zn SOD) and manganese SOD (Mn SOD), exist in mammalian cells and that the two enzymes play different roles in living systems. The aim of this study was to investigate changes in SOD activities and protein levels in cultured human keratinocytes after acute UVB irradiation. In addition, the protein levels of Cu-Zn SOD and Mn SOD were quantified separately. A single exposure to UVB irradiation produced an increase in SOD activity and protein level that peaked immediately after UVB irradiation, after which a decline was observed, with subsequent recovery to baseline levels 24 h after irradiation. In individual assays of Mn SOD and Cu-Zn SOD, the amount of Mn SOD protein decreased and then gradually recovered 24 h after irradiation. In contrast, the amount of Cu-Zn SOD protein increased immediately after UVB irradiation, and then gradually declined. To evaluate the mechanisms of these changes, we examined the effects of the cytokines, interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha), which can be secreted from keratinocytes after UVB irradiation, on the SOD activity and protein levels in keratinocytes. Interleukin-1 alpha and TNF-alpha enhanced both the SOD activity and protein level of Mn SOD, while these cytokines had no effect on Cu-Zn SOD protein levels in cultured human keratinocytes after incubation for 24 h. Furthermore, when neutralizing antibodies against IL-1 alpha and TNF-alpha were added separately or together to the culture medium before UVB irradiation, the recovery of total SOD activity and Mn SOD protein level were markedly inhibited 24 h after irradiation. Our results suggest that significant increases in SOD activity and protein level occur as a cutaneous antioxidant

  8. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells.

    PubMed

    Sander, Leif E; Frank, Simon P C; Bolat, Seza; Blank, Ulrich; Galli, Thierry; Bigalke, Hans; Bischoff, Stephan C; Lorentz, Axel

    2008-03-01

    Mediator release from mast cells (MC) is a crucial step in allergic and non-allergic inflammatory disorders. However, the final events in response to activation leading to membrane fusion and thereby facilitating degranulation have hitherto not been analyzed in human MC. Soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNARE) represent a highly conserved family of proteins that have been shown to mediate intracellular membrane fusion events. Here, we show that mature MC isolated from human intestinal tissue express soluble N-ethylmaleide sensitive factor attachment protein (SNAP)-23, Syntaxin (STX)-1B, STX-2, STX-3, STX-4, and STX-6 but not SNAP-25. Furthermore, we found that primary human MC express substantial amounts of vesicle associated membrane protein (VAMP)-3, VAMP-7 and VAMP-8 and, in contrast to previous reports about rodent MC, only low levels of VAMP-2. Furthermore, VAMP-7 and VAMP-8 were found to translocate to the plasma membrane and interact with SNAP-23 and STX-4 upon activation. Inhibition of SNAP-23, STX-4, VAMP-7 or VAMP-8, but not VAMP-2 or VAMP-3, resulted in a markedly reduced high-affinity IgE receptor-mediated histamine release. In summary, our data show that mature human MC express a specific pattern of SNARE and that VAMP-7 and VAMP-8, but not VAMP-2, are required for rapid degranulation.

  9. Ozone induces a proinflammatory response in primary human bronchial epithelial cells through mitogen-activated protein kinase activation without nuclear factor-κB activation.

    PubMed

    McCullough, Shaun D; Duncan, Kelly E; Swanton, Samantha M; Dailey, Lisa A; Diaz-Sanchez, David; Devlin, Robert B

    2014-09-01

    Ground-level ozone (O3) is a ubiquitous environmental air pollutant that is a potent inducer of airway inflammation and has been linked with respiratory and cardiovascular morbidity and mortality. Some studies using transformed or immortalized cells have attributed O3-mediated expression of inflammatory cytokines with activation of the canonical NF-κB pathway. In this study, we sought to characterize the O3-mediated activation of cellular signaling pathways using primary human bronchial epithelial cells obtained from a panel of donors. We demonstrate that the O3-induced expression of proinflammatory cytokines requires the activation of the epidermal growth factor receptor/MEK/ERK and MKK4/p38 mitogen-activated signaling pathways but does not appear to involve activation of canonical NF-κB signaling. In addition to providing a novel mechanistic model for the O3-mediated induction of proinflammatory cytokines, these findings highlight the importance of using primary cells over cell lines in mechanistic studies.

  10. Human antimicrobial peptides and proteins.

    PubMed

    Wang, Guangshun

    2014-05-13

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat

  11. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  12. Human MSH2 protein

    DOEpatents

    Chapelle, A. de la; Vogelstein, B.; Kinzler, K.W.

    1997-01-07

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error{sup +} (RER{sup +}) tumor cells. 19 figs.

  13. Human MSH2 protein

    DOEpatents

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    1997-01-01

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  14. SHP2-interacting Transmembrane Adaptor Protein (SIT), A Novel Disulfide-linked Dimer Regulating Human T Cell Activation

    PubMed Central

    Marie-Cardine, Anne; Kirchgessner, Henning; Bruyns, Eddy; Shevchenko, Andrej; Mann, Matthias; Autschbach, Frank; Ratnofsky, Sheldon; Meuer, Stefan; Schraven, Burkhart

    1999-01-01

    T lymphocytes express several low molecular weight transmembrane adaptor proteins that recruit src homology (SH)2 domain–containing intracellular molecules to the cell membrane via tyrosine-based signaling motifs. We describe here a novel molecule of this group termed SIT (SHP2 interacting transmembrane adaptor protein). SIT is a disulfide-linked homodimeric glycoprotein that is expressed in lymphocytes. After tyrosine phosphorylation by src and possibly syk protein tyrosine kinases SIT recruits the SH2 domain–containing tyrosine phosphatase SHP2 via an immunoreceptor tyrosine-based inhibition motif. Overexpression of SIT in Jurkat cells downmodulates T cell receptor– and phytohemagglutinin-mediated activation of the nuclear factor of activated T cells (NF-AT) by interfering with signaling processes that are probably located upstream of activation of phospholipase C. However, binding of SHP2 to SIT is not required for inhibition of NF-AT induction, suggesting that SIT not only regulates NF-AT activity but also controls NF-AT unrelated pathways of T cell activation involving SHP2. PMID:10209036

  15. Protein kinase C-mediated phosphorylation and activation of PDE3A regulate cAMP levels in human platelets.

    PubMed

    Hunter, Roger W; Mackintosh, Carol; Hers, Ingeborg

    2009-05-01

    The elevation of [cAMP](i) is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser(312), Ser(428), Ser(438), Ser(465), and Ser(492), in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE(1) and forskolin-induced phosphorylation of Ser(312) and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE(1)-evoked cAMP accumulation by thrombin required both G(i) and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser(312), Ser(428), Ser(438), Ser(465), and Ser(492) leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding. PMID:19261611

  16. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  17. Hypolipidemic activity of Taraxacum mongolicum associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Liu, Yan-Jin; Shieh, Po-Chuen; Lee, Jang-Chang; Chen, Fu-An; Lee, Chih-Hung; Kuo, Sheng-Chu; Ho, Chi-Tang; Kuo, Daih-Huang; Huang, Li-Jiau; Way, Tzong-Der

    2014-08-01

    This study investigated the hypolipidemic effect and potential mechanisms of T. mongolicum extracts. T. mongolicum was extracted by refluxing three times with water (TM-1), 50% ethanol (TM-2) and 95% ethanol (TM-3). TM-2 contained components with the most effective hypolipidemic potentials in HepG2 cells. Extended administration of TM-2 stimulated a significant reduction in body weight and levels of serum triglyceride LDL-C and total cholesterol in rats. To evaluate the bioactive compounds, we successively fractionated TM-2 with n-hexane (TM-4), dichloromethane (TM-5), ethyl acetate (TM-6), and water (TM-7). TM-4 fraction had the most effective hypolipidemic potential in HepG2 cells, and it decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) through the phosphorylation of AMP-activated protein kinase (AMPK). Linoleic acid, phytol and tetracosanol are bioactive compounds identified from TM-4. These results suggest that T. mongolicum is expected to be useful for hypolipidemic effects. PMID:24903219

  18. Hypolipidemic activity of Taraxacum mongolicum associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Liu, Yan-Jin; Shieh, Po-Chuen; Lee, Jang-Chang; Chen, Fu-An; Lee, Chih-Hung; Kuo, Sheng-Chu; Ho, Chi-Tang; Kuo, Daih-Huang; Huang, Li-Jiau; Way, Tzong-Der

    2014-08-01

    This study investigated the hypolipidemic effect and potential mechanisms of T. mongolicum extracts. T. mongolicum was extracted by refluxing three times with water (TM-1), 50% ethanol (TM-2) and 95% ethanol (TM-3). TM-2 contained components with the most effective hypolipidemic potentials in HepG2 cells. Extended administration of TM-2 stimulated a significant reduction in body weight and levels of serum triglyceride LDL-C and total cholesterol in rats. To evaluate the bioactive compounds, we successively fractionated TM-2 with n-hexane (TM-4), dichloromethane (TM-5), ethyl acetate (TM-6), and water (TM-7). TM-4 fraction had the most effective hypolipidemic potential in HepG2 cells, and it decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) through the phosphorylation of AMP-activated protein kinase (AMPK). Linoleic acid, phytol and tetracosanol are bioactive compounds identified from TM-4. These results suggest that T. mongolicum is expected to be useful for hypolipidemic effects.

  19. Glycogen Synthase Kinase 3 Protein Kinase Activity Is Frequently Elevated in Human Non-Small Cell Lung Carcinoma and Supports Tumour Cell Proliferation

    PubMed Central

    O′Flaherty, Linda; Pardo, Olivier E.; Dzien, Piotr; Phillips, Lois; Morgan, Carys; Pawade, Joya; May, Margaret T.; Sohail, Muhammad; Hetzel, Martin R.; Seckl, Michael J.; Tavaré, Jeremy M.

    2014-01-01

    Background Glycogen synthase kinase 3 (GSK3) is a central regulator of cellular metabolism, development and growth. GSK3 activity was thought to oppose tumourigenesis, yet recent studies indicate that it may support tumour growth in some cancer types including in non-small cell lung carcinoma (NSCLC). We examined the undefined role of GSK3 protein kinase activity in tissue from human NSCLC. Methods The expression and protein kinase activity of GSK3 was determined in 29 fresh frozen samples of human NSCLC and patient-matched normal lung tissue by quantitative immunoassay and western blotting for the phosphorylation of three distinct GSK3 substrates in situ (glycogen synthase, RelA and CRMP-2). The proliferation and sensitivity to the small-molecule GSK3 inhibitor; CHIR99021, of NSCLC cell lines (Hcc193, H1975, PC9 and A549) and non-neoplastic type II pneumocytes was further assessed in adherent culture. Results Expression and protein kinase activity of GSK3 was elevated in 41% of human NSCLC samples when compared to patient-matched control tissue. Phosphorylation of GSK3α/β at the inhibitory S21/9 residue was a poor biomarker for activity in tumour samples. The GSK3 inhibitor, CHIR99021 dose-dependently reduced the proliferation of three NSCLC cell lines yet was ineffective against type II pneumocytes. Conclusion NSCLC tumours with elevated GSK3 protein kinase activity may have evolved dependence on the kinase for sustained growth. Our results provide further important rationale for exploring the use of GSK3 inhibitors in treating NSCLC. PMID:25486534

  20. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I.

    PubMed Central

    Sigler, G F; Soutar, A K; Smith, L C; Gotto, A M; Sparrow, J T

    1976-01-01

    Apolipoprotein C-I, a protein constituent of the very low density lipoproteins of human plasma, consists of a single chain of 57 amino acids. The total synthesis of a protein corresponding to apolipoprotein C-I in physical properties and compositions was accomplished by solid phase techniques employing a modified polystrene incorporating spacer groups between the point of attachment of the first residue and the polymer matrix. The synthetic apoprotein was shown to activate lecithin:cholesterol acyltransferase to the same extent as the native protein. Comparative lipid-binding studies with dimyristoyl phosphatidylcholine gave complexes for native and synthetic apoprotein which floated at the same density after ultracentrifugation in KBr gradients and had virtually the same lipid:protein ratios. Images PMID:179085

  1. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I.

    PubMed

    Sigler, G F; Soutar, A K; Smith, L C; Gotto, A M; Sparrow, J T

    1976-05-01

    Apolipoprotein C-I, a protein constituent of the very low density lipoproteins of human plasma, consists of a single chain of 57 amino acids. The total synthesis of a protein corresponding to apolipoprotein C-I in physical properties and compositions was accomplished by solid phase techniques employing a modified polystrene incorporating spacer groups between the point of attachment of the first residue and the polymer matrix. The synthetic apoprotein was shown to activate lecithin:cholesterol acyltransferase to the same extent as the native protein. Comparative lipid-binding studies with dimyristoyl phosphatidylcholine gave complexes for native and synthetic apoprotein which floated at the same density after ultracentrifugation in KBr gradients and had virtually the same lipid:protein ratios. PMID:179085

  2. Signaling from the Human Melanocortin 1 Receptor to ERK1 and ERK2 Mitogen-Activated Protein Kinases Involves Transactivation of cKIT

    PubMed Central

    Herraiz, Cecilia; Journé, Fabrice; Abdel-Malek, Zalfa; Ghanem, Ghanem; Jiménez-Cervantes, Celia; García-Borrón, José C.

    2011-01-01

    Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. Upon stimulation by αMSH, MC1R triggers the cAMP and ERK1/ERK2 MAPK pathways. In mouse melanocytes, ERK activation by αMSH binding to Mc1r depends on cAMP, and melanocytes are considered a paradigm for cAMP-dependent ERK activation. However, human MC1R variants associated with red hair, fair skin [red hair color (RHC) phenotype], and increased skin cancer risk display reduced cAMP signaling but activate ERKs as efficiently as wild type in heterologous cells, suggesting independent signaling to ERKs and cAMP in human melanocytes. We show that MC1R signaling activated the ERK pathway in normal human melanocytes and melanoma cells expressing physiological levels of endogenous RHC variants. ERK activation was comparable for wild-type and mutant MC1R and was independent on cAMP because it was neither triggered by stimulation of cAMP synthesis with forskolin nor blocked by the adenylyl cyclase inhibitor 2′,5′-dideoxyadenosine. Stimulation of MC1R with αMSH did not lead to protein kinase C activation and ERK activation was unaffected by protein kinase C inhibitors. Conversely, pharmacological interference, small interfering RNA studies, expression profiles, and functional reconstitution experiments showed that αMSH-induced ERK activation resulted from Src tyrosine kinase-mediated transactivation of the stem cell factor receptor, a receptor tyrosine kinase essential for proliferation, differentiation, and survival of melanocyte precursors, thus demonstrating a functional link between the stem cell factor receptor and MC1R. Moreover, this transactivation phenomenon is unique because it is unaffected by natural mutations impairing canonical MC1R signaling through the cAMP pathway. PMID:21084381

  3. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  4. Differential subcellular targeting of recombinant human α₁-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants.

    PubMed

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Jain, G K; Amla, D V

    2012-11-01

    The response of protein accumulation site on yield, biological activity and in planta stability of therapeutic recombinant human proteinase inhibitor (α₁-PI) was analyzed via targeting to different subcellular locations, like endoplasmic reticulum (ER), apoplast, vacuole and cytosol in leaves of transgenic tomato plants. In situ localization of the recombinant α₁-PI protein in transgenic plant cells was monitored by immunohistochemical staining. Maximum accumulation of recombinant α₁-PI in T₀ and T₁ transgenic tomato plants was achieved from 1.5 to 3.2% of total soluble protein (TSP) by retention in ER lumen, followed by vacuole and apoplast, whereas cytosolic targeting resulted into degradation of the protein. The plant-derived recombinant α₁-PI showed biological activity for elastase inhibition, as monitored by residual porcine pancreatic elastase (PPE) activity assay and band-shift assay. Recombinant α₁-PI was purified from transgenic tomato plants with high yield, homogeneity and biological activity. Purified protein appeared as a single band of ∼48-50 kDa on SDS-PAGE with pI value ranging between 5.1 and 5.3. Results of mass spectrometry and optical spectroscopy of purified recombinant α₁-PI revealed the structural integrity of the recombinant protein comparable to native serum α₁-PI. Enzymatic deglycosylation and lectin-binding assays with the purified recombinant α₁-PI showed compartment-specific N-glycosylation of the protein targeted to ER, apoplast and vacuole. Conformational studies based on urea-induced denaturation and circular dichroism (CD) spectroscopy revealed relatively lower stability of the recombinant α₁-PI protein, compared to its serum counterpart. Pharmacokinetic evaluation of plant derived recombinant and human plasma-purified α₁-PI in rat, by intravenous route, revealed significantly faster plasma clearance and lower area under curve (AUC) of recombinant protein. Our data suggested significance of

  5. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro.

    PubMed

    Dosch, Susan F; Mahajan, Supriya D; Collins, Arlene R

    2009-06-01

    A purified recombinant spike (S) protein was studied for its effect on stimulating human peripheral blood monocyte macrophages (PBMC). We examined inflammatory gene mRNA abundances found in S protein-treated PBMC using gene arrays. We identified differential mRNA abundances of genes with functional properties associated with antiviral (CXCL10) and inflammatory (IL-6 and IL-8) responses. We confirmed cytokine mRNA increases by real-time quantitative(q) RT-PCR or ELISA. We further analyzed the sensitivity and specificity of the prominent IL-8 response. By real-time qRT-PCR, S protein was shown to stimulate IL-8 mRNA accumulation in a dose dependent manner while treatment with E protein did not. Also, titration of S protein-specific production and secretion of IL-8 by ELISA showed that the dose of 5.6nM of S produced a significant increase in IL-8 (p=0.003) compared to mock-treated controls. The increase in IL-8 stimulated by a concentration of 5.6nM of S was comparable to concentrations seen for S protein binding to ACE2 or to neutralizing monoclonal antibody suggesting a physiological relevance. An NF-kappaB inhibitor, TPCK (N-Tosyl-L-Phenylalanine Chloromethyl Ketone) could suppress IL-8 production and secretion in response to S protein in PBMC and THP-1 cells and in HCoV-229E virus-infected PBMC. Activation and translocation of NF-kappaB was shown to occur rapidly following exposure of PBMC or THP-1 cells to S protein using a highly sensitive assay for active nuclear NF-kappaB p65 transcription factor. The results further suggested that released or secreted S protein could activate blood monocytes through recognition by toll-like receptor (TLR)2 ligand.

  6. Oxidation of heat shock protein 60 and protein disulfide isomerase activates ERK and migration of human hepatocellular carcinoma HepG2

    PubMed Central

    Lin, Chung-Yi; Hu, Chi-Tan; Cheng, Chuan-Chu; Lee, Ming-Che; Pan, Siou-Mei; Lin, Teng-Yi; Wu, Wen-Sheng

    2016-01-01

    Hepatocyte growth factor (HGF) and its receptor c-Met were frequently deregulated in hepatocellular carcinoma (HCC). Signaling pathways activated by HGF-c-Met are promising targets for preventing HCC progression. HGF can induce the reactive oxygen species (ROS) signaling for cell adhesion, migration and invasion of tumors including HCC. On the other hand, extracellular signal-regulated kinases (ERK), member of mitogen activated kinase, can be activated by ROS for a lot of cellular processes. As expected, HGF-induced phosphorylation of ERK and progression of HCC cell HepG2 were suppressed by ROS scavengers. By N-(biotinoyl)-N′-(iodoacetyl)-ethylenediamine (BIAM) labeling method, a lot of cysteine (−SH)-containing proteins with M.W. 50–75 kD were decreased in HepG2 treated with HGF or two other ROS generators, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and phenazine methosulfate. These redox sensitive proteins were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Among them, two chaperones, heat shock protein 60 (HSP60) and protein disulfide isomerase (PDI), were found to be the most common redox sensitive proteins in responding to all three agonists. Affinity blot of BIAM-labeled, immunoprecipitated HSP60 and PDI verified that HGF can decrease the cysteine (−SH) containing HSP60 and PDI. On the other hand, HGF and TPA increased cysteinyl glutathione-containing HSP60, consistent with the decrease of cysteine (−SH)-containing HSP60. Moreover, depletion of HSP60 and PDI or expression of dominant negative mutant of HSP60 with alteration of Cys, effectively prevented HGF-induced ERK phosphorylation and HepG2 migration. In conclusion, the redox sensitive HSP60 and PDI are required for HGF-induced ROS signaling and potential targets for preventing HCC progressions. PMID:26840563

  7. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    SciTech Connect

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki . E-mail: watanabn@sapmed.ac.jp

    2005-05-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan.

  8. Op18/Stathmin counteracts the activity of overexpressed tubulin-disrupting proteins in a human leukemia cell line

    SciTech Connect

    Sellin, Mikael E. Holmfeldt, Per; Stenmark, Sonja; Gullberg, Martin

    2008-04-01

    Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both {alpha}-tubulin and {beta}-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.

  9. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  10. Synergistic activation of the human orphan nuclear receptor SHP gene promoter by basic helix–loop–helix protein E2A and orphan nuclear receptor SF-1

    PubMed Central

    Kim, Han-Jong; Kim, Joon-Young; Park, Yun-Yong; Choi, Hueng-Sik

    2003-01-01

    The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) is an unusual orphan nuclear receptor that lacks a conventional DNA-binding domain and acts as a modulator of transcriptional activities of a number of nuclear receptors. We have previously reported that the orphan nuclear receptor ERRγ activates the SHP promoter. In this study, we have found that basic helix–loop–helix (bHLH) transcription factors, the E2A proteins (E47, E12 and E2/5), activated the human but not the mouse SHP promoter. In contrast, the tissue-specific E47 heterodimer partner BETA2 repressed the E47- mediated transactivation of the human SHP (hSHP) promoter. Using serial deletions and E-box mutant constructs of the hSHP promoter, we identified two E-boxes (E6 and E7) as E47-responsive E-boxes, which are not conserved in the mouse SHP promoter. Moreover, gel shift, chromatin immunoprecipitation (ChIP) and northern blot assays demonstrated that E47 directly binds to the hSHP promoter in vivo and in vitro and that Id proteins inhibited E47 binding to the hSHP promoter. Finally, we found that E47 and steroidogenic factor 1 (SF-1), a regulator of the SHP promoter, synergistically activate the human but not the mouse SHP promoter. Our findings suggest that the E2A proteins differentially regulate the human and mouse SHP promoters and cooperate with orphan nuclear receptor SF-1 for transcriptional activation of the hSHP promoter. PMID:14627819

  11. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds. PMID:27129215

  12. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds.

  13. An autoantibody directed against human thrombin anion-binding exosite in a patient with arterial thrombosis: effects on platelets, endothelial cells, and protein C activation.

    PubMed

    Arnaud, E; Lafay, M; Gaussem, P; Picard, V; Jandrot-Perrus, M; Aiach, M; Rendu, F

    1994-09-15

    An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion-binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration-dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma-thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion-binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.

  14. Transcriptional activation in vitro by the human immunodeficiency virus type 1 Tat protein: evidence for specific interaction with a coactivator(s).

    PubMed Central

    Song, C Z; Loewenstein, P M; Green, M

    1994-01-01

    The Tat protein encoded by human immunodeficiency virus type 1 is a strong transcriptional activator of gene expression from the viral long terminal repeat and is essential for virus replication. We have investigated the molecular mechanism of Tat trans-activation by using a cell-free transcription system. We find that the trans-activation domain of Tat, amino acid residues 1-48 [Tat-(1-48)], can inhibit specifically--i.e., "squelch," transcriptional activation by full-length Tat [Tat-(1-86)]. Squelching depends upon the functional integrity of the Tat trans-activation domain because the mutant [Ala41]Tat-(1-48), which is defective in Tat trans-activation in vivo and in vitro, does not squelch in vitro Tat trans-activation. Inhibition is selective because Tat-activated transcription, but not Tat-independent transcription, is squelched. Preincubation experiments with Tat or Tat-(1-48) and nuclear extracts show that the trans-activation region of Tat can interact with cellular coactivator(s) required for Tat trans-activation and that this interaction can occur in the absence of the human immunodeficiency virus long terminal repeat promoter. Furthermore, the putative coactivator(s) mediating trans-activation by Tat differ from those mediating trans-activation by the acidic activator VP16, as shown by reciprocal squelching experiments in vitro. Our results suggest that specific cellular coactivator(s) are required for mediating activated transcription by human immunodeficiency virus type 1 Tat. Images PMID:7937769

  15. Expression of the human Hand1 gene in trophoblastic cells is transcriptionally regulated by activating and repressing specificity protein (Sp)-elements.

    PubMed

    Vasicek, Richard; Meinhardt, Gudrun; Haidweger, Eva; Rotheneder, Hans; Husslein, Peter; Knöfler, Martin

    2003-01-01

    The tissue-specific basic helix-loop-helix protein Hand1 is essential for the formation of trophoblast giant cells of the murine placenta. In humans, Hand1 is detectable in trophoblastic tumour cells suggesting an equivalent role in trophoblast differentiation. To understand its mode of expression we have cloned and characterized the human Hand1 gene promoter. Primer extension analyses suggest that transcription initiates 19 nucleotides downstream of the TATA element of the proximal 5' flanking region. Expression of luciferase reporter constructs harboring deletions of the 9.5 kb Hand1 5' flanking sequence defines a promoter region within 274 bp upstream of the transcriptional start site. Compared to a reporter bearing only the TATA box, the proximal promoter activates transcription up to 30-fold. However, transcriptional activity of the region was observed in both Hand1-expressing and non-expressing cell lines. Sequencing, DNAseI footprint analyses and electrophoretic mobility shift assays reveal the presence of four GC-rich sequences, which show different affinities to the endogenous specificity proteins (Sp), and a CCAAT box. In vitro, the Sp-elements mainly interact with Sp1 and Sp3 while the CCAAT element is recognized by the alpha CAAT binding factor protein. Mutant luciferase reporters bearing single active or inactive recognition sites demonstrate that two of the four Sp-binding sites (I and IV) contribute little to the overall transcription rate. The two other Sp-cognate sequences, II and III, downregulate and activate reporter expression 2.3- and 2.6-fold, respectively. Co-transfections of Sp1/Sp3 expression vectors and mutated reporter constructs in Sp-deficient SL2 cells indicate that the Sp-binding site II and III indeed function as repressing and activating enhancer sequences. In summary, the data suggest that constitutive expression of the Hand1 gene in cultured cells is regulated by a complex interplay of Sp-proteins interacting with activator and

  16. Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1.

    PubMed

    Kida, Yutaka; Shimizu, Takashi; Kuwano, Koichi

    2006-05-01

    The antimicrobial protein cathelicidin is considered to play an important role in the defense mechanisms against bacterial infection. Recent studies show that sodium butyrate induces cathelicidin gene expression in human colonic, gastric and hepatic cells. However, little is known about the precise regulatory mechanisms underlying sodium butyrate-induced cathelicidin gene expression. In this study, we examined the regulatory mechanisms involved in sodium butyrate-induced cathelicidin gene expression using a human lung epithelial cell line, EBC-1. Our results indicate that sodium butyrate induces both cathelicidin mRNA and protein expression. Moreover, deletion or mutation of a putative activator protein-1 (AP-1) binding site in the cathelicidin gene promoter abrogated the response to sodium butyrate stimulation. Three different mitogen-activated protein (MAP) kinase inhibitors suppressed sodium butyrate-induced transactivation of the cathelicidin promoter. Electrophoretic mobility shift assays (EMSA) showed that nuclear extracts prepared from sodium butyrate-stimulated EBC-1 cells generated specific binding to probe including a putative AP-1 binding site in the cathelicidin gene promoter. Furthermore, chromatin immunoprecipitation (ChIP) assays demonstrated that sodium butyrate augmented histone acetylation of the cathelicidin promoter in EBC-1 cells. Therefore, these results indicate that AP-1 and histone acetylation of the cathelicidin promoter play a critical role in the regulation of inducible cathelicidin gene expression in EBC-1 cells stimulated with sodium butyrate.

  17. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function

    PubMed Central

    1995-01-01

    Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation. PMID:7790358

  18. Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release.

    PubMed

    Soell, M; Lett, E; Holveck, F; Schöller, M; Wachsmann, D; Klein, J P

    1995-01-15

    The present work was initiated to define mechanisms that account for the binding on human monocytes of streptococcal cell wall polysaccharides formed by rhamnose glucose polymers (RGPs), and subsequent stimulatory activities. We show here that RGPs bind to and stimulate human monocytes to produce TNF-alpha in a dose-dependent manner. To detect cell surface RGPs binding proteins, intact monocytes were biotinylated before lysis with Nonidet P-40 and solubilized proteins were incubated with RGPs Affi-Prep beads. One major membrane protein of 55 kDa was specifically detected and identified as CD14 because it reacted with anti-CD14 mAbs. Furthermore, anti-CD14 mAbs were able to perform a dose-dependent inhibition of RGPs binding, and suppressed TNF-alpha release from RGPs-stimulated monocytes. Moreover, we demonstrated that RGPs also bind to CD11b; however, this binding is not implicated in synthesis of TNF-alpha. Interestingly, RGPs binding to monocytes was enhanced by human normal serum (HNS) whereas HNS inhibits the TNF-alpha-stimulating activity of RGPs. Western blotting analysis of HNS proteins purified on RGPs Affi-prep beads revealed three specific bands of 75, 55, and 32 kDa reactive with anti-C3 Abs, anti-CD14 mAbs (TUK4), and anti-human mannan binding protein (hMBP)-derived peptide IgG, respectively. These results suggest that C3, soluble CD14, and hMBP form complexes that are probably active in enhancing the binding of RGPs to monocytes. Additional studies have shown that hMBP that recognizes RGPs prevents, unlike the LPS binding protein, TNF-alpha release by inhibiting the binding of RGPs to CD14 Ag. By incubating cells with a constant amount of RGPs-hMBP complexes in the presence or absence of increasing concentrations of C1q, we also demonstrated that C1q receptor mediates the binding and probably the uptake of RGPs-hMBP complexes by human monocytes. PMID:7529289

  19. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    SciTech Connect

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  20. Multifunctional human transcriptional coactivator protein PC4 is a substrate of Aurora kinases and activates the Aurora enzymes.

    PubMed

    Dhanasekaran, Karthigeyan; Kumari, Sujata; Boopathi, Ramachandran; Shima, Hiroki; Swaminathan, Amrutha; Bachu, Mahesh; Ranga, Udaykumar; Igarashi, Kazuhiko; Kundu, Tapas K

    2016-03-01

    Positive coactivator 4 (PC4), a human transcriptional coactivator, is involved in diverse processes like chromatin organization and transcription regulation. It is hyperphosphorylated during mitosis, with unknown significance. For the first time, we demonstrate the function of PC4 outside the nucleus upon nuclear envelope breakdown. A fraction of PC4 associates with Aurora A and Aurora B and undergoes phosphorylation, following which PC4 activates both Aurora A and B to sustain optimal kinase activity to maintain the phosphorylation gradient for the proper functioning of the mitotic machinery. This mitotic role is evident in PC4 knockdown cells where the defects are rescued only by the catalytically active Aurora kinases, but not the kinase-dead mutants. Similarly, the PC4 phosphodeficient mutant failed to rescue such defects. Hence, our observations establish a novel mitotic function of PC4 that might be dependent on Aurora kinase-mediated phosphorylation.

  1. Phospholipase A2 Activity-Dependent Stimulation of Ca2+ Entry by Human Parvovirus B19 Capsid Protein VP1▿

    PubMed Central

    Lupescu, Adrian; Bock, C.-Thomas; Lang, Philipp A.; Aberle, Susanne; Kaiser, Heike; Kandolf, Reinhard; Lang, Florian

    2006-01-01

    Recent reports demonstrated an association of human parvovirus B19 with inflammatory cardiomyopathy (iCMP), which is accompanied by endothelial dysfunction. As intracellular Ca2+ activity is a key regulator of cell function and participates in mechanisms leading to endothelial dysfunction, the present experiments explored the effects of the B19 capsid proteins VP1 and VP2. A secreted phospholipase A2 (PLA2)-like activity has been located in the VP1 unique region of the B19 minor capsid protein. As PLA2 has recently been shown to activate the store-operated or capacitative Ca2+ channel ICRAC, we analyzed the impact of the viral PLA2 motif on Ca2+ entry. We cloned the VP1 and VP2 genes isolated from a patient suffering from fatal B19 iCMP into eukaryotic expression vectors. We also generated a B19 replication-competent plasmid to demonstrate PLA2 activity under the control of the complete B19 genome. After the transfection of human endothelial cells (HMEC-1), cytosolic Ca2+ activity was determined by utilizing Fura-2 fluorescence. VP1 and VP2 expression did not significantly modify basal cytosolic Ca2+ activity or the decline of cytosolic Ca2+ activity following the removal of extracellular Ca2+. However, expression of VP1 and of the full-length B19 clone, but not of VP2, significantly accelerated the increase of cytosolic Ca2+ activity following the readdition of extracellular Ca2+ in the presence of thapsigargin, indicating an activation of ICRAC. The effect of VP1 was mimicked by the PLA2 product lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-encoding region of the VP1 gene. Our observations point to the activation of Ca2+ entry by VP1 PLA2 activity, an effect likely participating in the pathophysiology of B19 infection. PMID:16956939

  2. Rabbit neutrophil chemotactic protein (NCP) activates both CXCR1 and CXCR2 and is the functional homologue for human CXCL6.

    PubMed

    Catusse, Julie; Struyf, Sofie; Wuyts, Anja; Weyler, Myke; Loos, Tamara; Gijsbers, Klara; Gouwy, Mieke; Proost, Paul; Van Damme, Jo

    2004-11-15

    Neutrophil chemotactic protein (NCP) is a rabbit CXC chemokine with activating and chemotactic properties on neutrophilic granulocytes. Although its selective activity on neutrophils is demonstrated, its interactions with specific chemokine receptors are not defined. For further functional characterization, NCP was chemically synthesized and was found to be equipotent as natural NCP in neutrophil chemotaxis. To identify its human homologue, we separately expressed two potential rabbit NCP receptors (CXCR1 and CXCR2) in Jurkat cells. Pure synthetic NCP was equally efficient to promote chemotaxis through either rabbit CXCR1 or CXCR2. Moreover, chemotaxis assays on rabbit CXCR1 and CXCR2 transfectants showed that NCP uses the same receptors as interleukin-8 (IL-8), a major rabbit CXC chemokine, but not rabbit GROalpha, which only recognized CXCR2. In addition, specific inhibitors for CXCR1 or CXCR2 reduced rabbit neutrophil chemotaxis induced by NCP and rabbit IL-8. Furthermore, NCP and the structurally related human CXCR1/CXCR2 agonist CXCL6/GCP-2 (granulocyte chemotactic protein-2) cross-desensitized each other in intracellular calcium release assays on human neutrophils, further indicating that both chemokines share the same receptors. The inflammatory role of NCP was also evidenced by its potent granulocytosis inducing capacity in rabbits upon systemic administration. This study provides in vitro and in vivo evidences that NCP is the functional rabbit homologue for human CXCL6/GCP-2 rather than the most related CXCR2 agonist CXCL5/ENA-78 (epithelial cell-derived neutrophil activating peptide-78). It is concluded that the rabbit is a better model to study human neutrophil activation compared to mice, which lack CXCL8/IL-8.

  3. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    PubMed Central

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  4. Preparation and functional characterization of human vascular endothelial growth factor-melittin fusion protein with analysis of the antitumor activity in vitro and in vivo.

    PubMed

    Wang, Dingding; Hu, Lili; Su, Manman; Wang, Ju; Xu, Tianmin

    2015-09-01

    Vascular endothelial growth factor and its tyrosine kinase receptors have been identified as key mediators of the regulation of pathologic blood vessel growth and maintenance in the promotion of angiogenesis and tumor growth. Therefore, an alternative approach to destroying tumor endothelium would be to make this tissue particularly sensitive to VEGF-mediated drug delivery. To verify this hypothesis, we generated a protein containing VEGF165 fused to melittin. Melittin is a small linear peptide composed of 26 amino acid residues that can exert toxic or inhibitory effects on many types of tumor cells. This protein is a cytolytic peptide that attacks lipid membranes, leading to significant toxicity. In the present study, the Pichia pastoris expression system was used to express the fusion protein. Under optimal conditions, stable VEGF165-melittin production was achieved using a series of purification steps. The activity of VEGF165-melittin fusion protein was compared with melittin for its ability to suppress the growth of tumor cell line in vitro. The fusion toxin selectively inhibited growth of human hepatocellular carcinoma HepG-2 cell line with high expression of VEGFR-2. We found that sensitivity of VEGFR-2 transfected 293 cells to VEGF165-melittin enhanced as the cellular VEGFR-2 density increased. In an in vivo initial experiment, the fusion protein inhibited tumor growth in xenografts assays. Furthermore, successful expression and characterization of the fusion protein demonstrated its efficacy for use as a novel treatment strategy for cancer. PMID:26166416

  5. Preparation and functional characterization of human vascular endothelial growth factor-melittin fusion protein with analysis of the antitumor activity in vitro and in vivo.

    PubMed

    Wang, Dingding; Hu, Lili; Su, Manman; Wang, Ju; Xu, Tianmin

    2015-09-01

    Vascular endothelial growth factor and its tyrosine kinase receptors have been identified as key mediators of the regulation of pathologic blood vessel growth and maintenance in the promotion of angiogenesis and tumor growth. Therefore, an alternative approach to destroying tumor endothelium would be to make this tissue particularly sensitive to VEGF-mediated drug delivery. To verify this hypothesis, we generated a protein containing VEGF165 fused to melittin. Melittin is a small linear peptide composed of 26 amino acid residues that can exert toxic or inhibitory effects on many types of tumor cells. This protein is a cytolytic peptide that attacks lipid membranes, leading to significant toxicity. In the present study, the Pichia pastoris expression system was used to express the fusion protein. Under optimal conditions, stable VEGF165-melittin production was achieved using a series of purification steps. The activity of VEGF165-melittin fusion protein was compared with melittin for its ability to suppress the growth of tumor cell line in vitro. The fusion toxin selectively inhibited growth of human hepatocellular carcinoma HepG-2 cell line with high expression of VEGFR-2. We found that sensitivity of VEGFR-2 transfected 293 cells to VEGF165-melittin enhanced as the cellular VEGFR-2 density increased. In an in vivo initial experiment, the fusion protein inhibited tumor growth in xenografts assays. Furthermore, successful expression and characterization of the fusion protein demonstrated its efficacy for use as a novel treatment strategy for cancer.

  6. Activation of protein tyrosine kinase: a possible requirement for fixed-bacteria and lipopolysaccharide-induced increase in human natural killer cell activity.

    PubMed

    Puente, J; Salas, M A; Canon, C; Miranda, D; Wolf, M E; Mosnaim, A D

    1996-05-01

    Preincubation of peripheral blood lymphocytes (PBL) from drug-free, healthy volunteers with either the protein tyrosine kinase inhibitor genistein (GNT, n = 10, final concentration 200 microM) or the protein kinase A activator dybutiryl-cyclic-AMP (cAMP, n = 11, final concentration 10 microM), resulted in a significant inhibition of natural killer cell activity (NKCA, expressed as percentage of specific chromium release). With the exception of 4 out of the 11 cAMP-treated samples, individual values for NKCA in the drug preincubated specimens were at least 20% below the same subject baseline activity; furthermore, NKC lytic function was non-detectable in 4 out of the 10 and in 1 out of the 11 samples pretreated with either GNT or cAMP, respectively. PBL preincubation with glutaraldehyde-fixed Gram-negative bacteria (GNB, n = 13, final GNB-to-effector cell ratio of 50 : 1) resulted in a statistically significant increase in NKCA (baseline (x +/- SD) of 21.6 +/- 16.4 and bacteria treated samples of 41.5 +/- 24.6, respectively, Student's paired t-test p < 0.05). At least a 20% increase in NKC lytic function over its own baseline value was recorded for 11 out of the 13 samples tested (Table 1). Preincubation with GNB and GNT (5 samples) not only blocked the immunostimulant effects of GNB (Student's paired t-test p < 0.05), but in most cases individual values for NKCA were similar to those recorded for GNT-only treated samples. Use of cAMP instead of GNT also blocked, but to a smaller extent, the GNB-produced increases in NKC lytic function (paired Student's t-test < 0.05). PBL preincubation with lipopolysaccharide (LPS, n = 11, final concentration 50 micrograms/ml) resulted in a statistically significant increase in NKCA (baseline (x +/- SD) of 20.7 +/- 14.1 and LPS treated samples of 39.2 +/- 18.5, respectively, Student's paired t-test < 0.05). At least a 20% increase in NKCA over its own baseline value was observed for each and everyone of the 11 samples studied

  7. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    SciTech Connect

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K. ); Rappaport, J.; Wong-Staal, F. )

    1990-05-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV{sub L}, in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own.

  8. Abrogation of Mitogen-Activated Protein Kinase and Akt Signaling by Vandetanib Synergistically Potentiates Histone Deacetylase Inhibitor-Induced Apoptosis in Human Glioma Cells

    PubMed Central

    Jane, Esther P.; Premkumar, Daniel R.; Addo-Yobo, Steven O.

    2009-01-01

    Vandetanib is a multitargeted tyrosine kinase inhibitor. Our initial studies demonstrated that this agent blocks vascular endothelial growth factor receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor phosphorylation and mitogen-activated protein kinase (MAPK)-mediated signaling in glioma cell lines in a dose-dependent manner. Despite these effects, we observed that vandetanib had little effect on apoptosis induction at clinically achievable concentrations. Because histone deacetylase inhibitors (HDACIs) have been suggested to regulate signaling protein transcription and downstream interactions via modulation of protein chaperone function through the 90-kDa heat shock protein, we investigated whether combining vandetanib with an HDACI could synergistically potentiate signaling pathway inhibition and apoptosis induction in a panel of malignant human glioma cell lines. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with vandetanib and HDACIs as single agents or in combination. Vandetanib and suberoylanalide hydroxamic acid reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition as assessed by combinatorial methods. These effects were paralleled by potentiation of Akt signaling inhibition and apoptosis induction. Our results indicate that inhibition of histone deacetylation enhances the antiproliferative effect of vandetanib in malignant human glioma cell lines by enhancing inhibition of MAPK, Akt, and other downstream effectors that may have application in combinatorial therapeutics for these tumors. PMID:19622715

  9. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  10. Granulocyte/macrophage colony-stimulating factor stimulates the expression of the 5-lipoxygenase-activating protein (FLAP) in human neutrophils

    PubMed Central

    1994-01-01

    The synthesis of leukotrienes in human blood neutrophils chiefly relies on the activity of two enzymes, phospholipase A2 and 5-lipoxygenase (5- LO). In turn, the activation of the 5-LO requires the participation of a recently characterized membrane-bound protein, the 5-LO-activating protein (FLAP). In this study, we have investigated conditions under which FLAP expression in neutrophils may be modulated. Of several cytokines tested, only granulocyte/macrophage colony-stimulating factor (GM-CSF) (and to a lesser extent tumor necrosis factor alpha) significantly increased expression of FLAP. GM-CSF increased FLAP mRNA steady-state levels in a time- and dose-dependent manner. The stimulatory effect of GM-CSF on FLAP mRNA was inhibited by prior treatment of the cells with the transcription inhibitor, actinomycin D, and pretreatment of the cells with the protein synthesis inhibitor, cycloheximide, failed to prevent the increase in FLAP mRNA induced by GM-CSF. The accumulation of newly synthesized FLAP, as determined by immunoprecipitation after incorporation of 35S-labeled amino acids, was also increased after incubation of neutrophils with GM-CSF. In addition, the total level of FLAP protein was increased in GM-CSF- treated neutrophils, as determined by two-dimensional gel electrophoresis, followed by Western blot. GM-CSF did not alter the stability of the FLAP protein, indicating that the effect of GM-CSF on FLAP accumulation was the consequence of increased de novo synthesis as opposed to decreased degradation of FLAP. Finally, incubation of neutrophils with the synthetic glucocorticoid dexamethasone directly stimulated the upregulation of FLAP mRNA and protein, and enhanced the effect of GM-CSF. Taken together, these data demonstrate that FLAP expression may be upmodulated after appropriate stimulation of neutrophils. The increase in FLAP expression induced by GM-CSF in inflammatory conditions could confer upon neutrophils a prolonged capacity to synthesize

  11. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells

    PubMed Central

    Wang, Yanchun; Luo, Zhongguang; Pan, Yongfu; Wang, Weige; Zhou, Xiaoyan; Jeong, Lak Shin; Chu, Yiwei; Liu, Jie; Jia, Lijun

    2015-01-01

    Recent studies indicate that post-translational protein neddylation is required for the maintenance of cell viability in several lymphoma cell lines, while inhibition of the neddylation pathway with an NEDD8-activating enzyme (NAE) inhibitor MLN4924 induces apoptosis in lymphoma cells. However, the mechanism by which neddylation inhibition induces apoptosis in lymphoma cells has not been fully elucidated. Moreover, it is unknown whether neddylation inhibition triggers non-apoptotic cell-killing responses, such as cell senescence, in lymphoma cells. Here, we report that MLN4924 specifically inhibited protein neddylation, inactivated cullin-RING E3 ligase (CRL), the best-known neddylation substrate, and induced the accumulation of tumor-suppressive CRL substrates in lymphoma cells. Moreover, MLN4924 potently suppressed the growth of lymphoma cells by inducing G2 cell-cycle arrest, followed by apoptosis or senescence in a cell line-dependent manner. MLN4924-induced apoptosis was mediated by intrinsic apoptotic signaling with substantial up-regulation of pro-apoptotic Bik and Noxa as well as down-regulation of anti-apoptotic XIAP, c-IAP1 and c-IAP2, while senescence induction upon neddylation inhibition seemed dependent on the expression of tumor suppressor p21/p27. Together, these findings expand our understanding on how lymphoma cells respond to neddylation inhibition and support the development of neddylation inhibitors (e.g. MLN4924) for the treatment of lymphoma. PMID:25782162

  12. Dietary protein intake and human health.

    PubMed

    Wu, Guoyao

    2016-03-01

    A protein consists of amino acids (AA) linked by peptide bonds. Dietary protein is hydrolyzed by proteases and peptidases to generate AA, dipeptides, and tripeptides in the lumen of the gastrointestinal tract. These digestion products are utilized by bacteria in the small intestine or absorbed into enterocytes. AA that are not degraded by the small intestine enter the portal vein for protein synthesis in skeletal muscle and other tissues. AA are also used for cell-specific production of low-molecular-weight metabolites with enormous physiological importance. Thus, protein undernutrition results in stunting, anemia, physical weakness, edema, vascular dysfunction, and impaired immunity. Based on short-term nitrogen balance studies, the Recommended Dietary Allowance of protein for a healthy adult with minimal physical activity is currently 0.8 g protein per kg body weight (BW) per day. To meet the functional needs such as promoting skeletal-muscle protein accretion and physical strength, dietary intake of 1.0, 1.3, and 1.6 g protein per kg BW per day is recommended for individuals with minimal, moderate, and intense physical activity, respectively. Long-term consumption of protein at 2 g per kg BW per day is safe for healthy adults, and the tolerable upper limit is 3.5 g per kg BW per day for well-adapted subjects. Chronic high protein intake (>2 g per kg BW per day for adults) may result in digestive, renal, and vascular abnormalities and should be avoided. The quantity and quality of protein are the determinants of its nutritional values. Therefore, adequate consumption of high-quality proteins from animal products (e.g., lean meat and milk) is essential for optimal growth, development, and health of humans. PMID:26797090

  13. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  14. Involvement of mitogen-activated protein kinases and NFkappaB in LPS-induced CD40 expression on human monocytic cells.

    PubMed

    Wu, Weidong; Alexis, Neil E; Chen, Xian; Bromberg, Philip A; Peden, David B

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFkappaB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFkappaB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFkappaB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFkappaB activation, and CD40 expression. Moreover, blockage of MAPK and NFkappaB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFkappaB.

  15. The Chlamydomonas reinhardtii Molybdenum Cofactor Enzyme crARC Has a Zn-Dependent Activity and Protein Partners Similar to Those of Its Human Homologue ▿

    PubMed Central

    Chamizo-Ampudia, Alejandro; Galvan, Aurora; Fernandez, Emilio; Llamas, Angel

    2011-01-01

    The ARC (amidoxime reducing component) proteins are molybdenum cofactor (Moco) enzymes named hmARC1 and hmARC2 (human ARCs [hmARCs]) in humans and YcbX in Escherichia coli. They catalyze the reduction of a broad range of N-hydroxylated compounds (NHC) using reducing power supplied by other proteins. Some NHC are prodrugs or toxic compounds. YcbX contains a ferredoxin (Fd) domain and requires the NADPH flavin reductase CysJ to reduce NHC. In contrast, hmARCs lack the Fd domain and require a human cytochrome b5 (hCyt b5) and a human NADH Cyt b5 reductase (hCyt b5-R) to reduce NHC. The ARC proteins in the plant kingdom are uncharacterized. We demonstrate that Chlamydomonas reinhardtii mutants defective in Moco biosynthesis genes are sensitive to the NHC N6-hydroxylaminopurine (HAP). The Chlamydomonas reinhardtii ARC protein crARC has been purified and characterized. The six Chlamydomonas Fds were isolated, but none of them are required by crARC to reduce HAP. We have also purified and characterized five C. reinhardtii Cyt b5 (crCyt b5) and two flavin reductases, one that is NADPH dependent (crCysJ) and one that is NADH dependent (crCyt b5-R). The data show that crARC uses crCyt b5-1 and crCyt b5-R to reduce HAP. The crARC has a Zn-dependent activity, and the presence of Zn increases its Vmax more than 14-fold. In addition, all five cysteines of crARC were substituted by alanine, and we demonstrate that the fully conserved cysteine 252 is essential for both Moco binding and catalysis. Therefore, it is proposed that crARC belongs to the sulfite oxidase family of Moco enzymes. PMID:21803866

  16. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region

    PubMed Central

    2004-01-01

    The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle. PMID:15496137

  17. Human Cytomegalovirus UL97 Kinase Activity Is Required for the Hyperphosphorylation of Retinoblastoma Protein and Inhibits the Formation of Nuclear Aggresomes

    SciTech Connect

    Prichard, Mark N.; Sztul, Elizabeth; Daily, Shannon L.; Perry, Amie L.; Frederick, Samuel L.; Gill, Rachel B.; Hartline, Caroll B.; Streblow, Daniel N.; Varnum, Susan M.; Smith, Richard D.; Kern, Earl R.

    2008-05-01

    Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinasedependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding moti for the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes.

  18. Northwestern profiling of potential translation-regulatory proteins in human breast epithelial cells and malignant breast tissues: evidence for pathological activation of the IGF1R IRES.

    PubMed

    Blume, Scott W; Jackson, Nateka L; Frost, Andra R; Grizzle, William E; Shcherbakov, Oleg D; Choi, Hyoungsoo; Meng, Zheng

    2010-06-01

    Genes involved in the control of cell proliferation and survival (those genes most important to cancer pathogenesis) are often specifically regulated at the translational level, through RNA-protein interactions involving the 5'-untranslated region of the mRNA. IGF1R is a proto-oncogene strongly implicated in human breast cancer, promoting survival and proliferation of tumor cells, as well as metastasis and chemoresistance. Our lab has focused on the molecular mechanisms regulating IGF1R expression at the translational level. We previously discovered an internal ribosome entry site (IRES) within the 5'-untranslated region of the human IGF1R mRNA, and identified and functionally characterized two individual RNA-binding proteins, HuR and hnRNP C, which bind the IGF1R 5'-UTR and differentially regulate IRES activity. Here we have developed and implemented a high-resolution northwestern profiling strategy to characterize, as a group, the full spectrum of sequence-specific RNA-binding proteins potentially regulating IGF1R translational efficiency through interaction with the 5'-untranslated sequence. The putative IGF1R IRES trans-activating factors (ITAFs) are a heterogeneous group of RNA-binding proteins including hnRNPs originating in the nucleus as well as factors tightly associated with ribosomes in the cytoplasm. The IGF1R ITAFs can be categorized into three distinct groups: (a) high molecular weight external ITAFs, which likely modulate the overall conformation of the 5'-untranslated region of the IGF1R mRNA and thereby the accessibility of the core functional IRES; (b) low molecular weight external ITAFs, which may function as general chaperones to unwind the RNA, and (c) internal ITAFs which may directly facilitate or inhibit the fundamental process of ribosome recruitment to the IRES. We observe dramatic changes in the northwestern profile of non-malignant breast cells downregulating IGF1R expression in association with acinar differentiation in 3-D culture

  19. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation.

    PubMed

    Chuang, Yung-Chun; Lin, Jessica; Lin, Yee-Shin; Wang, Shuying; Yeh, Trai-Ming

    2016-02-01

    Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS. PMID:26712948

  20. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor.

    PubMed Central

    Yanaga, F; Poole, A; Asselin, J; Blake, R; Schieven, G L; Clark, E A; Law, C L; Watson, S P

    1995-01-01

    Activation of human platelets by cross-linking of the platelet low-affinity IgG receptor, the Fc gamma receptor IIA (Fc gamma-RIIA), or by collagen is associated with rapid phosphorylation on tyrosine of the non-receptor tyrosine kinase syk. Phosphorylation is still observed, albeit sometimes reduced, in the presence of a combination of a protein kinase C inhibitor, Ro 31-8220, and the intracellular calcium chelator, BAPTA-AM, demonstrating independence from phosphoinositide-specific phospholipase C (PLC) activity. In contrast, the combination of Ro 31-8220 and BAPTA-AM completely inhibits phosphorylation of syk in thrombin-stimulated platelets. Phosphorylation of syk increases its autophosphorylation activity measured in a kinase assay performed on syk immunoprecipitates. Fc gamma-RIIA also undergoes phosphorylation in syk immunoprecipitates from platelets activated by cross-linking of Fc gamma-RIIA but not by collagen, suggesting that it associates with the kinase. Consistent with this, tyrosine-phosphorylated Fc gamma-RIIA is precipitated by a glutathione S-transferase (GST) fusion protein containing the tandem src homology (SH2) domains of syk from Fc gamma-RIIA- but not collagen-activated cells. Two uncharacterized tyrosine-phosphorylated proteins of 40 and 65 kDa are uniquely precipitated by a GST fusion protein containing the tandem syk-SH2 domains in collagen-stimulated platelets. A peptide based on the antigen recognition activation motif (ARAM) of Fc gamma-RIIA, and phosphorylated on the two tyrosine residues found within this region, selectively binds syk from lysates of resting platelets; this interaction is not seen with a non-phosphorylated peptide. Kinase assays on Fc gamma-RIIA immunoprecipitates reveal the constitutive association of an unidentified kinase activity in resting cells which phosphorylates a 67 kDa protein. Syk is not detected in Fc gamma-RIIA immunoprecipitates from resting cells but associates with the receptor following activation

  1. Oxidative inhibition of receptor-type protein-tyrosine phosphatase kappa by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes.

    PubMed

    Xu, Yiru; Shao, Yuan; Voorhees, John J; Fisher, Gary J

    2006-09-15

    Ultraviolet (UV) irradiation rapidly increases tyrosine phosphorylation (i.e. activates) of epidermal growth factor receptors (EGFR) in human skin. EGFR-dependent signaling pathways drive increased expression of matrix metalloproteinases, whose actions fragment collagen and elastin fibers, the primary structural protein components in skin connective tissue. Connective tissue fragmentation, which results from chronic exposure to solar UV irradiation, is a major determinant of premature skin aging (photoaging). UV irradiation generates reactive oxygen species, which readily react with conserved cysteine residues in the active site of protein-tyrosine phosphatases (PTP). We report here that EGFR activation by UV irradiation results from oxidative inhibition of receptor type PTP-kappa (RPTP-kappa). RPTP-kappa directly counters intrinsic EGFR tyrosine kinase activity, thereby maintaining EGFR in an inactive state. Reversible, oxidative inactivation of RPTP-kappa activity by UV irradiation shifts the kinase-phosphatase balance in favor of EGFR activation. These data delineate a novel mechanism of EGFR regulation and identify RPTP-kappa as a key molecular target for antioxidant protection against skin aging.

  2. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras.

    PubMed

    Gire, V; Marshall, C J; Wynford-Thomas, D

    1999-08-26

    Given the high frequency of ras oncogene activation in several common human cancers, its signal pathways are an important target for novel therapy. For practical reasons, however, these have been studied mainly in the context of transformation of established fibroblast cell lines, whereas ras acts at an earlier stage in human tumorigenesis and predominantly on epithelial cells. Here we have developed a more directly relevant model - human primary thyroid epithelial cells - which are a major target of naturally-occurring Ras mutation, and in which expression of mutant Ras in culture induces clonal expansion without morphological transformation, closely reproducing the phenotype of the corresponding tumour in vivo. Transient or stable expression of mutant H-ras (by scrapeloading or retroviral infection) at levels which stimulated proliferation induced sustained activation and translocation of MAP kinase (MAPK) in these cells. Inhibition of the MAPK pathway at the level of MAPKK, by expression of a dominant-negative mutant or by the pharmacological inhibitor PD98059, efficiently blocked the proliferative response. Conversely, selective activation of MAPK by a constitutively-active MAPKK1 mutant failed to mimic the action of Ras and, although this was achievable with activated Raf, micro-injection of anti-ras antibodies showed that this still required endogenous wild-type Ras function. In contrast to recent results obtained with a rodent thyroid cell line (WRT), therefore, activation of the MAPK pathway is necessary, but not sufficient, for the proliferogenic action of mutant Ras on primary human thyroid cells. These data emphasize the unreliability of extrapolation from cell lines and establish the feasibility of using a more representative human epithelial model for Ras signalling studies.

  3. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  4. Cell fate regulated by nuclear factor-κB- and activator protein-1-dependent signalling in human melanocytes exposed to ultraviolet A and ultraviolet B

    PubMed Central

    Wäster, P; Rosdahl, I; Öllinger, K

    2014-01-01

    Summary Background Ultraviolet (UV) radiation constitutes an important risk factor for malignant melanoma, but the wavelength responsible for the initiation of this disease is not fully elucidated. Solar UV induces multiple signalling pathways that are critical for initiation of apoptotic cell death as a cellular defence against malignant transformation. Objectives To evaluate the involvement of the transcription factors nuclear factor (NF)-κB and activator protein (AP)-1 in the signalling pathways induced by UVA or UVB irradiation in human melanocytes. Methods Primary cultures of normal human melanocytes were irradiated with UVA or UVB, and the concomitant DNA damage and redox alterations were monitored. The resulting activation of the NF-κB and AP-1 signalling pathways and subsequent apoptosis were studied. Results UVB irradiation causes DNA damage detected as formation of cyclobutane pyrimidine dimers, while UVA induces increased levels of 8-hydroxydeoxyguanosine and lipid peroxidation. UVA and UVB initiate phosphorylation of c-Jun N-terminal protein kinase and extracellular signal-regulated kinase, and the apoptosis signalling pathways converge into a common mechanism. Downregulation of c-Jun suppresses AP-1-mediated signalling and prevents apoptosis upstream of lysosomal and mitochondrial membrane permeabilization, whereas inhibition of NF-κB by SN50 increases apoptosis. Conclusions We conclude that AP-1 induces proapoptotic signalling, whereas NF-κB is a key antiapoptotic/prosurvival factor in both UVA- and UVB-induced cellular damage in human melanocytes, which might in turn impact melanoma development and progression. What's already known about this topic? Melanocytes are the target cells of ultraviolet (UV) irradiation, and the cells from which melanoma originates. The mitogen-activated protein kinase signalling pathway is important for regulation of UV-induced cellular responses. Previous studies have strongly implicated the transcription factors

  5. Levels of expression of complement regulatory proteins CD46, CD55 and CD59 on resting and activated human peripheral blood leucocytes

    PubMed Central

    Christmas, Stephen E; de la Mata Espinosa, Claudia T; Halliday, Deborah; Buxton, Cheryl A; Cummerson, Joanne A; Johnson, Peter M

    2006-01-01

    The cell surface complement regulatory (CReg) proteins CD46, CD55 and CD59 are widely expressed on human lymphoid and non-lymphoid cells. This study aimed to compare systematically levels of CReg expression by different leucocyte subsets and to determine whether levels were increased following activation in vitro. Levels of each CReg protein were similar on freshly isolated monocytes and all major lymphocyte subsets, except that CD4+ cells expressed significantly less CD46 than CD8+ cells (P < 0·05) while the reverse was observed for CD55 (P < 0·02). CD56+ cells, predominantly natural killer cells, expressed significantly lower levels of CD59 than T cells (P < 0·02). CD45RO+ cells had higher levels of surface CD46 and CD59, but lower levels of CD55, than CD45RO– cells (P < 0·02); CD25+ cells also expressed significantly less CD55 than CD25− cells (P < 0·002). Neutrophils expressed higher levels of CD59, but lower levels of CD55, than monocytes. Following activation with phytohaemagglutinin, CD46 was up-regulated on all leucocyte subsets with the exception of CD56+ cells. Both CD55 and CD59 were also markedly up-regulated on monocytes, and CD55 expression was greater on CD8+ than CD4+ cells following activation (P < 0·02). Lipopolysaccharide treatment did not significantly alter B-cell expression of CReg proteins whereas CD55 and CD59, but not CD46, were significantly up-regulated on monocytes (P < 0·02). These observations that CReg proteins are up-regulated on certain activated leucocyte subsets indicate that levels would be increased following immune responses in vivo. This could enhance both protection against local complement activation at inflammatory sites and also the immunoregulatory properties of these leucocytes. PMID:16999828

  6. Levels of expression of complement regulatory proteins CD46, CD55 and CD59 on resting and activated human peripheral blood leucocytes.

    PubMed

    Christmas, Stephen E; de la Mata Espinosa, Claudia T; Halliday, Deborah; Buxton, Cheryl A; Cummerson, Joanne A; Johnson, Peter M

    2006-12-01

    The cell surface complement regulatory (CReg) proteins CD46, CD55 and CD59 are widely expressed on human lymphoid and non-lymphoid cells. This study aimed to compare systematically levels of CReg expression by different leucocyte subsets and to determine whether levels were increased following activation in vitro. Levels of each CReg protein were similar on freshly isolated monocytes and all major lymphocyte subsets, except that CD4(+) cells expressed significantly less CD46 than CD8(+) cells (P < 0.05) while the reverse was observed for CD55 (P < 0.02). CD56(+) cells, predominantly natural killer cells, expressed significantly lower levels of CD59 than T cells (P < 0.02). CD45RO(+) cells had higher levels of surface CD46 and CD59, but lower levels of CD55, than CD45RO(-) cells (P < 0.02); CD25(+) cells also expressed significantly less CD55 than CD25(-) cells (P < 0.002). Neutrophils expressed higher levels of CD59, but lower levels of CD55, than monocytes. Following activation with phytohaemagglutinin, CD46 was up-regulated on all leucocyte subsets with the exception of CD56(+) cells. Both CD55 and CD59 were also markedly up-regulated on monocytes, and CD55 expression was greater on CD8(+) than CD4(+) cells following activation (P < 0.02). Lipopolysaccharide treatment did not significantly alter B-cell expression of CReg proteins whereas CD55 and CD59, but not CD46, were significantly up-regulated on monocytes (P < 0.02). These observations that CReg proteins are up-regulated on certain activated leucocyte subsets indicate that levels would be increased following immune responses in vivo. This could enhance both protection against local complement activation at inflammatory sites and also the immunoregulatory properties of these leucocytes.

  7. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator.

    PubMed

    Moser, T L; Enghild, J J; Pizzo, S V; Stack, M S

    1993-09-01

    This study describes the binding of plasminogen and tissue-type plasminogen activator (t-PA) to the extracellular matrix proteins fibronectin and laminin. Plasminogen bound specifically and saturably to both fibronectin and laminin immobilized on microtiter wells, with Kd(app) values of 115 and 18 nM, respectively. Limited proteolysis by endoproteinase V8 coupled with ligand blotting analysis showed that both plasminogen and t-PA preferentially bind to a 55-kDa fibronectin fragment and a 38-kDa laminin fragment. Amino acid sequence analysis demonstrated that the 5-kDa fragment originates with the fibronectin amino terminus whereas the laminin fragment was derived from the carboxyl-terminal globular domain of the laminin A chain. Ligand blotting experiments using isolated plasminogen domains were also used to identify distinct regions of the plasminogen molecule involved in fibronectin and laminin binding. Solution phase fibronectin binding to immobilized plasminogen was mediated primarily via lysine binding site-dependent interactions with plasminogen kringles 1-4. Lysine binding site-dependent binding of soluble laminin to immobilized plasminogen kringles 1-5 as well as an additional lysine binding site-independent interaction between mini-plasminogen and the 38-kDa laminin A chain fragment were also observed. These studies demonstrate binding of plasminogen and tissue-type plasminogen activator to specific regions of the extracellular matrix glycoproteins laminin and fibronectin and provide further insight into the mechanism of regulation of plasminogen activation by components of the extracellular matrix. PMID:8360181

  8. Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG).

    PubMed

    Sroubek, Jakub; McDonald, Thomas V

    2011-06-17

    Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. PMID:21536683

  9. Protein Kinase A Activity at the Endoplasmic Reticulum Surface Is Responsible for Augmentation of Human ether-a-go-go-related Gene Product (HERG)*

    PubMed Central

    Sroubek, Jakub; McDonald, Thomas V.

    2011-01-01

    Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. PMID:21536683

  10. Suppressor of Ty homolog-5, a novel tumor-specific human telomerase reverse transcriptase promoter-binding protein and activator in colon cancer cells

    PubMed Central

    Dong, Yong; He, Chao; Hu, Xiaotong

    2015-01-01

    The human telomerase reverse transcriptase (hTERT) promoter promotes differential hTERT gene expression in tumor cells and normal cells. However, information on the mechanisms underlying the differential hTERT transcription and induction of telomerase activity in tumor cells is limited. In the present study, suppressor of Ty homolog-5 (SPT5), a protein encoded by the SUPT5H gene, was identified as a novel tumor-specific hTERT promoter-binding protein and activator in colon cancer cells. We verified the tumor-specific binding activity of SPT5 to the hTERT promoter in vitro and in vivo and detected high expression levels of SUPT5H in colorectal cancer cell lines and primary human colorectal cancer tissues. SUPT5H was more highly expressed in colorectal cancer cases with distant metastasis than in cases without distant metastasis. Inhibition of endogenous SUPT5H expression by SUPT5H gene-specific short hairpin RNAs effectively attenuated hTERT promoter-driven green fluorescent protein (GFP) expression, whereas no detectable effects on CMV promoter-driven GFP expression in the same cells were observed. In addition, inhibition of SUPT5H expression not only effectively repressed telomerase activity, accelerated telomere shortening, and promoted cell senescence in colon cancer cells, but also suppressed cancer cell growth and migration. Our results demonstrated that SPT5 contributes to the up-regulation of hTERT expression and tumor development, and SUPT5H may potentially be used as a novel tumor biomarker and/or cancer therapeutic target. PMID:26418880

  11. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells

    PubMed Central

    Franco, Luís H; Wowk, Pryscilla F; Silva, Célio L; Trombone, Ana PF; Coelho-Castelo, Arlete AM; Oliver, Constance; Jamur, Maria C; Moretto, Edson L; Bonato, Vânia LD

    2008-01-01

    Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy. PMID:18208592

  12. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1

    PubMed Central

    Banerjee, Monimoy; Chen, Taosheng

    2014-01-01

    Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)–approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of PXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in PXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates PXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates PXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy. PMID:25181459

  13. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1.

    PubMed

    Banerjee, Monimoy; Chen, Taosheng

    2014-11-15

    Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)-approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of hPXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in hPXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates hPXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates hPXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy.

  14. Protein kinase C (PKC) phosphorylates human platelet inositol trisphosphate 5/sup +/-/-phosphomonoesterase (IP/sub 3/ 5'-p'tase) increasing phosphatase activity

    SciTech Connect

    Connolly, T.M.; Majerus, P.W.

    1986-05-01

    Phosphoinositide breakdown in response to thrombin stimulation of human platelets generates messenger molecules that activate PKC (diglyceride) and mobilize Ca/sup + +/ (inositol tris-phosphates). The water soluble products of phospholipase C-mediated metabolism of phosphatidylinositol 4,5-diphosphate are inositol 1,4,5 P/sub 3/ (IP/sub 3/) and inositol 1:2-cyclic 4,5 P/sub 3/ (cIP/sub 3/). A specific phosphatase, IP/sub 3/ 5'-p'tase, cleaves the 5 phosphate from IP/sub 3/ or cIP/sub 3/ to form IP/sub 2/ or cIP/sub 2/ and P/sub i/, none of which mobilizes Ca/sup + +/. Thus, the IP/sub 3/ 5'-p'tase may regulate cellular responses to IP/sub 3/ or cIP/sub 3/. The authors find that IP/sub 3/ 5'-p'tase isolated from human platelets is phosphorylated by rat brain PKC, resulting in a 4-fold increase in IP/sub 3/ 5'-p'tase activity. The authors phosphorylated IP/sub 3/ 5'-p'tase using ..gamma.. /sup 32/P-ATP and found that the labeled enzyme comigrated on SDS-PAGE with the previously described 40K protein phosphorylated in response to thrombin stimulation of platelets. The similarity of the PKC-phosphorylated IP/sub 3/ 5'-p'tase observed in vitro and the thrombin-stimulated phosphorylated 40K protein known to be phosphorylated by PKC in vivo, suggests that these proteins may be the same. These results suggest that platelet Ca/sup + +/ mobilization maybe regulated by PKC phosphorylation of the IP/sub 3/ 5'-p'tase and can explain the observation that phorbol ester treatment of intact human platelets results in decreased production of IP/sub 3/ and decreased Ca/sup + +/ mobilization upon subsequent thrombin addition.

  15. Long interspersed nucleotide acid element-1 ORF-1 protein promotes proliferation and invasion of human colorectal cancer LoVo cells through enhancing ETS-1 activity.

    PubMed

    Li, M Y; Zhu, M; Feng, F; Cai, F Y; Fan, K C; Jiang, H; Wang, Z Q; Linghu, E Q

    2014-04-14

    The human proto-oncogene long interspersed nucleotide acid element-1 (LINE-1) open reading frame-1 protein (ORF-1p) is involved in the progress of several cancers. The transcription factor ETS-1 can mediate the transcription of some downstream genes that play specific roles in the regulation of cancerous cell invasion and metastasis. In this study, the effects of LINE-1 ORF-1p on ETS-1 activity and on the proliferation and invasion of human colorectal cancer LoVo cells were investigated. Results showed that the overexpression of LINE-1 ORF-1p enhanced the transcription of ETS-1 downstream genes and increased their protein levels, and downregulation of the LINE-1 ORF-1p level by small interfering RNA (siRNA) reduced the transcriptional activation of ETS-1. In addition, overexpression of LINE-1 ORF-1p promoted LoVo cell proliferation and anchor-independent growth, and a knockdown of the LINE-1 protein level by siRNA reduced the proliferation and anchor-independent growth ability of LoVo cells. In vivo data revealed that LINE-1 ORF-1p overexpression increased LoVo tumor growth in nude mice, whereas the siRNA knockdown of endogenous LINE-1 ORF-1p expression decreased LoVo cell growth in nude mice. Therefore, LINE- 1 ORF-1p could promote LoVo cell proliferation and invasion both in vitro and in vivo, indicating that it might be a useful molecular target for the treatment of human colorectal cancer.

  16. Heterologous expression and purification of biologically active domains 3 and 4 of human polymeric immunoglobulin receptor and its interaction with choline binding protein A of Streptococcus pneumoniae.

    PubMed

    Venables, Luanne; Govender, Sharlene; Oosthuizen, Vaughan

    2013-10-01

    Streptococcus pneumoniae, one of the common causes of pneumonia, colonises the epithelium via the interaction between a choline binding protein of S. pneumoniae and the human polymeric immunoglobulin receptor (pIgR). One of the functions of pIgR is to mediate the transcytosis of polymeric immunoglobulins from the basolateral to the apical surface of epithelial cells. S. pneumoniae invades human epithelial cells by exploiting the transcytosis machinery. Due to an increase in the prevalence of antibiotic resistant strains of S. pneumoniae, and the limitations and expense of the vaccines available, extensive research may provide insights into the potential of new therapeutic regimes. This study investigated the potential of pIgR domains as an alternative non-antibiotic immune therapy for treating pneumonia. The aim was to determine the binding affinity of recombinant D3D4 protein, the domains of pIgR responsible for binding S. pneumoniae, to recombinant R1R2 repeat domains of choline binding protein A of S. pneumoniae. Biologically active recombinant D3D4 was produced in Escherichia coli using a gel filtration chromatography refolding method, a novel approach for the refolding of pIgR domains, after the purification of inclusion bodies using nickel affinity chromatography. Surface Plasmon resonance (SPR) spectroscopy showed that purified recombinant D3D4 binds recombinant R1R2 with an equilibrium dissociation constant (KD) of 3.36×10(-7)M. PMID:23973337

  17. Isolation and characterization of an outer membrane protein of Salmonella paratyphi B: a mitogen and polyclonal activator of human B lymphocytes.

    PubMed Central

    Sager, S; Virella, G; Chen, W Y; Fudenberg, H H

    1984-01-01

    Salmonella paratyphi B (S. paratyphi B) has been previously characterized as a human T-independent polyclonal B cell activator. To define further the nature of the bacterial structure responsible for these properties, we studied the effects of autoclaving and enzyme treatment of S. paratyphi B on its stimulatory capacity. We found that both autoclaving and papain treatment decreased the ability of S. paratyphi B to induce B cell activation, while trypsin treatment did not affect this capacity. Neither type of treatment affected the binding of S. paratyphi B to lymphocytes, suggesting that binding and B cell stimulation are mediated by different structures. The observation that B cell stimulation was significantly reduced by papain treatment led us to attempt to purify membrane proteins so that we could investigate whether they shared the stimulating capacity of S. paratyphi B. A water-insoluble, 43-45,000 mol. wt. protein, rich in aspartic acid, glutamine, glycine, alanine and leucine, similar in mol. wt. and physicochemical chemical properties to the porins of other gram negative bacteria, was isolated and designated as outer membrane protein (OMP). This protein was equally efficient to S. paratyphi B in inducing T-independent B cell activation. By performing time-course studies of [3H]-thymidine incorporation we observed a burst of mitogenic activity after stimulation of PBL or purified B cells with both S. paratyphi B and OMP peaking at 48-96 hr of culture (compared to 96-120 hr for the PWM proliferation peak), and with a magnitude of roughly 10% of that observed after PWM stimulation. Given the fact that the proportion of B lymphocytes in PBL is 4-12%, it appears likely that the proliferation burst seen with S. paratyphi B and OMP corresponds to a mitogenic effect mainly restricted to the B cell population. Images Figure 1 PMID:6370841

  18. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  19. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    PubMed Central

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-01-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotics detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that cautions should be taken for PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. PMID:23707768

  20. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  1. The human interferon-regulated ISG95 protein interacts with RNA polymerase II and shows methyltransferase activity

    SciTech Connect

    Haline-Vaz, Thais; Lima Silva, Tereza Cristina; Zanchin, Nilson I.T.

    2008-08-08

    A major mechanism of cellular resistance to viral invasion involves genes from the interferon signaling pathway, called ISGs (interferon stimulated genes). Global transcriptional profiling studies have linked increased expression of ISG95 (KIAA0082) to response to interferon treatment and viral infection, suggesting that it may be part of the cellular defense against viral replication. In this work, we show that the ISG95 promoter can drive interferon-induced transcription of a reporter gene in Vero cells. Recombinant ISG95 shows RNA- and S-adenosyl-methionine binding and protein methyltransferase activity in vitro. ISG95 interacts with the C-terminal domain of RNA polymerase II, which is consistent with its nuclear localization and with the predicted function of the WW domain found in the C-terminal region of ISG95. The results presented in this work indicate that ISG95 is part of the interferon response pathway and functions in the pre-mRNA processing events mediated by the C-terminal domain of the RNA polymerase II.

  2. Protein Evolution of Human Milk.

    PubMed

    Thakkar, Sagar K; Giuffrida, Francesca; Bertschy, Emmanuelle; De Castro, Antonio; Destaillats, Frédéric; Lee, Le Ye

    2016-01-01

    Given the documented short- and long-term advantages of breastfeeding, human milk (HM) as a sole source of nutrition for the first few months of newborn life is considered a normative standard. Each macroconstituent of HM plays a crucial role in the growth and development of the baby. Lipids are largely responsible for providing more than 50% of the energy as well as providing essential fatty acids and minor lipids that are integral to all cell membranes. Carbohydrates can be broadly divided into lactose and oligosaccharides, which are a readily digestible source of glucose and indigestible nonnutritive components, respectively. Proteins in HM provide essential amino acids indispensable for the growth of infants. What is more interesting is that protein concentration profoundly changes from colostrum to mature milk. In this report, we share data from an observatory, single-center, longitudinal trial assessing the constituents of HM collected 30, 60 and 120 days postpartum from 50 mothers (singleton deliveries: 25 male and 25 female infants). The protein content decreased with evolving stages of lactation from an average of 1.45 to 1.38 g/100 ml. The data did not show any gender differences as it was reported for lipid content at 120 days postpartum by our group. Additionally, we also share consolidated literature data on protein evolution of HM during the first year of lactation. PMID:27336906

  3. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    PubMed

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  4. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system

    SciTech Connect

    Cervia, Davide; Catalani, Elisabetta; Belardinelli, Maria Cristina; Perrotta, Cristiana; Picchietti, Simona; Alimenti, Claudio; Casini, Giovanni; Fausto, Anna Maria; Vallesi, Adriana

    2013-02-01

    Water-soluble protein signals (pheromones) of the ciliate Euplotes have been supposed to be functional precursors of growth factors and cytokines that regulate cell–cell interaction in multi-cellular eukaryotes. This work provides evidence that native preparations of the Euplotes raikovi pheromone Er-1 (a helical protein of 40 amino acids) specifically increases viability, DNA synthesis, proliferation, and the production of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-2, and IL-13 in human Jurkat T-cells. Also, Er-1 significantly decreases the mRNA levels of the β and γ subunits of IL-2 receptor (IL-2R), while the mRNA levels of the α subunit appeared to be not affected. Jurkat T-cell treatments with Er-1 induced the down-regulation of the IL-2Rα subunit by a reversible and time-dependent endocytosis, and increased the levels of phosphorylation of the extracellular signal-regulated kinases (ERK). The cell-type specificity of these effects was supported by the finding that Er-1, although unable to directly influence the growth of human glioma U-373 cells, induced Jurkat cells to synthesize and release factors that, in turn, inhibited the U-373 cell proliferation. Overall, these findings imply that Er-1 coupling to IL-2R and ERK immuno-enhances T-cell activity, and that this effect likely translates to an inhibition of glioma cell growth. -- Highlights: ► Euplotes pheromone Er-1 increases the growth of human Jurkat T-cells. ► Er-1 increases the T-cell production of specific cytokines. ► Er-1 activates interleukin-2 receptor and extracellular signal-regulated kinases. ► The immuno-enhancing effect of Er-1 on Jurkat cells translates to an inhibition of human glioma cell growth.

  5. Inhibition of coagulation, fibrinolysis, and endothelial cell activation by a p38 mitogen-activated protein kinase inhibitor during human endotoxemia.

    PubMed

    Branger, Judith; van den Blink, Bernt; Weijer, Sebastiaan; Gupta, Abhya; van Deventer, Sander J H; Hack, C Erik; Peppelenbosch, Maikel P; van der Poll, Tom

    2003-06-01

    P38 mitogen-activated protein kinase (MAPK) is an important component of intracellular signaling cascades that initiate various inflammatory cellular responses. To determine the role of p38 MAPK in the procoagulant response to lipopolysaccharide (LPS), 24 healthy subjects were exposed to an intravenous dose of LPS (4 ng/kg), preceded 3 hours earlier by orally administered 600 or 50 mg BIRB 796 BS (a specific p38 MAPK inhibitor), or placebo. The 600-mg dose of BIRB 796 BS strongly inhibited LPS-induced coagulation activation, as measured by plasma concentrations of the prothrombin fragment F1 + 2. BIRB 796 BS also dose dependently attenuated the activation and subsequent inhibition of the fibrinolytic system (plasma tissue-type plasminogen activator, plasmin-alpha2-antiplasmin complexes, and plasminogen activator inhibitor type 1) and endothelial cell activation (plasma soluble E-selectin and von Willebrand factor). Activation of p38 MAPK plays an important role in the procoagulant and endothelial cell response after in vivo exposure to LPS.

  6. Utility of a Protein Fraction with Cathepsin L-Like Activity Purified from Cysticercus Fluid of Taenia solium in the Diagnosis of Human Cysticercosis

    PubMed Central

    Zimic, Mirko; Pajuelo, Mónica; Rueda, Daniel; López, César; Arana, Yanina; Castillo, Yesenia; Calderón, Maritza; Rodriguez, Silvia; Sheen, Patricia; Vinetz, Joseph M.; Gonzales, Armando; García, Héctor H.; Gilman, Robert H.

    2009-01-01

    Neurocysticercosis, an endemic parasitic disease in most developing countries, is caused by Taenia solium and compromises the human central nervous system. Cathepsin L-like proteases are secreted by several parasites including T. solium and constitute important antigens for immunodiagnostics. A protein fraction with cathepsin L-like activity was purified from the cysticercus fluid by size exclusion and ion exchange chromatography. Cathepsin L-like activity was measured fluorometrically by detecting the hydrolysis of the fluorogenic substrate Z-Phe-Arg-AMC. The purified protein fraction included antigens of 53 and 25 kD that were tested in a Western immunoblot and in an enzyme-linked immunosorbent assay (ELISA) for detection of human cysticercosis. The sensitivity of the Western immunoblot was 96% for patients infected with multiple cysts and 78% for patients with a single cyst. Specificity was 98%. The sensitivity of the ELISA was 98% in patients with multiple cysts and 84% in patients with a single cyst. Specificity was 92.7%. PMID:19478259

  7. Binding of Tissue-type Plasminogen Activator to the Glucose-regulated Protein 78 (GRP78) Modulates Plasminogen Activation and Promotes Human Neuroblastoma Cell Proliferation in Vitro*

    PubMed Central

    Gonzalez-Gronow, Mario; Gomez, Cristian Farias; de Ridder, Gustaaf G.; Ray, Rupa; Pizzo, Salvatore V.

    2014-01-01

    The glucose-regulated protein 78 (GRP78) is a plasminogen (Pg) receptor on the cell surface. In this study, we demonstrate that GRP78 also binds the tissue-type plasminogen activator (t-PA), which results in a decrease in Km and an increase in the Vmax for both its amidolytic activity and activation of its substrate, Pg. This results in accelerated Pg activation when GRP78, t-PA, and Pg are bound together. The increase in t-PA activity is the result of a mechanism involving a t-PA lysine-dependent binding site in the GRP78 amino acid sequence 98LIGRTWNDPSVQQDIKFL115. We found that GRP78 is expressed on the surface of neuroblastoma SK-N-SH cells where it is co-localized with the voltage-dependent anion channel (VDAC), which is also a t-PA-binding protein in these cells. We demonstrate that both Pg and t-PA serve as a bridge between GRP78 and VDAC bringing them together to facilitate Pg activation. t-PA induces SK-N-SH cell proliferation via binding to GRP78 on the cell surface. Furthermore, Pg binding to the COOH-terminal region of GRP78 stimulates cell proliferation via its microplasminogen domain. This study confirms previous findings from our laboratory showing that GRP78 acts as a growth factor-like receptor and that its association with t-PA, Pg, and VDAC on the cell surface may be part of a system controlling cell growth. PMID:25059665

  8. Parathyroid hormone-related protein (107-139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2.

    PubMed

    Alonso, Verónica; de Gortázar, Arancha R; Ardura, Juan A; Andrade-Zapata, Irene; Alvarez-Arroyo, M Victoria; Esbrit, Pedro

    2008-12-01

    Parathyroid hormone-related protein (PTHrP) (107-139), in contrast to the N-terminal fragment PTHrP (1-36), has been shown to interact with the vascular endothelial growth factor (VEGF) system to modulate human osteoblast differentiation. In this study, we evaluated whether this interaction might affect human osteoblastic cell survival. Pre-incubation with PTHrP (107-139) for 1-24 h dose-dependently (0.1-100 nM) inhibited dexamethasone- or etoposide-induced cell death in human osteoblastic MG-63 cells and human osteoblast-like cells from trabecular bone. This effect, but not that elicited by PTHrP (1-36), was abolished by the VEGF receptor (VEGFR)-2 inhibitors SU5614 and SU1498 or VEGFR-2 siRNA transfection in these cells. PTHrP (107-139), but not PTHrP (1-36), at 100 nM, rapidly (within 2 min) increased VEGFR-2 tyrosine-phosphorylation in MG-63 cells; an effect unaffected by several inhibitors of metalloproteinases, neutralizing VEGF(165) or VEGFR-2 antibodies, or the VEGF binding inhibitor CBO-PP1. The latter two antagonists also failed to affect (125)I-[Tyr(116)] PTHrP (107-115) binding to these cells. Consistent with its effect on VEGFR-2 activation, PTHrP (107-139) rapidly induced extracellular signal-regulated kinase (ERK) 1/2 and Akt activaton, and both ERK and phosphatidylinsositol-3 kinase (PI3K) inhibitors abolished its pro-survival effect in human osteoblastic cells. In addition, SU5614 and the latter two types of inhibitors abrogated Runx2 activation by this peptide in MG-63 cells. Transfection with a dominant-negative Runx2 construct abolished the pro-survival effect of PTHrP (107-139), associated with a decrease in Bcl-2/Bax protein ratio. Our findings demonstrate that PTHrP (107-139) interacts with VEGFR-2 to promote human osteoblastic cell survival by a mechanism involving Runx2 activation.

  9. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    PubMed

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction.

  10. Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields.

    PubMed

    Thumm, S; Löschinger, M; Glock, S; Hämmerle, H; Rodemann, H P

    1999-09-01

    Sinusoidal extremely low-frequency electromagnetic fields (ELF-EMF; 7-8 mT, 20 Hz) have already been shown to inhibit proliferation and to accelerate terminal differentiation of human skin fibroblasts in vitro. In order to elucidate the underlying processes of signal transduction, we analysed the activity of cAMP-dependent protein kinase (PKA). EMF exposure for 60 min resulted in an increased PKA activity in human skin fibroblasts (2-fold) and rat embryonic osteoblasts (1.7-fold). Long-term exposure for up to 7 days with a constant 1 h-on/1 h-off EMF exposure rhythm indicated a transient stimulation of PKA activity during the first two exposure rhythms followed by a decrease to the baseline levels of sham-exposed controls. Based on these results, we postulate that a modulation of proliferation and differentiation processes in cells of mesenchymal origin is triggered by an immediate and transient EMF-induced increase in PKA activity. PMID:10525956

  11. Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts.

    PubMed

    Vile, G F

    1997-07-21

    Active oxygen species mediate many of the biological consequences of exposing cultured human skin cells to solar ultraviolet (UV) radiation (290-380 nm). A critical step in the escape from the carcinogenic potential of UV radiation is mediated by the protein p53. P53 activates growth arrest, allowing for DNA repair, and apoptosis, which removes damaged cells. Here I show that p53 in cultured human skin fibroblasts is elevated after treatment with hydrogen peroxide, an oxidant produced in cells during exposure to solar UV radiation. Simulated solar UV radiation increased p53, and agents that scavenge active oxygen species, N-acetylcysteine, ascorbate and alpha-tocopherol, inhibited the increase. The generation of DNA single strand breaks has been proposed to be an important step in the pathway leading to the increase in p53 initiated by a variety of cytotoxic agents. In this study I show that compounds that allow the accumulation of DNA single strand breaks, ara c and hydroxyurea, enhanced the UVC radiation (254 nm)-dependent increase in p53, but had no effect on the solar UV radiation-dependent increase. Thus, while DNA single strand breaks are involved in the UVC radiation-dependent increase in p53, the increase caused by solar UV radiation occurs by an alternative mechanism involving active oxygen species.

  12. Selective amplification of an mRNA and related pseudogene for a human ADP-ribosylation factor, a guanine nucleotide-dependent protein activator of cholera toxin

    SciTech Connect

    Monaco, L.; Murtagh, J.J.; Newman, K.B.; Tsai, Su-Chen; Moss, J.; Vaughan, M. )

    1990-03-01

    ADP-ribosylation factors (ARFs) are {approx}20-kDa proteins that act as GTP-dependent allosteric activators of cholera toxin. With deoxyinosine-containing degenerate oligonucleotide primers corresponding to conserved GTP-binding domains in ARFs, the polymerase chain reaction (PCR) was used to amplify simultaneously from human DNA portions of three ARF genes that include codons for 102 amino acids, with intervening sequences. Amplification products that differed in size because of differences in intron sizes were separated by agarose gel electrophoresis. One amplified DNA contained no introns and had a sequence different from those of known AFRs. Based on this sequence, selective oligonucleotide probes were prepared and used to isolate clone {Psi}ARF 4, a putative ARF pseudogene, from a human genomic library in {lambda} phage EMBL3. Reverse transcription-PCR was then used to clone from human poly(A){sup +} RNA the cDNA corresponding to the expressed homolog of {Psi}ARF 4, referred to as human ARF 4. It appears that {Psi}ARF 4 arose during human evolution by integration of processed ARF 4 mRNA into the genome. Human ARF 4 differs from previously identified mammalian ARFs 1, 2, and 3. Hybridization of ARF 4-specific oligonucleotide probes with human, bovine, and rat RNA revealed a single 1.8-kilobase mRNA, which was clearly distinguished from the 1.9-kilobase mRNA for ARF 1 in these tissues. The PCR provides a powerful tool for investigating diversity in this and other multigene families, especially with primers targeted at domains believed to have functional significance.

  13. Virosomes of hepatitis B virus envelope L proteins containing doxorubicin: synergistic enhancement of human liver-specific antitumor growth activity by radiotherapy

    PubMed Central

    Liu, Qiushi; Jung, Joohee; Somiya, Masaharu; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Shin, Seol Hwa; Jeong, Seong-Yun; Choi, Eun Kyung; Kuroda, Shun’ichi

    2015-01-01

    Bionanocapsules (BNCs) are hollow nanoparticles consisting of hepatitis B virus (HBV) envelope L proteins and have been shown to deliver drugs and genes specifically to human hepatic tissues by utilizing HBV-derived infection machinery. The complex of BNCs with liposomes (LPs), the BNC–LP complexes (a LP surrounded by BNCs in a rugged spherical form), could also become active targeting nanocarriers by the BNC function. In this study, under acidic conditions and high temperature, BNCs were found to fully fuse with LPs (smooth-surfaced spherical form), deploying L proteins with a membrane topology similar to that of BNCs (ie, virosomes displaying L proteins). Doxorubicin (DOX) was efficiently encapsulated via the remote loading method at 14.2%±1.0% of total lipid weight (mean ± SD, n=3), with a capsule size of 118.2±4.7 nm and a ζ-potential of −51.1±1.0 mV (mean ± SD, n=5). When mammalian cells were exposed to the virosomes, the virosomes showed strong cytotoxicity in human hepatic cells (target cells of BNCs), but not in human colon cancer cells (nontarget cells of BNCs), whereas LPs containing DOX and DOXOVES (structurally stabilized PEGylated LPs containing DOX) did not show strong cytotoxicity in either cell type. Furthermore, the virosomes preferentially delivered DOX to the nuclei of human hepatic cells. Xenograft mice harboring either target or nontarget cell-derived tumors were injected twice intravenously with the virosomes containing DOX at a low dose (2.3 mg/kg as DOX, 5 days interval). The growth of target cell-derived tumors was retarded effectively and specifically. Next, the combination of high dose (10.0 mg/kg as DOX, once) with tumor-specific radiotherapy (3 Gy, once after 2 hours) exhibited the most effective antitumor growth activity in mice harboring target cell-derived tumors. These results demonstrated that the HBV-based virosomes containing DOX could be an effective antitumor nanomedicine specific to human hepatic tissues, especially

  14. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    PubMed

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  15. Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65

    PubMed Central

    Liu, Qingshi; Zhang, Zhenfeng; Zheng, Zhenhua; Zheng, Caishang; Liu, Yan; Hu, Qinxue; Ke, Xianliang; Wang, Hanzhong

    2016-01-01

    Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α–mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn’t interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis. PMID:27329558

  16. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators.

    PubMed

    Mehta, Kavi; Gunasekharan, Vignesh; Satsuka, Ayano; Laimins, Laimonis A

    2015-04-01

    Human papillomaviruses infect stratified epithelia and link their productive life cycle to the differentiation state of the host cell. Productive viral replication or amplification is restricted to highly differentiated suprabasal cells and is dependent on the activation of the ATM DNA damage pathway. The ATM pathway has three arms that can act independently of one another. One arm is centered on p53, another on CHK2 and a third on SMC1/NBS1 proteins. A role for CHK2 in HPV genome amplification has been demonstrated but it was unclear what other factors provided important activities. The cohesin protein, SMC1, is necessary for sister chromatid association prior to mitosis. In addition the phosphorylated form of SMC1 plays a critical role together with NBS1 in the ATM DNA damage response. In normal cells, SMC1 becomes phosphorylated in response to radiation, however, in HPV positive cells our studies demonstrate that it is constitutively activated. Furthermore, pSMC1 is found localized in distinct nuclear foci in complexes with γ-H2AX, and CHK2 and bound to HPV DNA. Importantly, knockdown of SMC1 blocks differentiation-dependent genome amplification. pSMC1 forms complexes with the insulator transcription factor CTCF and our studies show that these factors bind to conserved sequence motifs in the L2 late region of HPV 31. Similar motifs are found in most HPV types. Knockdown of CTCF with shRNAs blocks genome amplification and mutation of the CTCF binding motifs in the L2 open reading frame inhibits stable maintenance of viral episomes in undifferentiated cells as well as amplification of genomes upon differentiation. These findings suggest a model in which SMC1 factors are constitutively activated in HPV positive cells and recruited to viral genomes through complex formation with CTCF to facilitate genome amplification. Our findings identify both SMC1 and CTCF as critical regulators of the differentiation-dependent life cycle of high-risk human papillomaviruses.

  17. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  18. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  19. Autolytic activity of human calpain 7 is enhanced by ESCRT-III-related protein IST1 through MIT-MIM interaction.

    PubMed

    Osako, Yohei; Maemoto, Yuki; Tanaka, Ryohei; Suzuki, Hironori; Shibata, Hideki; Maki, Masatoshi

    2010-11-01

    Calpain 7, a mammalian ortholog of yeast Cpl1/Rim13 and fungal PalB, is an atypical calpain that lacks a penta-EF-hand domain. Previously, we reported that a region containing a tandem repeat of microtubule-interacting and transport (MIT) domains in calpain 7 interacts with a subset of endosomal sorting complex required for transport (ESCRT)-III-related proteins, suggesting involvement of calpain 7 in the ESCRT system. Although yeast and fungal calpains are thought to be involved in alkaline adaptation via limited proteolysis of specific transcription factors, proteolytic activity of calpain 7 has not been demonstrated yet. In this study, we investigated the interaction between calpain 7 and a newly reported ESCRT-III family member, increased sodium tolerance-1 (IST1), which possesses two different types of MIT-interacting motifs (MIM1 and MIM2). We found that glutathione-S-transferase (GST)-fused tandem MIT domains of calpain 7 (calpain 7MIT) pulled down FLAG-tagged IST1 expressed in HEK293T cells. Coimmunoprecipitation assays with various deletion or point mutants of epitope-tagged calpain 7 and IST1 revealed that both repetitive MIT domains and MIMs are required for efficient interaction. Direct MIT-MIM binding was confirmed by a pulldown experiment with GST-fused IST1 MIM and purified recombinant calpain 7MIT. Furthermore, we found that the GST-MIM protein enhances the autolysis of purified Strep-tagged monomeric green fluorescent protein (mGFP)-fused calpain 7 (mGFP-calpain 7-Strep). The autolysis was almost completely abolished by 10 mmN-ethylmaleimide but only partially inhibited by 1 mm leupeptin or E-64. The putative catalytic Cys290-substituted mutant (mGFP-calpain 7(C290S)-Strep) showed no autolytic activity. These results demonstrate for the first time that human calpain 7 is proteolytically active, and imply that calpain 7 is activated in the ESCRT system. PMID:20849418

  20. Human Immunodeficiency Virus Type 1 Tat Protein Activates Transcription Factor NF-κB through the Cellular Interferon-Inducible, Double-Stranded RNA-Dependent Protein Kinase, PKR

    PubMed Central

    Demarchi, Francesca; Gutierrez, Maria Ines; Giacca, Mauro

    1999-01-01

    The transactivator protein of human immunodeficiency virus type 1 (HIV-1) (Tat) is a powerful activator of nuclear factor-κB (NF-κB), acting through degradation of the inhibitor IκB-α (F. Demarchi, F. d’Adda di Fagagna, A. Falaschi, and M. Giacca, J. Virol. 70:4427–4437, 1996). Here, we show that this activity of Tat requires the function of the cellular interferon-inducible protein kinase PKR. Tat-mediated NF-κB activation and transcriptional induction of the HIV-1 long terminal repeat were impaired in murine cells in which the PKR gene was knocked out. Both functions were restored by cotransfection of Tat with the cDNA for PKR. Expression of a dominant-negative mutant of PKR specifically reduced the levels of Tat transactivation in different human cell types. Activation of NF-κB by Tat required integrity of the basic domain of Tat; previous studies have indicated that this domain is necessary for specific Tat-PKR interaction. PMID:10400814

  1. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    PubMed

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes.

  2. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids.

    PubMed Central

    Lee, C W; Chang, J; Lee, K J; Sung, Y C

    1994-01-01

    The Bel1 transactivator is essential for the replication of human foamy virus (HFV). To define the functional domains of HFV Bel1, we generated random missense mutations throughout the entire coding sequence of Bel1. Functional analyses of 24 missense mutations have revealed the presence of at least two functional domains in Bel1. One domain corresponds to a basic amino acid-rich motif which acts as a bipartite nuclear targeting sequence. A second, central domain corresponds to a presumed effector region which, when mutated, leads to dominant-negative mutants and/or lacks transactivating ability. In addition, deletion analyses and domain-swapping experiments further showed that Bel1 protein contains a strong carboxy-terminal activation domain. The activating region is also capable of functioning as a transcription-activating domain in yeast cells, although it does not bear any significant sequence homology to the well-characterized acidic activation domain which is known to function only in yeast and mammalian cells. We also demonstrated that the regions of Bel1 from residues 1 to 76 and from residues 153 to 225 repressed transcriptional activation exerted by the Bel1 activation domain. In contrast, the region from residues 82 to 150 appears to overcome an inhibitory effect. These results indicate that Bel1 contains one positive and two negative regulatory domains that modulate a distinct activation domain of Bel1. These regulatory domains of Bel1 cannot affect the function of the VP16 activation domain, suggesting that these domains specifically regulate the activation domain of Bel1. Furthermore, in vivo competition experiments showed that the positive regulatory domain acts in trans. Thus, our results demonstrate that Bel1-mediated transactivation appears to undergo a complex regulatory pathway which provides a novel mode of regulation for a transcriptional activation domain. Images PMID:8139046

  3. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  4. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein

    SciTech Connect

    Zhang, Xinsheng; Wallace, Olivia L.; Domi, Arban; Wright, Kevin J.; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J.; Kamali, Anatoli; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A.; Parks, Christopher L.

    2015-08-15

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance.

  5. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    SciTech Connect

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K. )

    1988-08-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation.

  6. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    PubMed

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  7. Human complement protein C99 is a calcium binding protein

    SciTech Connect

    Thielens, N.M.; Lohner, K.; Esser, A.F.

    1988-05-15

    Human complement protein C9 is shown to be a metalloprotein that binds 1 mol of Ca/sup 2 +//mol of C9 with a dissociation constant of 3 ..mu..m as measured by equilibrium dialysis. Incubation with EDTA removes the bound calcium, resulting in a apoprotein with decreased thermal stability. This loss in stability leads to aggregation and, therefore, to loss of hemolytic activity upon heating to a few degrees above the physiological temperature. Heat-induced aggregation of apoC9 can be prevented by salts that stabilize proteins according to the Hofmeister series of lyotropic ions, suggesting that the ion in native C9 may ligand with more than one structural element of domain of the protein. Ligand blotting indicates that the calcium binding site is located in the amino-terminal half of the protein. Removal of calcium by inclusion of EDTA in assay mixtures has no effect on the hemolytic activity of C9, and its capacity to bind to C8 in solution, or to small unilamellar lipid vesicles at temperatures at or below the physiological range. Although the precise structural and functional role of the bound calcium is not know, it is clear that it provides thermal stability to C9 and it may have a function in regulation of membrane insertion.

  8. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Li, Xin-Yuan; Hu, Qing-Qing; Ma, He-Ping

    2016-01-01

    Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (PO). Moreover, nitric oxide synthase (eNOS) phosphorylation (Ser 1177) levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK) phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and PO. Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells.

  9. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells.

    PubMed

    Zheng, Wei-Wan; Li, Xin-Yuan; Liu, Hui-Bin; Wang, Zi-Rui; Hu, Qing-Qing; Li, Yu-Xia; Song, Bin-Lin; Lou, Jie; Wang, Qiu-Shi; Ma, He-Ping; Zhang, Zhi-Ren

    2016-01-01

    Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (P O ). Moreover, nitric oxide synthase (eNOS) phosphorylation (Ser 1177) levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK) phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and P O . Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells. PMID:27635187

  10. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Li, Xin-Yuan; Hu, Qing-Qing; Ma, He-Ping

    2016-01-01

    Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (PO). Moreover, nitric oxide synthase (eNOS) phosphorylation (Ser 1177) levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK) phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and PO. Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells. PMID:27635187

  11. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death.

    PubMed Central

    Mehlen, P; Kretz-Remy, C; Préville, X; Arrigo, A P

    1996-01-01

    Expression of small stress proteins (shsp) enhances the survival of mammalian cells exposed to heat or oxidative injuries. Recently, we have shown that the expression of shsp from different species, such as human hsp27, Drosophila hsp27 or human alphaB-crystallin protected murine L929 cells against cell death induced by tumor necrosis factor (TNFalpha), hydrogen peroxide or menadione. Here, we report that, in growing L929 cell lines, the presence of these shsp decreased the intracellular level of reactive oxygen species (ROS). shsp expression also abolished the burst of intracellular ROS induced by TNFalpha. Several downstream effects resulting from the TNFalpha-mediated ROS increment, such as NF-kappaB activation, lipid peroxidation and protein oxidation, were inhibited by shsp expression. We also report that the expression of these different shsp raised the total glutathione level in both L929 cell lines and transiently transfected NIH 3T3-ras cells. This phenomenon was essential for the shsp-mediated decrease in ROS and resistance against TNFalpha. Our results therefore suggest that the protective activity shared by human hsp27, Drosophila hsp27 and human alphaB-crystallin against TNFalpha-mediated cell death and probably other types of oxidative stress results from their conserved ability to raise the intracellular concentration of glutathione. Images PMID:8654367

  12. Graphene Nanoribbons Elicit Cell Specific Uptake and Delivery Via Activation of Epidermal Growth Factor Receptor Enhanced by Human PapillomaVirus E5 Protein

    PubMed Central

    Chowdhury, Sayan Mullick; Mannepalli, Prady; Sitharaman, Balaji

    2014-01-01

    Ligands such as peptides, antibodies or other epitopes bind and activate specific cell receptors, and are employed for targeted cellular delivery of pharmaceuticals such as drugs, genes and imaging agents. Herein, we show that oxidized graphene nanoribbons, non-covalently functionalized with PEG-DSPE (1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(polyethyleneglycol)]) (O-GNR-PEG-DSPE) activate epidermal growth factor receptors (EGFRs). This activation generates predominantly dynamin-dependent macropinocytosis-like response, and results in significant O-GNR-PEG-DSPE uptake into cells with high EGFR expression. Cells with an integrated human papillomavirus (HPV) genome also show increased uptake due to the modulation of the activated EFGR by the viral protein E5. We demonstrate that this cell specific uptake of O-GNR-PEG-DSPE can be exploited to achieve significantly enhanced drug efficacies even in drug resistant cells. These results have implications towards the development of active targeting and delivery agents without ligand functionalization for use in the diagnosis and treatment of pathologies that overexpress EGFR or mediated by HPV. PMID:24980059

  13. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn{sup 2+}

    SciTech Connect

    Tal, T.L.; Graves, L.M.; Silbajoris, R.; Bromberg, P.A.; Wu, W.; Samet, J.M. . E-mail: samet.james@epa.gov

    2006-07-01

    Epidemiological studies have implicated zinc (Zn{sup 2+}) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn{sup 2+}-induced EGFR activation in HAEC, we treated HAEC with 500 {mu}M ZnSO{sub 4} for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn{sup 2+} results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn{sup 2+}-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn{sup 2+} treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn{sup 2+}. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn{sup 2+} or V{sup 4+} was significantly diminished. Moreover, exposure of HAEC to Zn{sup 2+} also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn{sup 2+}-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn{sup 2+} exposure.

  14. Ionotrophic 5-hydroxytryptamine type 3 receptor activates the protein kinase C-dependent phospholipase D pathway in human T-cells.

    PubMed Central

    Khan, N A; Hichami, A

    1999-01-01

    The present study was undertaken to investigate the role of the 5-hydroxytryptamine (5-HT) ionotrophic receptor 5-HT(3) in the activation of human Jurkat T-cells. 5-HT and 2-methyl-5-HT (2Me-5-HT), an agonist of the 5-HT(3) receptor, induced increases in intracellular free Na(+) concentrations, [Na(+)](i), via opening of the ionotrophic receptor in these cells. These two serotonergic (5-hydroxytryptaminergic) agents potentiated phytohaemagglutinin (PHA)-induced T-cell activation. However, they failed to potentiate dioctanoglycerol-plus-ionomycin-stimulated T-cell blastogenesis. Interestingly, an inhibitor of protein kinase C (PKC), GF 109203X, curtailed significantly 5-HT and 2Me-5-HT-potentiated T-cell activation. These results demonstrate that the opening of the 5-HT(3) ionotrophic receptor is implicated in T-cell activation via the PKC pathway. Furthermore, 5-HT and 2Me-5-HT stimulated phospholipase D (PLD) activity, as measured by the production of phosphatidylethanol and phosphatidylbutanol at the expense of phosphatidic acid (PA). GF 109203X significantly curtailed the 5-HT- and 2Me-5-HT-induced PLD activity and T-cell activation. The PLD/PA pathway stimulated by these two serotonergic agents resulted in the production of 1,2-diacylglycerol (DAG) mass in Jurkat T-cells. These results altogether suggest that 5-HT and 2Me-5-HT potentiate T-cell activation via increases in [Na(+)](i) and the activation of the PKC-dependent PLD pathway. PMID:10548551

  15. Ionotrophic 5-hydroxytryptamine type 3 receptor activates the protein kinase C-dependent phospholipase D pathway in human T-cells.

    PubMed

    Khan, N A; Hichami, A

    1999-11-15

    The present study was undertaken to investigate the role of the 5-hydroxytryptamine (5-HT) ionotrophic receptor 5-HT(3) in the activation of human Jurkat T-cells. 5-HT and 2-methyl-5-HT (2Me-5-HT), an agonist of the 5-HT(3) receptor, induced increases in intracellular free Na(+) concentrations, [Na(+)](i), via opening of the ionotrophic receptor in these cells. These two serotonergic (5-hydroxytryptaminergic) agents potentiated phytohaemagglutinin (PHA)-induced T-cell activation. However, they failed to potentiate dioctanoglycerol-plus-ionomycin-stimulated T-cell blastogenesis. Interestingly, an inhibitor of protein kinase C (PKC), GF 109203X, curtailed significantly 5-HT and 2Me-5-HT-potentiated T-cell activation. These results demonstrate that the opening of the 5-HT(3) ionotrophic receptor is implicated in T-cell activation via the PKC pathway. Furthermore, 5-HT and 2Me-5-HT stimulated phospholipase D (PLD) activity, as measured by the production of phosphatidylethanol and phosphatidylbutanol at the expense of phosphatidic acid (PA). GF 109203X significantly curtailed the 5-HT- and 2Me-5-HT-induced PLD activity and T-cell activation. The PLD/PA pathway stimulated by these two serotonergic agents resulted in the production of 1,2-diacylglycerol (DAG) mass in Jurkat T-cells. These results altogether suggest that 5-HT and 2Me-5-HT potentiate T-cell activation via increases in [Na(+)](i) and the activation of the PKC-dependent PLD pathway.

  16. Monitoring human lymphocytic DNA-protein cross-links as biomarkers of biologically active doses of chromate.

    PubMed

    Costa, M; Zhitkovich, A; Toniolo, P; Taioli, E; Popov, T; Lukanova, A

    1996-10-01

    A simple and sensitive assay for DNA-protein cross-links has been used as a biomarker of chromate exposure and early carcinogenic effects. Pilot studies of DNA-protein cross-links in peripheral blood lymphocytes have been conducted with individuals who had higher exposure to chromate, including welders, and with individuals who had lower levels of exposure such as residents living in a chromium-contaminated area in Jersey City, New Jersey. Studies were also conducted in two Bulgarian cities (Jambol and Burgas) with different levels of air pollution and Cr(VI) exposure and in chrome platers in Bulgaria who had high exposure to chromate. DNA-protein cross-links in U.S. welders and in individuals living in Hudson County, New Jersey around chromium-contaminated areas were significantly higher compared to matched controls. Although blood and urinary levels of chromium were not extensively studied in these populations, we were able to obtain these measurements in the Bulgarian population. Chromium levels in red blood cells of controls living in Burgas were in the order of 1 to 2 ppb chromium, and these individuals had the lowest levels of DNA-protein cross-links. However, the chromium levels in Jambol ranged from about 2 to 7 ppb in red blood cells of city residents to about 22 ppb in chrome platers. DNA-protein cross-links were saturated at about 7 to 8 ppb chromium in the red blood cells, and cross-links correlated well only with chromium levels in red blood cells. Urinary chromium levels did not correlate well with either DNA-protein cross-links or chromium levels in with red blood cells.

  17. Monitoring human lymphocytic DNA-protein cross-links as biomarkers of biologically active doses of chromate.

    PubMed Central

    Costa, M; Zhitkovich, A; Toniolo, P; Taioli, E; Popov, T; Lukanova, A

    1996-01-01

    A simple and sensitive assay for DNA-protein cross-links has been used as a biomarker of chromate exposure and early carcinogenic effects. Pilot studies of DNA-protein cross-links in peripheral blood lymphocytes have been conducted with individuals who had higher exposure to chromate, including welders, and with individuals who had lower levels of exposure such as residents living in a chromium-contaminated area in Jersey City, New Jersey. Studies were also conducted in two Bulgarian cities (Jambol and Burgas) with different levels of air pollution and Cr(VI) exposure and in chrome platers in Bulgaria who had high exposure to chromate. DNA-protein cross-links in U.S. welders and in individuals living in Hudson County, New Jersey around chromium-contaminated areas were significantly higher compared to matched controls. Although blood and urinary levels of chromium were not extensively studied in these populations, we were able to obtain these measurements in the Bulgarian population. Chromium levels in red blood cells of controls living in Burgas were in the order of 1 to 2 ppb chromium, and these individuals had the lowest levels of DNA-protein cross-links. However, the chromium levels in Jambol ranged from about 2 to 7 ppb in red blood cells of city residents to about 22 ppb in chrome platers. DNA-protein cross-links were saturated at about 7 to 8 ppb chromium in the red blood cells, and cross-links correlated well only with chromium levels in red blood cells. Urinary chromium levels did not correlate well with either DNA-protein cross-links or chromium levels in with red blood cells. PMID:8933034

  18. Protein-tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition.

    PubMed

    Wu, Xiangdong; Hardy, V Elise; Joseph, Jeffrey I; Jabbour, Serge; Mahadev, Kalyankar; Zhu, Li; Goldstein, Barry J

    2003-06-01

    Protein-tyrosine phosphatases (PTPases), in particular PTP1B, have been shown to modulate insulin signal transduction in liver and skeletal muscle in animal models; however, their role in human adipose tissue remains unclear. The uptake of (14)C-D-glucose in response to 10 or 100 nmol/L insulin was measured in isolated subcutaneous adipocytes from subjects with a mean age of 44 years (range, 26 to 58) and mean body mass index (BMI) of 35.6 (range, 29.7 to 45.5). The endogenous activity of total PTPases and specifically of PTP1B in immunoprecipitates was measured in cell lysates under an inert atmosphere with and without added reducing agents. Using nonlinear regression analysis, higher BMI was significantly correlated with lower adipocyte glucose uptake (r = 0.73, P =.01) and with increased endogenous total PTPase activity (r = 0.64, P =.04). Correlation with waist circumference gave similar results. The endogenous total PTPase activity also strongly correlated with insulin-stimulated glucose uptake (R =.89, P <.0001); however, the activity of PTP1B was unrelated to the level of glucose uptake. Consistent with the insulin-stimulated oxidative inhibition of thiol-dependent PTPases reported for 3T3-L1 adipocytes and hepatoma cells, treatment of human adipocytes with 100 nmol/L insulin for 5 minutes lowered endogenous PTPase activity to 37% of control (P <.001), which was increased 25% by subsequent treatment with dithiothreitol in vitro. Cellular treatment with diphenyleneiodonium (DPI), an NADPH oxidase inhibitor that blocks the cellular generation of H(2)O(2) and reduces the insulin-induced reduction of cellular PTPase activity, also diminished insulin-stimulated glucose uptake by 82% (P =.001). These data suggest that total cellular PTPase activity, but not the activity of PTP1B, is higher in more obese subjects and is negatively associated with insulin-stimulated glucose transport. The insulin-stimulated oxidative inhibition of PTPases may also have an important

  19. Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells.

    PubMed

    Agrawal, Mona; Bhaskar, A S B; Lakshmana Rao, P V

    2015-01-01

    T-2 toxin is the most toxic trichothecene and a frequent contaminant in many agriculture products. Dietary ingestion represents the most common route of T-2 toxin exposure in humans. T-2 toxin exposure leads to many pathological conditions like nervous disorders, cardiovascular alterations, immune depression and dermal inflammation. However, the neuronal toxicity of T-2 toxin in vitro remains unclear. In the present study, we investigated the mechanism of T-2 toxin-induced apoptosis in human neuroblastoma cells (IMR-32). T-2 toxin was cytotoxic at a low concentration of 10 ng/ml. The 50% inhibitory concentration (IC50) of T-2 toxin was found to be 40 ng/ml as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, crystal violet dye exclusion test and lactate dehydrogenase (LDH) leakage. T-2 toxin increased intracellular reactive oxygen species generation as early as 15 min and peaked at 60 min as analyzed by flow cytometry. Annexin V + propidium iodide staining showed time-dependent increase in percent apoptotic cells. DNA gel electrophoresis showed oligonucleosomal DNA fragmentation typical of apoptotic cells. Additionally, casapse-3 activation and PARP cleavage indicated involvement of mitochondrial mediated caspase-dependent pathway of apoptosis. Cell cycle analysis revealed time-dependent increase in sub-G1 population of cells and significant up-regulation of CDK2, CDK6, cyclin A and p21 messenger RNA (mRNA) levels. Exposure to T-2 toxin induced the phosphorylation of extracellular signal-regulated kinase (ERK), p38-mitogen-activated protein kinase and c-jun N-terminal kinases (JNK). Analysis of human phospho-mitogen-activated protein kinase (MAPK) antibody array revealed time-dependent increase in phosphorylation. Upstream of ERK pathway Grb2, Ras and Raf and downstream transcription factors c-fos and c-jun were significantly up-regulated. Z-VAD-FMK and MAPK inhibitors (PD 98059, SB 203580 and ZM 336372) exposure prior to T-2

  20. Intrinsic resistance to selumetinib, a selective inhibitor of MEK1/2, by cAMP-dependent protein kinase A activation in human lung and colorectal cancer cells

    PubMed Central

    Troiani, T; Vecchione, L; Martinelli, E; Capasso, A; Costantino, S; Ciuffreda, L P; Morgillo, F; Vitagliano, D; D'Aiuto, E; De Palma, R; Tejpar, S; Van Cutsem, E; De Lorenzi, M; Caraglia, M; Berrino, L; Ciardiello, F

    2012-01-01

    Background: MEK is activated in ∼40% colorectal cancer (CRC) and 20–30% non-small cell lung cancer (NSCLC). Selumetinib is a selective inhibitor of MEK1/2, which is currently in clinical development. Methods: We evaluated the effects of selumetinib in vitro and in vivo in CRC and NSCLC cell lines to identify cancer cell characteristics correlating with sensitivity to MEK inhibition. Results: Five NSCLC and six CRC cell lines were treated with selumetinib and classified according to the median inhibitory concentration (IC50) values as sensitive (⩽1 μℳ) or resistant (>1 μℳ). In selumetinib-sensitive cancer cell lines, selumetinib treatment induced G1 cell-cycle arrest and apoptosis and suppression of tumour growth as xenografts in immunodeficient mice. Evaluation of intracellular effector proteins and analysis of gene mutations showed no correlation with selumetinib sensitivity. Microarray gene expression profiles revealed that the activation of cAMP-dependent protein kinase A (PKA) was associated with MEK inhibitor resistance. Combined targeting of both MEK and PKA resulted in cancer cell growth inhibition of MEK inhibitor-resistant cancer cell lines in vitro and in vivo. Conclusion: This study provides molecular insights to explain resistance to an MEK inhibitor in human cancer cell lines. PMID:22569000

  1. TsAg5, a Taenia solium cysticercus protein with a marginal trypsin-like activity in the diagnosis of human neurocysticercosis

    PubMed Central

    Rueda, Analiz; Sifuentes, Cecilia; Gilman, Robert H.; Gutiérrez, Andrés H.; Piña, Ruby; Chile, Nancy; Carrasco, Sebastián; Larson, Sandra; Mayta, Holger; Verástegui, Manuela; Rodriguez, Silvia; Gutiérrez-Correa, Marcel; García, Héctor H.; Sheen, Patricia; Zimic, Mirko

    2011-01-01

    Neurocysticercosis is an endemic parasitic disease caused by Taenia solium larva. Although the mechanism of infection is not completely understood, it is likely driven by proteolytic activity that degrades the intestinal wall to facilitate oncosphere penetration and further infection. We analyzed the publicly available Taenia solium EST/DNA library and identified two contigs comprising a full-length cDNA fragment very similar to E. granulosus Ag5 protein. The Taenia solium cDNA sequence included a proteolytic trypsin-like-domain in the C-terminal region, and a thrombospondin type-1 adherence-domain in the N-terminal region. Both the trypsin-like and adherence domains were expressed independently as recombinant proteins in bacterial systems. TsAg5 showed marginal trypsin-like activity and high sequence similarity to Ag5. The purified antigens were tested in a Western immunoblot assay to diagnose human neurocysticercosis. The sensitivity of the trypsin-like-domain was 96.36% in patients infected with extraparenchymal cysts, 75.44% in patients infected with multiple cysts, and 39.62% in patients with a single cyst. Specificity was 76.70%. The thrombospondin type-1 adherence-domain was not specific for neurocysticercosis. PMID:21893105

  2. TsAg5, a Taenia solium cysticercus protein with a marginal trypsin-like activity in the diagnosis of human neurocysticercosis.

    PubMed

    Rueda, Analiz; Sifuentes, Cecilia; Gilman, Robert H; Gutiérrez, Andrés H; Piña, Ruby; Chile, Nancy; Carrasco, Sebastián; Larson, Sandra; Mayta, Holger; Verástegui, Manuela; Rodriguez, Silvia; Gutiérrez-Correa, Marcel; García, Héctor H; Sheen, Patricia; Zimic, Mirko

    2011-12-01

    Neurocysticercosis is an endemic parasitic disease caused by Taenia solium larva. Although the mechanism of infection is not completely understood, it is likely driven by proteolytic activity that degrades the intestinal wall to facilitate oncosphere penetration and further infection. We analyzed the publicly available T. solium EST/DNA library and identified two contigs comprising a full-length cDNA fragment very similar to Echinococcus granulosus Ag5 protein. The T. solium cDNA sequence included a proteolytic trypsin-like-domain in the C-terminal region, and a thrombospondin type-1 adherence-domain in the N-terminal region. Both the trypsin-like and adherence domains were expressed independently as recombinant proteins in bacterial systems. TsAg5 showed marginal trypsin-like activity and high sequence similarity to Ag5. The purified antigens were tested in a Western immunoblot assay to diagnose human neurocysticercosis. The sensitivity of the trypsin-like-domain was 96.36% in patients infected with extraparenchymal cysts, 75.44% in patients infected with multiple cysts, and 39.62% in patients with a single cyst. Specificity was 76.70%. The thrombospondin type-1 adherence-domain was not specific for neurocysticercosis.

  3. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  4. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.

    PubMed Central

    Schwachtgen, J L; Houston, P; Campbell, C; Sukhatme, V; Braddock, M

    1998-01-01

    The primary response transcription factor, early growth response-1 (Egr-1), is rapidly activated by a variety of extracellular stimuli. Egr-1 binds to a sequence found in the promoters of genes involved in vascular injury, such as PDGF-A and tissue factor, and trans-activates their expression in endothelial cells in response to fluid shear stress. Here we show that egr-1 mRNA is increased after 30 min of flow in human aortic endothelial cell and HeLa cell cultures. Transient transfection of HeLa cells with reporter gene constructs driven by the murine or human egr-1 5' flanking sequence revealed a five- and ninefold induction, respectively, in transcriptional activity after exposure to a shear stress of 5 dynes/cm2 for 3 h. Deletion of sequences in the murine promoter containing two AP1 sites and an inhibitory Egr-1 binding sequence, did not reduce shear stress inducibility. However, progressive deletion of five serum response elements, reduced both the basal promoter activity and its capacity to be activated by shear stress. Further examination indicated that the three upstream serum response elements are predominantly responsible for shear stress activation of the egr-1 promoter. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase-1 inhibited shear stress activation of egr-1. We suggest that egr-1 activation by shear stress involves activation of Elk-1 but not c-jun activity. These data, which are consistent with previous findings for shear mediated signaling via the mitogen-activated protein kinase cascade, now implicate shear modulation of the Egr-1 transcription factor in this pathway. PMID:9616225

  5. 3,4,5-Tricaffeoylquinic Acid Attenuates TRAIL-induced Apoptosis in Human Keratinocytes by Suppressing Apoptosis-related Protein Activation.

    PubMed

    Lee, Da Hee; Nam, Yoon Jeong; Lee, Min Sung; Sohn, Dong Suep; Shin, Yong Kyoo; Lee, Chung Soo

    2015-10-01

    Caffeoyl derivatives exhibit antiinflammatory and antioxidant effects. However, the effect of 3,4,5-tricaffeoylquinic acid on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in keratinocytes that may be involved in skin diseases has not been studied. In this respect, we investigated the effect of 3,4,5-tricaffeoylquinic acid on TRAIL-induced apoptosis in human keratinocytes. 3,4,5-Tricaffeoylquinic acid and oxidant scavengers attenuated the decrease in the cytosolic levels of Bid, Bcl-2, and survivin proteins; the increase in the levels of cytosolic Bax, p53, and phosphorylated p53; the increase in the levels of phosphorylated p38; the increase in the mitochondrial levels of the voltage-dependent anion channel; loss of the mitochondrial transmembrane potential; the release of cytochrome c; activation of caspases (8, 9, and 3); cleavage of poly [ADP-ribose] polymerase-1; production of reactive oxygen species; the depletion of glutathione (GSH); nuclear damage; and cell death in keratinocytes treated with TRAIL. These results suggest that 3,4,5-tricaffeoylquinic acid may reduce TRAIL-induced apoptosis in human keratinocytes by suppressing the activation of the caspase-8 and Bid pathways and the mitochondria-mediated cell death pathway. The effect appears to be associated with the inhibitory effect on the production of reactive oxygen species and depletion of GSH. 3,4,5-Tricaffeoylquinic acid appears to be effective in the prevention of TRAIL-induced apoptosis-mediated skin diseases.

  6. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity

    SciTech Connect

    Fiorentini, Chiara; Bodei, Serena; Bedussi, Francesca; Fragni, Martina; Bonini, Sara Anna; Simeone, Claudio; Zani, Danilo; Berruti, Alfredo; Missale, Cristina; Memo, Maurizio; Spano, PierFranco; Sigala, Sandra

    2014-04-15

    Non-metastatic glycoprotein melanoma protein B (GPNMB), also known as osteoactivin (OA) is expressed in a wide array of tumors and represents an emerging target for drug development. In this study, we investigated the role of GPNMB/OA in the progression of human metastatic DU145 and PC3 prostate cancer cells. GPNMB/OA contribution in PCa malignant phenotype has been analyzed by small interfering RNA-induced GPNMB/OA silencing. We found that following GPNMB/OA silencing the migration capability of both DU145 and PC3 cells, evaluated by using in vitro invasivity assay, as well as the metalloproteinases MMP-2 and MMP-9 activity were equally strongly inhibited. By contrast knocking down GPNMB/OA weakly attenuated cell proliferation rate of DU145, an effect that paralleled with an increase number of apoptotic cells. However, PC3 cell growth seems to be not affected by GPNMB/OA. Together, these data reveal that GPNMB/OA acts as a critical molecular mediator promoting the acquisition of the more aggressive, pro-metastatic phenotype distinctive of human DU145 and PC3 cell lines. - Highlights: • GPNMB/OA expression correlates with DU145 and PC3 cells malignant phenotype. • GPNMB/OA silencing affects the migration capability of both DU145 and PC3 cells. • GPNMB/OA increases invasiveness by up-regulating MMPs activity. • GPNMB/OA promotes DU145 and PC3 cells progression into a more aggressive phenotype.

  7. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    PubMed Central

    Ghorbanzadeh, Abdollah; Aminsobhani, Mohsen; Khoshzaban, Ahad; Abbaszadeh, Armin; Ghorbanzadeh, Atiyeh; Shamshiri, Ahmad Reza

    2015-01-01

    Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2) and nano-hydroxyapatite (n-HA) adjacent to MG-63 cell line. Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Alkaline phosphatase (ALP) activity and osteogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test. Results: The n-HA/calcium sulfate (CS) mixture significantly promoted cell growth in comparison to pure CS. Moreover, addition of rhBMP2 to CS (P=0.02) and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03). Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation. PMID:26877731

  8. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes.

    PubMed

    Im, Ilkyun; Jang, Mi-Jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn

    2015-12-01

    A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018

  9. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    SciTech Connect

    Bao, Baolong; Wijeratne, Subhashinee S.K.; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-08-19

    Highlights: {yields} Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). {yields} Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. {yields} HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  10. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis.

    PubMed

    Wehner, Mark; Kunzelmann, Simone; Herrmann, Christian

    2012-01-01

    Human guanylate-binding protein 1 (hGBP1) belongs to the superfamily of large, dynamin-related GTPases. The expression of hGBP1 is induced by stimulation with interferons (mainly interferon-γ), and it plays a role in different cellular responses to inflammatory cytokines, e.g. pathogen defence, control of proliferation, and angiogenesis. Although other members of the dynamin superfamily show a diversity of cellular functions, they share a common GTPase mechanism that relies on nucleotide-controlled oligomerization and self-activation of the GTPase. Previous structural studies on hGBP1 have suggested a mechanism of GTPase and GDPase activity that, as a critical step, involves dimerization of the large GTP-binding domains. In this study, we show that the guanine cap of hGBP1 is the key structural element responsible for dimerization, and is thereby essential for self-activation of the GTPase activity. Studies of concentration-dependent GTP hydrolysis showed that mutations of residues in the guanine cap, in particular Arg240 and Arg244, resulted in higher dissociation constants of the dimer, whereas the maximum hydrolytic activity was largely unaffected. Additionally, we identified an intramolecular polar contact (Lys62-Asp255) whose mutation leads to a loss of self-activation capability and controlled oligomer formation. We suggest that this contact structurally couples the guanine cap to the switch regions of the GTPase, translating the structural changes that occur upon nucleotide binding to a change in oligomerization and self-activation. PMID:22059445

  11. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets

    PubMed Central

    Moore, S F; Hunter, R W; Hers, I

    2014-01-01

    Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner

  12. A physical interaction network of dengue virus and human proteins.

    PubMed

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  13. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    SciTech Connect

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-05-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs{sup III}) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs{sup III} induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs{sup III} in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs{sup III} can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  14. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    PubMed Central

    Di Domenico, Fabio; Foppoli, Cesira; Blarzino, Carla; Perluigi, Marzia; Paolini, Francesca; Morici, Salvatrice; Coccia, Raffaella; Cini, Chiara; De Marco, Federico

    2009-01-01

    Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14) by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these effects can modulate the

  15. Analysis of mitogen-activated protein kinase activity in yeast.

    PubMed

    Elion, Elaine A; Sahoo, Rupam

    2010-01-01

    Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well. PMID:20811996

  16. Effects of Payena dasyphylla (Miq.) on hyaluronidase enzyme activity and metalloproteinases protein expressions in interleukin-1β stimulated human chondrocytes cells

    PubMed Central

    2013-01-01

    Background Hyaluronidases have been found as the target enzymes in the development of osteoarthritis (OA) disease. While there is still no curative treatment for this disease, recent studies on the treatment of OA were focused on the effectiveness of natural products which are expected to improve the symptoms with minimal side effects. The aim of this study was to screen selected Malaysian plants on their anti-hyaluronidase activity as well as to evaluate the active plant and its derived fractions on its potential anti-arthritic and antioxidant activities. Methods A total of 20 methanolic crude extracts (bark and leaf) from ten different plants were screened using a colorimetric hyaluronidase enzymatic assay. The active plant extract (Payena dasyphylla) was then studied for its hyaluronidase inhibitory activity in the interleukin-1β (IL-1β) stimulated human chondrocytes cell line (NHAC-kn) using zymography method. The Payena dasyphylla methanolic bark extract was then fractionated into several fractions in where the ethyl acetate (EA) fraction was evaluated for its inhibitory effects on the HYAL1 and HYAL2 gene expressions using reverse transcription-polymerase chain reaction (RT-PCR) technique. While the MMP-3 and MMP-13 protein expressions were evaluated using western blot method. The phenolic and flavonoid contents of the three fractions as well as the antioxidant property of the EA fraction were also evaluated. Results Bark extract of Payena dasyphylla (100 μg/ml) showed the highest inhibitory activity against bovine testicular hyaluronidase with 91.63%. The plant extract also inhibited hyaluronidase expression in the cultured human chondrocyte cells in response to IL-1β (100 ng/ml). Similarly, treatment with Payena dasyphylla ethyl acetate (EA) fraction (100 μg/ml) inhibited the HYAL1 and HYAL2 mRNA gene expressions as well as MMP-3 and MMP-13 protein expression in a dose dependent manner. Payena dasyphylla EA fraction has demonstrated the highest

  17. Ethanol Impairs Intestinal Barrier Function in Humans through Mitogen Activated Protein Kinase Signaling: A Combined In Vivo and In Vitro Approach

    PubMed Central

    Elamin, Elhaseen; Masclee, Ad; Troost, Freddy; Pieters, Harm-Jan; Keszthelyi, Daniel; Aleksa, Katarina; Dekker, Jan; Jonkers, Daisy

    2014-01-01

    Background Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders. Aim Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism. Methods Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers. Results Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine. Conclusions Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption. Trial Registration ClinicalTrials.gov NCT00928733 PMID:25226407

  18. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    SciTech Connect

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-09-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by (/sup 3/H)thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3/sup +/ lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3/sup /minus// lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection.

  19. Human Papillomaviruses Activate and Recruit SMC1 Cohesin Proteins for the Differentiation-Dependent Life Cycle through Association with CTCF Insulators

    PubMed Central

    Satsuka, Ayano; Laimins, Laimonis A.

    2015-01-01

    Human papillomaviruses infect stratified epithelia and link their productive life cycle to the differentiation state of the host cell. Productive viral replication or amplification is restricted to highly differentiated suprabasal cells and is dependent on the activation of the ATM DNA damage pathway. The ATM pathway has three arms that can act independently of one another. One arm is centered on p53, another on CHK2 and a third on SMC1/NBS1 proteins. A role for CHK2 in HPV genome amplification has been demonstrated but it was unclear what other factors provided important activities. The cohesin protein, SMC1, is necessary for sister chromatid association prior to mitosis. In addition the phosphorylated form of SMC1 plays a critical role together with NBS1 in the ATM DNA damage response. In normal cells, SMC1 becomes phosphorylated in response to radiation, however, in HPV positive cells our studies demonstrate that it is constitutively activated. Furthermore, pSMC1 is found localized in distinct nuclear foci in complexes with γ-H2AX, and CHK2 and bound to HPV DNA. Importantly, knockdown of SMC1 blocks differentiation-dependent genome amplification. pSMC1 forms complexes with the insulator transcription factor CTCF and our studies show that these factors bind to conserved sequence motifs in the L2 late region of HPV 31. Similar motifs are found in most HPV types. Knockdown of CTCF with shRNAs blocks genome amplification and mutation of the CTCF binding motifs in the L2 open reading frame inhibits stable maintenance of viral episomes in undifferentiated cells as well as amplification of genomes upon differentiation. These findings suggest a model in which SMC1 factors are constitutively activated in HPV positive cells and recruited to viral genomes through complex formation with CTCF to facilitate genome amplification. Our findings identify both SMC1 and CTCF as critical regulators of the differentiation-dependent life cycle of high-risk human papillomaviruses

  20. Proliferative activity of extracellular HIV-1 Tat protein in human epithelial cells: expression profile of pathogenetically relevant genes

    PubMed Central

    Bettaccini, Alessia A; Baj, Andreina; Accolla, Roberto S; Basolo, Fulvio; Toniolo, Antonio Q

    2005-01-01

    Background Tat is being tested as a component of HIV vaccines. Tat activity has been mainly investigated on cells of lymphoid/hematopoietic lineages. HIV-1, however, is known to infect many different cells of both solid organs and mucosal surfaces. The activity of two-exon (aa 1–101) and synthetic (aa 1–86) Tat was studied on mammary and amniotic epithelial cells cultured under low serum conditions. Results small concentrations of Tat (100 ng/ml) stimulated cell proliferation. Tat antibodies neutralized the mitogenic Tat activity. Changes of gene expression in Tat-treated cells were evaluated by RT-PCR and gene-array methods. Within 4 hours of treatment, exposure to Tat is followed by up-regulation of some cell cycle-associated genes (transcription factors, cyclin/cdk complexes, genes of apoptotic pathways) and of genes relevant to HIV pathogenesis [chemokine receptors (CXCR4, CCR3), chemotactic cytokines (SDF-1, RANTES, SCYC1, SCYE1), IL6 family cytokines, inflammatory cytokines, factors of the TGF-beta family (TGFb, BMP-1, BMP-2)]. Up-regulation of anti-inflammatory cytokines (IL-10, IL-19, IL-20), a hallmark of other persistent viral infections, was a remarkable feature of Tat-treated epithelial cell lines. Conclusion extracellular Tat is mitogenic for mammary and amniotic epithelial cells and stimulates the expression of genes of pathogenetic interest in HIV infection. These effects may favor virus replication and may facilitate the mother-to-child transmission of virus. PMID:15857508

  1. Protein phosphatase 2A (PP2A) has a potential role in CAPE-induced apoptosis of CCRF-CEM cells via effecting human telomerase reverse transcriptase activity.

    PubMed

    Avci, Cigir Biray; Sahin, Fahri; Gunduz, Cumhur; Selvi, Nur; Aydin, Hikmet Hakan; Oktem, Gulperi; Topcuoglu, Nejat; Saydam, Guray

    2007-12-01

    Caffeic acid phenethyl ester (CAPE) is one of the most effective components of propolis which is collected by honey bees. The aim of this study was to investigate the cytotoxic and apoptotic effects of CAPE in the CCRF-CEM cell line and to clarify the role of serine/threonine protein phosphatase 2A (PP2A) and human telomerase reverse transcriptase (hTERT) activity as an underlining mechanism of CAPE-induced apoptosis. Trypan blue dye exclusion test and XTT methods were used to evaluate the cytotoxicity and ELISA based oligonucleotide detection, which can be seen during apoptosis, was used to determine apoptosis. Acridine orange/ethidium bromide dye technique was also used to evaluate apoptosis. The cytotoxic effect of CAPE was detected in a dose and time dependent manner with the IC(50) of 1 muM. ELISA and acridine orange/ethidium bromide methods have shown remarkable apoptosis at 48th hour in CAPE treated cells. To investigate the role of PP2A in CAPE-induced apoptosis of CCRF-CEM cells, we performed combination studies with CAPE and, Calyculin A and Okadaic acid, which are very well known inhibitors of PP2A, in IC(20) of inhibitors and IC(50) of CAPE. Combination studies revealed synergistic effect of both drugs by concomitant use. Western blot analyses of PP2A catalytic and regulatory subunits showed down-regulation of expression of PP2A catalytic subunit in CAPE treated cells at 48th hour. Since, PP2A is important in hTERT (telomerase catalytic subunit) activation and deactivation, we also performed hTERT activity in CAPE treated cells simultaneously. Treating cells with IC(50) of CAPE for 96 h with the intervals of 24 h showed marked reduction of hTERT activity. The reduction of hTERT activity in CAPE treated CCRF-CEM cells was more prominent in the initial 48 h. The variation of hTERT activity in CAPE treated CCRF-CEM cells may be the reason for the protein phosphatase interaction that occurred after treatment with CAPE. PMID:17852432

  2. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    SciTech Connect

    Villano, C.M.; White, L.A. . E-mail: lawhite@aesop.rutgers.edu

    2006-08-01

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes.

  3. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis.

    PubMed

    Goldbaum, F A; Leoni, J; Wallach, J C; Fossati, C A

    1993-08-01

    Some anticytoplasmic protein monoclonal antibodies (MAbs) from mice immunized by infection with Brucella ovis cells have been obtained. One of these MAbs, BI24, was used to purify by immunoaffinity a protein with a pI of 5.6 and a molecular mass of 18 kDa. This protein was present in all of the rough and smooth Brucella species studied, but it could not be detected in Yersinia enterocolitica 09. Three internal peptides of this protein were partially sequenced; no homology with other bacterial proteins was found. The immunogenicity of the 18-kDa protein was studied with both human and bovine sera by a capture enzyme-linked immunosorbent assay system with MAb BI24.

  4. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis.

    PubMed Central

    Goldbaum, F A; Leoni, J; Wallach, J C; Fossati, C A

    1993-01-01

    Some anticytoplasmic protein monoclonal antibodies (MAbs) from mice immunized by infection with Brucella ovis cells have been obtained. One of these MAbs, BI24, was used to purify by immunoaffinity a protein with a pI of 5.6 and a molecular mass of 18 kDa. This protein was present in all of the rough and smooth Brucella species studied, but it could not be detected in Yersinia enterocolitica 09. Three internal peptides of this protein were partially sequenced; no homology with other bacterial proteins was found. The immunogenicity of the 18-kDa protein was studied with both human and bovine sera by a capture enzyme-linked immunosorbent assay system with MAb BI24. Images PMID:8370742

  5. Chromosomal assignment of the gene encoding the human 58-kDa inhibitor (PRKRI) of the interferon-induced dsRNA-activated protein kinase to chromosome 13q32

    SciTech Connect

    Korth, M.J.; Katze, M.G.; Edelhoff, S.; Disteche, C.M.

    1996-01-15

    The 58-kDa inhibitor (p58) of the interferon-induced dsRNA-activated protein kinase (PKR) is a cellular protein recruited by the influenza virus to down-regulate the activity of PKR during virus infection. The inhibitor also appears to play a role in the regulation of cellular gene expression in the absence of viral infection and has oncogenic properties when overexpressed. Using fluorescence in situ hybridization, we have mapped the p58 gene (PRKRI) to human chromosome 13 band q32. Aberrations in the structure or number of chromosome 13 have been identified in a variety of human cancers, particularly in acute leukemia. 15 refs., 1 fig.

  6. ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier In Vitro

    PubMed Central

    Zhao, Kai

    2016-01-01

    Disruption of blood-brain barrier (BBB) follows brain trauma or central nervous system (CNS) stress. However, the mechanisms leading to this process or the underlying neural plasticity are not clearly known. We hypothesized that ATP/P2X7R signaling regulates the integrity of BBB. Activation of P2X7 receptor (P2X7R) by ATP induces the release of interleukin-1β (IL-1β), which in turn enhances the activity of matrix metalloproteinase-9 (MMP-9). Degradation of tight junction proteins (TJPs) such as ZO-1 and occludin occurs, which finally contributes to disruption of BBB. A contact coculture system using human astrocytes and hCMEC/D3, an immortalized human brain endothelial cell line, was used to mimic BBB in vitro. Permeability was used to evaluate changes in the integrity of TJPs. ELISA, Western blot, and immunofluorescent staining procedures were used. Our data demonstrated that exposure to the photoreactive ATP analog, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP), induced a significant decrease in ZO-1 and occludin expression. Meanwhile, the decrease of ZO-1 and occludin was significantly attenuated by P2X7R inhibitors, as well as IL-1R and MMP antagonists. Further, the induction of IL-1β and MMP-9 was closely linked to ATP/P2X7R-associated BBB leakage. In conclusion, our study explored the mechanism of ATP/P2X7R signaling in the disruption of BBB following brain trauma/stress injury, especially focusing on the relationship with IL-1β and MMP-9.

  7. Heat shock protein 70 (Hsp70)-stimulated deoxycytidine deaminases from a human lymphoma cell but not the activation-induced cytidine deaminase (AID) from Ramos 6.4 human Burkitt's lymphoma cells.

    PubMed

    Bases, Robert

    2011-01-01

    Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.

  8. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    SciTech Connect

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. )

    1990-08-28

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  9. N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production

    PubMed Central

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen

    2015-01-01

    This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4 μmol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6 μmol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9 μmol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0 μmol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-α. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future. PMID:26288134

  10. Activation of G-Protein-Coupled Estrogen Receptor Inhibits the Migration of Human Nonsmall Cell Lung Cancer Cells via IKK-β/NF-κB Signals.

    PubMed

    Zhu, Guangfa; Huang, Yan; Wu, Chunting; Wei, Dong; Shi, Yingxin

    2016-08-01

    Estrogen signals have been suggested to modulate the progression and metastasis of nonsmall cell lung cancer (NSCLC), which is one of the leading causes of cancer deaths worldwide. While there are limited data concerning the roles and effects of G-protein-coupled estrogen receptor (GPER) on the progression of NSCLC, our present study reveals that the expression of GPER in NSCLC cells is obviously greater than that in lung fibroblast cell line MRC-5. Activation of GPER via its specific agonist G-1 decreases the in vitro motility of A549 and H358 cells and the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Further, G-1 treatment can rapidly decrease the phosphorylation, nuclear translocation, and promoter activities of NF-κB in NSCLC cells. BAY 11-7082, the inhibitor of NF-κB, also inhibits the expression of MMP-2/9, while overexpression of p65 significantly attenuates G-1-induced downregulation of MMP-2/9. It suggests that inhibition of NF-κB mediates G-1-induced MMP-2/9 downregulation. G-1 treatment significantly down regulates the phosphorylation of IκB kinase β (IKK-β) and IκBα, while not IKK-α, in both 549 and H358 cells. ACHP, the specific inhibitor of IKK-β, can reinforce G-1-induced MMP-2/9 downregulation and invasion suppression of A549 cells. Collectively, our results suggest that activation of GPER can inhibit the migration of human NSCLC cells via suppression of IKK-β/NF-κB signals. These findings will help to better understand the roles and mechanisms of GPER as a potential therapy target for NSCLC patients. PMID:27082459

  11. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    PubMed

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (P<0.0001). Fucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  12. Bioactive properties of milk proteins in humans: A review.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2015-11-01

    Many studies have demonstrated that milk protein consumption has benefits in terms of promoting human health. This review assesses the intervention studies which have evaluated potential health enhancing effects in humans following the ingestion of milk proteins. The impact of milk protein ingestion has been studied to asses their satiating, hypotensive, antimicrobial, anti-inflammatory, anticancer, antioxidant and insulinotropic properties as well as their impact on morphological modifications (e.g., muscle and fat mass) in humans. Consistent health promoting effects appear to have been observed in certain instances (i.e., muscle protein synthesis, insulinotropic and hypotensive activity). However, controversial outcomes have also been reported (i.e., antimicrobial, anti-inflammatory, anticancer and antioxidant properties). Several factors including interindividual differences, the timing of protein ingestion as well as the potency of the active components may explain these differences. In addition, processing conditions have been reported, in certain instances, to affect milk protein structure and therefore modify their bioactive potential. It is thought that the health promoting properties of milk proteins are linked to the release of bioactive peptides (BAPs) during gastrointestinal digestion. There is a need for further research to develop a more in-depth understanding on the possible mechanisms involved in the observed physiological effects. In addition, more carefully controlled and appropriately powered human intervention studies are required to demonstrate the health enhancing properties of milk proteins in humans.

  13. IGF-IR Signal Transduction Protein Content and Its Activation by IGF-I in Human Placentas: Relationship with Gestational Age and Birth Weight

    PubMed Central

    Iñiguez, Germán; Castro, Juan José; Garcia, Mirna; Kakarieka, Elena; Johnson, M. Cecilia; Cassorla, Fernando; Mericq, Verónica

    2014-01-01

    Introduction The human placenta expresses the IGF-I and IGF-IR proteins and their intracellular signal components (IRS-1, AKT and mTOR). The aim of this study was to assess the IGF-IR content and activation of downstream signaling molecules in placentas from newborns who were classified by gestational age and birth weight. We studied placentas from 25 term appropriate (T-AGA), 26 term small (T-SGA), 22 preterm AGA (PT-AGA), and 20 preterm SGA (PT-SGA) newborns. The total and phosphorylated IGF-IR, IRS-1, AKT, and mTOR contents were determined by Western Blot and normalized by actin or with their respective total content. The effect of IGF-I was determined by stimulating placental explants with recombinant IGF-I 10-8 mol/L for 15, 30, and 60 minutes. Results The IGF-IR content was higher in T-SGA compared to T-AGA placentas, and the IRS-1 content was higher in PT-placentas compared with their respective T-placentas. The effect of IGF-I on the phosphorylated forms of IGF-IR was increased in T-SGA (150%) and PT-SGA (300%) compared with their respective AGA placentas. In addition, AKT serine phosphorylation was higher in PT-SGA compared to PT-AGA and T-SGA placentas (90% and 390% respectively). Conclusion The higher protein content and response to IGF-I of IGF-IR, IRS-1, and AKT observed in SGA placentas may represent a compensatory mechanism in response to fetal growth restriction. PMID:25050889

  14. Antibodies against small heat-shock proteins in Alzheimer's disease as a part of natural human immune repertoire or activation of humoral response?

    PubMed

    Papuć, Ewa; Krupski, Witold; Kurys-Denis, Ewa; Rejdak, Konrad

    2016-04-01

    Characterization of autoantibodies specific for some disease-related proteins, would allow to better assess their role as diagnostic and prognostic markers. In the light of increasing evidence for both humoral and cellular adaptive immune responses in the pathophysiology of Alzheimer's disease (AD), and data on the increased small heat-shock proteins (sHSP) expression in this disease, it seemed justified to assess humoral response against sHSP in AD patients. The aim of the study was to check whether AD has the ability to elicit immune response against small HSP, which could also serve as disease biomarkers. IgG and IgM autoantibodies against alpha B-crystallin and anti-HSP 60 IgG autoantibodies were assessed in 59 AD patients and 59 healthy subjects. Both IgM and IgG autoantibodies against alpha B-crystallin in AD patients were significantly higher compared to healthy controls (p < 0.05). No statistically significant differences were found between AD patients and healthy subjects were found in anti-HSP60 IgG autoantibody titers (p = 0.29). Anti-HSP60 antibodies present in AD patients may indeed belong to natural human immune repertoire, and chronic neurodegenerative process does not have significant inducing effect on the systemic immunoreactivity against HSP60. Increased titers of IgM and IgG autoantibodies against alpha B-crystallin in AD patients may reflect activation of humoral immune response in the course of this chronic disease, probably secondary to its increased expression. Further prospective studies, on larger group of AD patients and measuring a change in antibodies titers with disease progression are necessary to assess the exact role of these antibodies in AD.

  15. Inverse association between gluthathione peroxidase activity and both selenium-binding protein 1 levels and gleason score in human prostate tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND. Data from human epidemiological studies, cultured mammalian cells, and animal models have supported a potentially beneficial role of selenium (Se) in prostate cancer prevention. In addition, Se-containing proteins including members of the gutathione peroxidase (GPx) family and Selenium-B...

  16. Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-1) tax protein or virus-transformed cells.

    PubMed Central

    Xu, X; Kang, S H; Heidenreich, O; Okerholm, M; O'Shea, J J; Nerenberg, M I

    1995-01-01

    HTLV-1 infection causes an adult T cell leukemia in humans. The viral encoded protein tax, is thought to play an important role in oncogenesis. Our previous data obtained from a tax transgenic mouse model revealed that tax transforms mouse fibroblasts but not thymocytes, despite comparable levels of tax expression in both tissues. Constitutive tyrosine phosphorylation of a 130-kD protein(s) was observed in the tax transformed fibroblast B line and in HTLV-1 transformed human lymphoid lines, but not in thymocytes from Thy-tax transgenic mice. Phosphotyrosine immunoprecipitation followed by Western blot analysis with a set of Jak kinase specific antibodies, identified p130 as Jak2 in the tax transformed mouse fibroblastic cell line and Jak3 in HTLV-1 transformed human T cell lines. Phosphorylation of Jak2 in tax transformed cells resulted from high expression of IL-6. Tyrosine phosphorylation of this protein could also be induced in Balb/c3T3 cells using a supernatant from the B line, which was associated with induction of cell proliferation. Both phosphorylation and proliferation were inhibited by IL-6 neutralizing antibodies. Constitutive phosphorylation of Jak kinases may facilitate tumor growth in both HTLV-1 infected human T cells and the transgenic mouse model. Images PMID:7657825

  17. Interaction of human tissue plasminogen activator (t-PA) with pregnancy zone protein: a comparative study with t-PA-alpha2-macroglobulin interaction.

    PubMed

    Sánchez, M C; Chiabrando, G A; Guglielmone, H A; Bonacci, G R; Rabinovich, G A; Vides, M A

    1998-08-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein strongly related to alpha2-macroglobulin (alpha2-M). Interactions of tissue plasminogen activator (t-PA) with PZP and alpha2-M were both investigated in vitro and the complexes were analyzed by polyacrylamide gel electrophoresis (PAGE). The results demonstrated that PZP-t-PA complex formation was evident within 1 h of incubation, whereas alpha2-M-t-PA complexes were formed after 18 h. Conclusions were supported by the following evidence: (i) PZP and alpha2-M complexes revealed changes of the mobility rate in non-denaturing PAGE, similar to those observed with alpha-Ms-chymotrypsin; (ii) both PZP and alpha2-M formed complexes of molecular size >360 kDa by SDS-PAGE, in accordance with the covalent binding of t-PA, which was previously reported for other proteinases; and (iii) PZP underwent a specific cleavage of the bait region with appearence of fragments of 85-90 kDa as judged by reducing SDS-PAGE. In contrast, the proteolytic attack on alpha2-M was found to occur more slowly, requiring several hours of incubation with t-PA for generation of an appreciable amount of fragments of 85-90 kDa. The appearance of free SH-groups of alpha-Ms was further investigated by titration with 5, 5'-dithiobis(2-nitrobenzoic acid). The maximal level of SH-groups raised was 3.9 mol/mol of PZP and 3.5 mol/mol of alpha2-M, indicating approximately one SH-group for each 180-kDa subunit. Finally, t-PA activity in PZP-t-PA complex was evaluated by measuring the hydrolysis of the chromogenic substrate Flavigen t-PA. Our results revealed that prolongation of the incubation period of this complex increased t-PA-mediated hydrolysis of Flavigen t-PA until a plateau was reached, approximately between 60 and 120 min. The present study suggests that PZP, by binding to t-PA, may contribute to the control of the activity of proteinases derived from fibrinolytic systems.

  18. Hepatitis B virus X protein promotes renal epithelial-mesenchymal transition in human renal proximal tubule epithelial cells through the activation of NF-κB.

    PubMed

    Li, Mei; Hu, Liping; Zhu, Fengxin; Zhou, Zhangmei; Tian, Jianwei; Ai, Jun

    2016-08-01

    Hepatitis B virus (HBV)-associated glomerulo-nephritis is the most common extra-hepatic disorder occurring with hepatitis B virus infection. In the present study, we hypothesized that HBV X protein (HBx) may play a critical role in renal interstitial fibrosis, as HBx has been shown to induce epithelial-mesenchymal transition (EMT) in renal cells. For this purpose, we successfully transfected HBx plasmid into human renal proximal tubule epithelial cells (HK-2 cells). We found that transfection with HBx plasmid significantly downregulated E-cadherin expression and upregulated α-smooth muscle actin, collagen I and fibronectin expression in a time- and concentration-dependent manner (at the lower concentrations and earlier time points). HBx also increased nuclear factor-κB (NF-κB) phosphorylation in a time- and concentration-dependent manner (again at the lower concentrations and earlier time points); however, it did not alter the phosphorylation of Smad2, Smad3, p38, phosphoinositide 3-kinase (PI3K) or extracellular signal-regulated kinase (ERK). Thus, the findings of this study demonstrate that HBx promotes EMT in renal HK-2 cells, and the potential underlying mechanisms may involve the activation of the NF-κB signaling pathway.

  19. Altered mitogen-activated protein kinase signal transduction in human skin fibroblasts during in vitro aging: differential expression of low-density lipoprotein receptor.

    PubMed

    Bose, Chhanda; Bhuvaneswaran, Chidambaram; Udupa, Kodetthoor B

    2004-02-01

    The purpose of the study was to investigate the correlation of low-density lipoprotein receptor (LDLr) and mitogen-activated protein kinases (MAPK) in fibroblasts after serial passage in vitro. We used early-passage ( approximately 20 mean population division, MPD) and late-passage ( approximately 60 MPD) human skin fibroblasts to study the LDLr expression and MAPK at basal and after interleukin-1beta (IL-1beta) stimulation. We found a reduced LDLr expression in late-passage fibroblasts in comparison with early-passage fibroblasts, and late-passage fibroblasts showed a delayed induction of MAPK after IL-1beta stimulation, confirmed by the delay in translocation of MAPK from cytoplasmic to nuclear fraction. Using two specific inhibitors of MAPK, we could show a reduced LDLr expression in early-passage fibroblasts, indicating a direct relationship between MAPK signaling and LDLr expression. We conclude that one of the reasons for reduced LDLr gene expression in late passage fibroblast is related to MAPK signaling.

  20. The role of the C-terminus of the human hydroxycarboxylic acid receptors 2 and 3 in G protein activation using Gα-engineered yeast cells.

    PubMed

    Liu, Rongfang; van Veldhoven, Jacobus P D; IJzerman, Adriaan P

    2016-01-01

    In the present study we focused our attention on the family of hydroxycarboxylic acid (HCA) receptors, a GPCR family of three members, of which the HCA2 and HCA3 receptors share 95% high sequence identity but differ considerably in C-terminus length with HCA3 having the longest tail. The two receptors were expressed and analysed for their activation profile in Saccharomyces cerevisiae MMY yeast strains that have different G protein Gα subunits. The hHCA2 receptor was promiscuous in its G protein coupling preference. In the presence of nicotinic acid the hHCA2 receptor activated almost all G protein pathways except Gαq (MMY14). However, the Gα protein coupling profile of the hHCA3 receptor was less promiscuous, as the receptor only activated Gαi1 (MMY23) and Gαi3 (MMY24) pathways. We then constructed two mutant receptors by 'swapping' the short (HCA2) and long (HCA3) C-terminus. The differences in HCA2 and HCA3 receptor activation and G protein selectivity were not controlled, however, by their C-terminal tails, as we observed only minor differences between mutant and corresponding wild-type receptor. This study provides new insights into the G protein coupling profiles of the HCA receptors and the function of the receptor's C terminus, which may be extended to other GPCRs.

  1. A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo.

    PubMed

    von Strandmann, Elke Pogge; Hansen, Hinrich P; Reiners, Katrin S; Schnell, Roland; Borchmann, Peter; Merkert, Sabine; Simhadri, Venkateswara R; Draube, Andreas; Reiser, Marcel; Purr, Ingvill; Hallek, Michael; Engert, Andreas

    2006-03-01

    The inability of the immune system to recognize and kill malignant plasma cells in patients with multiple myeloma (MM) has been attributed in part to the ineffective activation of natural killer (NK) cells. In order to activate and target NK cells to the malignant cells in MM we designed a novel recombinant bispecific protein (ULBP2-BB4). While ULBP2 binds the activating NK receptor NKG2D, the BB4 moiety binds to CD138, which is overexpressed on a variety of malignancies, including MM. ULBP2-BB4 strongly activated primary NK cells as demonstrated by a significant increase in interferon-gamma (IFN-gamma) secretion. In vitro, ULBP2-BB4 enhanced the NK-mediated lysis of 2 CD138+ human MM cell lines, U-266 and RPMI-8226, and of primary malignant plasma cells in the allogenic and autologous setting. Moreover, in a nude mouse model with subcutaneously growing RPMI-8226 cells, the cotherapy with ULBP-BB4 and human peripheral blood lymphocytes abrogated the tumor growth. These data suggest potential clinical use of this novel construct in patients with MM. The use of recombinant NK receptor ligands that target NK cells to tumor cells might offer new approaches for other malignancies provided a tumor antigen-specific antibody is available.

  2. Active Wnt proteins are secreted on exosomes.

    PubMed

    Gross, Julia Christina; Chaudhary, Varun; Bartscherer, Kerstin; Boutros, Michael

    2012-10-01

    Wnt signalling has important roles during development and in many diseases. As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions. Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question. Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells. We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells. Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6. Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins.

  3. Increased Adipose Protein Carbonylation in Human Obesity

    PubMed Central

    Frohnert, Brigitte I.; Sinaiko, Alan R.; Serrot, Federico J.; Foncea, Rocio E.; Moran, Antoinette; Ikramuddin, Sayeed; Choudry, Umar; Bernlohr, David A.

    2015-01-01

    Insulin resistance is associated with obesity but mechanisms controlling this relationship in humans are not fully understood. Studies in animal models suggest a linkage between adipose reactive oxygen species (ROS) and insulin resistance. ROS oxidize cellular lipids to produce a variety of lipid hydroperoxides that in turn generate reactive lipid aldehydes that covalently modify cellular proteins in a process termed carbonylation. Mammalian cells defend against reactive lipid aldehydes and protein carbonylation by glutathionylation using glutathione-S-transferase A4 (GSTA4) or carbonyl reduction/oxidation via reductases and/or dehydrogenases. Insulin resistance in mice is linked to ROS production and increased level of protein carbonylation, mitochondrial dysfunction, decreased insulin-stimulated glucose transport, and altered adipokine secretion. To assess protein carbonylation and insulin resistance in humans, eight healthy participants underwent subcutaneous fat biopsy from the periumbilical region for protein analysis and frequently sampled intravenous glucose tolerance testing to measure insulin sensitivity. Soluble proteins from adipose tissue were analyzed using two-dimensional gel electrophoresis and the major carbonylated proteins identified as the adipocyte and epithelial fatty acid–binding proteins. The level of protein carbonylation was directly correlated with adiposity and serum free fatty acids (FFAs). These results suggest that in human obesity oxidative stress is linked to protein carbonylation and such events may contribute to the development of insulin resistance. PMID:21593812

  4. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    PubMed

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  5. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    PubMed Central

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  6. HIV-1 p17 matrix protein interacts with heparan sulfate side chain of CD44v3, syndecan-2, and syndecan-4 proteoglycans expressed on human activated CD4+ T cells affecting tumor necrosis factor alpha and interleukin 2 production.

    PubMed

    De Francesco, Maria A; Baronio, Manuela; Poiesi, Claudio

    2011-06-01

    HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We have previously demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH and to human activated CD4(+) T cells. In this study we demonstrated that the viral protein binds to heparan sulfate side chains of syndecan-2, syndecan-4, and CD44v3 purified from HeLa cells and that these heparan sulfate proteoglycans (HSPGs) co-localize with HIV-1 p17 on activated human CD4(+) T cells by confocal fluorescence analysis. Moreover, we observed a stimulatory or inhibitory activity when CD4(+) T cells were activated with mitogens together with nanomolar or micromolar concentrations of the matrix protein.

  7. Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription.

    PubMed

    Kuo, Rei-Lin; Zhao, Chen; Malur, Meghana; Krug, Robert M

    2010-12-20

    We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation.

  8. Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription

    PubMed Central

    Kuo, Rei-Lin; Zhao, Chen; Malur, Meghana; Krug, Robert M.

    2010-01-01

    We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation. PMID:20934196

  9. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors

    PubMed Central

    Bandaranayake, Ashok D.; Correnti, Colin; Ryu, Byoung Y.; Brault, Michelle; Strong, Roland K.; Rawlings, David J.

    2011-01-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20–100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  10. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors.

    PubMed

    Bandaranayake, Ashok D; Correnti, Colin; Ryu, Byoung Y; Brault, Michelle; Strong, Roland K; Rawlings, David J

    2011-11-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20-100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  11. Alpha 2-chimerin, an SH2-containing GTPase-activating protein for the ras-related protein p21rac derived by alternate splicing of the human n-chimerin gene, is selectively expressed in brain regions and testes.

    PubMed Central

    Hall, C; Sin, W C; Teo, M; Michael, G J; Smith, P; Dong, J M; Lim, H H; Manser, E; Spurr, N K; Jones, T A

    1993-01-01

    n-Chimerin (alpha 1-chimerin) is a brain GTPase-activating protein (GAP) for the ras-related p21rac. We now report the occurrence of another form of chimerin, termed alpha 2-chimerin. This is the product of an alternately spliced transcript of the human n-chimerin gene encoding an N-terminal SH2 (src homology 2) domain in addition to the phorbol ester receptor and GAP domains. alpha 1- and alpha 2-chimerin mRNAs were expressed differently. In the rat brain, only alpha 1-chimerin mRNA was expressed in cerebellar Purkinje cells, although both alpha 1- and alpha 2-chimerin mRNAs occurred in neurons in the cerebral cortex, hippocampus, and thalamus. Only alpha 2-chimerin RNA was expressed in rat testes, in early pachytene spermatocytes. A 45-kDa SH2-containing chimerin corresponding to the alpha 2 form was purified from rat brain. As with Escherichia coli 45-kDa recombinant alpha 2-chimerin, purified brain alpha 2-chimerin exhibited racGAP activity which was stimulated by phosphatidylserine. The recombinant SH2 domain bound several 32P-labelled phosphoproteins of PC12 cells, whose phosphorylation increased in response to trophic factors, including nerve growth factor. To examine the relationships of alpha 1- and alpha 2-chimerin transcripts, human genomic DNA clones were characterized. In alpha 2-chimerin mRNA, a 3' splice acceptor site within exon 1 of alpha 1-chimerin mRNA was used, replacing its 5' untranslated region and N-terminal coding sequence. The single human n-chimerin gene was mapped to chromosome 2q31-q32.1, colocalizing with the CRE-BP1 transcription factor gene (2q32). It contained several splice junctions conserved with the sequence-related protein kinase C and bcr genes. alpha 2-Chimerin is only the second SH2-containing GAP and the first example of an SH2 domain generated by alternate splicing. Images PMID:8336731

  12. Nucleolar localization of Small G protein RhoA is associated with active RNA synthesis in human carcinoma HEp-2 cells

    PubMed Central

    LI, YUEYING; HU, YONG; CHE, LILONG; JIA, JUNHAI; CHEN, MIN

    2016-01-01

    Previous studies have demonstrated that the nuclear localization of ras homolog family member A (RhoA), with prominent concentration in the nucleolus, is a common feature in human cancer tissues and cancer cell lines. Although a previous study has demonstrated that the nuclear translocation of RhoA occurs via active transport, a process that occurs through importin α in a nuclear factor-κB-dependent manner, the mechanism, biological function and pathological meaning of the nucleolar residency of RhoA remain to be elucidated. As the cell nucleolus is the site of ribosome biosynthesis, the aim of the present study was to investigate the association between RNA synthesis and the nucleolar localization of RhoA, as well as the molecular mechanisms underlying the residency of RhoA in the nucleolus of HEp-2 (human larynx epithelial carcinoma) cells. Indirect immunofluorescence microscopy was used to evaluate the subcellular distribution of nuclear RhoA, and immunoblotting analysis was used to determine the total cellular protein level of RhoA. Consistent with the results of previous studies, untreated HEp-2 cells exhibited bright nucleolar staining, indicating an increased concentration of RhoA in the nucleoli. Treatment with actinomycin D for the inhibition of RNA synthesis caused a redistribution of RhoA from the nucleoli to the nucleoplasm with a speckled staining pattern. Immunoblotting revealed that neither the total cellular amount of RhoA nor the integrity of RhoA was affected by treatment with actinomycin D. In cells that were treated at a decreased concentration (0.05 mg/l) of actinomycin D, the redistribution of RhoA was reversible following the removal of the drug from the culture medium. However, this reversal was not observed at an increased drug concentration (1 mg/l). Overall, to the best of our knowledge, the results of the present study provide the first in situ evidence that the inhibition of RNA synthesis induces a redistribution of nucleolar RhoA to

  13. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells.

    PubMed

    Lieb, Klaus; Biersack, Lisa; Waschbisch, Anne; Orlikowski, Sonja; Akundi, Ravi Shankar; Candelario-Jalil, Eduardo; Hüll, Michael; Fiebich, Bernd L

    2005-05-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a widely distributed neurotransmitter which is involved in neuroimmunomodulatory processes. Previously, it has been demonstrated that 5-HT may induce interleukin (IL)-6 expression in primary rat hippocampal astrocytes. The present study was undertaken to investigate the molecular pathways underlying this induction of IL-6 synthesis. As a model system, we used the human astrocytoma cell line U373 MG, which synthesizes IL-6 upon stimulation with various inducers. 5-HT dose- and time-dependently induced IL-6 protein synthesis. We identified several 5-HT receptors to be expressed on U373 MG cells, including the 5-HT1D, 5-HT2A, 5-HT3 and 5-HT7 receptors. In this report, we show that the 5-HT-induced IL-6 release is mediated by the 5-HT7 receptor based on several agonist/antagonists that were used. 5-HT-induced IL-6 synthesis is inhibited by the partially selective 5-HT7 receptor antagonist, pimozide, and the selective antagonist SB269970. Furthermore, IL-6 synthesis was induced by the 5-HT7 receptor agonist carboxamidotryptamin. In addition, we found p38 MAPKs and protein kinase C (PKC) epsilon to be involved in 5-HT-induced IL-6 synthesis as specific inhibitors of these enzymes (SB202190 and RO-31-8425, respectively) blocked 5-HT-induced IL-6 synthesis. Furthermore, 5-HT mediated the phosphorylation of both p38 MAPK as well as the PKC epsilon isoform. The p42/44 MAPKs, however, were not involved in 5-HT-induced IL-6 synthesis. This study shows, for the first time, a central role of 5-HT7 receptor linked to p38 MAPK and PKC epsilon for the induction of cytokine synthesis in astrocytic cells. PMID:15836614

  14. Cloning, bacterial expression and biological characterization of recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2 and epithelial cell-derived neutrophil activating peptide-78 mRNAs.

    PubMed

    Froyen, G; Proost, P; Ronsse, I; Mitera, T; Haelens, A; Wuyts, A; Opdenakker, G; Van Damme, J; Billiau, A

    1997-02-01

    Human osteosarcoma cells secrete a novel C-X-C chemokine called granulocyte chemotactic protein-2 (GCP-2), which was previously identified by amino acid sequencing of the purified natural protein. In order to understand the role of this new protein in inflammatory reactions, we cloned GCP-2 DNA sequences to generate recombinant protein and specific DNA probes and primers. By means of PCR on cloned cDNA of osteosarcoma cells induced by interleukin-1 beta and fibroblasts induced by lipopolysaccharide plus dsRNA, the complete coding domain of GCP-2 was isolated. This sequence was cloned into the bacterial expression vector pHEN1 and, after induction, GCP-2 was secreted into the periplasm of Escherichia coli. Recombinant GCP-2 (rGCP-2) was purified and characterized by SDS/PAGE as a monomeric 6.5-kDa protein and by amino-terminal sequencing. The chemoattractive potency of GCP-2 for neutrophilic granulocytes was about 10-times less than that of interleukin-8 and the minimal effective dose was 10 ng/ml. However, at optimal dose (100 ng/ml) the maximal chemotactic response was comparable with that of interleukin-8. Both characteristics correspond with those of natural GCP-2. In addition, intracellular calcium release in neutrophils by recombinant GCP-2 was achieved with as little as 10 ng/ml. Quantitation studies using reverse transcriptase and the polymerase chain reaction revealed higher GCP-2 mRNA production in normal fibroblasts than in tumor cells. When compared with epithelial-cell-derived neutrophil-activating peptide-78 (ENA-78) mRNA, the GCP-2 mRNA levels were higher in all cell lines tested. In addition, GCP-2 and ENA-78 expression seem to be differentially regulated in that phorbol ester and lipopolysaccharide have opposing effects on their mRNA induction in diploid fibroblasts and epithelial cells, respectively. Interleukin-1 was demonstrated to be a general inducer for both chemokines, while interferon-gamma down-regulates their mRNA expression. The

  15. Allostery in BAX protein activation.

    PubMed

    Jiang, Zhenyan; Zhang, Hansi; Böckmann, Rainer A

    2016-11-01

    BAX is a member of the proapoptotic BCL-2 family of proteins, which is involved in the regulation of the intrinsic pathway of apoptosis. In the process of apoptosis, BH3-only molecules activate cytosolic BAX. Activated BAX molecules insert into the mitochondrial outer membrane with their [Formula: see text]-helix and form oligomers that lead to membrane poration, resulting in the release of apoptogenic factors including cytochrome c. Recently, a novel interaction site for the binding of the BIM SAHB ligand to BAX was reported. BIM SAHB binding was shown to invoke the exposure of the 6A7 epitope (amino acids 13-19) and of the BH3 domain of BAX, followed by mobilization of the BAX [Formula: see text]-helix. However, the intramolecular pathway for signal transmission in BAX, from BIM SAHB binding to mobilization of the [Formula: see text]-helix largely remained elusive. For a molecular understanding of the activation of BAX, and thus the first steps in apoptosis, we performed microsecond atomistic molecular dynamics simulations both of the BAX protein and of the BAX:BIM SAHB complex in aqueous solution. In agreement with experiment, the 6A7 and BH3 domains adopt a more solvent-exposed conformation within the BAX:BIM SAHB complex. BIM SAHB binding was found to stabilize the secondary structure of the [Formula: see text]9-helix. A force distribution analysis revealed a force network of residue-residue interactions responsible for signal transmission from the BIM SAHB binding site predominantly via the [Formula: see text]4- and [Formula: see text]6-helices to the [Formula: see text]9-helix on the opposite site of the protein.

  16. ESA Human Exploration Activities

    NASA Astrophysics Data System (ADS)

    Hovland, Scott

    The long term goal of the Aurora Exploration Programme is Human exploration of Mars. In preparation for this, exploration of the Moon is a necessary step to provide demonstration of capabilities, mandatory for long duration human spaceflight. With the European Columbus module attached to the ISS, Europe has access to a world class laboratory in space for microgravity research, technology demonstration and preparation for future human exploration missions. The ongoing phase of the exploration programme has been focused on defining the overall European strategy and exploration architecture within the global exploration environment. System studies as well as focused technology developments are in progress (e.g. development of regenerative life support).

  17. Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells.

    PubMed

    Seriani, Robson; Junqueira, Mara S; Carvalho-Sousa, Claudia E; Arruda, Alessandra C T; Martinez, Diana; Alencar, Adriano M; Garippo, Ana L; Brito, Jôse Mara; Martins, Milton A; Saldiva, Paulo H N; Negri, Elnara M; Mauad, Thais; Macchione, Mariangela

    2015-04-01

    This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.

  18. Activation of protein phosphatase 2A is responsible for increased content and inactivation of respiratory chain complex i induced by all-trans retinoic acid in human keratinocytes.

    PubMed

    Papa, F; Sardaro, N; Lippolis, R; Panelli, D; Scacco, S

    2016-01-01

    This study presents the effect of all-trans retinoic acid (ATRA) on cell growth and respiratory chain complex I in human keratinocyte cultures. Keratinocyte treatment results in increased level of GRIM-19 and other subunits of complex I, in particular of their carbonylated forms, associated with inhibition of its enzymatic activity. The results show that in keratinocytes ATRA-promoted phosphatase activity controls the proteostasis and activity of complex I. PMID:27358125

  19. The potent activation of Ca(2+)-activated K(+) current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition.

    PubMed

    Chiang, Nai-Jung; Wu, Sheng-Nan; Chen, Li-Tzong

    2015-04-01

    NVP-AUY922 (AUY) is a potent inhibitor of heat shock protein 90 (HSP90). Whether this compound can exert additional effects on membrane ion channels remains elusive. We investigated the effect of AUY on ion currents in human pancreatic duct epithelial cells (PDECs), including PANC-1 and MIA PaCa-2. AUY increased the amplitude of the K(+) current (IK) in PANC-1 cells shown by whole-cell configuration. Single-channel recordings revealed a large-conductance Ca(2+)-activated K(+) (BKCa) channel in PANC-1, but not in MIA PaCa-2. In cell-attached mode, AUY increased the probability of BKCa channel opening and also potentiated the activity of stretch-induced channels. However, other HSP inhibitors, 17-AAG or BIIB021 only slightly increased the activity of BKCa channels. In inside-out recordings, sodium hydrosulphide or caffeic acid phenethyl ester increased the activity of BKCa channels, but AUY did not. We further evaluated whether conductance of Ca(2+)-activated K(+) channels (IK(Ca)) influenced secretion of HCO3(-) and fluid in PDECs by using a modified Whitcomb-Ermentrout model. Simulation studies showed that an increase in IK(Ca) resulted in additional secretion of HCO3(-) and fluid by mimicking the effect of AUY in PDECs. Collectively, AUY can interact with the BKCa channel to largely increase IK(Ca) in PDECs. PMID:25953267

  20. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  1. The Effect of Walterinnesia aegyptia Venom Proteins on TCA Cycle Activity and Mitochondrial NAD+-Redox State in Cultured Human Fibroblasts

    PubMed Central

    Ghneim, Hazem K.; Al-Sheikh, Yazeed A.; Aboul-Soud, Mourad A. M.

    2015-01-01

    Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1–F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10 μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP+-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50–60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60–70% for fractions F3 and F6. In addition, the crude and fractions F3–F7 venom proteins caused a drop in mitochondrial NAD+ and NADP+ levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60–70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD+ and NADP+ biosynthesis. PMID:25705684

  2. The effect of Walterinnesia aegyptia venom proteins on TCA cycle activity and mitochondrial NAD(+)-redox state in cultured human fibroblasts.

    PubMed

    Ghneim, Hazem K; Al-Sheikh, Yazeed A; Aboul-Soud, Mourad A M

    2015-01-01

    Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1-F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10 μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP(+)-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50-60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60-70% for fractions F3 and F6. In addition, the crude and fractions F3-F7 venom proteins caused a drop in mitochondrial NAD(+) and NADP(+) levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60-70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD(+) and NADP(+) biosynthesis. PMID:25705684

  3. The effect of Walterinnesia aegyptia venom proteins on TCA cycle activity and mitochondrial NAD(+)-redox state in cultured human fibroblasts.

    PubMed

    Ghneim, Hazem K; Al-Sheikh, Yazeed A; Aboul-Soud, Mourad A M

    2015-01-01

    Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1-F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10 μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP(+)-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50-60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60-70% for fractions F3 and F6. In addition, the crude and fractions F3-F7 venom proteins caused a drop in mitochondrial NAD(+) and NADP(+) levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60-70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD(+) and NADP(+) biosynthesis.

  4. Correlation between CYP1A1 transcript, protein level, enzyme activity and DNA adduct formation in normal human mammary epithelial cell strains exposed to benzo[a]pyrene

    PubMed Central

    Divi, Rao L.; Einem Lindeman, Tracey L.; Shockley, Marie E.; Keshava, Channa; Weston, Ainsley; Poirier, Miriam C.

    2014-01-01

    The polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene (BP) is thought to bind covalently to DNA, through metabolism by cytochrome P450 1A1 (CYP1A1) and CYP1B1, and other enzymes, to form r7, t8, t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]-pyrene (BPdG). Evaluation of RNA expression data, to understand the contribution of different metabolic enzymes to BPdG formation, is typically presented as fold-change observed upon BP exposure, leaving the actual number of RNA transcripts unknown. Here, we have quantified RNA copies/ng cDNA (RNA cpn) for CYP1A1 and CYP1B1, as well as NAD(P)H:quinone oxidoreductase 1 (NQO1), which may reduce formation of BPdG adducts, using primary normal human mammary epithelial cell (NHMEC) strains, and the MCF-7 breast cancer cell line. In unexposed NHMECs, basal RNA cpn values were 58–836 for CYP1A1, 336–5587 for CYP1B1 and 5943–40112 for NQO1. In cells exposed to 4.0 µM BP for 12h, RNA cpn values were 251–13234 for CYP1A1, 4133–57078 for CYP1B1 and 4456–55887 for NQO1. There were 3.5 (mean, range 0.2–15.8) BPdG adducts/108 nucleotides in the NHMECs (n = 16), and 790 in the MCF-7s. In the NHMECs, BP-induced CYP1A1 RNA cpn was highly associated with BPdG (P = 0.002), but CYP1B1 and NQO1 were not. Western blots of four NHMEC strains, chosen for different levels of BPdG adducts, showed a linear correlation between BPdG and CYP1A1, but not CYP1B1 or NQO1. Ethoxyresorufin-O-deethylase (EROD) activity, which measures CYP1A1 and CYP1B1 together, correlated with BPdG, but NQO1 activity did not. Despite more numerous levels of CYP1B1 and NQO1 RNA cpn in unexposed and BP-exposed NHMECs and MCF-7cells, BPdG formation was only correlated with induction of CYP1A1 RNA cpn. The higher level of BPdG in MCF-7 cells, compared to NHMECs, may have been due to a much increased induction of CYP1A1 and EROD. Overall, BPdG correlation was observed with CYP1A1 protein and CYP1A1/1B1 enzyme activity, but not with CYP1B1 or NQO

  5. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Impairs G2 Checkpoint in Human Nasopharyngeal Epithelial Cells through Defective Chk1 Activation

    PubMed Central

    Deng, Wen; Pang, Pei Shin; Tsang, Chi Man; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie L. M.; Tsao, Sai Wah

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1) is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development. PMID:22761726

  6. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway

    PubMed Central

    2014-01-01

    Background Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. Results FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCϒ, NWASP, ARP2/3, and ROCK had no influence this. Conclusions FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies. PMID:24885257

  7. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    SciTech Connect

    Oberdisse, E.; Lapetina, E.G.

    1987-05-14

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma S on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.

  8. A rapid method of reconstituting human erythrocyte sugar transport proteins.

    PubMed

    Carruthers, A; Melchior, D L

    1984-06-01

    A rapid reconstitution procedure for human erythrocyte hexose transfer activity is described. The procedure (reverse-phase evaporation) avoids exposure of the isolated proteins to detergent, organic solvent, sonication, or freeze-thaw steps during insertion into synthetic membranes and may be effected within 15 min. The so-formed vesicles are unilamellar structures with a large encapsulated volume, narrow size range, and low passive permeabilities. Contamination by carry-through of endogenous (red cell) lipids is less than 1%. Reconstituted hexose transfer activity was examined by using unfractionated proteins (bands 3, 4.5, and 6) and purified proteins (bands 4.5 and 3). With unfractionated proteins, hexose transport activity is low [0.34 mumol X (mg of protein)-1 X min-1], is inhibited by cytochalasin B, and increases monotonically with protein concentration. Kinetic analysis indicates that Vmax values for both influx and efflux of D-glucose are identical. Reconstitution of the cytochalasin B binding protein (band 4.5) results in hexose transport with high specific activity [5 mumol X (mg of protein)-1 X min-1] and symmetry in transfer kinetics. Band 3 proteins also appear to mediate cytochalasin B sensitive D-glucose transport activity.

  9. Development of Novel Adenosine Monophosphate-Activated Protein Kinase Activators

    PubMed Central

    Guh, Jih-Hwa; Chang, Wei-Ling; Yang, Jian; Lee, Su-Lin; Wei, Shuo; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2010-01-01

    In light of the unique ability of thiazolidinediones to mediate peroxisome proliferator-activated receptor (PPAR)γ-independent activation of adenosine monophosphate-activated protein kinase (AMPK) and suppression of interleukin (IL)-6 production, we conducted a screening of an in-house, thiazolidinedione-based focused compound library to identify novel agents with these dual pharmacological activities. Cell-based assays pertinent to the activation status of AMPK and mammalian homolog of target of rapamycin (i.e., phosphorylation of AMPK and p70 ribosomal protein S6 kinase, respectively), and IL-6/IL-6 receptor signaling (i.e., IL-6 production and signal transducer and activator of transcription 3 phosphorylation, respectively) in lipopolysaccharide (LPS)-stimulated THP-1 human macrophages were used to screen this compound library, which led to the identification of compound 53 (N-{4-[3-(1-Methylcyclohexylmethyl)-2,4-dioxo-thiazolidin-5-ylidene-methyl]-phenyl}-4-nitro-3-trifluoromethyl-benzenesulfonamide) as the lead agent. Evidence indicates that this drug-induced suppression of LPS-stimulated IL-6 production was attributable to AMPK activation. Furthermore, compound 53-mediated AMPK activation was demonstrated in C-26 colon adenocarcinoma cells, indicating that it is not a cell line-specific event. PMID:20170185

  10. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    SciTech Connect

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  11. Human TAFII31 protein is a transcriptional coactivator of the p53 protein.

    PubMed Central

    Lu, H; Levine, A J

    1995-01-01

    The p53 protein activates transcription of a target gene by binding to a specific DNA response element and interacting with the transcriptional apparatus of RNA polymerase II. The amino-terminal domain of p53 interacts with a component of the TFIID basal transcription complex. The human TATA-binding-protein-associated factor TAFII31, a component of TFIID, has been identified as a critical protein required for p53-mediated transcriptional activation. TAFII31 and p53 proteins bind to each other via amino acid residues in the amino-terminal domain of p53 that are essential for transcription. Antibodies directed against TAFII31 protein inhibit p53-activated but not basal transcription in vitro. These results demonstrate that TAFII31 is a coactivator for the p53 protein. Images Fig. 3 Fig. 4 Fig. 6 PMID:7761466

  12. Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein.

    PubMed Central

    Malik, A; Egan, J E; Houghten, R A; Sadoff, J C; Hoffman, S L

    1991-01-01

    Cytotoxic T lymphocytes (CTL) against the circumsporozoite (CS) protein of malaria sporozoites protect against malaria in rodents. Although there is interest in developing human vaccines that induce CTL against the Plasmodium falciparum CS protein, humans have never been shown to produce CTL against any Plasmodium species protein or other parasite protein. We report that when peripheral blood mononuclear cells (PBMC) from three of four volunteers immunized with irradiated P. falciparum sporozoites were stimulated in vitro with a recombinant vaccinia virus expressing the P. falciparum CS protein or a peptide including only amino acids 368-390 of the P. falciparum CS protein [CS-(368-390)], the PBMC lysed autologous Epstein-Barr virus-transformed B cells transfected with the P. falciparum CS protein gene or incubated with CS-(368-390) tricosapeptide. Activity was antigen specific, genetically restricted, and dependent on CD8+ T cells. In one volunteer, seven peptides reflecting amino acids 311-400 were tested, and, as in B10.BR mice, CTL activity was only associated with the CS-(368-390) peptide. Development of an assay for studying human CTL against the CS and other malaria proteins and a method for constructing target cells by direct gene transfection provide a foundation for studying the role of CTL in protection against malaria. PMID:1707538

  13. G protein-coupled receptor signaling via Src kinase induces endogenous human transient receptor potential vanilloid type 6 (TRPV6) channel activation.

    PubMed

    Spehr, Jennifer; Gelis, Lian; Osterloh, Markus; Oberland, Sonja; Hatt, Hanns; Spehr, Marc; Neuhaus, Eva M

    2011-04-15

    Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ. PMID:21349844

  14. A sensitive flow cytometry-based nucleotide excision repair assay unexpectedly reveals that mitogen-activated protein kinase signaling does not regulate the removal of UV-induced DNA damage in human cells.

    PubMed

    Rouget, Raphael; Auclair, Yannick; Loignon, Martin; Affar, El Bachir; Drobetsky, Elliot A

    2008-02-29

    In response to diverse genotoxic stimuli (e.g. UV and cisplatin), the mitogen-activated protein kinases ERK1/2, JNK1/2, and p38alpha/beta become rapidly phosphorylated and in turn activate multiple downstream effectors that modulate apoptosis and/or growth arrest. Furthermore, previous lines of evidence have strongly suggested that ERK1/2 and JNK1/2 participate in global-genomic nucleotide excision repair, a critical antineoplastic pathway that removes helix-distorting DNA adducts induced by a variety of mutagenic agents, including UV. To rigorously evaluate the potential role of mitogen-activated protein kinases in global-genomic nucleotide excision repair, various human cell strains (primary skin fibroblasts, primary lung fibroblasts, and HCT116 colon carcinoma cells) were treated with highly specific chemical inhibitors, which, following UV exposure, (i) abrogated the capacities of ERK1/2, JNK1/2, or p38alpha/beta to phosphorylate specific downstream effectors and (ii) characteristically modulated cellular proliferation, clonogenic survival, and/or apoptosis. A highly sensitive flow cytometry-based nucleotide excision repair assay recently optimized and validated in our laboratory was then employed to directly demonstrate that the kinetics of UV DNA photoadduct repair are highly similar in mock-treated versus mitogen-activated protein kinase inhibitor-treated cells. These data on primary and tumor cells treated with pharmacological inhibitors were fully corroborated by repair studies using (i) short hairpin RNA-mediated knockdown of ERK1/2 or JNK1/2 in human U2OS osteosarcoma cells and (ii) expression of a dominant negative p38alpha mutant in human primary lung fibroblasts. Our results provide solid evidence for the first time, in disaccord with a burgeoning perception, that mitogen-activated protein kinase signaling does not influence the efficiency of human global-genomic nucleotide excision repair.

  15. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  16. Identification of proteins associated with ligand-activated estrogen receptor α in human breast cancer cell nuclei by tandem affinity purification and nano LC-MS/MS.

    PubMed

    Tarallo, Roberta; Bamundo, Angela; Nassa, Giovanni; Nola, Ernesto; Paris, Ornella; Ambrosino, Concetta; Facchiano, Angelo; Baumann, Marc; Nyman, Tuula A; Weisz, Alessandro

    2011-01-01

    Estrogen receptor α (ER-α) is a key mediator of estrogen actions in breast cancer (BC) cells. Understanding the effects of ligand-activated ER-α in target cells requires identification of the molecular partners acting in concert with this nuclear receptor to transduce the hormonal signal. We applied tandem affinity purification (TAP), glycerol gradient centrifugation and MS analysis to isolate and identify proteins interacting with ligand-activated ER-α in MCF-7 cell nuclei. This led to the identification of 264 ER-associated proteins, whose functions highlight the hinge role of ER-α in the coordination of multiple hormone-regulated nuclear processes in BC cells. PMID:21182205

  17. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6.

    PubMed Central

    Panning, B; Smiley, J R

    1993-01-01

    We found that transcription of endogenous human Alu elements by RNA polymerase III was strongly stimulated following infection of HeLa cells with adenovirus type 5, leading to the accumulation of high levels of Alu transcripts initiated from Alu polymerase III promoters. In contrast to previously reported cases of adenovirus-induced activation of polymerase III transcription, induction required the E1b 58-kDa protein and the products of E4 open reading frames 3 and 6 in addition to the 289-residue E1a protein. In addition, E1a function was not required at high multiplicities of infection, suggesting that E1a plays an indirect role in Alu activation. These results suggest previously unsuspected regulatory properties of the adenovirus E1b and E4 gene products and provide a novel approach to the study of the biology of the most abundant class of dispersed repetitive DNA in the human genome. Images PMID:7684492

  18. [Proteins of human milk involved in immunological processes].

    PubMed

    Lis, Jolanta; Orczyk-Pawiłowicz, Magdalena; Kątnik-Prastowska, Iwona

    2013-05-31

    Human milk contains a lot of components (i.e. proteins, carbohydrates, lipids, inorganic elements) which provide basic nutrients for infants during the first period of their lives. Qualitative composition of milk components of healthy mothers is similar, but their levels change during lactation stages. Colostrum is the fluid secreted during the first days postpartum by mammary epithelial cells. Colostrum is replaced by transitional milk during 5-15 days postpartum and from 15 days postpartum mature milk is produced. Human milk, apart from nutritional components, is a source of biologically active molecules, i.e. immunoglobulins, growth factors, cytokines, acute phase proteins, antiviral and antibacterial proteins. Such components of human milk are responsible for specific biological activities of human milk. This secretion plays an important role in growth and development of newborns. Bioactive molecules present in the milk support the immature immune system of the newborn and also protect against the development of infection. In this article we describe the pathways involved in the production and secretion of human milk, the state of knowledge on the proteome of human milk, and the contents of components of milk during lactation. Moreover, some growth factors and proteins involved in innate and specific immunity, intercellular communication, immunomodulation, and inflammatory processes have been characterized.

  19. Comparison of Metalloproteinase Protein and Activity Profiling

    PubMed Central

    Giricz, Orsi; Lauer, Janelle L.; Fields, Gregg B.

    2010-01-01

    Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The present study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer and one normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media, both in amount and in variety. TIMP-1 was produced in all cell lines. MMP activity assays with three different FRET substrates were then utilized to determine if protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was only confirmed in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays. PMID:20920458

  20. Cytoskeletal proteins inside human immunodeficiency virus type 1 virions.

    PubMed Central

    Ott, D E; Coren, L V; Kane, B P; Busch, L K; Johnson, D G; Sowder, R C; Chertova, E N; Arthur, L O; Henderson, L E

    1996-01-01

    We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins. PMID:8892894

  1. New Anthocyanin-Human Salivary Protein Complexes.

    PubMed

    Ferrer-Gallego, Raúl; Soares, Susana; Mateus, Nuno; Rivas-Gonzalo, Julián; Escribano-Bailón, M Teresa; de Freitas, Victor

    2015-08-01

    The interaction between phenolic compounds and salivary proteins is considered the basis of the poorly understood phenomenon of astringency. Furthermore, this interaction is an important factor in relation to their bioavailability. In this work, interactions between anthocyanin and human salivary protein fraction were studied by mass spectrometry (MALDI-TOF-MS and FIA-ESI-MS) and saturation-transfer difference (STD) NMR spectroscopy. Anthocyanins were able to interact with saliva proteins. The dissociation constant (KD) between malvidin 3-glucoside and salivary proline-rich proteins was 1.92 mM for the hemiketal form (pH 3.4) and 1.83 mM for the flavylium cation (pH 1.0). New soluble complexes between these salivary proteins and malvidin 3-glucoside were identified for the first time.

  2. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells

    PubMed Central

    GALOIAN, KARINA; QURESHI, AMIR; WIDEROFF, GINA; TEMPLE, H.T.

    2015-01-01

    Disruption of cell-cell junctions and the concomitant loss of polarity, downregulation of tumor-suppressive adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to tumorigenesis. In this study, we aimed to determine the status of intercellular junction proteins expression in JJ012 human malignant chondrosarcoma cells and investigate the effect of the antitumorigenic cytokine, proline-rich polypeptide-1 (PRP-1) on their expression. The cell junction pathway array data indicated downregulation of desmosomal proteins, such as desmoglein (1,428-fold), desmoplakin (620-fold) and plakoglobin (442-fold). The tight junction proteins claudin 11 and E-cadherin were also downregulated (399- and 52-fold, respectively). Among the upregulated proteins were the characteristic for tumors gap junction β-5 protein (connexin 31.1) and the pro-inflammatory pathway protein intercellular adhesion molecule (upregulated 129- and 43-fold, respectively). We demonstrated that PRP-1 restored the expression of the abovementioned downregulated in chondrosarcoma desmosomal proteins. PRP-1 inhibited H3K9-specific histone demethylase activity in chondrosarcoma cells in a dose-dependent manner (0.5 µg/ml PRP, 63%; 1 µg/ml PRP, 74%; and 10 µg/ml PRP, 91% inhibition). Members of the H3K9 family were shown to transcriptionally repress tumor suppressor genes and contribute to cancer progression. Our experimental data indicated that PRP-1 restores tumor suppressor desmosomal protein expression in JJ012 human chondrosarcoma cells and inhibits H3K9 demethylase activity, contributing to the suppression of tumorigenic potential in chondrosarcoma cells. PMID:25469290

  3. [Cow's milk protein allergy through human milk].

    PubMed

    Denis, M; Loras-Duclaux, I; Lachaux, A

    2012-03-01

    Cow's milk protein allergy (CMPA) is the first allergy that affects infants. In this population, the incidence rate reaches 7.5%. The multiplicity and aspecificity of the symptoms makes its diagnosis sometimes complicated, especially in the delayed type (gastrointestinal, dermatological, and cutaneous). CMPA symptoms can develop in exclusively breastfed infants with an incidence rate of 0.5%. It, therefore, raises questions about sensitization to cow's milk proteins through breast milk. Transfer of native bovine proteins such as β-lactoglobulin into the breast milk is controversial: some authors have found bovine proteins in human milk but others point to cross-reactivity between human milk proteins and cow's milk proteins. However, it seems that a small percentage of dietary proteins can resist digestion and become potentially allergenic. Moreover, some authors suspect the transfer of some of these dietary proteins from the maternal bloodstream to breast milk, but the mechanisms governing sensitization are still being studied. Theoretically, CMPA diagnosis is based on clinical observations, prick-test or patch-test results, and cow's milk-specific IgE antibody concentration. A positive food challenge test usually confirms the diagnosis. No laboratory test is available to make a certain diagnosis, but the detection of eosinophil cationic protein (ECP) in the mother's milk, for example, seems to be advantageous since it is linked to CMA. Excluding cow's milk from the mother's diet is the only cure when she still wants to breastfeed. Usually, cow's milk proteins are reintroduced after 6 months of exclusion. Indeed, the prognosis for infants is very good: 80% acquire a tolerance before the age of 3 or 4 years. Mothers should not avoid dairy products during pregnancy and breastfeeding as preventive measures against allergy.

  4. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy.

    PubMed

    Jourdain, Pascal; Becq, Frédéric; Lengacher, Sylvain; Boinot, Clément; Magistretti, Pierre J; Marquet, Pierre

    2014-02-01

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  5. HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-κB Pathway

    PubMed Central

    Leghmari, Kaoutar; Serrero, Manutea; Delobel, Pierre; Izopet, Jacques; BenMohamed, Lbachir; Bahraoui, Elmostafa

    2015-01-01

    We recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients. Such production was abrogated in the presence of anti-TLR4 blocking antibodies or soluble recombinant TLR4-MD2 as a decoy receptor, suggesting TLR4 was recruited by Tat protein. Tat-induced murine IL-6 and CXCL1/KC a functional homologue of human IL-8 was abolished in peritoneal macrophages derived from TLR4 KO but not from Wt mice, confirming the involvement of the TLR4 pathway. Furthermore, the recruitment of TLR4-MD2-CD14 complex by Tat protein was demonstrated by the activation of TLR4 downstream pathways including NF-κB and SOCS-1 and by down-modulation of cell surface TLR4 by endocytosis in dynamin and lipid-raft-dependent manners. Collectively, these findings demonstrate, for the first time, that HIV-1 Tat interacts with TLR4-MD2-CD14 complex and activates the NF-κB pathway, leading to overproduction of IL-6 and IL-8 pro-inflammatory cytokines by myeloid cells from both healthy and HIV-1 infected patients. This study reveals a novel mechanism by which HIV-1, via its early expressed Tat protein, hijacks the TLR4 pathway, hence establishing abnormal hyper-activation of the immune system. PMID:26090662

  6. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease.

    PubMed

    Guzmán, Carla; Benet, Marta; Pisonero-Vaquero, Sandra; Moya, Marta; García-Mediavilla, M Victoria; Martínez-Chantar, M Luz; González-Gallego, Javier; Castell, José Vicente; Sánchez-Campos, Sonia; Jover, Ramiro

    2013-04-01

    Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activity of the human FABP1 promoter locates between -96 and -229bp, where C/EBPα binds to a composite DR1-C/EBP element. Mutation of this element at -123bp diminished basal reporter activity, abolished repression by C/EBPα and reduced transactivation by HNF4α. Moreover, HNF4α gene silencing by shRNA in HepG2 cells caused a significant down-regulation of FABP1 mRNA expression. FOXA1 activated the FABP1 promoter through binding to a cluster of elements between -229 and -592bp, whereas PPARα operated through a conserved proximal element at -59bp. Finally, FABP1, FOXA1 and PPARα were concomitantly repressed in animal models of NAFLD and in human nonalcoholic fatty livers, whereas C/EBPα was induced or did not change. We conclude that human FABP1 has a complex mechanism of regulation where C/EBPα displaces HNF4α and hampers activation by FOXA1 and PPARα. Alteration of expression of these transcription factors in NAFLD leads to FABP1 gen repression and could exacerbate lipotoxicity and disease progression. PMID:23318274

  7. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  8. Protein supplementation of human IVF culture media.

    PubMed

    Blake, Deborah; Svalander, Peter; Jin, Meishan; Silversand, Christer; Hamberger, Lars

    2002-03-01

    This review travels the road of protein supplementation in embryo culture development-from whole crude plasma in the mid Twentieth century moving through to the completely genetically engineered human albumin with successful births at the beginning of the Twenty-first. PMID:12005309

  9. Essential role of an activator protein-2 (AP-2)/specificity protein 1 (Sp1) cluster in the UVB-mediated induction of the human vascular endothelial growth factor in HaCaT keratinocytes.

    PubMed Central

    Brenneisen, Peter; Blaudschun, Ralf; Gille, Jens; Schneider, Lars; Hinrichs, Ralf; Wlaschek, Meinhard; Eming, Sabine; Scharffetter-Kochanek, Karin

    2003-01-01

    Chronic sun exposure of the skin has long been postulated to enhance cutaneous angiogenesis, resulting in highly vascularized skin cancers. As the UVB component of sunlight is a major contributor to photocarcinogenesis, we aimed to explore the effects of UVB radiation on vascular endothelial growth factor (VEGF) gene expression, using the immortalized keratinocyte cell line HaCaT as a model for transformed premalignant epithelial cells. In the present paper, we studied the molecular mechanism of UVB-induced VEGF providing a major angiogenic activity in tumour progression and invasion. After 12-24 h of UVB irradiation, a 2.4- to 2.7-fold increase in endogenous VEGF protein level was measured, correlating with an up to 2.5-fold induction of promoter-based reporter gene constructs of VEGF. Furthermore, we identified a GC-rich UVB-responsive region between -87 and -65 bp of the VEGF promoter. In electrophoretic mobility-shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional UVB-inducible protein complex distinct from Sp1 protein. The transcription factor AP-2 (activator protein-2) was detected as a component of the UVB-inducible protein complex. The critical role of the AP-2/Sp1 (specificity protein 1) cluster was supported by demonstration of a significant reduction of UVB-mediated promoter activity upon deletion of this recognition site. The specificity of this region for UVB irradiation was demonstrated using PMA, which increased VEGF activity in HaCaT cells after transient transfection of the deleted promoter construct. In conclusion, our data clarified regulatory mechanisms of UVB-dependent VEGF stimulation which may be critical for angiogenic processes in the skin. PMID:12358602

  10. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  11. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes.

    PubMed

    Wölfle, Ute; Heinemann, Anja; Esser, Philipp R; Haarhaus, Birgit; Martin, Stefan F; Schempp, Christoph M

    2012-10-01

    Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  12. Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells.

    PubMed

    Cui, Jiajun; Meng, Xianfeng; Gao, Xudong; Tan, Guangxuan

    2010-03-01

    Pokemon, which stands for POK erythroid myeloid ontogenic factor, can regulate expression of many genes and plays an important role in tumorigenesis. Curcumin, a natural and non-toxic yellow compound, has capacity for antioxidant, free radical scavenger, anti-inflammatory properties. Recent studies shows it is a potential inhibitor of cell proliferation in a variety of tumour cells. To investigate whether curcumin can regulate the expression of Pokemon, a series of experiments were carried out. Transient transfection experiments demonstrated that curcumin could decrease the activity of the Pokemon promoter. Western blot analysis suggested that curcumin could significantly decrease the expression of the Pokemon. Overexpression of Sp1 could enhance the activity of the Pokemon promoter, whereas knockdown of Sp1 could decrease its activity. More important, we also found that curcumin could decrease the expression of the Pokemon by suppressing the stimulation of the Sp1 protein. Therefore, curcumin is a potential reagent for tumour therapy which may target Pokemon. PMID:19444642

  13. Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells.

    PubMed

    Cui, Jiajun; Meng, Xianfeng; Gao, Xudong; Tan, Guangxuan

    2010-03-01

    Pokemon, which stands for POK erythroid myeloid ontogenic factor, can regulate expression of many genes and plays an important role in tumorigenesis. Curcumin, a natural and non-toxic yellow compound, has capacity for antioxidant, free radical scavenger, anti-inflammatory properties. Recent studies shows it is a potential inhibitor of cell proliferation in a variety of tumour cells. To investigate whether curcumin can regulate the expression of Pokemon, a series of experiments were carried out. Transient transfection experiments demonstrated that curcumin could decrease the activity of the Pokemon promoter. Western blot analysis suggested that curcumin could significantly decrease the expression of the Pokemon. Overexpression of Sp1 could enhance the activity of the Pokemon promoter, whereas knockdown of Sp1 could decrease its activity. More important, we also found that curcumin could decrease the expression of the Pokemon by suppressing the stimulation of the Sp1 protein. Therefore, curcumin is a potential reagent for tumour therapy which may target Pokemon.

  14. Robust, synergistic regulation of human gene expression using TALE activators.

    PubMed

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  15. Thrombin produces phosphorylation of cytosolic phospholipase A2 by a mitogen-activated protein kinase kinase-independent mechanism in the human astrocytoma cell line 1321N1.

    PubMed Central

    Hernández, M; Bayón, Y; Sánchez Crespo, M; Nieto, M L

    1997-01-01

    The release of [3H]arachidonic acid was studied in the 1321N1 astrocytoma cell line upon stimulation with thrombin. The effect of thrombin was antagonized by hirudin only when both compounds were added simultaneously, which suggests activation of thrombin receptor. Evidence that the cytosolic phospholipase A2 (cPLA2) takes part in thrombin-induced arachidonate release was provided by the finding that thrombin induced retardation of the mobility of cPLA2 in SDS/polyacrylamide gels, which is a feature of the activation of cPLA2 by mitogen-activated protein (MAP) kinases. Thrombin induced activation of two members of the MAP kinase family whose consensus primary sequence appears in cPLA2, namely p42-MAP kinase and c-Jun kinase. However, the activation of c-Jun kinase preceded the phosphorylation of cPLA2 more clearly than the activation of p42-MAK kinase did. Both cPLA2 and c-Jun kinase activation were not affected by PD-98059, a specific inhibitor of MAP kinase kinases, which indeed completely blocked p42-MAP kinase shift. Heat shock, a well-known activator of c-Jun kinase, also phosphorylated cPLA2 but not p42-MAP kinase. These data indicate the existence in astrocytoma cells of a signalling pathway triggered by thrombin receptor stimulation that activates a kinase cascade acting on the Pro-Leu-Ser-Pro consensus primary sequence, activates cPLA2, and associates the release of arachidonate with nuclear signalling pathways. PMID:9359863

  16. Endogenous protein phosphorylation and protein kinase activity in winged bean.

    PubMed

    Mukhopadhyay, K; Singh, M

    1997-10-01

    In winged bean (Psophocarpus tetragonolobus) protein kinases (E.C. 2.7.1.37) were found in all tissues studied. There was a significant increase in kinase activity during seed development, with a concomitant enhancement in the phosphorylation of a number of polypeptides; this was reversed in germinating seed cotyledons. Protein phosphorylation was apparently correlated with the increase in the protein content of the developing seed and the growing axis. At least three distinct autophosphorylating proteins could be distinguished in the developing seeds after SDS-PAGE, indicating the presence of different types of protein kinases in winged bean.

  17. Distal Interleukin-1β (IL-1β) Response Element of Human Matrix Metalloproteinase-13 (MMP-13) Binds Activator Protein 1 (AP-1) Transcription Factors and Regulates Gene Expression*

    PubMed Central

    Schmucker, Adam C.; Wright, Jason B.; Cole, Michael D.; Brinckerhoff, Constance E.

    2012-01-01

    The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5′ relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression. PMID:22102411

  18. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    PubMed

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  19. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells

    PubMed Central

    Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly

  20. Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes.

    PubMed

    Ojeda, Diego; López-Costa, Juan José; Sede, Mariano; López, Ester María; Berria, María Isabel; Quarleri, Jorge

    2014-02-01

    Although HIV-associated neurocognitive disorders (HAND) result from injury and loss of neurons, productive infection routinely takes place in cells of macrophage lineage. In such a complex context, astrocytosis induced by local chemokines/cytokines is one of the hallmarks of HIV neuropathology. Whether this sustained astrocyte activation is able to alter telomere-aging process is unknown. We hypothesized that interaction of HIV with astrocytes may impact astrocyte telomerase activity (TA) and telomere length in a scenario of astrocytic activation measured by expression of glial fibrillary acidic protein (GFAP). To test this hypothesis, cultured murine astrocytes were challenged with pseudotyped HIV/vesicular stomatitis virus (HIV/VSV) to circumvent the absence of viral receptors; and GFAP, telomerase activity, and telomere length were quantified. As an early and transient event after HIV infection, both TA activity and telomere length were significantly augmented (P < 0.001). Later, a strong negative correlation (-0.8616, P < 0.0001) between virus production and telomerase activity was demonstrated. Once HIV production had reached a peak (7 dpi), the TA decreased, showing levels similar to those of noninfected cells. In contrast, the astrocyte became activated, exhibiting significantly increased levels of GFAP expression directly related to the level of HIV/VSV replication (P < 0.0001). Our results suggest that HIV-infected astrocytes exhibit early disturbance in their cellular functions, such as telomerase activity and telomere length, that may attenuate cell proliferation and enhance the astrocyte dysregulation, contributing to HIV neuropathogenesis. Understanding the mechanisms involved in HIV-mediated persistence by altering the telomere-related aging processes could aid in the development of therapeutic modalities for neurological complications of HIV infection.

  1. The molecular basis for species-specific activation of human TRPA1 protein by protons involves poorly conserved residues within transmembrane domains 5 and 6.

    PubMed

    de la Roche, Jeanne; Eberhardt, Mirjam J; Klinger, Alexandra B; Stanslowsky, Nancy; Wegner, Florian; Koppert, Wolfgang; Reeh, Peter W; Lampert, Angelika; Fischer, Michael J M; Leffler, Andreas

    2013-07-12

    The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.

  2. The Molecular Basis for Species-specific Activation of Human TRPA1 Protein by Protons Involves Poorly Conserved Residues within Transmembrane Domains 5 and 6*

    PubMed Central

    de la Roche, Jeanne; Eberhardt, Mirjam J.; Klinger, Alexandra B.; Stanslowsky, Nancy; Wegner, Florian; Koppert, Wolfgang; Reeh, Peter W.; Lampert, Angelika; Fischer, Michael J. M.; Leffler, Andreas

    2013-01-01

    The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons. PMID:23709225

  3. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein.

    PubMed

    Zhang, Xinsheng; Wallace, Olivia L; Domi, Arban; Wright, Kevin J; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J; Kamali, Anatoli; Karita, Etienne; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A; Parks, Christopher L

    2015-08-01

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. PMID:25880113

  4. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein.

    PubMed

    Zhang, Xinsheng; Wallace, Olivia L; Domi, Arban; Wright, Kevin J; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J; Kamali, Anatoli; Karita, Etienne; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A; Parks, Christopher L

    2015-08-01

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies.

  5. Reconstruction of #7 facial cleft with distraction-assisted in situ osteogenesis (DISO): role of recombinant human bone morphogenetic protein-2 with Helistat-activated collagen implant.

    PubMed

    Carstens, Michael H; Chin, Martin; Ng, Theodore; Tom, William K

    2005-11-01

    A case involving concomitant presentation of a #7 lateral facial cleft with a complete cleft of the ipsilateral lip, alveolus, and palate is presented. The mandibular defect was Pruzansky III with a foreshortened body, absent ramus and absent masseter. Taking advantage of developmental field theory, reconstruction of the osseous defect was undertaken using the autogenous periosteum as a source of mesenchymal stem cells. Expansion of the periosteum was followed by implantation of Helistat (Integra Life Sciences, Plainsboro, NJ) collagen sponge saturated with recombinant human bone morphogenetic protein-2. Stimulation of this distraction-induced envelope by rhBMP-2 resulted in abundant production of bicortical membranous bone in situ within 12 weeks. The neoramus was subsequently suspended from the cranial base, and a temporalis muscle transfer was used to provide motor control of the jaw. Synthesis of bone in this manner is termed DISO (distraction-assisted in situ osteogenesis). The biologic rationale and clinical implications of DISO are discussed.

  6. Notum deacylates Wnt proteins to suppress signalling activity.

    PubMed

    Kakugawa, Satoshi; Langton, Paul F; Zebisch, Matthias; Howell, Steven A; Chang, Tao-Hsin; Liu, Yan; Feizi, Ten; Bineva, Ganka; O'Reilly, Nicola; Snijders, Ambrosius P; Jones, E Yvonne; Vincent, Jean-Paul

    2015-03-12

    Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase. PMID:25731175

  7. Activated human platelets induce factor XIIa-mediated contact activation.

    PubMed

    Bäck, Jennie; Sanchez, Javier; Elgue, Graciela; Ekdahl, Kristina Nilsson; Nilsson, Bo

    2010-01-01

    Earlier studies have shown that isolated platelets in buffer systems can promote activation of FXII or amplify contact activation, in the presence of a negatively charge substance or material. Still proof is lacking that FXII is activated by platelets in a more physiological environment. In this study we investigate if activated platelets can induce FXII-mediated contact activation and whether this activation affects clot formation in human blood. Human platelets were activated with a thrombin receptor-activating peptide, SFLLRN-amide, in platelet-rich plasma or in whole blood. FXIIa and FXIa in complex with preferentially antithrombin (AT) and to some extent C1-inhibitor (C1INH) were generated in response to TRAP stimulation. This contact activation was independent of surface-mediated contact activation, tissue factor pathway or thrombin. In clotting whole blood FXIIa-AT and FXIa-AT complexes were specifically formed, demonstrating that AT is a potent inhibitor of FXIIa and FXIa generated by platelet activation. Contact activation proteins were analyzed by flow cytometry and FXII, FXI, high-molecular weight kininogen, and prekallikrein were detected on activated platelets. Using chromogenic assays, enzymatic activity of platelet-associated FXIIa, FXIa, and kallikrein were demonstrated. Inhibition of FXIIa in non-anticoagulated blood also prolonged the clotting time. We conclude that platelet activation triggers FXII-mediated contact activation on the surface and in the vicinity of activated platelets. This leads specifically to generation of FXIIa-AT and FXIa-AT complexes, and contributes to clot formation. Activated platelets may thereby constitute an intravascular locus for contact activation, which may explain the recently reported importance of FXII in thrombus formation. PMID:19878657

  8. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway.

    PubMed

    Zhang, Xuecheng; Zhu, Yong; Duan, Wei; Feng, Chen; He, Xuan

    2015-04-01

    Gastric cancer is one of the most common forms of malignant tumor, and the development of anti‑gastric cancer drugs with minimal toxicity is of clinical importance. Allicin is extracted from Allium sativum (garlic). Recent research, including clinical experiments, has shown that garlic has anticancer and tumor suppressive effects. The present study aimed to investigate the effects of allicin on the MGC‑803 human gastric carcinoma cell line, and to further explore the possible mechanisms of its tumor suppressor effects. The effects of allicin on the MGC‑803 cells were initially examined using an 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. Hoechst staining was also used, in order to demonstrate the impact of allicin on MGC‑803 cell apoptosis. In addition, western blot analysis was performed to determine the abnormal expression levels of apoptosis‑associated proteins, following the treatment of MGC‑803 cells with allicin. Western blotting was also used to investigate the specific mechanisms underlying allicin‑induced apoptosis of MGC‑803 cells. The rate of MGC‑803 apoptosis was significantly increased, when the concentration and treatment time of allicin were increased. Hoechst staining detected an enhanced rate of apoptosis, and enhanced expression levels of cleaved caspase 3 were determined by western blotting. Notably, the protein expression levels of p38 were increased when the MGC‑803 cells were treated with allicin. The results of the present study suggest that allicin may inhibit the proliferation and induce the apoptosis of MGC‑803 human gastric carcinoma cells, and this may partially be achieved through the enhanced expression of p38 and cleaved caspase 3. PMID:25523417

  9. Occurrence of autoantibodies to intermediate filament proteins in human visceral leishmaniasis and their induction by experimental polyclonal B-cell activation.

    PubMed Central

    Böhme, M W; Evans, D A; Miles, M A; Holborow, E J

    1986-01-01

    Fifteen sera of patients with visceral leishmaniasis were investigated for the occurrence of autoantibodies. They were found in high incidence and titre, and with specificity to the intermediate filament (INFIL) proteins vimentin (12 out of 15 with a titre higher than 1:10) and keratin (9 out of 15 with a titre higher than 1:10) as well as to speckled anti-nuclear antigens (ANA). Additionally, supernatants of Leishmania major and Leishmania donovani cultures containing soluble parasite-derived antigens were mitogenic to cultures of mononuclear cells (MNC) obtained from healthy donors without specific antibodies to leishmanial antigens. The activation of MNC resulted in significant immunoglobulin production, some of which demonstrated autoantibody specificity to INFIL. The co-operation of monocytes, T cells and B cells was required in order to obtain maximal stimulation. The importance of polyclonal B-cell activation for the genesis and occurrence of autoantibodies in visceral leishmaniasis is discussed. PMID:3492440

  10. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  11. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  12. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Plasma Protein Fraction (Human). 640.90 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  13. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  14. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  15. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  16. AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis

    PubMed Central

    Vadász, István; Dada, Laura A.; Briva, Arturo; Trejo, Humberto E.; Welch, Lynn C.; Chen, Jiwang; Tóth, Péter T.; Lecuona, Emilia; Witters, Lee A.; Schumacker, Paul T.; Chandel, Navdeep S.; Seeger, Werner; Sznajder, Jacob I.

    2008-01-01

    Hypercapnia (elevated CO2 levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO2-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO2 levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO2-triggered increase in intracellular Ca2+ concentration and Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β). Chelating intracellular Ca2+ or abrogating CaMKK-β function by gene silencing or chemical inhibition prevented the CO2-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-ζ and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-α1 prevented CO2-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a β-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO2 levels are sensed by AECs and that AMPK mediates CO2-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with β-adrenergic agonists and cAMP. PMID:18188452

  17. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    SciTech Connect

    Blackburn, W.D.; Tallant, E.A.; Wallace, R.W.

    1986-05-01

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca/sup 2 +/. One mechanism by which Ca/sup 2 +/ may trigger neutrophil activation is through Ca/sup 2 +//calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca/sup 2 +//CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and /sup 125/I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound /sup 125/I-CaM in a Ca/sup 2 +/-dependent manner. One predominant region of /sup 125/I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca/sup 2 +/-dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 ..mu..g/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca/sup 2 +/-dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca/sup 2 +//calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase.

  18. Novel Mechanism of Impaired Function of Organic Anion-Transporting Polypeptide 1B3 in Human Hepatocytes: Post-Translational Regulation of OATP1B3 by Protein Kinase C Activation

    PubMed Central

    Powell, John; Farasyn, Taleah; Köck, Kathleen; Meng, Xiaojie; Pahwa, Sonia; Brouwer, Kim L. R.

    2014-01-01

    The organic anion-transporting polypeptide (OATP) 1B3 is a membrane transport protein that mediates hepatic uptake of many drugs and endogenous compounds. Currently, determination of OATP-mediated drug-drug interactions in vitro is focused primarily on direct substrate inhibition. Indirect inhibition of OATP1B3 activity is under-appreciated. OATP1B3 has putative protein kinase C (PKC) phosphorylation sites. Studies were designed to determine the effect of PKC activation on OATP1B3-mediated transport in human hepatocytes using cholecystokinin-8 (CCK-8), a specific OATP1B3 substrate, as the probe. A PKC activator, phorbol-12-myristate-13-acetate (PMA), did not directly inhibit [3H]CCK-8 accumulation in human sandwich-cultured hepatocytes (SCH). However, pretreatment with PMA for as little as 10 minutes rapidly decreased [3H]CCK-8 accumulation. Treatment with a PKC inhibitor bisindolylmaleimide (BIM) I prior to PMA treatment blocked the inhibitory effect of PMA, indicating PKC activation is essential for downregulating OATP1B3 activity. PMA pretreatment did not affect OATP1B3 mRNA or total protein levels. To determine the mechanism(s) underlying the indirect inhibition of OATP1B3 activity upon PKC activation, adenoviral vectors expressing FLAG-Myc-tagged OATP1B3 (Ad-OATP1B3) were transduced into human hepatocytes; surface expression and phosphorylation of OATP1B3 were determined by biotinylation and by an anti–phosphor-Ser/Thr/Tyr antibody, respectively. PMA pretreatment markedly increased OATP1B3 phosphorylation without affecting surface or total OATP1B3 protein levels. In conclusion, PKC activation rapidly decreases OATP1B3 transport activity by post-translational regulation of OATP1B3. These studies elucidate a novel indirect inhibitory mechanism affecting hepatic uptake mediated by OATP1B3, and provide new insights into predicting OATP-mediated drug interactions between OATP substrates and kinase modulator drugs/endogenous compounds. PMID:25200870

  19. Amylase activity in human bile.

    PubMed

    Donaldson, L A; Joffe, S N; McIntosh, W; Brodie, M J

    1979-03-01

    The mean amylase level in 42 human bile samples was 154 IU/l and there was no significant difference in the amylase activity of 32 paired serum and bile samples. Estimation of the amylase thermolability of bile showed it to be similar to that of serum. This suggests that the amylase activity in bile may have filtered through the liver from the hepatic circulation rather than refluxed from the pancreatic duct. The presence of amylase in human bile provides further evidence that the liver might have a role in the regulation of serum amylase.

  20. [Virucidal activity of disinfectants. Influence of the serum protein upon the virucidal activity of disinfectants].

    PubMed

    Noda, M; Matsuda, S; Kobayashi, M

    2000-08-01

    Five disinfectants were tested for virucidal activity on three DNA viruses and three RNA viruses in the presence or absence of serum protein. Disinfectants of the aldehyde and halogen groups had a virucidal activity on human herpes virus, bovine rhabdo virus, human immunodeficiency virus, human adeno virus, porcine parvo virus, and polio virus. Disinfectants of the invert and amphoteric soap groups, and biganide group had a destructive effect on RNA and DNA viruses possessing an envelope. The presence of serum protein exerted great influence upon the virucidal activity of disinfectants of the invert and amphoteric soap groups. PMID:11019515

  1. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  2. DNA-dependent protein phosphorylation activity in Xenopus is coupled to a Ku-like protein.

    PubMed

    Kanungo, J; Cameron, R S; Takeda, Y; Hardin, J A

    1997-10-01

    DNA-dependent protein kinase (DNA-PK) is a nuclear enzyme and functions as a serine/threonine kinase that has been well characterized in both the human and the mouse. The regulatory subunit of DNA-PK is the Ku autoantigen. To demonstrate that a Ku-like protein is present in Xenopus oocytes, we used immunoprecipitation analysis with a monoclonal antibody raised against human Ku antigen and autoimmune serum containing anti-Ku antibodies. Metabolic labeling studies indicate that the Ku-like protein is synthesized mainly in late vitellogenic oocytes. By using a specific peptide substrate for DNA-PK, we demonstrate the activity of a DNA-dependent protein kinase in oocyte extracts. The kinase activity requires the Ku-like protein, since extracts depleted of Ku protein by immunoadsorption with human anti-Ku antibodies fail to demonstrate the DNA-dependent phosphorylation activity. The increased enzyme activity in vitellogenic oocytes may be correlated to the increased levels of Ku protein observed in these oocytes compared to the pre- and early vitellogenic oocytes.

  3. Rat C-reactive protein activates the autologous complement system.

    PubMed

    Diaz Padilla, Niubel; Bleeker, Wim K; Lubbers, Yvonne; Rigter, Gemma M M; Van Mierlo, Gerard J; Daha, Mohamed R; Hack, C Erik

    2003-08-01

    Activation of complement is a biological function of human C-reactive protein (hCRP), whereas rat CRP (rCRP) has been claimed to be unable to activate complement. As important biological functions of proteins are probably conserved among species, we re-evaluated, using various ligands, the capability of rCRP to activate complement. The activation of complement by hCRP and rCRP was investigated in solid- and fluid-phase systems. In the solid-phase system, purified CRP was fixed to enzyme-linked immunosorbent assay (ELISA) plates and incubated with human or rat recalcified plasma. Dose-dependent binding of human and rat C3 and C4 was observed to human and rat CRP, respectively. In the fluid-phase system, recalcified rat plasma, which contains about 500 mg/l of CRP, or human plasma supplemented with hCRP, were incubated with lyso-phosphatidylcholine. A dose-dependent activation of complement was observed upon incubation with this ligand, as reflected by the generation of activated C4 as well as of CRP-complement complexes. This activation was, in both cases, inhibited by preincubation of plasma with p-aminophosphorylcholine, a specific inhibitor of the interaction of CRP with its ligands, or by chelation of calcium ions. We conclude that rat CRP, similarly to human CRP, can activate autologous complement. These results support the notion that opsonization of ligands with complement is an important biological function of CRP.

  4. Cow's milk proteins in human milk.

    PubMed

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E

    2012-01-01

    Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants.

  5. Proteinase-activated receptors differentially modulate in vitro invasion of human pancreatic adenocarcinoma PANC-1 cells in correlation with changes in the expression of CDC42 protein

    PubMed Central

    Segal, Liora; Katz, Liora S.; Lupu-Meiri, Monica; Shapira, Hagit; Sandbank, Judith; Gershengorn, Marvin C.; Oron, Yoram

    2013-01-01

    Objectives Proteinase-activated receptors (PARs) -1 and -2 have been associated with increased invasiveness and metastasis in human malignancies. The role of PAR-3 has been less investigated. We examined the role of PARs in a human pancreatic adenocarcinoma PANC-1 cell line phenotype in vitro. Methods We knocked down PAR-1, -2, or -3, while empty vector-infected cells served as controls. Specific peptide PARs agonists were used to stimulate the receptors. In vitro assays of colony formation, migration and invasion were used to characterize the phenotypes and Western analysis to follow CDC42 expression. Results PAR-1 and PAR-2 KDs were markedly less, while PAR-3 KDs were robustly more migratory and invasive than controls. Stimulation of PAR-1 or -2 by their peptide agonists increased, while PAR-3 agonist reduced the invasion of control cells. All three PARs knockdowns exhibited changes in the expression of CDC42, which correlated with the changes in their invasion. Conversely, stimulation of vector-control cells with PAR-1 or PAR-2 agonists enhanced, while PAR-3 agonist reduced the expression of CDC42. In the respective knock-down cells, the effects of agonists were abrogated. Conclusion The expression and/or activation of PARs is linked to PANC-1 cells invasiveness in vitro, probably via modulation of the expression of CDC42. PMID:23921961

  6. Antimicrobial Protein and Peptide Concentrations and Activity in Human Breast Milk Consumed by Preterm Infants at Risk of Late-Onset Neonatal Sepsis

    PubMed Central

    Trend, Stephanie; Strunk, Tobias; Hibbert, Julie; Kok, Chooi Heen; Zhang, Guicheng; Doherty, Dorota A.; Richmond, Peter; Burgner, David; Simmer, Karen; Davidson, Donald J.; Currie, Andrew J.

    2015-01-01

    Objective We investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period. Study design Breast milk from mothers of preterm infants (≤32 weeks gestation) was collected on days 7 (n = 88) and 21 (n = 77) postpartum. Concentrations of lactoferrin, LL-37, beta-defensins 1 and 2, and alpha-defensin 5 were measured by enzyme-linked immunosorbent assay. The antimicrobial activity of breast milk samples against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae was compared to the activity of infant formula, alone or supplemented with physiological levels of AMPs. Samples of breast milk fed to infants with and without subsequent LOS were compared for levels of AMPs and inhibition of bacterial growth. Results Levels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS. Conclusions The concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens. PMID:25643281

  7. Intrinsic Patterns of Human Activity

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael; Stanley, H. Eugene; Shea, Steven

    2003-03-01

    Activity is one of the defining features of life. Control of human activity is complex, being influenced by many factors both extrinsic and intrinsic to the body. The most obvious extrinsic factors that affect activity are the daily schedule of planned events, such as work and recreation, as well as reactions to unforeseen or random events. These extrinsic factors may account for the apparently random fluctuations in human motion observed over short time scales. The most obvious intrinsic factors are the body clocks including the circadian pacemaker that influences our sleep/wake cycle and ultradian oscillators with shorter time scales [2, 3]. These intrinsic rhythms may account for the underlying regularity in average activity level over longer periods of up to 24 h. Here we ask if the known extrinsic and intrinsic factors fully account for all complex features observed in recordings of human activity. To this end, we measure activity over two weeks from forearm motion in subjects undergoing their regular daily routine. Utilizing concepts from statistical physics, we demonstrate that during wakefulness human activity possesses previously unrecognized complex dynamic patterns. These patterns of activity are characterized by robust fractal and nonlinear dynamics including a universal probability distribution and long-range power-law correlations that are stable over a wide range of time scales (from minutes to hours). Surprisingly, we find that these dynamic patterns are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, and between subjects. Moreover, we find that these patterns persist when the same subjects undergo time-isolation laboratory experiments designed to account for the phase of the circadian pacemaker, and control the known extrinsic factors by restricting behaviors and manipulating scheduled events including the sleep/wake cycle. We attribute these newly

  8. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  9. Activity-Based Protein Profiling of Microbes

    SciTech Connect

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  10. Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family.

    PubMed

    Li, Xu; Tran, Kim My; Aziz, Kathryn E; Sorokin, Alexey V; Chen, Junjie; Wang, Wenqi

    2016-09-01

    Protein tyrosine phosphorylation, which plays a vital role in a variety of human cellular processes, is coordinated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Genomic studies provide compelling evidence that PTPs are frequently mutated in various human cancers, suggesting that they have important roles in tumor suppression. However, the cellular functions and regulatory machineries of most PTPs are still largely unknown. To gain a comprehensive understanding of the protein-protein interaction network of the human PTP family, we performed a global proteomic study. Using a Minkowski distance-based unified scoring environment (MUSE) for the data analysis, we identified 940 high confidence candidate-interacting proteins that comprise the interaction landscape of the human PTP family. Through a gene ontology analysis and functional validations, we connected the PTP family with several key signaling pathways or cellular functions whose associations were previously unclear, such as the RAS-RAF-MEK pathway, the Hippo-YAP pathway, and cytokinesis. Our study provides the first glimpse of a protein interaction network for the human PTP family, linking it to a number of crucial signaling events, and generating a useful resource for future studies of PTPs.

  11. Apoptotic Efficacy of Etomoxir in Human Acute Myeloid Leukemia Cells. Cooperation with Arsenic Trioxide and Glycolytic Inhibitors, and Regulation by Oxidative Stress and Protein Kinase Activities

    PubMed Central

    Estañ, María Cristina; Calviño, Eva; Calvo, Susana; Guillén-Guío, Beatriz; Boyano-Adánez, María del Carmen; de Blas, Elena; Rial, Eduardo; Aller, Patricio

    2014-01-01

    Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25–200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic

  12. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  13. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  14. The efficacy of recombinant human activated protein C (rhAPC) vs antithrombin III (at III) vs heparin, in the healing process of partial-thickness burns: a comparative study

    PubMed Central

    Kritikos, O.; Tsagarakis, M.; Tsoutsos, D.; Kittas, C.; Gorgoulis, V.; Papalois, A.; Giannopoulos, A.; Kakiopoulos, G.; Papadopoulos, O.

    2012-01-01

    Summary This is an experimental study regarding the positive effect of recombinant human activated protein C (rhAPC) in the healing process of partial-thickness burns, in comparison to antithrombin III and heparin. On a porcine model we induced superficial partial-thickness and deep partial-thickness burns and performed intravenous administration of the elements of study during the first 48 h. The progress of the condition of the injured tissues was evaluated by histopathological examination at specific time intervals. The results showed an improved healing response of the specimens treated with rhAPC compared to those treated with antithrombin III, heparin, and placebo. PMID:23233823

  15. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides.

    PubMed Central

    Seifert, R; Schultz, G; Richter-Freund, M; Metzger, J; Wiesmüller, K H; Jung, G; Bessler, W G; Hauschildt, S

    1990-01-01

    Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity. PMID:2160237

  16. Protein C activity in dogs envenomed by Vipera palaestinae.

    PubMed

    Hadar, Gil; Kelmer, Efrat; Segev, Gilad; Bruchim, Yaron; Aroch, Itamar

    2014-09-01

    Vipera palaestinae is responsible for most envenomations in humans and domestic animal in Israel. Its venom has pro- and anticoagulant properties. Protein C is a major natural anticoagulant, preventing excess clotting and thrombosis. This study investigated protein C activity and its prognostic value, as well as several other hemostatic analytes in dogs (Canis familiaris) accidently envenomed by V. palaestinae. Protein C activity was compared between envenomed dogs and 33 healthy control dogs. Mean protein C was lower in dogs envenomed by V. palaestinae compared to controls (12.9% vs. 22.9%, respectively; P < 0.01). It was positively correlated with antithrombin activity (r = 0.3, P = 0.04), but not with other hemostatic analytes. The overall mortality rate was 13%, and at presentation no significant protein C activity difference was noted between survivors and non-survivors. A receiver operator characteristics analysis of protein C activity as a predictor of mortality had an area under the curve of 0.7 (95% confidence interval 0.52-0.87). A protein C cutoff point of 8% corresponded to sensitivity and specificity of 70% and 57%, respectively. Dogs diagnosed with consumptive coagulopathy (14%) tended to have lower protein C activity compared to others; however, their mortality did differ from that of other dogs. This is the first study assessing protein C activity in V. palaestinae victims. Decreased protein C activity in such dogs may play a role in formation of thrombosis and hemostatic derangement as well as inflammation in V. palaestinae envenomations.

  17. Nuclear and nucleolar targeting of human ribosomal protein S6.

    PubMed Central

    Schmidt, C; Lipsius, E; Kruppa, J

    1995-01-01

    Chimeric proteins were constructed to define the nuclear localization signals (NLSs) of human ribosomal protein S6. The complete cDNA sequence, different cDNA fragments and oligonucleotides of the human ribosomal proteins S6, respectively, were joined to the 5' end of the entire LacZ gene of Escherichia coli by using recombinant techniques. The hybrid genes were transfected into L cells, transiently expressed, and the intracellular location of the fusion proteins was determined by their beta-galactosidase activity. Three NLSs were identified in the C-terminal half of the S6 protein. Deletion mutagenesis demonstrated that a single NLS is sufficient for targeting the corresponding S6-beta-galactosidase chimera into the nucleus. Removal of all three putative NLSs completely blocked the nuclear import of the resulting S6-beta-galactosidase fusion protein, which instead became evenly distributed in the cytoplasm. Chimeras containing deletion mutants of S6 with at least one single NLS or unmodified S6 accumulated in the nucleolus. Analysis of several constructs reveals the existence of a specific domain that is essential but not sufficient for nucleolar accumulation of S6. Images PMID:8590812

  18. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    PubMed

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  19. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  20. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-01-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  1. Protein oxidation, UVA and human DNA repair.

    PubMed

    Karran, Peter; Brem, Reto

    2016-08-01

    Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency - with particular reference to NER and skin cancer risk.

  2. The peroxisome proliferator-activated receptor α agonist, AZD4619, induces alanine aminotransferase-1 gene and protein expression in human, but not in rat hepatocytes: Correlation with serum ALT levels.

    PubMed

    Thulin, Petra; Bamberg, Krister; Buler, Marcin; Dahl, Björn; Glinghammar, Björn

    2016-09-01

    Alanine aminotransferase (ALT) in serum is the standard biomarker for liver injury. We have previously described a clinical trial with a novel selective peroxisome proliferator-activated receptor α (PPARα) agonist (AZD4619), which unexpectedly caused increased serum levels of ALT in treated individuals without any other evidence of liver injury. We pinpointed a plausible mechanism through which AZD4619 could increase serum ALT levels; namely through the PPARα-specific activation of the human ALT1 gene at the transcriptional level. In the present study, we present data from the preceding rat toxicity study, demonstrating that AZD4619 had no effect on rat serum ALT activity levels, and further experiments were performed to elucidate the mechanisms responsible for this species-related difference. Our results revealed that AZD4619 increased ALT1 protein expression in a dose-dependent manner in human, but not in rat primary hepatocytes. Cloning of the human and rat ALT1 promoters into luciferase vectors confirmed that AZD4619 induced only the human, but not the rat ALT1 gene promoter in a dose-dependent manner. In PPARα-GAL4 reporter gene assays, AZD4619 was >100-fold more potent on the human vs. rat PPARα levels, explaining the differences in induction of the ALT1 gene between the species at the concentration range tested. These data demonstrate the usefulness of the human and rat ALT1 reporter gene assays for testing future drug candidates at the preclinical stage. In drug discovery projects, these assays elucidate whether elevations in ALT levels observed in vivo or in the clinic are due to metabolic effects rather than a toxic event in the liver. PMID:27430334

  3. Human skeletal muscle protein breakdown during spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1997-01-01

    Human spaceflight is associated with a loss of body protein. Excretion of 3-methylhistidine (3-MH) in the urine is a useful measurement of myofibrillar protein breakdown. Bed rest, particularly with 6 degrees head-down tilt, is an accepted ground-based model for human spaceflight. The objectives of this report were to compare 3-MH excretion from two Life Sciences shuttle missions (duration 9.5 and 15 days, n = 9) and from 17 days of bed rest (n = 7) with 6 degrees head-down tilt. The bed rest study was designed to mimic an actual Life Sciences spaceflight and so incorporated an extensive battery of physiological tests focused on the musculoskeletal system. Results showed that nitrogen retention, based on excretion of nitrogen in the urine, was reduced du