Science.gov

Sample records for activated immune response

  1. Salicylic Acid Activates DNA Damage Responses to Potentiate Plant Immunity

    PubMed Central

    Yan, Shunping; Wang, Wei; Marqués, Jorge; Mohan, Rajinikanth; Saleh, Abdelaty; Durrant, Wendy E.; Song, Junqi; Dong, Xinnian

    2013-01-01

    SUMMARY DNA damage is normally detrimental to living organisms. Here we show that it can also serve as a signal to promote immune responses in plants. We found that the plant immune hormone salicylic acid (SA) can trigger DNA damage in the absence of a genotoxic agent. The DNA damage sensor proteins, RAD17 and ATR, are required for effective immune responses. These sensor proteins are negatively regulated by a key immune regulator SNI1 (suppressor of npr1-1, inducible 1), which we discovered as a missing subunit of the Structural Maintenance of Chromosome (SMC) 5/6 complex required for controlling DNA damage. Elevated DNA damage caused by the sni1 mutation or treatment with a DNA-damaging agent markedly enhances SA-mediated defense gene expression. Our study suggests that activation of DNA damage responses is an intrinsic component of the plant immune responses. PMID:24207055

  2. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  3. Activation and Regulation of DNA-Driven Immune Responses

    PubMed Central

    2015-01-01

    SUMMARY The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed. PMID:25926682

  4. Photodynamic therapy for cancer and activation of immune response

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  5. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    PubMed Central

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites. PMID:9321391

  6. Tumor escape from immune response: mechanisms and targets of activity.

    PubMed

    Gabrilovich, Dmitry; Pisarev, Vladimir

    2003-10-01

    Immune system plays an important role in control of tumor progression. Effective antitumor immune response depends on close interaction of several elements of immune system. They include antigen-presenting cells, different subsets of T cells, B cells and NK cells. However, tumor cells developed a number of mechanisms to escape recognition and elimination by immune system. In this review we will discuss these mechanisms and address possible approaches to correct them.

  7. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity

    PubMed Central

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  8. Discovery of stimulation-responsive immune enhancers with CRISPR activation.

    PubMed

    Simeonov, Dimitre R; Gowen, Benjamin G; Boontanrart, Mandy; Roth, Theodore L; Gagnon, John D; Mumbach, Maxwell R; Satpathy, Ansuman T; Lee, Youjin; Bray, Nicolas L; Chan, Alice Y; Lituiev, Dmytro S; Nguyen, Michelle L; Gate, Rachel E; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M; Mitros, Therese; Ray, Graham J; Curie, Gemma L; Naddaf, Nicki; Chu, Julia S; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R; Schumann, Kathrin; Daly, Mark J; Farh, Kyle K; Ansel, K Mark; Ye, Chun J; Greenleaf, William J; Anderson, Mark S; Bluestone, Jeffrey A; Chang, Howard Y; Corn, Jacob E; Marson, Alexander

    2017-09-07

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  9. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    NASA Astrophysics Data System (ADS)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  10. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni

    PubMed Central

    Radomska, Katarzyna A.; Vaezirad, Mahdi M.; Verstappen, Koen M.; Wösten, Marc M. S. M.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20–40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization. PMID:27760175

  11. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity.

    PubMed

    Kurata, Shoichiro; Ariki, Shigeru; Kawabata, Shun-ichiro

    2006-01-01

    In innate immunity, pattern recognition receptors discriminate between self- and infectious non-self-matter. Mammalian homologs of the Drosophila Toll protein, which are collectively referred to as Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS) and lipoproteins, whereas the Drosophila Toll protein does not act as a PAMP receptor, but rather binds to Spätzle, an endogenous peptide. In Drosophila, innate immune surveillance is mediated by members of the peptidoglycan recognition protein (PGRP) family, which recognize diverse bacteria-derived peptidoglycans and initiate appropriate immune reactions including the release of antimicrobial peptides and the activation of the prophenoloxidase cascade, the latter effecting localized wound healing, melanization, and microbial phagocytosis. In the horseshoe crab, LPS induces hemocyte exocytotic degranulation, resulting in the secretion of various defense molecules, such as coagulation factors, antimicrobial peptides, and lectins. Recent studies have demonstrated that the zymogen form of the serine protease factor C, a major granular component of hemocyte, also exists on the hemocyte surface and functions as a biosensor for LPS. The proteolytic activity of activated factor C initiates hemocyte exocytosis via a G protein mediated signal transduction pathway. Furthermore, it has become clear that an endogenous mechanism for the feedback amplification of the innate immune response exists and is dependent upon a granular component of the horseshoe crab hemocyte.

  12. Activation of the Acquired Immune Response Reduces Coupled Bone Formation in Response to a Periodontal Pathogen

    PubMed Central

    Behl, Yugal; Siquiera, Michelle; Ortiz, Javier; Desta, Tesfahun; Faibish, Dan; Graves, Dana T.

    2009-01-01

    Osteoimmunology involves the interaction of the immune system with skeletal elements. This interaction can lead to the formation of osseous lesions. To investigate how the acquired immune response could contribute to osteolytic lesions we injected the periodontal pathogen Porphyromonas gingivalis adjacent to calvarial bone with or without prior immunization against the bacterium. Activation of the acquired immune response increased osteoclastogenesis and decreased coupled bone formation. The latter was accompanied by an increase in nuclear translocation of the transcription factor FOXO1 in vivo, increased apoptosis of bone-lining cells and a decrease in bone lining cell density. Further studies were carried out with MC3T3 osteoblastic cells. Apoptosis and increased FOXO1 DNA binding activity were induced when a combination of cytokines was tested, IL-β, TNF-α, and IFN-γ. Knockdown of FOXO1 by siRNA significantly reduced cytokine stimulated apoptosis, cleaved caspase-3/7 activity and decreased mRNA levels of the proapoptotic genes, TNF-α, FADD, caspase-3, -8 and -9. These results indicate that activation of the acquired immunity by a periodontal pathogen reduces the coupling of bone formation and resorption. This may occur by enhancing bone lining cell apoptosis through a mechanism that involves increased FOXO1 activation. These studies give insight into inflammatory bone diseases such as periodontal disease and arthritis were the formation of lytic lesions occurs in conjunction with deficient bone formation and activation of an acquired immune response. PMID:19050291

  13. Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated CD40(+) monocyte differentiation.

    PubMed

    Dai, Jin; Fang, Pu; Saredy, Jason; Xi, Hang; Ramon, Cueto; Yang, William; Choi, Eric T; Ji, Yong; Mao, Wei; Yang, Xiaofeng; Wang, Hong

    2017-07-24

    Adaptive immunity is critical for disease progression and modulates T cell (TC) and antigen-presenting cell (APC) functions. Three signals were initially proposed for adaptive immune activation: signal 1 antigen recognition, signal 2 co-stimulation or co-inhibition, and signal 3 cytokine stimulation. In this article, we propose to term signal 2 as an immune checkpoint, which describes interactions of paired molecules leading to stimulation (stimulatory immune checkpoint) or inhibition (inhibitory immune checkpoint) of an immune response. We classify immune checkpoint into two categories: one-way immune checkpoint for forward signaling towards TC only, and two-way immune checkpoint for both forward and reverse signaling towards TC and APC, respectively. Recently, we and others provided evidence suggesting that metabolic risk factors (RF) activate innate and adaptive immunity, involving the induction of immune checkpoint molecules. We summarize these findings and suggest a novel theory, metabolism-associated danger signal (MADS) recognition, by which metabolic RF activate innate and adaptive immunity. We emphasize that MADS activates the reverse immune checkpoint which leads to APC inflammation in innate and adaptive immunity. Our recent evidence is shown that metabolic RF, such as uremic toxin or hyperhomocysteinemia, induced immune checkpoint molecule CD40 expression in monocytes (MC) and elevated serum soluble CD40 ligand (sCD40L) resulting in CD40(+) MC differentiation. We propose that CD40(+) MC is a novel pro-inflammatory MC subset and a reliable biomarker for chronic kidney disease severity. We summarize that CD40:CD40L immune checkpoint can induce TC and APC activation via forward stimulatory, reverse stimulatory, and TC contact-independent immune checkpoints. Finally, we modeled metabolic RF-induced two-way stimulatory immune checkpoint amplification and discussed potential signaling pathways including AP-1, NF-κB, NFAT, STAT, and DNA methylation and their

  14. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice.

    PubMed

    Singh, Divya; Tanwar, Himanshi; Jayashankar, Bindhya; Sharma, Jyoti; Murthy, Swetha; Chanda, Sudipta; Singh, Shashi Bala; Ganju, Lilly

    2017-04-02

    Quercetin, one of the most abundant of plant flavonoids, has been studied with a great deal of attention over the last several decades mainly for its properties in inflammation and allergy. In this study, we are reporting for the first time the in vivo immunostimulatory activity of quercetin in ovalbumin immunized Balb/c mice. Administration of quercetin (50mg/kg body weight) along with ovalbumin antigen showed increased ovalbumin specific serum IgG antibody titres in comparison to the control group (p<0.05). Quercetin administration not only showed predominance of Th2 immune response by increasing the IgG1 antibody titres, but also increased the infiltration of CD11c(+) dendritic cells in the mouse peritoneum and also increased LPS activated IL-1β and nitric oxide (NO) production by peritoneal macrophages. Expression of Tbx21, GATA-3 and Oct-2 proteins also enhanced in splenocytes of quercetin administered mice. Quercetin also did not cause any hemolysis in human RBCs. Overall, our findings strongly demonstrate the novel in vivo immunostimulatory and adjuvant potentials of quercetin.

  15. Danger signals activating the immune response after trauma.

    PubMed

    Hirsiger, Stefanie; Simmen, Hans-Peter; Werner, Clément M L; Wanner, Guido A; Rittirsch, Daniel

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immune response. With popularization of the "danger theory," numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1), interleukin-1α (IL-1α), and interleukin-33 (IL-33) as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  16. Immune responses to methamphetamine by active immunization with peptide-based, molecular adjuvant-containing vaccines.

    PubMed

    Duryee, Michael J; Bevins, Rick A; Reichel, Carmela M; Murray, Jennifer E; Dong, Yuxiang; Thiele, Geoffrey M; Sanderson, Sam D

    2009-05-14

    Vaccines to methamphetamine (meth) were designed by covalently attaching a meth hapten (METH) to peptide constructs that contained a conformationally biased, response-selective molecular adjuvant, YSFKPMPLaR (EP54). Rats immunized with EP54-containing meth vaccines generated serum antibody titers to authentic meth, an immune outcome that altered meth self-administration. Immunization increased meth self-administration suggesting pharmacokinetic antagonism. The ability of immune sera to bind a METH-modified target protein dramatically decreased during and shortly after the meth self-administration assay, suggesting effective sequestration of free meth. However, the binding ability of immune sera to the METH-modified target protein was recovered 34 days after meth-free clearance time.

  17. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  18. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    SciTech Connect

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses.

  19. Activation of cellular immune response in acute pancreatitis.

    PubMed Central

    Mora, A; Pérez-Mateo, M; Viedma, J A; Carballo, F; Sánchez-Payá, J; Liras, G

    1997-01-01

    BACKGROUND: Inflammatory mediators have recently been implicated as potential markers of severity in acute pancreatitis. AIMS: To determine the value of neopterin and polymorphonuclear (PMN) elastase as markers of activation of cellular immunity and as early predictors of disease severity. PATIENTS: Fifty two non-consecutive patients classified according to their clinical outcome into mild (n = 26) and severe pancreatitis (n = 26). METHODS: Neopterin in serum and the PMN elastase/A1PI complex in plasma were measured during the first three days of hospital stay. RESULTS: Within three days after the onset of acute pancreatitis, PMN elastase was significantly higher in the severe pancreatitis group. Patients with severe disease also showed significantly higher values of neopterin on days 1 and 2 but not on day 3 compared with patients with mild disease. There was a significant correlation between PMN elastase and neopterin values on days 1 and 2. PMN elastase on day 1 predicted disease severity with a sensitivity of 76.7% and a specificity of 91.6%. Neopterin did not surpass PMN elastase in the probability of predicting disease severity. CONCLUSIONS: These data show that activation of cellular immunity is implicated in the pathogenesis of acute pancreatitis and may be a main contributory factor to disease severity. Neopterin was not superior to PMN elastase in the prediction of severity. PMID:9245935

  20. Dermatophagoides pteronyssinus major allergen 1 activates the innate immune response of the fruit fly Drosophila melanogaster.

    PubMed

    Warmbold, Christine; Uliczka, Karin; Rus, Fiorentina; Suck, Roland; Petersen, Arnd; Silverman, Neal; Ulmer, Artur J; Heine, Holger; Roeder, Thomas

    2013-01-01

    Some allergens with relevant protease activity have the potential to directly interact with host structures. It remains to be elucidated whether this activity is relevant for developing their allergenic properties. The major goal of this study was to elucidate whether allergens with a strong protease activity directly interact with modules of the innate immune system, thereby inducing an immune response. We chose Drosophila melanogaster for our experiments to prevent the results from being influenced by the adaptive immune system and used the armamentarium of methods available for the fly to study the underlying mechanisms. We show that Dermatophagoides pteronyssinus major allergen 1 (Der p 1), the major allergen of the house dust mite, efficiently activates various facets of the Drosophila innate-immune system, including both epithelial and systemic responses. These responses depend on the immune deficiency (IMD) pathway via activation of the NF-κB transcription factor Relish. In addition, the major pathogen associated molecular pattern recognizing receptor of the IMD pathway, peptidoglycan recognition protein-LC, was necessary for this response. We showed that Der p 1, which has cysteine protease activity, cleaves the ectodomain of peptidoglycan recognition protein-LC and, thus, activates the IMD pathway to induce a profound immune response. We conclude that the innate immune response to this allergen-mediated proteolytic cleavage represents an ancient type of danger signaling that may be highly relevant for the primary allergenicity of compounds such as Der p 1.

  1. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles

    PubMed Central

    Varn, Frederick S.; Andrews, Erik H.; Mullins, David W.; Cheng, Chao

    2016-01-01

    Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer. PMID:26725977

  2. Immune responses to metastases

    SciTech Connect

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors.

  3. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  4. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    PubMed

    Côme, Christophe; Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H; Ollert, Markus W; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects.

  5. Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin

    PubMed Central

    Li, Wei; Yang, Jingyi; Zhang, Ejuan; Zhong, Maohua; Xiao, Yang; Yu, Jie; Zhou, Dihan; Cao, Yuan; Yang, Yi; Li, Yaoming; Yan, Huimin

    2016-01-01

    Bacterial flagellin is a unique pathogen-associated molecular pattern (PAMP), which can be recognized by surface localized Toll-like receptor 5 (TLR5) and the cytosolic NOD-like receptor (NLR) protein 4 (NLRC4) receptors. Activation of the TLR5 and/or NLRC4 signaling pathways by flagellin and the resulting immune responses play important roles in anti-bacterial immunity. However, it remains unclear how the dual activities of flagellin that activate the TLR5 and/or NLRC4 signaling pathways orchestrate the immune responses. In this study, we assessed the effects of flagellin and its mutants lacking the ability to activate TLR5 and NLRC4 alone or in combination on the adaptive immune responses against flagellin. Flagellin that was unable to activate NLRC4 induced a significantly higher antibody response than did wild-type flagellin. The increased antibody response could be eliminated when macrophages were depleted in vivo. The activation of NLRC4 by flagellin downregulated the flagellin-induced and TLR5-mediated immune responses against flagellin. PMID:25914934

  6. Dermatophytes Activate Skin Keratinocytes via Mitogen-Activated Protein Kinase Signaling and Induce Immune Responses

    PubMed Central

    Achterman, Rebecca R.; Moyes, David L.; Thavaraj, Selvam; Smith, Adam R.; Blair, Kris M.

    2015-01-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. PMID:25667269

  7. Dermatophytes activate skin keratinocytes via mitogen-activated protein kinase signaling and induce immune responses.

    PubMed

    Achterman, Rebecca R; Moyes, David L; Thavaraj, Selvam; Smith, Adam R; Blair, Kris M; White, Theodore C; Naglik, Julian R

    2015-04-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. Copyright © 2015, Achterman et al.

  8. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    PubMed

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  9. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine

    PubMed Central

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S.; Rowe, Dawne K.; Smith, Michaela J.; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H.; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K.; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie

    2014-01-01

    Background. Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. Methods. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. Results. We showed that YF-17D–induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D–neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Conclusion. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Trial registration. Registration is not required for observational studies. Funding. This study was funded by Canada’s Global Health Research Initiative, Defense

  10. Salidroside liposome formulation enhances the activity of dendritic cells and immune responses.

    PubMed

    Zhao, Xiaojuan; Lu, Yu; Tao, Yang; Huang, Yee; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Yu, Yun; Liu, Cui

    2013-12-01

    Salidroside, the important composition, of Rhodiola rosea L. has been reported to have various pharmacological properties. Liposome is known to be effective as drug carriers and immune adjuvant. Therefore, the aim of this study is to investigate immunological adjuvant activity of salidroside liposome. Here we reported the preparation, the effect on DCs in vitro and the immune response in vivo. The immunological adjuvant activity of salidroside liposome formulation was compared with that of salidroside and liposome. The result showed that salidroside liposome formulation not only could promote the maturation of DCs, the stimulation of DCs on MLR proliferation and the antigen presenting ability, but also induced the sustained cellular immune and humoral immune response. Overall, the results showed that salidroside liposome formulation had the potential to act as effective sustained release vaccine delivery systems. © 2013.

  11. [CONTEMPORARY CONCEPTION OF IMMUNE RESPONSE ACTIVATION MECHA- NISM BY CONJUGATED POLYSACCHARIDE VACCINES].

    PubMed

    Kolesnikov, A V; Kozyr, A V; Schemyakin, I G; Dyatlov, I A

    2015-01-01

    Vaccination remains the most effective method of control of spread of a whole range of infections of both viral and bacterial nature. Many bacterial pathogens (Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae) carry polysaccharide capsule on the surface, that is one of the elements of protection from host organism immune system. At the same time, vaccination with bacteria exopolysaccharides (EPS) ensures infection neutralization. Effectiveness of such vaccine prophylaxis is limited by age of the vaccinated, intensity and duration of the immunity, development of secondary immune response. EPS conjugation with protein antigens was known for a long time to ensure activation of T-cell immunity against EPS and formation of secondary immune response. However, detailed studies of mechanism of immunity modulation by a protein partner as part of a glycoconjugate has not been carried out. T-lymphocyte activation was traditionally thought to occur exclusively due to peptide presentation, that are products of processing of protein component of the conjugate. Recently, information, accumulated in the field of natural carbohydrate, glycolipid and glycoprotein antigen presentation to T-cells, has generated interest in studying mechanisms of cell immunity activation by conjugated vaccines. Progress in this field, as well as development of novel chemical and biochemical, including combinative technologies of synthesis and study of these molecules, opens new opportunities for detailed understanding of mechanism of action for conjugated vaccines and creation of glycoconjugates with increased effectiveness of protective action.

  12. Galectin-8 activates dendritic cells and stimulates antigen-specific immune response elicitation.

    PubMed

    Carabelli, Julieta; Quattrocchi, Valeria; D'Antuono, Alejandra; Zamorano, Patricia; Tribulatti, María Virginia; Campetella, Oscar

    2017-08-15

    Galectin-8 (Gal-8) is a mammalian β-galactoside-binding lectin, endowed with proinflammatory properties. Given its capacity to enhance antigen-specific immune responses in vivo, we investigated whether Gal-8 was also able to promote APC activation to sustain T cell activation after priming. Both endogenous [dendritic cells (DCs)] and bone marrow-derived DCs (BMDCs) treated with exogenous Gal-8 exhibited a mature phenotype characterized by increased MHC class II (MHCII), CD80, and CD86 surface expression. Moreover, Gal-8-treated BMDCs (Gal-8-BMDCs) stimulated antigen-specific T cells more efficiently than immature BMDCs (iBMDCs). Proinflammatory cytokines IL-3, IL-2, IL-6, TNF, MCP-1, and MCP-5, as well as growth factor G-CSF, were augmented in Gal-8-BMDC conditioned media, with IL-6 as the most prominent. Remarkably, BMDCs from Gal-8-deficient mice (Lgals8(-/-) BMDC) displayed reduced CD86 and IL-6 expression and an impaired ability to promote antigen-specific CD4 T cell activation. To test if Gal-8-induced activation correlates with the elicitation of an effective immune response, soluble Gal-8 was coadministrated with antigen during immunization of BALB/cJ mice in the experimental foot-and-mouth disease virus (FMDV) model. When a single dose of Gal-8 was added to the antigen formulation, an increased specific and neutralizing humoral response was developed, sufficient to enhance animal protection upon viral challenge. IL-6 and IFN-γ, as well as lymphoproliferative responses, were also incremented in Gal-8/antigen-immunized animals only at 48 h after immunization, suggesting that Gal-8 induces the elicitation of an inflammatory response at an early stage. Taking together, these findings argue in favor of the use of Gal-8 as an immune-stimulator molecule to enhance the adaptive immune response. © Society for Leukocyte Biology.

  13. Adenosine can thwart antitumor immune responses elicited by radiotherapy : Therapeutic strategies alleviating protumor ADO activities.

    PubMed

    Vaupel, Peter; Multhoff, Gabriele

    2016-05-01

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 (+) T and CD8 (+) T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters.

  14. Hypoxia activates IKK–NF-κB and the immune response in Drosophila melanogaster

    PubMed Central

    Bandarra, Daniel; Biddlestone, John; Mudie, Sharon; Muller, H. Arno; Rocha, Sonia

    2014-01-01

    Hypoxia, or low oxygen availability, is an important physiological and pathological stimulus for multicellular organisms. Molecularly, hypoxia activates a transcriptional programme directed at restoration of oxygen homoeostasis and cellular survival. In mammalian cells, hypoxia not only activates the HIF (hypoxia-inducible factor) family, but also additional transcription factors such as NF-κB (nuclear factor κB). Here we show that hypoxia activates the IKK–NF-κB [IκB (inhibitor of nuclear factor κB)–NF-κB] pathway and the immune response in Drosophila melanogaster. We show that NF-κB activation is required for organism survival in hypoxia. Finally, we identify a role for the tumour suppressor Cyld, as a negative regulator of NF-κB in response to hypoxia in Drosophila. The results indicate that hypoxia activation of the IKK–NF-κB pathway and the immune response is an important and evolutionary conserved response. PMID:24993778

  15. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation.

    PubMed

    Rose, Destanie R; Careaga, Milo; Van de Water, Judy; McAllister, Kim; Bauman, Melissa D; Ashwood, Paul

    2016-11-19

    Infection during pregnancy can lead to activation of the maternal immune system and has been associated with an increased risk of having an offspring later diagnosed with a neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD) or schizophrenia (SZ). Most maternal immune activation (MIA) studies to date have been in rodents and usually involve the use of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). However, since NDD are based on behavioral changes, a model of MIA in non-human primates could potentially provide data that helps illuminate complex behavioral and immune outputs in human NDD. In this study twenty-one pregnant rhesus macaques were either given three injections over 72 hours of poly I:C-LC, a double stranded RNA analog (viral mimic), or saline as a control. Injections were given near the end of the first trimester or near the end of the second trimester to determine if there were differences in immune output due to the timing of MIA.An additional three non-treated animals were used as controls. The offspring were followed until 4 years of age, with blood collected at the end of their first (year 1) and fourth (year 4) years to assess dynamic cellular immune function. Induced responses from peripheral immune cells were measured using multiplex assays.At one year of age, MIA exposed offspring displayed elevated production of innate inflammatory cytokines including: interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor (TNF)α at baseline and following stimulation. At four years of age, the MIA exposed offspring continued to display elevated IL-1β, and there was also a pattern of an increased production of T-cell helper type (TH)-2 cytokines, IL-4 and IL-13. Throughout this time period, the offspring of MIA treated dams exhibited altered behavioral phenotypes including increased stereotyped behaviors. During the first two years, stereotyped behaviors were associated with innate cytokine production

  16. German cockroach frass proteases modulate the innate immune response via activation of protease-activated receptor-2.

    PubMed

    Day, Scottie B; Zhou, Ping; Ledford, John R; Page, Kristen

    2010-01-01

    Allergen exposure can induce an early innate immune response; however, the mechanism by which this occurs has not been addressed. In this report, we demonstrate a role for the active serine proteases in German cockroach (GC) feces (frass) and protease-activated receptor (PAR)-2 in modulating the innate immune response. A single exposure of GC frass induced inflammatory cytokine production and cellular infiltration in the airways of mice. In comparison, exposure to protease-depleted GC frass resulted in diminution of inflammatory cytokine production and airway neutrophilia, but had no effect on macrophage infiltration. Selective activation of PAR-2 confirmed that PAR-2 was sufficient to induce airway inflammation. Exposure of GC frass to PAR-2-deficient mice led to decreased immune responses to GC frass compared to wild-type mice. Using the macrophage as an early marker of the innate immune response, we found that GC frass induced significant release of tumor necrosis factor-alpha from primary alveolar macrophages. This effect was dependent on the intrinsic proteases in GC frass. We confirmed GC frass-induced cytokine expression was mediated by activation of NF-kappaB and ERK in a macrophage cell line. Collectively, these data suggest a central role for GC frass protease-PAR-2 activation in regulating the innate immune response through the activation of alveolar macrophages. Understanding the potential role of protease-PAR-2 activation as a danger signal or adjuvant could yield attractive therapeutic targets.

  17. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    PubMed

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-02

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  18. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    PubMed

    Yu, Jong W; Hoffman, Sandy; Beal, Allison M; Dykon, Angela; Ringenberg, Michael A; Hughes, Anna C; Dare, Lauren; Anderson, Amber D; Finger, Joshua; Kasparcova, Viera; Rickard, David; Berger, Scott B; Ramanjulu, Joshi; Emery, John G; Gough, Peter J; Bertin, John; Foley, Kevin P

    2015-01-01

    CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  19. Activation and inhibition of adaptive immune response mediated by mast cells.

    PubMed

    Toniato, E; Frydas, I; Robuffo, I; Ronconi, G; Caraffa, Al; Kritas, S K; Conti, P

    Adaptive immune response plays an important role against bacteria and parasites, a reaction that also involves mast cell (MC) activation which participates in innate and adaptive immunity. In allergic reactions there is a TH2 immune response with generation of allergen-specific IgE antibodies. In MCs, IgE cross-link FcRI high affinity receptor and activate tyrosine kinase proteins, leading to stimulation of NF-κB and AP-1 resulting in the release of a number of cytokines/chemokines and other compounds. Through their proteolytic pathways, MCs may process the antigen for presentation to CD4+ cells which release TH2 cytokines and growth factors, which play an important role in asthma, allergy, anaphylaxis and inflammation. Thus, MCs can contribute to adaptive immunity. MCs may also be activated though the TLR-dependent pathway which is controlled by several proteins including myeloid differentiation factor 88 (MyD88) which can be inhibited by interleukin (IL)-37. Here, we describe the participation of MCs in adaptive immunity and inflammation, an effect that may be inhibited by IL-37.

  20. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response

    PubMed Central

    Mavrogiorgos, Nikolaos; Mekasha, Samrawit; Yang, Yibin; Kelliher, Michelle A.; Ingalls, Robin R.

    2013-01-01

    Nucleotide-binding oligomerization domain (NOD)-1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. In this study we examined the ability of NOD1 and NOD2 to recognize N. gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. We found that gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2 (RIPK2). We identified a number of cytokines and chemokines that were differentially expressed in wild type vs. NOD2 deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling upregulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. These data demonstrate that NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection. PMID:23884094

  1. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses.

    PubMed

    von Burg, Nicole; Chappaz, Stéphane; Baerenwaldt, Anne; Horvath, Edit; Bose Dasgupta, Somdeb; Ashok, Devika; Pieters, Jean; Tacchini-Cottier, Fabienne; Rolink, Antonius; Acha-Orbea, Hans; Finke, Daniela

    2014-09-02

    Group 3 innate lymphoid cells (ILC3s) have emerged as important cellular players in tissue repair and innate immunity. Whether these cells meaningfully regulate adaptive immune responses upon activation has yet to be explored. Here we show that upon IL-1β stimulation, peripheral ILC3s become activated, secrete cytokines, up-regulate surface MHC class II molecules, and express costimulatory molecules. ILC3s can take up latex beads, process protein antigen, and consequently prime CD4(+) T-cell responses in vitro. The cognate interaction of ILC3s and CD4(+) T cells leads to T-cell proliferation both in vitro and in vivo, whereas its disruption impairs specific T-cell and T-dependent B-cell responses in vivo. In addition, the ILC3-CD4(+) T-cell interaction is bidirectional and leads to the activation of ILC3s. Taken together, our data reveal a novel activation-dependent function of peripheral ILC3s in eliciting cognate CD4(+) T-cell immune responses.

  2. Activated group 3 innate lymphoid cells promote T-cell–mediated immune responses

    PubMed Central

    von Burg, Nicole; Chappaz, Stéphane; Baerenwaldt, Anne; Horvath, Edit; Bose Dasgupta, Somdeb; Ashok, Devika; Pieters, Jean; Tacchini-Cottier, Fabienne; Rolink, Antonius; Acha-Orbea, Hans; Finke, Daniela

    2014-01-01

    Group 3 innate lymphoid cells (ILC3s) have emerged as important cellular players in tissue repair and innate immunity. Whether these cells meaningfully regulate adaptive immune responses upon activation has yet to be explored. Here we show that upon IL-1β stimulation, peripheral ILC3s become activated, secrete cytokines, up-regulate surface MHC class II molecules, and express costimulatory molecules. ILC3s can take up latex beads, process protein antigen, and consequently prime CD4+ T-cell responses in vitro. The cognate interaction of ILC3s and CD4+ T cells leads to T-cell proliferation both in vitro and in vivo, whereas its disruption impairs specific T-cell and T-dependent B-cell responses in vivo. In addition, the ILC3–CD4+ T-cell interaction is bidirectional and leads to the activation of ILC3s. Taken together, our data reveal a novel activation-dependent function of peripheral ILC3s in eliciting cognate CD4+ T-cell immune responses. PMID:25136120

  3. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori.

    PubMed

    Liu, Wei; Liu, Jiabin; Lu, Yahong; Gong, Yongchang; Zhu, Min; Chen, Fei; Liang, Zi; Zhu, Liyuan; Kuang, Sulan; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2015-06-01

    The JAK/STAT, Toll, Imd, and RNAi pathways are the major signaling pathways associated with insect innate immunity. To explore the different immune signaling pathways triggered in response to pathogenic micro-organism infections in the silkworm, Bombyx mori, the expression levels of the signal transducer and activator of transcription (BmSTAT), spatzle-1 (Bmspz-1), peptidoglycan-recognition protein LB (BmPGRP-LB), peptidoglycan-recognition protein LE (BmPGRP-LE), argonaute 2 (Bmago2), and dicer-2 (Bmdcr2) genes after challenge with Escherichia coli (E. coli), Serratiamarcescens (Sm), Bacillus bombyseptieus (Bab), Beauveriabassiana (Beb), nucleopolyhedrovirus (BmNPV), cypovirus (BmCPV), bidensovirus (BmBDV), or Nosemabombycis (Nb) were determined using real-time PCR. We found that the JAK/STAT pathway could be activated by challenge with BmNPV and BmBDV, the Toll pathway could be most robustly induced by challenge with Beb, the Imd pathway was mainly activated in response to infection by E. coli and Sm, and the RNAi pathway was not activated by viral infection, but could be triggered by some bacterial infections. These findings yield insights into the immune signaling pathways activated in response to different pathogenic micro-organisms in the silkworm.

  4. mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections

    PubMed Central

    Tu, Huaijun; Guo, Wei; Wang, Shixuan; Xue, Ting; Yang, Fei; Zhang, Xiaoyan; Yang, Yazhi; Wan, Qian; Shi, Zhexin; Zhan, Xulong

    2016-01-01

    The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy. PMID:27746591

  5. Pathogen recognition and activation of the innate immune response in zebrafish.

    PubMed

    van der Vaart, Michiel; Spaink, Herman P; Meijer, Annemarie H

    2012-01-01

    The zebrafish has proven itself as an excellent model to study vertebrate innate immunity. It presents us with possibilities for in vivo imaging of host-pathogen interactions which are unparalleled in mammalian model systems. In addition, its suitability for genetic approaches is providing new insights on the mechanisms underlying the innate immune response. Here, we review the pattern recognition receptors that identify invading microbes, as well as the innate immune effector mechanisms that they activate in zebrafish embryos. We compare the current knowledge about these processes in mammalian models and zebrafish and discuss recent studies using zebrafish infection models that have advanced our general understanding of the innate immune system. Furthermore, we use transcriptome analysis of zebrafish infected with E. tarda, S. typhimurium, and M. marinum to visualize the gene expression profiles resulting from these infections. Our data illustrate that the two acute disease-causing pathogens, E. tarda and S. typhimurium, elicit a highly similar proinflammatory gene induction profile, while the chronic disease-causing pathogen, M. marinum, induces a weaker and delayed innate immune response.

  6. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  7. Immune Responses in Neonates

    PubMed Central

    Basha, Saleem; Surendran, Naveen; Pichichero, Michael

    2015-01-01

    Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents. PMID:25088080

  8. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria.

    PubMed

    Han, Pengfei; Han, Jiao; Fan, Jiqiao; Zhang, Min; Ma, Enbo; Li, Sheng; Fan, Renjun; Zhang, Jianzhen

    2017-02-27

    20-hydroxyecdysone (20E) has been implicated in regulating the immune response in insects. Conflicting conclusions on 20E regulating immunity have been reported in model holometabolous species. However, in hemimetabolous insects, the role of 20E as an immune-suppressor or activator and the mechanism remains unclear. The migratory locust Locusta migratoria is a representative member of hemimetabolous insects. Here, digital gene expression (DGE) profiles of Locusta migratoria treated with 20E were analyzed. Pattern recognition receptors [peptidoglycan recognition protein (PGRP-SA), PGRP-LE, and gram-negative binding protein (GNBP3)] and antimicrobial peptides (defensin, diptericin, and i-type lysozyme) were significantly induced by 20E in fat body. These immune-related genes significantly increased their mRNA levels during the high-20E stage. Antibacterial activities in plasma were enhanced after 20E injection and during the high-20E developmental stage. Conversely, when 20E signal was suppressed by RNAi of EcR (ecdysone receptor), the expression levels of these genes and antibacterial activities failed to be increased by 20E injection and during the high-20E developmental stage, and the mortality increased after being infected by entomogenous fungus. The knockdown of PGRP-SA inhibited the expression level of defensin, diptericin and i-type lysozyme in fat body and reduced antibacterial activities in plasma. 20E injection could not significantly induce the expression of antimicrobial peptides after RNAi of PGRP-SA. These results demonstrated that 20E enhanced the immune response by activating PGRP-SA in L. migratoria.

  9. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation.

    PubMed

    Bergsbaken, Tessa; Cookson, Brad T

    2009-11-01

    Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.

  10. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors

    PubMed Central

    Tietz, Alexandra; Rahbari, Nuh N.; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A.; Lipson, Kenneth E.; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E.

    2015-01-01

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  11. Effector and Suppressor Circuits of the Immune Response are Activated in vivo by Different Mechanisms

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroyuki; Kripke, Margaret L.

    1987-06-01

    The application of fluorescein isothiocyanate (FITC) onto the skin of mice induces a contact hypersensitivity immune response. Lymph nodes draining the skin painted with FITC contain fluorescent cells that induce contact hypersensitivity to FITC when injected into normal mice. The antigen-presenting cells responsible for activating the effector pathway of the contact hypersensitivity response express Ia histocompatibility determinants and are resistant to inactivation with γ -radiation. Exposing the skin to low doses of UV radiation (280-320 nm) before the application of FITC suppresses the contact hypersensitivity response to FITC. Cells present in the draining lymph nodes of these mice induce suppressor T lymphocytes when injected into normal recipients. The inducer cells in the draining lymph nodes are Thy 1+,Ia- and are inactivated by γ -radiation. These studies demonstrate that different mechanisms are involved in the in vivo activation of effector and suppressor immune responses, and they suggest that the mode of initial antigen presentation determines which immunologic circuit will be activated in response to a contact-sensitizing antigen.

  12. Effector and suppressor circuits of the immune response are activated in vivo by different mechanisms

    SciTech Connect

    Okamoto, H.; Kripke, M.L.

    1987-06-01

    The application of fluorescein isothiocyanate (FITC) onto the skin of mice induces a contact hypersensitivity immune response. Lymph nodes draining the skin painted with FITC contain fluorescent cells that induce contact hypersensitivity to FITC when injected into normal mice. The antigen-presenting cells responsible for activating the effector pathway of the contact hypersensitivity response express Ia histocompatibility determinants and are resistant to inactivation with gamma-radiation. Exposing the skin to low doses of UV radiation (280-320 nm) before the application of FITC suppresses the contact hypersensitivity response to FITC. Cells present in the draining lymph nodes of these mice induce suppressor T lymphocytes when injected into normal recipients. The inducer cells in the draining lymph nodes are Thy 1+, Ia- and are inactivated by gamma-radiation. These studies demonstrate that different mechanisms are involved in the in vivo activation of effector and suppressor immune responses, and they suggest that the mode of initial antigen presentation determines which immunologic circuit will be activated in response to a contact-sensitizing antigen.

  13. Allelic Dependent Expression of an Activating Fc receptor on B cells Enhances Humoral Immune Responses

    PubMed Central

    Li, Xinrui; Wu, Jianming; Ptacek, Travis; Redden, David T; Brown, Elizabeth E; Alarcón, Graciela S; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D.; Kaslow, Richard A; Kimberly, Robert P; Edberg, Jeffrey C

    2014-01-01

    B cells are pivotal regulators of acquired immune responses and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can significantly alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides IgG-mediated negative modulation through a tyrosine-based inhibition motif which down-regulates B cell receptor initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. Here we report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and in B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax® vaccination in a human Anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of uni-directional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell targeted antibody-based therapy. PMID:24353158

  14. Allelic-dependent expression of an activating Fc receptor on B cells enhances humoral immune responses.

    PubMed

    Li, Xinrui; Wu, Jianming; Ptacek, Travis; Redden, David T; Brown, Elizabeth E; Alarcón, Graciela S; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D; Kaslow, Richard A; Kimberly, Robert P; Edberg, Jeffrey C

    2013-12-18

    B cells are pivotal regulators of acquired immune responses, and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can substantially alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides immunoglobulin G (IgG)-mediated negative modulation through a tyrosine-based inhibition motif, which down-regulates B cell receptor-initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. We report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax vaccination in a human anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of unidirectional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell-targeted antibody-based therapy.

  15. Radio-responsive tumors exhibit greater intratumoral immune activity than nonresponsive tumors.

    PubMed

    Gerber, Scott A; Lim, Joanne Y H; Connolly, Kelli A; Sedlacek, Abigail L; Barlow, Margaret L; Murphy, Shawn P; Egilmez, Nejat K; Lord, Edith M

    2014-05-15

    Radiation therapy (RT) continues to be a cornerstone in the treatment for many cancers. Unfortunately, not all individuals respond effectively to RT resulting clinically in two groups consisting of nonresponders (progressive disease) and responders (tumor control/cure). The mechanisms that govern the outcome of radiotherapy are poorly understood. Interestingly, a new paradigm has emerged demonstrating that the immune system mediates many of the antitumor effects of RT. Therefore, we hypothesized that the immune response following RT may dictate the efficacy of treatment. To examine this, we developed a tumor model that mirrors this clinically relevant phenomenon in which mice bearing Colon38, a colon adenocarcinoma, were treated locally with 15Gy RT resulting in both nonresponders and responders. More importantly, we were able to distinguish responders from nonresponders as early as 4 days post-RT allowing for the unique opportunity to identify critical events that ultimately determined the effectiveness of therapy. Intratumoral immune cells and interferon-gamma were increased in responsive tumors and licensed CD8 T cells to exhibit lytic activity against tumor cells, a response that was diminished in tumors refractory to RT. Combinatorial treatment with RT and the immunomodulatory cytokine IL-12 resulted in complete remission of cancer in 100% of cases compared to a cure rate of only 12% with RT alone. Similar data were obtained when IL-12 was delivered by microspheres. Therefore, the efficacy of RT may depend on the strength of the immune response induced after radiotherapy. Additionally, immunotherapy that further stimulates the immune cells may enhance the effectiveness of RT. © 2013 UICC.

  16. Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways

    PubMed Central

    Walton, Kristen L. W.; Holt, Lisa; Sartor, R. Balfour

    2009-01-01

    Myofibroblasts (MF) play an important role in intestinal wound healing. A compromised epithelial barrier exposes intestinal subepithelial MF to luminal bacterial products. However, responses of murine intestinal MF to bacterial adjuvants and potential roles of intestinal MF in innate immune responses are not well defined. Our aims in this study were to determine innate immune responses and intracellular signaling pathways of intestinal MF exposed to LPS, a prototypic Toll-like receptor (TLR) ligand. Expression of TLR4 in primary murine intestinal MF cultures was confirmed by RT-PCR and Western blotting. LPS-induced secretion of prostaglandin E2 (PGE2), interleukin (IL)-6, and keratinocyte-derived chemokines (KC) was measured by ELISA. Intracellular responses to LPS were assessed by Western blotting for NF-κB p65, Iκ-Bα, Akt, p38 MAP kinase, and cyclooxygenase-2 (COX-2). LPS induced rapid phosphorylation of NF-κB p65, Akt, and p38 MAPK and degradation of Iκ-Bα. LPS induced expression of COX-2 and secretion of PGE2 (2.0 ± 0.8-fold induction vs. unstimulated cells), IL-6 (6.6 ± 0.4-fold induction), and KC (12.5 ± 0.4-fold induction). Inhibition of phosphoinositide-3 (PI3)-kinase, p38 MAPK, or NF-κB pathways reduced LPS-induced PGE2, IL-6, and KC secretion. These studies show that primary murine intestinal MF respond to LPS, evidenced by activation of NF-κB, PI3-kinase, and MAPK signaling pathways and secretion of proinflammatory molecules. Inhibition of these pathways attenuated LPS-dependent PGE2, IL-6, and KC production, indicating that LPS activates MF by multiple signaling pathways. These data support the hypothesis that MF are a component of the innate immune system and may exert paracrine effects on adjacent epithelial and immune cells by responding to luminal bacterial adjuvants. PMID:19136385

  17. Active Chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses.

    PubMed

    Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing

    2008-09-14

    To investigate the potential role of active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 x 10(5) cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-gamma production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, gammadelta T and NK cells. Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer-bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-gamma producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and gammadeltaT cells, indicating the role of ACML-55 in activation of innate lymphocytes. Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses.

  18. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    PubMed Central

    Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing

    2008-01-01

    AIM: To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. METHODS: In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 × 105 cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-γ production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, γδ T and NK cells. RESULTS: Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer -bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and γδT cells, indicating the role of ACML-55 in activation of innate lymphocytes. CONCLUSION: Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses. PMID:18785279

  19. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    PubMed Central

    Kox, Matthijs; van Eijk, Lucas T.; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C. G. J.; van der Hoeven, Johannes G.; Pickkers, Peter

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases. PMID:24799686

  20. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  1. Effects of Risperidone and Paliperidone Pretreatment on Locomotor Response Following Prenatal Immune Activation

    PubMed Central

    Richtand, Neil M.; Ahlbrand, Rebecca; Horn, Paul; Stanford, Kevin; Bronson, Stefanie L.; McNamara, Robert K.

    2011-01-01

    Aim Limited data are available regarding pharmacological characteristics of effective interventions for psychosis prevention. Enrollment challenges in psychosis prevention trials impede screening diverse interventions for efficacy. Relevant animal models could help circumvent this barrier. We previously described prevention with risperidone of abnormal behavior following neonatal hippocampal lesion. We aimed to extend those findings evaluating risperidone and paliperidone following prenatal immune activation, a developmental model of a schizophrenia risk factor. We evaluated a later developmental time point to determine persistent effects of drug treatment. Methods Pregnant Sprague-Dawley rats were injected with poly I:C or saline on gestational day 14. Offspring of poly I:C and saline treated dams received risperidone (0.45 mg/kg/d), paliperidone (0.05 mg/kg/d), or vehicle from postnatal days 35 to 70. Locomotor responses to novelty, saline injection, and amphetamine (1 and 5 mg/kg) were determined at three months, i.e., 21 days following antipsychotic discontinuation. Results Risperidone and paliperidone had persistent effects on behavioral response to amphetamine (1 mg/kg) at 3 months, ameliorating the impact of prenatal immune activation on offspring of poly I:C-treated dams. Risperidone, but not paliperidone, also exerted persistent effects in offspring of saline-treated dams on locomotor response to saline and amphetamine (5 mg/kg) injection. Conclusions Risperidone and paliperidone pretreatment of poly I:C offspring during peri-pubertal development stabilized response to amphetamine exposure persisting into early adulthood. Prenatal immune activation provides a model for evaluating effects of an environmental risk factor for schizophrenia, and has potential utility for identifying pharmacological approaches to early intervention. PMID:21440257

  2. A long noncoding RNA induced by TLRs mediates both activation and repression of immune response genes

    PubMed Central

    Carpenter, Susan; Atianand, Maninjay; Aiello, Daniel; Ricci, Emiliano; Gandhi, Pallavi; Hall, Lisa L.; Byron, Meg; Monks, Brian; Henry-Bezy, Meabh; O’Neill, Luke A.J; Lawrence, Jeanne B.; Moore, Melissa J.; Caffrey, Daniel R.; Fitzgerald, Katherine A.

    2015-01-01

    An inducible program of inflammatory gene expression is central to anti-microbial defenses. Signal-dependent activation of transcription factors, transcriptional co-regulators and chromatin modifying factors collaborate to control this response. Here we identify a long noncoding RNA that acts as a key regulator of this inflammatory response. Germline-encoded receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2 mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad acting regulatory component of the circuit that controls the inflammatory response. PMID:23907535

  3. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    PubMed Central

    Simón-Vázquez, Rosana; Lozano-Fernández, Tamara; Dávila-Grana, Angela; González-Fernández, Africa

    2016-01-01

    Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. PMID:27695324

  4. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium.

    PubMed

    Shirron, Natali; Yaron, Sima

    2011-04-26

    The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.

  5. Cysteine protease cathepsin X modulates immune response via activation of β2 integrins

    PubMed Central

    Obermajer, Nataša; Repnik, Urška; Jevnikar, Zala; Turk, Boris; Kreft, Marko; Kos, Janko

    2008-01-01

    Cathepsin X is a lysosomal, cysteine dependent carboxypeptidase. Its expression is restricted to cells of the immune system, suggesting a function related to the processes of inflammatory and immune responses. It has been shown to stimulate macrophage antigen-1 (Mac-1) receptor-dependent adhesion and phagocytosis via interaction with integrin β2 subunit. Here its potential role in regulating lymphocyte proliferation via Mac-1 and the other β2 integrin receptor, lymphocyte function-associated antigen-1 (LFA-1) has been investigated. Cathepsin X has been shown to suppress proliferation of human peripheral blood mononuclear cells, by activation of Mac-1, known as a suppressive factor for lymphocyte proliferation. On the other hand, co-localization of cathepsin X and LFA-1 supports the role of cathepsin X in regulating LFA-1 activity, which enhances lymphocyte proliferation. As shown by fluorescence resonance energy transfer, using U-937 and Jurkat cells transfected with αL-mCFP and β2-mYFP, recombinant cathepsin X directly activates LFA-1. The activation was confirmed by increased binding of monoclonal antibody 24, recognizing active LFA-1. We demonstrate that cathepsin X is involved in the regulation of two β2 integrin receptors, LFA-1 and Mac-1, which exhibit opposing roles in lymphocyte activation. PMID:18194276

  6. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice

    PubMed Central

    Chowdhury, Sumaiya; Polak, Natasa

    2017-01-01

    Fibroblast activation protein alpha (FAP) is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity. PMID:28158223

  7. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila.

    PubMed

    Petersen, Andrew J; Rimkus, Stacey A; Wassarman, David A

    2012-03-13

    To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.

  8. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria

    PubMed Central

    Capuccini, Barbara; Lin, Jingwen; Talavera-López, Carlos; Khan, Shahid M.; Sodenkamp, Jan; Spaccapelo, Roberta; Langhorne, Jean

    2016-01-01

    Cerebral malaria is a pathology involving inflammation in the brain. There are many immune cell types activated during this process, but there is little information on the response of microglia, in this severe complication. We examined microglia by genome wide transcriptomic analysis in a model of experimental cerebral malaria (ECM), in which C57BL/6 mice are infected with Plasmodium berghei ANKA. Thousands of transcripts were differentially expressed in microglia at two different time points during infection. Proliferation of microglia was a dominant feature before the onset of ECM, and supporting this, we observed an increase in numbers of these cells in the brain. When cerebral malaria symptoms were manifest, genes involved in immune responses and chemokine production were upregulated, which were possibly driven by Type I Interferon. Consistent with this hypothesis, in vitro culture of a microglial cell line with Interferon-β, but not infected red blood cells, resulted in production of several of the chemokines shown to be upregulated in the gene expression analysis. It appears that these responses are associated with ECM, as microglia from mice infected with a mutant P. berghei parasite (ΔDPAP3), which does not cause ECM, did not show the same level of activation or proliferation. PMID:27991544

  9. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria.

    PubMed

    Capuccini, Barbara; Lin, Jingwen; Talavera-López, Carlos; Khan, Shahid M; Sodenkamp, Jan; Spaccapelo, Roberta; Langhorne, Jean

    2016-12-19

    Cerebral malaria is a pathology involving inflammation in the brain. There are many immune cell types activated during this process, but there is little information on the response of microglia, in this severe complication. We examined microglia by genome wide transcriptomic analysis in a model of experimental cerebral malaria (ECM), in which C57BL/6 mice are infected with Plasmodium berghei ANKA. Thousands of transcripts were differentially expressed in microglia at two different time points during infection. Proliferation of microglia was a dominant feature before the onset of ECM, and supporting this, we observed an increase in numbers of these cells in the brain. When cerebral malaria symptoms were manifest, genes involved in immune responses and chemokine production were upregulated, which were possibly driven by Type I Interferon. Consistent with this hypothesis, in vitro culture of a microglial cell line with Interferon-β, but not infected red blood cells, resulted in production of several of the chemokines shown to be upregulated in the gene expression analysis. It appears that these responses are associated with ECM, as microglia from mice infected with a mutant P. berghei parasite (ΔDPAP3), which does not cause ECM, did not show the same level of activation or proliferation.

  10. Linking Transcriptional Changes over Time in Stimulated Dendritic Cells to Identify Gene Networks Activated during the Innate Immune Response

    PubMed Central

    Patil, Ashwini; Kumagai, Yutaro; Liang, Kuo-ching; Suzuki, Yutaka; Nakai, Kenta

    2013-01-01

    The innate immune response is primarily mediated by the Toll-like receptors functioning through the MyD88-dependent and TRIF-dependent pathways. Despite being widely studied, it is not yet completely understood and systems-level analyses have been lacking. In this study, we identified a high-probability network of genes activated during the innate immune response using a novel approach to analyze time-course gene expression profiles of activated immune cells in combination with a large gene regulatory and protein-protein interaction network. We classified the immune response into three consecutive time-dependent stages and identified the most probable paths between genes showing a significant change in expression at each stage. The resultant network contained several novel and known regulators of the innate immune response, many of which did not show any observable change in expression at the sampled time points. The response network shows the dominance of genes from specific functional classes during different stages of the immune response. It also suggests a role for the protein phosphatase 2a catalytic subunit α in the regulation of the immunoproteasome during the late phase of the response. In order to clarify the differences between the MyD88-dependent and TRIF-dependent pathways in the innate immune response, time-course gene expression profiles from MyD88-knockout and TRIF-knockout dendritic cells were analyzed. Their response networks suggest the dominance of the MyD88-dependent pathway in the innate immune response, and an association of the circadian regulators and immunoproteasomal degradation with the TRIF-dependent pathway. The response network presented here provides the most probable associations between genes expressed in the early and the late phases of the innate immune response, while taking into account the intermediate regulators. We propose that the method described here can also be used in the identification of time-dependent gene sub

  11. Linking transcriptional changes over time in stimulated dendritic cells to identify gene networks activated during the innate immune response.

    PubMed

    Patil, Ashwini; Kumagai, Yutaro; Liang, Kuo-Ching; Suzuki, Yutaka; Nakai, Kenta

    2013-01-01

    The innate immune response is primarily mediated by the Toll-like receptors functioning through the MyD88-dependent and TRIF-dependent pathways. Despite being widely studied, it is not yet completely understood and systems-level analyses have been lacking. In this study, we identified a high-probability network of genes activated during the innate immune response using a novel approach to analyze time-course gene expression profiles of activated immune cells in combination with a large gene regulatory and protein-protein interaction network. We classified the immune response into three consecutive time-dependent stages and identified the most probable paths between genes showing a significant change in expression at each stage. The resultant network contained several novel and known regulators of the innate immune response, many of which did not show any observable change in expression at the sampled time points. The response network shows the dominance of genes from specific functional classes during different stages of the immune response. It also suggests a role for the protein phosphatase 2a catalytic subunit α in the regulation of the immunoproteasome during the late phase of the response. In order to clarify the differences between the MyD88-dependent and TRIF-dependent pathways in the innate immune response, time-course gene expression profiles from MyD88-knockout and TRIF-knockout dendritic cells were analyzed. Their response networks suggest the dominance of the MyD88-dependent pathway in the innate immune response, and an association of the circadian regulators and immunoproteasomal degradation with the TRIF-dependent pathway. The response network presented here provides the most probable associations between genes expressed in the early and the late phases of the innate immune response, while taking into account the intermediate regulators. We propose that the method described here can also be used in the identification of time-dependent gene sub

  12. Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine.

    PubMed

    Kantor, J; Irvine, K; Abrams, S; Kaufman, H; DiPietro, J; Schlom, J

    1992-07-15

    Human carcinoembryonic antigen (CEA) is a 180-kd glycoprotein expressed in human colorectal, gastric, pancreatic, breast, and non-small-cell lung carcinomas. Previous studies have demonstrated enhanced immune responses to other antigens presented with vaccinia virus proteins via a recombinant vaccinia virus construct. In addition, we have developed a recombinant CEA-vaccinia virus construct, designated rV(WR)-CEA, and have demonstrated humoral anti-CEA responses in mice after immunization with that virus. The goals of this study were (a) to construct a recombinant CEA-vaccinia vaccine in a less virulent vaccinia strain that is potentially safe and effective for treatment of patients whose tumors express CEA and (b) to evaluate the ability of the recombinant CEA-vaccinia vaccine to prevent and reverse tumor growth in mice and to elicit cell-mediated and humoral anti-CEA immune responses. Using the New York City strain of vaccinia virus, which is used in smallpox vaccination and is more attenuated for humans than rV(WR), we derived a recombinant CEA-vaccinia construct, designated rV(NYC)-CEA. The ability of this construct to induce antitumor immunity was evaluated in mice receiving subcutaneous injections of murine colon adenocarcinoma cells expressing the human CEA gene. Administration of rV(NYC)-CEA in mice induced strong anti-CEA antibody responses, as well as CEA-specific cell-mediated responses, including delayed-type hypersensitivity, lymphoproliferative, and cytotoxic responses. Vaccination of mice with the rV(NYC)-CEA rendered them resistant to the growth of subsequently transplanted CEA-expressing tumors. Moreover, when mice were vaccinated 7 days after tumor cell injection, tumor growth was either greatly reduced or eliminated. No toxic effects were observed in any of the mice. These studies demonstrate that antitumor activity can be induced with the use of a recombinant CEA-vaccinia virus construct derived from an attenuated vaccinia strain, and they

  13. Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease.

    PubMed

    Zevallos, Victor F; Ellis, H Julia; Suligoj, Tanja; Herencia, L Irene; Ciclitira, Paul J

    2012-08-01

    Celiac disease is an enteropathy triggered by dietary gluten found in wheat, barley, and rye. The current treatment is a strict gluten-free diet. Quinoa is a highly nutritive plant from the Andes, with low concentrations of prolamins, that has been recommended as part of a gluten-free diet; however, few experimental data support this recommendation. We aimed to determine the amount of celiac-toxic prolamin epitopes in quinoa cultivars from different regions of the Andes and the ability of these epitopes to activate immune responses in patients with celiac disease. The concentration of celiac-toxic epitopes was measured by using murine monoclonal antibodies against gliadin and high-molecular-weight glutenin subunits. Immune response was assessed by proliferation assays of celiac small intestinal T cells/interferon-γ (IFN-γ) and production of IFN-γ/IL-15 after organ culture of celiac duodenal biopsy samples. Fifteen quinoa cultivars were tested: 4 cultivars had quantifiable concentrations of celiac-toxic epitopes, but they were below the maximum permitted for a gluten-free food. Cultivars Ayacuchana and Pasankalla stimulated T cell lines at levels similar to those for gliadin and caused secretion of cytokines from cultured biopsy samples at levels comparable with those for gliadin. Most quinoa cultivars do not possess quantifiable amounts of celiac-toxic epitopes. However, 2 cultivars had celiac-toxic epitopes that could activate the adaptive and innate immune responses in some patients with celiac disease. These findings require further investigation in the form of in vivo studies, because quinoa is an important source of nutrients for patients with celiac disease.

  14. Molecular characteristics of Illicium verum extractives to activate acquired immune response

    PubMed Central

    Peng, Wanxi; Lin, Zhi; Wang, Lansheng; Chang, Junbo; Gu, Fangliang; Zhu, Xiangwei

    2015-01-01

    Illicium verum, whose extractives can activate the demic acquired immune response, is an expensive medicinal plant. However, the rich extractives in I. verum biomass were seriously wasted for the inefficient extraction and separation processes. In order to further utilize the biomedical resources for the good acquired immune response, the four extractives were obtained by SJYB extraction, and then the immunology moleculars of SJYB extractives were identified and analyzed by GC–MS. The result showed that the first-stage extractives contained 108 components including anethole (40.27%), 4-methoxy-benzaldehyde (4.25%), etc.; the second-stage extractives had 5 components including anethole (84.82%), 2-hydroxy-2-(4-methoxy-phenyl)-n-methyl-acetamide (7.11%), etc.; the third-stage extractives contained one component namely anethole (100%); and the fourth-stage extractives contained 5 components including cyclohexyl-benzene (64.64%), 1-(1-methylethenyl)-3-(1-methylethyl)-benzene (17.17%), etc. The SJYB extractives of I. verum biomass had a main retention time between 10 and 20 min what’s more, the SJYB extractives contained many biomedical moleculars, such as anethole, eucalyptol, [1S-(1α,4aα,10aβ)]-1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-1-phenanthrenecarboxylic acid, stigmast-4-en-3-one, γ-sitosterol, and so on. So the functional analytical results suggested that the SJYB extractives of I. verum had a function in activating the acquired immune response and a huge potential in biomedicine. PMID:27081359

  15. Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response

    PubMed Central

    Savarin, Monika; Kamensek, Urska; Cemazar, Maja; Heller, Richard

    2017-01-01

    Abstract Background Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors. Materials and methods The murine melanoma B16F10 tumors, growing on the back of C57Bl/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, proliferation, vascularization, presence of hypoxia and infiltration of immune cells,) was used to evaluate the therapeutic mechanisms. Results Gene electrotransfer of plasmid silencing endoglin predominantly indicated vascular targeted effects of the therapy, since significant tumor growth delay and 44% of tumor free mice were obtained. In addition, irradiation had minor effects on radioresistant melanoma, with 11% of mice tumor free. The combined treatment resulted in excellent effectiveness with 88% of mice tumor free, with more than half resistant to secondary tumor challenge, which was observed also with the plasmid devoid of the therapeutic gene. Histological analysis of tumors in the combined treatment group, demonstrated similar mode of action of the gene electrotransfer of plasmid encoding shRNA for silencing endoglin and devoid of it, both through the induction of an immune response. Conclusions The results of this study indicate that irradiation can in radioresistant melanoma tumors, by release of tumor associated antigens, serve as activator of the immune response, besides directly affecting tumor cells and vasculature. The primed antitumor immune response can be further boosted by gene electrotransfer of plasmid

  16. Leptin Regulation of Immune Responses.

    PubMed

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  17. Experimentally increased in ovo testosterone leads to increased plasma bactericidal activity and decreased cutaneous immune response in nestling house wrens.

    PubMed

    Clairardin, Sandrine G; Barnett, Craig A; Sakaluk, Scott K; Thompson, Charles F

    2011-08-15

    Maternally derived testosterone in the eggs of birds may benefit nestlings by increasing various aspects of their growth, condition and behavioral development, but these benefits may come at a cost, including suppression of immune responsiveness. Experiments on a variety of species in which in ovo levels of testosterone have been experimentally increased have produced mixed results; some have found increased growth and suppressed immune function of nestlings whereas others have found the opposite. In an attempt to clarify the relationship between in ovo testosterone and nestling size, mass, health state and immune responsiveness, we experimentally increased levels of testosterone in the eggs of house wrens (Troglodytes aedon). We simultaneously determined the size, mass, hematocrit (a measure of health state), cutaneous immune response to phytohaemagglutinin and plasma bactericidal activity of nestlings near the time of fledging. We predicted that nestlings hatching from testosterone-injected eggs would exhibit lower immune responsiveness, but achieve greater mass, size and condition, than nestlings hatching from vehicle-injected control eggs. Instead, we found that nestlings hatching from testosterone-injected eggs had a weaker cutaneous immune response but greater bactericidal activity than those hatching from control eggs. They did not, however, differ significantly in mass, size or hematocrit from controls. These results suggest that experimentally increased in ovo testosterone induced a trade-off between bactericidal activity and the cutaneous immune response. The opposite responses by two different measures of immune function to experimentally increased in ovo testosterone underscore the importance of including multiple immune assays when investigating the potential for trade-offs with the immune system and other physiological functions.

  18. CEL-1000--a peptide with adjuvant activity for Th1 immune responses.

    PubMed

    Charoenvit, Yupin; Goel, Neena; Whelan, Michael; Rosenthal, Kenneth S; Zimmerman, Daniel H

    2004-06-23

    CEL-1000 (derG, DGQEEKAGVVSTGLIGGG) is a small immunomodulatory peptide which delivers demonstrated protective activity in two infectious disease challenge models (HSV and malaria) and an allogenic tumor vaccine model. CEL-1000 and other activators (defensin-beta, CpG ODN, and imiquimod) of the innate immune system promote IFN-gamma-associated protective responses. CEL-1000 is an improved form of peptide G (a peptide from human MHC II beta chain second domain, aa 135-149) known to enhance immune responses of other immunogenic peptides. Since defensin-beta, CpG ODN, and imiquimod have been shown to possess adjuvant activity, we investigated the adjuvant effect of peptide G and CEL-1000 as conjugates with HIV and malaria peptides. Antibody titers and isotypes were evaluated on serum taken from select days following immunization. Results for CEL-1000 and G peptide conjugates were compared with results for KLH conjugates of the same HIV peptide from the p17 molecule (87-116) referred to as HGP-30. Studies demonstrated that comparable titers were seen on day 28, 42, 63, and 77 with either G or KLH-HGP-30 peptide conjugates. In another study, CEL-1000 conjugates (CEL-1000-HGP-30) demonstrated a 4-10-fold higher titer antibody response than seen with several other peptide conjugates of the same HGP-30 peptide. Improved adjuvant activity of CEL-1000 in peptide conjugates was also demonstrated by a shift in the antibody isotypes toward a Th1 response (IgG2a). The IgG2a/IgG1, ratio for G-HGP-30 HIV or KLH-HGP-30 HIV conjugates were lower than for the CEL-1000-HGP-30 HIV conjugate. A similar favoring of the IgG2a/IgG1 ratio was seen for a malaria peptide conjugate (CEL-1000-SF/GF) compared to the un-conjugated peptide (SF-GF). CEL-1000 also showed adjuvant activity in an allogenic tumor vaccine model. As expected for an adjuvant, CEL-1000 or G does not induce detectable self-directed or cross reactive antibodies. CEL-1000 is currently being investigated for use as an adjuvant

  19. Enveloped Viruses Disable Innate Immune Responses in Dendritic Cells by Direct Activation of TAM Receptors

    PubMed Central

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D.; Shrestha, Bimmi; Rothlin, Carla V.; Naughton, John; Diamond, Michael S.; Lemke, Greg; Young, John A.T.

    2013-01-01

    SUMMARY Upon activation by the ligands Gas6 and Protein S, TAM receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. PMID:23954153

  20. Digital Quantification of Gene Expression in Sequential Breast Cancer Biopsies Reveals Activation of an Immune Response

    PubMed Central

    Jeselsohn, Rinath M.; Werner, Lillian; Regan, Meredith M.; Fatima, Aquila; Gilmore, Lauren; Collins, Laura C.; Beck, Andrew H.; Bailey, Shannon T.; He, Housheng Hansen; Buchwalter, Gilles; Brown, Myles; Iglehart, J. Dirk; Richardson, Andrea; Come, Steven E.

    2013-01-01

    Advancements in molecular biology have unveiled multiple breast cancer promoting pathways and potential therapeutic targets. Large randomized clinical trials remain the ultimate means of validating therapeutic efficacy, but they require large cohorts of patients and are lengthy and costly. A useful approach is to conduct a window of opportunity study in which patients are exposed to a drug pre-surgically during the interval between the core needle biopsy and the definitive surgery. These are non-therapeutic studies and the end point is not clinical or pathological response but rather evaluation of molecular changes in the tumor specimens that can predict response. However, since the end points of the non-therapeutic studies are biologic, it is critical to first define the biologic changes that occur in the absence of treatment. In this study, we compared the molecular profiles of breast cancer tumors at the time of the diagnostic biopsy versus the definitive surgery in the absence of any intervention using the Nanostring nCounter platform. We found that while the majority of the transcripts did not vary between the two biopsies, there was evidence of activation of immune related genes in response to the first biopsy and further investigations of the immune changes after a biopsy in early breast cancer seem warranted. PMID:23741308

  1. Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis.

    PubMed

    Gill, Parwinder; Jindal, Nina Lakhani; Jagdis, Amanda; Vadas, Peter

    2015-06-01

    Anaphylaxis is an acute, severe, life-threatening multisystem allergic reaction resulting from the sudden systemic release of biochemical mediators and chemotactic substances. Release of both preformed granule-associated mediators and newly generated lipid-derived mediators contributes to the amplification and prolongation of anaphylaxis. Platelet-activating factor (PAF) is a potent phospholipid-derived mediator the central role of which has been well established in experimental models of both immune-mediated and non-immune mediated anaphylaxis. It is produced and secreted by several types of cells, including mast cells, monocytes, tissue macrophages, platelets, eosinophils, endothelial cells, and neutrophils. PAF is implicated in platelet aggregation and activation through release of vasoactive amines in the inflammatory response, resulting in increased vascular permeability, circulatory collapse, decreased cardiac output, and various other biological effects. PAF is rapidly hydrolyzed and degraded to an inactive metabolite, lysoPAF, by the enzyme PAF acetylhydrolase, the activity of which has shown to correlate inversely with PAF levels and predispose to severe anaphylaxis. In addition to its role in anaphylaxis, PAF has also been implicated as a mediator in both allergic and nonallergic inflammatory diseases, including allergic rhinitis, sepsis, atherosclerotic disease, and malignancy, in which PAF signaling has an established role. The therapeutic role of PAF antagonism has been investigated for several diseases, with variable results thus far. Further investigation of its role in pathology and therapeutic modulation is highly anticipated because of the pressing need for more selective and targeted therapy for the management of severe anaphylaxis.

  2. Peroxisome proliferator-activated receptors in the modulation of the immune/inflammatory response in atherosclerosis.

    PubMed

    Fernandez, Ana Z

    2008-01-01

    Inflammation has been recognized as an important hallmark of atherosclerosis. The pharmacological activation of PPAR-gamma by the thiazolidinediones in diabetes, and of PPAR-alpha by the fibrates in hyperlipidemia has been shown to help to reduce inflammatory markers in preclinical and clinical studies. PPARs are known to modulate immune pathways through at least three different mechanisms: by direct binding to PPRE of anti-inflammatory cytokines genes; by transrepression of transcription factors like NF-kappaB and AP-1; or by corepression. The regulation of the inflammatory pathways by PPARs can be achieved on each one of the cells involved in the atherosclerotic process, that is, monocytes, macrophages, T cells, endothelial cells, and smooth muscle cells. Moreover, as each of these cellular components is interconnected with each other, PPAR activation in one cell type could affect the other ones. As activation of PPARs has clear ant-inflammatory benefits, PPARs ligands should be considered as a new therapeutical approach to ameliorate the exacerbated immune response in atherosclerotic diseases.

  3. An endogenous peptide signal in Arabidopsis activates components of the innate immune response

    PubMed Central

    Huffaker, Alisa; Pearce, Gregory; Ryan, Clarence A.

    2006-01-01

    Innate immunity is initiated in animals and plants through the recognition of a variety of pathogen-associated molecules that in animals are called pathogen-associated molecular patterns and in plants are called elicitors. Some plant pathogen-derived elicitors have been identified as peptides, but peptide elicitors derived from the plant itself that activate defensive genes against pathogens have not been previously identified. Here, we report the isolation and characterization of a 23-aa peptide from Arabidopsis, called AtPep1, which activates transcription of the defensive gene defensin (PDF1.2) and activates the synthesis of H2O2, both being components of the innate immune response. The peptide is derived from a 92-aa precursor encoded within a small gene that is inducible by wounding, methyl jasmonate, and ethylene. Constitutive expression of the AtPep1 precursor gene PROPEP1 in transgenic Arabidopsis plants causes a constitutive transcription of PDF1.2. When grown in soil, the transgenic plants exhibited an increased root development compared with WT plants and an enhanced resistance toward the root pathogen Pythium irregulare. Six paralogs of PROPEP1 are present in Arabidopsis, and orthologs have been identified in species of several agriculturally important plant families, where they are of interest for their possible use in crop improvement. PMID:16785434

  4. Peroxisome Proliferator-Activated Receptors in the Modulation of the Immune/Inflammatory Response in Atherosclerosis

    PubMed Central

    Fernandez, Ana Z.

    2008-01-01

    Inflammation has been recognized as an important hallmark of atherosclerosis. The pharmacological activation of PPAR-γ by the thiazolidinediones in diabetes, and of PPAR-α by the fibrates in hyperlipidemia has been shown to help to reduce inflammatory markers in preclinical and clinical studies. PPARs are known to modulate immune pathways through at least three different mechanisms: by direct binding to PPRE of anti-inflammatory cytokines genes; by transrepression of transcription factors like NF-κB and AP-1; or by corepression. The regulation of the inflammatory pathways by PPARs can be achieved on each one of the cells involved in the atherosclerotic process, that is, monocytes, macrophages, T cells, endothelial cells, and smooth muscle cells. Moreover, as each of these cellular components is interconnected with each other, PPAR activation in one cell type could affect the other ones. As activation of PPARs has clear ant-inflammatory benefits, PPARs ligands should be considered as a new therapeutical approach to ameliorate the exacerbated immune response in atherosclerotic diseases. PMID:18769491

  5. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response.

    PubMed

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-10-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response

    PubMed Central

    Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H. E.; van Riet, Elly; van Putten, Jos P. M.; van der Ley, Peter

    2016-01-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment. PMID:27481244

  7. Immune Activation Response in Chronic HIV-Infected Patients: Influence of Hepatitis C Virus Coinfection

    PubMed Central

    Márquez, Mercedes; Romero-Cores, Paula; Montes-Oca, Monserrat; Martín-Aspas, Andrés; Soto-Cárdenas, María-José; Guerrero, Francisca; Fernández-Gutiérrez, Clotilde; Girón-González, José-Antonio

    2015-01-01

    Objectives We have analyzed the parameters (bacterial translocation, immune activation and regulation, presence of HCV coinfection) which could be implicated in an inappropriate immune response from individuals with chronic HIV infection. The influence of them on the evolution of CD4+ T cell count has been investigated. Patients and methods Seventy HIV-infected patients [monoinfected by HIV (n = 20), HCV-coinfected (with (n = 25) and without (n = 25) liver cirrhosis)] and 25 healthy controls were included. Median duration of HIV infection was 20 years. HIV- and HCV-related parameters, as well as markers relative to bacterial translocation, monocyte and lymphocyte activation and regulation were considered as independent variables. Dependent variables were the increase of CD4+ T cell count during the follow-up (12 months). Results Increased values of bacterial translocation, measured by lipopolysaccharide-binding protein, monocyte and lymphocyte activation markers and T regulatory lymphocytes were detected in HIV-monoinfected and HIV/HCV coinfected patients. Serum sCD14 and IL-6 were increased in HIV/HCV-coinfected patients with liver cirrhosis in comparison with those with chronic hepatitis or HIV-monoinfected individuals. Time with undetectable HIV load was not related with these parameters. The presence of cirrhosis was negatively associated with a CD4+ T cell count increase. Conclusion In patients with a chronic HIV infection, a persistent increase of lipopolysaccharide-binding protein and monocyte and lymphocyte modifications are present. HCV-related cirrhosis is associated with more elevated serum concentrations of monocyte-derived markers. Cirrhosis influences the continued immune reconstitution of these patients. PMID:25775475

  8. The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.

    PubMed

    Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S

    2017-06-01

    In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.

  9. Exercise boosts immune response.

    PubMed

    Sander, Ruth

    2012-06-29

    Ageing is associated with a decline in normal functioning of the immune system described as 'immunosenescence'. This contributes to poorer vaccine response and increased incidence of infection and malignancy seen in older people. Regular exercise can enhance vaccination response, increase T-cells and boost the function of the natural killer cells in the immune system. Exercise also lowers levels of the inflammatory cytokines that cause the 'inflamm-ageing' that is thought to play a role in conditions including cardiovascular disease; type 2 diabetes; Alzheimer's disease; osteoporosis and some cancers.

  10. Immunizations: Active vs. Passive

    MedlinePlus

    ... a few weeks before the antibodies are worn down and removed from the bloodstream. By contrast, active immunizations can produce antibodies that last a lifetime. Last Updated 11/21/2015 Source Immunizations & Infectious Diseases: An Informed Parent's ...

  11. Activation of the immune response is a key feature of aging in mice.

    PubMed

    Brink, Thore C; Regenbrecht, Christian; Demetrius, Lloyd; Lehrach, Hans; Adjaye, James

    2009-12-01

    The process of aging is complex involving numerous factors centered on transcriptional changes with advanced age. This study was aimed at elucidating mechanisms involved in mouse aging by conducting both gene expression and biochemical analyses on isolated mouse brain, heart and kidney. The gene expression analysis was not aimed at solely highlighting age-related transcriptional changes but also revealing regulated biological processes, cellular compartments, signaling and metabolic pathways. We have uncovered a conserved increase in the expression of genes mediating immune responses in all the tissues analyzed. In addition, elevated levels of lipid hydroperoxides (LPO)—an indicator of increased levels of radical oxygen species, implicate an oxidative stress-mediated activity of NF-kB signaling. In summary, these results suggest that transcriptional changes are most probably the downstream effect of environmental and endogenous factors constantly affecting the organism during its lifetime. In addition, we propose LPO as a potential biomarker of aging.

  12. Characterization of immune response in Staphylococcus aureus chronically infected bovine mammary glands during active involution.

    PubMed

    Andreotti, Carolina S; Baravalle, Celina; Sacco, Sofía C; Lovato, Melisa; Pereyra, Elizabet A L; Renna, María S; Ortega, Hugo H; Calvinho, Luis F; Dallard, Bibiana E

    2017-10-01

    The aim of this study was to characterize the immune response in Staphylococcus aureus chronically infected bovine mammary glands during active involution. Twenty-one Holstein non-pregnant cows in late lactation either uninfected or with chronic naturally acquired S. aureus intramammary infections (IMI) were included in this study. Cows were slaughtered at 7, 14 and 21 d after cessation of milking and samples for immunohistochemical analysis were taken. Protein expression of toll-like receptor 2 (TLR2) and TLR4 was significantly higher in S. aureus-infected quarters than in uninfected controls at the three involution stages studied. Protein expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1α and IL-17 was significantly affected by IMI; being higher in S. aureus-infected than uninfected quarters during all evaluated stages. In S. aureus-infected and uninfected quarters protein expression of lactoferrin increased from day 7-14 of involution, decreasing significantly to day 21 in mammary quarters with chronic infections. The number of monocytes-macrophages was significantly higher in S. aureus-infected than in uninfected control quarters at 7 and 21 d of involution. The number of T lymphocytes was significantly higher in S. aureus-infected than in uninfected quarters at 7 and 14 d of involution while the number of B lymphocytes was significantly higher in S. aureus-infected than in uninfected quarters during all evaluated stages, showing a progressive increase as involution advanced. These results demonstrated a sustained and exacerbated innate and adaptive immune response during chronic S. aureus IMI, playing a critical role in the infection control during active involution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Inflammatory and immune responses to a 3-day period of downhill running in active females.

    PubMed

    Jafariyan, S; Monazzami, A; Nikosefat, Z; Nobahar, M; Yari, K

    2017-08-15

    Exercise-induced muscle damage (EIMD) is accompanied by inflammatory and immune responses. However, due to the repeated bout effect, there will probably be less EIMD. Hence, the purpose was to investigate inflammatory and immune responses over a three-day period of downhill running in active females. Eleven moderately trained healthy females performed three 60-minute bouts of downhill running in -13.5% grade, separated by 24 hours, at a speed eliciting 70-80% of their VO2peak on level grade. Delayed onset muscle soreness (DOMS), range of motion (ROM) and maximum knee isotonic strength (1RM) were measured pre- and two-hour post every bout. Blood variables, including CBC, serum lactate dehydrogenase (LDH), creatine kinase (CK), myoglobin (Mb), IL-10, IL-6 and Monocyte chemoattractant protein-1 (MCP-1) were measured at 1 hour before the first bout and two hours after every bout. Data was analysed by repeated measure ANOVA (P<0.05). Although CK, LDH, Mb, IL-10, IL-6, MCP-1, total leukocyte count, monocytes and neutrophils increased significantly following the first bout, CK, LDH, Mb, IL-10, monocytes and neutrophils were only significantly higher following the third bout compared to the baseline (all P<0.05). Moreover, IL-10 and IL-6 decreased following the second and third bouts compared to the first bout (P<0.05). In comparison with the baseline, lymphocytes decreased after the second bout, DOMS increased following the second and third bouts, 1RM decreased following the first and second bouts (all P<0.05). ROM showed no significant difference. The three-day period of downhill running did not exacerbate EIMD and inflammatory response was partly attenuated.

  14. Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities.

    PubMed

    Wu, Yi; Yi, Lei; Li, Entao; Li, Youying; Lu, Yan; Wang, Peijuan; Zhou, Honglei; Liu, Jiaguo; Hu, Yuanliang; Wang, Deyun

    2017-04-04

    Glycyrrhiza polysaccharide liposome (GPSL) was prepared by reverse-phase evaporation method and optimized with response surface methodology. As a result, the optimum preparation conditions were as follows: the ratio of soybean phosphatide to Glycyrrhiza polysaccharide (GPS) of 24:1, temperature of drug incubation of 46°C, the ultrasound time of 16min. Confirmation experiments and transmission electron micrograph (SEM) exhibited the entrapment efficiency of liposome as 78.33±0.25%, with spherical shape and uniform sizes. Furthermore, proliferation assay, allogeneic mixed lymphocyte reaction and supernatant cytokines of chBM-DCs were performed by MTT and ELISA methods to investigate the immune-modulating effects of GPSL and GPS. The results showed that GPSL could significantly promote the proliferation of immature chBM-DCs, enhance the ability of mature chBM-DCs to induce T-cell proliferation and modulate the mature chBM-DCs to secret cytokines such as IL-2, IFN-γ and IL-10. These evidences indicated that the immune-modulating activity of GPS was significantly improved after encapsulated with liposome.

  15. Induction of protective immune responses against schistosomiasis using functionally active cysteine peptidases

    PubMed Central

    El Ridi, Rashika; Tallima, Hatem; Dalton, John P.; Donnelly, Sheila

    2014-01-01

    Each year schistosomiasis afflicts up to 600 million people in 74 tropical and sub-tropical countries, predominantly in the developing world. Yet we depend on a single drug, praziquantel, for its treatment and control. There is no vaccine available but one is urgently needed especially since praziquantel-resistant parasites are likely to emerge at some time in the future. The disease is caused by several worm species of the genus Schistosoma. These express several classes of papain-like cysteine peptidases, cathepsins B and L, in various tissues but particularly in their gastrodermis where they employ them as digestive enzymes. We have shown that sub-cutaneous injection of recombinant and functionally active Schistosoma mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant protection (up to 73%) against an experimental challenge worm infection in murine models of schistosomiasis. The immune modulating properties of this subcutaneous injection can boost protection levels (up to 83%) when combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP). Here, we discuss these data in the context of the parasite’s biology and development, and provide putative mechanism by which the native-like cysteine peptidase induce protective immune responses. PMID:24847355

  16. A novel Lactobacillus plantarum strain P-8 activates beneficial immune response of broiler chickens.

    PubMed

    Wang, Lifeng; Liu, Caihong; Chen, Ma; Ya, Tuo; Huang, Weiqiang; Gao, Pengfei; Zhang, Heping

    2015-12-01

    To investigate whether Lactobacillus plantarum P-8 may be used as an alternative to antibiotics in the broiler chicken diet, we compared P-8 and antibiotics for their immunobiotic properties and their effect on growth performance of broiler chickens in a 42-day trial. The results showed that P-8 provided similar benefits in weight gain, feed intake and feed efficiency as antibiotics did. Importantly, P-8 activated protective immune responses of the broilers while antibiotics lacked this effect. P-8 induced higher fecal secretory IgA (sIgA) levels on day 42 (P≤0.027) and IgA(+) lymphocytes in the jejunum and Peyer's patches (PP) (P<0.001) compared to antibiotic treatment. Antibiotics reduced the IgA(+) lymphocytes in jejunum and PP on day 42 compared to the control. P-8 increased CD3(+) T cells in the small intestinal tissues in most test situations whereas antibiotics had fewer CD3(+) cells in PP and cecal tonsil compared with the control broilers at the end of the trial. In addition, P-8 increased CD4(+) T cells significantly in the intestinal tissues compared to both antibiotics and the control (P<0.0052). Both Th1 and Th2 cytokine expression were enhanced by P-8 on day 14, consistent with the clinical trial results showing probiotic benefits in diseases. Antibiotics up- and down-regulated interleukin (IL)-2, IL-4 and IL-10 transcripts in an age-dependent manner, and showed anti-inflammatory potential. These data indicate that P-8 may provide protective immune response to broilers while maintaining similar growth performance and may be a potential alternative to antibiotics supplemented in chicken feeds.

  17. Activation of Innate Immune Responses in the Central Nervous System during Reovirus Myelitis

    PubMed Central

    Schittone, Stephanie A.; Dionne, Kalen R.; Tyler, Kenneth L.

    2012-01-01

    Reovirus infection of the murine spinal cord (SC) was used as a model system to investigate innate immune responses during viral myelitis, including the activation of glia (microglia and astrocytes) and interferon (IFN) signaling and increased expression of inflammatory mediators. Reovirus myelitis was associated with the pronounced activation of SC glia, as evidenced by characteristic changes in cellular morphology and increased expression of astrocyte and microglia-specific proteins. Expression of inflammatory mediators known to be released by activated glia, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), chemokine (C-C motif) ligand 5 (CCL 5), chemokine (C-X-C motif) ligand 10 (CXCL10), and gamma interferon (IFN-γ), was also significantly upregulated in the SC of reovirus-infected animals compared to mock-infected controls. Reovirus infection of the mouse SC was also associated with increased expression of genes involved in IFN signaling, including IFN-stimulated genes (ISG). Further, reovirus infection of mice deficient in the expression of the IFN-α/β receptor (IFNAR−/−) resulted in accelerated mortality, demonstrating that IFN signaling is protective during reovirus myelitis. Experiments performed in ex vivo SC slice cultures (SCSC) confirmed that resident SC cells contribute to the production of at least some of these inflammatory mediators and ISG during reovirus infection. Microglia, but not astrocytes, were still activated, and glia-associated inflammatory mediators were still produced in reovirus-infected INFAR−/− mice, demonstrating that IFN signaling is not absolutely required for these neuroinflammatory responses. Our results suggest that activated glia and inflammatory mediators contribute to a local microenvironment that is deleterious to neuronal survival. PMID:22623770

  18. Photodynamic-therapy Activates Immune Response by disrupting Immunity Homeostasis of Tumor Cells, which Generates Vaccine for Cancer Therapy

    PubMed Central

    Zheng, Yuanhong; Yin, Guifang; Le, Vanminh; Zhang, Anle; Chen, Siyu; Liang, Xin; Liu, Jianwen

    2016-01-01

    Photodynamic therapy (PDT), a regulatory approved cancer treatment, is reported to be capable of causing immunogenic apoptosis. The current data reveal PDT can cause the dysregulation of “eat me” and “don't eat me” signal by generating reactive oxygen species (ROS) -mediated endoplasmic reticulum (ER) stress. This dysregulation probably contribute to the increased uptake of PDT-killed Lewis lung carcinoma (LLC) cells by homologous dendritic cells (DCs), accompanied by phenotypic maturation (CD80high, CD86high, and CD40high) and functional stimulation (NOhigh, IL-10absent) of dendritic cells as well as subsequent T-cell responses. Morevover, C57BL/6 mice vaccinated with dendritic cells (DCs) pulsed with PDT-treated LLCs (PDT-DCs) or PDT-treated LLCs alone (PDT-LLCs) exhibited potent immunity against LLC tumors. In the current study, the PDT-induced immune response was characterized as a process related with the dysregulation of “eat me” signal and “don't eat me” signal, revealing the possibility for developing PDT into an antitumor vaccination strategy for personalized cancer immunotherapy. PMID:26722223

  19. A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity.

    PubMed

    Wang, Lifeng; Rollins, Lisa; Gu, Qinlong; Chen, Si-Yi; Huang, Xue F

    2009-12-11

    Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4(+)/CD8(+) T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4(+) and CD8(+) T cells by immunizing CD4(+) and CD8(+) knockout mice with sMage3Hsp DNA, we found that both CD8(+) T and CD4(+) T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.

  20. Mycobacterium tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor γ Linking Mannose Receptor Recognition to Regulation of Immune Responses

    PubMed Central

    Rajaram, Murugesan V. S.; Brooks, Michelle N.; Morris, Jessica D.; Torrelles, Jordi B.; Azad, Abul K.; Schlesinger, Larry S.

    2010-01-01

    Mycobacterium tuberculosis enhances its survival in macrophages by suppressing immune responses in part through its complex cell wall structures. Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor superfamily member, is a transcriptional factor that regulates inflammation and has high expression in alternatively activated alveolar macrophages and macrophage-derived foam cells, both cell types relevant to tuberculosis pathogenesis. In this study, we show that virulent M. tuberculosis and its cell wall mannose-capped lipoarabinomannan induce PPARγ expression through a macrophage mannose receptor-dependent pathway. When activated, PPARγ promotes IL-8 and cyclooxygenase 2 expression, a process modulated by a PPARγ agonist or antagonist. Upstream, MAPK-p38 mediates cytosolic phospholipase A2 activation, which is required for PPARγ ligand production. The induced IL-8 response mediated by mannose-capped lipoarabinomannan and the mannose receptor is independent of TLR2 and NF-κB activation. In contrast, the attenuated Mycobacterium bovis bacillus Calmette-Guérin induces less PPARγ and preferentially uses the NF-κB–mediated pathway to induce IL-8 production. Finally, PPARγ knockdown in human macrophages enhances TNF production and controls the intracellular growth of M. tuberculosis. These data identify a new molecular pathway that links engagement of the mannose receptor, an important pattern recognition receptor for M. tuberculosis, with PPARγ activation, which regulates the macrophage inflammatory response, thereby playing a role in tuberculosis pathogenesis. PMID:20554962

  1. Immune responses and vaccination against periodontal infections.

    PubMed

    Persson, G Rutger

    2005-01-01

    The infectious aetiology of periodontitis is complex and no curative treatment modality exists. Palliative therapy is available. To review the evidence that active or passive immunization against periodontitis provides immune protection. PubMed (Medline), the National Institutes of Health, the Food and Drug Administration, and the Center for Disease Control electronic databases were searched to extrapolate information on immune responses to immunization against periodontitis. Studies in non-human primate models using ligature-induced experimental periodontitis suggest that antibody responses by active immunization against Porphyromonas gingivalis can safely be induced, enhanced, and obtained over time. Immune responses to whole bacterial cell and purified protein preparations considered as vaccine candidates have been evaluated in different animal models demonstrating that there are several valid vaccine candidates. Data suggest that immunization reduces the rate and severity of bone loss. It is also, temporarily, possible to alter the composition of the subgingival microflora. Natural active immunization by therapeutic interventions results in antibody titre enhancement and potentially improves treatment outcomes. Passive immunization of humans using P. gingivalis monoclonal antibodies temporarily prevents colonization of P. gingivalis. Probiotic therapy may be an alternative approach. Regulatory and safety issues for human periodontal vaccine trials must be considered. Shared infectious aetiology between periodontitis and systemic diseases may enhance vaccine effort developments. Proof of principle that active and passive immunization can induce protective antibody responses is given. The impact of natural immunization and passive immunization in humans should be explored and may, presently, be more feasible than active immunization studies.

  2. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  3. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  4. Lower Affinity T Cells are Critical Components and Active Participants of the Immune Response

    PubMed Central

    Martinez, Ryan J.; Evavold, Brian D.

    2015-01-01

    Kinetic and biophysical parameters of T cell receptor (TCR) and peptide:MHC (pMHC) interaction define intrinsic factors required for T cell activation and differentiation. Although receptor ligand kinetics are somewhat cumbersome to assess experimentally, TCR:pMHC affinity has been shown to predict peripheral T cell functionality and potential for forming memory. Multimeric forms of pMHC monomers have often been used to provide an indirect readout of higher affinity T cells due to their availability and ease of use while allowing simultaneous definition of other functional and phenotypic characteristics. However, multimeric pMHC reagents have introduced a bias that underestimates the lower affinity components contained in the highly diverse TCR repertoires of all polyclonal T cell responses. Advances in the identification of lower affinity cells have led to the examination of these cells and their contribution to the immune response. In this review, we discuss the identification of high- vs. low-affinity T cells as well as their attributed signaling and functional differences. Lastly, mechanisms are discussed that maintain a diverse range of low- and high-affinity T cells. PMID:26441973

  5. Sirtuin 1 Regulates Dendritic Cell Activation and Autophagy during Respiratory Syncytial Virus-Induced Immune Responses.

    PubMed

    Owczarczyk, Anna B; Schaller, Matthew A; Reed, Michelle; Rasky, Andrew J; Lombard, David B; Lukacs, Nicholas W

    2015-08-15

    Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, has been associated with the induction of autophagy and the regulation of inflammatory mediators. We found that Sirt1 was upregulated in mouse lung after RSV infection. Infected animals that received EX-527, a selective SIRT1 inhibitor, displayed exacerbated lung pathology, with increased mucus production, elevated viral load, and enhanced Th2 cytokine production. Gene expression analysis of isolated cell populations revealed that Sirt1 was most highly upregulated in RSV-treated dendritic cells (DCs). Upon RSV infection, EX-527-treated DCs, Sirt1 small interfering RNA-treated DCs, or DCs from conditional knockout (Sirt1(f/f)-CD11c-Cre(+)) mice showed downregulated inflammatory cytokine gene expression and attenuated autophagy. Finally, RSV infection of Sirt1(f/f)-CD11c-Cre(+) mice resulted in altered lung and lymph node cytokine responses, leading to exacerbated pathology. These data indicate that SIRT1 promotes DC activation associated with autophagy-mediated processes during RSV infection, thereby directing efficient antiviral immune responses.

  6. Peroxisome Proliferator Activated Receptor Beta (PPARβ) activity increases the immune response and shortens the early phases of skeletal muscle regeneration.

    PubMed

    Mothe-Satney, Isabelle; Piquet, Jessica; Murdaca, Joseph; Sibille, Brigitte; Grimaldi, Paul A; Neels, Jaap G; Rousseau, Anne-Sophie

    2016-12-07

    Peroxisome Proliferator-Activated Receptor Beta (PPARβ) is a transcription factor playing an important role in both muscle myogenesis and remodeling, and in inflammation. However, its role in the coordination of the transient muscle inflammation and reparation process following muscle injury has not yet been fully determined. We postulated that activation of the PPARβ pathway alters the early phase of the muscle regeneration process, i.e. when immune cells infiltrate in injured muscle. Tibialis anteriors of C57BL6/J mice treated or not with the PPARβ agonist GW0742 were injected with cardiotoxin (or with physiological serum for the contralateral muscle). Muscle regeneration was monitored on days 4, 7, and 14 post-injury. We found that treatment of mice with GW0742 increased, at day 4 post-damage, the recruitment of immune cells (M1 and M2 macrophages) and upregulated the expression of the anti-inflammatory cytokine IL-10 and TGF-β mRNA. Those effects were accompanied by a significant increase at day 4 of myogenic regulatory factors (Pax7, MyoD, Myf5, Myogenin) mRNA in GW0742-treated mice. However, we showed an earlier return (7 days vs 14 days) of Myf5 and Myogenin to basal levels in GW0742- compared to DMSO-treated mice. Differential effects of GW0742 observed during the regeneration were associated with variations of PPARβ pathway activity. Collectively, our findings indicate that PPARβ pathway activity shortens the early phases of skeletal muscle regeneration by increasing the immune response.

  7. Inflammasome Activation Is Critical to the Protective Immune Response during Chemically Induced Squamous Cell Carcinoma

    PubMed Central

    Gasparoto, Thais Helena; de Oliveira, Carine Ervolino; de Freitas, Luisa Thomazini; Pinheiro, Claudia Ramos; Hori, Juliana Issa; Garlet, Gustavo Pompermaier; Cavassani, Karen Angélica; Schillaci, Roxana; da Silva, João Santana; Zamboni, Dario Simões; Campanelli, Ana Paula

    2014-01-01

    Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4+, CD8+ and CD45RB+ T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4+CD25+Foxp3+ T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development. PMID:25268644

  8. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma.

    PubMed

    Gasparoto, Thais Helena; de Oliveira, Carine Ervolino; de Freitas, Luisa Thomazini; Pinheiro, Claudia Ramos; Hori, Juliana Issa; Garlet, Gustavo Pompermaier; Cavassani, Karen Angélica; Schillaci, Roxana; da Silva, João Santana; Zamboni, Dario Simões; Campanelli, Ana Paula

    2014-01-01

    Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4(+), CD8(+) and CD45RB(+) T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4(+)CD25(+)Foxp3(+) T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development.

  9. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus.

    PubMed

    Beltrán, Luis M; Rubio-Navarro, Alfonso; Amaro-Villalobos, Juan Manuel; Egido, Jesús; García-Puig, Juan; Moreno, Juan Antonio

    2015-01-01

    Patients infected with the human immunodeficiency virus (HIV) have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.

  10. Glycobiology of immune responses

    PubMed Central

    Rabinovich, Gabriel A.; van Kooyk, Yvette; Cobb, Brian A.

    2013-01-01

    Unlike their protein “roommates” and their nucleic acid “cousins,” carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners—the microbial (non-self), tumor (altered-self), and host (self)—cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings. PMID:22524422

  11. Advantages of laparoscopic compared to conventional surgery are not related to an innate immune response of peritoneal immune activation: an animal study in rats.

    PubMed

    Lingohr, Philipp; Dohmen, Jonas; Matthaei, Hanno; Schwandt, Timo; Stein, Kathy; Hong, Gun-Soo; Steitz, Julia; Longerich, Thomas; Bölke, Edwin; Wehner, Sven; Kalff, Jörg C

    2017-06-01

    Laparoscopic surgery (LS) has proved superior compared to conventional surgery (CS) regarding morbidity, length of hospital stay, rate of wound infection and time until recovery. An improved preservation of the postoperative immune function is assumed to contribute to these benefits though the role of the local peritoneal immune response is still poorly understood. Our study investigates the peritoneal immune response subsequent to abdominal surgery and compares it between laparoscopic and conventional surgery to find an immunological explanation for the clinically proven benefits of LS. Wistar rats (N = 140) underwent laparoscopic cecum resection (LCR; N = 28), conventional cecum resection (CCR; N = 28), laparoscopic sham operation (LSO; N = 28), conventional sham operation (CSO; N = 28), or no surgical treatment (CTRL; N = 28). Postoperatively, peritoneal lavages were performed, leukocytes isolated and analyzed regarding immune function and phagocytosis activity. Immune function was inhibited postoperatively in animals undergoing LCR or CCR compared to CTRL reflected by a lower TNF-α (CTRL 3956.65 pg/ml, LCR 2018.48 pg/ml (p = 0.023), CCR 2793.78 pg/ml (n.s.)) and IL-6 secretion (CTRL 625.84 pg/ml, LCR 142.84 pg/ml (p = 0.009), CCR 169.53 pg/ml (p = 0.01)). Phagocytosis was not affected in rats undergoing any kind of surgery compared to CTRL. Neither cytokine secretion nor phagocytosis activity differed significantly between laparoscopic and conventional surgery. According to our findings the benefits associated with LS compared to CS cannot be explained by differences in the postoperative peritoneal innate immune response. Further studies are needed to elucidate the causes for a more favorable postoperative outcome in patients after LS compared to CS.

  12. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    NASA Astrophysics Data System (ADS)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  13. Repeated ozone exposure exacerbates insulin resistance and activates innate immune response in genetically susceptible mice.

    PubMed

    Zhong, Jixin; Allen, Katryn; Rao, Xiaoquan; Ying, Zhekang; Braunstein, Zachary; Kankanala, Saumya R; Xia, Chang; Wang, Xiaoke; Bramble, Lori A; Wagner, James G; Lewandowski, Ryan; Sun, Qinghua; Harkema, Jack R; Rajagopalan, Sanjay

    2016-08-01

    Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and Oil-Red-O staining. Inflammatory responses were detected using flow cytometry and real-time PCR. KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4 + T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4 + T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance.

  14. Repeated Ozone Exposure Exacerbates Insulin Resistance And Activates Innate Immune Response In Genetically Susceptible Mice

    PubMed Central

    Zhong, Jixin; Allen, Katryn; Rao, Xiaoquan; Ying, Zhekang; Braunstein, Zachary; Kankanala, Saumya R.; Xia, Chang; Wang, Xiaoke; Bramble, Lori A.; Wagner, James G.; Lewandowski, Ryan; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay

    2016-01-01

    Background Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. Objectives To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. Methods Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and oil-red-o staining. Inflammatory responses were detected using flow cytometry and real-time PCR. Results KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4+ T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4+ T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. Conclusions Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance. PMID:27240593

  15. Active suppression of the pulmonary immune response by Francisella tularensis Schu4.

    PubMed

    Bosio, Catharine M; Bielefeldt-Ohmann, Helle; Belisle, John T

    2007-04-01

    Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been shown to target multiple cell types in the lung following aerosol infection, including dendritic cells (DC) and macrophages. We demonstrate here that one mechanism used by a virulent type A strain of F. tularensis (Schu4) to evade early detection is by the induction of overwhelming immunosuppression at the site of infection, the lung. Following infection and replication in multiple pulmonary cell types, Schu4 failed to induce the production of proinflammatory cytokines or increase the expression of MHCII or CD86 on the surface of resident DC within the first few days of disease. However, Schu4 did induce early and transient production of TGF-beta, a potent immunosuppressive cytokine. The absence of DC activation following infection could not be attributed to the apoptosis of pulmonary cells, because there were minimal differences in either annexin or cleaved caspase-3 staining in infected mice compared with that in uninfected controls. Rather, we demonstrate that Schu4 actively suppressed in vivo responses to secondary stimuli (LPS), e.g., failure to recruit granulocytes/monocytes and stimulate resident DC. Thus, unlike attenuated strains of F. tularensis, Schu4 induced broad immunosuppression within the first few days after aerosol infection. This difference may explain the increased virulence of type A strains compared with their more attenuated counterparts.

  16. Protumor activities of the immune response: insights in the mechanisms of immunological shift, oncotraining, and oncopromotion.

    PubMed

    Chimal-Ramírez, G K; Espinoza-Sánchez, N A; Fuentes-Pananá, E M

    2013-01-01

    Experimental and clinical studies indicate that cells of the innate and adaptive immune system have both anti- and pro-tumor activities. This dual role of the immune system has led to a conceptual shift in the role of the immune system's regulation of cancer, in which immune-tumor cell interactions are understood as a dynamic process that comprises at least five phases: immunosurveillance, immunoselection, immunoescape, oncotraining, and oncopromotion. The tumor microenvironment shifts immune cells to perform functions more in tune with the tumor needs (oncotraining); these functions are related to chronic inflammation and tissue remodeling activities. Among them are increased proliferation and survival, increased angiogenesis and vessel permeability, protease secretion, acquisition of migratory mesenchymal characteristics, and self-renewal properties that altogether promote tumor growth and metastasis (oncopromotion). Important populations in all these pro-tumor processes are M2 macrophages, N2 neutrophils, regulatory T cells, and myeloid derived suppressor cells; the main effectors molecules are CSF-1, IL-6, metalloproteases, VEGF, PGE-2, TGF- β , and IL-10. Cancer prognosis correlates with densities and concentrations of protumoral populations and molecules, providing ideal targets for the intelligent design of directed preventive or anticancer therapies.

  17. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade.

    PubMed

    Gorman, Maureen J; Wang, Yang; Jiang, Haobo; Kanost, Michael R

    2007-04-20

    Melanization, an insect immune response, requires a set of hemolymph proteins including pathogen recognition proteins that initiate the response, a cascade of mostly unknown serine proteinases, and phenoloxidase. Until now, only initial and final proteinases in the pathways have been conclusively identified. Four such proteinases have been purified from the larval hemolymph of Manduca sexta: hemolymph proteinase 14 (HP14), which autoactivates in the presence of microbial surface components, and three prophenoloxidase-activating proteinases (PAP1-3). In this study, we have used two complementary approaches to identify a serine proteinase that activates proPAP3. Partial purification from hemolymph of an activator of proPAP3 resulted in an active fraction with two abundant polypeptides of approximately 32 and approximately 37 kDa. Labeling of these polypeptides with a serine proteinase inhibitor, diisopropyl fluorophosphate, indicated that they were active serine proteinases. N-terminal sequencing revealed that both were cleaved forms of the previously identified hemolymph serine proteinase, HP21. Surprisingly, cleavage of proHP21 had occurred not at the predicted activation site but more N-terminal to it. In vitro reactions carried out with purified HP14 (which activates proHP21), proHP21, proPAP3, and site-directed mutant forms of the latter two proteinases confirmed that HP21 activates proPAP3 by limited proteolysis. Like the HP21 products purified from hemolymph, HP21 that was activated by HP14 in the in vitro reactions was not cleaved at its predicted activation site.

  18. Activated Immune Response in an Inherited Leukodystrophy Disease Caused by the Loss of Oligodendrocyte Gap Junctions

    PubMed Central

    Wasseff, Sameh K.; Scherer, Steven S.

    2015-01-01

    Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum – an affected brain region – in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to microglia and lymphocytes, and to leukotriene/prostaglandin synthesis and chemokine/cytokine pathways. In accord, immunostaining showed activated microglia and astrocytes, as well as T- and B-cells in the cerebella of mutant mice. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32. PMID:26051537

  19. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection.

    PubMed

    Sena, Angela A S; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R

    2016-08-03

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection.

  20. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection

    PubMed Central

    Sena, Angela A. S.; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R.

    2016-01-01

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection. PMID:27484833

  1. Selenium and immune responses

    SciTech Connect

    Kiremidjian-Schumacher, L.; Stotzky, G.

    1987-04-01

    Selenium (Se) affects all components of the immune system, i.e., the development and expression of nonspecific, humoral, and cell-mediated responses. In general, a deficiency in Se appears to result in immunosuppression, whereas supplementation with low doses of Se appears to result in augmentation and/or restoration of immunologic functions. A deficiency of Se has been shown to inhibit (1) resistance to microbial and viral infections, (2) neutrophil function, (3) antibody production, (4) proliferation of T and B lymphocytes in response to mitogens, and (5) cytodestruction by T lymphocytes and NK cells. Supplementation with Se has been shown to stimulate (1) the function of neutrophils, (2) production of antibodies, (3) proliferation of T and B lymphocytes in response to mitogens, (4) production of lymphokines, (5) NK cell-mediated cytodestruction, (6) delayed-type hypersensitivity reactions and allograft rejection, and (7) the ability of a host to reject transplanted malignant tumors. The mechanism(s) whereby Se affects the immune system is speculative. The effects of Se on the function of glutathione peroxidase and on the cellular levels of reduced glutathione and H/sub 2/Se, as well as the ability of Se to interact with cell membranes, probably represent only a few of many regulatory mechanisms. The manipulation of cellular levels of Se may be significant for the maintenance of general health and for the control of immunodeficiency disorders and the chemoprevention of cancer.

  2. Dendritic cells and parasites: from recognition and activation to immune response instruction.

    PubMed

    Motran, Claudia Cristina; Ambrosio, Laura Fernanda; Volpini, Ximena; Celias, Daiana Pamela; Cervi, Laura

    2017-02-01

    The effective defense against parasite infections requires the ability to mount an appropriate and controlled specific immune response able to eradicate the invading pathogen while limiting the collateral damage to self-tissues. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. Ligation of dendritic cell pattern recognition receptors by pathogen-associated molecular pattern present in the parasites initiates signaling pathways that lead to the production of surface and secreted proteins that are required, together with the antigen, to induce an appropriate and timely regulated immune response. There is evidence showing that parasites can influence and regulate dendritic cell functions in order to promote a more permissive environment for their survival. In this review, we will focus on new insights about the ability of protozoan and helminth parasites or their products to modify dendritic cell function and discuss how this interaction is crucial in shaping the host response.

  3. Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses

    PubMed Central

    Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning

    2010-01-01

    Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217

  4. Adaptive Cellular Interactions in the Immune System: The Tunable Activation Threshold and the Significance of Subthreshold Responses

    NASA Astrophysics Data System (ADS)

    Grossman, Zvi; Paul, William E.

    1992-11-01

    A major challenge for immunologists is to explain how the immune system adjusts its responses to the microenvironmental context in which antigens are recognized. We propose that lymphocytes achieve this by tuning and updating their responsiveness to recurrent signals. In particular, cellular anergy in vivo is a dynamic state in which the threshold for a stereotypic mode of activation has been elevated. Anergy is associated with other forms of cellular activity, not paralysis. Cells engaged in such subthreshold interactions mediate functions such as maintenance of immunological memory and control of infections. In such interactions, patterns of signals are recognized and classified and evoke selective responses. The robust mechanism proposed for segregation of suprathreshold and subthreshold immune responses allows lymphocytes to use recognition of self-antigens in executing physiological functions. Autoreactivity is allowed where it is dissociated from uncontrolled aggression.

  5. Immune responses to improving welfare

    PubMed Central

    Berghman, L. R.

    2016-01-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that “increased vigilance of the immune system is by definition better” because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as “sickness behavior,” includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  6. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer

    PubMed Central

    Mehnert, Janice M.; Panda, Anshuman; Zhong, Hua; Hirshfield, Kim; Damare, Sherri; Lane, Katherine; Sokol, Levi; Stein, Mark N.; Rodriguez-Rodriquez, Lorna; Kaufman, Howard L.; Ali, Siraj; Ross, Jeffrey S.; Pavlick, Dean C.; Bhanot, Gyan; White, Eileen P.; DiPaola, Robert S.; Lovell, Ann; Cheng, Jonathan

    2016-01-01

    Antibodies that target the immune checkpoint receptor programmed cell death protein 1 (PD-1) have resulted in prolonged and beneficial responses toward a variety of human cancers. However, anti–PD-1 therapy in some patients provides no benefit and/or results in adverse side effects. The factors that determine whether patients will be drug sensitive or resistant are not fully understood; therefore, genomic assessment of exceptional responders can provide important insight into patient response. Here, we identified a patient with endometrial cancer who had an exceptional response to the anti–PD-1 antibody pembrolizumab. Clinical grade targeted genomic profiling of a pretreatment tumor sample from this individual identified a mutation in DNA polymerase epsilon (POLE) that associated with an ultramutator phenotype. Analysis of The Cancer Genome Atlas (TCGA) revealed that the presence of POLE mutation associates with high mutational burden and elevated expression of several immune checkpoint genes. Together, these data suggest that cancers harboring POLE mutations are good candidates for immune checkpoint inhibitor therapy. PMID:27159395

  7. The immune response to surgery and infection

    PubMed Central

    Słotwiński, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patients is associated with simultaneous activation of pro- and anti-inflammatory processes defined as SIRS (systemic inflammatory immune response) and CARS (compensatory anti-inflammatory immune response). However, it is generally believed that major surgical trauma is accompanied by sustained postoperative immunosuppression, which is particularly important in patients operated on for cancer, since the suppression of the immune system promotes not only septic complications, but also proliferation and tumor metastasis. This paper reviews the main features of immune response to surgical trauma and possibilities of its regulation. PMID:26155175

  8. Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses.

    PubMed

    Ma, Xiao-Tong; Xu, Bin; An, Li-Li; Dong, Cheng-Ya; Lin, Yong-Min; Shi, Yang; Wu, Ke-Fu

    2006-01-15

    Murine beta-defensin 2 (MBD2) is a small antimicrobial peptide of the innate immune system. Recent study showed that MBD2 could not only recruit immature dendritic cells but also activate them by Toll-like receptor 4 and thus may provide a critical link between the innate immune system and the adaptive immune response. In this report, we examined the antileukemia activity of MBD2 in a murine model of acute lymphoid leukemia (ALL) L1210. L1210 cells were engineered to secrete biologically functional MBD2. MBD2-modified L1210 (L1210-MBD2) showed significantly reduced leukemogenecity, resulting in a 80% rate of complete leukemia rejection. Inoculation of mice with L1210-MBD2 induced enhanced CTL and natural killer (NK) activity and augmented interleukin-12 and IFN-gamma production. All the recovered mice from the inoculation showed a protective immunity to the following challenge with parental L1210 cells and generate leukemia-specific memory CTL. Vaccines with irradiated L1210-MBD2 cells could cure 50% leukemia-bearing mice. Depletion of CD8+ T cells but not CD4+ T cells completely abrogated the antileukemia activity of MBD2. Interestingly, NK cells were also required for the MBD2-mediated antileukemia response, although ALL generally display a high degree of resistance to NK-mediated lysis. Our results suggest that MBD2 can activate both innate and adaptive immunity to generate potent antileukemia response, and MBD2 immunotherapy warrants further evaluation as a potential treatment for ALL.

  9. Early activation of mucosal mast cells during the primary immune response in a rodent model of neonatal asthma.

    PubMed

    Liu, Shuang; Shudou, Masachika; Maeyama, Kazutaka

    2011-02-01

    During an allergic inflammatory response in the airway, if a failure of the epithelial cell barrier occurs before the systemic immune response is triggered by allergens, more allergens can invade. Using a rat model of asthma, we previously found that mucosal mast cells, which localise to the epithelial layer of the airways, are activated to promote a pro-asthmatic immune response. In this study, we developed a neonatal rat model of allergic airway hypersensitivity that mimics some features of childhood asthma. Airway hypersensitivity was measured using unrestrained whole-body plethysmography after analysis of the serum IgE titre. Inflammatory cells and inflammatory mediators in bronchoalveolar lavage fluid samples were examined. Two mast cell-specific proteases were detected using PCR. In addition, we analysed the phenotype and the number of mast cells in the airways by immunohistochemistry, and we found that the number of mucosal mast cells and the expression level of the proteases increased 2 weeks after sensitisation. Changes in the IgE titre, airway hypersensitivity and the activation of other inflammatory cells were delayed, appearing during the 4 weeks after sensitisation. Our results indicate that the activation of mucosal mast cells contributes to the pro-asthmatic immune response. This activation may be a biomarker allowing early intervention that could help prevent allergic airway inflammation.

  10. Heat-shock protein 70 from plant biofactories of recombinant antigens activate multiepitope-targeted immune responses.

    PubMed

    Buriani, Giampaolo; Mancini, Camillo; Benvenuto, Eugenio; Baschieri, Selene

    2012-04-01

    Although a physiological role of heat-shock proteins (HSP) in antigen presentation and immune response activation has not been directly demonstrated, their use as vaccine components is under clinical trial. We have previously demonstrated that the structure of plant-derived HSP70 (pHSP70) can be superimposed to the mammalian homologue and similarly to the mammalian counterpart, pHSP70-polypeptide complexes can activate the immune system. It is here shown that pHSP70 purified from plant tissues transiently expressing the influenza virus nucleoprotein are able to induce both the activation of major histocompatibility complex class I-restricted polyclonal T-cell responses and antibody production in mice of different haplotypes without the need of adjuvant co-delivery. These results indicate that pHSP70 derived from plants producing recombinant antigens may be used to formulate multiepitope vaccines.

  11. Failure of highly active antiretroviral therapy in reconstituting immune response to Clostridium tetani vaccine in aged AIDS patients.

    PubMed

    Andrade, Regis M; Andrade, Arnaldo F B; Lazaro, Marta A; Vieira, Morgana M M; Barros, Priscila O; Borner, Alice R S; Silva-Filho, Renato G; Santos, Juliana O; Brindeiro, Rodrigo M; Tanuri, Amilcar; Bento, Cleonice A M

    2010-05-01

    The purpose of this study was to evaluate the impact of age on tetanus-specific immune response in successfully highly active antiretroviral therapy-treated AIDS patients, using healthy age-matched individuals as controls. Whole Peripheral blood mononuclear cells or CD8(+) cell-depleted peripheral blood mononuclear cells from previously tetanus toxoid (TT)-immunized individuals were activated with TT plus IL-2, and cell proliferation, cytokine production, and in vitro HIV-1 replication were measured. The in vivo magnitude of the humoral immune response was also assessed by antibody measurements. Our results showed that, compared with other groups, both in vitro TT-specific lymphoproliferation and serum antibody concentration were lower in older AIDS patients. Although the IL-1beta and tumour necrosis factor alpha (TNF-alpha) production were higher in cultures from aged HIV-1-infected patients, a dramatic damage on the interferon gamma (IFN-gamma) release was observed, when compared with younger patients. CD8(+) T lymphocytes depletion reduced IL-1beta and TNF-alpha release in the older groups, however, it did not significantly alter their IFN-gamma production. Furthermore, the neutralization of endogenous IL-10 did not change the IFN-gamma deficiency in older AIDS patients. Finally, the lower cellular immune response in this patient group was not related to in vitro HIV-1 replication. The results suggest that successfully highly active antiretroviral therapy-treated aged AIDS patients do not reconstitute the immune response to TT, making them probably more susceptible to tetanus even after vaccination.

  12. Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    PubMed Central

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Willis, Craig K. R.; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  13. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    PubMed

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  14. Modifications of Bordetella bronchiseptica core lipopolysaccharide influence immune response without affecting protective activity.

    PubMed

    Sisti, Federico; Fernández, Julieta; Cordero, Andrés; Casabuono, Adriana; Couto, Alicia; Hozbor, Daniela

    2017-02-01

    Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.

  15. Human immune responses in cryptosporidiosis

    PubMed Central

    Borad, Anoli; Ward, Honorine

    2010-01-01

    Immune responses play a critical role in protection from, and resolution of, cryptosporidiosis. However, the nature of these responses, particularly in humans, is not completely understood. Both innate and adaptive immune responses are important. Innate immune responses may be mediated by Toll-like receptor pathways, antimicrobial peptides, prostaglandins, mannose-binding lectin, cytokines and chemokines. Cell-mediated responses, particularly those involving CD4+ T cells and IFN-γ play a dominant role. Mucosal antibody responses may also be involved. Proteins mediating attachment and invasion may serve as putative protective antigens. Further knowledge of human immune responses in cryptosporidiosis is essential in order to develop targeted prophylactic and therapeutic interventions. This review focuses on recent advances and future prospects in the understanding of human immune responses to Cryptosporidium infection. PMID:20210556

  16. Inflammation and Immune Activation in Antiretroviral-Treated Human Immunodeficiency Virus Type 1-Infected African Infants and Rotavirus Vaccine Responses.

    PubMed

    Uprety, Priyanka; Lindsey, Jane C; Levin, Myron J; Rainwater-Lovett, Kaitlin; Ziemniak, Carrie; Bwakura-Dangarembizix, Mutsa; Kaplan, Susan S; Nelson, Micki; Zadzilka, Amanda; Weinberg, Adriana; Persaud, Deborah

    2017-03-15

    Biomarkers of inflammation and immune activation were correlated with rotavirus vaccine responses in 68 human immunodeficiency virus type 1 (HIV-1)–infected (and 116 HIV-exposed but uninfected (HEU) African infants receiving pentavalent rotavirus vaccine (RV5) in a clinical trial. Prevaccination, HIV-1+ infants had significantly higher concentrations of interferon γ (IFNγ), interleukin1β, interleukin 2, interleukin 6, interleukin 10 (IL-10), and soluble CD14 compared with HEU infants. Postvaccination concentrations of neutralizing antibodies to RV5 were negatively correlated with prevaccination concentrations of IL-10 (RV5 surface proteins G1 and P1) and IFNγ (G1) in the HIV-1+ infants, whereas antirotavirus immunoglobulin A (IgA) levels were not. Heightened inflammation and immune activation in HIV-1+ infants did not alter IgA responses associated with protection from rotavirus disease.

  17. Transcriptional profile of the immune response in the lungs of patients with active tuberculosis.

    PubMed

    Grassi, Manuela; Bocchino, Marialuisa; Marruchella, Almerico; Volpe, Elisabetta; Saltini, Cesare; Colizzi, Vittorio; Mariani, Francesca

    2006-10-01

    Despite advances in diagnosis and treatment, Mycobacterium tuberculosis causes active disease in about 8 million people worldwide annually. The study of the interplay between the host and the pathogen at the site of infection in human TB may contribute to elucidate the pathogenesis of the disease. In this work, using macroarray technology and real-time PCR, we analyzed the modulation of 847 genes encoding immune-inflammatory mediators in BALF samples of patients affected by active pulmonary TB (PTB) and control patients affected by non-TB diseases. The data show that the PTB milieu contains a complex network of gene activation. Different genes with adhesive properties and involved in tissue repair and fibrosis were modulated. In TB patients, we observed the up-regulation of cytokines, including IFN-gamma and IFN-gamma pathway genes, of several apoptotic genes, and of potent transcriptional activators. These findings can contribute to elucidate the mechanisms of MTB pathogenicity in humans.

  18. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses.

    PubMed

    Mittelbrunn, María; Molina, Ana; Escribese, María M; Yáñez-Mó, María; Escudero, Ester; Ursa, Angeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-27

    The integrin alpha 4 beta 1 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of alpha 4 beta 1 during the formation of the immune synapse is currently unknown. Here, we show that alpha 4 beta 1 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-alpha 4 antibodies, VLA-4 colocalizes with the CD3-zeta chain at the center of the synapse. In addition, antibody engagement of alpha 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4(+) T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-alpha 4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of alpha 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  19. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    NASA Astrophysics Data System (ADS)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  20. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    PubMed Central

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  1. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution.

  2. Rabies Virus Expressing Dendritic Cell-Activating Molecules Enhances the Innate and Adaptive Immune Response to Vaccination ▿

    PubMed Central

    Wen, Yongjun; Wang, Hualei; Wu, Hua; Yang, Fuhe; Tripp, Ralph A.; Hogan, Robert J.; Fu, Zhen F.

    2011-01-01

    Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived chemokine (MDC), and macrophage inflammatory protein 1α (MIP-1α), were individually cloned into RABV. The ability of these recombinant viruses to activate DCs was determined in vitro and in vivo. Infection of mouse bone marrow-derived DCs with each of the recombinant viruses resulted in DC activation, as shown by increased surface expression of CD11c and CD86 as well as an increased level of alpha interferon (IFN-α) production compared to levels observed after infection with the parent virus. Intramuscular infection of mice with each of the viruses recruited and/or activated more DCs and B cells in the periphery than infection with the parent virus, leading to the production of higher levels of virus-neutralizing antibodies. Furthermore, a single immunization with recombinant RABV expressing GM-CSF or MDC protected significantly more mice against intracerebral challenge with virulent RABV than did immunization with the parental virus. Yet, these viruses did not show more virulence than the parent virus, since direct intracerebral inoculation with each virus at up to 1 × 107 fluorescent focus units each did not induce any overt clinic symptom, such as abnormal behavior, or any neurological signs. Together, these data indicate that recombinant RABVs expressing these molecules activate/recruit DCs and enhance protective immune responses. PMID:21106736

  3. Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans

    PubMed Central

    Cheesman, Hilary K.; Feinbaum, Rhonda L.; Thekkiniath, Jose; Dowen, Robert H.; Conery, Annie L.; Pukkila-Worley, Read

    2016-01-01

    Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans. PMID:26818074

  4. Remune. Immune Response.

    PubMed

    Lai, Derhsing; Jones, Taff

    2002-03-01

    The Immune Response Corp (IRC) is developing Remune, a potential HIV therapeutic vaccine. Remune is based on the Salk Immunogen, which is derived from an HIV isolate which has been inactivated by chemical depletion of glycoprotein 120 (gp120). Preliminary data suggested that Remune, in combination with antiviral drug therapy, results in undetectable levels of HIV. Phase III trials commenced in May 1997 and it was initially expected that registration filings would be made in 1999. However, following interim analysis of the 2500-patient, multicenter, double-blind, pivotal phase III study (study 806) in May 1999, an independent panel recommended concluding the clinical endpoint trial and IRC and licensee, Agouron, decided to pursue alternative regulatory strategies, including initiating two additional phase III surrogate marker trials. Despite this, Agouron gave IRC notice of termination of its continued development in July 2001. In August 2001, IRC informed Agouron that, due to the total number of endpoints to date falling short of that previously assumed by Agouron, it did not intend to continue Agouron's Study 202 of Remune. In July 2001, licensee Trinity Medical Group filed an NDA with the governing health authorities in Thailand for Remune. The Thai FDA certified Immune Response's Remune manufacturing facility as being in compliance with GMP standards, following an on site inspection by Thai officials in November 2001 that was performed as a requirement of Trinity's Thai NDA. As a result of this certification, Trinity expected that a "timely determination" could be made by the Thai FDA. Rhĵne-Poulenc Rorer discontinued its part in the development of Remune, with all manufacturing, marketing and distribution rights reverting to IRC. After Agouron returned rights to Remune in July 2001, IRC heldfull rights in the US, Europe and Japan, while collaborating with its partners Trinity Medical Group and Roemmers Laboratory in the Southeast Asian and Latin American

  5. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    PubMed

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (P<0.01) the footpad thickness and serum total antioxidant activity, hepatic expression levels of both Cu-Zn SOD (SOD1) and Mn-SOD (SOD2) mRNAs. The erythrocytic SOD activity and humoral response did not differ significantly among the dietary groups. In Ca restricted groups, humoral immune response was significantly decreased (P<0.01) compared to control but increased (P<0.05) with 40ppm B supplementation. Serum levels of copper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-γ activation in human monocytes

    PubMed Central

    Pang, Tao; Benicky, Julius; Wang, Juan; Orecna, Martina; Sanchez-Lemus, Enrique; Saavedra, Juan M.

    2011-01-01

    Objective Angiotensin II type 1 receptor (AT1) blockers (ARBs) reduce the bacterial endotoxin lipopolysaccharide (LPS)-induced innate immune response in human circulating monocytes expressing few AT1. To clarify the mechanisms of anti-inflammatory effects of ARBs with different peroxisome proliferator-activated receptor-γ (PPARγ)-activating potencies, we focused our study on telmisartan, an ARB with the highest PPARγ-stimulating activity. Methods Human circulating monocytes and monocytic THP-1 (human acute monocytic leukemia cell line) cells were exposed to 50 ng/ml LPS with or without pre-incubation with telmisartan. AT1 mRNA and protein expressions were determined by real-time PCR and membrane receptor binding assay, respectively. The expression of pro-inflammatory factors was determined by real-time PCR, western blot analysis and ELISA. PPARγ activation was measured by electrophoretic mobility shift assay and its role was determined by pharmacological inhibition and PPARγ gene silencing. Results In human monocytes, telmisartan significantly attenuated the LPS-induced expression of pro-inflammatory factors, the release of pro-inflammatory cytokines and prostaglandin E2, nuclear factor-κB activation and reactive oxygen species formation. In THP-1 cells, telmisartan significantly reduced LPS-induced tumor necrosis factor-α, inhibitor of κB-α, monocyte chemotactic protein-1 (MCP-1) and lectin-like oxidized low-density lipoprotein receptor-1 gene expression and MCP-1-directed migration. Telmisartan also stimulated the expression of the PPARγ target genes cluster of differentiation 36 and ATP-binding cassette subfamily G member 1 in monocytes. The anti-inflammatory effects of telmisartan were prevented by both PPARγ antagonism and PPARγ gene silencing. Anti-inflammatory effects of ARBs correlated with their PPARγ agonist potency. Conclusion Our observations demonstrate that in human monocytes, ARBs inhibit the LPS-induced pro-inflammatory response to a

  7. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response.

    PubMed

    Gramaglia, Irene; Velez, Joyce; Combes, Valery; Grau, Georges E R; Wree, Melanie; van der Heyde, Henri C

    2017-03-23

    Clinical studies indicate that thrombocytopenia correlates with the development of severe falciparum malaria, suggesting that platelets either contribute to control of parasite replication, possibly as innate parasite killer cells or function in eliciting pathogenesis. Removal of platelets by anti-CD41 mAb treatment, platelet inhibition by aspirin, and adoptive transfer of wild-type (WT) platelets to CD40-KO mice, which do not control parasite replication, resulted in similar parasitemia compared with control mice. Human platelets at a physiologic ratio of 1 platelet to 9 red blood cells (RBCs) did not inhibit the in vitro development or replication of blood-stage Plasmodium falciparum The percentage of Plasmodium-infected (iRBCs) with bound platelets during the ascending parasitemia in Plasmodium chabaudi- and Plasmodium berghei-infected mice and the 48-hour in vitro cycle of P falciparum was <10%. P chabaudi and P berghei iRBCs with apoptotic parasites (TdT(+)) exhibited minimal platelet binding (<5%), which was similar to nonapoptotic iRBCs. These findings collectively indicate platelets do not kill bloodstage Plasmodium at physiologically relevant effector-to-target ratios. P chabaudi primary and secondary parasitemia was similar in mice depleted of platelets by mAb-injection just before infection, indicating that activation of the protective immune response does not require platelets. In contrast to the lack of an effect on parasite replication, adoptive transfer of WT platelets to CD40-KO mice, which are resistant to experimental cerebral malaria, partially restored experimental cerebral malaria mortality and symptoms in CD40-KO recipients, indicating platelets elicit pathogenesis and platelet CD40 is a key molecule. © 2017 by The American Society of Hematology.

  8. Innate Immune Activation in Obesity

    PubMed Central

    Lumeng, Carey N.

    2014-01-01

    The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074

  9. Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans.

    PubMed

    Shivers, Robert P; Kooistra, Tristan; Chu, Stephanie W; Pagano, Daniel J; Kim, Dennis H

    2009-10-22

    Microbes represent both an essential source of nutrition and a potential source of lethal infection to the nematode Caenorhabditis elegans. Immunity in C. elegans requires a signaling module comprised of orthologs of the mammalian Toll-interleukin-1 receptor (TIR) domain protein SARM, the mitogen-activated protein kinase kinase kinase (MAPKKK) ASK1, and MAPKK MKK3, which activates p38 MAPK. We determined that the SARM-ASK1-MKK3 module has dual tissue-specific roles in the C. elegans response to pathogens--in the cell-autonomous regulation of innate immunity and the neuroendocrine regulation of serotonin-dependent aversive behavior. SARM-ASK1-MKK3 signaling in the sensory nervous system also regulates egg-laying behavior that is dependent on bacteria provided as a nutrient source. Our data demonstrate that these physiological responses to bacteria share a common mechanism of signaling through the SARM-ASK1-MKK3 module and suggest the co-option of ancestral immune signaling pathways in the evolution of physiological responses to microbial pathogens and nutrients.

  10. Molecular and Cellular Mechanisms of Antitumor Immune Response Activation by Dendritic Cells

    PubMed Central

    Markov, O. V.; Mironova, N. L.; Vlasov, V. V.; Zenkova, M. A.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in the initiation and regulation of the antitumor immune response. Already , DC-based antitumor vaccines have been thoroughly explored both in animal tumor models and in clinical trials. DC-based vaccines are commonly produced from DC progenitors isolated from peripheral blood or bone marrow by culturing in the presence of cytokines, followed by loading the DCs with tumor-specific antigens, such as DNA, RNA, viral vectors, or a tumor cell lysate. However, the efficacy of DC-based vaccines remains low. Undoubtedly, a deeper understanding of the molecular mechanisms by which DCs function would allow us to enhance the antitumor efficacy of DC-based vaccines in clinical applications. This review describes the origin and major subsets of mouse and human DCs, as well as the differences between them. The cellular mechanisms of presentation and cross-presentation of exogenous antigens by DCs to T cells are described. We discuss intracellular antigen processing in DCs, cross-dressing, and the acquisition of the antigen cross-presentation function. A particular section in the review describes the mechanisms of tumor escape from immune surveillance through the suppression of DCs functions. PMID:27795841

  11. Circulating myeloid-derived suppressor cells predict disease activity and treatment response in patients with immune thrombocytopenia

    PubMed Central

    Zhou, J.; Zhou, Y.; Wen, J.; Sun, X.; Zhang, X.

    2017-01-01

    Immune thrombocytopenia (ITP) is a disease characterized by isolated thrombocytopenia. Abnormal effector T cell activation is an important mechanism in the pathogenesis of ITP. Regulatory T cells (Treg) have a strong immunosuppressive function for T cell activation and their importance in the pathophysiology and clinical treatment of ITP has been confirmed. Myeloid-derived suppressor cells (MDSCs) are other immunosuppressive cells, which can also suppress T cell activation by secreting arginase, iNOS and ROS, and are essential for Treg cells’ differentiation and maturation. Therefore, we speculate that MDSCs might also be involved in the immune-dysregulation mechanism of ITP. In this study, we tested MDSCs and Treg cells in peripheral blood samples of twenty-five ITP patients and ten healthy donors. We found that MDSCs and Treg cells decreased simultaneously in active ITP patients. Relapsed ITP patients showed lower MDSCs levels compared with new patients. All patients received immunosuppressive treatment including dexamethasone alone or in combination with intravenous immune globulin. We found that MDSCs’ level after treatment correlated with platelet recovery. Our study is the first that focused on MDSCs’ role in ITP. Based on our results, we concluded that circulating MDSCs could predict disease activity and treatment response in ITP patients. This preliminary conclusion indicates a substantial significance of MDSCs in the pathophysiology and clinical treatment of ITP, which deserves further investigation. PMID:28225866

  12. Effects of an active immunization on the immune response of laying Japanese quail (Coturnix coturnix japonica) fed with or without genetically modified Bacillus thuringiensis-maize.

    PubMed

    Scholtz, N D; Halle, I; Dänicke, S; Hartmann, G; Zur, B; Sauerwein, H

    2010-06-01

    Potentially adverse effects of diets containing transgenic plants are a concern for many consumers, particularly in Europe. For Bacillus thuringiensis-maize, several studies in livestock and poultry showed that the zootechnical data provide no indication for such adverse effects. These studies were all done in homeostatic situations; it remained open whether a deflection of the regulatory physiological systems might yield divergent dynamic responses in B. thuringiensis-maize-fed animals. We therefore tested the effect of an active immunization using BSA as antigen in a feeding regimen with or without B. thuringiensis-maize using quail as a model organism. Newly hatched Japanese quail were randomly allocated to 2 groups (n=120 per group) fed with diets containing either B. thuringiensis-maize or isogenic maize of the same cultivar. The diets did not differ in concentrations of the mycotoxins deoxynivalenol and zearalenone, which were both far below guidance values. After 16 wk on the experimental diets, one-half of each group was immunized against BSA. The remaining birds were injected with saline. Thirty-six hours after the injection, half of the BSA-injected subgroup (n=30) and half of the saline subgroup (n=30) from B. thuringiensis-maize- and isogenic-fed birds were killed and blood samples were collected and analyzed for serum zinc levels, indicative for acute phase response. For determining IgY-mediated immune responses, eggs were collected every other week for 6 wk after the injections from the remaining birds and total IgY concentrations and BSA-specific IgY titers were measured in egg yolk. The BSA injections did not elicit significant decreases of serum zinc concentrations. The serum zinc levels were significantly higher in B. thuringiensis-maize-fed quail. Expectedly, total IgY as well as BSA-specific IgY titers increased with time in the BSA-immunized quail. The response of both variables to the BSA injection did not differ between the feeding groups

  13. Activity modulation of microbial enzymes by llama (Lama glama) heavy-chain polyclonal antibodies during in vivo immune responses.

    PubMed

    Ferrari, A; Weill, F S; Paz, M L; Cela, E M; González Maglio, D H; Leoni, J

    2012-03-01

    Since they were first described in 1993, it was found that recombinant variable fragments (rVHHs) of heavy-chain antibodies (HCAbs) from Camelidae have unusual biophysical properties, as well as a special ability to interact with epitopes that are cryptic for conventional Abs. It has been assumed that in vivo raised polyclonal HCAbs (pHCAbs) should behave in a similar manner than rVHHs; however, this assumption has not been tested sufficiently. Furthermore, our own preliminary work on a single serum sample from a llama immunized with a β-lactamase, has suggested that pHCAbs have no special ability to down-modulate catalytic activity. In this work, we further explored the interaction of pHCAbs from four llamas raised against two microbial enzymes and analyzed it within a short and a long immunization plan. The relative contribution of pHCAbs to serum titer was found to be low compared with that of the most abundant conventional subisotype (IgG(1)), during the whole immunization schedule. Furthermore, pHCAbs not only failed to inhibit the enzymes, but also activated one of them. Altogether, these results suggest that raising high titer inhibitory HCAbs is not a straightforward strategy - neither as a biotechnological strategy nor in the biological context of an immune response against infection - as raising inhibitory rVHHs.

  14. Catalog of Differentially Expressed Long Non-Coding RNA following Activation of Human and Mouse Innate Immune Response.

    PubMed

    Roux, Benoit T; Heward, James A; Donnelly, Louise E; Jones, Simon W; Lindsay, Mark A

    2017-01-01

    Despite increasing evidence to indicate that long non-coding RNAs (lncRNAs) are novel regulators of immunity, there has been no systematic attempt to identify and characterize the lncRNAs whose expression is changed following the induction of the innate immune response. To address this issue, we have employed next-generation sequencing data to determine the changes in the lncRNA profile in four human (monocytes, macrophages, epithelium, and chondrocytes) and four mouse cell types (RAW 264.7 macrophages, bone marrow-derived macrophages, peritoneal macrophages, and splenic dendritic cells) following exposure to the pro-inflammatory mediators, lipopolysaccharides (LPS), or interleukin-1β. We show differential expression of 204 human and 210 mouse lncRNAs, with positional analysis demonstrating correlation with immune-related genes. These lncRNAs are predominantly cell-type specific, composed of large regions of repeat sequences, and show poor evolutionary conservation. Comparison within the human and mouse sequences showed less than 1% sequence conservation, although we identified multiple conserved motifs. Of the 204 human lncRNAs, 21 overlapped with syntenic mouse lncRNAs, of which five were differentially expressed in both species. Among these syntenic lncRNA was IL7-AS (antisense), which was induced in multiple cell types and shown to regulate the production of the pro-inflammatory mediator interleukin-6 in both human and mouse cells. In summary, we have identified and characterized those lncRNAs that are differentially expressed following activation of the human and mouse innate immune responses and believe that these catalogs will provide the foundation for the future analysis of the role of lncRNAs in immune and inflammatory responses.

  15. Protease-activated receptor-2 regulates the innate immune response to viral infection in a coxsackievirus B3-induced myocarditis.

    PubMed

    Weithauser, Alice; Bobbert, Peter; Antoniak, Silvio; Böhm, Andreas; Rauch, Bernhard H; Klingel, Karin; Savvatis, Konstantinos; Kroemer, Heyo K; Tschope, Carsten; Stroux, Andrea; Zeichhardt, Heinz; Poller, Wolfgang; Mackman, Nigel; Schultheiss, Heinz-Peter; Rauch, Ursula

    2013-11-05

    This study sought to evaluate the role of protease-activated receptor-2 (PAR2) in coxsackievirus B3 (CVB3)-induced myocarditis. An infection with CVB3 leads to myocarditis. PAR2 modulates the innate immune response. Toll-like receptor-3 (TLR3) is crucial for the innate immune response by inducing the expression of the antiviral cytokine interferon-beta (IFNβ). To induce myocarditis, wild-type (wt) and PAR2 knockout (ko) mice were infected with 10(5) plaque-forming units CVB3. Mice underwent hemodynamic measurements with a 1.2-F microconductance catheter. Wt and PAR2ko hearts and cardiac cells were analyzed for viral replication and immune response with plaque assay, quantitative polymerase chain reaction, Western blot, and immunohistochemistry. Compared with wt mice, PAR2ko mice and cardiomyocytes exhibited a reduced viral load and developed no myocarditis after infection with CVB3. Hearts and cardiac fibroblasts from PAR2ko mice expressed higher basal levels of IFNβ than wt mice did. Treatment with CVB3 and polyinosinic:polycytidylic acid led to higher IFNβ expression in PAR2ko than in wt fibroblasts and reduced virus replication in PAR2ko fibroblasts was abrogated by neutralizing IFNβ antibody. Overexpression of PAR2 reduced the basal IFNβ expression. Moreover, a direct interaction between PAR2 and Toll-like receptor 3 was observed. PAR2 expression in endomyocardial biopsies of patients with nonischemic cardiomyopathy was positively correlated with myocardial inflammation and negatively with IFNβ expression and left ventricular ejection fraction. PAR2 negatively regulates the innate immune response to CVB3 infection and contributes to myocardial dysfunction. The antagonism of PAR2 is of therapeutic interest to strengthen the antiviral response after an infection with a cardiotropic virus. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  17. β-Glucan-Activated Human B Lymphocytes Participate in Innate Immune Responses by Releasing Proinflammatory Cytokines and Stimulating Neutrophil Chemotaxis.

    PubMed

    Ali, Mohamed F; Driscoll, Christopher B; Walters, Paula R; Limper, Andrew H; Carmona, Eva M

    2015-12-01

    B lymphocytes play an essential regulatory role in the adaptive immune response through Ab production during infection. A less known function of B lymphocytes is their ability to respond directly to infectious Ags through stimulation of pattern recognition receptors expressed on their surfaces. β-Glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response, as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B lymphocytes, compared with the well-established TLR-9 agonist CpG oligodeoxynucleotide (CpG), and study the participation of β-glucan-stimulated B cells in the innate immune response. In this article, we demonstrate that β-glucan-activated B lymphocytes upregulate proinflammatory cytokines (TNF-α, IL-6, and IL-8). Of interest, β-glucan, unlike CpG, had no effect on B lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs, and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan-stimulated B lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan-activated B lymphocytes have an important and novel role in fungal innate immune responses. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. IL-25 promotes Th2 immunity responses in airway inflammation of asthmatic mice via activation of dendritic cells.

    PubMed

    Hongjia, Li; Caiqing, Zhang; Degan, Lu; Fen, Liu; Chao, Wang; Jinxiang, Wu; Liang, Dong

    2014-08-01

    Allergic asthma occurs as a consequence of inappropriate immunologic inflammation to allergens and characterized by Th2 adaptive immune response. Recent studies indicated that interleukin (IL)-25, a member of the IL-17 cytokine family, had been implicated in inducing Th2 cell-dependent inflammation in airway epithelium and IL-25-deficient mice exhibit impaired Th2 immunity responses; however, how these cytokines influence innate immune responses remains poorly understood. In this study, we used ovalbumin (OVA) sensitization and challenge to induce the murine asthmatic model and confirmed by histological analysis of lung tissues and serum levels of total and OVA-specific immunoglobulin (Ig)-E. The expression of IL-25 was detected by quantitative real-time PCR and immunohistochemistry, respectively, and the dendritic cells (DCs) activation was detected by levels of CD80 and CD86 in bronchoalveolar lavage fluid (BALF) by flow cytometry. The mice sensitized and challenged with OVA showed high expression of IL-25 in both mRNA and protein levels in lungs. We detected the expression of CD80 and CD86 in BALF was also increased. A tight correlation between IL-25 mRNA and other Th2 cells producing cytokines such as IL-4, IL-5, and IL-13 in BALF was identified. Furthermore, when the asthmatic mice were treated with inhaled corticosteroids, the inflammatory cells infiltration and the inflammatory cytokines secretion were significantly decreased. In this study, we show that IL-25 promoted the accumulation of co-stimulatory molecules of CD80 and CD86 on DCs and then induced the differentiation of prime naive CD4(+) T cells to become proinflammatory Th2 cells and promoted Th2 cytokine responses in OVA-induced airway inflammation. The ability of IL-25 to promote the activation and differentiation of DCs population was identified as a link between the IL-17 cytokine family and the innate immune response and suggested a previously unrecognized innate immune pathway that promotes Th2

  19. Haemolytic activities and adjuvant effect of Astragalus membranaceus saponins (AMS) on the immune responses to ovalbumin in mice.

    PubMed

    Yang, Zhi-Gang; Sun, Hong-Xiang; Fang, Wei-Huan

    2005-10-25

    In this study, the haemolytic activities of Astragalus membranaceus saponins (AMS) and its adjuvant potentials on the cellular and humoral immune responses of ICR mice against OVA were evaluated. We determined the haemolytic activity of AMS using 0.5% rabbit red blood cell. AMS showed a slight haemolytic effect, with its haemolytic percent being 0.66% at the concentration of 500 microg/ml. Furthermore, the adjuvant potentials of AMS at three dose levels on the cellular and humoral immune responses of ICR mice against ovalbumin (OVA) were investigated. ICR mice were immunized subcutaneously with OVA 100 microg alone or with OVA 100 microg dissolved in saline containing Alum (200 microg), QuilA (10 and 20 microg) or AMS (50, 100 or 200 microg) on Day 1 and 15. Two weeks later (Day 28), concanavalin A (Con A)-, lipopolysaccharide (LPS)- and OVA-stimulated splenocyte proliferation and OVA-specific antibodies in serum were measured. AMS significantly enhanced the Con A-, LPS-, and OVA-induced splenocyte proliferation in the OVA-immunized mice especially at a dose of 100 microg (P<0.05 or P<0.001). OVA-specific IgG, IgG1 and IgG2b antibody titers in serum were also significantly enhanced by AMS compared with OVA control group (P<0.01 or P<0.001). Moreover, no significant differences (P>0.05) were observed between enhancing effect of AMS and QuilA on the OVA-specific IgG, IgG1 and IgG2b antibody responses to OVA in mice. In conclusion, the results suggest that AMS could be safely used as adjuvant with low or non-haemolytic effect.

  20. Neutrophil Migration in the Activation of the Innate Immune Response to Different Flavobacterium psychrophilum Vaccines in Zebrafish (Danio rerio)

    PubMed Central

    Solís, Camila J.; Poblete-Morales, Matías; Cabral, Sergio; Valdés, Juan A.; Reyes, Ariel E.; Avendaño-Herrera, Ruben; Feijóo, Carmen G.

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative bacterium, responsible for the bacterial cold-water disease and the rainbow trout fry syndrome in freshwater salmonid fish. At present, there is only one commercial vaccine in Chile, made with two Chilean F. psychrophilum isolates and another licensed in Europe. The present study analyzed neutrophil migration, as a marker of innate immune activation, in zebrafish (Danio rerio) in response to different F. psychrophilum bath vaccines, which is the first step in evaluating vaccine effectiveness and efficiency in fish. Results indicated that bacterins of the LM-02-Fp isolate were more immunogenic than those from the LM-13-Fp isolate. However, no differences were observed between the same bacteria inactivated by either formaldehyde or heat. Importantly, the same vaccine formulation without an adjuvant only triggered a mild neutrophil migration compared to the complete vaccine. Observations also found that, after a year of storage at 4°C, the activation of the innate immune system by the different vaccines was considerably decreased. Finally, new vaccine formulations prepared with heat and formaldehyde inactivated LM-02-Fp were significantly more efficient than the available commercial vaccine in regard to stimulating the innate immune system. PMID:25815347

  1. Immune Responses in Parasitic Diseases

    DTIC Science & Technology

    1982-09-01

    RESPONSES IN PARASITIC DISEASES Final Scientific Report Daniel J. Stechschulte, M.D. Herbert B. Lindsley, M.D. September 1982 (July 1974 - December 1979...REPORT & PERIOD COVERED IMMUNE RESPONSES IN PARASITIC DISEASES Final Report July 1977 - Dec. 1979 6. PERFORMING ORG. REPORT NUMBER S 4 7. AUTNIOR(a) 6...DAMD 17-74-C-4136 AD_______________ IMMUNE RESPONSES IN PARASITIC DISEASES Final Scientific Report Daniel J. Stechschulte, M.D. Herbert B. Lindsley

  2. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood.

    PubMed

    Schaafsma, Wandert; Basterra, Laura Bozal; Jacobs, Sabrina; Brouwer, Nieske; Meerlo, Peter; Schaafsma, Anne; Boddeke, Erik W G M; Eggen, Bart J L

    2017-10-01

    Maternal inflammation during pregnancy can have detrimental effects on embryonic development that persist during adulthood. However, the underlying mechanisms and insights in the responsible cell types are still largely unknown. Here we report the effect of maternal inflammation on fetal microglia, the innate immune cells of the central nervous system (CNS). In mice, a challenge with LPS during late gestation stages (days 15-16-17) induced a pro-inflammatory response in fetal microglia. Adult whole brain microglia of mice that were exposed to LPS during embryonic development displayed a persistent reduction in pro-inflammatory activation in response to a re-challenge with LPS. In contrast, hippocampal microglia of these mice displayed an increased inflammatory response to an LPS re-challenge. In addition, a reduced expression of brain-derived neurotrophic factor (BDNF) was observed in hippocampal microglia of LPS-offspring. Microglia-derived BDNF has been shown to be important for learning and memory processes. In line with these observations, behavioral- and learning tasks with mice that were exposed to maternal inflammation revealed reduced home cage activity, reduced anxiety and reduced learning performance in a T-maze. These data show that exposure to maternal inflammation during late gestation results in long term changes in microglia responsiveness during adulthood, which is different in nature in hippocampus compared to total brain microglia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of Pseudoalteromonas sp. BC228 on digestive enzyme activity and immune response of juvenile sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Ma, Yuexin; Sun, Feixue; Zhang, Congyao; Bao, Pengyun; Cao, Shuqing; Zhang, Meiyan

    2014-12-01

    A marine bacterium, Pseudoalteromonas sp. BC228 was supplemented to feed in a feeding experiment aiming to determine its ability of enhancing the digestive enzyme activity and immune response of juvenile Apostichopus japonicus. Sea cucumber individuals were fed with the diets containing 0 (control), 105, 107 and 109 CFU g-1 diet of BC228 for 45 days. Results showed that intestinal trypsin and lipase activities were significantly enhanced by 107 and 109 CFU g-1 diet of BC228 in comparison with control ( P < 0.01). The phagocytic activity in the coelomocytes of sea cucumber fed the diet supplemented with 107 CFU g-1 diet of BC228 was significantly higher than that of those fed control diet ( P < 0.05). In addition, 105 and 107 CFU g-1 diet of BC228 significantly enhanced lysozyme and phenoloxidase activities in the coelomic fluid of sea cucumber, respectively, in comparison with other diets ( P < 0.01). Sea cucumbers, 10 each diet, were challenged with Vibrio splendidus NB13 after 45 days of feeding. It was found that the cumulative incidence and mortality of sea cucumber fed with BC228 containing diets were lower than those of animals fed control diet. Our findings evidenced that BC228 supplemented in diets improved the digestive enzyme activity of juvenile sea cucumber, stimulated its immune response and enhanced its resistance to the infection of V. splendidus.

  4. Immune Response to Snake Envenoming and Treatment with Antivenom; Complement Activation, Cytokine Production and Mast Cell Degranulation

    PubMed Central

    Stone, Shelley F.; Isbister, Geoffrey K.; Shahmy, Seyed; Mohamed, Fahim; Abeysinghe, Chandana; Karunathilake, Harendra; Ariaratnam, Ariaranee; Jacoby-Alner, Tamara E.; Cotterell, Claire L.; Brown, Simon G. A.

    2013-01-01

    Background Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis) and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper) and antivenom treatment. Methodology/Principal Findings Plasma concentrations of Interleukin (IL)-6, IL-10, tumor necrosis factor α (TNFα), soluble TNF receptor I (sTNFRI), anaphylatoxins (C3a, C4a, C5a; markers of complement activation), mast cell tryptase (MCT), and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%), satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%). Pyrogenic reactions were observed in 32/120 patients (27%). All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. Conclusions/Significance We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high levels of mast

  5. Eosinophils in mucosal immune responses

    PubMed Central

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  6. Immune responses to bioengineered organs

    PubMed Central

    Ochando, Jordi; Charron, Dominique; Baptista, Pedro M.; Uygun, Basak E.

    2017-01-01

    Purpose of review Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. Recent findings Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. Summary Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs. PMID:27926545

  7. ASTROGLIOSIS INVOLVES ACTIVATION OF RIG-LIKE SIGNALING IN THE INNATE IMMUNE RESPONSE AFTER SPINAL CORD INJURY

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Minkiewicz, Julia; Wang, Xiaoliang; de Rivero Vaccari, Juan Carlos; German, Ramon; Marcillo, Alex E.; Dietrich, W. Dalton; Keane, Robert W.

    2011-01-01

    Spinal cord injury (SCI) induces a glial response in which astrocytes become activated and produce inflammatory mediators. The molecular basis for regulation of glial-innate immune responses remains poorly understood. Here, we examined the activation of retinoic acid inducible gene (RIG)-like receptors (RLRs) and their involvement in regulating inflammation following SCI. We show that astrocytes express two intracellular RLRs: RIG-I and melanoma differentiation-associated gene 5 (MDA5). SCI and stretch injury of cultured astrocytes stimulated RLR signaling as determined by phosphorylation of IRF3 leading to production of type I interferons (IFNs). RLR signaling stimulation with synthetic RNA resulted in RLR activation, phosphorylation of interferon regulatory factor 3 (IRF3), and increased expression of glial fibrillary acidic protein and vimentin, two hallmarks of reactive astrocytes. Moreover, mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an RLR inhibitor, decreased production of glial fibrillary acidic protein (GFAP) and vimentin following RIG-I signaling stimulation. Our findings identify a role for RLR signaling and type I IFN in regulating astrocyte innate immune responses after SCI. PMID:22161971

  8. Multivariate inference of pathway activity in host immunity and response to therapeutics

    PubMed Central

    Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.

    2014-01-01

    Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207

  9. Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns[W][OA

    PubMed Central

    Millet, Yves A.; Danna, Cristian H.; Clay, Nicole K.; Songnuan, Wisuwat; Simon, Matthew D.; Werck-Reichhart, Danièle; Ausubel, Frederick M.

    2010-01-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of β-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid–jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways. PMID:20348432

  10. Epigenetics and the Adaptive Immune Response

    PubMed Central

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathogens. While the immune system benefits from the dynamic nature of the epigenome, such benefit comes at a cost – increased likelihood of disease-causing mutation. PMID:22789989

  11. Late-Stage Cancer Patients Remain Highly Responsive to Immune Activation by the Selective TLR8 Agonist Motolimod (VTX-2337).

    PubMed

    Dietsch, Gregory N; Randall, Tressa D; Gottardo, Raphael; Northfelt, Donald W; Ramanathan, Ramesh K; Cohen, Peter A; Manjarrez, Kristi L; Newkirk, Mona; Bryan, James Kyle; Hershberg, Robert M

    2015-12-15

    Immunotherapy as a treatment for cancer holds the promise of complete and durable tumor remission, yet the immunosuppressive environment created by many tumors, advanced patient age, and previous treatments with cytotoxic agents may limit the approach. The activity of motolimod (VTX-2337), a potent and selective Toll-like receptor 8 (TLR8) agonist, was therefore assessed in the context of advanced, late-stage cancer patients. The repertoire of mediators induced from human peripheral blood mononuclear cells in response to motolimod was characterized. Translational studies in cynomolgus monkeys elucidated the activity of motolimod on an intact immune system, identified biomarkers of TLR8 activation, and defined the relationship between the pharmacokinetic and pharmacodynamic (PK/PD) response. The PK/PD relationship for motolimod in cancer patients was assessed, compared with preclinical findings, and contrasted with activity in healthy volunteers. In late-stage cancer patients, plasma levels of multiple biomarkers, including IL6, G-CSF, MCP-1, and MIP1-β, increased with increasing motolimod dose. The magnitude and breadth of the biomarker response closely aligned with the response seen in preclinical studies, demonstrating that advanced cancer patients remained responsive to TLR8 activation. In addition, the PK/PD response in cancer patients closely aligned with the activity of motolimod seen in healthy volunteers. Late-stage cancer patients are highly sensitive to TLR8 activation by motolimod. Tumor burden, advanced age, and prior treatment history with cytotoxic agents did not moderate or modify the response predicted by nonclinical studies and confirmed in healthy volunteers. Clin Cancer Res; 21(24); 5445-52. ©2015 AACR. ©2015 American Association for Cancer Research.

  12. Cellular immune responses in human immunodeficiency virus (HIV)-1-infected children: is immune restoration by highly active anti-retroviral therapy comparable to non-progression?

    PubMed

    Hainaut, M; Verscheure, V; Ducarme, M; Schandené, L; Levy, J; Mascart, F

    2011-07-01

    The objective of this study was to investigate whether the restored immune functions of vertically human immunodeficiency virus (HIV)-infected children who were severely immunodeficient before the initiation of highly active anti-retroviral therapy (HAART) are comparable to those of untreated slow progressors. We therefore assessed T cell proliferation and cytokine [interferon (IFN)-γ, interleukin (IL)-5 and IL-13] secretions after mitogen, recall antigens and HIV-1-specific stimulation in 12 untreated slow progressors, 16 untreated progressors and 18 treated patients. Treated children were profoundly immunodeficient before the initiation of HAART and had long-lasting suppression of viral replication on treatment. We demonstrated that slow progressors are characterized not only by the preservation of HIV-1-specific lymphoproliferative responses but also by the fact that these responses are clearly T helper type 1 (Th1)-polarized. Children on HAART had proliferative responses to HIV-1 p24 antigen, purified protein derivative (PPD) and tetanus antigen similar to slow progressors and higher than those of progressors. However, in contrast to slow progressors, most treated children exhibited a release of Th2 cytokines accompanying the IFN-γ secretion in response to the HIV-1 p24 antigen. Moreover, despite higher proliferative responses to phytohaemagglutinin (PHA) than the two groups of untreated children, treated children had lower levels of IFN-γ secretion in response to PHA than slow progressors. These data show that in severely immunodeficient vertically HIV-infected children, a long-lasting HAART allows recovering lymphoproliferative responses similar to untreated slow progressors. However, alterations in IFN-γ secretion in response to the mitogen PHA persisted, and their cytokine release after HIV-specific stimulation was biased towards a Th2 response. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  13. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review.

    PubMed

    Mocchegiani, Eugenio; Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; Ostan, Rita; Cevenini, Elisa; Gonos, Efstathios S; Monti, Daniela

    2014-01-01

    Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.

  14. Generation of cellular immune responses to HCV NS5 protein through in vivo activation of dendritic cells

    PubMed Central

    Wintermeyer, P.; Gehring, S.; Eken, A.; Wands, J. R.

    2014-01-01

    SUMMARY Chronic hepatitis C (HCV) infection is a substantial medical problem that leads to progressive liver disease, cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to achieve sustained cellular immune responses in vivo to a HCV nonstructural protein using dendritic cell (DC)-based immunization approach. We targeted the HCV NS5 protein to DCs in vivo by injecting microparticles loaded with this antigen. The DC population was expanded in BALB/C mice (H-2d) by hydrodynamic injection of a plasmid pUMVC3-hFLex expressing the secreted portion of the human Fms-like tyrosine kinase receptor-3 ligand (hFlt3). Mice were subsequently injected with microparticles coated with HCV NS5 protein via the tail vein. Cellular immune responses were determined with respect to secretion of INFγ and IL2 by CD4+ cells and cytotoxic T-lymphocyte (CTL) assays in vitro; inhibition of tumour cell growth was employed for the assessment of CD8+ generated activity in vivo. We found that Flt3L treatment expanded the DC population in the spleen to 43%, and such cells displayed a striking upregulation of CD86 as well as CD80 and CD40 co-stimulating molecules. Viral antigen-specific TH1 cytokine secretion by splenocytes was generated, and CTL activity against syngeneic NS5 expressing myeloma target cells was observed. In addition, these cells inhibited tumour growth indicating that NS5-specific robust CTL activity was operative in vivo. Thus, the capability of activating DCs in vivo using the methods described is valuable as a therapeutic vaccine strategy for chronic HCV infection. PMID:20002303

  15. Nef induces apoptosis by activating JNK signaling pathway and inhibits NF-kappaB-dependent immune responses in Drosophila.

    PubMed

    Lee, Sung Bae; Park, Jeehye; Jung, Jae U; Chung, Jongkyeong

    2005-05-01

    The human immunodeficiency virus type 1 (HIV-1) nef gene encodes a 27-kDa protein that plays a crucial role during AIDS pathogenesis, but its exact functional mechanism has not been fully elucidated and remains controversial. The present study illuminated the in vivo functions of Nef using Drosophila, in which genetic analyses can be conveniently conducted. Using Drosophila transgenic lines for wild-type Nef, we demonstrated that Nef is not involved in the regulation of cell proliferation but rather specifically induces caspase-dependent apoptosis in wings in a cell-autonomous manner. Interestingly, myristoylation-defective Nef completely failed to induce the apoptotic wing phenotypes, consistent with previous reports demonstrating a crucial role for membrane localization of Nef in vivo. Further genetic and immunohistochemical studies revealed that Nef-dependent JNK activation is responsible for apoptosis. Furthermore, we found that ectopic expression of Nef inhibits Drosophila innate immune responses including Relish NF-kappaB activation with subsequent induction of an antimicrobial peptide, diptericin. The in vivo functions of Nef in Drosophila are highly consistent with those found in mammals and so we propose that Nef regulates evolutionarily highly conserved signaling molecules of the JNK and NF-kappaB signaling pathways at the plasma membrane, and consequently modulates apoptosis and immune responses in HIV target cells.

  16. THE INITIAL PHASE OF AN IMMUNE RESPONSE FUNCTIONS TO ACTIVATE REGULATORY T CELLS

    PubMed Central

    O’Gorman, William E.; Dooms, Hans; Thorne, Steve H.; Kuswanto, Wilson F.; Simonds, Erin F.; Krutzik, Peter O.; Nolan, Garry P.; Abbas, Abul K.

    2009-01-01

    An early reaction of CD4+ T lymphocytes to antigen is the production of cytokines, notably IL-2. In order to detect cytokine dependent responses, naive antigen-specific T cells were stimulated in vivo and the presence of phosphorylated STAT5 molecules was used to identify the cell populations responding to IL-2. Within hours of T-cell priming, IL-2-dependent STAT5 phosphorylation occurred primarily in Foxp3+ regulatory T cells. In contrast, the antigen-specific T cells received STAT5 signals only after repeated antigen exposure or memory differentiation. Regulatory T cells receiving IL-2 signals proliferated and developed enhanced suppressive activity. These results indicate that one of the earliest events in a T cell response is the activation of endogenous regulatory cells, potentially to prevent autoimmunity. PMID:19542444

  17. Protective Immunity to Hepatitis B and Streptococcus Pneumoniae in Active Duty Women Versus Men: Prevalence and Responses to Preventive Immunization

    DTIC Science & Technology

    1996-04-01

    corticosteroids, autoimmune diseases such as systemic lupus erythematosus, prior hepatitis B infection or any active systemic infectious disease. Each study...19), and 23F (23) ( Danish classification system used worldwide with U.S. system notation in parentheses if different). Those subjects identified

  18. Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1.

    PubMed

    Wassermann, Ruth; Gulen, Muhammet F; Sala, Claudia; Perin, Sonia Garcia; Lou, Ye; Rybniker, Jan; Schmid-Burgk, Jonathan L; Schmidt, Tobias; Hornung, Veit; Cole, Stewart T; Ablasser, Andrea

    2015-06-10

    Cytosolic detection of microbial products is essential for the initiation of an innate immune response against intracellular pathogens such as Mycobacterium tuberculosis (Mtb). During Mtb infection of macrophages, activation of cytosolic surveillance pathways is dependent on the mycobacterial ESX-1 secretion system and leads to type I interferon (IFN) and interleukin-1β (IL-1β) production. Whereas the inflammasome regulates IL-1β secretion, the receptor(s) responsible for the activation of type I IFNs has remained elusive. We demonstrate that the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential for initiating an IFN response to Mtb infection. cGAS associates with Mtb DNA in the cytosol to stimulate cyclic GAMP (cGAMP) synthesis. Notably, activation of cGAS-dependent cytosolic host responses can be uncoupled from inflammasome activation by modulating the secretion of ESX-1 substrates. Our findings identify cGAS as an innate sensor of Mtb and provide insight into how ESX-1 controls the activation of specific intracellular recognition pathways.

  19. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response.

    PubMed

    Furlan, Giulia; Nakagami, Hirofumi; Eschen-Lippold, Lennart; Jiang, Xiyuan; Majovsky, Petra; Kowarschik, Kathrin; Hoehenwarter, Wolfgang; Lee, Justin; Trujillo, Marco

    2017-03-09

    Crosstalk between post-translational modifications such as ubiquitination and phosphorylation play key roles in controlling the duration and intensity of signalling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signalling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and thus autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.

  20. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    PubMed Central

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  1. A therapeutic HIV-1 vaccine enhances anti-HIV-1 immune responses in patients under highly active antiretroviral therapy.

    PubMed

    Tung, Frank Y; Tung, Jack K; Pallikkuth, Suresh; Pahwa, Savita; Fischl, Margaret A

    2016-04-27

    HIV-1 specific cellular immunity plays an important role in controlling viral replication. In this first-in-human therapeutic vaccination study, a replication-defective HIV-1 vaccine (HIVAX) was tested in HIV-1 infected participants undergoing highly active antiretroviral therapy (HAART) to enhance anti-HIV immunity (Clinicaltrials.gov, identifier NCT01428596). A010 was a randomized, placebo-controlled trial to evaluate the safety and the immunogenicity of a replication defective HIV-1 vaccine (HIVAX) given as a subcutaneous injection to HIV-1 infected participants who were receiving HAART with HIV-1 viral load <50 copies/ml and CD4 cell count >500 cells/mm(3). HIV-1 specific immune responses were monitored by INF-γ enzyme linked immunospot (Elispot) and intracellular cytokine staining (ICS) assay after vaccination. Following the randomized placebo-controlled vaccination phase, subjects who received HIVAX vaccine and who met eligibility underwent a 12-week analytical antiretroviral treatment interruption (ATI). Viral load was monitored throughout the study. HIVAX was well tolerated in trial participants. Transient grade 1 to 2 (mild to moderate) injection site reactions occurred in 8 of 10 vaccinated participants. HIVAX was immunogenic in all vaccinated participants. The functionality of T cells was significantly enhanced after vaccination. Median viral load (3.45 log10 copies/ml, range of 96-12,830 copies/ml) at the end of the 12-week treatment interruption in HIVAX vaccinated group was significantly lower than the pre-treatment levels. Three vaccinated participants extended ATI for up to 2 years with stable CD4 cells and low viral loads. HIVAX vaccine is generally safe, elicits strong anti-HIV-1 immune responses, and may play an important role in controlling viral load during treatment interruption in HIV-1 infected participants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. CD4 T-Cell Responses in Primary HIV Infection: Interrelationship with Immune Activation and Virus Burden

    PubMed Central

    Chevalier, Mathieu F.; Didier, Céline; Girard, Pierre-Marie; Manea, Maria E.; Campa, Pauline; Barré-Sinoussi, Françoise; Scott-Algara, Daniel; Weiss, Laurence

    2016-01-01

    Early events during primary HIV infection (PHI) are thought to influence disease outcome. Although a growing body of evidence suggests a beneficial role of HIV-specific CD4 help in HIV infection, it is unclear how early viral replication, systemic immune activation, and antiretroviral therapy (ART) may shape CD4 T-cell responses during PHI, and whether HIV-specific CD4 responses contribute to the high immune activation observed in PHI. Twenty-seven patients with early PHI were included in a prospective longitudinal study and 12 of them received ART after enrollment. Fresh peripheral blood mononuclear cells were used for measurement of ex vivo T-cell activation and of cytokine-producing CD4 T-cells following stimulation with PMA/ionomycin or HIV-1-gag-p24 antigen. Patients were segregated based on CD8 T-cell activation level (i.e., % HLA-DR+CD38+ CD8 T-cells) at baseline (BL). Patients with lower immune activation exhibited higher frequency of bulk CD4 T-cells producing IFN-γ or IL-17 and higher effector-to-regulatory cell ratios. No differences were found in HIV-specific CD4 T-cell frequencies. In contrast, segregation of patients based on plasma viral load (pVL) revealed that patients with higher pVL showed higher cytokine-producing HIV-specific CD4 responses. Of note, the frequency of IFN-γ+ HIV-specific CD4 T cells significantly diminished between BL and month 6 only in ART-treated patients. However, early treatment initiation was associated with better maintenance of HIV-specific IFN-γ+ CD4 T-cells. These data suggest that HIV-specific CD4 responses do not fuel systemic T-cell activation and are driven by viral replication but not able to contribute to its control in the early phase of infection. Moreover, our data also suggest a benefit of early treatment for the maintenance of HIV-specific CD4 T-cell help. PMID:27746782

  3. Measuring polio immunity to plan immunization activities.

    PubMed

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries.

  4. Cellular immunity in ASFV responses.

    PubMed

    Takamatsu, Haru-Hisa; Denyer, Michael S; Lacasta, Anna; Stirling, Catrina M A; Argilaguet, Jordi M; Netherton, Christopher L; Oura, Chris A L; Martins, Carlos; Rodríguez, Fernando

    2013-04-01

    African swine fever virus (ASFV) infection usually results in an acute haemorrhagic disease with a mortality rate approaching 100% in domestic pigs. However, pigs can survive infection with less-virulent isolates of ASFV and may become chronically infected. Surviving animals are resistant to challenge with homologous or, in some cases, closely related isolates of the virus indicating that pigs can develop protective immunity against ASFV. During asymptomatic, non-virulent ASFV infections natural killer cell activity increases in pigs, suggesting this cell type plays a role in ASFV immunity. Furthermore, depletion of CD8(+) lymphocytes from ASFV immune pigs demolishes protective immunity against related virulent viruses. This suggests that ASFV specific antibody alone is not sufficient for protection against ASFV infection and that there is an important role for the CD8(+) lymphocyte subset in ASFV protective immunity. These results were supported by DNA immunization studies, demonstrating a correlation between the protection afforded against lethal challenge and the detection of a large number of vaccine-induced antigen-specific CD8(+) T-cells. Peripheral blood mononuclear cells (PBMCs) from ASF immune pigs protected from clinical disease show higher proportions of ASFV specific CD4(+)CD8(high+) double positive cytotoxic T cells than PBMCs from ASF immune but clinically diseased pig. The frequency of ASFV specific IFNγ producing T cells induced by immunization correlates to the degree of protection from ASFV challenge, and this may prove to be a useful indicator of any potential cross-protection against heterologous ASFV isolates.

  5. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor

    PubMed Central

    Puchner, Teresa; Korkmaz, H. Inci; Vos, Mariska; Soeters, Maarten R.; de Vries, Carlie J. M.

    2017-01-01

    Bile acids are established signaling molecules next to their role in the intestinal emulsification and uptake of lipids. We here aimed to identify a potential interaction between bile acids and CD4+ Th cells, which are central in adaptive immune responses. We screened distinct bile acid species for their potency to affect T cell function. Primary human and mouse CD4+ Th cells as well as Jurkat T cells were used to gain insight into the mechanism underlying these effects. We found that unconjugated lithocholic acid (LCA) impedes Th1 activation as measured by i) decreased production of the Th1 cytokines IFNγ and TNFαα, ii) decreased expression of the Th1 genes T-box protein expressed in T cells (T-bet), Stat-1 and Stat4, and iii) decreased STAT1α/β phosphorylation. Importantly, we observed that LCA impairs Th1 activation at physiological relevant concentrations. Profiling of MAPK signaling pathways in Jurkat T cells uncovered an inhibition of ERK-1/2 phosphorylation upon LCA exposure, which could provide an explanation for the impaired Th1 activation. LCA induces these effects via Vitamin D receptor (VDR) signaling since VDR RNA silencing abrogated these effects. These data reveal for the first time that LCA controls adaptive immunity via inhibition of Th1 activation. Many factors influence LCA levels, including bile acid-based drugs and gut microbiota. Our data may suggest that these factors also impact on adaptive immunity via a yet unrecognized LCA-Th cell axis. PMID:28493883

  6. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  7. Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response

    PubMed Central

    Jiang, Xiaomo; Kinch, Lisa; Brautigam, Chad A.; Chen, Xiang; Du, Fenghe; Grishin, Nick; Chen, Zhijian J.

    2012-01-01

    SUMMARY RIG-I and MDA5 detect viral RNA in the cytoplasm and activate signaling cascades leading to the production of type-I interferons. RIG-I is activated through sequential binding of viral RNA and unanchored lysine-63 (K63) polyubiquitin chains, but how polyubiquitin activates RIG-I and whether MDA5 is activated through a similar mechanism remain unresolved. Here we showed that the CARD domains of MDA5 bound to K63 polyubiquitin and that this binding was essential for MDA5 to activate the transcription factor IRF3. Mutations of conserved residues in MDA5 and RIG-I that disrupt their ubiquitin binding also abrogated their ability to activate IRF3. Polyubiquitin binding induced the formation of a large complex consisting of four RIG-I and four ubiquitin chains. This hetero-tetrameric complex was highly potent in activating the antiviral signaling cascades. These results suggest a unified mechanism of RIG-I and MDA5 activation and reveal a unique mechanism by which ubiquitin regulates cell signaling and immune response. PMID:22705106

  8. Immune response to lipoproteins in atherosclerosis.

    PubMed

    Samson, Sonia; Mundkur, Lakshmi; Kakkar, Vijay V

    2012-01-01

    Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL) has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  9. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals.

    PubMed

    Adib-Conquy, Minou; Scott-Algara, Daniel; Cavaillon, Jean-Marc; Souza-Fonseca-Guimaraes, Fernando

    2014-03-01

    Natural killer (NK) cells are important in innate immunity, first described as guardians for the detection and clearance of transformed or virus-infected cells. Later, this cell type was revealed to be also able to recognize and respond to bacteria-infected cells. NK cells possess receptors allowing them to sense and respond to viral and bacterial patterns, including Toll-like receptors (TLRs). Initially described in other innate immune cells, particularly monocytes/macrophages, TLRs have more recently been characterized in NK cells. Controversies remain regarding the TLR expression in NK cells and their responsiveness to agonists, specifically the requirement for the presence of accessory cells, such as dendritic cells, or of accessory cytokines (IL-2, IL-12, IL-15 and IL-18) to respond to TLR agonists. Upon TLR activation, NK cells are an important source of IFN-γ and granulocyte macrophage colony-stimulating factor, cytokines necessary to fight infection but that can also contribute to deleterious inflammation if produced in excessive amounts. Here, we review the current knowledge concerning the expression of TLRs in and on NK cells and the responsiveness to their agonists and review the literature on the role of NK cells in the sensing of bacterial or viral patterns and in combatting infection.

  10. [The sexual behavior, chemosignals and reproductive success in the male mice during activation of nonspecific immune response].

    PubMed

    Moshkin, M P; Kondratiuk, E Iu; Gerlinskaia, L A

    2009-01-01

    Hypothesis of reproductive compensation (Gowaty et al., 2007) suggests that constraining of free mating preference leads to reduction of the viability of progenies, which could be, partially, compensated by higher fecundity of the constrained parents. We consider infection as one of natural causes constraining female mating choice, because infection or immune response to infection can modulate male sexual demonstrations. Here we studied influence of LPS (bacterial endotoxin, activating non-specific immune response) on chemical attractiveness, sexual behavior and reproductive success in the outbreed male mice mated with the non-treated females. Single or repeated LPS administrations lead to increase of scent attractiveness of the male urine and soiled bedding for the non-estrus females. Injection of LPS (dose 50 mkg/kg) did not suppress the male sexual behavior. Time from pairing to successful mating correlates positively with the body mass of 16 day embryo. Embryos development, assessed by their body mass, was reduced in the females mated with the LPS-treated males. Higher level of plasma progesterone found in the females mated with the LPS-treated males, and shift of successful mating to the later time did not compensate reduction of embryo mass. At the same time the females mated with the LPS-treated males showed lower embryo lost in comparison with the females mated with the control males.

  11. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses.

    PubMed

    Wu, Xianzhu; Gowda, Nagaraj M; Kumar, Sanjeev; Gowda, D Channe

    2010-04-15

    Dendritic cells (DCs) play a crucial role in the development of protective immunity to malaria. However, it remains unclear how malaria parasites trigger immune responses in DCs. In this study, we purified merozoites, food vacuoles, and parasite membrane fragments released during the Plasmodium falciparum schizont burst to homogeneity and tested for the activation of bone marrow-derived DCs from wild-type and TLR2(-/-), TLR4(-/-), TLR9(-/-), and MyD88(-/-) C57BL/6J mice. The results demonstrate that a protein-DNA complex is the exclusive parasite component that activates DCs by a TLR9-dependent pathway to produce inflammatory cytokines. Complex formation with proteins is essential for the entry of parasite DNA into DCs for TLR9 recognition and, thus, proteins convert inactive DNA into a potent immunostimulatory molecule. Exogenous cationic polymers, polylysine and chitosan, can impart stimulatory activity to parasite DNA, indicating that complex formation involves ionic interactions. Merozoites and DNA-protein complex could also induce inflammatory cytokine responses in human blood DCs. Hemozoin is neither a TLR9 ligand for DCs nor functions as a carrier of DNA into cells. Additionally, although TLR9 is critical for DCs to induce the production of IFN-gamma by NK cells, this receptor is not required for NK cells to secret IFN-gamma, and cell-cell contact among myeloid DCs, plasmacytoid DCs, and NK cells is required for IFN-gamma production. Together, these results contribute substantially toward the understanding of malaria parasite-recognition mechanisms. More importantly, our finding that proteins and carbohydrate polymers are able to confer stimulatory activity to an otherwise inactive parasite DNA have important implications for the development of a vaccine against malaria.

  12. Cre-dependent DNA recombination activates a STING-dependent innate immune response

    PubMed Central

    Pépin, Geneviève; Ferrand, Jonathan; Höning, Klara; Jayasekara, W. Samantha N.; Cain, Jason E.; Behlke, Mark A.; Gough, Daniel J.; G. Williams, Bryan R.; Hornung, Veit; Gantier, Michael P.

    2016-01-01

    Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell–cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies. PMID:27166376

  13. Identification and activity of a paralog of cathepsin S from yellow catfish (Pelteobagrus fulvidraco) involved in immune response.

    PubMed

    Wang, Yun; Liu, Xin; Lv, Shuai; Ren, Jinnan; Ke, Fei

    2017-02-01

    Cathepsin S, a papain-like cysteine peptidase, is an important regulator and signaling molecule with diverse biological actions in addition to immune presentation. However, our understanding of its structure and properties remains limited. Herein, a full-length cathepsin Sa from yellow catfish was cloned and named PfCTSSa. It contained 1366 bp, including a 981 bp ORF flanked by a 123 bp 5'-untranslated region (UTR) and a 262 bp 3'-UTR. This ORF encoded a 36.5 kD cysteine protease with the deduced amino acid sequence having a 76% sequence identity with Ictalurus punctatus ctssa. Additionally, PfCTSSa was found to be a paralog of cathepsin S since it generated a new cluster with cathepsin Sa in the phylogenic tree. Furthermore, PfCTSSa was found to contain more N-glycosylation sites than cathepsin S. The recombinant PfCTSSa was overexpressed in E. coli BL21 (DE3) and appeared to have the strongest activity at pH 8.5 and 35 °C in a concentration-dependent manner, with activity further affected by metal ions and detergents. Moreover, PfCTSSa mRNA was highly expressed in classic and mucosal immune tissues, although constitutively distributed in all of the examined tissues. Yellow catfish were then challenged with inactivated Aeromonas hydrophila and PfCTSSa was remarkably increased in the head kidney, liver and spleen when compared to the PBS control. Collectively, these results indicate that PfCTSSa is a paralog of cathepsin S and functions in the yellow catfish immune response.

  14. The Kinase Activity of Rip2 Determines Its Stability and Consequently Nod1- and Nod2-mediated Immune Responses*

    PubMed Central

    Nembrini, Chiara; Kisielow, Jan; Shamshiev, Abdijapar T.; Tortola, Luigi; Coyle, Anthony J.; Kopf, Manfred; Marsland, Benjamin J.

    2009-01-01

    Rip2 (RICK, CARD3) has been identified as a key effector molecule downstream of the pattern recognition receptors, Nod1 and Nod2; however, its mechanism of action remains to be elucidated. In particular, it is unclear whether its kinase activity is required for signaling or for maintaining protein stability. We have investigated the expression level of different retrovirally expressed kinase-dead Rip2 mutants and the role of Rip2 kinase activity in the signaling events that follow Nod1 and Nod2 stimulation. We show that in primary cells expressing kinase-inactive Rip2, protein levels were severely compromised, and stability could not be reconstituted by the addition of a phospho-mimetic mutation in its autophosphorylation site. Consequently, inflammatory cytokine production in response to Nod1 and Nod2 ligands was abrogated both in vitro and in vivo in the absence of Rip2 kinase activity. Our results highlight the central role that Rip2 kinase activity plays in conferring stability to the protein and thus in the preservation of Nod1- and Nod2-mediated innate immune responses. PMID:19473975

  15. Gene expression based evidence of innate immune response activation in the epithelium with oral lichen planus

    PubMed Central

    Adami, Guy R.; Yeung, Alexander C.F.; Stucki, Grant; Kolokythas, Antonia; Sroussi, Herve Y.; Cabay, Robert J.; Kuzin, Igor; Schwartz, Joel L.

    2014-01-01

    Objective Oral lichen planus (OLP) is a disease of the oral mucosa of unknown cause producing lesions with an intense band-like inflammatory infiltrate of T cells to the subepithelium and keratinocyte cell death. We performed gene expression analysis of the oral epithelium of lesions in subjects with OLP and its sister disease, oral lichenoid reaction (OLR), in order to better understand the role of the keratinocytes in these diseases. Design Fourteen patients with OLP or OLR were included in the study, along with a control group of 23 subjects with a variety of oral diseases and a normal group of 17 subjects with no clinically visible mucosal abnormalities. Various proteins have been associated with OLP, based on detection of secreted proteins or changes in RNA levels in tissue samples consisting of epithelium, stroma, and immune cells. The mRNA level of twelve of these genes expressed in the epithelium was tested in the three groups. Results Four genes showed increased expression in the epithelium of OLP patients: CD14, CXCL1, IL8, and TLR1, and at least two of these proteins, TLR1 and CXCL1, were expressed at substantial levels in oral keratinocytes. Conclusions Because of the large accumulation of T cells in lesions of OLP it has long been thought to be an adaptive immunity malfunction. We provide evidence that there is increased expression of innate immune genes in the epithelium with this illness, suggesting a role for this process in the disease and a possible target for treatment. PMID:24581860

  16. Noninvasive imaging of immune responses

    PubMed Central

    Rashidian, Mohammad; Keliher, Edmund J.; Bilate, Angelina M.; Duarte, Joao N.; Wojtkiewicz, Gregory R.; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D.; Weissleder, Ralph; Ploegh, Hidde L.

    2015-01-01

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with 18F or 64Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund’s adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked. PMID:25902531

  17. Modulating immune responses with probiotic bacteria.

    PubMed

    Matsuzaki, T; Chin, J

    2000-02-01

    For many years, probiotic bacteria have been known to confer health benefits to the consumer. One possible mechanism for this may be the ability of probiotic bacteria to modulate immune responses. Oral administration of Lactobacillus casei strain Shirota (LcS) has been found to enhance innate immunity by stimulating the activity of splenic NK cells. Oral feeding with killed LcS was able to stimulate the production of Th1 cytokines, resulting in repressed production of IgE antibodies against Ovalbumin in experimental mice. The ability to switch mucosal immune responses towards Th1 with probiotic bacteria provides a strategy for treatment of allergic disorders. Growth of Meth A tumour cells in the lungs was also inhibited by intrapleural injection of LcS. Oral administration of other probiotic bacteria, such as Streptococcus thermophilus (St), Lactobacillus fermentum (Lf) and yeast (Y), elicited different immune responses. Mice that were prefed yeast or Lf followed by feeding with ovalbumin (OVA) responded better to vaccination with OVA than mice not given either probiotic or OVA or mice that had been prefed only OVA. However, antibody responses were significantly suppressed in response to vaccination with OVA in mice that had been prefed yeast followed by yeast and OVA as well as mice prefed Lf followed by Lf and OVA. Prefeeding St followed by OVA feeding enhanced cellular immune responses against ovalbumin. In contrast, mice prefed St followed by St + OVA were hyporesponsive against OVA. While antigen feeding alone appears to prime for an immune response, cofeeding antigen with probiotic bacteria can suppress both antibody and cellular immune responses and may provide an efficacious protocol to attenuate autoimmune diseases, such as experimental allergic encephalomyelitis, by jointly dosing with myelin basic protein and probiotic bacteria.

  18. Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor

    PubMed Central

    Masuda, Yuki; Nakayama, Yoshiaki; Tanaka, Akihiro; Naito, Kenta; Konishi, Morichika

    2017-01-01

    Maitake α-glucan, YM-2A, isolated from Grifola frondosa, has been characterized as a highly α-1,6-branched α-1,4 glucan. YM-2A has been shown to possess an anti-virus effect in mice; however, it does not directly inhibit growth of the virus in vitro, indicating that the anti-virus effect of YM-2A might be associated with modulation of the host immune system. In this study, we found that oral administration of YM-2A could inhibit tumor growth and improve survival rate in two distinct mouse models of colon-26 carcinoma and B16 melanoma. Orally administered YM-2A enhanced antitumor immune response by increasing INF-γ-expressing CD4+ and CD8+ cells in the spleen and INF-γ-expressing CD8+ cells in tumor-draining lymph nodes. In vitro study showed that YM-2A directly activated splenic CD11b+ myeloid cells, peritoneal macrophages and bone marrow-derived dendritic cells, but did not affect splenic CD11b- lymphocytes or colon-26 tumor cells. YM-2A is more slowly digested by pancreatic α-amylase than are amylopectin and rabbit liver glycogen, and orally administered YM-2A enhanced the expression of MHC class II and CD86 on dendritic cells and the expression of MHC class II on macrophages in Peyer’s patches. Furthermore, in vitro stimulation of YM-2A increased the expression of pro-inflammatory cytokines in Peyer’s patch CD11c+ cells. These results suggest that orally administered YM-2A can activate dendritic cells and macrophages in Peyer’s patches, inducing systemic antitumor T-cell response. Thus, YM-2A might be a candidate for an oral therapeutic agent in cancer immunotherapy. PMID:28278221

  19. Cimetidine synergizes with Praziquantel to enhance the immune response of HBV DNA vaccine via activating cytotoxic CD8(+) T cell.

    PubMed

    Xie, Xiaoping; Geng, Shuang; Liu, Hu; Li, Chaofan; Yang, Yuqin; Wang, Bin

    2014-01-01

    Previously, we have reported that either CIM or PZQ, 2 clinical drugs, could be used to develop as adjuvants on HBV DNA vaccine to elicit both humoral and cellular immune responses. Here, we demonstrate that combinations of CIM and PZQ as adjuvants for a HBV DNA vaccine, could induce much stronger antigen specific CD4(+) and CD8(+) T cell responses compared either with CIM or PZQ alone. The synergistic effects of CIM plus PZQ to HBV DNA vaccine were observed on a higher IgG2a/IgG1 ratio, an increase of HBsAg-specific CD4(+) T cells capable of producing IFN-γ or IL-17A and a robust IFN-γ-, IL-17A-, or TNF-α-producing CD8(+) T cells to HBsAg. Most importantly, the antigen-specific CTL response was also elevated significantly, which is critical for the eradication of hepatitis B virus (HBV) infected cells. Using an HBsAg transgenic mouse model, the expression of HBsAg in the hepatic cells was also significantly reduced after immunized with pCD-S 2 in the presence of 0.5% CIM and 0.25% PZQ. Further investigations demonstrated that the synergistic effects of combination of CIM and PZQ were dependent on enhanced cytotoxic CD8(+) T cells, which was correlated with impaired activities of regulatory T cells. Therefore, combinations of CIM and PZQ have great potential to be used as effective adjuvants on DNA-based vaccinations for the treatment of chronic hepatitis B.

  20. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts.

    PubMed

    Rhodes, Jeremy D; Lott, Martin C; Russell, Sarah L; Moulton, Vincent; Sanderson, Julie; Wormstone, I Michael; Broadway, David C

    2012-02-15

    Myotonic dystrophy (DM) is caused by a triplet repeat expansion in the non-coding region of either the DMPK (DM1) or CNBP (DM2) gene. Transcription of the expanded region causes accumulation of double-stranded RNA (dsRNA) in DM cells. We sought to determine how expression of triplet repeat RNA causes the varied phenotype typical of DM. Global transcription was measured in DM and non-DM cataract samples using Illumina Bead Arrays. DM samples were compared with non-DM samples and lists of differentially expressed genes (P≤ 0.05) were prepared. Gene set enrichment analysis and the Interferome database were used to search for significant patterns of gene expression in DM cells. Expression of individual genes was measured using quantitative real-time polymerase chain reaction. DMPK and CNBP expression was confirmed in native lens cells showing that a toxic RNA gain of function mechanism could exist in lens. A high proportion, 83% in DM1 and 75% in DM2, of the significantly disregulated genes were shared by both forms of the disease, suggesting a common mechanism. The upregulated genes in DM1 and DM2 were highly enriched in both interferon-regulated genes (IRGs) and genes associated with the response to dsRNA and the innate immune response. The characteristic fingerprint of IRGs and the signalling pathways identified in lens cells support a role for dsRNA activation of the innate immune response in the pathology of DM. This new evidence forms the basis for a novel hypothesis to explain the complex mechanism of DM.

  1. Molecular characterization, immune responses and DNA protection activity of rock bream (Oplegnathus fasciatus), peroxiredoxin 6 (Prx6).

    PubMed

    De Zoysa, Mahanama; Ryu, Jae-Ho; Chung, Hee-Chung; Kim, Cheol-Hee; Nikapitiya, Chamilani; Oh, Chulhong; Kim, Hyowon; Saranya Revathy, K; Whang, Ilson; Lee, Jehee

    2012-07-01

    In this study, we describe the molecular characterization, immune responses of rock bream, Oplegnathus fasciatus peroxiredoxin 6 cDNA (RbPrx6) and DNA protection activity of its recombinant protein. The full-length cDNA sequence of RbPrx6 was identified after pyrosequencing of rock bream cDNA library. RbPrx6 consists of 663 bp open reading frame (ORF) that codes for a putative protein of 221 amino acids with predicted molecular mass of 27 kDa. It showed characteristic peroxiredoxin super-family domain similar to vertebrate Prx counterparts. In the pair-wise comparison, RbPrx6 showed the highest amino acid identity (92.8%) to Scophthalmus maximus Prx6. Real-time RT-PCR analysis revealed that constitutive expression of RbPrx6 transcripts in eleven tissues selected from un-challenged fish showing the highest level in liver. Synthetic polyinosinic:polycytidylic acid (poly I:C) and iridovirus containing supernatant, up-regulated the RbPrx6 mRNA in liver. Purified recombinant RbPrx6 protein was able to protect supercoiled plasmid DNA from damages that is induced by metal-catalyzed generation of reactive oxygen species. Our results suggest that RbPrx6 may play an important role in regulating oxidative stress by scavenging of ROS, involving immune reactions and minimizing the DNA damage in rock bream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Natural immunity has significant impact on immune responses against cancer.

    PubMed

    Rubin, B

    2009-03-01

    The immune system defends the host against pathogenic attacks by micro-organisms and their products. It does not react against self-components due to the relatively efficient negative selection of developing T lymphocytes in the thymus. This process does permit T cells with low avidity against self to be present in the T cell repertoire. Such cells play an important physiological role as the host needs so-called autoimmune reactions in order to eliminate dying cells or transformed tumour cells. One of the mysteries in immunology is how the host maintains beneficial autoimmune reactions and avoids pathogenic autoimmune reactions. Activation of the adaptive T lymphocytes is mediated by the low avidity interaction between T-cell antigen receptors and antigenic peptides associated with major histocompatibility complex class I or class II molecules. This interaction is strengthened by T-cell co-receptors such as CD2, CD4, CD8, CD28 and CD154, which react with ligands expressed by cells of the innate immune system. In recent years, the importance of pre-activation of the innate immune system for initiation of adaptive T-cell immune responses has been appreciated. In the present review, I will summarize our work on how natural immunity plays an important role in determining the level of beneficial autoimmune reactions against cancer.

  3. Immune Response to Giardia duodenalis

    PubMed Central

    Faubert, Gaétan

    2000-01-01

    The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquituous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen. PMID:10627490

  4. [Types of immune response in advanced suppurative peritonitis].

    PubMed

    Borisov, A G; Savchenko, A A; Cherdantsev, D V; Zdzitovetsky, D E; Pervova, O V; Kudryavtsev, I V; Belenyuk, V D; Shapkina, V A

    to assess types of immune response in patients with advanced suppurative peritonitis and course of disease. We examined 79 patients with acute surgical abdominal diseases and injuries complicated by advanced suppurative peritonitis. Blood immunological parameters were estimated using flowing cytometry and enzyme immunoassay. It was concluded that functional parameters of immune system are very various in patients with advanced suppurative peritonitis. Cluster analysis defined 4 immune types which are determined by different state of congenital and acquired immunity. Immunodeficient and unreactive immune types are unfavorable. Immune types with activation of congenital and acquired immunity are the most favourable. This stratification personifies diagnosis and treatment of immune disorders in patients with advanced suppurative peritonitis.

  5. Antibacterial activity and immune responses of a molluscan macrophage expressed gene-1 from disk abalone, Haliotis discus discus.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Whang, Ilson; Lim, Bong-Soo; Won, Seung Hwan; Lee, Jehee

    2014-08-01

    The membrane-attack complex/perforin (MACPF) domain-containing proteins play an important role in the innate immune response against invading microbial pathogens. In the current study, a member of the MACPF domain-containing proteins, macrophage expressed gene-1 (MPEG1) encoding 730 amino acids with the theoretical molecular mass of 79.6 kDa and an isoelectric point (pI) of 6.49 was characterized from disk abalone Haliotis discus discus (AbMPEG1). We found that the characteristic MACPF domain (Val(131)-Tyr(348)) and transmembrane segment (Ala(669)-Ile(691)) of AbMPEG1 are located in the N- and C-terminal ends of the protein, respectively. Ortholog comparison revealed that AbMPEG1 has the highest sequence identity with its pink abalone counterpart, while sequences identities of greater than 90% were observed with MPEG1 members from other abalone species. Likewise, the furin cleavage site KRRRK was highly conserved in all abalone species, but not in other species investigated. We identified an intron-less genomic sequence within disk abalone AbMPEG1, which was similar to other mammalian, avian, and reptilian counterparts. Transcription factor binding sites, which are important for immune responses, were identified in the 5'-flanking region of AbMPEG1. qPCR revealed AbMPEG1 transcripts are present in every tissues examined, with the highest expression level occurring in mantle tissue. Significant up-regulation of AbMPEG1 transcript levels was observed in hemocytes and gill tissues following challenges with pathogens (Vibrio parahemolyticus, Listeria monocytogenes and viral hemorrhagic septicemia virus) as well as pathogen-associated molecular patterns (PAMPs: lipopolysaccharides and poly I:C immunostimulant). Finally, the antibacterial activity of the MACPF domain was characterized against Gram-negative and -positive bacteria using a recombinant peptide. Taken together, these results indicate that the biological significance of the AbMPEG1 gene includes a role in

  6. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea.

    PubMed

    Iakovleva, Nadya V; Gorbushin, Alexander M; Storey, Kenneth B

    2006-09-01

    The modulation of mitogen-activated protein kinase (MAPK) activity in haemocytes of the common periwinkle (Littorina littorea) in response to immune challenges by lipopolysaccharide from Echerichia coli (LPS), mannan from baker's yeast Saccharomyces cerevisiae and secretory-excretory products (SEP) of trematodes Himasthla elongata (Echinostomatidae) or after the treatment with phorbol ester (PMA) has been studied by Western blotting using affinity purified rabbit polyclonal antibodies. Exposure of the cells in suspension to PMA, LPS and mannan triggered an activation of p38 and ERK2. The JNK-mediated cascade was modulated differently by the elicitors examined. PMA treatment caused a transient activation of the JNK54 isoform, LPS exposure resulted in a decrease in activity of JNK46, and mannan had no effect on JNK phosphorylation status. Incubation of periwinkle haemocytes in culture medium containing trematode SEP did not affect the activity of any MAPK.

  7. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  8. Immune Response in Human Cerebral Cavernous Malformations

    PubMed Central

    Shi, Changbin; Shenkar, Robert; Du, Hongyan; Duckworth, Edward; Raja, Harish; Batjer, H. Hunt; Awad, Issam A.

    2009-01-01

    Background and Purpose Preliminary observations suggesting the presence of B and plasma cells and oligoclonality of immunoglobulin (Ig) G in cerebral cavernous malformations (CCMs) have motivated a systematic study correlating the infiltration of the immune cells with clinical activity and antigen-triggered immune response in surgically excised lesions. Methods Infiltration of plasma, B, T and HLA-DR expressing cells and macrophages within 23 excised CCMs was related to clinical activity. Relative amounts of Ig isotypes were determined. IgG clonality of mRNA from CCMs was assessed by spectratyping, cloning and sequencing. Results Infiltration of the immune cells ranged widely within CCM lesions and cells were generally co-expressed with each other. Immune cell infiltration did not associate with recent bleeding and lesion growth. Significantly more B lymphocytes in CCM lesions were associated with venous anomaly. More T cells were present in solitary lesions. More T cells and less macrophages were present in CCMs from younger subjects. IgG isotype was present in all CCM lesions. Most lesions also expressed IgM and IgA, with IgM predominance over IgA correlating with recent CCM growth. Oligoclonality was shown in IgG mRNA from CCMs, but not from peripheral blood lymphocytes, with only eight CDR3 sequences observed among 134 clones from two CCM lesions. Conclusions An antigen-directed oligoclonal IgG immune response is present within CCM lesions regardless of recent clinical activity. Apparent differences in immune response in younger patients and in lesions with recent growth will need confirmation in other series. The pathogenicity of oligoclonal immune response will require systematic hypothesis testing in recently available CCM murine models. PMID:19286587

  9. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis

    PubMed Central

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-01-01

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990

  10. Radiation triggering immune response and inflammation.

    PubMed

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  11. Sex differences in immune responses.

    PubMed

    Klein, Sabra L; Flanagan, Katie L

    2016-10-01

    Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

  12. Roles of Toll-like receptors in innate immune responses.

    PubMed

    Takeda, K; Akira, S

    2001-09-01

    Innate immunity recognizes invading micro-organisms and triggers a host defence response. However, the molecular mechanism for innate immune recognition was unclear. Recently, a family of Toll-like receptors (TLRs) was identified, and crucial roles for these receptors in the recognition of microbial components have been elucidated. The TLR family consists of 10 members and will be expanding. Each TLR distinguishes between specific patterns of microbial components to provoke innate immune responses. The activation of innate immunity then leads to the development of antigen-specific adaptive immunity. Thus, TLRs control both innate and adaptive immune responses.

  13. Innate Immune Responses to AAV Vectors.

    PubMed

    Rogers, Geoffrey L; Martino, Ashley T; Aslanidi, George V; Jayandharan, Giridhara R; Srivastava, Arun; Herzog, Roland W

    2011-01-01

    Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV immunology have focused on the elimination of transgene-expressing cells by the adaptive immune system, yet the innate immune system also has a critical role, both in the initial response to the vector and in prompting a deleterious adaptive immune response. Responses to AAV vectors are primarily mediated by the TLR9-MyD88 pathway, which induces the production of pro-inflammatory cytokines by activating the NF-κB pathways and inducing type I IFN production; self-complementary AAV vectors enhance these inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene expression in cells transduced by AAV. This review highlights these recent discoveries regarding innate immune responses to AAV and discusses strategies to ablate these potentially detrimental signaling pathways.

  14. Vaccination strategies for mucosal immune responses.

    PubMed

    Ogra, P L; Faden, H; Welliver, R C

    2001-04-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans.

  15. Vaccination Strategies for Mucosal Immune Responses

    PubMed Central

    Ogra, Pearay L.; Faden, Howard; Welliver, Robert C.

    2001-01-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans. PMID:11292646

  16. Activation of immunity, immune response, antioxidant ability, and resistance against Vibrio alginolyticus in white shrimp Litopenaeus vannamei decrease under long-term culture at low pH.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tseng, Kuei-Chi; Lin, Yong-Chin; Huang, Chien-Lun

    2015-10-01

    The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a.

  17. Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts

    PubMed Central

    Bustos-Arriaga, José; García-Machorro, Jazmín; León-Juárez, Moisés; García-Cordero, Julio; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Méndez-Cruz, A. René; Juárez-Delgado, Francisco J.; Cedillo-Barrón, Leticia

    2011-01-01

    Background When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times (“probing”) before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. Methodology/Principal Findings Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. Conclusions/Significance In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral

  18. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921.

  19. Injury-induced immune responses in Hydra.

    PubMed

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights

  20. A nonequilibrium phase transition in immune response

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qi, An-Shen

    2004-07-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied. In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions, the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  1. Mycobacterium tuberculosis PE25/PPE41 protein complex induces activation and maturation of dendritic cells and drives Th2-biased immune responses.

    PubMed

    Chen, Wei; Bao, Yige; Chen, Xuerong; Burton, Jeremy; Gong, Xueli; Gu, Dongqing; Mi, Youjun; Bao, Lang

    2016-04-01

    Mycobacterium tuberculosis evades innate host immune responses by parasitizing macrophages and causes significant morbidity and mortality around the world. A mycobacterial antigen that can activate dendritic cells (DCs) and elicit effective host innate immune responses will be vital to the development of an effective TB vaccine. The M. tuberculosis genes PE25/PPE41 encode proteins which have been associated with evasion of the host immune response. We constructed a PE25/PPE41 complex gene via splicing by overlapping extension and expressed it successfully in E. coli. We investigated whether this protein complex could interact with DCs to induce effective host immune responses. The PE25/PPE41 protein complex induced maturation of isolated mouse DCs in vitro, increasing expression of cell surface markers (CD80, CD86 and MHC-II), thereby promoting Th2 polarization via secretion of pro-inflammatory cytokines IL-4 and IL-10. In addition, PE25/PPE41 protein complex-activated DCs induced proliferation of mouse CD4(+) and CD8(+) T cells, and a strong humoral response in immunized mice. The sera of five TB patients were also highly reactive to this antigen. These findings suggest that interaction of the PE25/PPE41 protein complex with DCs may be of great immunological significance.

  2. The Inflammasome: A Caspase-1 Activation Platform Regulating Immune Responses and Disease Pathogenesis

    PubMed Central

    Franchi, Luigi; Eigenbrod, Tatjana; Muñoz-Planillo, Raúl; Nuñez, Gabriel

    2010-01-01

    The inflammasome is a multi-protein complex that mediates activation of caspase-1 which promotes the secretion of the proinflammatory cytokines IL-1β and IL-18 as well as pyroptosis, a form of cell death induced by bacterial pathogens. Members of the Nod-like receptor family including NLRP1, NLRP3 and NLRC4 and the adaptor ASC are critical components of the inflammasome by linking microbial and endogenous danger signals to caspase-1 activation. Several diseases are associated with the dysregulated activation of caspase-1 and IL-1β secretion. Thus, understanding of inflammasome pathways may provide insights into disease pathogenesis that might serve as potential targets for therapeutic intervention. PMID:19221555

  3. [Modulation of immune response by bacterial lipopolysaccharides].

    PubMed

    Aldapa-Vega, Gustavo; Pastelín-Palacios, Rodolfo; Isibasi, Armando; Moreno-Eutimio, Mario A; López-Macías, Constantino

    2016-01-01

    Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  4. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion.

    PubMed

    He, Li-Xia; Ren, Jin-Wei; Liu, Rui; Chen, Qi-He; Zhao, Jian; Wu, Xin; Zhang, Zhao-Feng; Wang, Jun-Bo; Pettinato, Giuseppe; Li, Yong

    2017-09-06

    Traditionally used as a restorative medicine, ginseng (Panax ginseng Meyer) has been the most widely used and acclaimed herb in Chinese communities for thousands of years. To investigate the immune-modulating activity of ginseng oligopeptides (GOP), 420 healthy female BALB/c mice were intragastrically administered distilled water (control), whey protein (0.15 g per kg body weight (BW)), and GOP 0.0375, 0.075, 0.15, 0.3 and 0.6 g per kg BW for 30 days. Blood samples from mice were collected from the ophthalmic venous plexus and then sacrificed by cervical dislocation. Seven assays were conducted to determine the immunomodulatory effects of GOP on innate and adaptive immune responses, followed by flow cytometry to investigate spleen T lymphocyte sub-populations, multiplex sandwich immunoassays to investigate serum cytokine and immunoglobulin levels, and ELISA to investigate intestinally secreted immunoglobulin to study the mechanism of GOP affecting the immune system. Our results showed that GOP was able to enhance innate and adaptive immune responses in mice by improving cell-mediated and humoral immunity, macrophage phagocytosis capacity and NK cell activity. Notably, the use of GOP revealed a better immune-modulating activity compared to whey protein. We conclude that the immune-modulating activity might be due to the increased macrophage phagocytosis capacity and NK cell activity, and the enhancement of T and Th cells, as well as IL-2, IL-6 and IL-12 secretion and IgA, IgG1 and IgG2b production. These results indicate that GOP could be considered a good candidate that may improve immune functions if used as a dietary supplement, with a dosage that ranges from 0.3 to 0.6 g per kg BW.

  5. Fetal immune response to chorioamnionitis.

    PubMed

    Kallapur, Suhas G; Presicce, Pietro; Rueda, Cesar M; Jobe, Alan H; Chougnet, Claire A

    2014-01-01

    Chorioamnionitis is a frequent cause of preterm birth and is associated with an increased risk for injury responses in the lung, gastrointestinal tract, brain, and other fetal organs. Chorioamnionitis is a polymicrobial nontraditional infectious disease because the organisms causing chorioamnionitis are generally of low virulence and colonize the amniotic fluid often for extended periods, and the host (mother and the fetus) does not have typical infection-related symptoms such as fever. In this review, we discuss the effects of chorioamnionitis in experimental animal models that mimic the human disease. Our focus is on the immune changes in multiple fetal organs and the pathogenesis of chorioamnionitis-induced injury in different fetal compartments. As chorioamnionitis disproportionately affects preterm infants, we discuss the relevant developmental context for the immune system. We also provide a clinical context for the fetal responses. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Fetal immune response to chorioamnionitis

    PubMed Central

    Kallapur, Suhas G.; Presicce, Pietro; Rueda, Cesar M.; Jobe, Alan H.; Chougnet, Claire A.

    2014-01-01

    Chorioamnionitis is a frequent cause of preterm birth and is associated with an increased risk for injury responses in the lung, GI tract, brain and other fetal organs. Chorioamnionitis is a polymicrobial non-traditional infectious disease because the organisms causing chorioamnionitis are generally of low virulence and colonize the amniotic fluid often for extended periods, and the host (mother and the fetus) does not have typical infection related symptoms such as fever. In this review, we discuss the effects of chorioamnionitis in experimental animal models that mimic the human disease. Our focus is on the immune changes in multiple fetal organs and the pathogenesis of chorioamnionitis induced injury in different fetal compartments. Since chorioamnionitis disproportionately affects preterm infants, we discuss the relevant developmental context for the immune system. We also provide a clinical context for the fetal responses. PMID:24390922

  7. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles

    NASA Astrophysics Data System (ADS)

    Kwon, Young Jik; James, Edward; Shastri, Nilabh; Fréchet, Jean M. J.

    2005-12-01

    Activating the immune system to trigger a specific response is a major challenge in vaccine development. In particular, activating sufficient cytotoxic T lymphocyte-mediated cellular immunity, which is crucial for the treatment of many diseases including cancer and AIDS, has proven to be especially challenging. In this study, antigens were encapsulated in acid-degradable polymeric particle carriers to cascade cytotoxic T lymphocyte activation. To target dendritic cells, the most potent antigen-presenting cells, the particle carriers, were further conjugated with monoclonal antibodies. A series of ex vivo and in vivo studies have shown increased receptor-mediated uptake of antibody-conjugated particles by dendritic cells as well as migration of particle-carrying dendritic cells to lymph nodes and stimulation of naïve T cells leading to enhanced cellular immune response as confirmed by specific cell lysis and IFN- secretion. acid-degradable particle | drug delivery | targeted vaccine

  8. Intrathecal Activation as a Typical Immune Response within the Central Nervous System in Angiostrongyliasis

    PubMed Central

    Padilla-Docal, Barbara; Iglesias-González, Ivonne; Bu-Coifiu-Fanego, Raisa; Socarrás-Hernández, Carmen Aleida; Dorta-Contreras, Alberto Juan

    2013-01-01

    Angiostrongylus cantonensis is a zoonotic pathogen that occasionally causes human angiostrongyliasis; its main clinical manifestation is eosinophilic meningitis. This report defines the concept of intrathecal activation of complement as evidence of intrathecal synthesis of major immunoglobulins during this disease. Details are presented of the activation of complement system components in cerebrospinal fluid, and their application to our understanding of this tropical disease, which is emerging in the Western hemisphere. Intrathecal synthesis of at least one of the major immunoglobulins and a wide spectrum of patterns may be observed. Although intrathecal synthesis of C3c is always present, C4 intrathecal synthesis does not occur in every patient. The diversity of intrathecal synthesis and activation of the different complement pathways enables their division into three variant groups (A, B, and C). Variant group A includes the classical and/or lectin pathway and involves two or more major immunoglobulins with C3 and C4 intrathecal synthesis. Variant group B involves C4 in cerebrospinal fluid that comes from blood in the intrathecal activation of the classical pathway. Variant group C includes the alternative pathway. PMID:23390222

  9. [Immune response to influenza vaccination].

    PubMed

    Alvarez, I; Corral, J; Arranz, A; Foruria, A; Landa, V; Lejarza, J R; Marijuán, L; Martínez, J M

    1989-01-01

    The present study investigated the level of immunity of the population against three strains of the influenza virus (A Chile/1/83 -A Philippines/2/82 and B URSS/100/83) before and three months after vaccination, and the immune response to whole virus vaccine as compared with fragmented virus vaccine. A high percentage of the population had titers greater than or equal to 1/10 before vaccination for the Chile (54%) and Philippines (65.7%) strains, while titers against the URSS strain were lower (25.4%). There was a definitive increase in antibody titer in the vaccinated population, although it was lower than expected. The overall response to both vaccines, with protecting titers greater than or equal to 1/40 after vaccination was 65.2% for the Chile strain, 74.6% for the Philippines strain, and 15% for the URSS strain. No differences in the overall immune response were found between the groups vaccinated with whole and fragmented virus.

  10. Modeling Immune Response to Leishmania Species Indicates Adenosine As an Important Inhibitor of Th-Cell Activation.

    PubMed

    Ribeiro, Henrique A L; Maioli, Tatiani U; de Freitas, Leandro M; Tieri, Paolo; Castiglione, Filippo

    2017-01-01

    Infection by Leishmania protozoan parasites can cause a variety of disease outcomes in humans and other mammals, from single self-healing cutaneous lesions to a visceral dissemination of the parasite. The correlation between chronic lesions and ecto-nucleotidase enzymes activity on the surface of the parasite is addressed here using damage caused in epithelial cells by nitric oxide. In order to explore the role of purinergic metabolism in lesion formation and the outcome of the infection, we implemented a cellular automata/lattice gas model involving major immune characters (Th1 and Th2 cells, IFN-γ, IL-4, IL-12, adenosine-Ado-, NO) and parasite players for the dynamic analysis of the disease progress. The model were analyzed using partial ranking correlation coefficient (PRCC) to indicate the components that most influence the disease progression. Results show that low Ado inhibition rate over Th-cells is shared by L. major and L. braziliensis, while in L. amazonensis infection the Ado inhibition rate over Th-cells reaches 30%. IL-4 inhibition rate over Th-cell priming to Th1 independent of IL-12 are exclusive of L. major. The lesion size and progression showed agreement with published biological data and the model was able to simulate cutaneous leishmaniasis outcomes. The sensitivity analysis suggested that Ado inhibition rate over Th-cells followed by Leishmania survival probability were the most important characteristics of the process, with PRCC of 0.89 and 0.77 respectively. The simulations also showed a non-linear relationship between Ado inhibition rate over Th-cells and lesion size measured as number of dead epithelial cells. In conclusion, this model can be a useful tool for the quantitative understanding of the immune response in leishmaniasis.

  11. Modeling Immune Response to Leishmania Species Indicates Adenosine As an Important Inhibitor of Th-Cell Activation

    PubMed Central

    Ribeiro, Henrique A. L.; Maioli, Tatiani U.; de Freitas, Leandro M.; Tieri, Paolo; Castiglione, Filippo

    2017-01-01

    Infection by Leishmania protozoan parasites can cause a variety of disease outcomes in humans and other mammals, from single self-healing cutaneous lesions to a visceral dissemination of the parasite. The correlation between chronic lesions and ecto-nucleotidase enzymes activity on the surface of the parasite is addressed here using damage caused in epithelial cells by nitric oxide. In order to explore the role of purinergic metabolism in lesion formation and the outcome of the infection, we implemented a cellular automata/lattice gas model involving major immune characters (Th1 and Th2 cells, IFN-γ, IL-4, IL-12, adenosine−Ado−, NO) and parasite players for the dynamic analysis of the disease progress. The model were analyzed using partial ranking correlation coefficient (PRCC) to indicate the components that most influence the disease progression. Results show that low Ado inhibition rate over Th-cells is shared by L. major and L. braziliensis, while in L. amazonensis infection the Ado inhibition rate over Th-cells reaches 30%. IL-4 inhibition rate over Th-cell priming to Th1 independent of IL-12 are exclusive of L. major. The lesion size and progression showed agreement with published biological data and the model was able to simulate cutaneous leishmaniasis outcomes. The sensitivity analysis suggested that Ado inhibition rate over Th-cells followed by Leishmania survival probability were the most important characteristics of the process, with PRCC of 0.89 and 0.77 respectively. The simulations also showed a non-linear relationship between Ado inhibition rate over Th-cells and lesion size measured as number of dead epithelial cells. In conclusion, this model can be a useful tool for the quantitative understanding of the immune response in leishmaniasis. PMID:28775959

  12. Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response.

    PubMed

    Morandi, Barbara; Mortara, Lorenzo; Chiossone, Laura; Accolla, Roberto S; Mingari, Maria Cristina; Moretta, Lorenzo; Moretta, Alessandro; Ferlazzo, Guido

    2012-01-01

    Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional relevance of this killing remains elusive. Here we report that a significant decrease of CD11c(+) DCs was observed in draining lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at activating NK cells.

  13. Restoration of anti-tetanus toxoid responses in patients initiating highly active antiretroviral therapy with or without a boost immunization: an INITIO substudy

    PubMed Central

    Burton, C T; Goodall, R L; Samri, A; Autran, B; Kelleher, A D; Poli, G; Pantaleo, G; Gotch, F M; Imami, N; Imami, N

    2008-01-01

    INITIO is an open-labelled randomized trial evaluating first-line therapeutic strategies for human immunodeficiency virus-1 (HIV-1) infection. In an immunology substudy a tetanus toxoid booster (TTB) immunization was planned for 24 weeks after initiation of highly active antiretroviral therapy (HAART). All patients had received tetanus toxoid immunization in childhood. Generation of proliferative responses to tetanus toxoid was compared in two groups of patients, those receiving a protease inhibitor (PI)-sparing regimen (n = 21) and those receiving a PI-containing (n = 54) regimen. Fifty-two participants received a TTB immunization [PI-sparing (n = 15), PI-containing (n = 37)] and 23 participants did not [PI-sparing (n = 6) or PI-containing (n = 17)]. Cellular responses to tetanus antigen were monitored by lymphoproliferation at time of immunization and every 24 weeks to week 156. Proportions with a positive response (defined as stimulation index ≥ 3 and Δ counts per minute ≥ 3000) were compared at weeks 96 and 156. All analyses were intent-to-treat. Fifty-two participants had a TTB immunization at median 25 weeks; 23 patients did not. At weeks 96 and 156 there was no evidence of a difference in tetanus-specific responses, between those with or without TTB immunization (P = 0·2, P = 0·4). There was no difference in the proportion with response between those with PI-sparing or PI-containing regimens at both time-points (P = 0·8, P = 0·7). The proliferative response to tetanus toxoid was unaffected by initial HAART regimen. Anti-tetanus responses appear to reconstitute eventually in most patients over 156 weeks when treated successfully with HAART, irrespective of whether or not a TTB immunization has been administered. PMID:18410636

  14. Restoration of anti-tetanus toxoid responses in patients initiating highly active antiretroviral therapy with or without a boost immunization: an INITIO substudy.

    PubMed

    Burton, C T; Goodall, R L; Samri, A; Autran, B; Kelleher, A D; Poli, G; Pantaleo, G; Gotch, F M; Imami, N

    2008-05-01

    INITIO is an open-labelled randomized trial evaluating first-line therapeutic strategies for human immunodeficiency virus-1 (HIV-1) infection. In an immunology substudy a tetanus toxoid booster (TTB) immunization was planned for 24 weeks after initiation of highly active antiretroviral therapy (HAART). All patients had received tetanus toxoid immunization in childhood. Generation of proliferative responses to tetanus toxoid was compared in two groups of patients, those receiving a protease inhibitor (PI)-sparing regimen (n = 21) and those receiving a PI-containing (n = 54) regimen. Fifty-two participants received a TTB immunization [PI-sparing (n = 15), PI-containing (n = 37)] and 23 participants did not [PI-sparing (n = 6) or PI-containing (n = 17)]. Cellular responses to tetanus antigen were monitored by lymphoproliferation at time of immunization and every 24 weeks to week 156. Proportions with a positive response (defined as stimulation index > or = 3 and Delta counts per minute > or = 3000) were compared at weeks 96 and 156. All analyses were intent-to-treat. Fifty-two participants had a TTB immunization at median 25 weeks; 23 patients did not. At weeks 96 and 156 there was no evidence of a difference in tetanus-specific responses, between those with or without TTB immunization (P = 0.2, P = 0.4). There was no difference in the proportion with response between those with PI-sparing or PI-containing regimens at both time-points (P = 0.8, P = 0.7). The proliferative response to tetanus toxoid was unaffected by initial HAART regimen. Anti-tetanus responses appear to reconstitute eventually in most patients over 156 weeks when treated successfully with HAART, irrespective of whether or not a TTB immunization has been administered.

  15. Neuropeptide NGF mediates neuro-immune response and inflammation through mast cell activation.

    PubMed

    Kritas, S K; Saggini, A; Cerulli, G; Caraffa, A; Antinolfi, P; Pantalone, A; Frydas, S; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Conti, P

    2014-01-01

    Human mast cells (first described in 1879 by Paul Ehrlich) develop from committed precursors in the bone marrow expressing the differentiation marker CD34+ and distinct from the three other myeloid cells. Mast cells are present in various tissues especially near blood vessels, epithelia and nerves and they are activated by cross-linking of FcεRI, but also by a number of neuropeptides. NGF mediates a number of inflammatory and autoimmune states in conjunction with an increased accumulation of mast cells which appear to be involved in neuroimmune interactions and tissue inflammation. Here we report some relationships between mast cells and nerve growth factor (NGF).

  16. Active Hematopoietic Hubs in Drosophila Adults Generate Hemocytes and Contribute to Immune Response

    PubMed Central

    Ghosh, Saikat; Singh, Arashdeep; Mandal, Sudip; Mandal, Lolitika

    2015-01-01

    Summary Blood cell development in Drosophila shares significant similarities with vertebrate. The conservation ranges from biphasic mode of hematopoiesis to signaling molecules crucial for progenitor cell formation, maintenance, and differentiation. Primitive hematopoiesis in Drosophila ensues in embryonic head mesoderm, whereas definitive hematopoiesis happens in larval hematopoietic organ, the lymph gland. This organ, with the onset of pupation, ruptures to release hemocytes into circulation. It is believed that the adult lacks a hematopoietic organ and survives on the contribution of both embryonic and larval hematopoiesis. However, our studies revealed a surge of blood cell development in the dorsal abdominal hemocyte clusters of adult fly. These active hematopoietic hubs are capable of blood cell specification and can respond to bacterial challenges. The presence of progenitors and differentiated hemocytes embedded in a functional network of Laminin A and Pericardin within this hematopoietic hub projects it as a simple version of the vertebrate bone marrow. PMID:25959225

  17. Follicular B cell trafficking within the spleen actively restricts humoral immune responses

    PubMed Central

    Hoek, Kristen L.; Gordy, Laura E.; Collins, Patrick L.; Parekh, Vrajesh V.; Aune, Thomas M.; Joyce, Sebastian; Thomas, James W.; Van Kaer, Luc; Sebzda, Eric

    2010-01-01

    Summary Follicular (FO) and marginal zone (MZ) B cells are maintained in distinct locations within the spleen but the genetic basis for this separation is still enigmatic. We now report that B cell sequestration requires lineage-specific regulation of migratory receptors by the transcription factor, Klf2. Moreover, using gene-targeted mice we show that altered splenic B cell migration confers a significant in vivo gain-of-function phenotype to FO B cells, including the ability to quickly respond to MZ-associated antigens and pathogens in a T cell-dependent manner. This work demonstrates that in wild-type animals, naïve FO B cells are actively removed from the MZ, thus restricting their capacity to respond to blood-borne pathogens. PMID:20691614

  18. Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes.

    PubMed

    Cubas, Rafael; Zhang, Sheng; Kwon, Sunkuk; Sevick-Muraca, Eva M; Li, Min; Chen, Changyi; Yao, Qizhi

    2009-01-01

    Virus-like particles (VLPs) have gained increasing interest for their use as vaccines due to their repetitive antigenic structure that is capable of efficiently activating the immune system. The efficacy of VLP immunization may lie in its ability to traffic into draining lymph nodes while activating antigen-presenting cells to initiate the orchestration of signals required for the development of a robust immune response. Currently, there is no comprehensive study showing the correlation of different VLP vaccination routes to immune outcome. In this study, we took an optical imaging approach to directly visualize the trafficking of simian-human immunodeficiency (SHIV) VLPs after immunization by commonly used routes and analyzed the corresponding humoral and cellular immune responses generated. We found that VLPs can easily enter the subcapsular sinus of draining lymph nodes with quantitative differences in the number of lymph node involvement depending on the immunization route used. Intradermal immunization led to the largest level of lymph node involvement for the longest period of time, which correlated with the strongest humoral and cellular immune responses. Flow cytometry analysis from extracted splenocytes showed that intradermal immunization led to the largest population of germinal center and activated B cells, which translated into higher antibody levels and antigen-specific cytotoxic T lymphocyte responses. Our results indicate that VLPs traffic into lymph nodes upon immunization and can be directly visualized by optical imaging techniques. Intradermal immunization showed improved responses and might be a preferable delivery route to use for viral and cancer immunotherapeutic studies involving VLPs.

  19. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  20. The Innate Immune Response Against Staphylococcus aureus.

    PubMed

    Bekeredjian-Ding, Isabelle; Stein, Christoph; Uebele, Julia

    2015-12-15

    The innate immune system harbors a multitude of different receptor systems and cells that are constantly prepared to sense and eliminate invading microbial pathogens. Staphylococcus aureus enters the body on its exposed epithelial surfaces, e.g., on skin and mucosa. The initial interaction with epithelial cells is governed by Toll-like receptor (TLR)-2-mediated local production of soluble mediators, including cytokines, chemokines, and antimicrobial peptides. The overall goal is to achieve a steady state of immune mediators and colonizing bacteria. Following cell and tissue invasion clearance of bacteria depends on intracellular microbial sensors and subsequent activation of the inflammasomes. Tissue-resident mast cells and macrophages recruit neutrophils, macrophages, and NK cells. This inflammatory response supports the generation of IL-17 producing NKT, γδ T cells, and T helper cells. Local dendritic cells migrate to the lymph nodes and fine-tune the adaptive immune response. The scope of this chapter is to provide an overview on the major cell types and receptors involved in innate immune defense against S. aureus. By segregating the different stages of infection from epithelial barrier to intracellular and systemic infection, this chapter highlights the different qualities of the innate immune response to S. aureus at different stages of invasiveness.

  1. Aging Exacerbates Depressive-like Behavior in Mice in Response to Activation of the Peripheral Innate Immune System

    PubMed Central

    Godbout, Jonathan P; Moreau, Maïté; Lestage, Jacques; Chen, Jing; Sparkman, Nathan L; O’Connor, Jason; Castanon, Nathalie; Kelley, Keith W; Dantzer, Robert; Johnson, Rodney W

    2010-01-01

    Exposure to peripheral infections may be permissive to cognitive and behavioral complications in the elderly. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness behavior in aged BALB/c mice. Because LPS also causes depressive behavior, the purpose of this study was to determine whether aging is associated with an exacerbated depressive-like response. We confirmed that LPS (0.33 mg/kg intraperitoneal) induced a protracted sickness response in aged mice with reductions in locomotor and feeding activities 24 and 48 h postinjection, when young adults had fully recovered. When submitted to the forced swim test 24 h post-LPS, both young adult and aged mice exhibited an increased duration of immobility. However, when submitted to either the forced swim test or the tail suspension test 72 h post-LPS, an increased duration of immobility was evident only in aged mice. This prolonged depressive-like behavior in aged LPS-treated mice was associated with a more pronounced induction of peripheral and brain indoleamine 2,3-dioxygenase and a markedly higher turnover rate of brain serotonin (as measured by the ratio of 5-hydroxy-indoleacetic acid over 5-hydroxyt-tryptamine) compared to young adult mice at 24 post-LPS injection. These results provide the first evidence that age-associated reactivity of the brain cytokine system could play a pathophysiological role in the increased prevalence of depression observed in the elderly. PMID:18075491

  2. Does helminth activation of toll-like receptors modulate immune response in multiple sclerosis patients?

    PubMed Central

    Correale, Jorge; Farez, Mauricio F.

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disease affecting the Central Nervous System (CNS), in which Th1 and Th17 cells appear to recognize and react against certain myelin sheath components. Epidemiological evidence has accumulated indicating steady increase in autoimmune disease incidence in developed countries. Reduced infectious disease prevalence in particular has been proposed as the cause. In agreement with this hypothesis, we recently demonstrated significantly better clinical and radiological outcome in helminth-infected MS patients, compared to uninfected ones. Parasite-driven protection was associated with regulatory T cell induction and anti-inflammatory cytokine secretion, including increased TGF-β and IL-10 levels. Interestingly, surface expression of TLR2, on both B cells and dendritic cells (DC) was significantly higher in infected MS patients. Moreover, stimulation of myelin-specific T cell lines with a TLR2 agonist induced inhibition of T cell proliferation, suppression of IFN-γ, IL-12, and IL-17 secretion, as well as increase in IL-10 production, suggesting the functional responses observed correlate with TLR2 expression patterns. Furthermore, parasite antigens were able to induce TLR2 expression on both B cells and DCs. All functional effects mediated by TLR2 were abrogated when MyD88 gene expression was silenced; indicating helminth-mediated signaling induced changes in cytokine secretion in a MyD88-dependent manner. In addition, helminth antigens significantly enhanced co-stimulatory molecule expression, effects not mediated by MyD88. Parasite antigens acting on MyD88 induced significant ERK kinase phosphorylation in DC. Addition of the ERK inhibitor U0126 was associated with dose-dependent IL-10 inhibition and reciprocal enhancement in IL-12, both correlating with ERK inhibition. Finally, cytokine effects and changes observed in co-stimulatory DC molecules after helminth antigen exposure were lost when TLR2 was

  3. Cytokines and the immune response.

    PubMed

    Van der Meide, P H; Schellekens, H

    1996-01-01

    Cytokines participate in many physiological processes including the regulation of immune and inflammatory responses. These effector molecules are produced transiently and locally controlling the amplitude and duration of the response. A variety of experiments has shown that excessive or insufficient production may significantly contribute to the pathophysiology of a range of diseases. Particularly cytokines released by CD4+ T cells at the onset of an immune response are thought to be decisive for pathological or physiological consequences. The meeting in Budapest was focussed on cytokines known to contribute to the pathophysiology of autoimmune diseases, infectious diseases and allograft rejection (e.g., IL-1, IL-4, IL-6, IL-10, IL-12, TNF-alpha and IFN-alpha, -beta, -gamma). A central role for IFN-gamma in autoimmunity was suggested by blocking experiments in vivo using monoclonal antibodies and soluble forms of the IFN-gamma receptor (IFN-gamma SR). These agents ameliorated disease development in a variety of experimental autoimmune diseases in rodents. In a mouse model for the human disease Myasthenia gravis, IFN-alpha was found to reduce both the incidence and progression of the disease. Treatment of R. aurantiacus-infected mice with anti-IL-4 monoclonal antibodies (mAbs) was reported to interfere with the regression of granulomas in spleen and liver, most likely through inadequate IL-4-mediated suppression of IFN-gamma production. In addition, it was shown that mice with disrupted IFN-gamma R genes died rapidly after infection with the BCG strain of M. bovis, whereas normal mice survived the infection. IL-12 was found to be the main inductor of IFN-gamma during the lethal Shwartzman reaction. TNF-alpha was identified as the principal cause of mortality after the second injection with LPS. In a variety of studies examining the role of cytokines in the pathogenesis of AIDS, much attention was given to the in vitro effects of HIV-1 and/or the HIV-1 viral membrane

  4. HERP Binds TBK1 To Activate Innate Immunity and Repress Virus Replication in Response to Endoplasmic Reticulum Stress.

    PubMed

    Ge, Maolin; Luo, Zhen; Qiao, Zhi; Zhou, Yao; Cheng, Xin; Geng, Qibin; Cai, Yanyan; Wan, Pin; Xiong, Ying; Liu, Fang; Wu, Kailang; Liu, Yingle; Wu, Jianguo

    2017-09-27

    Host innate immunity is crucial for cellular responses against viral infection sensed by distinct pattern recognition receptors and endoplasmic reticulum (ER) stress. Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and neurological diseases. However, the exact mechanism underlying the link between ER stress induced by EV71 infection and host innate immunity is largely unknown. In this study, we demonstrated that EV71 infection induces the homocysteine-induced ER protein (HERP), a modulator of the ER stress response which is dependent on the participation of MAVS. Virus-induced HERP subsequently stimulates host innate immunity to repress viral replication by promoting type-I IFNs (IFN-α and IFN-β) and type-III IFN (IFN-λ1) expression. Through interacting with TANK-binding kinase 1, HERP amplifies the MAVS signaling and facilitates the phosphorylation and nuclear translocation of IFN regulatory factor 3 and NF-κB to enhance the expression of IFNs, which leads to a broad inhibition of the replication of RNA viruses, including EV71, Sendai virus, influenza A virus, and vesicular stomatitis virus. Therefore, we demonstrated that HERP plays an important role in the regulation of host innate immunity in response to ER stress during the infection of RNA viruses. These findings provide new insights into the mechanism underlying the replication of RNA viruses and the production of IFNs, and also demonstrate a new role of HERP in the regulation of host innate immunity in response to viral infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Conditioning of the immune response.

    PubMed

    Ader, R; Cohen, N

    1991-10-01

    Experimental studies in humans and experimental animals document the acquisition and extinction of classically conditioned alterations of different parameters of humoral- and cell-mediated immune responses. Although the aversive effects of cyclophosphamide in a taste aversion learning paradigm has been the most frequently used model, conditioned immunomodulatory effects are not confined to this conditioning procedure, and they are not limited to cyclophosphamide or, for that matter, the use of immunomodulating drugs as unconditioned stimuli. Conditioned changes in immunologic reactivity have also been found to modulate the progression of spontaneously-developing or experimentally-induced pathophysiological processes in experimental animals. The available data on the immunoregulatory effects of conditioning indicate that the immune system, like other systems operating in the interests of homeostasis, is integrated with other physiological processes and is therefore influenced by and capable of influencing the brain.

  6. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  7. Immune responses to resistance exercise.

    PubMed

    Freidenreich, Daniel J; Volek, Jeff S

    2012-01-01

    Resistance exercise induces changes in leukocyte redistribution, phenotypical surface expression and leukocyte functionality. Several factors have been shown to alter the temporal pattern and/or magnitude of response including manipulation of acute program variables, the aging process, and nutritional supplementation. Rest period length and load can modify the temporal pattern and/or magnitude of leukocytosis post exercise. Aging diminishes both the duration and magnitude of the post exercise leukocytosis and reduces leukocyte functionality. The few studies that assessed the effects of nutritional supplements (e.g., carbohydrate, whey protein, caffeine) peri-resistance exercise showed minimal effects on leukocyte responses. Sex differences exist in the timing and magnitude of leukocyte infiltration into skeletal muscle. The immune response to resistance exercise is only a small part of the recovery paradigm. A better understanding of how acute program variables and other factors such as aging, sex and nutritional supplementation affect the immune response to resistance exercise is important in the context of improving recovery, performance and health.

  8. Peroxiredoxin 5 modulates immune response in Drosophila

    PubMed Central

    Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Orr, William C.

    2010-01-01

    Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response. PMID:20600624

  9. Changing the energy of an immune response

    PubMed Central

    Delmastro-Greenwood, Meghan M; Piganelli, Jon D

    2013-01-01

    The breakdown of nutrients into the critical energy source ATP is the general purpose of cellular metabolism and is essential for sustaining life. Similarly, the immune system is composed of different cell subsets that are indispensable for defending the host against pathogens and disease. The interplay between metabolic pathways and immune cells leads to a plethora of different signaling pathways as well as cellular activities. The activation of T cells via glycolysis-mediated upregulation of surface markers, for example, is necessary for an appropriate effector response against an infection. However, tight regulation of immune cell metabolism is required for protecting the host and resuming homeostasis. An imbalance of immunological metabolic function and/or metabolic byproducts (reactive oxygen species) can oftentimes lead to diseases. In the case of cancer, overactive glucose metabolism can lead to hyperproliferation of cells and subsequent decreases in cytotoxic T cell activity, which attack and destroy the tumor. For this reason and many more, targeting metabolism in immune cells may be a novel therapeutic strategy for treatment of disease. The metabolic pathways of immune cells and the possibilities of immunometabolic therapies will be discussed. PMID:23885324

  10. Immune Responses to HCV and Other Hepatitis Viruses

    PubMed Central

    Park, Su-Hyung; Rehermann, Barbara

    2014-01-01

    Summary Five human hepatitis viruses cause most acute and chronic liver disease worldwide. Over the past 25 years hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation impairs the development of successful adaptive immune responses. Comparative immunology furthermore provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses. PMID:24439265

  11. The reciprocal link between sleep and immune responses.

    PubMed

    Del Gallo, F; Opp, M R; Imeri, L

    2014-01-01

    Good sleep is necessary for both physical and mental health; sleep and immune responses are reciprocally and closely linked. Sleep loss impairs the immune response, while, on the other hand, the immune response, activated for instance by an infection, alters sleep. Sleep alterations induced by immune activation are mediated by cytokines such as interleukin-1. In the past, it was thought that cytokines were produced only by the immune system, and active only there as signaling molecules. Today it is clear that IL-1 and other cytokines are present and active in the healthy brain, where they physiologically interact with the brain circuits and the neurotransmitter systems (for instance the serotonergic, GABAergic, and cholinergic systems) that control sleep. These interactions are altered by immune response, and, as a result, non-rapid eye movement (NREM) sleep is increased and fragmented, whereas rapid eye movements (REM) sleep is inhibited.

  12. LPS-activated monocytes suppress T-cell immune responses and induce FOXP3+ T cells through a COX-2-PGE2-dependent mechanism.

    PubMed

    Bryn, Tone; Yaqub, Sheraz; Mahic, Milada; Henjum, Karen; Aandahl, Einar M; Taskén, Kjetil

    2008-02-01

    Monocytes initiate innate immune responses and interact with T cells to induce antigen-specific immune responses by antigen presentation and secretion of humoral factors. We have previously shown that adaptive regulatory T cells inhibit T-cell effector functions in a cyclooxygenase (COX)-2-prostaglandin E(2) (PGE(2))-dependent manner and that PGE(2) converts resting CD4+CD25- T cells into FOXP3+ T cells with a suppressive phenotype. Here, we demonstrate that stimulation of monocytes with LPS leads to suppression of T-cell immune responses by a COX-2-PGE(2)-dependent mechanism that is reversible with COX-2 inhibitors as well as PGE(2)-neutralizing antibody and cAMP antagonist. Furthermore, we show that LPS-activated monocytes induce FOXP3 expression in resting CD4+CD25- T cells by the same pathway. These results suggest that monocytes are able to efficiently suppress T-cell immune responses in a regulatory manner and elicit an inhibitory immune profile.

  13. Innate immune responses to hepatitis C virus.

    PubMed

    Schoggins, John W; Rice, Charles M

    2013-01-01

    The innate immune response provides the first line of defense against invading viral pathogens. Incoming viruses are sensed by dedicated host factors that, when triggered, initiate multiple signal transduction pathways. Activation of these pathways leads to the induction of highly orchestrated transcriptional programs designed to limit virus replication and spread. In recent years, our understanding of innate immune responses targeting hepatitis C virus (HCV) has increased substantially, largely due to the development of new systems and methodologies to study HCV-host interactions in vitro and in vivo. However, significant gaps still remain. Here, we aim to provide a comprehensive view of the innate immune response to HCV, focusing primarily on knowledge gained from cell culture models of HCV infection, as well as data from human patients infected with HCV. While some paradigms of the host response to HCV revealed in cell culture translate to human infection in vivo, others are less clear. Further insight into the similarities and differences in these systems will not only reveal directions for future studies on HCV immunity, but may also guide the development of novel strategies to control HCV and other viral infections.

  14. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8(+) T-cell responses and immune memory.

    PubMed

    Wu, Junjie; Waxman, David J

    2015-04-01

    Cancer chemotherapy using cytotoxic drugs can induce immunogenic tumor cell death; however, dosing regimens and schedules that enable single-agent chemotherapy to induce adaptive immune-dependent ablation of large, established tumors with activation of long-term immune memory have not been identified. Here, we investigate this issue in a syngeneic, implanted GL261 glioma model in immune-competent mice given cyclophosphamide on a 6-day repeating metronomic schedule. Two cycles of metronomic cyclophosphamide treatment induced sustained upregulation of tumor-associated CD8(+) cytotoxic T lymphocyte (CTL) cells, natural killer (NK) cells, macrophages, and other immune cells. Expression of CTL- and NK-cell-shared effectors peaked on Day 6, and then declined by Day 9 after the second cyclophosphamide injection and correlated inversely with the expression of the regulatory T cell (Treg) marker Foxp3. Sustained tumor regression leading to tumor ablation was achieved after several cyclophosphamide treatment cycles. Tumor ablation required CD8(+) T cells, as shown by immunodepletion studies, and was associated with immunity to re-challenge with GL261 glioma cells, but not B16-F10 melanoma or Lewis lung carcinoma cells. Rejection of GL261 tumor re-challenge was associated with elevated CTLs in blood and increased CTL infiltration in tumors, consistent with the induction of long-term, specific CD8(+) T-cell anti-GL261 tumor memory. Co-depletion of CD8(+) T cells and NK cells did not inhibit tumor regression beyond CD8(+) T-cell depletion alone, suggesting that the metronomic cyclophosphamide-activated NK cells function via CD8a(+) T cells. Taken together, these findings provide proof-of-concept that single-agent chemotherapy delivered on an optimized metronomic schedule can eradicate large, established tumors and induce long-term immune memory.

  15. EVOLUTION OF THE IMMUNE RESPONSE

    PubMed Central

    Papermaster, Ben W.; Condie, Richard M.; Finstad, Joanne; Good, Robert A.

    1964-01-01

    1. The California hagfish, Eptatretus stoutii, seems to be completely lacking in adaptive immunity: it forms no detectable circulating antibody despite intensive stimulation with a range of antigens; it does not show reactivity to old tuberculin following sensitization with BCG; and gives no evidence of homograft immunity. 2. Studies on the sea lamprey, Petromyzon marinus, have been limited to the response to bacteriophage T2 and hemocyanin in small groups of spawning animals. They suggest that the lamprey may have a low degree of immunologic reactivity. 3. One holostean, the bowfin (Amia calva) and the guitarfish (Rhinobatos productus), an elasmobranch, showed a low level of primary response to phage and hemocyanin. The response is slow and antibody levels low. Both the bowfin and the guitarfish showed a vigorous secondary response to phage, but neither showed much enhancement of reactivity to hemocyanin in the secondary response. The bowfin formed precipitating antibody to hemocyanin, but the guitarfish did not. Both hemagglutinating and precipitating antibody to hemocyanin were also observed in the primary response of the black bass. 4. The bowfin was successfully sensitized to Ascaris antigen, and lesions of the delayed type developed after challenge at varying intervals following sensitization. 5. The horned shark (Heterodontus franciscii) regularly cleared hemocyanin from the circulation after both primary and secondary antigenic stimulation, and regularly formed hemagglutinating antibody, but not precipitating antibody, after both primary and secondary stimulation with this antigen. These animals regularly cleared bacteriophage from the circulation after both the primary and secondary stimulation with bacteriophage T2. Significant but small amounts of antibody were produced in a few animals in the primary response, and larger amounts in the responding animals after secondary antigenic stimulation. 6. Studies by starch gel and immunoelectrophoresis show that

  16. The CSF Immune Response in HIV-1-Associated Cryptococcal Meningitis: Macrophage Activation, Correlates of Disease Severity, and Effect of Antiretroviral Therapy.

    PubMed

    Scriven, James E; Graham, Lisa M; Schutz, Charlotte; Scriba, Thomas J; Wilkinson, Katalin A; Wilkinson, Robert J; Boulware, David R; Urban, Britta C; Meintjes, Graeme; Lalloo, David G

    2017-07-01

    Immune modulation may improve outcome in HIV-associated cryptococcal meningitis. Animal studies suggest alternatively activated macrophages are detrimental but human studies are limited. We performed a detailed assessment of the cerebrospinal fluid (CSF) immune response and examined immune correlates of disease severity and poor outcome, and the effects of antiretroviral therapy (ART). We enrolled persons ≥18 years with first episode of HIV-associated cryptococcal meningitis. CSF immune response was assessed using flow cytometry and multiplex cytokine analysis. Principal component analysis was used to examine relationships between immune response, fungal burden, intracranial pressure and mortality, and the effects of recent ART initiation (<12 weeks). CSF was available from 57 persons (median CD4 34/μL). CD206 (alternatively activated macrophage marker) was expressed on 54% CD14 and 35% CD14 monocyte-macrophages. High fungal burden was not associated with CD206 expression but with a paucity of CD4, CD8, and CD4CD8 T cells and lower interleukin-6, G-CSF, and interleukin-5 concentrations. High intracranial pressure (≥30 cm H2O) was associated with fewer T cells, a higher fungal burden, and larger Cryptococcus organisms. Mortality was associated with reduced interferon-gamma concentrations and CD4CD8 T cells but lost statistical significance when adjusted for multiple comparisons. Recent ART was associated with increased CSF CD4/CD8 ratio and a significantly increased macrophage expression of CD206. Paucity of CSF T cell infiltrate rather than alternative macrophage activation was associated with severe disease in HIV-associated cryptococcosis. ART had a pronounced effect on the immune response at the site of disease.

  17. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    PubMed

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  18. Modulation of inflammasome-mediated pulmonary immune activation by type-I-IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection

    PubMed Central

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R.; Dobrinen, Erin; Meissner, Nicole

    2013-01-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections, have not been extensively explored. In this regard we recently demonstrated an important role of type-I-IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type-I-IFN-receptor (IFrag−/− mice) develop rapidly progressing BMF due to accelerated bone marrow cell apoptosis associated with innate immune deviations in the bone marrow in response to Pneumocystis lung infection. However, the communication pathway between lung and bone marrow eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. Here we report that absence of an intact type-I-IFN-system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient bone marrow stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFNγ neutralization prevented Pneumocystis lung infection-induced bone marrow depression in type-I-IFN-receptor-deficient (IFNAR−/−) mice, and prolonged neutrophil survival time in bone marrow from IFrag−/− mice. IL-1β and upstream regulators of IFNγ, IL-12 and IL-18, were also upregulated in lung and serum of IFrag−/− mice. In conjunction there was exuberant inflammasome-mediated caspase-1-activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type-I-IFN-signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation causing systemic immune deviations triggering BMF in this model. PMID:23975863

  19. Regeneration, tissue injury and the immune response

    PubMed Central

    Godwin, James W; Brockes, Jeremy P

    2006-01-01

    The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular. PMID:17005015

  20. AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway.

    PubMed

    Vaez, Haleh; Najafi, Moslem; Rameshrad, Maryam; Toutounchi, Negisa Seyed; Garjani, Mehraveh; Barar, Jaleh; Garjani, Alireza

    2016-11-01

    Toll like receptors (TLRs) are key players in the innate immune responses. The energy sensing enzyme, AMPK, has been implicated in the modulation of immunity. The present study investigated whether AMPK activation by metformin could contribute to the regulation of immune responses in the isolated heart via suppression of TLR4 activity, independent of circulatory immunity. Isolated Wistar rat hearts were perfused with Krebs-Henseleit buffer in the absence or presence of lipopolysaccharide (LPS; 0.2μM), LPS+metformin (10mM), and LPS+metformin+compound C (10μM). Following measurement of hemodynamic parameters, TLR4-activation related changes and TLR4 mRNA level in the heart was examined by western blotting and real-time PCR. The activation of AMPK was evaluated by measuring the ratio of p-AMPKα and p-ACC to their non-phosphorylated forms. The effluent and cardiac levels of TNF-α and IL6 were assayed by ELISA. LPS profoundly increased the levels of TLR4 mRNA, MyD88 (TLR4 adaptor protein), and NF-κB and also the release of TNF-α and IL6 from the heart. The enhancement in the TLR4 activity was associated with a significant depression of myocardial function. Metformin clearly augmented the phosphorylation of both AMPKα and ACC and in addition to improvement of cardiac performance, markedly suppressed the TLR4 activity. Antagonizing AMPK by compound C which is a selective inhibitor of AMPK pathway, considerably reversed the protective effects of metformin against the TLR4-related activity. The results of the study demonstrated the importance of TLR4-involved local immune responses in the LPS-induced myocardial dysfunction and indicated a clear link between AMPK and TLR4. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Immune responses to infectious diseases in bivalves.

    PubMed

    Allam, Bassem; Raftos, David

    2015-10-01

    Many species of bivalve mollusks (phylum Mollusca, class Bivalvia) are important in fisheries and aquaculture, whilst others are critical to ecosystem structure and function. These crucial roles mean that considerable attention has been paid to the immune responses of bivalves such as oysters, clams and mussels against infectious diseases that can threaten the viability of entire populations. As with many invertebrates, bivalves have a comprehensive repertoire of immune cells, genes and proteins. Hemocytes represent the backbone of the bivalve immune system. However, it is clear that mucosal tissues at the interface with the environment also play a critical role in host defense. Bivalve immune cells express a range of pattern recognition receptors and are highly responsive to the recognition of microbe-associated molecular patterns. Their responses to infection include chemotaxis, phagolysosomal activity, encapsulation, complex intracellular signaling and transcriptional activity, apoptosis, and the induction of anti-viral states. Bivalves also express a range of inducible extracellular recognition and effector proteins, such as lectins, peptidoglycan-recognition proteins, thioester bearing proteins, lipopolysaccharide and β1,3-glucan-binding proteins, fibrinogen-related proteins (FREPs) and antimicrobial proteins. The identification of FREPs and other highly diversified gene families in bivalves leaves open the possibility that some of their responses to infection may involve a high degree of pathogen specificity and immune priming. The current review article provides a comprehensive, but not exhaustive, description of these factors and how they are regulated by infectious agents. It concludes that one of the remaining challenges is to use new "omics" technologies to understand how this diverse array of factors is integrated and controlled during infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Chimpanzees Immunized with Recombinant Soluble CD4 Develop Anti-Self CD4 Antibody Responses with Anti-Human Immunodeficiency Virus Activity

    NASA Astrophysics Data System (ADS)

    Watanabe, Mamoru; Boyson, Jonathan E.; Lord, Carol I.; Letvin, Norman L.

    1992-06-01

    In view of the efficiency with which human immunodeficiency virus replication can be blocked in vitro with anti-CD4 antibodies, the elicitation of an anti-CD4 antibody response through active immunization might represent a useful therapeutic strategy for AIDS. Here we demonstrate that immunization of chimpanzees with recombinant soluble human CD4 elicited an anti-CD4 antibody response. The elicited antibody bound self CD4 on digitonin-treated but not freshly isolated lymphocytes. Nevertheless, this antibody blocked human immunodeficiency virus replication in chimpanzee and human lymphocytes. These observations suggest that immunization with recombinant soluble CD4 from human immunodeficiency virus-infected humans may be feasible and therapeutically beneficial.

  3. Tilapia show immunization response against Ich

    USDA-ARS?s Scientific Manuscript database

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  4. A genetic inference on cancer immune responsiveness

    PubMed Central

    Wang, Ena; Uccellini, Lorenzo; Marincola, Francesco M.

    2012-01-01

    A cancer immune signature implicating good prognosis and responsiveness to immunotherapy was described that is observed also in other aspects of immune-mediated, tissue-specific destruction (TSD). Its determinism remains, however, elusive. Based on limited but unique clinical observations, we propose a multifactorial genetic model of human cancer immune responsiveness. PMID:22754772

  5. Cytokines and Immune Responses in Murine Atherosclerosis.

    PubMed

    Kusters, Pascal J H; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.

  6. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

    PubMed Central

    Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated

  7. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response.

    PubMed

    Conn, Kristen L; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R; Grant, Kyle G; Domingues, Patricia; Boutell, Chris

    2016-05-01

    Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of

  8. Phosphorylation of the Plant Immune Regulator RPM1-INTERACTING PROTEIN4 Enhances Plant Plasma Membrane H⁺-ATPase Activity and Inhibits Flagellin-Triggered Immune Responses in Arabidopsis.

    PubMed

    Lee, DongHyuk; Bourdais, Gildas; Yu, Gang; Robatzek, Silke; Coaker, Gitta

    2015-07-01

    The Pseudomonas syringae effector AvrB targets multiple host proteins during infection, including the plant immune regulator RPM1-INTERACTING PROTEIN4 (RIN4) and RPM1-INDUCED PROTEIN KINASE (RIPK). In the presence of AvrB, RIPK phosphorylates RIN4 at Thr-21, Ser-160, and Thr-166, leading to activation of the immune receptor RPM1. Here, we investigated the role of RIN4 phosphorylation in susceptible Arabidopsis thaliana genotypes. Using circular dichroism spectroscopy, we show that RIN4 is a disordered protein and phosphorylation affects protein flexibility. RIN4 T21D/S160D/T166D phosphomimetic mutants exhibited enhanced disease susceptibility upon surface inoculation with P. syringae, wider stomatal apertures, and enhanced plasma membrane H(+)-ATPase activity. The plasma membrane H(+)-ATPase AHA1 is highly expressed in guard cells, and its activation can induce stomatal opening. The ripk knockout also exhibited a strong defect in pathogen-induced stomatal opening. The basal level of RIN4 Thr-166 phosphorylation decreased in response to immune perception of bacterial flagellin. RIN4 Thr166D lines exhibited reduced flagellin-triggered immune responses. Flagellin perception did not lower RIN4 Thr-166 phosphorylation in the presence of strong ectopic expression of AvrB. Taken together, these results indicate that the AvrB effector targets RIN4 in order to enhance pathogen entry on the leaf surface as well as dampen responses to conserved microbial features.

  9. Ovine model for studying pulmonary immune responses

    SciTech Connect

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  10. Space flight, microgravity, stress, and immune responses

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established.

  11. Differential temperature operation of plant immune responses

    PubMed Central

    Cheng, Cheng; Gao, Xiquan; Feng, Baomin; Sheen, Jen; Shan, Libo; He, Ping

    2014-01-01

    Temperature fluctuation is a key determinant for microbial invasion and host evasion. In contrast to mammalians that maintain constant body temperature, plant temperature oscillates on a daily basis. It remains elusive how plants operate inducible defenses in response to temperature fluctuation. Here we report that ambient temperature changes lead to pronounced shifts of two distinct plant immune responses: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Plants preferentially activate ETI signaling at relatively low temperatures (10~23°C), whereas they switch to PTI signaling at moderately elevated temperatures (23~32°C). The Arabidopsis arp6 and hta9hta11 mutants, phenocopying plants grown at the elevated temperatures, exhibit enhanced PTI and yet reduced ETI responses. As the secretion of bacterial effectors favors low temperatures whereas bacteria multiply vigorously at elevated temperatures accompanied with increased microbe-associated molecular pattern production, our findings suggest that temperature oscillation might have driven dynamic co-evolution of distinct plant immune signaling responding to pathogen physiological changes. PMID:24067909

  12. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses

    PubMed Central

    Dzharullaeva, Alina S.; Tukhvatulina, Natalia M.; Shcheblyakov, Dmitry V.; Shmarov, Maxim M.; Dolzhikova, Inna V.; Stanhope-Baker, Patricia; Naroditsky, Boris S.; Gudkov, Andrei V.; Logunov, Denis Y.; Gintsburg, Alexander L.

    2016-01-01

    Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2

  13. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses.

    PubMed

    Tukhvatulin, Amir I; Dzharullaeva, Alina S; Tukhvatulina, Natalia M; Shcheblyakov, Dmitry V; Shmarov, Maxim M; Dolzhikova, Inna V; Stanhope-Baker, Patricia; Naroditsky, Boris S; Gudkov, Andrei V; Logunov, Denis Y; Gintsburg, Alexander L

    2016-01-01

    Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2

  14. The immune response and its therapeutic modulation in bronchiectasis.

    PubMed

    Daheshia, Massoud; Prahl, James D; Carmichael, Jacob J; Parrish, John S; Seda, Gilbert

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.

  15. Transient activation of mucosal effector immune responses by resident intestinal bacteria in normal hosts is regulated by interleukin-10 signalling.

    PubMed

    Wu, Cong; Sartor, R Balfour; Huang, Kehe; Tonkonogy, Susan L

    2016-07-01

    Interleukin-10 (IL-10) is a key regulator of mucosal homeostasis. In the current study we investigated the early events after monoassociating germ-free (GF) wild-type (WT) mice with an Escherichia coli strain that we isolated previously from the caecal contents of a normal mouse housed under specific pathogen-free conditions. Our results show that interferon-γ (IFN-γ) secreted by mesenteric lymph node (MLN) cells from both IL-10 deficient mice and WT mice, stimulated ex vivo with E. coli lysate, was dramatically higher at day 4 after monoassociation compared with IFN-γ secreted by cells from GF mice without E. coli colonization. Production of IFN-γ rapidly and progressively declined after colonization of WT but not IL-10-deficient mice. The E. coli lysate-stimulated WT MLN cells also produced IL-10 that peaked at day 4 and subsequently declined, but not as precipitously as IFN-γ. WT cells that express CD4, CD8 and NKp46 produced IFN-γ; WT CD4-positive cells and B cells produced IL-10. Recombinant IL-10 added to E. coli-stimulated MLN cell cultures inhibited IFN-γ secretion in a dose-dependent fashion. MLN cells from WT mice treated in vivo with neutralizing anti-IL-10 receptor antibody produced more IFN-γ compared with MLN cells from isotype control antibody-treated mice. These findings show that a resident E. coli that induces chronic colitis in monoassociated IL-10-deficient mice rapidly but transiently activates the effector immune system in normal hosts, in parallel with induction of protective IL-10 produced by B cells and CD4(+) cells that subsequently suppresses this response to mediate mucosal homeostasis. © 2016 John Wiley & Sons Ltd.

  16. Pro-inflammatory caspase-1 activation during the immune response in cells from rainbow trout Oncorhynchus mykiss (Walbaum 1792) challenged with pathogen-associated molecular patterns.

    PubMed

    Rojas, V; Camus-Guerra, H; Guzmán, F; Mercado, L

    2015-11-01

    In response to pathogens, the higher vertebrate innate immune system activates pro-inflammatory caspase-1 which is responsible for the processing and secretion of several important cytokines involved in the host's defence against infection. To date, caspase-1 has been described in few teleost fish, and its activity has been demonstrated through substrate cleavage and inhibition by pharmacological agents. In this study, the detection of the active form of caspase-1 during the immune response in salmonid fish is described, where two antibodies were produced. These antibodies differentially recognize the structural epitopes of the inactive pro-caspase-1 and the processed active form of the caspase. Firstly, caspase-1 activation was demonstrated in vitro by ELISA, Western blotting and immunocytochemistry in rainbow trout macrophages exposed to different pathogen-associated molecular patterns plus the pathogen Aeromonas hydrophila. This activity was clearly abrogated by a caspase inhibitor and seems to be unrelated to IL-1β secretion. Caspase-1 activation was then validated in vivo in gill cells from fish challenged with Aeromonas salmonicida. These results represent the first demonstration of caspase-1 activation in salmonids, and the first evidence of the putative regulatory role which this protease plays in inflammatory response in this fish group, as described for some other teleosts and mammals.

  17. B cell function in the immune response to helminths

    PubMed Central

    Harris, Nicola

    2010-01-01

    Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556

  18. Mumps virus induces innate immune responses in mouse ovarian granulosa cells through the activation of Toll-like receptor 2 and retinoic acid-inducible gene I.

    PubMed

    Wang, Qing; Wu, Han; Cheng, Lijing; Yan, Keqin; Shi, Lili; Zhao, Xiang; Jiang, Qian; Wang, Fei; Chen, Yongmei; Li, Qihan; Han, Daishu

    2016-11-15

    Mumps virus (MuV) infection may lead to oophoritis and perturb ovarian function. However, the mechanisms underlying the activation of innate immune responses to MuV infection in the ovary have not been investigated. This study showed that Toll-like receptor 2 (TLR2) and retinoic acid-inducible gene I (RIG-I) cooperatively initiate innate immune responses to MuV infection in mouse ovarian granulosa cells. Ovarian granulosa cells infected with MuV significantly produced pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), and type 1 interferons (IFN-α and IFN-β). Knockdown of RIG-I significantly decreased MuV-induced cytokine expression. TLR2 deficiency reduced the expression of IL-1β, TNF-α, and MCP-1 but did not affect the expression of IFN-α and IFN-β in granulosa cells after infection with MuV. Intraperitoneal injection of MuV induced the ovarian innate immune responses in vivo, which suppressed estradiol synthesis and induced granulosa cell apoptosis. The results provide novel insights into the mechanisms underlying MuV-induced innate immune responses in the mouse ovary. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Abnormal humoral immune response to influenza vaccination in pediatric type-1 human immunodeficiency virus infected patients receiving highly active antiretroviral therapy.

    PubMed

    Montoya, Carlos J; Toro, Maria F; Aguirre, Carlos; Bustamante, Alberto; Hernandez, Mariluz; Arango, Liliana P; Echeverry, Marta; Arango, Ana E; Prada, Maria C; Alarcon, Herminia del P; Rojas, Mauricio

    2007-06-01

    Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.

  20. Staphylococcus aureus strategies to evade the host acquired immune response.

    PubMed

    Goldmann, Oliver; Medina, Eva

    2017-09-15

    Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.

    PubMed Central

    Dimopoulos, G; Seeley, D; Wolf, A; Kafatos, F C

    1998-01-01

    Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when malaria ookinetes traverse the midgut epithelium, but subsides at later phases of malaria development. In contrast, the salivary glands show no significant response at 24 h, but are activated in a prolonged late phase when sporozoites are released from the midgut into the haemolymph and invade the glands, between 10 and 25 days after blood feeding. Furthermore, the abdomen of the mosquito minus the midgut shows significant activation of immune markers, with complex kinetics that are distinct from those of both midgut and salivary glands. The parasite evidently elicits immune responses in multiple tissues of the mosquito, two of which are epithelia that the parasite must traverse to complete its development. The mechanisms of these responses and their significance for malaria transmission are discussed. PMID:9799221

  2. Mesenchymal stem cells and adaptive immune responses.

    PubMed

    Cao, Wei; Cao, Kai; Cao, Jianchang; Wang, Ying; Shi, Yufang

    2015-12-01

    Over the past decade, our understanding of the regulatory role of mesenchymal stem cells (MSCs) in adaptive immune responses through both preclinical and clinical studies has dramatically expanded, providing great promise for treating various inflammatory diseases. Most studies are focused on the modulatory effects of these cells on the properties of T cell-mediated immune responses, including activation, proliferation, survival, and subset differentiation. Interestingly, the immunosuppressive function of MSCs was found to be licensed by IFN-γ and TNF-α produced by T cells and that can be further amplified by cytokines such as IL-17. However, the immunosuppressive function of MSCs can be reversed in certain situation, such as suboptimal levels of inflammatory cytokines, or in the presence of immunosuppressive molecules. Here we review the influence of MSCs on adaptive immune system, especially their bidirectional interaction in tuning the immune microenvironment and subsequently repairing damaged tissue. Understanding MSC-mediated regulation of T cells is expected to provide fundamental information for guiding appropriate applications of MSCs in clinical settings. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. Cellular immune responses towards regulatory cells.

    PubMed

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  4. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus

    PubMed Central

    2012-01-01

    Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines

  5. Immune function trade-offs in response to parasite threats.

    PubMed

    Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W

    2017-04-01

    Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection.

  6. Comparative activity of biodegradable nanoparticles with aluminum adjuvants: antigen uptake by dendritic cells and induction of immune response in mice.

    PubMed

    Uto, Tomofumi; Akagi, Takami; Toyama, Masaaki; Nishi, Yosuke; Shima, Fumiaki; Akashi, Mitsuru; Baba, Masanori

    2011-10-30

    Biodegradable poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) are considered to be an excellent antigen carrier. Antigen-carrying γ-PGA NPs were examined for their uptake by murine dendritic cells (DCs) and subsequent induction of antigen-specific immune responses in mice and compared with aluminum (AL) adjuvants. Ovalbumin (OVA)-carrying NPs (FITC-OVA-NPs) were taken up much more efficiently by DCs than OVA alone or its AL-associated form. Both OVA-NPs and OVA+AL were detected in an intracellular lysosome compartment of DCs. Furthermore, the uptake of γ-PGA NPs was inhibited in the presence of pinocytosis and phagocytosis inhibitors. Significantly higher induction of antigen-specific CD8(+) T cells was observed in mice immunized with OVA-carrying γ-PGA NPs than in those immunized with OVA alone, OVA+AL, OVA+3-O-desacyl-4'-monophosphoryl lipid A (MPL), and OVA+AL+MPL. Thus, γ-PGA NPs may have great potential as an effective vaccine carrier and adjuvant for clinical use.

  7. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response.

    PubMed

    Oskvig, Devon B; Elkahloun, Abdel G; Johnson, Kory R; Phillips, Terry M; Herkenham, Miles

    2012-05-01

    Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism.

  8. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response

    PubMed Central

    Oskvig, Devon B.; Elkahloun, Abdel G.; Johnson, Kory R.; Phillips, Terry M.; Herkenham, Miles

    2012-01-01

    Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother’s immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3,285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism. PMID:22310921

  9. Staphylococcal manipulation of host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kim, Hwan Keun; Missiakas, Dominique; Schneewind, Olaf

    2015-01-01

    Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium’s ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus. PMID:26272408

  10. Opioid peptides and innate immune response in mollusc.

    PubMed

    Liu, Dong-Wu

    2008-01-01

    The nervous and the immune systems can exchange information through opioid peptides. Furthermore, some opioid peptides can function as endogenous messengers of the immune system, and participate in an important part in the regulation of the various components of the immune response. Since the capacity of immunocytes to release and respond to opioid neuropeptide messengers is not restricted to mammalian organisms, recent studies have indicated that invertebrate models have been particularly useful to understand the mechanisms of the immune response. Moreover, the immunocytes of molluscs resemble cells of the vertebrate monocyte/macrophage lineage and are activated by similar substances, which control the main immune responses, i.e. phagocytosis, chemotaxis, and cytotoxicity. Recently, Mytilus edulis has been the subject of recent studies to determine whether the relationship between the immune and nervous systems seen in vertebrates also exists in invertebrates. The focus of this review is to describe how the opioid peptides participate in immune processes in molluscs.

  11. Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    Tallima, Hatem; Dvořák, Jan; Kareem, Sahira; Abou El Dahab, Marwa; Abdel Aziz, Nada; El Ridi, Rashika

    2017-01-01

    Background Schistosomiasis, a severe disease caused by parasites of the genus Schistosoma, is prevalent in 74 countries, affecting more than 250 million people, particularly children. We have previously shown that the Schistosoma mansoni gut-derived cysteine peptidase, cathepsin B1 (SmCB1), administered without adjuvant, elicits protection (>60%) against challenge infection of S. mansoni or S. haematobium in outbred, CD-1 mice. Here we compare the immunogenicity and protective potential of another gut-derived cysteine peptidase, S. mansoni cathepsin L3 (SmCL3), alone, and in combination with SmCB1. We also examined whether protective responses could be boosted by including a third non-peptidase schistosome secreted molecule, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH), with the two peptidases. Methodology/Principal findings While adjuvant-free SmCB1 and SmCL3 induced type 2 polarized responses in CD-1 outbred mice those elicited by SmCL3 were far weaker than those induced by SmCB1. Nevertheless, both cysteine peptidases evoked highly significant (P < 0.005) reduction in challenge worm burden (54–65%) as well as worm egg counts and viability. A combination of SmCL3 and SmCB1 did not induce significantly stronger immune responses or higher protection than that achieved using each peptidase alone. However, when the two peptidases were combined with SG3PDH the levels of protection against challenge S. mansoni infection reached 70–76% and were accompanied by highly significant (P < 0.005) decreases in worm egg counts and viability. Similarly, high levels of protection were achieved in hamsters immunized with the cysteine peptidase/SG3PDH-based vaccine. Conclusions/Significance Gut-derived cysteine peptidases are highly protective against schistosome challenge infection when administered subcutaneously without adjuvant to outbred CD-1 mice and hamsters, and can also act to enhance the efficacy of other schistosome antigens, such as SG3PDH. This cysteine

  12. Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response

    NASA Astrophysics Data System (ADS)

    Fiasconaro, Alessandro; Spagnolo, Bernardo; Ochab-Marcinek, Anna; Gudowska-Nowak, Ewa

    2006-10-01

    We investigate a stochastic version of a simple enzymatic reaction which follows the generic Michaelis-Menten kinetics. At sufficiently high concentrations of reacting species, that represent here populations of cells involved in cancerous proliferation and cytotoxic response of the immune system, the overall kinetics can be approximated by a one-dimensional overdamped Langevin equation. The modulating activity of the immune response is here modeled as a dichotomous random process of the relative rate of neoplastic cell destruction. We discuss physical aspects of environmental noises acting in such a system, pointing out the possibility of coexistence of dynamical regimes where noise-enhanced stability and resonant activation phenomena can be observed together. We explain the underlying mechanisms by analyzing the behavior of the variance of first passage times as a function of the noise intensity.

  13. Quantification of a bifunctional drug in the presence of an immune response: a ligand-binding assay specific for 'active' drug.

    PubMed

    Staack, Roland F; Jordan, Gregor; Viert, Maria; Schäfer, Martin; Papadimitriou, Apollon; Heinrich, Julia

    2015-12-01

    During development of biologics, safety and efficacy assessments are often hampered by immune responses to the treatment. The raised antidrug antibodies (ADA) might interfere with the bioanalytical method and complicate result interpretation if non-fully characterized bioanalytical methods were applied. Here, we report an approach to characterize a ligand-binding assay (LBA) for the quantification of active drug exposure of a bifunctional therapeutic protein in the presence of antidrug antibodies, by correlating LBA results with those of a cell-based PK assay. A clear correlation between both assays could be observed when monoclonal and polyclonal antibodies against the toxin moiety of the drug were used as ADA surrogates, and results were confirmed with human ADA-positive sera. The observed correlation between the LBA-based and cell-based PK assay indicated the suitability of the developed LBA for the determination of active drug exposure in the presence of an immune response.

  14. IL-1 and T Helper Immune Responses

    PubMed Central

    Santarlasci, Veronica; Cosmi, Lorenzo; Maggi, Laura; Liotta, Francesco; Annunziato, Francesco

    2013-01-01

    CD4 T cells play a critical role in mediating adaptive immunity to a variety of pathogens as well as in tumor immunity. If not adequately regulated, CD4 T cells can be also involved in autoimmunity, asthma, and allergic responses. During TCR activation in a particular cytokine milieu, naïve CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, and Th17, as defined by their pattern of cytokine production and function. IL-1, the prototypic proinflammatory cytokine, has been shown to influence growth and differentiation of immunocompetent lymphocytes. The differential expression of IL-1RI on human CD4 T cell subsets confers distinct capacities to acquire specific effector functions. In this review, we summarize the role of IL-1 on CD4 T cells, in terms of differentiation, activation, and maintenance or survival. PMID:23874332

  15. A Hypothesis: Supplementation with Mushroom-Derived Active Compound Modulates Immunity and Increases Survival in Response to Influenza Virus (H1N1) Infection

    PubMed Central

    Chunchao, Han; Guo, Jian-you

    2011-01-01

    We hypothesize that the mushroom-derived active compound may be a potential strategy for increasing survival in response to influenza virus (H1N1) infection through the stimulation of host innate immune response. The validity of the hypothesis can be tested by immune response to influenza infection as seen through survival percentage, virus clearance, weight loss, natural killer cell cytotoxicity, Tumor Necrosis Factor-α (TNF-α) and Interferon-gamma (IFN-γ) levels, lytic efficiency in the spleens of mice and inducible nitric oxide synthase mRNA expressions in RAW 264.7 murine macrophage cells. The hypothesis may improve people's quality of life, reduce the medical cost of our healthcare system and eliminate people's fears of influenza outbreak. PMID:21660092

  16. Chronic active hepatitis induced by Helicobacter hepaticus in the A/JCr mouse is associated with a Th1 cell-mediated immune response.

    PubMed

    Whary, M T; Morgan, T J; Dangler, C A; Gaudes, K J; Taylor, N S; Fox, J G

    1998-07-01

    Helicobacter hepaticus infection in A/JCr mice results in chronic active hepatitis characterized by perivascular, periportal, and parenchymal infiltrates of mononuclear and polymorphonuclear cells. This study examined the development of hepatitis and the immune response of A/JCr mice to H. hepaticus infection. The humoral and cell-mediated T helper immune response was profiled by measuring the postinfection (p.i.) antibody response in serum, feces, and bile and by the production of cytokines and proliferative responses by splenic mononuclear cells to H. hepaticus antigens. Secretory immunoglobulin A (IgA) and systemic IgG2a antibody developed by 4 weeks p.i. and persisted through 12 months. Splenocytes from infected mice proliferated and produced more gamma interferon (IFN-gamma) than interleukin-4 (IL-4) or IL-5 when cultured with H. hepaticus outer membrane proteins. The predominantly IgG2a antibody response in serum and the in vitro production of IFN-gamma in excess of IL-4 or IL-5 are consistent with a Th1 immune response reported in humans and mice infected with Helicobacter pylori and Helicobacter felis, respectively. Mice infected with H. hepaticus developed progressively severe perivascular, periportal, and hepatic parenchymal lesions consisting of lymphohistiocytic and plasmacytic cellular infiltrates. In addition, transmural typhlitis was observed at 12 months p.i. The characterization of a cell-mediated Th1 immune response to H. hepaticus infection in the A/JCr mouse should prove valuable as a model for experimental regimens which manipulate the host response to Helicobacter.

  17. Chronic Active Hepatitis Induced by Helicobacter hepaticus in the A/JCr Mouse Is Associated with a Th1 Cell-Mediated Immune Response

    PubMed Central

    Whary, M. T.; Morgan, T. J.; Dangler, C. A.; Gaudes, K. J.; Taylor, N. S.; Fox, J. G.

    1998-01-01

    Helicobacter hepaticus infection in A/JCr mice results in chronic active hepatitis characterized by perivascular, periportal, and parenchymal infiltrates of mononuclear and polymorphonuclear cells. This study examined the development of hepatitis and the immune response of A/JCr mice to H. hepaticus infection. The humoral and cell-mediated T helper immune response was profiled by measuring the postinfection (p.i.) antibody response in serum, feces, and bile and by the production of cytokines and proliferative responses by splenic mononuclear cells to H. hepaticus antigens. Secretory immunoglobulin A (IgA) and systemic IgG2a antibody developed by 4 weeks p.i. and persisted through 12 months. Splenocytes from infected mice proliferated and produced more gamma interferon (IFN-γ) than interleukin-4 (IL-4) or IL-5 when cultured with H. hepaticus outer membrane proteins. The predominantly IgG2a antibody response in serum and the in vitro production of IFN-γ in excess of IL-4 or IL-5 are consistent with a Th1 immune response reported in humans and mice infected with Helicobacter pylori and Helicobacter felis, respectively. Mice infected with H. hepaticus developed progressively severe perivascular, periportal, and hepatic parenchymal lesions consisting of lymphohistiocytic and plasmacytic cellular infiltrates. In addition, transmural typhlitis was observed at 12 months p.i. The characterization of a cell-mediated Th1 immune response to H. hepaticus infection in the A/JCr mouse should prove valuable as a model for experimental regimens which manipulate the host response to Helicobacter. PMID:9632578

  18. [Inorganic pyrophosphatase activity of the mouse spleen in the immune response and after treatment with bis-phosphonates].

    PubMed

    Komissarenko, S V; Gulaia, N M; Gaĭvoronskaia, G G; Karlova, N P; Tarusova, N B

    1986-01-01

    The inorganic pyrophosphatase activity was determined in different tissues of mice. The immunization of mice by sheep erythrocytes increased the inorganic pyrophosphatase activity of the spleen. The in vivo administration of bisphosphonates (40 mg per 1 g of mass), which are structural analogs of inorganic pyrophosphate (methylene bisphosphonic acid--MBPA, hydroxyethylidene bisphosphonic acid--HEBPA and aminomethylene bisphosphonic acid--AMBPA), inhibited the inorganic pyrophosphatase activity only by MBPA in the thymus and spleen but not in liver. The addition of MBPA, HEBPA as well as of phosphonoacetic acid, imidobisphosphate, bis(phosphonomethyl)-phosphonic acid, MBPA and phosphoric acid monoanhydride to cytosol from the mouse spleen led to the competitive (relative to the [Mg (PPi)2-] complex) inhibition of the inorganic pyrophosphatase activity. AMBPA didn't possess the analogous effect.

  19. Activity of the hypothalamus-pituitary-interrenal axis (HPI axis) and immune response in carp lines with different susceptibility to disease.

    PubMed

    Pijanowski, L; Jurecka, P; Irnazarow, I; Kepka, M; Szwejser, E; Verburg-van Kemenade, B M L; Chadzinska, M

    2015-10-01

    The stress response transmitted by the HPA axis is one of the best examples of neuroendocrine-immune interactions that are critical for survival. Analogous to the situation in mammals, the stress response in fish is characterized by the activation of the hypothalamo-pituitary-interrenal axis (HPI). Effects of cortisol on the fish immune system comply with findings in mammals and suggest that the differences in sensitivity to stress will influence the immune response and as a consequence of survival. Therefore, we studied the stress response and its immunity-related effects in four different carp lines (R3, R3xR8, K and R2) that display a differential pathogen susceptibility. Previous studies indicate that R3xR8 and R3 carp are susceptible to bacterial and parasite infection, while R2 and K are relatively resistant to infection. Interestingly, the most striking effect of stress on leukocyte composition and activity was observed in the pathogen-resistant K carp, even though no robust changes in gene expression of stress-involved factors were observed. In contrast, R3 carp showed no spectacular stress-induced changes in their immunological parameters with concurrent significant activation of the HPI axis. Upon stress, the R3 carp showed up-regulation of crf, pomc and gr2 gene expression in the hypothalamus. Furthermore in R3 carp, at all levels of the HPI axis, stress induced the highest up-regulation of il-1β gene expression. Although we are aware of the complexity of the interactions between stress and pathogen susceptibility and of the risk of interpretation based on correlations, it is noteworthy that the fish more susceptible to infection also exhibited the highest response to stress.

  20. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity.

    PubMed

    Sanders, Catherine J; Franchi, Luigi; Yarovinsky, Felix; Uematsu, Satoshi; Akira, Shizuo; Núñez, Gabriel; Gewirtz, Andrew T

    2009-02-01

    The ability of TLR agonists to promote adaptive immune responses is attributed to their ability to robustly activate innate immunity. However, it has been observed that, for adjuvants in actual use in research and vaccination, TLR signaling is dispensable for generating humoral immunity. Here, we examined the role of TLR5 and MyD88 in promoting innate and humoral immunity to flagellin using a prime/boost immunization regimen. We observed that eliminating TLR5 greatly reduced flagellin-induced cytokine production, except for IL-18, and ablated DC maturation but did not significantly impact flagellin's ability to promote humoral immunity. Elimination of MyD88, which will ablate signaling through TLR and IL-1beta/IL-18 generated by Nod-like receptors, reduced, but did not eliminate flagellin's promotion of humoral immunity. In contrast, loss of the innate immune receptor for profilin-like protein (PLP), TLR11, greatly reduced the ability of PLP to elicit humoral immunity. Together, these results indicate that, firstly, the degree of innate immune activation induced by TLR agonists may be in great excess of that needed to promote humoral immunity and, secondly, there is considerable redundancy in mechanisms that promote the humoral immune response upon innate immune recognition of flagellin. Thus, it should be possible to design innate immune activators that are highly effective vaccine adjuvants yet avoid the adverse events associated with systemic TLR activation.

  1. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea.

    PubMed

    Hatmi, Saloua; Gruau, Charlotte; Trotel-Aziz, Patricia; Villaume, Sandra; Rabenoelina, Fanja; Baillieul, Fabienne; Eullaffroy, Philippe; Clément, Christophe; Ferchichi, Ali; Aziz, Aziz

    2015-02-01

    Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  2. Spaceflight and immune responses of Rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.

  3. The toll-like receptor ligands Hiltonol(®) (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii).

    PubMed

    Patchett, Amanda L; Tovar, Cesar; Corcoran, Lynn M; Lyons, A Bruce; Woods, Gregory M

    2017-11-01

    Devil facial tumour disease (DFTD) describes two genetically distinct transmissible tumours that pose a significant threat to the survival of the Tasmanian devil. A prophylactic vaccine could protect devils from DFTD transmission. For this vaccine to be effective, potent immune adjuvants will be required. Toll-like receptors (TLRs) promote robust immune responses in human cancer studies and are highly conserved across mammalian species. In this study, we investigated the proficiency of TLR ligands for immune activation in the Tasmanian devil using in vitro mononuclear cell stimulations and in vivo immunisation trials with a model antigen. We identified two such TLR ligands, polyICLC (Hiltonol(®)) (TLR3) and imiquimod (TLR7), that in combination induced significant IFNγ production from Tasmanian devil lymphocytes in vitro. Immunisation with these ligands and the model antigen keyhole limpet haemocyanin activated robust antigen-specific primary, secondary and long-term memory IgG responses. Our results support the conserved nature of TLR signaling across mammalian species. PolyICLC and imiquimod will be trialed as immune adjuvants in future DFTD vaccine formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Varicella-Zoster Virus ORF47 Kinase Interferes with Host Innate Immune Response by Inhibiting the Activation of IRF3

    PubMed Central

    Vandevenne, Patricia; Lebrun, Marielle; El Mjiyad, Nadia; Ote, Isabelle; Di Valentin, Emmanuel; Habraken, Yvette; Dortu, Estelle; Piette, Jacques; Sadzot-Delvaux, Catherine

    2011-01-01

    The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-β expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-β and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-β and ISG15. PMID:21347389

  5. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    PubMed

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  6. Suppression of immune response to Listeria monocytogenes: mechanism(s) of immune complex suppression.

    PubMed Central

    Virgin, H W; Wittenberg, G F; Bancroft, G J; Unanue, E R

    1985-01-01

    We have investigated possible mechanisms underlying immune complex suppression of resistance to Listeria monocytogenes. Inhibition of resistance was found when immune complexes were formed in vivo in immune mice or in nonimmune mice adoptively transferred with specific antibody. Suppression was also found when nonimmune mice were injected with immune complexes preformed in vitro. We investigated the role of complement by decomplementing mice with cobra venom factor purified by high-pressure liquid chromatography. Complete depletion of serum C3 did not eliminate immune complex suppression of resistance to L. monocytogenes, suggesting that complement activation is not required for immune complex suppression. Infection-induced changes in the surface phenotype and functional properties of macrophages from normal and immune complex-suppressed mice were also investigated. Macrophage expression of both H-2K and Ia molecules increased during the response of normal mice to L. monocytogenes. However, these changes were not found in immune complex-suppressed mice. In contrast, membrane interleukin 1 expression was increased in macrophages from suppressed mice compared with macrophages from normal mice. Macrophages from L. monocytogenes-infected normal and immune complex-suppressed mice expressed cytotoxicity against tumor cells in vitro. We conclude that immune complexes do not inhibit resistance to L. monocytogenes by activation of complement or decreasing macrophage cytotoxic activity. Rather, defects in Ia expression by macrophages from suppressed mice might be one component responsible for immune complex suppression of resistance to L. monocytogenes. PMID:3932204

  7. A zebrafish (Danio rerio) bloodthirsty member 20 with E3 ubiquitin ligase activity involved in immune response against bacterial infection.

    PubMed

    Zhang, Xinshang; Zhao, Heng; Chen, Yeyu; Luo, Huiying; Yang, Peilong; Yao, Bin

    2015-01-30

    The tripartite motif (TRIM)-containing proteins exhibit various activities and play important roles in the immune system through regulating signaling pathways. Bloodthirsty gene is a multigene subset of TRIM genes. In this study we identified and characterized a new member of the bloodthirsty subset of TRIM genes, btr20, in zebrafish (Danio rerio). The gene is located on chromosome 19 and forms a cluster with btr18, btr21, btr22 and an E3 ubiquitin ligase TRIM39-like gene. Deduced btr20 represents a RBCC-B30.2 TRIM protein containing 544 amino acids. The mRNA expression level of btr20 was highest in intestine and gill, followed by in spleen and kidney. Challenge experiment with Aeromonas hydrophila strain NJ-1 showed that the levels of btr20 and NF-κB mRNA were remarkably upregulated in the four tissues mentioned above. btr20 was localized in the cytoplasm and formed aggregate in human embryonic kidney cell line 293T. In vitro self-ubiquitylation experiment demonstrated that btr20 has E3 ubiquitin ligase activity that can be self-ubiquitylated with most E2 enzymes, especially UbcH6. The results suggested that btr20 may involve in the anti-microbial activity in the immune system as an E3 ubiquitin ligase. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Influence of Blockade of beta-Adrenoreceptors and Acute Stress on Antibody Formation, Delayed Type of Hypersensitivity, Phagocytic Cell Activity in Local Immune Response.

    PubMed

    Shilov, Juri I.; Gein, Sergei V.; Chereshnev, Valery A.

    2001-10-01

    In the experiments on male Wistar rats a study was made on the effect of acute 6-h immobilization stress on antibody formation, delayed type hypersensitivity (DTH), functional activity of phagocytes in the case of a local form of immune response to sheep red blood cells at the background of beta-adrenergic receptor blockade. It was established that immobilization stress resulted in substantial inhibition of the expressibility of immune inflammation in the case of DTH, cancellation of an increase of the phagocytic activity of macrophages of the regional lymph node and the level of antibodies. The blockade of the beta-adrenergic receptors with propranolol antagonized with these effects of stress. After termination of the immobilization, activation of neutrophil phagocytosis was detected, this being related to an increase of neutrophil immigration from the bone marrow. Eosinophilic phagocytosis at the early period of stress was inhibited, the blockade of beta-adrenergic receptors canceled this effect.

  9. Immune responses to pertussis vaccines and disease.

    PubMed

    Edwards, Kathryn M; Berbers, Guy A M

    2014-04-01

    In this article we discuss the following: (1) acellular vaccines are immunogenic, but responses vary by vaccine; (2) pertussis antibody levels rapidly wane but promptly increase after vaccination; (3) whole-cell vaccines vary in immunogenicity and efficacy; (4) whole-cell vaccines and naturally occurring pertussis generate predominantly T-helper 1 (Th1) responses, whereas acellular vaccines generate mixed Th1/Th2 responses; (5) active transplacental transport of pertussis antibody is documented; (6) neonatal immunization with diphtheria toxoid, tetanus toxoid, and acellular pertussis vaccine has been associated with some suppression of pertussis antibody, but suppression has been seen less often with acellular vaccines; (7) memory B cells persist in both acellular vaccine- and whole cell vaccine-primed children; and (8) in acellular vaccine-primed children, T-cell responses remain elevated and do not increase with vaccine boosters, whereas in whole-cell vaccine-primed children, these responses can be increased by vaccine boosting and natural exposure. Despite these findings, challenges remain in understanding the immune response to pertussis vaccines.

  10. Hypothalamic neurohormones and immune responses

    PubMed Central

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  11. Hypothalamic neurohormones and immune responses.

    PubMed

    Quintanar, J Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  12. MYC and HIF in shaping immune response and immune metabolism.

    PubMed

    Gnanaprakasam, J N Rashida; Sherman, John William; Wang, Ruoning

    2017-06-01

    Upon antigen stimulation, quiescent naive T cells undergo a phase of cell mass accumulation followed by cell cycle entry, clonal expansion, differentiation into functional subsets and back again to a quiescent state as they develop into memory cells. The transitions between these distinct cellular states place unique metabolic demands on energy, redox and biosynthesis. To fulfill these demands, T cells switch back and forth between their primary catabolic pathways. While quiescent naive and memory T cells largely rely on the oxidation of fatty acids and glucose, active T cells rely on glycolysis and glutaminolysis to sustain cell growth, proliferation and differentiation. Beyond several key signaling kinase cascades, the hypoxia inducible factor 1 (HIF-1) and the proto-oncogene MYC, act alone or in concert, to coordinate T cell metabolic reprogramming, cell proliferation, functional differentiation and apoptosis, enabling a robust T cell-mediated adaptive immune response. Copyright © 2017. Published by Elsevier Ltd.

  13. B-cell activating CpG ODN 1668 enhance the immune response of Pacific red snapper (Lutjanus peru) exposed to Vibrio parahaemolitycus.

    PubMed

    Cárdenas-Reyna, Tomás; Angulo, Carlos; Hori-Oshima, Sawako; Velázquez-Lizárraga, Esteban; Reyes-Becerril, Martha

    2016-09-01

    B-class CpG ODN 1668 is known to possess clear immunostimulatory properties. In this study, we investigated the potential ability of CpG ODN 1668 to enhance the immune response of Pacific red snapper exposed to Vibrio parahaemolyticus. Four different treatments were evaluated in Pacific red snapper: (1) stimulatory CpG ODN 1668, (2) stimulatory CpG ODN 1668 and V. parahaemolyticus, (3) exposure only to V. parahaemolyticus and (4) PBS. Samples were taken at 24, 72, 168 and 240 h of stimulation/infection. The results show that intraperitoneal injection of CpG-ODN 1668 enhanced the anti-protease, superoxide dismutase and catalase activities in serum. CpG ODN 1668 upregulated TLR9 and IgM gene expression in head-kidney, intestine and skin, with higher expression in head-kidney. A higher correlation was observed between TLR9 and IgM in head-kidney and intestine. Finally, no histopathological damages were observed in fish stimulated with CpG ODN 1668. In contrast, melanomacrophages-like structures were present in higher numbers in infected fish. Taken together, these results indicate that CpG ODN 1668 activates innate immune response and upregulate the TLR9 and IgM-mediated immune response. These results may be exploited for the control of Vibriosis in farmed Pacific red snapper.

  14. Role of Wnt3a expressed by dendritic cells in the activation of canonical Wnt signaling and generation of memory T cells during primary immune responses.

    PubMed

    Luo, Lei; Li, Zhengyu; Luo, Guangheng; Zhao, Yingting; Yang, Jing; Chen, Hui

    2016-12-01

    The presence of memory T cells (TMs) hinders transplant survival. Dendritic cells (DCs) induce the generation of TMs during primary immune responses. However, the specific mechanisms are unclear. In this study, we constructed a Wnt3a-expressing adenovirus and used small interfering RNA (siRNA) targeting Wnt3a to investigate the influence of Wnt3a expression in DCs on the generation of TMs during primary immune responses. Our results demonstrated that the Wnt3a expression levels in DCs influenced the generation of TMs after 5days in co-culture with naïve T cells through activation of the Wnt canonical pathway. Interleukin-7 secretion levels in supernatants of DC/TNs co-cultures showed a similar pattern of Wnt3a expression levels in DCs. These findings provide a better understanding of TMs generation mechanisms that might be useful to improve transplant outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Partial sleep restriction activates immune response-related gene expression pathways: experimental and epidemiological studies in humans.

    PubMed

    Aho, Vilma; Ollila, Hanna M; Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M A; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.

  16. Partial Sleep Restriction Activates Immune Response-Related Gene Expression Pathways: Experimental and Epidemiological Studies in Humans

    PubMed Central

    Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M. A.; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases. PMID:24194869

  17. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    USDA-ARS?s Scientific Manuscript database

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  18. Protease-Activated Receptor-2 Regulates the Innate Immune Response to Viral Infection in a Coxsackievirus B3–Induced Myocarditis

    PubMed Central

    Weithauser, Alice; Bobbert, Peter; Antoniak, Silvio; Böhm, Andreas; Rauch, Bernhard H.; Klingel, Karin; Savvatis, Konstantinos; Kroemer, Heyo K.; Tschope, Carsten; Stroux, Andrea; Zeichhardt, Heinz; Poller, Wolfgang; Mackman, Nigel; Schultheiss, Heinz-Peter; Rauch, Ursula

    2014-01-01

    Objectives This study sought to evaluate the role of protease-activated receptor-2 (PAR2) in coxsackievirus B3 (CVB3)–induced myocarditis. Background An infection with CVB3 leads to myocarditis. PAR2 modulates the innate immune response. Toll-like receptor-3 (TLR3) is crucial for the innate immune response by inducing the expression of the antiviral cytokine interferon-beta (IFNβ). Methods To induce myocarditis, wild-type (wt) and PAR2 knockout (ko) mice were infected with 105 plaque-forming units CVB3. Mice underwent hemodynamic measurements with a 1.2-F microconductance catheter. Wt and PAR2ko hearts and cardiac cells were analyzed for viral replication and immune response with plaque assay, quantitative polymerase chain reaction, Western blot, and immunohistochemistry. Results Compared with wt mice, PAR2ko mice and cardiomyocytes exhibited a reduced viral load and developed no myocarditis after infection with CVB3. Hearts and cardiac fibroblasts from PAR2ko mice expressed higher basal levels of IFNβ than wt mice did. Treatment with CVB3 and polyinosinic:polycytidylic acid led to higher IFNβ expression in PAR2ko than in wt fibroblasts and reduced virus replication in PAR2ko fibroblasts was abrogated by neutralizing IFNβ antibody. Overexpression of PAR2 reduced the basal IFNβ expression. Moreover, a direct interaction between PAR2 and Toll-like receptor 3 was observed. PAR2 expression in endomyocardial biopsies of patients with nonischemic cardiomyopathy was positively correlated with myocardial inflammation and negatively with IFNβ expression and left ventricular ejection fraction. Conclusions PAR2 negatively regulates the innate immune response to CVB3 infection and contributes to myocardial dysfunction. The antagonism of PAR2 is of therapeutic interest to strengthen the antiviral response after an infection with a cardiotropic virus. PMID:23871888

  19. The Immune Response to Astrovirus Infection

    PubMed Central

    Marvin, Shauna A.

    2016-01-01

    Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are clinically importantly pathogens in the elderly and immunocompromised populations. Although the use of cell culture systems and small animal models have enhanced our understanding of astrovirus infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies from humans and animals suggest that adaptive immunity is important in restricting classic and novel astrovirus infections, while studies from animal models and cell culture systems suggest that an innate immune system plays a role in limiting astrovirus replication. The relative contribution of each arm of the immune system in restricting astrovirus infection remains unknown. This review summarizes our current understanding of the immune response to astrovirus infection and highlights some of the key questions that stem from these studies. A full understanding of the immune response to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis. PMID:28042824

  20. DNA Damage Response and Immune Defense: Links and Mechanisms.

    PubMed

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans.

  1. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  2. Beta-Glucan Activated Human B-Lymphocytes Participate in Innate Immune Responses by Releasing Pro-inflammatory Cytokines and Stimulating Neutrophil Chemotaxis

    PubMed Central

    Ali, Mohamed F.; Driscoll, Christopher B.; Walters, Paula R.; Limper, Andrew H.; Carmona, Eva M.

    2015-01-01

    B-lymphocytes play an essential regulatory role in the adaptive immune response through antibody production during infection. A less known function of B-lymphocytes is their ability to respond directly to infectious antigens through stimulation of pattern recognition receptors expressed on their surfaces. β-glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B-lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B-lymphocytes, compared with the well-established TLR-9 agonist CpG-oligodeoxynucleotide (CpG) and study the participation of β-glucan stimulated B-cells in the innate immune response. Herein, we demonstrate that β-glucan activated B-lymphocytes upregulate pro-inflammatory cytokines (TNFα, IL-6 and IL-8). Interestingly, β-glucan, unlike CpG, had no effect on B-lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan stimulated B-lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan activated B-lymphocytes have an important and novel role in fungal innate immune responses. PMID:26519534

  3. Interplay between behavioural thermoregulation and immune response in mealworms.

    PubMed

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Innate immune responses in raccoons after raccoon rabies virus infection.

    PubMed

    Srithayakumar, Vythegi; Sribalachandran, Hariharan; Rosatte, Rick; Nadin-Davis, Susan A; Kyle, Christopher J

    2014-01-01

    Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.

  5. Protective host immune responses to Salmonella infection.

    PubMed

    Pham, Oanh H; McSorley, Stephen J

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.

  6. Protective host immune responses to Salmonella infection

    PubMed Central

    Pham, Oanh H; McSorley, Stephen J.

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host–pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections. PMID:25598340

  7. The effect of sodium alginate on the immune response of tiger shrimp via dietary administration: activity and gene transcription.

    PubMed

    Liu, Chun-Hung; Yeh, Shinn-Pyng; Kuo, Chin-Ming; Cheng, Winton; Chou, Chang-Hung

    2006-10-01

    The total haemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (release of superoxide anions), and superoxide dismutase (SOD) activity, as well as expressions of beta-1,3-glucan-binding protein (betaGBP), prophenoloxidase (proPO), peroxinectin (PE), cytosolic SOD (cyt-SOD), penaeidin-5 (PA-5), and a single whey acidic protein (WAP) domain protein (SWDP) gene were determined in the tiger shrimp Penaeus monodon (15.6-19.5g) which had individually been fed diets containing sodium alginate at 0, 1.0, or 2.0gkg(-1) for 5months. Results showed that shrimp fed a diet containing 1.0 and 2.0gkg(-1) sodium alginate had significantly increased SOD activity but decreased respiratory bursts. The expressions of betaGBP, PE, cyt-SOD, PA-5, and SWDP were significantly elevated in shrimp fed the activity, or proPO mRNA transcription in shrimp were observed among the three treatments. It was concluded that sodium alginate can be used as an immunomodulator for shrimp through dietary administration to modify immune genes expression of shrimp.

  8. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4.

    PubMed

    Wong, Eric B; Mallet, Jean-François; Duarte, Jairo; Matar, Chantal; Ritz, Barry W

    2014-04-01

    Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Spaceflight and Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1996-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.

  10. In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes

    PubMed Central

    Dong, Jie

    2016-01-01

    Pulmonary exposure to certain forms of carbon nanotubes (CNT) induces fibrosing lesions in the lungs that manifest an acute inflammation followed by chronic interstitial fibrosis. The mechanism of CNT-induced fibrogenesis is largely unknown. The biphasic development with drastically distinct pathologic manifestations suggests a junction of acute-to-chronic transition. Here we analyzed the molecular pathways and regulators underlying the pathologic development of CNT-induced lung fibrosis. Mice were exposed to multi-walled CNT (MWCNT; XNRI MWNT-7, Mitsui; 40 μg) by pharyngeal aspiration for 7 days along with vehicle and carbonaceous controls. Genome-wide microarray analyses of the lungs identified a range of differentially expressed genes that potentially function in the acute-to-chronic transition through pathways involving immune and inflammatory regulation, responses to stress and extracellular stimuli, and cell migration and adhesion. In particular, a T helper 2 (Th2)-driven innate immune response was significantly enriched. We then demonstrated that MWCNT induced the expression of Th2 cytokines interleukin (IL)-4 and IL-13, and a panel of signature downstream genes, such as Il4i1, Chia, and Ccl11/Eotaxin, time dependently. Induction of Th2 cytokines took place in CD4+ T lymphocytes indicating activation of Th2 cells. Furthermore, induction involved activation of a Th2 cell-specific signaling pathway through phosphorylation of STAT6 and up-regulation of GATA-3 to mediate the transcription of Th2 target genes. Our study uncovers activation of a Th2-driven immune/inflammatory response during pulmonary fibrosis development induced by MWCNT. The findings provide novel insights into the molecular events that control the transition from an acute inflammatory response to chronic fibrosis through Th2 functions in CNT-exposed lungs. PMID:27106021

  11. Astrogliosis involves activation of retinoic acid-inducible gene-like signaling in the innate immune response after spinal cord injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Minkiewicz, Julia; Wang, Xiaoliang; De Rivero Vaccari, Juan Carlos; German, Ramon; Marcillo, Alex E; Dietrich, W Dalton; Keane, Robert W

    2012-03-01

    Spinal cord injury (SCI) induces a glial response in which astrocytes become activated and produce inflammatory mediators. The molecular basis for regulation of glial-innate immune responses remains poorly understood. Here, we examined the activation of retinoic acid-inducible gene (RIG)-like receptors (RLRs) and their involvement in regulating inflammation after SCI. We show that astrocytes express two intracellular RLRs: RIG-I and melanoma differentiation-associated gene 5. SCI and stretch injury of cultured astrocytes stimulated RLR signaling as determined by phosphorylation of interferon regulatory factor 3 (IRF3) leading to production of type I interferons (IFNs). RLR signaling stimulation with synthetic ribonucleic acid resulted in RLR activation, phosphorylation of IRF3, and increased expression of glial fibrillary acidic protein (GFAP) and vimentin, two hallmarks of reactive astrocytes. Moreover, mitochondrial E3 ubiquitin protein ligase 1, an RLR inhibitor, decreased production of GFAP and vimentin after RIG-I signaling stimulation. Our findings identify a role for RLR signaling and type I IFN in regulating astrocyte innate immune responses after SCI. Copyright © 2011 Wiley Periodicals, Inc.

  12. Ability of Interleukin-33- and Immune Complex-Triggered Activation of Human Mast Cells to Down-Regulate Monocyte-Mediated Immune Responses.

    PubMed

    Rivellese, Felice; Suurmond, Jolien; Habets, Kim; Dorjée, Annemarie L; Ramamoorthi, Nandhini; Townsend, Michael J; de Paulis, Amato; Marone, Gianni; Huizinga, Tom W J; Pitzalis, Costantino; Toes, René E M

    2015-09-01

    Mast cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). In particular, their activation by interleukin-33 (IL-33) has been linked to the development of arthritis in animal models. The aim of this study was to evaluate the functional responses of human mast cells to IL-33 in the context of RA. Human mast cells were stimulated with IL-33 combined with plate-bound IgG or IgG anti-citrullinated protein antibodies (ACPAs), and their effects on monocyte activation were evaluated. Cellular interactions of mast cells in RA synovium were assessed by immunofluorescence analysis, and the expression of messenger RNA (mRNA) for mast cell-specific genes was evaluated in synovial biopsy tissue from patients with early RA who were naive to treatment with disease-modifying antirheumatic drugs. IL-33 induced the up-regulation of Fcγ receptor type IIa and enhanced the activation of mast cells by IgG, including IgG ACPAs, as indicated by the production of CXCL8/IL-8. Intriguingly, mast cell activation triggered with IL-33 and IgG led to the release of mediators such as histamine and IL-10, which inhibited monocyte activation. Synovial mast cells were found in contact with CD14+ monocyte/macrophages. Finally, mRNA levels of mast cell-specific genes were inversely associated with disease severity, and IL-33 mRNA levels showed an inverse correlation with the levels of proinflammatory markers. When human mast cells are activated by IL-33, an immunomodulatory phenotype develops, with human mast cells gaining the ability to suppress monocyte activation via the release of IL-10 and histamine. These findings, together with the presence of synovial mast cell-monocyte interactions and the inverse association between the expression of mast cell genes at the synovial level and disease activity, suggest that these newly described mast cell-mediated inhibitory pathways might have a functional relevance in the pathogenesis of RA. © 2015, American College of Rheumatology.

  13. PDT-apoptotic tumor cells induce macrophage immune response

    NASA Astrophysics Data System (ADS)

    Zhou, Fei-fan; Xing, Da; Chen, Wei R.

    2008-02-01

    Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-α release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

  14. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1983-09-01

    A-Al?l 362 HUMAN IMMUNE RESPONSES TO DENGUE YXRUSES(U) MASSACHUSETTS UNIV MEDICAL SCHOOL NORCESTER F A ENNIS SE 83" I ?-2C23 UNCLASSI FIED SE 3IRD?8...SHEET PREVIOUS EDITION MAY BE USED UNTILDTIC FORM 70A OUMNPRESIGSETSTOCK IS EXHAUSTED.DEC 83 AD IHuman Immune Responses to Dengue Viruses Annual Report...edilon may be ued Y01dxffnUICFMCASIAZIlow f~ rolit SUMMARY The purpose of this contract is to analyse the immune responses to dengue virus infections

  15. Human Immune Response to Dengue Infections.

    DTIC Science & Technology

    1987-07-30

    W5l "I± H"MN IMMUNE RESPONSE TO DENGUE INFECTIONS(U) i/il MASSACHUSETTS UNIV MEDICAL CENTER NORCESTER MR1 F R ENIS 36 JUL 87 DAMD7-86-C-6200...1 U . AD HUMAN IMMUNE RESPONSE TO DENGUE INFECTIONS ANNUAL REPORT In 00 FRANCIS A. ENNIS JULY 30, 1987 Supported by U.S. ARMY MEDICAL RESEARCH...Human Immune Response to Dengue Infections 12. PERSONAL AUTHOR(S) Ennis, Francis A. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year

  16. Interferon regulatory factor 3 in adaptive immune responses.

    PubMed

    Ysebrant de Lendonck, Laure; Martinet, Valerie; Goriely, Stanislas

    2014-10-01

    Interferon regulatory factor (IRF) 3 plays a key role in innate responses against viruses. Indeed, activation of this transcription factor triggers the expression of type I interferons and downstream interferon-stimulated genes in infected cells. Recent evidences indicate that this pathway also modulates adaptive immune responses. This review focuses on the different mechanisms that are implicated in this process. We discuss the role of IRF3 within antigen-presenting cells and T lymphocytes in the polarization of the cellular immune response and its implication in the pathogenesis of immune disorders.

  17. [Correlation between chemical carcinogenesis and immune response].

    PubMed

    Brai, M; Bonasera, L; Tolone, G

    1975-01-01

    Methylcholanthrene, in amount sufficient to induce tumors in 100% of treated animals failed to influence primary and secondary phases of antibody synthesis in mice immunized with sheep erythrocytes and human serum albumin. The early immune response in tumor bearing mice was also indistinguischable from that of normal animals, despite the presence of marked splenomegaly in the former group.

  18. Innate immune responses to Pseudomonas aeruginosa infection

    PubMed Central

    Lavoie, Elise G.; Wangdi, Tamding; Kazmierczak, Barbara I.

    2011-01-01

    Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models. PMID:21839853

  19. Immune complexes inhibit interleukin-1 secretion and inflammasome activation

    PubMed Central

    Janczy, John R.; Ciraci, Ceren; Haasken, Stefanie; Iwakura, Yoichiro; Olivier, Alicia K.; Cassel, Suzanne L.; Sutterwala, Fayyaz S.

    2014-01-01

    Immunoglobulin G (IgG) immune complexes have been shown to modify immune responses driven by antigen presenting cells in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. Here we show that IgG immune complexes suppress IL-1α and IL-1β secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating Fcγ receptors (FcγR), resulting in prevention of both activation and assembly of the inflammasome complex in response to NLRP3, NLRC4, or AIM2 agonists. In vivo, administration of antigen in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in a NLRP3 dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4+ T cell differentiation, whereby immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1β from antigen presenting cells, which are critical for the antigen-driven differentiation of CD4+ T cells. PMID:25320279

  20. Immune complexes inhibit IL-1 secretion and inflammasome activation.

    PubMed

    Janczy, John R; Ciraci, Ceren; Haasken, Stefanie; Iwakura, Yoichiro; Olivier, Alicia K; Cassel, Suzanne L; Sutterwala, Fayyaz S

    2014-11-15

    IgG immune complexes have been shown to modify immune responses driven by APCs in either a pro- or anti-inflammatory direction depending upon the context of stimulation. However, the ability of immune complexes to modulate the inflammasome-dependent innate immune response is unknown. In this study, we show that IgG immune complexes suppress IL-1α and IL-1β secretion through inhibition of inflammasome activation. The mechanism by which this inhibition occurs is via immune complex ligation of activating FcγRs, resulting in prevention of both activation and assembly of the inflammasome complex in response to nucleotide-binding domain leucine-rich repeat (NLR) P3, NLRC4, or AIM2 agonists. In vivo, administration of Ag in the form of an immune complex during priming of the immune response inhibited resultant adaptive immune responses in an NLRP3-dependent model of allergic airway disease. Our data reveal an unexpected mechanism regulating CD4(+) T cell differentiation, by which immune complexes suppress inflammasome activation and the generation of IL-1α and IL-1β from APCs, which are critical for the Ag-driven differentiation of CD4(+) T cells.

  1. DNA-based vaccination induces humoral and cellular immune responses against hepatitis B virus surface antigen in mice without activation of C-myc.

    PubMed

    Zhao, Lian-San; Qin, Shan; Zhou, Tao-You; Tang, Hong; Liu, Li; Lei, Bing-Jun

    2000-04-01

    AIM:To develop a safe and effective DNA vaccine for inducing humoral and cellular immunological responses against hepatitis B virus surface antigen (HBsAg).METHODS:BALB/c mice were inoculated with NV-HB/s, a recombinant plasmid that had been inserted S gene of hepatitis B virus genome and could express HBsAg in eukaryotes. HBsAg expression was measured by ABC immunohis tochemical assay, generation of anti-HBs by ELISA and cytotoxic T lymphocyte (CTL), by MTT method, existence of vaccine DNA by Southern blot hybridization and activation of oncogene C-myc by in situ hybridization.RESULTS:With NV-HB/s vaccination by intramuscular injection, anti-HBs was initially positive 2 weeks after inoculation while all mice tested were HBsAg positive in the muscles.The titers and seroconversion rate of anti-HBs were steadily increasing as time went on and were dose dependent. All the mice inoculated with 100&mgr;g NV-HB/s were anti-HBs positive one month after inoculation, the titer was 1 1024 or more. The humoral immune response was similar induced by either intramuscular or intradermal injection. CTL activities were much stronger (45.26%) in NV-HB/s DNA immunized mice as compared with those (only 6%) in plasma-derived HBsAg vaccine immunized mice. Two months after inoculation, all muscle samples were positive by Southernblot hybridization for NV-HB/s DNA detection, but decreased to 25% and all were undetectable by in situ hybridiza-tion after 6 months.No oncogene C-myc activation was found in the muscle of inoculation site.CONCLUSION:NV-HB/s could generate humoral and cellular immunolo-gical responses against HBsAg that had been safely expressed in situ by NV-HB/s vaccination.

  2. DNA-based vaccination induces humoral and cellular immune responses against hepatitis B virus surface antigen in mice without activation of C-myc

    PubMed Central

    Zhao, Lian San; Qin, Shan; Zhou, Tao You; Tang, Hong; Liu, Li; Lei, Bing Jun

    2000-01-01

    AIM: To develop a safe and effective DNA vaccine for inducing humoral and cellular immunological responses against hepatitis B virus surface antigen (HBsAg). METHODS: BALB/c mice were inoculated with NV-HB/s, a recombinant plasmid that had been inserted S gene of hepatitis B virus genome and could express HBsAg in eukaryotes. HBsAg expression was measured by ABC immunohistochemical assay, generation of anti-HBs by ELISA and cytotoxic T lymphocyte (CTL), by MTT method, existence of vaccine DNA by Southern blot hybridization and activation of oncogene C-myc by in situ hybridization. RESULTS: With NV-HB/s vaccination by intramuscular injection, anti-HBs was initially positive 2 wk after inoculation while all mice tested were HBsAg positive in the muscles. The titers and seroconversion rate of anti-HBs were steadily increasing as time went on and were dose-dependent. All the mice inoculated with 100 μg NV-HB/s were anti-Bs positive one month after inoculation, the titer was 1∶1024 or more. The humoral immune response was similar induced by either intramuscular or intradermal injection. CTL activities were much stronger (45.26%) in NV-HB/s DNA immunized mice as compared with those (only 6%) in plasma-derived HBsAg vaccine immunized mice. Two months after inoculation, all muscle samples were positive by Southern-blot hybridization for NV-HB/s DNA detection, but decreased to 25% and all were undetectable by in situ hybridization after 6 mo. No oncogene C-myc activation was found in the muscle of inoculation site. CONCLUSION: NV-HB/s could generate humoral and cellular immunological responses against HBsAg that had been safely expressed in situ by NV-HB/s vaccination. PMID:11819565

  3. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  4. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    SciTech Connect

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan; Su, Hanwen; Xiang, Meixian

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  5. Proteolytic activation and function of the cytokine Spätzle in innate immune response of a lepidopteran insect, Manduca sexta

    PubMed Central

    An, Chunju; Jiang, Haobo; Kanost, Michael R.

    2009-01-01

    The innate immune response of insects includes induced expression of genes encoding a variety of antimicrobial peptides. The signaling pathways that stimulate this gene expression have been well characterized by genetic analysis in Drosophila melanogaster, but are not well understood in most other insect species. One such pathway involves proteolytic activation of a cytokine called Spätzle, which functions in dorsal-ventral patterning in early embryonic development and in the antimicrobial immune response in larvae and adults. We have investigated the function of Spätzle in a lepidopteran insect, Manduca sexta, in which hemolymph proteinases activated during immune responses have been characterized biochemically. Two cDNA isoforms for M. sexta Spätzle-1 differ due to alternative splicing, resulting in a 10 amino acid residue insertion in the pro-region of proSpätzle-1B that is not present in proSpätzle-1A. The proSpätzle-1A cDNA encodes a 32.7 kDa polypeptide that is 23% and 44% identical to D. melanogaster and Bombyx mori Spätzle-1, respectively. Recombinant proSpätzle-1A was a disulfide-linked homodimer. M. sexta hemolymph proteinase 8 (HP8) cleaved proSpätzle-1A to release Spätzle-C108, a dimer of the carboxyl-terminal 108-residue cystine-knot domain. Injection of Spätzle-C108, but not proSpätzle-1A, into larvae stimulated expression of several antimicrobial peptides and proteins, including attacin-1, cecropin-6, moricin, lysozyme, and the immunoglobulin domain protein hemolin, but did not significantly affect expression of two bacteria-inducible pattern recognition proteins, immulectin-2 and β-1,3-glucan recognition protein-2. Results from this paper and other recent studies support a model for a pathway in which the clip-domain proteinase proHP6 becomes activated in plasma upon exposure to Gram-negative or Gram-positive bacteria or to β-1,3-glucan. HP6 then activates proHP8, which in turn activates Spätzle-1. The resulting Spätzle-C108 dimer is

  6. Divergent response profile in activated cord blood T cells from first-born child implies birth-order-associated in utero immune programming.

    PubMed

    Kragh, M; Larsen, J M; Thysen, A H; Rasmussen, M A; Wolsk, H M; Bisgaard, H; Brix, S

    2016-03-01

    First-born children are at higher risk of developing a range of immune-mediated diseases. The underlying mechanism of 'birth-order effects' on disease risk is largely unknown, but in utero programming of the child's immune system may play a role. We studied the association between birth order and the functional response of stimulated cord blood T cells. Purified cord blood T cells were polyclonally activated with anti-CD3-/anti-CD28-coated beads in a subgroup of 28 children enrolled in the COPSAC2010 birth cohort. Expression levels of seven activation markers on helper and cytotoxic T cells as well as the percentage of CD4(+) CD25(+) T cells were assessed by flow cytometry. Production of IFN-γ, TNF-α, IL-17, IL-4, IL-5, IL-13, and IL-10 was measured in the supernatants. IL-10 secretion (P = 0.007) and CD25 expression on CD4(+) helper T cells (P = 0.0003) in the activated cord blood T cells were selectively reduced in first-born children, while the percentage of circulating CD4(+) CD25(+) cord blood T cells was independent of birth order. First-born infants display a reduced anti-inflammatory profile in T cells at birth. This possible in utero 'birth-order' T-cell programming may contribute to later development of immune-mediated diseases by increasing overall immune reactivity in first-born children as compared to younger siblings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  8. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint

    PubMed Central

    Xu, Shaohua; Tao, Zhen; Hai, Bo; Liang, Huagen; Shi, Ying; Wang, Tao; Song, Wen; Chen, Yong; OuYang, Jun; Chen, Jinhong; Kong, Fanfei; Dong, Yishan; Jiang, Shi-Wen; Li, Weiyong; Wang, Ping; Yuan, Zhiyong; Wan, Xiaoping; Wang, Chenguang; Li, Wencheng; Zhang, Xiaoping; Chen, Ke

    2016-01-01

    Immune checkpoint blockade of the inhibitory immune receptors PD-L1, PD-1 and CTLA-4 has emerged as a successful treatment strategy for several advanced cancers. Here we demonstrate that miR-424(322) regulates the PD-L1/PD-1 and CD80/CTLA-4 pathways in chemoresistant ovarian cancer. miR-424(322) is inversely correlated with PD-L1, PD-1, CD80 and CTLA-4 expression. High levels of miR-424(322) in the tumours are positively correlated with the progression-free survival of ovarian cancer patients. Mechanistic investigations demonstrated that miR-424(322) inhibited PD-L1 and CD80 expression through direct binding to the 3′-untranslated region. Restoration of miR-424(322) expression reverses chemoresistance, which is accompanied by blockage of the PD-L1 immune checkpoint. The synergistic effect of chemotherapy and immunotherapy is associated with the proliferation of functional cytotoxic CD8+ T cells and the inhibition of myeloid-derived suppressive cells and regulatory T cells. Collectively, our data suggest a biological and functional interaction between PD-L1 and chemoresistance through the microRNA regulatory cascade. PMID:27147225

  9. The innate immune response to adjuvants dictates the adaptive immune response to autoantigens.

    PubMed

    Staykova, Maria A; Liñares, David; Fordham, Susan A; Paridaen, Judith T; Willenborg, David O

    2008-06-01

    To elucidate the role of innate immunity in susceptibility to the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we induced EAE by immunization with spinal cord homogenate (SCH) plus complete Freund adjuvant or carbonyl iron in 3 inbred rat strains. Lewis are considered "susceptible," PVG/c-Rt7a (PVG) as "semisusceptible," and Brown Norway (BN) as "resistant" to EAE. Immunization with SCH-carbonyl iron resulted in clinical disease in all 3 strains, but the pathologic features of EAE in the resistant BN and the semisusceptible PVG rats differed from those in the Lewis and PVG model of EAE induced with SCH-complete Freund adjuvant. In BN and PVG rats, there were numerous inflammatory lesions with prominent involvement of microglia and, to a lesser extent, perivascular macrophages. These data suggest that different levels of activation of the innate immune system by different adjuvants determine whether EAE will or will not develop. Accordingly, the widely accepted scale of susceptibility to EAE development (Lewis > PVG > BN) should be revised because it does not take into account the important contribution of the composition of the adjuvant to the quality and quantity of the innate immune response and, consequently, to the generation and extent of the pathogenic T-cell-mediated, that is, adaptive, autoimmune disease.

  10. Adaptive immune responses to Acanthamoeba cysts.

    PubMed

    McClellan, Kathy; Howard, Kevin; Mayhew, Elizabeth; Niederkorn, Jerry; Alizadeh, Hassan

    2002-09-01

    Acanthamoeba cysts are not eliminated from the corneas of human subjects or experimentally infected animals. The persistence of Acanthamoeba cysts in the cornea indicates that either the cysts escape immunological elimination or are not recognized by the host's immunological elements. The aim of this study was to determine the immunogenicity and antigenicity of the Acanthamoeba cyst. Mice were immunized intraperitoneally and serum anti-Acanthamoeba IgG was measured by ELISA. Lymphoproliferative assay and delayed type hypersensitivity (DTH) responses to Acanthamoeba castellanii cyst and trophozoite antigens were used to determine the cell mediated immune responses against Acanthamoeba cysts. A. castellanii cysts were both immunogenic and antigenic, producing anti-Acanthamoeba serum IgG, T lymphocyte proliferation, and delayed type hypersensitivity responses. These results indicate that Acanthamoeba cysts are recognized by the immune system. The persistence of the organism in the human cornea means that these adaptive immune responses fail to kill Acanthamoeba cysts.

  11. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities.

    PubMed

    Shida, Kan; Nanno, Masanobu; Nagata, Satoru

    2011-01-01

    Probiotics have been reported to be efficacious against cancers, infections, allergies, inflammatory bowel diseases and autoimmune diseases, and it is important to explain how such multifunctional activities are realized. Lactobacillus casei Shirota (LcS) is one of these multifunctional probiotics, and its ability to augment the host immune system has been extensively examined. We have shown that the cell wall structure of this probiotic strain is responsible for potently inducing IL-12 production. In addition, we have recently found that LcS differentially controls the inflammatory cytokine responses of macrophages and T cells in either Peyer's patches or the spleen. Other studies revealed that LcS-induced IL-12 production by macrophages is modified when other bacteria or their cell components are simultaneously present. These findings can provide a theoretical basis for understanding the multifunctional activities of specific probiotics.

  12. The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling.

    PubMed

    Cho, Jin A; Lee, Ann-Hwee; Platzer, Barbara; Cross, Benedict C S; Gardner, Brooke M; De Luca, Heidi; Luong, Phi; Harding, Heather P; Glimcher, Laurie H; Walter, Peter; Fiebiger, Edda; Ron, David; Kagan, Jonathan C; Lencer, Wayne I

    2013-05-15

    The plasma membrane and all membrane-bound organelles except for the Golgi and endoplasmic reticulum (ER) are equipped with pattern-recognition molecules to sense microbes or their products and induce innate immunity for host defense. Here, we report that inositol-requiring-1α (IRE1α), an ER protein that signals in the unfolded protein response (UPR), is activated to induce inflammation by binding a portion of cholera toxin as it co-opts the ER to cause disease. Other known UPR transducers, including the IRE1α-dependent transcription factor XBP1, are dispensable for this signaling. The inflammatory response depends instead on the RNase activity of IRE1α to degrade endogenous mRNA, a process termed regulated IRE1α-dependent decay (RIDD) of mRNA. The mRNA fragments produced engage retinoic-acid inducible gene 1 (RIG-I), a cytosolic sensor of RNA viruses, to activate NF-κB and interferon pathways. We propose IRE1α provides for a generalized mechanism of innate immune surveillance originating within the ER lumen. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Unfolded Protein Response Element IRE1α Senses Bacterial Proteins Invading the ER to Activate RIG-I and Innate Immune Signaling

    PubMed Central

    Cho, Jin A.; Lee, Ann-Hwee; Platzer, Barbara; Cross, Benedict C.S.; Gardner, Brooke M.; De Luca, Heidi; Luong, Phi; Harding, Heather P.; Glimcher, Laurie H.; Walter, Peter; Fiebiger, Edda; Ron, David; Kagan, Jonathan C.; Lencer, Wayne I.

    2013-01-01

    SUMMARY The plasma membrane and all membrane-bound organelles except for the Golgi and endoplasmic reticulum (ER) are equipped with pattern-recognition molecules to sense microbes or their products and induce innate immunity for host defense. Here, we report that inositol-requiring-1α (IRE1α), an ER protein that signals in the unfolded protein response (UPR), is activated to induce inflammation by binding a portion of cholera toxin as it co-opts the ER to cause disease. Other known UPR transducers, including the IRE1α-dependent transcription factor XBP1, are dispensable for this signaling. The inflammatory response depends instead on the RNase activity of IRE1α to degrade endogenous mRNA, a process termed regulated IRE1α-dependent decay (RIDD) of mRNA. The mRNA fragments produced engage retinoic-acid inducible gene 1 (RIG-I), a cyto-solic sensor of RNA viruses, to activate NF-κB and interferon pathways. We propose IRE1α provides for a generalized mechanism of innate immune surveillance originating within the ER lumen. PMID:23684307

  14. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  15. Activation or suppression of the immune response mediators in biliary tract cancer (BTC) patients: a systematic review and meta-analysis.

    PubMed

    Wang, Ying; Ding, Min; Zhang, Qian; Wang, Jinghan; Yang, Xijing; Zhou, Fuping; Li, Linfang; Yuan, Zhengang; Jin, Huajun; Qian, Qijun

    2017-01-01

    Background: Infiltration of immune cells and immune microenvironment determine the proliferative activity of the tumor and metastasis. The aim of this study was to analyze the influence of activation or suppression of the immune response mediators on the prognosis of biliary tract cancer (BTC). Methods: We searched Pubmed, Web of Science, Embase and The Cochrane Library for relevant literatures until June 2016. The quality of studies was assessed by QUADAS-2 and NOS tools. Forest and funnel plots and all statistical analyses were generated by using Review Manager 5.3. The bias of included studies was estimated by Egger's test using Meta R package. Results: A total of 2339 patients from 12 studies were finally enrolled in this meta-analysis. Patients with high expression of immune active factors, intraepithelial tumor-infiltrating CD4+ , CD8+, and Foxp3+ T lymphocytes, MHC I, NKG2D, showed a better overall survival (OS) than those with low expression (HR=0.52, 95% CI=0.41-0.67, P<0.00001). On the contrary, the high expression of immune suppressive factors (CD66b+ neutrophils, Neutrophil-lymphocyte ratio, Intratumoral IL-17+ cells and PD-1+/CD8+ TILs) was significantly associated with poor OS (HR=1.79, 95% CI=1.44-2.22, P<0.00001). A further analysis of therapies targeting tumor microenvironment modulation showed that the median progression free survival (PFS) for BTC patients who received adjuvant immunotherapy was longer than those who received surgery or chemotherapy alone, and the estimated pooled mean difference demonstrated a highly significant improvement (MD =2.33; 95% CI: 0.63-4.02, P=0.007). The total effect of PFS and OS was statistically longer in experimental group, compared to patients in control groups, respectively (PFS: RR=1.25; 95% CI: 1.08-1.46, P=0.004; OS: RR=1.16; 95% CI: 1.07-1.27, P=0.0006). In subgroup meta-analysis of studies on 6-, 12- and 18-month PFS and OS, it showed that adjuvant immunotherapy could improve the 6-month PFS (RR=1.23; 95

  16. Activation or suppression of the immune response mediators in biliary tract cancer (BTC) patients: a systematic review and meta-analysis

    PubMed Central

    Wang, Ying; Ding, Min; Zhang, Qian; Wang, Jinghan; Yang, Xijing; Zhou, Fuping; Li, Linfang; Yuan, Zhengang; Jin, Huajun; Qian, Qijun

    2017-01-01

    Background: Infiltration of immune cells and immune microenvironment determine the proliferative activity of the tumor and metastasis. The aim of this study was to analyze the influence of activation or suppression of the immune response mediators on the prognosis of biliary tract cancer (BTC). Methods: We searched Pubmed, Web of Science, Embase and The Cochrane Library for relevant literatures until June 2016. The quality of studies was assessed by QUADAS-2 and NOS tools. Forest and funnel plots and all statistical analyses were generated by using Review Manager 5.3. The bias of included studies was estimated by Egger's test using Meta R package. Results: A total of 2339 patients from 12 studies were finally enrolled in this meta-analysis. Patients with high expression of immune active factors, intraepithelial tumor-infiltrating CD4+ , CD8+, and Foxp3+ T lymphocytes, MHC I, NKG2D, showed a better overall survival (OS) than those with low expression (HR=0.52, 95% CI=0.41-0.67, P<0.00001). On the contrary, the high expression of immune suppressive factors (CD66b+ neutrophils, Neutrophil-lymphocyte ratio, Intratumoral IL-17+ cells and PD-1+/CD8+ TILs) was significantly associated with poor OS (HR=1.79, 95% CI=1.44-2.22, P<0.00001). A further analysis of therapies targeting tumor microenvironment modulation showed that the median progression free survival (PFS) for BTC patients who received adjuvant immunotherapy was longer than those who received surgery or chemotherapy alone, and the estimated pooled mean difference demonstrated a highly significant improvement (MD =2.33; 95% CI: 0.63-4.02, P=0.007). The total effect of PFS and OS was statistically longer in experimental group, compared to patients in control groups, respectively (PFS: RR=1.25; 95% CI: 1.08-1.46, P=0.004; OS: RR=1.16; 95% CI: 1.07-1.27, P=0.0006). In subgroup meta-analysis of studies on 6-, 12- and 18-month PFS and OS, it showed that adjuvant immunotherapy could improve the 6-month PFS (RR=1.23; 95

  17. Immune Response Modulation of Conjugated Agonists with Changing Linker Length.

    PubMed

    Ryu, Keun Ah; Slowinska, Katarzyna; Moore, Troy; Esser-Kahn, Aaron

    2016-12-16

    We report immune response modulation with linked Toll-like receptor (TLR) agonists. Conjugating two agonists of synergistic TLRs induce an increase in immune activity compared to equal molarity of soluble agonists. Additionally, varying the distance between the agonists by changing the linker length alters the level of macrophage NF-κB activity as well as primary bone marrow derived dendritic cell IL-6 production. This modulation is effected by the size of the agonists and the pairing of the stimulated TLRs. The sensitivity of linker-length-dependent immune activity of conjugated agonists provides the potential for developing application specific therapeutics.

  18. Roles of receptor for activated protein kinase C1 for modulating immune responses in white shrimp Litopenaeus vannamei.

    PubMed

    Chang, Zhong-Wen; Chang, Chin-Chyuan

    2015-10-01

    Complementary (c)DNA encoding a receptor for activated protein kinase C1 (RACK1) messenger (m)RNA of the white shrimp Litopenaeus vannamei, designated LvRACK1, consisted a 1136-bp cDNA containing an open reading frame (ORF) of 954 bp, a 111-bp 5'-untranslated region (UTR), and a 71-bp 3'-UTR, which is a 36 kDa cytosolic protein, belonging to the Trp-Asp40 (WD40) family of proteins, characterized by containing seven highly conserved Trp-Asp40 (WD40) internal repeats, and a poly A tail. The WD repeat of LvRACK1 can be predicted to form a seven-bladed propeller structure with each WD repeat composed of four antiparallel β-sheets. The WD40 domains have been implicated in protein-protein interactions. A comparison of amino acid sequences showed that LvRACK1 was closely related to arthropods RACK1. LvRACK1 cDNA was synthesized in all tested tissues detected with real-time PCR including haemocytes, hepatopancreas, gills, muscles, subcuticular epithelium, intestines, abdominal nervous ganglia, thoracic nervous ganglia, lymphoid organ, stomach, heart, and antennal gland, especially in subcuticular epithelium and gill. LvRACK1 mRNA transcription in haemocytes of L. vannamei injected with Vibrio alginolyticus decreased. The depletion of LvRACK1 of haemocytes in L. vannamei received its dsRNA revealed the increased respiratory bursts per haemocyte, superoxide dismutase (SOD), activity, glutathione peroxidase (GPx) activity, and clotting time, but showed the decreased total haemocyte count (THC), hyaline cells (HCs), phagocytic activity, and transglutaminase (TG) activity. LvRACK1 silenced shrimp showed the upregulated gene expressions of cyMnSOD, mtMnSOD, peroxinectin (PE), and TGI, and showed the downregulated α2-macroglobulin (α2-M), clottable protein (CP), lysozyme, and crustin gene expressions. It is therefore concluded that LvRACK1 is involved in immune defense and signaling transduction in haemocytes of L. vannamei infected with V. alginolyticus.

  19. Immune Response in Hepatitis B Virus Infection

    PubMed Central

    Tan, Anthony; Koh, Sarene; Bertoletti, Antonio

    2015-01-01

    Hepatitis B virus (HBV) can replicate within hepatocytes without causing direct cell damage. The host immune response is, therefore, not only essential to control the spread of virus infection, but it is also responsible for the inflammatory events causing liver pathologies. In this review, we discuss how HBV deals with host immunity and how we can harness it to achieve virus control and suppress liver damage. PMID:26134480

  20. Active immunization against GnRH in pre-pubertal domestic mammals: testicular morphometry, histopathology and endocrine responses in rabbits, guinea pigs and ram lambs.

    PubMed

    Aponte, P M; Gutierrez-Reinoso, M A; Sanchez-Cepeda, E G; Garcia-Herreros, M

    2017-08-24

    Effective tools for male contraception are important in the control of reproduction in animal populations. The aim of the present study was to evaluate the effects of active immunization against gonadotropin-releasing hormone (GnRH) on male reproductive function assessing testicular morphological changes and serum-gonadotropin levels in pre-pubertal rabbits, guinea pigs and ram lambs. An anti-GnRH vaccine was developed by linking a GnRH-homologous molecule to a tetanus clostridial toxoid (Al(OH)3 coadjuvant). After vaccination protocols testicular morphometry, histopathological alterations and endocrine responses (FSH, LH, testosterone and cortisol serum levels) were evaluated. Testicular volume was significantly reduced in vaccinated animals with respect to the control group in rabbits, guinea pigs and ram lambs (P<0.05 to P<0.001). The anti-GnRH vaccine generated a reduction in testicular volume of 15-, 27- and 11-fold, respectively. Tubule diameters decreased in the vaccinated group with respect to the control ~2.0-, 1.2- and 3.5-fold, respectively (P<0.001). Tubule, intertubular and lumen volumes significantly decreased in vaccinated rabbits (P<0.05), guinea pigs and ram lambs (P<0.01). Vaccinated animals of the three species showed significant reductions in spermatogonial numbers (10- to 40-fold; P<0.01). Sperm was absent in all seminiferous tubules of all rabbits, and most individuals of guinea pigs (80%) and ram lambs (60%). No significant differences were observed between vaccinated and control groups regarding FSH and LH during the experiments in the three experimental species/models used. Testosterone, however, was only significantly lower (~22-fold, P<0.01) in vaccinated rabbits. In conclusion, the present study demonstrated that pre-pubertal active immunization against GnRH leads to endocrine disruption and marked differences on testicular morphometry, development and activity among lagomorphs, hystricomorphs and ovine species with species

  1. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  2. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  3. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    PubMed

    Marcu, Oana; Lera, Matthew P; Sanchez, Max E; Levic, Edina; Higgins, Laura A; Shmygelska, Alena; Fahlen, Thomas F; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-11

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  4. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  5. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin.

    PubMed

    Magesky, Adriano; de Oliveira Ribeiro, Ciro A; Beaulieu, Lucie; Pelletier, Émilien

    2017-07-01

    Using immune cells of sea urchin Strongylocentrotus droebachiensis in early development as a model, the cellular protective mechanisms against ionic and poly(allylamine)-coated silver nanoparticle (AgNPs; 14 ± 6 nm) treatments at 100 μg L(-1) were investigated. Oxidative stress, heat shock protein expression, and pigment production by spherulocytes were determined as well as AgNP translocation pathways and their multiple effects on circulating coelomocytes. Sea urchins showed an increasing resilience to Ag over time because ionic Ag is accumulated in a steady way, although nanoAg levels dropped between 48 h and 96 h. A clotting reaction emerged on tissues injured by dissolved Ag (present as chloro-complexes in seawater) between 12 h and 48 h. Silver contamination and nutritional state influenced the production of reactive oxygen species. After passing through coelomic sinuses and gut, AgNPs were found in coelomocytes. Inside blood vessels, apoptosis-like processes appeared in coelomocytes highly contaminated by poly(allylamine)-coated AgNPs. Increasing levels of Ag accumulated by urchins once exposed to AgNPs pointed to a Trojan-horse mechanism operating over 12-d exposure. However, under short-term treatments, physical interactions of poly(allylamine)-coated AgNPs with cell structures might be, at some point, predominant and responsible for the highest levels of stress-related proteins detected. The present study is the first report detailing nano-translocation in a marine organism and multiple mechanisms by which sea urchin cells can deal with toxic AgNPs. Environ Toxicol Chem 2017;36:1872-1886. © 2016 SETAC. © 2016 SETAC.

  6. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    PubMed Central

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses. PMID:24213131

  7. Initiation of adaptive immune responses by transcutaneous immunization.

    PubMed

    Warger, Tobias; Schild, Hansjörg; Rechtsteiner, Gerd

    2007-03-15

    The development of new, effective, easy-to-use and lower-cost vaccination approaches for the combat against malignant and infectious diseases is a pre-eminent need: cancer is a leading cause of morbidity in the Western World; there are numerous pathogenic diseases for which we still have no protective or therapeutic cure; and the financial limitations of developing countries to fight these diseases. In this mini-review we focus on transcutaneous immunization (TCI), a relatively new route for antigen delivery. TCI protocols appear to be particularly promising by gaining access to skin resident APC, which are highly efficient for the initiation of humoral and/or cellular immune responses. Consisting of an adjuvant as a stimulus in combination with an antigen which defines the target, TCI offers a most attractive immunization strategy to mount highly specific full-blown adaptive immune responses. As a topically applicable cell-free adjuvant/antigen mixture, TCI might be suitable to improve patient compliance, as well as feasible economically for the use in Third World countries. In addition, this non-invasive procedure might increase the safety of vaccinations by eliminating the risk of infections related to the recycling and improper disposal of needles. The dissection of antigen and adjuvant is important because it allows "free" combinations in contrast to classical immunizations which are based on application of the pathogen of interest. The most relevant ways and means to find new, effective pathogenic target antigens are "reverse vaccinology" and the direct peptide-epitope identification from MHC molecules with mass-spectrometry. Due to these efficient approaches the variety of antigenic epitopes for potential protective/therapeutic use is perpetually expanding. The most studied adjuvants in TCI approaches are cholera toxin (CT) and its less toxic relative, the heat-labile enterotoxin (LT). Both CT and LT can serve as antigen as well. In contrast to these large

  8. Humoral immune response to the antigen administered as an immune complex.

    PubMed

    Marusić, M; Marusić-Galesić, S; Pokrić, B

    1992-12-01

    Antigen (HSA) bound in immune complexes at equivalence with syngeneic anti-HSA antibodies elicit much stronger humoral immune response then soluble HSA. On the other hand, administration of immune complexes formed with xenogeneic (rabbit) anti-HSA antibodies suppressed humoral immune response against HSA, but not against rabbit IgG in mice. We suggest that immunization with antigen bound in immune complex might represent a powerful tool in enhancing humoral immune responses.

  9. Selenium influence in the poultry immune response--review.

    PubMed

    Saad, Marina B; Gertner, Luiz R; Bona, Tania D M M; Santin, Elizabeth

    2009-11-01

    Selenium is an essential mineral for organic function on animal and human body. This mineral is important due to its function as antioxidant in organism, it neutralizes the free radicals that are resultant from many factors but especially by immune response. Diet is the major source of selenium. In poultry, the nutritional requirements for all nutrients and even selenium was normally calculated based on experimental trial using health animal in very low challenge conditions. However, on practical way animals are continually exposed to different infection challenges and intense vaccine program increasing immune system activation. On this aspect, there are studies that show that immune activation response increases the necessity of nutrients, vitamins and minerals. The objective of this review is to present recent patents information about the influence of selenium on immune response and practices applied on poultry production.

  10. Blockade of MCP-1/CCR4 signaling-induced recruitment of activated regulatory cells evokes an antitumor immune response in head and neck squamous cell carcinoma

    PubMed Central

    Sun, Wei; Li, Wei-Jin; Wei, Fan-Qin; Wong, Thian-Sze; Lei, Wen-Bin; Zhu, Xiao-Lin; Li, Jian; Wen, Wei-Ping

    2016-01-01

    FoxP3+ regulatory T (Treg) cells have diverse functions in the suppression of antitumor immunity. We show that FoxP3hiCD45RA−CD4+ Treg cells [activated Treg (aTreg) cells] are the predominant cell population among tumor-infiltrating FoxP3+ T cells, and that high aTreg cell-infiltrating content is associated with reduced survival in patients with head and neck squamous cell carcinoma (HNSCC). In vitro studies have demonstrated that aTreg cells can suppress tumor-associated antigen (TAA) effector T cell immune responses in HNSCC. Moreover, C-C chemokine receptor 4 (CCR4) was specifically expressed by aTreg cells in the peripheral blood of HNSCC patients. Using a RayBiotech human chemokine antibody array, we showed that monocyte chemoattractant protein-1 (MCP-1), an endogenous CCR4-binding ligand, was specifically upregulated in the HNSCC microenvironment compared to the other four CCR4-binding ligands. Blocking MCP-1/CCR4 signaling-induced aTreg cell recruitment using a CCR4 antagonist evoked antitumor immunity in mice, and lead to inhibition of tumor growth and prolonged survival. Therefore, blocking aTreg cell trafficking in tumors using CCR4-binding agents may be an effective immunotherapy for HNSCC. PMID:27177223

  11. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    -lymphocytes and natural killer cells are decreased with post-flight conditions. Of the lymphokines, interleukin-2 production, lymphocyte responsiveness, and the activity of natural killer cells are consistently reduced post-flight. Limited head-down tilt (HDT) data suggest it is an effective simulation model for microgravity investigations. Neuroendocrine and pharmacological countermeasures are virtually nonexistent arid should become high priority items for future research. Although exercise has the potential to be an effective countermeasure for various neuroen-docrine-immune responses in microgravity, this concept must be tested before flights to Mars are scheduled.

  12. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    -lymphocytes and natural killer cells are decreased with post-flight conditions. Of the lymphokines, interleukin-2 production, lymphocyte responsiveness, and the activity of natural killer cells are consistently reduced post-flight. Limited head-down tilt (HDT) data suggest it is an effective simulation model for microgravity investigations. Neuroendocrine and pharmacological countermeasures are virtually nonexistent arid should become high priority items for future research. Although exercise has the potential to be an effective countermeasure for various neuroen-docrine-immune responses in microgravity, this concept must be tested before flights to Mars are scheduled.

  13. Corynebacterium pyruviciproducens, as an immune modulator, can promote the activity of macrophages and up-regulate antibody response to particulate antigen.

    PubMed

    Tong, Jia; Han, Qingzhen; Wang, Shengjun; Su, Zhaoliang; Zheng, Dong; Shen, Pei; Xia, Sheng; Huang, Xinxiang; Shao, Qixiang; Xu, Huaxi

    2012-11-01

    Corynebacterium pyruviciproducens is a newly discovered Corynebacterium species with no known pathogenic components such as diphtheria toxin and tuberculostearic acid, and it has similar biological properties to Propionibacterium acnes, but its role of immunoregulation is drawing people's attention. In this work, based on the role of macrophages in removal of pathogenic bacteria as a primary scavenger and particulate antigen-presenting cell, the stimulation of macrophages by C. pyruviciproducens was analyzed through detecting the levels of cytokine secretion and expression of membrane molecules, and the effect of C. pyruviciproducens in promoting antibody response to sheep red blood cells (SRBC) in vivo was detected. In vitro, C. pyruviciproducens led to a sharp release of interleukin-6 and tumour necrosis factor-α and encouraged the activation of macrophages including enhanced expressions of MHC-II, CD40, CD80 and CD86. In vivo, it enhanced the humoral immune response against SRBC, a particulate antigen. These observations suggest that C. pyruviciproducens, as an immunoregulator, can promote the host humoral immune response to pathogenic microorganisms by regulating macrophage function.

  14. Maternal antibodies and infant immune responses to vaccines.

    PubMed

    Edwards, Kathryn M

    2015-11-25

    Infants are born with immature immune systems, making it difficult for them to effectively respond to the infectious pathogens encountered shortly after birth. Maternal antibody is actively transported across the placenta and serves to provide protection to the newborn during the first weeks to months of life. However, maternal antibody has been shown repeatedly to inhibit the immune responses of young children to vaccines. The mechanisms for this inhibition are presented and the impact on ultimate immune responses is discussed. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  15. Immune response to biologic scaffold materials.

    PubMed

    Badylak, Stephen F; Gilbert, Thomas W

    2008-04-01

    Biologic scaffold materials composed of mammalian extracellular matrix are commonly used in regenerative medicine and in surgical procedures for the reconstruction of numerous tissue and organs. These biologic materials are typically allogeneic or xenogeneic in origin and are derived from tissues such as small intestine, urinary bladder, dermis, and pericardium. The innate and acquired host immune response to these biologic materials and the effect of the immune response upon downstream remodeling events has been largely unexplored. Variables that affect the host response include manufacturing processes, the rate of scaffold degradation, and the presence of cross species antigens. This manuscript provides an overview of studies that have evaluated the immune response to biologic scaffold materials and variables that affect this response.

  16. Lower activation-induced T-cell apoptosis is related to the pathological immune response in secondary infection with hetero-serotype dengue virus.

    PubMed

    Yang, Wang; Yan, Huacheng; Ma, Yuling; Yu, Tiantian; Guo, Hongxia; Kuang, Yuchan; Ren, Ruiwen; Li, Jintao

    2016-03-01

    The available evidence suggests that dengue virus-specific T lymphocytes and cytokine storm play a pivotal role in the immunopathogenesis of plasma leakage. Investigations are underway to identify the immune profiles associated with increased or decreased risk for severe disease. In this study, CD14+ cells from the peripheral blood mononuclear cells (PBMCs) of patients who recovered from DENV-1 infection were infected with DENV-1 or DENV-2 and co-cultured with memory T cells. We found that secondary infection with DENV-2 suppresses the cell reproductive capacity but forms more cell clones and more functional cells to produce more proinflammatory factors (IFN-γ, TNF-α, IL-6, IL-8, IL-12 and IL-17) and less regulatory cytokines (IL-10, TGF-β) which results in higher viral replication compared to secondary infection with DENV-1. Memory dengue virus-specific T cells which are induced in a primary dengue virus infection are reactivated by the heterologous serotype of dengue virus and antigen-presenting cells (APCs) during a secondary infection. Dramatically, less apoptosis and more continuous activation of T cells in secondary infection with hetero-serotype DENV were observed. This discovery which has not been reported previously may be the reasonable and vital interpretation for the cytokine storm and severe symptoms observed in secondary infection with DENV. In summary, secondary infection with hetero-serotype DENV elicits the relatively pathological immune response while secondary infection with homologous-serotype DENV induces the relatively protective immune response by activation-induced cell death (AICD) of T cells.

  17. Antigen processing and immune regulation in the response to tumours.

    PubMed

    Reeves, Emma; James, Edward

    2017-01-01

    The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8(+) cytotoxic and CD4(+) helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8(+) cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4(+) T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8(+) cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.

  18. Emerging functions of the unfolded protein response in immunity

    PubMed Central

    Janssens, Sophie; Pulendran, Bali; Lambrecht, Bart N.

    2015-01-01

    The unfolded protein response (UPR) has traditionally been viewed as an adaptive response triggered upon accumulation of unfolded proteins in the endoplasmic reticulum (ER), aimed at restoring ER function. The UPR can also be an anticipatory response that is activated well before the disruption of protein homeostasis. UPR signaling intersects at many levels with the innate and adaptive immune response. In some immune cell types like dendritic cells and B cells, particular UPR sensors appear constitutively active in the absence of traditional UPR gene program induction, necessary for antigen presentation and immunoglobulin synthesis. The UPR also influences Toll-like receptor signaling and NF-κB activation, and some pathogens subvert the UPR. This review summarizes these emerging non-canonical functions of the UPR in immunity. PMID:25232821

  19. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice

    PubMed Central

    Prados-Rosales, Rafael; Baena, Andres; Martinez, Luis R.; Luque-Garcia, Jose; Kalscheuer, Rainer; Veeraraghavan, Usha; Camara, Carmen; Nosanchuk, Joshua D.; Besra, Gurdyal S.; Chen, Bing; Jimenez, Juan; Glatman-Freedman, Aharona; Jacobs, William R.; Porcelli, Steven A.; Casadevall, Arturo

    2011-01-01

    Bacteria naturally release membrane vesicles (MVs) under a variety of growth environments. Their production is associated with virulence due to their capacity to concentrate toxins and immunomodulatory molecules. In this report, we show that the 2 medically important species of mycobacteria, Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin, release MVs when growing in both liquid culture and within murine phagocytic cells in vitro and in vivo. We documented MV production in a variety of virulent and nonvirulent mycobacterial species, indicating that release of MVs is a property conserved among mycobacterial species. Extensive proteomic analysis revealed that only MVs from the virulent strains contained TLR2 lipoprotein agonists. The interaction of MVs with macrophages isolated from mice stimulated the release of cytokines and chemokines in a TLR2-dependent fashion, and infusion of MVs into mouse lungs elicited a florid inflammatory response in WT but not TLR2-deficient mice. When MVs were administered to mice before M. tuberculosis pulmonary infection, an accelerated local inflammatory response with increased bacterial replication was seen in the lungs and spleens. Our results provide strong evidence that actively released mycobacterial vesicles are a delivery mechanism for immunologically active molecules that contribute to mycobacterial virulence. These findings may open up new horizons for understanding the pathogenesis of tuberculosis and developing vaccines. PMID:21364279

  20. The Adjuvant Activity of Epimedium Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice

    PubMed Central

    Fan, Yunpeng; Guo, Liwei; Hou, Weifeng; Guo, Chao; Zhang, Weimin; Ma, Xia; Ma, Lin; Song, Xiaoping

    2015-01-01

    Objectives. The adjuvant activity of Epimedium polysaccharide-propolis flavone liposome (EPL) was investigated in vitro and in vivo. Methods. In vitro, the effects of EPL at different concentrations on splenic lymphocytes proliferation and mRNA expression of IFN-γ and IL-6 were determined. In vivo, the adjuvant activities of EPL, EP, and mineral oil were compared in BALB/c mice through vaccination with inactivated porcine circovirus type 2 (PCV2) vaccine. Results. In vitro, EPL promoted lymphocytes proliferation and increased the mRNA expression of IFN-γ and IL-6, and the effect was significantly better than EP at all concentrations. In vivo, EPL significantly promoted the lymphocytes proliferation and the secretion of cytokines and improved the killing activity of NK cells, PCV2-specific antibody titers, and the proportion of T-cell subgroups. The effects of EPL were significantly better than EP and oil adjuvant at most time points. Conclusion. EPL could significantly improve both PCV2-specific cellular and humoral immune responses, and its medium dose had the best efficacy. Therefore, EPL would be exploited in an effective immune adjuvant for inactivated PCV2 vaccine. PMID:26612996

  1. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches.

    PubMed

    Sepp, Tuul; Karu, Ulvi; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2011-03-01

    Allocation trade-offs of carotenoids between their use in the immune system and production of integumentary colouration have been suggested as a proximate mechanism maintaining honesty of signal traits. We tested how dietary carotenoid supplementation, immune activation and immune suppression affect intensity of coccidian infection in captive greenfinches Carduelis chloris, a passerine with carotenoid-based plumage. Immune activation with phytohaemagglutinin (PHA) decreased body mass among birds not supplemented with lutein, while among the carotenoid-fed birds, PHA had no effect on mass dynamics. Immune suppression with dexamethasone (DEX) induced loss of body mass and reduced the swelling response to PHA. DEX and PHA increased the concentration of circulating heterophils. Lutein supplementation increased plasma carotenoid levels but had no effect on the swelling response induced by PHA. PHA and DEX treatments did not affect plasma carotenoids. Immune stimulation by PHA suppressed the infection, but only among carotenoid-supplemented birds. Priming of the immune system can thus aid in suppressing chronic infection but only when sufficient amount of carotenoids is available. Our experiment shows the importance of carotenoids in immune response, but also the complicated nature of this impact, which could be the reason for inconsistent results in studies investigating the immunomodulatory effects of carotenoids. The findings about involvement of carotenoids in modulation of an immune response against coccidiosis suggest that carotenoid-based ornaments may honestly signal individuals' ability to manage chronic infections. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Local Immune Response in Helicobacter pylori Infection

    PubMed Central

    Kivrak Salim, Derya; Sahin, Mehmet; Köksoy, Sadi; Adanir, Haydar; Süleymanlar, Inci

    2016-01-01

    Abstract There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori–infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC). In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines—interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32—in H pylori–infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients. We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori–infected NGM group. This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients. PMID:27196487

  3. Immune response in the turtle (Chrysemys picta)

    PubMed Central

    Coe, J. E.

    1972-01-01

    The immune response of painted turtles (Chrysemys picta) to four purified protein antigens was evaluated by radioimmunoelectrophoresis. Specific antibody production was consistently detected and antigen binding was related to four immunoglobulin (Ig) precipitin lines (called Ig1, 2, 3, 4) in turtle serum. Antibody activity was detected first in the Ig1 or Ig2 and then later in the course of immunization in Ig3 and Ig4. Ig1 was about 19S in size, was not detectable after reduction and alkylation, and was the only Ig absent from turtle lymph. Ig3 and Ig4 were about 7S in size and Ig2 appeared slightly heavier by sucrose density gradient and Sephadex G-200 analysis. Haemagglutinins produced after primary inoculation were routinely sensitive to mild reduction and alkylation although antigen-binding capacity was still detectable. However, mercaptoethanol-resistant haemagglutinins were found in sera from turtles after booster injections of antigen. The electrophoretically slowest gamma globulin in turtle serum did not develop specific antigen-binding capacity, but did bind Fe59 and presumably represents a transferrin-like protein. ImagesFIG. 1FIG. 2FIG. 4 PMID:4114647

  4. Chitin and Its Effects on Inflammatory and Immune Responses.

    PubMed

    Elieh Ali Komi, Daniel; Sharma, Lokesh; Dela Cruz, Charles S

    2017-03-01

    Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.

  5. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages.

    PubMed

    Liu, Yuan; Chen, Suting; Pan, Bowen; Guan, Zhu; Yang, Zhenjun; Duan, Linfei; Cai, Hong

    2016-10-01

    Mycobacterium tuberculosis (Mtb) is a Gram-positive pathogen which causes tuberculosis in both animals and humans. All tested rH-NS formulations induced a specific Th1 response, as indicated by increased production of interferon γ (IFN-γ) and interleukin 2 (IL-2) by lymphocytes in the spleen of mice which were immunized with rH-NS alone or with rH-NS and the adjuvant cyclic GMP-AMP (cGAMP). Serum from mice immunized with rH-NS with or without adjuvant also had higher levels of IL-12p40 and TNF-α, compared with those from control mice immunized with phosphate-buffered saline. Both vaccines increased protective efficacy in mice which were challenged with Mtb H37Rv, as measured by reduced relative CFU counts in the lungs. We found that rH-NS induced the production of TNF-α, IL-6, and IL-12p40, which relied on the activation of mitogen-activated protein kinases by stimulating the rapid phosphorylation of ERK1/2, p38, and JNK, and on the activation of transcription factor NF-κB in macrophages. Additionally, we also found that rH-NS could interact with TLR2 but not TLR4 in pull-down assays. The rH-NS-induced cytokine production from TLR2-silenced RAW264.7 cells was lower than that from BALB/c macrophages. Prolonged exposure (>24 h) of RAW264.7 cells to rH-NS resulted in a significant enhancement in IFN-γ-induced MHC II expression, which was not found in shTLR2-treated RAW264.7 cells. These results suggest that rH-NS is a TLR2 agonist which induces the production of cytokines by macrophages and up-regulates macrophage function.

  6. Effect of cellular mobility on immune response

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  7. Immune responses and Lassa virus infection.

    PubMed

    Russier, Marion; Pannetier, Delphine; Baize, Sylvain

    2012-11-05

    Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis.

  8. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1984-08-01

    ND-R171 381 HUR IMMUNE RESPONSES TO DENGUE VIRUSES(U) 1/1 MASSRCHUSETTS UNIY M9DICAL SCHOOL WORCESTER F R~ ENNIS RUG 94 DRMt17-2-C-2233 UNCLASSIFIED...Responses to Dengue Viruses Annual Report 0(August 1983-July 1984) Francis A. Ennis, M.D. August 1984 Supported by U.S. Army Medical Research and...3M1- NO. SON No. Frederick, Maryland 21701-5012 61102A 61102BSI0 AA 104 11. TITLE Oxkf* Samqy Oao" Human Immune Responses to Dengue Viruses 12. PERSON

  9. Host's innate immune response to fungal and bacterial agents in vitro: up-regulation of interleukin-15 gene expression resulting in enhanced natural killer cell activity

    PubMed Central

    Tran, Phay; Ahmad, Rasheed; Xu, Jingwu; Ahmad, Ali; Menezes, José

    2003-01-01

    Natural killer (NK) cells play an important role in the first line of defence against viral infections. We have shown earlier that exposure of human peripheral blood mononuclear cells (PBMC) to viruses results in rapid up-regulation of NK cell activity via interleukin-15 (IL-15) induction, and that this mechanism curtails viral infection in vitro. By using Candida albicans, Escherichia coli and Staphylococcus aureus, we now show here that exposure of PBMC to fungi and bacteria also results in an immediate increase of NK cytotoxicity. Reverse transcriptase–polymerase chain reaction and Western blot analyses as well as the use of antibodies against different cytokines revealed that IL-15 induction played a predominant role in this NK activation. These results indicate that IL-15 is also involved in the innate immune response against fungal and bacterial agents. PMID:12757622

  10. Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-Cell activation

    PubMed Central

    Wang, Min; Windgassen, Dirk; Papoutsakis, Eleftherios T

    2008-01-01

    Background T-cell activation is an essential step of the immune response and relies on the tightly controlled orchestration of hundreds of genes/proteins, yet the cellular and molecular events underlying this complex process are not fully understood, especially at the genome-scale. Significantly, a comparative genome-scale transcriptional analysis of two T-cell subsets (CD4+ and CD8+) against each other and against the naturally mixed population (CD3+ cells) remains unexplored. Results Comparison of the microarray-based gene expression patterns between CD3+ T cells, and the CD4+ and CD8+ subsets revealed largely conserved, but not identical, transcriptional patterns. We employed a Gene-Ontology-driven transcriptional analysis coupled with protein abundance assays in order to identify novel T-cell activation genes and cell-type-specific genes associated with the immune response. We identified potential genes involved in the communication between the two subsets (including IL23A, NR4A2, CD83, PSMB2, -8, MIF, IFI16, TNFAIP1, POU2AF1, and OTUB1) and would-be effector-function-specific genes (XCL2, SLAMF7, TNFSF4, -5, -9, CSF3, CD48 and CD244). Chemokines induced during T-cell activation, but not previously identified in T cells, include CCL20, CXCL9, -10, -11 (in all three populations), and XCL2 (preferentially in CD8+ T cells). Increased expression of other unexpected cytokines (GPI, OSM and MIF) suggests their involvement in T-cell activation with their functions yet to be examined. Differential expression of many receptors, not previously reported in the context of T-cell activation, including CCR5, CCR7, IL1R2, IL1RAP, IL6R, TNFRSF25 and TNFRSF1A, suggests their role in this immune process. Several receptors involved in TCR activation (CD3D, CD3G, TRAT1, ITGAL, ITGB1, ITGB2, CD8A and B (CD8+ T-cell specific) along with LCK, ZAP70 and TYROBP were synchronously downregulated. Members of cell-surface receptors (HLA-Ds and KLRs), none previously identified in the

  11. Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-cell activation.

    PubMed

    Wang, Min; Windgassen, Dirk; Papoutsakis, Eleftherios T

    2008-05-16

    T-cell activation is an essential step of the immune response and relies on the tightly controlled orchestration of hundreds of genes/proteins, yet the cellular and molecular events underlying this complex process are not fully understood, especially at the genome-scale. Significantly, a comparative genome-scale transcriptional analysis of two T-cell subsets (CD4+ and CD8+) against each other and against the naturally mixed population (CD3+ cells) remains unexplored. Comparison of the microarray-based gene expression patterns between CD3+ T cells, and the CD4+ and CD8+ subsets revealed largely conserved, but not identical, transcriptional patterns. We employed a Gene-Ontology-driven transcriptional analysis coupled with protein abundance assays in order to identify novel T-cell activation genes and cell-type-specific genes associated with the immune response. We identified potential genes involved in the communication between the two subsets (including IL23A, NR4A2, CD83, PSMB2, -8, MIF, IFI16, TNFAIP1, POU2AF1, and OTUB1) and would-be effector-function-specific genes (XCL2, SLAMF7, TNFSF4, -5, -9, CSF3, CD48 and CD244). Chemokines induced during T-cell activation, but not previously identified in T cells, include CCL20, CXCL9, -10, -11 (in all three populations), and XCL2 (preferentially in CD8+ T cells). Increased expression of other unexpected cytokines (GPI, OSM and MIF) suggests their involvement in T-cell activation with their functions yet to be examined. Differential expression of many receptors, not previously reported in the context of T-cell activation, including CCR5, CCR7, IL1R2, IL1RAP, IL6R, TNFRSF25 and TNFRSF1A, suggests their role in this immune process. Several receptors involved in TCR activation (CD3D, CD3G, TRAT1, ITGAL, ITGB1, ITGB2, CD8A and B (CD8+ T-cell specific) along with LCK, ZAP70 and TYROBP were synchronously downregulated. Members of cell-surface receptors (HLA-Ds and KLRs), none previously identified in the context of T

  12. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1989-07-31

    lhuman Immune Response to Dengue Infections 12. PERSONAL AUTHOR(S) Francis A. Ennis 13a. TYPE OF REPORT 13b. TIME COVERED T14. DATE OF REPORT (Year, Month...Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue 4-immune donor generated virus-specific serotype cross-reactive CD4- CD8...class I-restricted cytotoxic T lymphocytes (CL) capable of lysing dengue virus-infected autologous fibroblasts and cells pulsed with dengue I

  13. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

    PubMed

    Abt, Michael C; Osborne, Lisa C; Monticelli, Laurel A; Doering, Travis A; Alenghat, Theresa; Sonnenberg, Gregory F; Paley, Michael A; Antenus, Marcelo; Williams, Katie L; Erikson, Jan; Wherry, E John; Artis, David

    2012-07-27

    Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.

  14. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity

    PubMed Central

    Abt, Michael C.; Osborne, Lisa C.; Monticelli, Laurel A.; Doering, Travis A.; Alenghat, Theresa; Sonnenberg, Gregory F.; Paley, Michael A.; Antenus, Marcelo; Williams, Katie L.; Erikson, Jan; Wherry, E. John; Artis, David

    2013-01-01

    SUMMARY Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity. PMID:22705104

  15. Cytomegalovirus infection improves immune responses to influenza

    PubMed Central

    Furman, David; Jojic, Vladimir; Sharma, Shalini; Shen-Orr, Shai; Angel, Cesar J Lopez; Onengut-Gumuscu, Suna; Kidd, Brian; Maecker, Holden T; Concannon, Patrick; Dekker, Cornelia L; Thomas, Paul G; Davis, Mark M

    2015-01-01

    Cytomegalovirus (CMV) is a beta-herpes virus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV serostatus. In contrast, CMV-infected young adults exhibited an overall up-regulation of immune components including enhanced antibody responses to influenza vaccination, increased CD8+ T cell sensitivity, and elevated levels of circulating IFN-γ compared to uninfected individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the continued coexistence of CMV and mammals throughout their evolution. PMID:25834109

  16. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip

    2015-01-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  17. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice.

    PubMed

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L

    2015-10-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  18. Augmentation of suppressed antibody responses in mice during experimental Chagas' disease by T helper cells activated in a time-dependent mode of immunization.

    PubMed

    Choromanski, L; Kuhn, R E

    1990-01-01

    Mice infected with the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease, develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC), hapten-conjugated SRBC (TNP-SRBC), and horse erythrocytes (TNP-HRBC). Studies in vivo demonstrated that anti-SRBC responses were best enhanced when T. cruzi-infected mice were injected with primed T cells derived from normal or infected mice immunized four days previously. The presence of enhancing capacities for DPFC responses by T cells from T. cruzi-infected mice were also supported by experiments examining the hapten-carrier effect. Preimmunization of infected mice with SRBC or HRBC four days before injection of hapten-homologous (TNP-SRBC or TNP-HRBC) carrier resulted in markedly augmented anti-hapten antibody responses. These results show that functional help provided by T cells activated during priming and exposed to a challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in T. cruzi-infected mice.

  19. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish

    NASA Astrophysics Data System (ADS)

    Broeg, Katja

    2003-10-01

    The activity of acid phosphatase in liver macrophage aggregates (MA-AP) of different fish species was used as a marker for a pollution-induced modulation of the digestive capacity of phagocytes, since functions of the non-specific immune response play a central role in the maintenance of animals' health. Based upon the investigation of more than 900 individual flounders (Platichthys flesus) and mullets (Liza aurata), natural variations, gender-specific differences and pollution-induced alterations in AP activity are demonstrated in this study. MA-AP activity was dependent on temperature and season but, nevertheless, distinctions between differently polluted areas were visible in all sampling campaigns with lowest MA-AP activity in fish from the polluted areas of the German Bight and the Israeli coast of the Mediterranean Sea. For organochlorine contaminants, as well as for mercury and copper, a significant correlation could be observed between residue concentrations in fish tissues and MA-AP activity. In all cases, except mercury which showed a positive correlation, AP activity was suppressed in animals with a high contaminant burden. MA-AP activity turned out to give reliable and consistent results for a quantification of immunomodulation in both fish species.

  20. Circadian rhythm and the immune response: a review.

    PubMed

    Habbal, O A; Al-Jabri, A A

    2009-01-01

    For long, the immune system has been thought of as an effector mechanism reacting to antigenic challenge with defensive responses designed to eliminate 'foreign' material and return to a standby or surveillance mode. However, the recent concept now supported by substantial evidence suggests that immunity is not effector biased but is also a sensory organ and forms part of an integrated homeostatic network. The bidirectional information flow between the neuroendocrine and immune systems functions to maintain and protect the internal homeostasis of the organism. The paradox of this interwined function is that homeostasis may require the neuroendocrine system to work for or against the immune system, as is the case in infection. Potential dangers necessitate activation of the immune system, and such a response may pose risks to the integrity of the host. This occurs when an overly vigorous response may be detrimental and kill the host, as is the case of toxic shock syndrome. Therefore, the constant monitoring role of the neuroendocrine system to control and, when necessary, regulate the function of the immune system is crucial for the homeostatic integrity of the host. This reciprocity of functional need determines the mode of action to determine the context of a perceived threat and the best way to respond. Any breakdown in this two-way communication may manifest itself in problems such as autoimmunity, septic shock, or chronic infection. In this article, we review our current knowledge of circadian rhythm and its relation to the immune response.

  1. Measles virus-induced suppression of immune responses

    PubMed Central

    Griffin, Diane E.

    2010-01-01

    Summary Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells are susceptible to infection and can transmit infection to lymphocytes. MV-infected dendritic cells are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity. PMID:20636817

  2. Advances in Overcoming Immune Responses following Hemophilia Gene Therapy

    PubMed Central

    Miao, Carol H.

    2012-01-01

    Both Clinical trials and pre-clinical experiments for hemophilia gene therapy showed that it is important to overcome potential immune responses against gene transfer vectors and/or transgene products to ensure the success of gene therapy. Recently various approaches have been investigated to prevent or modulate such responses. Gene transfer vectors have been specifically engineered and immunosuppressive regimens have been administered to avoid or manipulate the immune responses against the vectors. In order to prevent cytotoxic lymphocyte or antibody formation induced by transgene expression, novel approaches have been developed, including methods to manipulate antigen presentation, development of variant genes encoding less immunogenic proteins or gene transfer protocols to evade immune responses, as well as immunosuppressive strategies to target either T and/or B cell responses. Most of these successful protocols involve the induction of activated regulatory T cells to create a regulatory immune environment during tolerance induction. Recent development of these strategies to evade vector-specific immune responses and induce long-term immune tolerance specific to the transgene product will be discussed. PMID:22737594

  3. Agouron and immune response to commercialize remune immune-based treatment.

    PubMed

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  4. Bacterial vaginosis and the cervicovaginal immune response

    PubMed Central

    Mitchell, Caroline; Marrazzo, Jeanne

    2014-01-01

    Bacterial vaginosis (BV) is a common cause of vaginal discharge in reproductive age women around the world, and is associated with several poor reproductive health outcomes, including HIV-1 acquisition. One possible mechanism for this association is the inflammatory immune response induced by BV in the cervical and vaginal mucosae. There is significant heterogeneity in reports of markers of cervicovaginal inflammation in women with bacterial vaginosis, likely due to microbial and host diversity, as well as differences in study design. In this article we review the characteristics of the mucosal immune response in BV, the potential role of lactobacilli in modulating that response, and the impact of individual BV-associated bacterial species on mucosal immunity. We focus on inflammatory markers that are proposed to increase the risk of HIV-1 acquisition. PMID:24832618

  5. Immune responses after live attenuated influenza vaccination.

    PubMed

    Mohn, Kristin G-I; Smith, Ingrid; Sjursen, Haakon; Cox, Rebecca

    2017-09-21

    Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.

  6. Trichinella spiralis: shaping the immune response.

    PubMed

    Ilic, Natasa; Gruden-Movsesijan, Alisa; Sofronic-Milosavljevic, Ljiljana

    2012-04-01

    The co-evolution of a wide range of helminth parasites and vertebrates represented a constant pressure on the host's immune system and a selective force for shaping the immune response. Modulation of the immune system by parasites is accomplished partly by dendritic cells. When exposed to helminth parasites or their products, dendritic cells do not become classically mature and are potent inducers of Th2 and regulatory responses. Treating animals with helminths (eggs, larvae, extracts) causes dampening or in some cases prevention of allergic or autoimmune diseases. Trichinella spiralis (T. spiralis) possess a capacity to retune the immune cell repertoire, acting as a moderator of the host response not only to itself but also to third party antigens. In this review, we will focus on the ability of T. spiralis-stimulated dendritic cells to polarize the immune response toward Th2 and regulatory mode in vitro and in vivo and also on the capacity of this parasite to modulate autoimmune disease--such as experimental autoimmune encephalomyelitis.

  7. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    DTIC Science & Technology

    2003-08-01

    antigens expressed on breast tumors. Towards this end we are developing peptide mimotopes of tumor associated carbohydrate antigens as they are T cell...dependent antigens. In our progress to date we have shown the 1) immunization with peptide mimotope activates a specific cellular response to a model murine...tumor cell line; 2) vaccination of mice with peptide eradicates established tumor; 3) Immunization with DNA format of the peptide suppresses tumor

  8. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides.

    PubMed

    Sun, Yun-Zhang; Yang, Hong-Ling; Ma, Ru-Long; Lin, Wen-Yan

    2010-11-01

    The effect of dietary administration of Bacillus pumilus and Bacillus clausii, the dominant bacteria with antagonistic activity in the gut of fast growing fish, on the growth performance and immune responses of grouper Epinephelus coioides were assessed. The fish were fed for 60 days with three different diets: control (without probiotics), diet T1 supplemented with 1.0x10(8) cells g(-1) B. pumilus, diet T2 with 1.0x10(8) cells g(-1) B. clausii. No significant improvements of weight gain or specific growth rate were observed in the probiotic fed groups, but a significant improvement of feed conversion ratio was observed after 60 days of feeding. Phagocytic activity and phagocytic index of fish fed probiotic diets were significantly higher than those of fish fed the control diet for 60 days. Superoxide dismutase (SOD) concentrations showed no significant difference between the treatments and the control during the whole experiment period, but which increased by 11.4% and 18.5% after 60 days of fed with diets T1 and T2, respectively. The serum lysozyme activities of fish fed diets T1 and T2 were significantly higher than that of fish fed control diet, and had respectively increased by 34.7% and 17.4% compared to the control after 60 days of feeding. Serum complement C3 levels of the treatments were significantly higher than that of control after 30 days of feeding, but no significant difference in serum complement C3 and C4 levels were observed between the treatments and the control after 60 days of feeding. The serum IgM levels of fish fed diet T1 and diet T2 were higher than that of fish fed control diet, and significant increase was observed in fish fed diet T2 for 30 days. The results demonstrated potential for B. pumilus and B. clausii to improve growth performance and immune responses of E. coioides.

  9. The immune and inflammatory response to orf virus.

    PubMed

    Haig, D M; McInnes, C; Deane, D; Reid, H; Mercer, A

    1997-06-01

    Orf virus is a zoonotic, epitheliotropic DNA parapox virus that principally infects sheep and goats. The fact that the virus can repeatedly reinfect sheep has provoked an interest in the underlying cellular, virological and molecular mechanisms for its apparent escape from the host protective immune response. The local immune and inflammatory response in skin and the cell phenotype and cytokine response in lymph analysed around a single lymph node are characteristic of an anti-viral response. An unusual feature is the dense accumulation of MHC Class II+ dendritic cells in the skin lesion. The function of these cells is not known. Orf virus virulence genes and activities have been identified that may interfere with the development of the host protective immune and inflammatory response.

  10. Immune Responses in Parasitic Diseases.

    DTIC Science & Technology

    1982-09-01

    prepared in pure form so that quantitative radial immunodiffusion studies are feasible. The IgGl response to T. rhodesiense infection in the rat has been...sera of infected animals and definitely-separate and quantitate the 19S from 8S species by combining radial immunodiffusion techniques and sucrose

  11. Immune response inhibits associative learning in insects.

    PubMed Central

    Mallon, Eamonn B; Brockmann, Axel; Schmid-Hempel, Paul

    2003-01-01

    In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysaccharide (LPS) have reduced abilities to associate an odour with sugar reward in a classical conditioning paradigm. The cost of an immune response therefore not only affects survival of the host, as previously shown, but also everyday behaviour and memory formation. PMID:14667337

  12. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1986-08-01

    D-Ai8i 71S UMAN IMMUNE RESPONSES TO DENGUE VIRUSES(U) MASSACHUSETTS UNIV M DICAL CENTER WORCESTER MA F A ENNIS 81 AUG 86 DAD17-82-C-2233 UNCLSE...Classification) (U) Human Immune Responses to Dengue Viruses 12. PERSONAL AUTHOR(S) Ennis. Francis A. 13a. TYPE OF REPORT 13b. TIME COVERED 414. DATE OF...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP06 13 Virus; Dengue ; Arbovirus; Immunology 06 03 I9% ABSTRACT

  13. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1985-08-01

    t-Ril 630 HuMAN IMMUNE RESPONSES TO DENGUE VIRUSES(U) 1 - MASSACHUSETTS UNIV MEDICAL SCHOOL WORCESTER F A ENNIS 01 AUGO 95 DAMDI-2-C-2233 UNCASSIFIED...Classification) (U) Human Immune Responses to Dengue Viruses 12. PERSONAL AUTHOR(S) Ennis, Francis A. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF...on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP06 13 Virus; Dengue ; Arbovirus; Immunology 06 13 19. ABSTRACT (Continue on

  14. Human Immune Response to Dengue Infections.

    DTIC Science & Technology

    1991-06-30

    DTIC AD-A240 717 AD ____ HUMAN IMMUNE RESPONSE TO DENGUE INFECTIONS ANNUAL REPORT FRANCIS A. ENNIS JUNE 30, 1991 Supported by U.S. ARMY MEDICAL...Immune Response to Dengue Infections DAMDI7-86-C-6208 6. AUTHOR(S) 61102A 1 3M161102BS13 AA Francis A. Ennis WUDA3 12059 7. PERFORMING ORGANIZATION...of NS3, respectively. We also established 16 dengue virus-specific CD8+ CD4_ T cell clones. The clone #/2.8 recognize dengue virus types 2 and 4, and

  15. Rectification of age-associated deficiency in cytotoxic T cell response to influenza A virus by immunization with immune complexes.

    PubMed

    Zheng, Biao; Zhang, Yongxin; He, Hongxia; Marinova, Ekaterina; Switzer, Kirsten; Wansley, Daniel; Mbawuike, Innocent; Han, Shuhua

    2007-11-01

    Decline in cellular immunity in aging compromises protection against infectious diseases and leads to the increased susceptibility of the elderly to infection. In particular, Ag-specific cytotoxic T lymphocyte (CTL) response against virus is markedly reduced in an aged immune system. It is of great importance to explore novel strategy in eliciting effective antiviral CTL activity in the elderly. In this study, the efficacy and mechanisms of immunization with immune complexes in overcoming age-associated deficiency in cellular immunity were investigated. In this study, we show that the severely depressed CTL response to influenza A in aged mice can be significantly restored by immunization with immune complexes consisting of influenza A virus and mAb to influenza A nucleoprotein. The main mechanisms underlying this recovery of CTL response induced by immune complex immunization in aged mice are enhanced dendritic cell function and elevated production of IFN-gamma in both CD4(+) Th1 and CD8(+) CTLs. Thus, these results demonstrate that immune complex immunization may represent a novel strategy to elicit effective virus-specific cytotoxic response in an aged immune system, and possibly, to overcome age-related immune deficiency in general.

  16. Active immunization against tetanus in man. II. Combined active and passive prophylaxis with human tetanus immune globulin.

    PubMed

    Ullberg Olsson, K; Eriksson, E; Lundström, R; Wiholm, S

    1976-04-01

    19 Persons were actively immunized with adsorbed tetanus toxoid and were simultaneously given tetanus immune globulin of human origin, TIG(H), in doses of 500-1500 IU. Their antitoxin titres were followed for 1 year. Seven persons were given only TIG(H), 500 IU and 1500 IU and their antitoxin titres were followed for 3 months to 1 year. For comparison, 30 military recruits were actively immunized with adsorbed tetanus toxiod according to common practice. Their antitoxin titres were followed for 1 year. The response to complete active immunization could not be demonstrated to be impaired by passive immunization, when 500 IU or 1500 IU OF TIG(H) were given simultaneously with toxoid. The titres were in accordance with those achieved by active immunization of the recruits.

  17. Immune response from a resource allocation perspective

    PubMed Central

    Rauw, Wendy M.

    2012-01-01

    The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production. PMID:23413205

  18. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity.

    PubMed

    Gaudet, Ryan G; Sintsova, Anna; Buckwalter, Carolyn M; Leung, Nelly; Cochrane, Alan; Li, Jianjun; Cox, Andrew D; Moffat, Jason; Gray-Owen, Scott D

    2015-06-12

    Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.

  19. Modulation of Primary Immune Response by Different Vaccine Adjuvants

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Fiorino, Fabio; Pastore, Gabiria; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2016-01-01

    Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Here early biomarkers of adjuvanticity after primary immunization were investigated using four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood, and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w squalene), but not aluminum hydroxide (alum) or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed toward a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w squalene or CpG adjuvants. Tested adjuvants promoted the germinal center reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime–boost vaccine immunization protocols. PMID:27781036

  20. Autophagy as a Stress Response Pathway in the Immune System.

    PubMed

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  1. The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence*

    PubMed Central

    Grabe, Grzegorz J.; Zhang, Yue; Przydacz, Michal; Rolhion, Nathalie; Yang, Yi; Pruneda, Jonathan N.; Komander, David; Holden, David W.; Hare, Stephen A.

    2016-01-01

    Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro. A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host. PMID:27789710

  2. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  3. Cucurbita moschata Duch. and its active component, β-carotene effectively promote the immune responses through the activation of splenocytes and macrophages.

    PubMed

    Kim, Hee-Yun; Nam, Sun-Young; Yang, Shi-Young; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-10-01

    Cucurbita moschata Duch. has long been used for traditional health food in many countries. However, to enhance the immune system of Cucurbita moschata Duch. and its major component, β-carotene is not clear. Here, we determined the immune enhancement effect of Cucurbita moschata Duch. and β-carotene in mouse splenocytes and RAW 264.7 macrophage cell line. We prepared baked Cucurbita moschata Duch. (Sweetme Sweet Pumpkin(TM), SSP) and steamed Cucurbita moschata Duch. (SC). Splenocytes isolated from the spleen of BALB/c mice were treated with SSP, SC, and β-carotene for 24 h. RAW 264.7 cells were stimulated with recombinant interferon-γ (rIFN-γ) for 6 h before treatment with SSP, SC, or β-carotene. SSP, SC and β-carotene significantly up-regulated the proliferation of splenocyte and mRNA expression of KI-67. The levels of interleukin-2 and IFN-γ were up-regulated by SSP, SC, or β-carotene in the splenocytes. SC and β-carotene also increased the levels of tumor necrosis factor-α (TNF-α) in the splenocytes. In addition, SSP, SC, or β-carotene significantly increased the levels of TNF-α through the nuclear translocation of the nuclear factor-κB and phosphorylation of IκBα in the rIFN-γ-primed RAW 264.7 cells. These data indicate that Cucurbita moschata Duch. and β-carotene may have an immune-enhancing effect through the production of Th1 cytokines by activation of splenocytes and macrophages.

  4. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila.

    PubMed

    Ji, Yingbiao; Thomas, Colin; Tulin, Nikita; Lodhi, Niraj; Boamah, Ernest; Kolenko, Vladimir; Tulin, Alexei V

    2016-09-15

    Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin.

  5. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines.

    PubMed

    Shoup, D I; Jackwood, D J; Saif, L J

    1997-03-01

    Baculovirus-expressed transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein vaccines were inoculated parenterally in swine to determine whether such vaccines could induce serum and whey virus-neutralizing (VN) antibodies and protective lactogenic immunity for TGEV-challenge-exposed pigs. ANIMALS AND PROCEDURES: 3 recombinant baculoviruses that expressed full or partial length TGEV Miller strain S glycoproteins were inoculated SC in 17 conventionally raised 11-day-old TGEV-seronegative pigs to determine whether the recombinant S glycoproteins would elicit serum VN antibodies. Eleven TGEV-seronegative pregnant sows were inoculated SC or intramammarily with subunit vaccines (R2-2 or R3-5) or control proteins. Pigs born to 9 of the 11 sows were challenge exposed at 4 to 5 days of age with the virulent Miller strain, and passive immunity was as