Science.gov

Sample records for activated inflammatory cells

  1. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  2. Cell-to-cell distances between tumor-infiltrating inflammatory cells have the potential to distinguish functionally active from suppressed inflammatory cells.

    PubMed

    Nagl, S; Haas, M; Lahmer, G; Büttner-Herold, M; Grabenbauer, G G; Fietkau, R; Distel, L V

    2016-05-01

    Beyond their mere presence, the distribution pattern of inflammatory cells is of special interest. Our hypothesis was that random distribution may be a clear indicator of being non-functional as a consequence of lack of interaction. Here, we have assessed the implication of cell-to-cell distances among inflammatory cells in anal squamous cell carcinoma and a possible association with survival data. Thirty-eight patients suffering from anal carcinoma were studied using tissue microarrays, double staining immunohistochemistry, whole slide scanning and image analysis software. Therapy consisted of concurrent radiochemotherapy. Numbers of stromal and intraepithelial tumor-infiltrating inflammatory cells (TIC) and the distances between cells were quantified. Double-staining of FoxP3(+) cells with either CD8(+), CD1a(+) or CD20(+) cells was performed. Measured cell-to-cell distances were compared to computer simulated cell-to-cell distances leading to the assumption of non-randomly distributed and therefore functional immune cells. Intraepithelial CD1a(+) and CD20(+) cells were randomly distributed and therefore regarded as non-functional. In contrary, stromal CD20(+) cells had a non-random distribution pattern. A non-random distance between CD20(+) and FoxP3(+) cells was associated with a clearly unfavorable outcome. Measured distances between FoxP3(+) cells were distinctly shorter than expected and indicate a functional active state of the regulatory T cells (Treg). Analysis of cell-to-cell distances between TIC has the potential to distinguish between suppressed non-functional and functionally active inflammatory cells. We conclude that in this tumor model most of the CD1a(+) cells are non-functional as are the intraepithelial CD20(+) cells, while stromal CD20(+) cells and FoxP3(+) cells are functional cells. PMID:27467940

  3. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  4. Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation

    PubMed Central

    Köffel, René; Meshcheryakova, Anastasia; Warszawska, Joanna; Hennig, Annika; Wagner, Karin; Jörgl, Almut; Gubi, Daniela; Moser, Doris; Hladik, Anastasiya; Hoffmann, Ulrike; Fischer, Michael B.; van den Berg, Wim; Koenders, Marije; Scheinecker, Clemens; Gesslbauer, Bernhard; Knapp, Sylvia

    2014-01-01

    During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell subsets. According to descriptive immunophenotypic and cell culture studies, neutrophils may directly “transdifferentiate” into monocytes/macrophages. We provide mechanistic data in human and murine models supporting the existence of this cellular pathway. First, the inflammatory signal–induced MKK6-p38MAPK cascade activates a monocyte differentiation program in human granulocyte colony-stimulating factor–dependent neutrophils. Second, adoptively transferred neutrophils isolated from G-CSF–pretreated mice rapidly acquired monocyte characteristics in response to inflammatory signals in vivo. Consistently, inflammatory signals led to the recruitment of osteoclast progenitor cell potential from ex vivo–isolated G-CSF–mobilized human blood neutrophils. Monocytic cell differentiation potential was retained in left-shifted band-stage neutrophils but lost in neutrophils from steady-state PB. MKK6-p38MAPK signaling in HL60 model cells led to diminishment of the transcription factor C/EBPα, which enabled the induction of a monocytic cell differentiation program. Gene profiling confirmed lineage conversion from band-stage neutrophils to monocytic cells. Therefore, inflammatory signals relayed by the MKK6-p38MAPK cascade induce monocytic cell differentiation from band-stage neutrophils. PMID:25214442

  5. The assessment of inflammatory activity and toxicity of treated sewage using RAW264.7 cells

    PubMed Central

    Makene, Vedastus W.

    2015-01-01

    Abstract Toxicity and inflammatory activity of wastewater samples were evaluated using RAW264.7 cells as a bioassay model. The RAW264.7 cell cultures were exposed to sterile filtered wastewater samples collected from a sewage treatment plant. Cell viability was evaluated using WST‐1 and XTT assays. Inflammatory effects of samples were assessed by determination of nitric oxide (NO) and interleukin 6 (IL‐6). The NO was estimated using the Griess reaction and IL‐6 was measured by enzyme‐linked immunoassay. All samples had no toxicity effects to RAW264.7 cells, however they significantly (P < 0.001) induced NO and IL‐6 production. The highest NO (12.5 ± 0.38 μM) and IL‐6 (25383.84 ± 2327 pg/mL) production was induced by postbiofiltration sample. Final effluent induced the lowest inflammatory response, which indicates effective sewage treatment. In conclusion, wastewater samples can induce inflammatory activities in RAW264.7 cells. The RAW264.7 cells, therefore, can be used as a model for monitoring the quality of treated sewage. PMID:26900395

  6. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells.

    PubMed

    Kim, Tae Hoon; Ku, Sae-Kwang; Lee, In-Chul; Bae, Jong-Sup

    2012-03-01

    Enzymatic oxidation of commercially available pyrogallol was efficiently transformed to an oxidative product, purpurogallin. Purpurogallin plays an important role in inhibiting glutathione S-transferase, xanthine oxidase, catechol O-methyltransferase activities and is effective in the cell protection of several cell types. However, the anti-inflammatory functions of purpurogallin are not well studied. Here, we determined the effects of purpurogallin on lipopolysaccharide (LPS)-mediated proinflammatory responses. The results showed that purpurogallin inhibited LPS-mediated barrier hyper-permeability, monocyte adhesion and migration and such inhibitory effects were significantly correlated with the inhibitory functions of purpurogallin on LPS-mediated cell adhesion molecules (vascular cell adhesion molecules, intracellular cell adhesion molecule, E-selectin). Furthermore, LPS-mediated nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) releases from HUVECs were inhibited by purpurogallin. Given these results, purpurogallin showed its anti-inflammatory activities and could be a candidate as a therapeutic agent for various systemic inflammatory diseases. [BMB reports 2012; 45(3): 200-205].

  7. Anti-inflammatory effects of Thymoquinone in activated BV-2 microglia cells

    PubMed Central

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B.; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F.A.

    2015-01-01

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicated that TQ was effective in reducing NO2- with an IC50 of 5.04 μM, relative to selective iNOS inhibitor LNIL- L-N6-(1-Iminoethyl)lysine (IC50 4.09 μM). TQ mediated reduction in NO2- was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In the next study, we evaluated the anti-inflammatory effects of TQ on ninety – six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin > MIP-1alpha > MIP-1g > IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine’s IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2 / MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA and mRNA expression profiling using RT2 Profiler PCR cytokine arrays. Moreover, the data obtained from the RT2 PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12 /MCP-5, CCL2 / MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of

  8. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells.

    PubMed

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F A

    2015-09-15

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate

  9. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells.

    PubMed

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F A

    2015-09-15

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate

  10. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD.

    PubMed

    Awojoodu, Anthony O; Keegan, Philip M; Lane, Alicia R; Zhang, Yuying; Lynch, Kevin R; Platt, Manu O; Botchwey, Edward A

    2014-09-18

    Sphingolipids are a class of lipids containing a backbone of sphingoid bases that can be produced de novo through the reaction of palmitate and serine and further metabolized through the activity of various enzymes to produce intermediates with diverse roles in cellular processes and signal transduction. One of these intermediates, sphingosine 1-phosphate (S1P), is stored at high concentrations (1 μM) in red blood cells (RBCs) and directs a wide array of cellular processes mediated by 5 known G-protein coupled receptors (S1P1-S1P5). In this study, we show that RBC membrane alterations in sickle cell disease enhance the activation acid sphingomyelinase by 13%, resulting in increased production and storage of sphingosine (2.6-fold) and S1P (3.5-fold). We also show that acid sphingomyelinase enhances RBC-derived microparticle (MP) generation. These MPs are internalized by myeloid cells and promote proinflammatory cytokine secretion and endothelial cell adhesion, suggesting that potential crosstalk between circulating inflammatory cells and MPs may contribute to the inflammation-rooted pathogenesis of the disease. Treatment with amitriptyline reduces MP generation in vitro and in vivo and might be used to mitigate inflammatory processes in sickle cell disease. PMID:25075126

  11. Intestinal anti-inflammatory activity of red wine extract: unveiling the mechanisms in colonic epithelial cells.

    PubMed

    Nunes, Carla; Ferreira, Elisabete; Freitas, Víctor; Almeida, Leonor; Barbosa, Rui M; Laranjinha, João

    2013-02-26

    The development of new therapeutic approaches, combining efficacy and safety against intestinal inflammation, notably inflammatory bowel disease (IBD), has emerged as an important goal due to the significant side effects and the lack of effectiveness of standard current therapies. Recently, several studies described the health-promoting effects of red wine, including anti-inflammatory properties, but the molecular mechanisms underlying its beneficial role remain largely unknown. Red wine is rich in phenolic compounds and it has been suggested that the positive effect of red wine intake might be attributed not only to the antioxidant properties of these compounds but also to the modulation of signalling cascades in connection with physiological and pathophysiological conditions such as inflammatory processes. This study assesses the potential anti-inflammatory action of a red wine extract (RWE) enriched in polyphenols in a cellular model of intestinal inflammation using cytokines-stimulated HT-29 colon epithelial cells. RWE suppressed cytokines-induced IκB degradation and interleukin-8 production in a dose-dependent manner. Coherently, key inflammatory mediators downstream NF-κB activation; notably cyclooxygenase-2 and inducible nitric oxide synthase were maintained at low levels by RWE in the presence of the cytokines. Additionally, RWE inhibited both the increase of nitric oxide derived from iNOS and of protein tyrosine nitration, a biomarker of nitrosative stress that typically requires the reaction of nitric oxide with the superoxide radical. Taken together, the anti-inflammatory action of RWE, mechanistically supported by the modulation of cascades orchestrated by NF-κB and involving nitric oxide, suggests that RWE (a readily straightforward preparation when compared with the purification of specific compounds) may represent a simple and inexpensive therapeutic strategy in the context of intestinal inflammation.

  12. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    PubMed Central

    Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.

    2013-01-01

    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by

  13. Tissue kallikrein mediates pro-inflammatory pathways and activation of protease-activated receptor-4 in proximal tubular epithelial cells.

    PubMed

    Yiu, Wai Han; Wong, Dickson W L; Chan, Loretta Y Y; Leung, Joseph C K; Chan, Kwok Wah; Lan, Hui Yao; Lai, Kar Neng; Tang, Sydney C W

    2014-01-01

    Tissue kallikrein (KLK1) expression is up-regulated in human diabetic kidney tissue and induced by high glucose (HG) in human proximal tubular epithelial cells (PTEC). Since the kallikrein-kinin system (KKS) has been linked to cellular inflammatory process in many diseases, it is likely that KLK1 expression may mediate the inflammatory process during the development of diabetic nephropathy. In this study, we explored the role of KLK1 in tubular pro-inflammatory responses under the diabetic milieu. Recombinant KLK1 stimulated the production of inflammatory cytokines in PTEC via the activation of p42/44 and p38 MAPK signaling pathways. Molecular knockdown of endogenous KLK1 expression by siRNA transfection in PTEC attenuated advanced glycation end-products (AGE)-induced IL-8 and ICAM-1 productions in vitro. Interestingly, exposure of PTEC to KLK1 induced the expression of protease-activated receptors (PARs). There was a 2.9-fold increase in PAR-4, 1.4-fold increase in PAR-1 and 1.2-fold increase in PAR-2 mRNA levels. Activation of PAR-4 by a selective agonist was found to elicit the pro-inflammatory and pro-fibrotic phenotypes in PTEC while blockade of the receptor by specific antagonist attenuated high glucose-induced IL-6, CCL-2, CTGF and collagen IV expression. Calcium mobilization by the PAR-4 agonist in PTEC was desensitized by pretreatment with KLK1. Consistent with these in vitro findings, there was a markedly up-regulation of tubular PAR-4 expression in human diabetic renal cortical tissues. Together, these results suggest that up-regulation of KLK1 in tubular epithelial cells may mediate pro-inflammatory pathway and PAR activation during diabetic nephropathy and provide a new therapeutic target for further investigation. PMID:24586431

  14. Tissue Kallikrein Mediates Pro-Inflammatory Pathways and Activation of Protease-Activated Receptor-4 in Proximal Tubular Epithelial Cells

    PubMed Central

    Yiu, Wai Han; Wong, Dickson W. L.; Chan, Loretta Y. Y.; Leung, Joseph C. K.; Chan, Kwok Wah; Lan, Hui Yao; Lai, Kar Neng; Tang, Sydney C. W.

    2014-01-01

    Tissue kallikrein (KLK1) expression is up-regulated in human diabetic kidney tissue and induced by high glucose (HG) in human proximal tubular epithelial cells (PTEC). Since the kallikrein-kinin system (KKS) has been linked to cellular inflammatory process in many diseases, it is likely that KLK1 expression may mediate the inflammatory process during the development of diabetic nephropathy. In this study, we explored the role of KLK1 in tubular pro-inflammatory responses under the diabetic milieu. Recombinant KLK1 stimulated the production of inflammatory cytokines in PTEC via the activation of p42/44 and p38 MAPK signaling pathways. Molecular knockdown of endogenous KLK1 expression by siRNA transfection in PTEC attenuated advanced glycation end-products (AGE)-induced IL-8 and ICAM-1 productions in vitro. Interestingly, exposure of PTEC to KLK1 induced the expression of protease-activated receptors (PARs). There was a 2.9-fold increase in PAR-4, 1.4-fold increase in PAR-1 and 1.2-fold increase in PAR-2 mRNA levels. Activation of PAR-4 by a selective agonist was found to elicit the pro-inflammatory and pro-fibrotic phenotypes in PTEC while blockade of the receptor by specific antagonist attenuated high glucose-induced IL-6, CCL-2, CTGF and collagen IV expression. Calcium mobilization by the PAR-4 agonist in PTEC was desensitized by pretreatment with KLK1. Consistent with these in vitro findings, there was a markedly up-regulation of tubular PAR-4 expression in human diabetic renal cortical tissues. Together, these results suggest that up-regulation of KLK1 in tubular epithelial cells may mediate pro-inflammatory pathway and PAR activation during diabetic nephropathy and provide a new therapeutic target for further investigation. PMID:24586431

  15. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  16. Postprandial activation of metabolic and inflammatory signalling pathways in human peripheral mononuclear cells.

    PubMed

    Ehlers, Kerstin; Brand, Tina; Bangert, Adina; Hauner, Hans; Laumen, Helmut

    2014-06-28

    High-fat, high-carbohydrate (HFHC) meals induce an inflammatory response in mononuclear cells (MNC). Here, we studied the interaction between metabolic and inflammatory signalling pathways by the measurement of postprandial effects of three different test meals on intracellular Akt, S6 kinase (S6K)/mammalian target of rapamycin and NF-κB signalling in human MNC. We recruited six healthy, lean individuals. Each individual ingested three different meals in the morning separated by at least 3 d: a HFHC meal; an oral lipid-tolerance test meal; a healthy breakfast. Blood samples were obtained before and 1, 2, 4, 6 and 8 h after ingestion. Plasma insulin and IL-6 levels were measured. Intracellular metabolic and inflammatory signalling pathways were assessed by measuring the phosphorylation of Akt kinase and S6K, the degradation of inhibitory κB-α (IκB-α) protein and the DNA binding activity of NF-κB in MNC. mRNA expression levels of the Akt and NF-κB target genes Mn superoxide dismutase (MnSOD), CC-chemokine-receptor 5 (CCR5), intercellular adhesion molecule 1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1) were measured by quantitative RT-PCR. We found a positive correlation of Akt phosphorylation with NF-κB activation (NF-κB binding activity: r 0·4500, P= 0·0003; IκB-α protein levels: r -0·5435, P< 0·0001), a negative correlation of plasma insulin levels with NF-κB binding activity (r -0·3993, P= 0·0016) and a positive correlation of plasma insulin levels with S6K activation (r 0·4786, P< 0·0001). The activation of Akt and pro-inflammatory NF-κB signalling was supported by the up-regulation of the respective target genes MnSOD and CCR5. In conclusion, the present data suggest a postprandial interaction between the metabolic and inflammatory signalling pathways Akt and NF-κB in MNC.

  17. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  18. Fasciola hepatica Kunitz Type Molecule Decreases Dendritic Cell Activation and Their Ability to Induce Inflammatory Responses

    PubMed Central

    Falcón, Cristian R.; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C.; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite. PMID:25486609

  19. Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells.

    PubMed

    Antonietta Ajmone-Cat, Maria; Lavinia Salvatori, Maria; De Simone, Roberta; Mancini, Melissa; Biagioni, Stefano; Bernardo, Antonietta; Cacci, Emanuele; Minghetti, Luisa

    2012-03-01

    The complex process of microglial activation encompasses several functional activation states associated either with neurotoxic/antineurogenic or with neurotrophic/proneurogenic properties, depending mainly on the extent of activation and the nature of the activating stimuli. Several studies have demonstrated that acute exposure to the prototypical activating agent lipopolysaccharide (LPS) confers antineurogenic properties upon microglial cells. Acutely activated microglia ortheir conditioned media (CM) reduce neural stem progenitor cell (NPC) survival and prevent NPC differentiation into neurons. The present study tested the hypothesis that docosahexaenoic acid (DHA), a long-chain polyunsatured fatty acid (L-PUFA) with potent immunomodulatory properties, could dampen microglial proinflammatory functions and modulate their antineurogenic effect. We demonstrate that DHA dose dependently inhibits the synthesis of inflammatory products in activated microglia without inducing an alternative antiinflammatory phenotype. Among the possible DHA mechanisms of action, we propose the inhibition of p38 MAPK phosphorylation and the activation of the nuclear receptor peroxisome proliferator activated receptor (PPAR)-γ. The attenuation of M1 proinflammatory phenotype has relevant consequences for the survival and differentiation of NPC, because DHA reverses the antineurogenic activities of conditioned media from LPS-activated microglia. Our study identifies new relevant potentially protective and proneurogenic functions of DHA, exerted through the modulation of microglial functions, that could be exploited to sustain or promote neuroregenerative processes in damaged/aged brain. PMID:22057807

  20. Anti-inflammatory effect of Columbianetin on activated human mast cells.

    PubMed

    Jeong, Hyun-Ja; Na, Ho-Jeong; Kim, Su-Jin; Rim, Hong-Kun; Myung, Noh-Yil; Moon, Phil-Dong; Han, Na-Ra; Seo, Jae-Uk; Kang, Tae-Hee; Kim, Jae-Joong; Choi, Youngjin; Kang, In-Cheol; Hong, Seung-Heon; Kim, You-Ah; Seo, Young-Wan; Kim, Hyung-Min; Um, Jae-Young

    2009-06-01

    In the present study, we extracted Corydalis heterocarpa with various solvents in order to find the bioactive constituents that demonstrated anti-inflammatory effects. We isolated the active compound, Columbianetin. Anti-inflammatory effect of Columbianetin has been reported but the precise effects of Columbianetin in experimental models have remained unknown. In the present study, we investigate the effect of Columbianetin on the production of histamine, interleukin (IL)-1beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha and expression of cyclooxygenase-2 (COX-2) by using the human mast cell line (HMC-1). Various concentrations of Columbianetin were treated before the activation of HMC-1 cells with phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore, A23187. PMA plus A23187 significantly increased IL-1beta, IL-6, IL-8, and TNF-alpha production compared with media control (p<0.05). We also show that the increased cytokines IL-1beta, IL-6, IL-8, and TNF-alpha level was significantly inhibited by Columbianetin in a dose-dependent manner (p<0.05). Maximal inhibition rates of IL-1beta, IL-6, IL-8, and TNF-alpha production by Columbianetin were about 102.6%, 101.1%, 95.8%, and 103.9%, respectively. Columbianetin inhibited expression of COX-2. In addition, the effect of Columbianetin was investigated on the histamine release from HMC-1 stimulated by substance P, which promotes histamine release. Columbianetin also inhibited the histamine release by substance P. In conclusion, these results indicate that Columbianetin may be helpful in regulating mast cell-mediated allergic inflammatory responses.

  1. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination.

    PubMed

    Hu, Hongbo; Wang, Hui; Xiao, Yichuan; Jin, Jin; Chang, Jae-Hoon; Zou, Qiang; Xie, Xiaoping; Cheng, Xuhong; Sun, Shao-Cong

    2016-03-01

    Signal transduction from the T cell receptor (TCR) is crucial for T cell-mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell-mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function. PMID:26903241

  2. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells

    SciTech Connect

    Bankoti, Jaishree; Rase, Ben; Simones, Tom; Shepherd, David M.

    2010-07-15

    Aryl hydrocarbon receptor (AhR) activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces immune suppression. Dendritic cells (DCs) are key antigen presenting cells governing T cell activation and differentiation. However, the consequences of AhR activation in DCs are not fully defined. We hypothesized that AhR activation alters DC differentiation and generates dysfunctional DCs. To test this hypothesis, inflammatory bone marrow-derived DCs (BMDCs) from C57Bl/6 mice were generated in the presence of vehicle or TCDD. TCDD decreased CD11c expression but increased MHC class II, CD86 and CD25 expression on the BMDCs. The effects of TCDD were strictly AhR-dependent but not exclusively DRE-mediated. Similar effects were observed with two natural AhR ligands, 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid (ITE). TCDD increased LPS- and CpG-induced IL-6 and TNF-{alpha} production by BMDCs but decreased their NO production. TCDD decreased CpG-induced IL-12p70 production by BMDCs but did not affect their secretion of IL-10. TCDD downregulated LPS- and CpG-induced NF-kB p65 levels and induced a trend towards upregulation of RelB levels in the BMDCs. AhR activation by TCDD modulated BMDC uptake of both soluble and particulate antigens. Induction of indoleamine-2,3-dioxygenase (IDO) and TGF-{beta}3 has been implicated in the generation of regulatory T cells following AhR activation. TCDD increased IDO1, IDO2 and TGF-{beta}3 mRNA levels in BMDCs as compared to vehicle. Despite the induction of regulatory mediators, TCDD-treated BMDCs failed to suppress antigen-specific T cell activation. Thus, AhR activation can directly alter the differentiation and innate functions of inflammatory DCs without affecting their ability to successfully interact with T cells.

  3. Retention of Endogenous Viable Cells Enhances the Anti-Inflammatory Activity of Cryopreserved Amnion

    PubMed Central

    Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Uveges, Thomas E.; Jacobstein, Douglas A.; Danilkovitch, Alla

    2015-01-01

    Objective: Human amniotic membrane (hAM) has been used to treat wounds for more than 100 years. However, widespread use of fresh hAM has been limited due to its short shelf life and safety concerns. To overcome these concerns, different preservation methods have been introduced. The majority of these methods result in devitalized hAM (dev-hAM). Recently, we developed a cryopreservation method that retains all hAM components intact (int-hAM), including viable endogenous cells. To understand the advantages of retaining viable cells in preserved hAM, we compared the anti-inflammatory properties of int-hAM and dev-hAM. Approach: The tissue composition of int-hAM and dev-hAM was compared with fresh hAM through histology and cell viability analysis. We also evaluated the ability of int-hAM and dev-hAM to regulate tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and IL-10 release when co-cultured with immune cells; to produce prostaglandin E2 (PGE2) on TNF-α stimulation; and to inhibit proteases. Results: Int-hAM maintained the structural and cellular integrity of fresh hAM. Int-hAM had >80% cell viability post-thaw and remained viable for at least a week in culture. Viable cells were not detected in dev-hAM. Compared with dev-hAM, int-hAM showed significantly greater downregulation of TNF-α and IL-1α, upregulation of PGE2 and IL-10, and stronger inhibition of collagenase. Innovation and Conclusion: A new cryopreservation method has been developed to retain all native components of hAM. For the first time, we show that viable endogenous cells significantly augment the anti-inflammatory activity of cryopreserved hAM. PMID:26401419

  4. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    PubMed

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  5. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    SciTech Connect

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C.; Bishop-Bailey, David

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  6. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression. PMID:10496171

  7. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells.

  8. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  9. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  10. Activated inflammatory T cells correlate with lesion size in human cutaneous leishmaniasis.

    PubMed

    Antonelli, Lis R V; Dutra, Walderez O; Almeida, Roque P; Bacellar, Olivia; Carvalho, Edgar M; Gollob, Kenneth J

    2005-11-15

    Leishmaniasis is an important parasitic disease affecting millions worldwide. In attempts to understand the clinical relevance of immunological measurements as determined using flow cytometry, several immunological phenotypes were determined for a group of well defined human leishmaniasis patients and correlated with clinical measurements of the disease (Montenegro skin test (MST) and lesion area). The analysis demonstrated a positive correlation between the MST size and the frequency of ex vivo recent activated CD4(+) T cells. In contrast, higher frequencies of recent activated CD8(+) T cells were correlated with a smaller MST size. Moreover, a positive correlation was observed between the lesion total area and the frequency of activated CD69(+) (ex vivo) and CD40L(+) (cultured with Leishmania soluble antigen (SLA)) T lymphocytes. Finally, larger lesions were also correlated with a higher frequency of SLA specific inflammatory cytokine (IFN-gamma or TNF-alpha) producing lymphocytes. These studies demonstrate that immunological markers are correlated with clinical indicators of human leishmaniasis and serve to better understand the evolution of this important parasitic disease.

  11. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin.

    PubMed

    Foster, Alexander M; Baliwag, Jaymie; Chen, Cynthia S; Guzman, Andrew M; Stoll, Stefan W; Gudjonsson, Johann E; Ward, Nicole L; Johnston, Andrew

    2014-06-15

    The IL-1 family members IL-36α (IL-1F6), IL-36β (IL-1F8), and IL-36γ (IL-1F9) and the receptor antagonist IL-36Ra (IL-1F5) constitute a novel signaling system that is poorly understood. We now show that these cytokines have profound effects on the skin immune system. Treatment of human keratinocytes with IL-36 cytokines significantly increased the expression of CXCL1, CXCL8, CCL3, CCL5, and CCL20, potent chemotactic agents for activated leukocytes, and IL-36α injected intradermally resulted in chemokine expression, leukocyte infiltration, and acanthosis of mouse skin. Blood monocytes, myeloid dendritic cells (mDC), and monocyte-derived DC (MO-DC) expressed IL-36R and responded to IL-36. In contrast, no direct effects of IL-36 on resting or activated human CD4(+) or CD8(+) T cells, or blood neutrophils, could be demonstrated. Monocytes expressed IL-1A, IL-1B, and IL-6 mRNA and IL-1β and IL-6 protein, and mDC upregulated surface expression of CD83, CD86, and HLA-DR and secretion of IL-1β and IL-6 after treatment with IL-36. Furthermore, IL-36α-treated MO-DC enhanced allogeneic CD4(+) T cell proliferation, demonstrating that IL-36 can stimulate the maturation and function of DC and drive T cell proliferation. These data indicate that IL-36 cytokines actively propagate skin inflammation via the activation of keratinocytes, APC, and, indirectly, T cells.

  12. Association of plasminogen activator inhibitor type 2 (PAI-2) with proteasome within endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Cierniewski, Czeslaw S

    2011-12-16

    Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling.

  13. Association of Plasminogen Activator Inhibitor Type 2 (PAI-2) with Proteasome within Endothelial Cells Activated with Inflammatory Stimuli*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Cierniewski, Czeslaw S.

    2011-01-01

    Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling. PMID:21976669

  14. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation.

    PubMed

    Yang, Marie; Flavin, Kevin; Kopf, Ilona; Radics, Gabor; Hearnden, Claire H A; McManus, Gavin J; Moran, Barry; Villalta-Cerdas, Adrian; Echegoyen, Luis A; Giordani, Silvia; Lavelle, Ed C

    2013-12-20

    The inflammatory effects of carbon nanoparticles (NPs) are highly disputed. Here it is demonstrated that endotoxin-free preparations of raw carbon nanotubes (CNTs) are very limited in their capacity to promote inflammatory responses in vitro, as well as in vivo. Upon purification and selective oxidation of raw CNTs, a higher dispersibility is achieved in physiological solutions, but this process also enhances their inflammatory activity. In synergy with toll-like receptor (TLR) ligands, CNTs promote NLRP3 inflammasome activation and it is shown for the first time that this property extends to spherical carbon nano-onions (CNOs) of 6 nm in size. In contrast, the benzoic acid functionalization of purified CNTs and CNOs leads to significantly attenuated inflammatory properties. This is evidenced by a reduced secretion of the inflammatory cytokine IL-1β, and a pronounced decrease in the recruitment of neutrophils and monocytes following injection into mice. Collectively, these results reveal that the inflammatory properties of carbon NPs are highly dependent on their physicochemical characteristics and crucially, that chemical surface functionalization allows significant moderation of these properties. PMID:23839951

  15. CD26 surface molecule involvement in T cell activation and lymphokine synthesis in rheumatoid and other inflammatory synovitis.

    PubMed

    Gerli, R; Muscat, C; Bertotto, A; Bistoni, O; Agea, E; Tognellini, R; Fiorucci, G; Cesarotti, M; Bombardieri, S

    1996-07-01

    T cell surface expression and the functional role of CD26 antigen (Ag), a surface ectoenzyme involved in T cell activation and migration across the extracellular matrix, were analyzed in the peripheral blood (PB) and synovial fluid (SF) from patients with inflammatory arthritides. CD26 membrane expression on T cells was detected by cytofluorometry using two different monoclonal antibodies, anti-Ta1 and anti-1F7, while cell proliferation and both IL-2 and IFN-gamma production were evaluated in anti-CD3- or anti-CD2-stimulated cell cultures after Ag surface modulation with anti-1F7. The results showed that Ta1 and 1F7 Ag expression were increased on T cells from PB of patients with active, but not inactive, rheumatoid arthritis (RA). Most SF T cells from RA or other inflammatory arthritides displayed the memory marker CD45R0 and the Ta1 Ag, but lacked the 1F7 molecule. In addition, in vitro 1F7 modulation, which enhanced RA PB T cell proliferation and both IL-2 and IFN-gamma synthesis, did not synergize with anti-CD3 or anti-CD2 in inducing IL-2-dependent activation of SF T cells, but reduced IFN-gamma production. A spontaneous reappearance of 1F7 Ag on the SF T cell surface was seen after 2-5 days in culture. Phorbol myristate acetate, able to accelerate its reexpression, also restored a normal response of SF T cells to anti-1F7 comitogenic effects. These data confirm a role of the CD26 surface molecule in regulating T cell activation and lymphokine synthesis. This observation may have important implications in the regulation of T cell activity at the joint level during chronic inflammatory processes. PMID:8674237

  16. RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure?

    PubMed

    Masat, Elisa; Gasparini, Chiara; Agostinis, Chiara; Bossi, Fleur; Radillo, Oriano; De Seta, Francesco; Tamassia, Nicola; Cassatella, Marco A; Bulla, Roberta

    2015-01-01

    It is known that excessive inflammation at fetal-maternal interface is a key contributor in a compromised pregnancy. Female genital tract is constantly in contact with microorganisms and several strategies must be adopted to avoid pregnancy failure. Decidual endothelial cells (DECs) lining decidual microvascular vessels are the first cells that interact with pro-inflammatory stimuli released into the environment by microorganisms derived from gestational tissues or systemic circulation. Here, we show that DECs are hypo-responsive to LPS stimulation in terms of IL-6, CXCL8 and CCL2 production. Our results demonstrate that DECs express low levels of TLR4 and are characterized by a strong constitutive activation of the non-canonical NF-κB pathway and a low responsiveness of the canonical pathway to LPS. In conclusion, DECs show a unique hypo-responsive phenotype to the pro-inflammatory stimulus LPS in order to control the inflammatory response at feto-maternal interface. PMID:26463648

  17. Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols.

    PubMed

    Figueirinha, Artur; Cruz, Maria Teresa; Francisco, Vera; Lopes, M Celeste; Batista, Maria Teresa

    2010-06-01

    Cymbopogon citratus, an herb known worldwide as lemongrass, is widely consumed as an aromatic drink, and its fresh and dried leaves are currently used in traditional cuisine. However, little is known about the mechanism of action of C. citratus, namely, the anti-inflammatory effects of its dietary components. Because nitric oxide (NO), produced in large quantities by activated inflammatory cells, has been demonstrated to be involved in the pathogenesis of acute and chronic inflammation, we evaluated the effects of the infusion of dried leaves from C. citratus, as well as its polyphenolic fractions--flavonoid-, tannin-, and phenolic acid-rich fractions (FF, TF, and PAF, respectively)--on the NO production induced by lipopolysaccharide (LPS) in a skin-derived dendritic cell line (FSDC). C. citratus infusion significantly inhibited the LPS-induced NO production and inducible NO synthase (iNOS) protein expression. All the polyphenolic fractions tested also reduced the iNOS protein levels and NO production stimulated by LPS in FSDC cells, without affecting cell viability, with the strongest effects being observed for the fractions with mono- and polymeric flavonoids (FF and TF, respectively). Our results also indicated that the anti-inflammatory properties of FF are mainly due to luteolin glycosides. In conclusion, C. citratus has NO scavenging activity and inhibits iNOS expression and should be explored for the treatment of inflammatory diseases, in particular of the gastrointestinal tract.

  18. Roles of BN52021 in platelet-activating factor pathway in inflammatory MS1 cells

    PubMed Central

    Xia, Shi-Hai; Xiang, Xiao-Hui; Chen, Kai; Xu, Wei

    2013-01-01

    AIM: To determine the effects of BN52021 on platelet-activating factor receptor (PAFR) signaling molecules under lipopolysaccharide (LPS)-induced inflammatory conditions in MS1 cells. METHODS: MS1 cells (a mouse pancreatic islet endothelial cell line) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 2 mmol/L glutamine and 100 μg/mL penicillin/streptomycin in 5% CO2 at 37 °C. After growth to confluency in media, the cells were processed for subsequent studies. The MS1 cells received 0, 0.1, 1 and 10 μg/mL LPS in this experiment. The viability/proliferation of the cells induced by LPS was observed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Apoptosis and necrosis of the cells under the inflammatory condition described previously were observed using Hoechst 33342-propidium iodide staining. Adenylate cyclase (AC), phospholipase A2 (PLA2), phospholipase Cβ (PLCβ), protein tyrosine kinase (PTK), G protein-coupled receptor kinases (GRK) and p38-mitogen-activated protein kinase (p38 MAPK) mRNA in the PAFR signaling pathway were measured by real-time polymerase chain reaction. The protein expression level of phosphorylated AC (p-AC), phosphorylated PLA2 (p-PLA2), phosphorylated PTK (p-PTK), phosphorylated p38 MAPK (p-p38 MAPK), PLCβ and GRK was measured using Western blotting analysis. RESULTS: The activity of MS1 cells incubated with different concentrations of LPS for 6 h decreased significantly in the 1 μg/mL LPS group (0.49 ± 0.10 vs 0.67 ± 0.13, P < 0.05) and 10 μg/mL LPS group (0.44 ± 0.10 vs 0.67 ± 0.13, P < 0.001), but not in 0.1 μg/mL group. When the incubation time was extended to 12 h (0.33 ± 0.05, 0.32 ± 0.03 and 0.25 ± 0.03 vs 0.69 ± 0.01) and 24 h (0.31 ± 0.01, 0.29 ± 0.03 and 0.25 ± 0.01 vs 0.63 ± 0.01), MS1 cell activity decreased in all LPS concentration groups compared with the blank control (P < 0.001). BN52021 significantly improved the cell

  19. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    PubMed

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  20. Activation of toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic-cell-mediated inflammatory responses.

    PubMed

    Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Ravindran, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina

    2014-12-11

    Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both upregulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L upregulation on DCs, and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells toward type 2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type 2 polarization may represent a key immune regulatory mechanism for protection against a broad array of disorders, such as inflammatory, infectious, and autoimmune diseases, which can be hijacked by tumors to evade immunity.

  1. Activation of Toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic cell-mediated inflammatory responses

    PubMed Central

    Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Nair, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina

    2015-01-01

    SUMMARY Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both up-regulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L up-regulation on DCs and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells towards type-2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type-2 polarization may represent a key immune regulatory mechanism to protect against a broad array of disorders, such as inflammatory, infectious and autoimmune diseases, which can be hijacked by tumors to evade immunity. PMID:25466255

  2. 20(S)-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation

    PubMed Central

    Kim, Dae Yong; Ro, Jai Youl; Lee, Chang Ho

    2014-01-01

    Background Antiallergic effect of 20(S)-protopanaxatriol (PPT), an intestinal metabolite of ginseng saponins, was investigated in guinea pig lung mast cells and mouse bone marrow-derived mast cells activated by a specific antigen/antibody reaction. Methods Increasing concentrations of PPT were pretreated 5 min prior to antigen stimulation, and various inflammatory mediator releases and their relevant cellular signaling events were measured in those cells. Results PPT dose-dependently reduced the release of histamine and leukotrienes in both types of mast cells. Especially, in activated bone marrow-derived mast cells, PPT inhibited the expression of Syk protein, cytokine mRNA, cyclooxygenase-1/2, and phospholipase A2 (PLA2), as well as the activities of various protein kinase C isoforms, mitogen-activated protein kinases, PLA2, and transcription factors (nuclear factor-κB and activator protein-1). Conclusion PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the Ca2+ influx, protein kinase C, and PLA2, which are propagated by Syk activation upon allergic stimulation of mast cells. PMID:26199549

  3. Glial cell activity is maintained during prolonged inflammatory challenge in rats.

    PubMed

    Borges, B C; Rorato, R; Antunes-Rodrigues, J; Elias, L L K

    2012-08-01

    We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.

  4. Evaluation of the Anti-Inflammatory Activity of Raisins (Vitis vinifera L.) in Human Gastric Epithelial Cells: A Comparative Study

    PubMed Central

    Di Lorenzo, Chiara; Sangiovanni, Enrico; Fumagalli, Marco; Colombo, Elisa; Frigerio, Gianfranco; Colombo, Francesca; Peres de Sousa, Luis; Altindişli, Ahmet; Restani, Patrizia; Dell’Agli, Mario

    2016-01-01

    Raisins (Vitis vinifera L.) are dried grapes largely consumed as important source of nutrients and polyphenols. Several studies report health benefits of raisins, including anti-inflammatory and antioxidant properties, whereas the anti-inflammatory activity at gastric level of the hydro-alcoholic extracts, which are mostly used for food supplements preparation, was not reported until now. The aim of this study was to compare the anti-inflammatory activity of five raisin extracts focusing on Interleukin (IL)-8 and Nuclear Factor (NF)-κB pathway. Raisin extracts were characterized by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) analysis and screened for their ability to inhibit Tumor necrosis factor (TNF)α-induced IL-8 release and promoter activity in human gastric epithelial cells. Turkish variety significantly inhibited TNFα-induced IL-8 release, and the effect was due to the impairment of the corresponding promoter activity. Macroscopic evaluation showed the presence of seeds, absent in the other varieties; thus, hydro-alcoholic extracts from fruits and seeds were individually tested on IL-8 and NF-κB pathway. Seed extract inhibited IL-8 and NF-κB pathway, showing higher potency with respect to the fruit. Although the main effect was due to the presence of seeds, the fruit showed significant activity as well. Our data suggest that consumption of selected varieties of raisins could confer a beneficial effect against gastric inflammatory diseases. PMID:27447609

  5. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells

    PubMed Central

    Jin, Rong; Yang, Guojun; Li, Guohong

    2010-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Experimentally and clinically, the brain responds to ischemic injury with an acute and prolonged inflammatory process, characterized by rapid activation of resident cells (mainly microglia), production of proinflammatory mediators, and infiltration of various types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, and other cells) into the ischemic brain tissue. These cellular events collaboratively contribute to ischemic brain injury. Despite intense investigation, there are still numerous controversies concerning the time course of the recruitment of inflammatory cells in the brain and their pathogenic roles in ischemic brain injury. In this review, we provide an overview of the time-dependent recruitment of different inflammatory cells following focal cerebral I/R. We discuss how these cells contribute to ischemic brain injury and highlight certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke. PMID:20130219

  6. Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function*

    PubMed Central

    Burke, Susan J.; May, Amanda L.; Noland, Robert C.; Lu, Danhong; Brissova, Marcela; Powers, Alvin C.; Sherrill, Elizabeth M.; Karlstad, Michael D.; Campagna, Shawn R.; Stephens, Jacqueline M.; Collier, J. Jason

    2015-01-01

    Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity. PMID:25851902

  7. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    SciTech Connect

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  8. Smad7 Interrupts TGF-β Signaling in Intestinal Macrophages and Promotes Inflammatory Activation of these Cells during Necrotizing Enterocolitis

    PubMed Central

    MohanKumar, Krishnan; Namachivayam, Kopperuncholan; Chapalamadugu, Kalyan; Garzon, Steven A.; Premkumar, Muralidhar H.; Tipparaju, Srinivas; Maheshwari, Akhil

    2015-01-01

    Background Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants. Based on our recent findings of increased Smad7 expression in surgically-resected bowel affected by NEC, we hypothesized that NEC macrophages undergo inflammatory activation because increased Smad7 expression renders these cells resistant to normal, gut-specific, transforming growth factor (TGF)-β-mediated suppression of inflammatory pathways. Methods We used surgically-resected human NEC tissue, murine models of NEC-like injury, bone marrow-derived and intestinal macrophages, and RAW264.7 cells. Smad7 and IκB kinase-beta (IKK-β) were measured by quantitative polymerase chain reaction (qPCR), Western blots, and immunohistochemistry. Promoter activation was confirmed in luciferase reporter and chromatin immunoprecipitation assays. Results NEC macrophages showed increased Smad7 expression, particularly in areas with severe tissue damage and high bacterial load. LPS-induced Smad7 expression suppressed TGF-β signaling and augmented NF-κB activation and cytokine production in macrophages. Smad7-mediated NF-κB activated was likely mediated via increased expression of IKK-β, which, further increased Smad7 expression in a feed-forward loop. We show that Smad7 induced IKK-β expression through direct binding to the IKK-β promoter and its transcriptional activation. Conclusions Smad7 expression in NEC macrophages interrupts TGF-β signaling and promotes NF-κB-mediated inflammatory signaling in these cells through increased expression of IKK-β. PMID:26859364

  9. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Rizvi, Syed Husain Mustafa; Parveen, Arshiya; Ahmad, Israr; Ahmad, Iqbal; Verma, Anoop K; Arshad, Md; Mahdi, Abbas Ali

    2016-07-01

    Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells. PMID:26546554

  10. Control of pathogenic effector T-cell activities in situ by PD-L1 expression on respiratory inflammatory dendritic cells during respiratory syncytial virus infection

    PubMed Central

    Yao, S; Jiang, L; Moser, EK; Jewett, LB; Wright, J; Du, J; Zhou, B; Davis, SD; Krupp, NL; Braciale, TJ; Sun, J

    2015-01-01

    Respiratory syncytial virus (RSV) infection is a leading cause of severe lower respiratory tract illness in young infants, the elderly and immunocompromised individuals. We demonstrate here that the co-inhibitory molecule programmed cell death 1 (PD-1) is selectively upregulated on T cells within the respiratory tract during both murine and human RSV infection. Importantly, the interaction of PD-1 with its ligand PD-L1 is vital to restrict the pro-inflammatory activities of lung effector T cells in situ, thereby inhibiting the development of excessive pulmonary inflammation and injury during RSV infection. We further identify that PD-L1 expression on lung inflammatory dendritic cells is critical to suppress inflammatory T-cell activities, and an interferon–STAT1–IRF1 axis is responsible for increased PD-L1 expression on lung inflammatory dendritic cells. Our findings suggest a potentially critical role of PD-L1 and PD-1 interactions in the lung for controlling host inflammatory responses and disease progression in clinical RSV infection. PMID:25465101

  11. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    SciTech Connect

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  12. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy

    PubMed Central

    Navitskaya, Svetlana; O’Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B.; Busik, Julia V.

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy. PMID:26760976

  13. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    PubMed

    Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana; O'Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B; Busik, Julia V

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  14. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation.

    PubMed

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi-Gyeong; Kim, Kwang Soo; Hwang, Eun Sook

    2016-05-27

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. PMID:27109480

  15. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells

    PubMed Central

    Lee, Y G; Lee, W M; Kim, J Y; Lee, J Y; Lee, I-K; Yun, B-S; Rhee, M H; Cho, J Y

    2008-01-01

    Background and purpose: Mushrooms are popular both as food and as a source of natural compounds of biopharmaceutical interest. Some mushroom-derived compounds such as β-glucan have been shown to be immunostimulatory; this study explores the anti-inflammatory properties of hispidin analogues derived from the mushroom, Inonotus xeranticus. We sought to identify the molecular mechanism of action of these hispidin analogues by determining their effects on lipopolysaccharide (LPS)-mediated inflammatory responses in a macrophage cell line. Experimental approach: The production of inflammatory mediators was determined by Griess assay, reverse transcription-PCR and ELISA. The inhibitory effect of davalliactone on LPS-induced activation of signalling cascades was assessed by western blotting, immunoprecipitation and direct kinase assay. Key results: In activated RAW264.7 cells, davallialactone strongly downregulated LPS-mediated inflammatory responses, including NO production, prostaglandin E2 release, expression of proinflammatory cytokine genes and cell surface expression of co-stimulatory molecules. Davallialactone treatment did not alter cell viability or morphology. Davallialactone was found to exert its anti-inflammatory effects by inhibiting a signalling cascade that activates nuclear factor kappa B via PI3K, Akt and IKK, but not mitogen-activated protein kinases. Treatment with davallialactone affected the phosphorylation of these signalling proteins, but not their level of expression. These inhibitory effects were not due to the interruption of toll-like receptor 4 binding to CD14. In particular, davallialactone strongly inhibited the LPS-induced phosphorylation and kinase activity of Src, implying that Src may be a potential pharmacological target of davallialactone. Conclusions and implications: Our data suggest that davallialactone, a small molecule found in edible mushrooms, has anti-inflammatory activity. Davallialactone can be developed as a pharmaceutically

  16. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-{kappa}B activation

    SciTech Connect

    Roeder-Stolinski, Carmen Fischaeder, Gundula Oostingh, Gertie Janneke Feltens, Ralph Kohse, Franziska; Bergen, Martin von Moerbt, Nora Eder, Klaus Duschl, Albert Lehmann, Irina

    2008-09-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-{kappa}B) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-{kappa}B activity. An inhibitor of NF-{kappa}B, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-{kappa}B signalling pathway by styrene is mediated via a redox-sensitive mechanism.

  17. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    PubMed

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-12-10

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  18. Antioxidant and Anti-inflammatory Activities of Broccoli Florets in LPS-stimulated RAW 264.7 Cells.

    PubMed

    Hwang, Joon-Ho; Lim, Sang-Bin

    2014-06-01

    Broccoli (Brassica oleracea var. italia) florets were extracted with 80% methanol and the extract was sequentially fractionated with n-hexane, ethyl acetate, n-butanol, and distilled water. The extract and the fractions were evaluated for total phenolic content, sulforaphane content, antioxidant activity, and anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The total phenolic content and sulforaphane content of the ethyl acetate fraction (EF) were 35.5 mg gallic acid equivalents/g and 620.2 μg/g, respectively. These values were higher than those of the 80% methanol extract and organic solvent fractions. The oxygen radical absorbance capacity of the EF [1,588.7 μM Trolox equivalents (TE)/mg] was 11-fold higher than that of the distilled water fraction (143.7 μM TE/mg). The EF inhibited nitric oxide release from LPS-stimulated RAW 264.7 cells in a dose-dependent manner and inhibited IκB-α degradation and nuclear factor-κB activation in LPS-stimulated RAW 264.7 cells. In conclusion, the EF of broccoli florets exerted potent antioxidant and anti-inflammatory effects. PMID:25054107

  19. Anti-Inflammatory Effects of Levalbuterol-Induced 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Airway Epithelial Cells

    PubMed Central

    Randall, Matthew J.; Kostin, Shannon F.; Burgess, Edward J.; Hoyt, Laura R.; Ather, Jennifer L.; Lundblad, Lennart K.; Poynter, Matthew E.

    2015-01-01

    Airway epithelial NF-κB activation is observed in asthmatic subjects and is a cause of airway inflammation in mouse models of allergic asthma. Combination therapy with inhaled short-acting β2-agonists and corticosteroids significantly improves lung function and reduces inflammation in asthmatic subjects. Corticosteroids operate through a number of mechanisms to potently inhibit NF-κB activity. Since β2-agonists can induce expression of 11β-HSD1, which converts inactive 11-keto corticosteroids into active 11-hydroxy corticosteroids, thereby potentiating the effects of endogenous glucocorticoids, we examined whether this mechanism is involved in the inhibition of NF-κB activation induced by the β-agonist albuterol in airway epithelial cells. Treatment of transformed murine Club cells (MTCC) with (R)-albuterol (levalbuterol), but not with (S)- or a mixture of (R + S)- (racemic) albuterol, augmented mRNA expression of 11β-HSD1. MTCC were stably transfected with luciferase (luc) reporter constructs under transcriptional regulation by NF-κB (NF-κB/luc) or glucocorticoid response element (GRE/luc) consensus motifs. Stimulation of NF-κB/luc MTCC with lipopolysaccharide (LPS) or tumor necrosis factor-α (TNFα) induced luc activity, which was inhibited by pretreatment with (R)-, but not (S)- or racemic albuterol. Furthermore, pretreatment of GRE/luc MTCC with (R)-, but not with (S)- or racemic albuterol, augmented 11-keto corticosteroid (cortisone) induced luc activity, which was diminished by the 11β-HSD inhibitor glycyrrhetinic acid (18β-GA), indicating that there was a conversion of inactive 11-keto to active 11-hydroxy corticosteroids. LPS- and TNFα-induced NF-κB/luc activity was diminished in MTCC cells treated with a combination of cortisone and (R)-albuterol, an effect that was inhibited by 18β-GA. Finally, pretreatment of MTCC cells with the combination of cortisone and (R)-albuterol diminished LPS- and TNFα-induced pro-inflammatory cytokine

  20. NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activation.

    PubMed

    Calvayrac, Olivier; Rodríguez-Calvo, Ricardo; Martí-Pamies, Ingrid; Alonso, Judith; Ferrán, Beatriz; Aguiló, Silvia; Crespo, Javier; Rodríguez-Sinovas, Antonio; Rodríguez, Cristina; Martínez-González, José

    2015-03-01

    Recent work has highlighted the role of NR4A receptors in atherosclerosis and inflammation. In vascular smooth muscle cell (VSMC) proliferation, however, NOR-1 (neuron-derived orphan receptor-1) exerts antagonistic effects to Nur77 and Nurr1. The aim of this study was to analyse the effect of NOR-1 in VSMC inflammatory response. We assessed the consequence of a gain-of-function of this receptor on the response of VSMC to inflammatory stimuli. In human VSMC, lentiviral over-expression of NOR-1 reduced lipopolysaccharide (LPS)-induced up-regulation of cytokines (IL-1β, IL-6 and IL-8) and chemokines (MCP-1 and CCL20). Similar effects were obtained in cells stimulated with TNFα or oxLDL. Conversely, siRNA-mediated NOR-1 inhibition significantly increased the expression of pro-inflammatory mediators. Interestingly, in the aortas from transgenic mice that over-express human NOR-1 in VSMC (TgNOR-1), the up-regulation of cytokine/chemokine by LPS was lower compared to wild-type littermates. Similar results were obtained in VSMC from transgenic animals. NOR-1 reduced the transcriptional activity of NFκB sensitive promoters (in transient transfections), and the binding of NFκB to its responsive element (in electrophoretic mobility shift assays). Furthermore, NOR-1 prevented the activation of NFκB pathway by decreasing IκBα phosphorylation/degradation and inhibiting the phosphorylation and subsequent translocation of p65 to the nucleus (assessed by Western blot and immunocytochemistry). These effects were associated with an attenuated phosphorylation of ERK1/2, p38 MAPK and Jun N-terminal kinase, pathways involved in the activation of NFκB. In mouse challenged with LPS, the activation of the NFκB signalling was also attenuated in the aorta from TgNOR-1. Our data support a role for NOR-1 as a negative modulator of the acute response elicited by pro-inflammatory stimuli in the vasculature.

  1. Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

    PubMed Central

    Kim, Kyung-Mi; Kim, Yoo-Sun; Lim, Ji Ye; Min, Soo Jin; Ko, Hee-Chul; Kim, Se-Jae

    2015-01-01

    BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin E2 (PGE2), IL-6, and IL-1β in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-α were down-regulated in response to inhibition of IκBα phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators. PMID:25671061

  2. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

    PubMed Central

    Vo, Van Anh; Lee, Jae-Won; Kim, Ji-Young; Park, Jun-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2014-01-01

    Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells. PMID:24634601

  3. The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin.

    PubMed

    Frelinger, Andrew L; Jakubowski, Joseph A; Li, Youfu; Barnard, Marc R; Fox, Marsha L; Linden, Matthew D; Sugidachi, Atsuhiro; Winters, Kenneth J; Furman, Mark I; Michelson, Alan D

    2007-07-01

    The novel thienopyridine prodrug prasugrel, a platelet P2Y(12) ADP receptor antagonist, requires in vivo metabolism for activity. Although pharmacological data have been collected on the effects of prasugrel on platelet aggregation, there are few data on the direct effects of the prasugrel's active metabolite, R-138727, on other aspects of platelet function. Here we examined the effects of R-138727 on thrombo-inflammatory markers of platelet activation, and the possible modulatory effects of other blood cells, calcium, and aspirin. Blood (PPACK or citrate anticoagulated) from healthy donors pre- and post-aspirin was incubated with R-138727 and the response to ADP assessed in whole blood or platelet-rich plasma (PRP) by aggregometry and flow cytometric analysis of leukocyte-platelet aggregates, platelet surface P-selectin, and GPIIb-IIIa activation. Low-micromolar concentrations of R-138727 resulted in a rapid and consistent inhibition of these ADP-stimulated thrombo-inflammatory markers. These rapid kinetics required physiological calcium levels, but were largely unaffected by aspirin. Lower IC(50) values in whole blood relative to PRP suggested that other blood cells affect ADP-induced platelet activation and hence the net inhibition by R-138727. R-138727 did not inhibit P2Y(12)-mediated ADP-induced shape change, even at concentrations that completely inhibited platelet aggregation, confirming the specificity of R-138727 for P2Y(12). In conclusion, R-138727, the active metabolite of prasugrel, results in rapid, potent, consistent, and selective inhibition of P2Y(12)-mediated up-regulation of thrombo-inflammatory markers of platelet activation. This inhibition is enhanced in the presence other blood cells and calcium, but not aspirin. PMID:17598013

  4. Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells.

    PubMed

    Ahn, Sungeun; Siddiqi, Muhammad Hanif; Aceituno, Veronica Castro; Simu, Shakina Yesmin; Yang, Deok Chun

    2016-07-01

    This study investigated the intestinal anti-inflammatory action of ginsenoside Rf in inflammatory bowel disease (IBD). IBD is a chronic inflammatory disease that affects the intestinal tract. It is associated with elevated levels of various inflammatory mediators, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), nitric oxide (NO), and reactive oxygen species (ROS). Ginsenosides, the main active constituents of ginseng, have been reported to exert potent therapeutic effects against diverse diseases. However, ginsenoside Rf treatment for inflammation has not yet been examined. In this study, we evaluated the inhibitory effect of ginsenoside Rf on the inflammatory mediators downstream of p38/NF-kB activation on TNF-α-stimulated intestinal epithelial cells (HT-29) and mouse macrophage cells (RAW264.7). Our results showed that ginsenoside Rf significantly reduced the production of IL-1β, IL-6, TNF-α, NO, and ROS, which are most highly activated in IBD. In addition, ginsenoside Rf significantly suppressed TNF-α/LPS-induced NF-κB transcriptional activity. These results suggest that ginsenoside Rf contains a compound that has potent intestinal anti-inflammatory effects that could be used to treat diseases such as IBD.

  5. Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling

    PubMed Central

    Pupjalis, Danute; Goetsch, Julia; Kottas, Diane J; Gerke, Volker; Rescher, Ursula

    2011-01-01

    The immunosuppressive effects of apoptotic cells involve inhibition of pro-inflammatory cytokine release and establishment of an anti-inflammatory cytokine profile, thus limiting the degree of inflammation and promoting resolution. We report here that this is in part mediated by the release of the anti-inflammatory mediator annexin A1 from apoptotic cells and the functional activation of annexin A1 receptors of the formyl peptide receptor (FPR) family on target cells. Supernatants from apoptotic neutrophils or the annexin A1 peptidomimetic Ac2-26 significantly reduced IL-6 signalling and the release of TNF-α from endotoxin-challenged monocytes. Ac2-26 activated STAT3 in a JAK-dependent manner, resulting in upregulated SOCS3 levels, and depletion of SOCS3 reversed the Ac2-26-mediated inhibition of IL-6 signalling. This identifies annexin A1 as part of the anti-inflammatory pattern of apoptotic cells and links the activation of FPRs to established signalling pathways triggering anti-inflammatory responses. PMID:21254404

  6. Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples.

    PubMed

    Li, Sixing; Ren, Liqiang; Huang, Po-Hsun; Yao, Xianglan; Cuento, Rosemarie A; McCoy, J Philip; Cameron, Craig E; Levine, Stewart J; Huang, Tony Jun

    2016-06-01

    For sputum analysis, the transfer of inflammatory cells from liquefied sputum samples to a culture medium or buffer solution is a critical step because it removes the inflammatory cells from the presence of residual dithiothreitol (DTT), a reagent that reduces cell viability and interferes with further sputum analyses. In this work, we report an acoustofluidic platform for transferring inflammatory cells using standing surface acoustic waves (SSAW). In particular, we exploit the acoustic radiation force generated from a SSAW field to actively transfer inflammatory cells from a solution containing residual DTT to a buffer solution. The viability and integrity of the inflammatory cells are maintained during the acoustofluidic-based cell transfer process. Our acoustofluidic technique removes residual DTT generated in sputum liquefaction and facilitates immunophenotyping of major inflammatory cells from sputum samples. It enables cell transfer in a continuous flow, which aids the development of an automated, integrated system for on-chip sputum processing and analysis. PMID:27183317

  7. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  8. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells.

    PubMed

    Hussain, Arif; Brahmbhatt, Kruti; Priyani, Anita; Ahmed, Musthaq; Rizvi, Tahir A; Sharma, Chhavi

    2011-10-01

    Administration of natural or synthetic agents to inhibit, delay, block, or reverse the initiation and promotional events associated with carcinogenesis opens a new avenue for cancer prevention and treatment to reduce cancer morbidity and mortality. Eugenol, a potential chemopreventive agent, is a component of clove and several other spices such as basil, cinnamon, and bay leaves. A number of reports have shown that eugenol possesses antiseptic, analgesic, antibacterial, and anticancer properties. The present study was undertaken to evaluate the chemopreventive potential of eugenol alone and in combination with a chemotherapeutic agent such as gemcitabine. Eugenol showed dose-dependent selective cytotoxicity toward HeLa cells in comparison to normal cells, pointing to its safe cytotoxicity profile. A combination of eugenol and gemcitabine induced growth inhibition and apoptosis at lower concentrations, compared with the individual drugs. The analysis of the data using a combination index showed combination index values of <1 indicating strong synergistic interaction. The combination thus may enhance the efficacy of gemcitabine at lower doses and minimize the toxicity on normal cells. In addition, the expression analysis of genes involved in apoptosis and inflammation revealed significant downregulation of Bcl-2, COX-2, and IL-1β on treatment with eugenol. Thus, the results suggest that eugenol exerts its anticancer activities via apoptosis induction and anti-inflammatory properties and also provide the first evidence demonstrating synergism between eugenol and gemcitabine, which may enhance the therapeutic index of prevention and/or treatment of cervical cancer.

  9. Bcl6 Controls the Th2 Inflammatory Activity of Regulatory T Cells by Repressing Gata3 Function

    PubMed Central

    Sawant, Deepali V.; Sehra, Sarita; Nguyen, Evelyn T.; Jadhav, Rohit; Englert, Kate; Shinnakasu, Ryo; Hangoc, Giao; Broxmeyer, Hal E.; Nakayama, Toshinori; Perumal, Narayanan B.; Kaplan, Mark H.; Dent, Alexander L.

    2012-01-01

    The transcriptional repressor Bcl6 is a critical arbiter of T helper cell fate, promoting the follicular helper (Tfh) lineage while repressing other T helper cell lineages. Bcl6-deficient (Bcl6-/-) mice develop a spontaneous and severe Th2-type inflammatory disease, thus warranting assessment of Bcl6 in Treg cell function. Bcl6-/- Tregs were competent at suppressing T cell proliferation in vitro and Th1-type colitogenic T cell responses in vivo. In contrast, Bcl6-/- Treg cells strongly exacerbated lung inflammation in a model of allergic airway disease, and promoted higher Th2 responses, including systemic up-regulation of microRNA-21. Further, Bcl6-/- Tregs were selectively impaired at controlling Th2 responses but not Th1 and Th17 responses, in mixed chimeras of Bcl6-/- bone marrow with Foxp3-/- bone marrow. Bcl6-/- Tregs displayed increased levels of the Th2 transcription factor Gata3 and other Th2 and Treg genes. Bcl6 potently repressed Gata3 transcriptional transactivation, providing a mechanism for the increased expression of Th2 genes by Bcl6-/- Tregs. Gata3 has a critical role in regulating Foxp3 expression and functional fitness of Tregs, however, the signal that regulates Gata3 and restricts its transactivation of Th2 cytokines in Tregs has remained unexplored. Our results identify Bcl6 as an essential transcription factor regulating Gata3 activity in Tregs. Thus, Bcl6 represents a crucial regulatory layer in the Treg functional program, required for specific suppression of Gata3 and Th2 effector responses by Tregs. PMID:23053511

  10. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    PubMed Central

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  11. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    PubMed

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  12. Anti-inflammatory activity of p-coumaryl alcohol-γ-O-methyl ether is mediated through modulation of interferon-γ production in Th cells

    PubMed Central

    Yu, E-S; Min, H-J; Lee, K; Lee, M-S; Nam, J-W; Seo, E-K; Hong, J-H; Hwang, E-S

    2009-01-01

    Background and purpose: p-Coumaryl alcohol-γ-O-methyl ether (CAME) was isolated from Alpinia galanga and shown to contain a phenylpropanoid structure similar to p-coumaryl diacetate (CDA). CDA is known to have antioxidant and anti-inflammatory activity, but the biochemical activities of CAME are unknown. Inflammation is mediated by inflammatory cytokine production, in particular, by CD4+ T helper cells (Th cells), but it is unclear whether phenylpropanoids affect cytokine production in Th cells. In this study, we decided to investigate the functions of CAME and CDA in CD4+ Th cells. Experimental approach: Mouse CD4+ Th cells were isolated from C57BL6 mice and stimulated with an antibody against T cell receptors in the presence of phenylpropanoids. Cytokine production was measured by elisa and intracellular cytokine staining. Gene knockout mice and tetracycline-inducible transgenic mice were used to examine the molecular mechanisms of phenylpropanoids on modulation of cytokine production. Key results: CAME potently reduced intracellular reactive oxygen species in Th cells, as does CDA. However, although CDA was cytotoxic, CAME selectively and potently suppresses interferon-γ (IFNγ) production in CD4+ Th cells, without toxicity. This effect was caused by attenuated expression of the transcription factor, T-box protein expressed in T cells (T-bet), and T-bet was essential for CAME to inhibit IFNγ production in CD4+ Th cells. Conclusions and implications: CAME selectively and substantially suppresses IFNγ production in CD4+ Th cells by decreasing T-bet expression. As increased IFNγ production by CD4+ Th cells can mediate inflammatory immune responses, a selective IFNγ suppressor, such as CAME may be an effective, naturally occurring, compound for modulating inflammatory immune disorders. PMID:19226286

  13. Do inflammatory cells influence skeletal muscle hypertrophy?

    PubMed

    Koh, Timothy J; Pizza, Francis X

    2009-06-01

    Most research on muscle hypertrophy has focused on the responses of muscle cells to mechanical loading; however, a number of studies also suggest that inflammatory cells may influence muscle hypertrophy. Neutrophils and macrophages accumulate in skeletal muscle following increased mechanical loading, and we have demonstrated that macrophages are essential for hypertrophy following synergist ablation. Whether neutrophils are required remains to be determined. Non-steroidal anti-inflammatory drugs impair adaptive responses of skeletal muscle in both human and animal experiments suggesting that the routine use of such drugs could impair muscle performance. Much remains to be learned about the role of inflammatory cells in muscle hypertrophy, including the molecular signals involved in calling neutrophils and macrophages to skeletal muscle as well as those that regulate their function in muscle. In addition, although we have demonstrated that macrophages produce growth promoting factors during muscle hypertrophy, the full range of functional activities involved in muscle hypertrophy remains to be determined. Further investigation should provide insight into the intriguing hypothesis that inflammatory cells play integral roles in regulating muscle hypertrophy.

  14. MRTF-A steers an epigenetic complex to activate endothelin-induced pro-inflammatory transcription in vascular smooth muscle cells

    PubMed Central

    Yang, Yuyu; Cheng, Xian; Tian, Wenfang; Zhou, Bisheng; Wu, Xiaoyan; Xu, Huihui; Fang, Fei; Fang, Mingming; Xu, Yong

    2014-01-01

    Endothelin (ET-1) was initially identified as a potent vasoconstrictor contributing to the maintenance of vascular rhythm. Later studies have implicated ET-1, when aberrantly up-regulated within the vasculature, in a range of human pathologies associated with disruption of vascular homeostasis. ET-1 has been shown to invoke strong pro-inflammatory response in vascular smooth muscle cells (VSMCs); the underlying mechanism, however, remains elusive. Here, we report that the transcriptional modulator MRTF-A mediates the activation of pro-inflammatory mediators by ET-1 in VSMCs. ET-1 increased nuclear enrichment and activity of MRTF-A in cultured VSMCs. MRTF-A silencing attenuated ET-1 induced synthesis and release of pro-inflammatory mediators including IL-6, MCP-1 and IL-1 likely as a result of diminished NF-κB activity. In addition, MRTF-A was indispensible for the accumulation of active histone modifications on the gene promoters. Of intrigue, MRTF-A interacted with and recruited ASH2, a component of the mammalian histone methyltransferase complex, to transactivate pro-inflammatory genes in response to ET-1 treatment. The chromatin remodeling proteins BRG1 and BRM were also required for ET-1-dependent induction of pro-inflammatory mediators by communicating with ASH2, a process dependent on MRTF-A. In conclusion, our data have identified a novel epigenetic complex responsible for vascular inflammation inflicted by ET-1. PMID:25159611

  15. The inhibitory activity of cocoa phenolic extract against pro-inflammatory mediators secretion induced by lipopolysaccharide in RAW 264.7 cells.

    PubMed

    Ranneh, Yazan; Ali, Faisal; Al-Qubaisi, Mothanna; Esa, Norhaizan Mohd; Ismail, Amin

    2016-01-01

    Cocoa is a rich source of polyphenols that has been traditionally used as the treatment of several types of inflammation related disease. The response to inflammation comprises the consecutive release of mediators and the enlistment of circulating leukocytes, such as macrophages. Currently, Cocoa-derived polyphenolics have shown anti-inflammatory effects in vivo, but the therapeutic benefits in vitro remain unclear. Therefore, in this study, the effect of cocoa polyphenolic extract (CPE) on RAW 264.7 macrophage cells sensitized by lipopolysaccharide as in vitro inflammatory model was investigated. The anti-inflammatory activity of CPE was assessed by measuring its ability to inhibit the pro-inflammatory enzyme 5-lipoxygenase (5-LOX) and the pro-inflammatory mediators prostaglandin E2 (PGE2), reactive oxygen species (ROS), nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). The results show that CPE significantly inhibits 5-LOX activity (p < 0.01). In addition, CPE dose-dependently suppressed the production of PGE2, ROS, NO and TNF-α in RAW 264.7 cells. These data suggest that CPE may be used for the treatment of inflammation and it's related-diseases. PMID:27190746

  16. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    PubMed

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  17. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  18. Campylobacter jejuni induces an anti-inflammatory response in human intestinal epithelial cells through activation of phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Li, Yi-Ping; Vegge, Christina S; Brøndsted, Lone; Madsen, Mogens; Ingmer, Hanne; Bang, Dang Duong

    2011-02-24

    Campylobacter jejuni (C. jejuni) is the most common cause of human acute bacterial gastroenteritis. Poultry is a major reservoir of C. jejuni and considered an important source of human infections, thus, it is important to understand the host response to C. jejuni from chicken origin. In this study, we demonstrated firstly that a chicken isolate SC11 colonized chicks faster than clinical isolate NCTC11168. Using the SC11, we further studied the host responds to C. jejuni in terms of inflammatory response and involvement of cellular signaling pathways. Infection of C. jejuni SC11 was able to activate phosphatidylinositol 3-kinase (PI3K)/Akt pathway and induce pro-inflammatory interleukin-8 (IL-8) as well as anti-inflammatory cytokine IL-10 in human intestinal epithelial cell line Colo 205. The signalling pathways PI3K/Akt and mitogen-activated protein (MAP) kinases ERK and p38 were involved in C. jejuni-induced IL-8 and IL-10 expression. Inhibition of PI3K resulted in augmentation of C. jejuni-induced IL-8 production, concomitant with down-regulation of IL-10 mRNA, indicating an anti-inflammatory response was activated and associated with the activation of P13K/Akt. Similar effect was observed for cytolethal distending toxin (CDT) deficient mutants. Moreover, we demonstrated that heat-killed bacteria were able to induce IL-8 and IL-10 expression to a lower level than live bacteria. We therefore conclude that C. jejuni activate a PI3K/Akt-dependent anti-inflammatory pathway in human intestinal epithelial cells which may benefit the intracellular survival of C. jejuni during infection.

  19. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells.

    PubMed

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-05-01

    Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.

  20. Urban Particulate Matter-Activated Human Dendritic Cells Induce the Expansion of Potent Inflammatory Th1, Th2, and Th17 Effector Cells.

    PubMed

    Matthews, Nick C; Pfeffer, Paul E; Mann, Elizabeth H; Kelly, Frank J; Corrigan, Christopher J; Hawrylowicz, Catherine M; Lee, Tak H

    2016-02-01

    Exposure to urban particulate matter (UPM) exacerbates asthmatic lung inflammation. Lung dendritic cells (DCs) are critical for stimulating T cell immunity and in maintaining airway tolerance, but they also react to airway UPM. The adjuvant role of UPM in enhancing primary immune responses by naive cells to allergen has been reported, but the direct effects of UPM-activated DCs on the functionality of human memory CD4 T cells (Tms), which constitute the majority of T cells in the lung, has not been investigated. Blood CD1c(+) DCs were purified and activated with UPM in the presence or absence of house dust mite or tetanus toxoid control antigen. 5-(and -6)-Carboxyfluorescein diacetate succinimidyl ester-labeled blood Tms were cocultured with autologous DCs, T cell proliferation and effector function were assessed using flow cytometry, and secreted cytokines were measured by combined bead array. UPM-DCs elicited IFN-γ and IL-13 secretion and induced proliferation in Tms isolated from both allergic patients with asthma and healthy control subjects, whereas only IL-13 was produced by Tms from patients with atopic asthma stimulated by house dust mite-loaded DCs. UPM-DCs drove the expansion and differentiation of a mixed population of Th1, Th2, and Th17 cell effectors through a mechanism that was dependent on major histocompatibility class II but not on cytokine-driven expansion. The data suggest that UPM not only has adjuvant properties but is also a source of antigen that stimulates the generation of Th2, Th1, and Th17 effector phenotypes, which have been implicated in both exacerbations of asthma and chronic inflammatory diseases. PMID:26196219

  1. Urban Particulate Matter-Activated Human Dendritic Cells Induce the Expansion of Potent Inflammatory Th1, Th2, and Th17 Effector Cells.

    PubMed

    Matthews, Nick C; Pfeffer, Paul E; Mann, Elizabeth H; Kelly, Frank J; Corrigan, Christopher J; Hawrylowicz, Catherine M; Lee, Tak H

    2016-02-01

    Exposure to urban particulate matter (UPM) exacerbates asthmatic lung inflammation. Lung dendritic cells (DCs) are critical for stimulating T cell immunity and in maintaining airway tolerance, but they also react to airway UPM. The adjuvant role of UPM in enhancing primary immune responses by naive cells to allergen has been reported, but the direct effects of UPM-activated DCs on the functionality of human memory CD4 T cells (Tms), which constitute the majority of T cells in the lung, has not been investigated. Blood CD1c(+) DCs were purified and activated with UPM in the presence or absence of house dust mite or tetanus toxoid control antigen. 5-(and -6)-Carboxyfluorescein diacetate succinimidyl ester-labeled blood Tms were cocultured with autologous DCs, T cell proliferation and effector function were assessed using flow cytometry, and secreted cytokines were measured by combined bead array. UPM-DCs elicited IFN-γ and IL-13 secretion and induced proliferation in Tms isolated from both allergic patients with asthma and healthy control subjects, whereas only IL-13 was produced by Tms from patients with atopic asthma stimulated by house dust mite-loaded DCs. UPM-DCs drove the expansion and differentiation of a mixed population of Th1, Th2, and Th17 cell effectors through a mechanism that was dependent on major histocompatibility class II but not on cytokine-driven expansion. The data suggest that UPM not only has adjuvant properties but is also a source of antigen that stimulates the generation of Th2, Th1, and Th17 effector phenotypes, which have been implicated in both exacerbations of asthma and chronic inflammatory diseases.

  2. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    SciTech Connect

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  3. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists

    PubMed Central

    Shey, Muki S.; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S.

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues. PMID:27171482

  4. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells

    SciTech Connect

    Huang, Wei; Xu, Ling; Zhou, Xueqin; Gao, Chenlin; Yang, Maojun; Chen, Guo; Zhu, Jianhua; Jiang, Lan; Gan, Huakui; Gou, Fang; Feng, Hong; Peng, Juan; Xu, Yong

    2013-08-30

    Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which

  5. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells

    PubMed Central

    Hwang, Pai-An; Phan, Nam Nhut; Lu, Wen-Jung; Ngoc Hieu, Bui Thi; Lin, Yen-Chang

    2016-01-01

    Background The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF) and high-stability fucoxanthin (HS-Fucox) in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. Methods We used various methods such as transepithelial resistance (TER) assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. Results LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. Conclusion These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells. PMID:27487850

  6. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells.

    PubMed

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE2, butyl lucidenateD2 (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum.

  7. Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model

    PubMed Central

    Kavanagh, Edel; Burguillos, Miguel Angel; Carrillo-Jimenez, Alejandro; Oliva-Martin, María José; Santiago, Martiniano; Rodhe, Johanna; Joseph, Bertrand; Venero, Jose Luis

    2015-01-01

    Increasing evidence involves sustained pro-inflammatory microglia activation in the pathogenesis of different neurodegenerative diseases, particularly Parkinson's disease (PD). We recently uncovered a completely novel and unexpected role for caspase-8 and its downstream substrates caspase-3/7 in the control of microglia activation and associated neurotoxicity to dopaminergic cells. To demonstrate the genetic evidence, mice bearing a floxed allele of CASP8 were crossed onto a transgenic line expressing Cre under the control of Lysozyme 2 gene. Analysis of caspase-8 gene deletion in brain microglia demonstrated a high efficiency in activated but not in resident microglia. Mice were challenged with lipopolysaccharide, a potent inducer of microglia activation, or with MPTP, which promotes specific dopaminergic cell damage and consequent reactive microgliosis. In neither of these models, CASP8 deletion appeared to affect the overall number of microglia expressing the pan specific microglia marker, Iba1. In contrast, CD16/CD32 expression, a microglial pro-inflammatory marker, was found to be negatively affected upon CASP8 deletion. Expression of additional proinflammatory markers were also found to be reduced in response to lipopolysaccharide. Of importance, reduced pro-inflammatory microglia activation was accompanied by a significant protection of the nigro-striatal dopaminergic system in the MPTP mouse model of PD. PMID:26405176

  8. Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model.

    PubMed

    Kavanagh, Edel; Burguillos, Miguel Angel; Carrillo-Jimenez, Alejandro; Oliva-Martin, María José; Santiago, Martiniano; Rodhe, Johanna; Joseph, Bertrand; Venero, Jose Luis

    2015-09-01

    Increasing evidence involves sustained pro-inflammatory microglia activation in the pathogenesis of different neurodegenerative diseases, particularly Parkinson's disease (PD). We recently uncovered a completely novel and unexpected role for caspase-8 and its downstream substrates caspase-3/7 in the control of microglia activation and associated neurotoxicity to dopaminergic cells. To demonstrate the genetic evidence, mice bearing a floxed allele ofCASP8 were crossed onto a transgenic line expressing Cre under the control of Lysozyme 2 gene. Analysis of caspase-8 gene deletion in brain microglia demonstrated a high efficiency in activated but not in resident microglia. Mice were challenged with lipopolysaccharide, a potent inducer of microglia activation, or with MPTP, which promotes specific dopaminergic cell damage and consequent reactive microgliosis. In neither of these models, CASP8 deletion appeared to affect the overall number of microglia expressing the pan specific microglia marker, Iba1. In contrast, CD16/CD32 expression, a microglial pro-inflammatory marker, was found to be negatively affected upon CASP8 deletion. Expression of additional proinflammatory markers were also found to be reduced in response to lipopolysaccharide. Of importance, reduced pro-inflammatory microglia activation was accompanied by a significant protection of the nigro-striatal dopaminergic system in the MPTP mouse model of PD.

  9. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities

    PubMed Central

    2013-01-01

    The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate / inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell / antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease. PMID:23865616

  10. Involvement of mitogen-activated protein kinase and NF-κB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells.

    PubMed

    Zhu, Jingying; Qian, Wenyi; Wang, Yixin; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-12-01

    Microglial activation is closely related to the pathogenesis of neurodegenerative diseases by producing proinflammatory cytokines. Perfluorooctane sulfonic acid (PFOS), known as an emerging persistent organic pollutant, is reported to disturb human immune homeostasis; however, whether it affects cytokine production or the immune response in the central nervous system remains unclear. The present study was aimed to explore whether PFOS contributed to inflammatory action and to investigate the corresponding mechanisms in BV2 microglia. PFOS-mediated morphologic changes, cytokine responses and signaling events were examined by light microscopy, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot assays. Our results indicated that PFOS increased BV2 cells activation and simultaneously increased tumor necrosis factor alpha and interleukin-6 expression. In addition, the c-Jun N-terminal protein kinase inhibitor (SP600125), as well as ERK1/2 blocker (PD98059), transcriptionally at least, displayed anti-inflammatory properties on PFOS-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by PFOS as well. These results, taken together, suggested that PFOS exerts its functional effects on the response of microglial cell activation via, in part, the c-Jun N-terminal protein kinase, ERK and NF-κB signaling pathways with its subsequent influence on proinflammatory action.

  11. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    SciTech Connect

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz; and others

    2013-11-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  12. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  13. Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents.

    PubMed

    Bricard, Gabriel; Venkataswamy, Manjunatha M; Yu, Karl O A; Im, Jin S; Ndonye, Rachel M; Howell, Amy R; Veerapen, Natacha; Illarionov, Petr A; Besra, Gurdyal S; Li, Qian; Chang, Young-Tae; Porcelli, Steven A

    2010-12-17

    CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.

  14. Sleep Loss Activates Cellular Inflammatory Signaling

    PubMed Central

    Irwin, Michael R.; Wang, Minge; Ribeiro, Denise; Cho, Hyong Jin; Olmstead, Richard; Breen, Elizabeth Crabb; Martinez-Maza, Otoniel; Cole, Steve

    2008-01-01

    Background Accumulating evidence suggests that sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. This study was undertaken to test the effects of sleep loss on activation of nuclear factor (NF) -κB, a transcription factor that serves a critical role in the inflammatory signaling cascade. Methods In 14 healthy adults (7 females; 7 males), peripheral blood mononuclear cell NF-κB was repeatedly assessed, along with enumeration of lymphocyte subpopulations, in the morning after baseline sleep, partial sleep deprivation (awake from 23:00 h to 03:00 h), and recovery sleep. Results In the morning after a night of sleep loss, mononuclear cell NF-κB activation was significantly greater compared with morning levels following uninterrupted baseline or recovery sleep, in which the response was found in females but not in males. Conclusions These results identify NF-κB activation as a molecular pathway by which sleep disturbance may influence leukocyte inflammatory gene expression and the risk of inflammation-related disease. PMID:18561896

  15. Nestin+ cells direct inflammatory cell migration in atherosclerosis

    PubMed Central

    del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin+ cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin+ cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin+ cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin+ cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin+ stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin+ cells—but not in endothelial cells only— increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  16. Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia

    PubMed Central

    Kavanagh, E; Rodhe, J; Burguillos, M A; Venero, J L; Joseph, B

    2014-01-01

    The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders. PMID:25501826

  17. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  18. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  19. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  20. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions.

  1. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  2. Pro-inflammatory caspase-1 activation during the immune response in cells from rainbow trout Oncorhynchus mykiss (Walbaum 1792) challenged with pathogen-associated molecular patterns.

    PubMed

    Rojas, V; Camus-Guerra, H; Guzmán, F; Mercado, L

    2015-11-01

    In response to pathogens, the higher vertebrate innate immune system activates pro-inflammatory caspase-1 which is responsible for the processing and secretion of several important cytokines involved in the host's defence against infection. To date, caspase-1 has been described in few teleost fish, and its activity has been demonstrated through substrate cleavage and inhibition by pharmacological agents. In this study, the detection of the active form of caspase-1 during the immune response in salmonid fish is described, where two antibodies were produced. These antibodies differentially recognize the structural epitopes of the inactive pro-caspase-1 and the processed active form of the caspase. Firstly, caspase-1 activation was demonstrated in vitro by ELISA, Western blotting and immunocytochemistry in rainbow trout macrophages exposed to different pathogen-associated molecular patterns plus the pathogen Aeromonas hydrophila. This activity was clearly abrogated by a caspase inhibitor and seems to be unrelated to IL-1β secretion. Caspase-1 activation was then validated in vivo in gill cells from fish challenged with Aeromonas salmonicida. These results represent the first demonstration of caspase-1 activation in salmonids, and the first evidence of the putative regulatory role which this protease plays in inflammatory response in this fish group, as described for some other teleosts and mammals.

  3. Roles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells.

    PubMed

    Huang, Xiaohong; Huang, Youhua; OuYang, Zhengliang; Cai, Jia; Yan, Yang; Qin, Qiwei

    2011-06-01

    Stress-activated protein kinases (SAPKs), including p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), are usually activated in response to different environmental stimuli, including virus infection. In the present study, the roles of SAPKs during Singapore grouper iridovirus (SGIV) infection were investigated in fish cells. The results showed that increased phosphorylation of JNK1/2 and p38 MAPK occurred during active replication of SGIV in grouper cell cultures. Moreover, downstream effectors (c-Jun, MAPK-activated protein kinase 2, p53, activator protein 1, Myc and nuclear factor of activated T cells) were activated after SGIV infection, suggesting that SGIV replication activated the JNK and p38 MAPK signalling pathways. Notably, using specific inhibitors, it was found that viral gene transcripts, protein expression and viral titres were not affected by inhibition of p38 MAPK but were suppressed significantly by inhibiting JNK1/2 activation. In addition, transcription of grouper immune genes including interferon regulatory factor 1, interleukin-8 and tumour necrosis factor alpha (TNF-α) were regulated by JNK, whilst only TNF-α was regulated by p38 MAPK. It is proposed that the JNK pathway is important for SGIV replication and modulates the inflammatory responses during virus infection.

  4. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells.

    PubMed

    Tan, Cong-ping; Hou, Yun-hua

    2014-04-01

    Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1β, TNF-α, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.

  5. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition.

    PubMed

    Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki

    2016-01-01

    TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients. PMID:27652005

  6. Vascular Inflammatory Cells in Hypertension

    PubMed Central

    Harrison, David G.; Marvar, Paul J.; Titze, Jens M.

    2012-01-01

    Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients, and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease. PMID:22586409

  7. Anti-Inflammatory Activity of a Novel Family of Aryl Ureas Compounds in an Endotoxin-Induced Airway Epithelial Cell Injury Model

    PubMed Central

    Cabrera-Benitez, Nuria E.; Pérez-Roth, Eduardo; Casula, Milena; Ramos-Nuez, Ángela; Ríos-Luci, Carla; Rodríguez-Gallego, Carlos; Sologuren, Ithaisa; Jakubkiene, Virginija; Slutsky, Arthur S.; Padrón, José M.; Villar, Jesús

    2012-01-01

    Background Despite our increased understanding of the mechanisms involved in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS)-induced ALI/ARDS. Methodology/Principal Findings After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103) was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4) and nuclear factor kappa B inhibitor alpha (IκBα) was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings. Conclusions/Significance Using a novel screening methodology, we identified a compound – CKT0103 – with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and

  8. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication.

    PubMed

    Mackey, Abigail L; Rasmussen, Lotte K; Kadi, Fawzi; Schjerling, Peter; Helmark, Ida C; Ponsot, Elodie; Aagaard, Per; Durigan, João Luiz Q; Kjaer, Michael

    2016-06-01

    With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared with PLA, IBU was found to augment the proportion of ActiveNotch1(+) satellite cells at 2 d [IBU, 29 ± 3% vs. PLA, 19 ± 2% (means ± sem)], satellite cell content at 7 d [IBU, 0.16 ± 0.01 vs. PLA, 0.12 ± 0.01 (Pax7(+) cells/fiber)], and to expedite muscle repair at 30 d. The PLA group displayed a greater proportion of embryonic myosin(+) fibers and a residual ∼2-fold increase in mRNA levels of matrix proteins (all P < 0.05). Endomysial collagen was also elevated with PLA at 30 d. Minimum telomere length shortening was not observed. In conclusion, ingestion of NSAID has a potentiating effect on Notch activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. PMID:26936358

  9. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-08-29

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  10. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  11. Chronic inflammatory cells with epithelial cell characteristics in teleost fishes.

    PubMed

    Noga, E J; Dykstra, M J; Wright, J F

    1989-09-01

    Certain cells that participate in the chronic inflammatory response of teleost fishes have many features typical of epithelioid cells of mammals. Such features include high metabolic activity, frequent phagolysosomes, and cytoplasmic interdigitations between adjacent cells; however, the epithelioid granulomas formed in response to certain diseases in teleost fishes also have several features associated with epithelial cells. Cases of ulcerative mycosis or acid-fast bacterial infection in Atlantic menhaden (Brevoortia tyrannus), fungal infection in silver perch (Bairdiella chrysoura), and mycobacteriosis in Mozambique tilapia (Oreochromis mossambicus) had epithelioid cells that were joined together by well-formed desmosomes with tonofilaments. "Mature granulomas" of the ulcerative mycosis-infected menhaden stained positively for cytokeratin, a cytoskeletal protein that is considered to be highly specific for epithelial cells. The consistent presence of these heretofore unrecognized epithelial features suggest that they may be characteristic of certain types of cells participating in piscine chronic inflammation. PMID:2686148

  12. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    PubMed Central

    2012-01-01

    . Moreover, an increased expression of TNFR2 was observed upon treatment with 11-dehydrocorticosterone and aldosterone, which was reversed by 11β-HSD1 inhibitors and/or spironolactone and Cay-10512. Conclusions A tightly coordinated GR and MR activity regulates the NF-κB pathway and the control of inflammatory mediators in microglia cells. The balance of GR and MR activity is locally modulated by the action of 11β-HSD1, which is upregulated by pro-inflammatory mediators and may represent an important feedback mechanism involved in resolution of inflammation. PMID:23190711

  13. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway.

    PubMed

    Tundup, Smanla; Srivastava, Leena; Norberg, Thomas; Watford, Wendy; Harn, Donald

    2015-01-01

    The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs). In addition, LNFPIII-NGC preferentially induced the production of Th2 "favoring" chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 "favoring" chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1-3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1-3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK) axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo therapeutic effect of

  14. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway

    PubMed Central

    Tundup, Smanla; Srivastava, Leena; Norberg, Thomas; Watford, Wendy; Harn, Donald

    2015-01-01

    The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs). In addition, LNFPIII-NGC preferentially induced the production of Th2 “favoring” chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 “favoring” chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1–3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1–3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK) axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo therapeutic

  15. Vanillin suppresses Kupffer cell-related colloidal carbon-induced respiratory burst activity in isolated perfused rat liver: anti-inflammatory implications.

    PubMed

    Galgani, José E; Núñez, Bárbara; Videla, Luis A

    2012-12-01

    The inhibition of NADPH oxidase has become a potential therapeutic target for oxidative stress-related diseases. We investigated whether vanillin modifies hepatic O(2) consumption associated with Kupffer cell functioning. The influence of vanillin on Kupffer cell functioning was studied in isolated perfused rat liver by colloidal carbon (CC) infusion (0.5 mg ml(-1)), concomitantly with sinusoidal efflux of lactate dehydrogenase (LDH) as an organ viability parameter. CC infusion increased the rate of O(2) consumption of the liver above basal values, an effect that represents the respiratory burst activity of Kupffer cells. However, CC-dependent respiratory burst activity was suppressed by previous infusion of 2 mM vanillin. Vanillin did not affect the liver CC uptake rate and liver sinusoidal efflux of LDH efflux. These findings, elicited by vanillin, were reproduced by the well-established NADPH oxidase inhibitor apocynin. In conclusion, vanillin suppresses the respiratory burst activity of Kupffer cells as assessed in intact liver, which may be associated with the inhibition of macrophage NADPH oxidase activity. Such a finding may have relevance in conditions underlying Kupffer cell-dependent up-regulation of the expression and release of pro-inflammatory mediators by redox-dependent mechanisms.

  16. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    PubMed Central

    2011-01-01

    Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily

  17. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity

    PubMed Central

    Lee, Jue Yeon; Suh, Jin Sook; Kim, Jung Min; Kim, Jeong Hwa; Park, Hyun Jung; Park, Yoon Jeong; Chung, Chong Pyoung

    2015-01-01

    Human beta-defensins (hBDs) are crucial factors of intrinsic immunity that function in the immunologic response to a variety of invading enveloped viruses, bacteria, and fungi. hBDs can cause membrane depolarization and cell lysis due to their highly cationic nature. These molecules participate in antimicrobial defenses and the control of adaptive and innate immunity in every mammalian species and are produced by various cell types. The C-terminal 15-mer peptide within hBD3, designated as hBD3-3, was selected for study due to its cell- and skin-penetrating activity, which can induce anti-inflammatory activity in lipopolysaccharide-treated RAW 264.7 macrophages. hBD3-3 penetrated both the outer membrane of the cells and mouse skin within a short treatment period. Two other peptide fragments showed poorer penetration activity compared to hBD3-3. hBD3-3 inhibited the lipopolysaccharide-induced production of inducible nitric oxide synthase, nitric oxide, and secretory cytokines, such as interleukin-6 and tumor necrosis factor in a concentration-dependent manner. Moreover, hBD3-3 reduced the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. Further investigation also revealed that hBD3-3 downregulated nuclear factor kappa B-dependent inflammation by directly suppressing the degradation of phosphorylated-IκBα and by downregulating active nuclear factor kappa B p65. Our findings indicate that hBD3-3 may be conjugated with drugs of interest to ensure their proper translocation to sites, such as the cytoplasm or nucleus, as hBD3-3 has the ability to be used as a carrier, and suggest a potential approach to effectively treat inflammatory diseases. PMID:26347021

  18. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells.

    PubMed

    Park, Myoung Soo; Kim, Cuk-Seong; Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Kim, Soo Jin; Choi, Sunga; Lee, Sang Do; Park, Jin Bong; Jeon, Byeong Hwa

    2013-11-01

    Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and transcriptional regulation of gene expression. APE1/Ref-1 is mainly localized in the nucleus, but cytoplasmic localization has also been reported. However, the functional role of cytoplasmic APE1/Ref-1 and its redox cysteine residue are still unknown. We investigated the role of cytoplasmic APE1/Ref-1 on tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) expressions in endothelial cells. Endogenous APE1/Ref-1 was mainly observed in the nucleus, however, cytoplasmic APE1/Ref-1 was increased by TNF-α. Cytoplasmic APE1/Ref-1 expression was not blunted by cycloheximide, a protein synthesis inhibitor, suggesting cytoplasmic translocation of APE1/Ref-1. Transfection of an N-terminus deletion mutant APE1/Ref-1(29-318) inhibited TNF-α-induced VCAM-1 expression, indicating an anti-inflammatory role for APE1/Ref-1 in the cytoplasm. In contrast, redox mutant of APE1/Ref-1 (C65A/C93A) transfection led to increased TNF-α-induced VCAM-1 expression. Our findings suggest cytoplasmic APE1/Ref-1 localization and redox cysteine residues of APE1/Ref-1 are associated with its anti-inflammatory activity in endothelial cells.

  19. Calpeptin Attenuated Apoptosis and Intracellular Inflammatory Changes in Muscle Cells

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca2+-sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-gamma (IFN-γ) caused expression of MHC-I and inflammation related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B). We also demonstrated that treatment with tumor necrosis factor-alpha (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Further, we found that post-treatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs. PMID:21290412

  20. Early Inflammatory Responses Following Cell Grafting in the CNS Trigger Activation of the Subventricular Zone: A Proposed Model of Sequential Cellular Events.

    PubMed

    Praet, Jelle; Santermans, Eva; Daans, Jasmijn; Le Blon, Debbie; Hoornaert, Chloé; Goossens, Herman; Hens, Niel; Van der Linden, Annemie; Berneman, Zwi; Ponsaerts, Peter

    2015-01-01

    While multiple rodent preclinical studies, and to a lesser extent human clinical trials, claim the feasibility, safety, and potential clinical benefit of cell grafting in the central nervous system (CNS), currently only little convincing knowledge exists regarding the actual fate of the grafted cells and their effect on the surrounding environment (or vice versa). Our preceding studies already indicated that only a minor fraction of the initially grafted cell population survives the grafting process, while the surviving cell population becomes invaded by highly activated microglia/macrophages and surrounded by reactive astrogliosis. In the current study, we further elaborate on early cellular and inflammatory events following syngeneic grafting of eGFP(+) mouse embryonic fibroblasts (mEFs) in the CNS of immunocompetent mice. Based on obtained quantitative histological data, we here propose a detailed mathematically derived working model that sequentially comprises hypoxia-induced apoptosis of grafted mEFs, neutrophil invasion, neoangiogenesis, microglia/macrophage recruitment, astrogliosis, and eventually survival of a limited number of grafted mEFs. Simultaneously, we observed that the cellular events following mEF grafting activates the subventricular zone neural stem and progenitor cell compartment. This proposed model therefore further contributes to our understanding of cell graft-induced cellular responses and will eventually allow for successful manipulation of this intervention.

  1. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells.

    PubMed

    Dias, Manoela Maciel dos Santos; Martino, Hércia Stampini Duarte; Noratto, Giuliana; Roque-Andrade, Andrea; Stringheta, Paulo César; Talcott, Stephen; Ramos, Afonso Mota; Mertens-Talcott, Susanne U

    2015-10-01

    The demand for tropical fruits high in polyphenolics including açai (Euterpe oleracea Mart.) has been increasing based on ascribed health benefits and antioxidant properties. This study evaluated the anti-inflammatory activities of açai polyphenolics in human colon myofibroblastic CCD-18Co cells to investigate the suppression of reactive oxygen species (ROS), and mRNA and protein expression of inflammatory proteins. Non-cytotoxic concentrations of açai extract, 1-5 mg gallic acid equivalent L(-1), were selected. The generation of ROS was induced by lipopolysaccharide (LPS) and açai extract partially reversed this effect to 0.53-fold of the LPS-control. Açai extract (5 mg GAE L(-1)) down-regulated LPS-induced mRNA-expression of tumor necrosis factor alpha, TNF-α (to 0.42-fold), cyclooxygenase 2, COX-2 (to 0.61-fold), toll-like receptor-4, TLR-4 (to 0.52-fold), TNF receptor-associated factor 6, TRAF-6 (to 0.64-fold), nuclear factor kappa-B, NF-κB (to 0.76-fold), vascular cell adhesion molecule 1, VCAM-1 (to 0.71-fold) and intercellular adhesion molecule 1, ICAM-1 (to 0.68-fold). The protein levels of COX-2, TLR-4, p-NF-κB and ICAM-1 were induced by LPS and the açai extract partially reversed this effect in a dose-dependent manner. These results suggest the anti-inflammatory effect of açai polyphenolic extract in intestinal cells are at least in part mediated through the inhibition of ROS and the expression of TLR-4 and NF-κB. Results indicate the potential for açai polyphenolics in the prevention of intestinal inflammation. PMID:26243669

  2. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    PubMed

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.

  3. The Overlapping Roles of Antimicrobial Peptides and Complement in Recruitment and Activation of Tumor-Associated Inflammatory Cells

    PubMed Central

    Al-Rayahi, Izzat A. M.; Sanyi, Raghad H. H.

    2015-01-01

    Antimicrobial peptides (AMPs) represent a group of small (6–100 amino acids), biologically active molecules, which are produced by plants, mammals, and microorganisms (1). An important element of the innate immune response, AMP, possesses potent antibiotic, antifungal, and antiviral activities. Furthermore, AMP may be involved in a number of other processes such as angiogenesis and modulation of the immune response such as stimulation of chemokines and chemotaxis of leukocytes. AMPs have been proposed as alternative therapies for infectious diseases. AMP may also exert cytotoxic activity against tumor cells. Further understanding of the biological function of these peptides during tumor development and progression may aid in the development of novel anti-tumor therapies with refined application of innate molecules. AMP and complement have distinct roles to play in shaping the microenvironment (Table 1). Components of the complement system are integral contributors in responding to infection and sterile inflammation. Moreover, complement plays a role in the trafficking of cells in the tumor microenvironment, and thereby possibly in the immune response to cancer. This article will try to outline characteristics of AMP and complement in mobilization and recruitment of cells in tumor microenvironment. PMID:25657649

  4. Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes.

    PubMed

    Maraslioglu, Miriam; Oppermann, Elsie; Blattner, Carolin; Weber, Roxane; Henrich, Dirk; Jobin, Christian; Schleucher, Elke; Marzi, Ingo; Lehnert, Mark

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  5. Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes.

    PubMed

    Maraslioglu, Miriam; Oppermann, Elsie; Blattner, Carolin; Weber, Roxane; Henrich, Dirk; Jobin, Christian; Schleucher, Elke; Marzi, Ingo; Lehnert, Mark

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.

  6. Chronic Ethanol Feeding Modulates Inflammatory Mediators, Activation of Nuclear Factor-κB, and Responsiveness to Endotoxin in Murine Kupffer Cells and Circulating Leukocytes

    PubMed Central

    Oppermann, Elsie; Jobin, Christian; Schleucher, Elke; Marzi, Ingo

    2014-01-01

    Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner. PMID:24623963

  7. Protection of islet cells from inflammatory cell death in vitro.

    PubMed Central

    Burkart, V; Kolb, H

    1993-01-01

    Islet cells cocultured with activated macrophages are lysed within 15 h in vitro. We showed previously that nitric oxide generated by macrophages is a major mediator of islet cell death. We have now probed several pathways to interfere with the chain of events leading to islet cell death. Scavenging of extracellular oxygen radicals by superoxide dismutase and catalase did not improve islet cell survival. Scavenging of extra- and intracellular oxygen radicals by two potent substances, citiolone and dimethyl-thiourea, also did not reduce islet cell lysis, while a lipid-soluble scavenger, probucol, provided partial protection. These findings argue against a synergistic action of nitric oxide and oxygen radicals in islet cell toxicity. The inhibition of poly(ADP-ribose)polymerase by 3-aminobenzamide significantly improved islet cell survival. Selective inhibitors of cyclooxygenase, such as indomethacin or acetylsalicylic acid, did not improve islet cell survival. Full protection was seen in the presence of NDGA, an inhibitor of lipoxygenase, and partial suppression was caused by BW755c, an inhibitor of both lipoxygenase and cyclooxygenase. We conclude that inflammatory islet cell death caused by activated macrophages involves the activation of arachidonic acid metabolism and of poly(ADP-ribose)polymerase, but that scavenging of oxygen free radicals provides little protection from lysis. PMID:8348756

  8. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells

    PubMed Central

    2011-01-01

    Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p < 0.05). None of the test samples exhibited catalase activity or had a significant effect on the spontaneous secretion of IL-8 in the control cells which was further corroborated with the microscopy results and the Neutral Red viability test. Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found. PMID:21995704

  9. 7-Hydroxycoumarin prevents UVB-induced activation of NF-κB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells.

    PubMed

    Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan

    2016-08-01

    Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. PMID:27240190

  10. TLR2 ligation induces corticosteroid insensitivity in A549 lung epithelial cells: Anti-inflammatory impact of PP2A activators.

    PubMed

    Rahman, Md Mostafizur; Prabhala, Pavan; Rumzhum, Nowshin N; Patel, Brijeshkumar S; Wickop, Thomas; Hansbro, Philip M; Verrills, Nicole M; Ammit, Alaina J

    2016-09-01

    Corticosteroids are effective anti-inflammatory therapies widely utilized in chronic respiratory diseases. But these medicines can lose their efficacy during respiratory infection resulting in disease exacerbation. Further in vitro research is required to understand how infection worsens lung function control in order to advance therapeutic options to treat infectious exacerbation in the future. In this study, we utilize a cellular model of bacterial exacerbation where we pretreat A549 lung epithelial cells with the synthetic bacterial lipoprotein Pam3CSK4 (a TLR2 ligand) to mimic bacterial infection and tumor necrosis factor α (TNFα) to simulate inflammation. Under these conditions, Pam3CSK4 induces corticosteroid insensitivity; demonstrated by substantially reduced ability of the corticosteroid dexamethasone to repress TNFα-induced interleukin 6 secretion. We then explored the molecular mechanism responsible and found that corticosteroid insensitivity induced by bacterial mimics was not due to altered translocation of the glucocorticoid receptor into the nucleus, nor an impact on the NF-κB pathway. Moreover, Pam3CSK4 did not affect corticosteroid-induced upregulation of anti-inflammatory MAPK deactivating phosphatase-MKP-1. However, Pam3CSK4 can induce oxidative stress and we show that a proportion of the MKP-1 produced in response to corticosteroid in the context of TLR2 ligation was rendered inactive by oxidation. Thus to combat inflammation in the context of bacterial exacerbation we sought to discover effective strategies that bypassed this road-block. We show for the first time that known (FTY720) and novel (theophylline) activators of the phosphatase PP2A can serve as non-steroidal anti-inflammatory alternatives and/or corticosteroid-sparing approaches in respiratory inflammation where corticosteroid insensitivity exists. PMID:27477309

  11. Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio).

    PubMed

    Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, Karl

    2016-01-01

    Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L(-1) aeruginosin 828A, and 100 µmol·L(-1) cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A. PMID:27428998

  12. Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio)

    PubMed Central

    Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, Karl

    2016-01-01

    Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L−1 aeruginosin 828A, and 100 µmol·L−1 cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A. PMID:27428998

  13. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge.

    PubMed

    Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho

    2016-02-28

    A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC. PMID:26769562

  14. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs.

    PubMed

    Yang, Eun-Ju; Lee, Wonhwa; Ku, Sae-Kwang; Song, Kyung-Sik; Bae, Jong-Sup

    2012-05-01

    As a late mediator of inflammation, high mobility group box 1 (HMGB1) protein up-regulates pro-inflammatory cytokines in several inflammatory diseases. Further, high plasma levels of HMGB1 correlate with poor prognosis and increased mortality in patients with severe inflammation. Oleanolic acid (OA), a triterpenoid known for its anti-inflammatory and anti-cancer properties, is commonly present in several medicinal plants but the effects of OA on HMGB1-mediated pro-inflammatory responses of human endothelial cells is not well-studied. In this study, we investigated this question by monitoring the effect of OA on lipopolysaccharide (LPS)-mediated release of HMGB1 and the HMGB1-mediated modulation of inflammatory responses in human umbilical vein endothelial cells (HUVECs). OA potently inhibited the release of HMGB1 by HUVECs as well as down-regulated HMGB1-dependent adhesion and migration of the monocytic cell line THP-1 to activated HUVECs. OA also down-regulated the cell surface expression of the receptor of HMGB1, thereby inhibiting HMGB1-dependent pro-inflammatory responses by inhibiting activation of nuclear factor-κB (NF-κB) and production of tumor necrosis factor-α (TNF-α) by HMGB1. Given these results, OA showed anti-inflammatory activities and could be a candidate as a therapeutic agent for various inflammatory diseases through the inhibition of the HMGB1 signaling pathway.

  15. Anti-inflammatory Activity of Dichloromethane Extract of Auricularia auricula-judae in RAW264.7 Cells

    PubMed Central

    Damte, Dereje; Reza, Md. Ahsanur; Lee, Seung-Jin; Jo, Woo-Sik

    2011-01-01

    The present study investigated the anti-inflammatory effects of dichloromethane extract of Auricularia auricula-judae. Dichloromethane extract of Auricularia auricula-judae inhibited Lipopolysaccharide (LPS) -induced nitric oxide (NO) production significantly in a dose-dependent manner in the concentration ≥10 μg/ml (p < 0.05) . Furthermore, RT-PCR results of this study indicated that the extract markedly reduced the expressions of inflammatory cytokines (IL-6, TNF-α and IL-1β) mRNA in LPS-treated murine RAW 264.7 macrophages, which could possibly ameliorate the inflammation. Nevertheless, dichloromethane extract of Auricularia auricula-judae did not show complete inhibition of IL-6 mRNA expression. The inhibition of IL-1β cytokine at protein level was also observed in a dose dependent manner. In conclusion,the current study revealed the previously unknown effect of dichloromethane ethyl extract of Auricularia auricula-judae inhibitions of the production of NO, IL-6, TNF-α and IL-1β in LPS-stimulated macrophages. PMID:24278544

  16. Contribution of bone marrow-derived cells to the pro-inflammatory effects of protease-activated receptor-2 in colitis

    PubMed Central

    Hyun, Eric; Andrade-Gordon, Patricia; Steinhoff, Martin; Beck, Paul L.

    2010-01-01

    Objective Our aim was to determine the contribution of proteinase-activated receptor-2 (PAR2)-expressing bone marrow-derived cells on the development of colonic inflammation. Materials Chimeric mice were generated by injecting bone marrow cells from wildtype (PAR2+/+) or PAR2 knockout mice (PAR2−/−) into irradiated PAR2+/+ or PAR2−/− mice. Treatments: Colitis was induced by giving 2.5% dextran sodium sulfate (DSS) solution for 7 days or by a single intracolonic administration of trinitrobenzene sulphonic acid (TNBS, 2 mg dissolved in 40% ethanol). Methods Seven days after the induction of colitis, bowel thickness, inflammatory parameters [myeloperoxidase (MPO) activity, macroscopic/microscopic damage scores], and leukocyte trafficking (visualized via intravital microscopy) were assessed. Results Total deficiency of PAR2 resulted in a marked reduction in severity of both TNBS and DSS induced colitis as assessed by MPO activity, macroscopic damage, bowel thickness, and leukocyte adherence. Colitis was attenuated in all chimeric lines in which there was loss of PAR2 in the host, non-bone marrow-derived tissue, independent of the status of PAR expression by bone marrow-derived cells. Interestingly, TNBS colitis was attenuated in PAR2+/+ chimeric mice with PAR2−/− derived bone marrow but these animals were not protected from DSS colitis. Conclusions Expression of PAR2 by host-derived tissues plays a dominant role in regulating colonic inflammation. PAR2 expression by bone marrow-derived cells appears to play a role in TNBS colitis but not in DSS induced injury. Electronic supplementary material The online version of this article (doi:10.1007/s00011-010-0181-9) contains supplementary material, which is available to authorized users. PMID:20339899

  17. Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats.

    PubMed

    Ruiz, Pedro A; Hoffmann, Micha; Szcesny, Silke; Blaut, Michael; Haller, Dirk

    2005-08-01

    Bifidobacteria comprise a dominant microbial population group in the human intestinal tract with purported beneficial health effects on the host. In this study, we characterized the molecular mechanisms for the initial interaction of probiotic Bifidobacterium lactis strain BB12 with native and intestinal epithelial cell (IEC) lines. We showed that B. lactis-monoassociated Fisher F344 rats transiently induce phosphorylation/activation of the NF-kappaB transcriptionally active subunit RelA and the mitogen-activated protein kinase (MAPK) p38 in native IEC at day 5 after initial bacterial colonization. In addition, Interleukin 6 (IL-6) gene expression was significantly increased at day 5, demonstrating the physiological relevance of transient transcription factor activation in IEC. In contrast, Bacteroides vulgatus-monoassociated Fisher rats revealed RelA but not p38 MAPK phosphorylation and failed to trigger significant IL-6 gene expression in native IEC. Moreover, we demonstrated that B. lactis triggers NF-kappaB RelA and p38 MAPK phosphorylation in IEC lines. Adenoviral delivery of mutant IKK-beta (Ad5dnIKKbeta) and inhibition of the p38 MAPK pathway through the pharmacological inhibitor SB203580 significantly blocked B. lactis-induced IL-6 gene expression in IEC, suggesting that B. lactis triggers NF-kappaB and MAPK signaling to induce gene expression in the intestinal epithelium. Regarding the mechanisms of bacteria epithelial cell cross-talk, B. lactis-induced IL-6 gene expression was completely inhibited in TLR2 deficient mouse embryogenic fibroblasts (MEF TLR2-/-) as well as TLR2DeltaTIR transfected Mode-K cells. In conclusion, we demonstrated that probiotic bacteria transiently trigger innate signal transduction and pro-inflammatory gene expression in the intestinal epithelium at early stages of bacterial colonization.

  18. Anti-inflammatory and Antinociceptive Activity of Ouabain in Mice

    PubMed Central

    de Vasconcelos, Danielle Ingrid Bezerra; Leite, Jacqueline Alves; Carneiro, Luciana Teles; Piuvezam, Márcia Regina; de Lima, Maria Raquel Vitorino; de Morais, Liana Clébia Lima; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2011-01-01

    Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects. PMID:21772669

  19. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response

    PubMed Central

    Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L.; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T.; Riccioli, Anna

    2016-01-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract. PMID:27600504

  20. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels.

    PubMed

    Roque, Angélica; Ochoa-Zarzosa, Alejandra; Torner, Luz

    2016-07-01

    Adult animals subjected to chronic stress show an inflammatory response in the hippocampus which has been related to cognitive dysfunction and psychopathology. However the immediate consequences of early life stress on hippocampal glial cells have not been studied. Here we analyzed the effects of maternal separation (MS) on astrocyte and microglial cell morphology in the hippocampal hilus, compared the expression of cytokines in the hippocampus and hypothalamus, and the peripheral response of cytokines, on postnatal day (PD) 15. Male rat pups of MS (3h/day, PD1-PD14) and Control (CONT) pups showed similar microglial cell densities in the hilus, but MS pups presented more activated microglia. MS decreased astrocyte density and the number of processes in the hilus. Cytokine mRNA expression (qPCR) was analyzed in MS and CONT groups, sacrificed (i) under basal (B) conditions or (ii) after a single stress event (SS) at PN15. In hippocampal extracts, MS increased IL-1β mRNA, under B and SS conditions while IL-6 and TNF-α did not change. In hypothalamic tissue, MS increased TNF-α and IL-6 mRNA, but not IL-1b, after SS. Peripheral concentrations of IL-1β were decreased under B and SS conditions in MS; IL-6 concentration increased after SS in MS pups, and TNF-α concentration was unchanged. In conclusion, MS activates microglial cells and decreases astrocyte density in the hippocampus. A differential cytokine expression is observed in the hippocampus and the hypothalamus after MS, and after SS. Also, MS triggers an independent response of peripheral cytokines. These specific responses together could contribute to decrease hippocampal neurogenesis and alter the neuroendocrine axis.

  1. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells.

    PubMed

    Karadottir, Harpa; Kulkarni, Nikhil Nitin; Gudjonsson, Thorarinn; Karason, Sigurbergur; Gudmundsson, Gudmundur Hrafn

    2015-01-01

    Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses. PMID:26664810

  2. Characterization of inflammatory cell infiltration in feline allergic skin disease.

    PubMed

    Taglinger, K; Day, M J; Foster, A P

    2007-11-01

    Sixteen cats with allergic dermatitis and six control cats with no skin disease were examined. Lymphoid and histiocytic cells in skin sections were examined immunohistochemically and mast cells were identified by toluidine blue staining. The 16 allergic cats showed one or more of several features (alopecia, eosinophilic plaques or granulomas, papulocrusting lesions), and histopathological findings were diverse. In control cats there were no cells that expressed IgM or MAC387, a few that were immunolabelled for IgG, IgA or CD3, and moderate numbers of mast cells. In allergic cats, positively labelled inflammatory cells were generally more numerous in lesional than in non-lesional skin sections, and were particularly associated with the superficial dermis and perifollicular areas. There were low numbers of plasma cells expressing cytoplasmic immunoglobulin; moderate numbers of MHC II-, MAC387- and CD3-positive cells; and moderate to numerous mast cells. MHC class II expression was associated with inflammatory cells morphologically consistent with dermal dendritic cells and macrophages, and epidermal Langerhans cells. Dendritic cells expressing MHC class II were usually associated with an infiltrate of CD3 lymphocytes, suggesting that these cells participate in maintenance of the local immune response by presenting antigen to T lymphocytes. These findings confirm that feline allergic skin disease is characterized by infiltration of activated antigen-presenting cells and T lymphocytes in addition to increased numbers of dermal mast cells. This pattern mimics the dermal inflammation that occurs in the chronic phase of both canine and human atopic dermatitis.

  3. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  4. Anti-inflammatory activity of arctigenin from Forsythiae Fructus.

    PubMed

    Kang, Hyo Sook; Lee, Ji Yun; Kim, Chang Jong

    2008-03-01

    Oleaceae Forsythiae Fructus has been used for anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. Our previous screening of medicinal plants showed that methanol (MeOH) extract of Forsythiae Fructus had significant anti-inflammatory activity, but the active ingredients remain unclear. For isolation of active ingredient of MeOH extract of Forsythiae Fructus, it was partitioned with n-hexane and ethylacetate (EtOAc), and arctigenin was isolated from EtOAc fraction by column chromatography with anti-inflammatory activity-guided separation. Its activity was evaluated in the animal models of inflammation including myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities in the edematous tissues homogenate, and silica-induced reactive oxygen species (ROS) production in the RAW 264.7 cell line. It was shown that arctigenin (100 mg/kg) had significantly decreased not only carrageenan-induced paw edema 3 and 4h after injection of carrageenan, arachidonic acid (AA)-induced ear edema at a painting dose of 0.1-1.0mg/ear, and acetic acid-induced writhing response and acetic acid-induced capillary permeability accentuation at an oral dose of 25-100, and 100 mg/kg, respectively, but also MPO and EPO activities at a painting dose of 0.1-1.0mg/ear in the AA-induced edematous tissues homogenate as indicators of neutrophils and eosinophils recruitment into the inflamed tissue. Further, arctigenin (0.1-10 microM) also significantly inhibited the intracellular ROS production by silica. These results indicate that arctigenin is a bioactive agent of Forsythiae Fructus having significant anti-inflammatory action by inhibition of the exudation, and leukocytes recruitment into the inflamed tissues. The pharmacologic mechanism of action of arctigenin may be due to the inhibition of release/production of inflammatory mediators such as AA metabolites and free radicals.

  5. Photopheresis with UV-A light and 8-methoxypsoralen leads to cell death and to release of blebs with anti-inflammatory phenotype in activated and non-activated lymphocytes

    SciTech Connect

    Stadler, K.; Frey, B.; Munoz, L.E.; Finzel, S.; Rech, J.; Fietkau, R.; Herrmann, M.; Hueber, A.; Gaipl, U.S.

    2009-08-14

    Background: Extracorporeal photopheresis is a therapy for treatment of autoimmune diseases, cutaneous T-cell lymphoma, organ graft rejection as well as graft-versus-host diseases. The exact mechanism how the combination of 8-methoxypsoralen plus UV-A irradiation (PUVA) acts is still unclear. We investigated the cell death of activated and non-activated lymphocytes after PUVA treatment as well as the rate of released blebs and their antigen composition. Results: In presence of 8-MOP, UV-A light highly significantly increased the cell death of activated lymphocytes. The same was observed to a lesser extent in non-activated cells. Blebs derived from activated lymphocytes after PUVA treatment showed the highest surface exposition of phosphatidylserine. These blebs also displayed a high exposure of the antigens CD5 and CD8 as well as a low exposure of CD28 and CD86. Conclusion: PUVA treatment exerts anti-inflammatory effects by inducing apoptosis and apoptotic cell-derived blebs with immune suppressive surface composition.

  6. [A mechanism for the anti-inflammatory effect of nedocromil; inhibition of both adhesion molecule expression on eosinophils and endothelial cells, and eosinophil chemotactic activities].

    PubMed

    Okada, T; Sagara, H; Nakano, Y; Hiyama, T; Fukuda, T

    1999-12-01

    The accumulation of eosinophils in the airway is one of the characteristics seen in patients with bronchial asthma. One of the newly developed anti-asthma drugs (controller), nedocromil sodium (nedocromil) is known to suppress the influx of eosinophils into allergic lesions. However, little is known about this mechanism. Therefore, in this report we investigated the effects of nedocromil on Mac-1 expression on PAF-stimulated eosinophils, and adhesion molecule expression on endothelial cells stimulated by either IL-1 beta or IL-4. We also investigated the eosinophil chemotaxis. A significant suppression of the Mac-1 expression on PAF-induced eosinophils was observed at both concentrations of 10(-5) and 10(-7) M of nedocromil. The expression of adhesion molecules, particularly ICAM-1 and E-selectin, on IL-1 beta-stimulated human umbilical vascular endothelial cells (HUVEC) was significantly suppressed at these concentrations, whereas the VCAM-1 expression was not changed. No significant suppression of VCAM-1 expression on IL-4-stimulated HUVEC was observed, although there was a tendency of suppression at these concentrations. On the other hand, the expression of the E-selectin molecule was significantly suppressed by nedocromil even under resting (non-stimulated) condition. PAF-induced eosinophil chemotactic activities were also suppressed at these concentrations in a dose-dependent manner. These results suggested that nedocromil suppressed the influx of eosinophils to inflammatory lesions by inhibiting not only the expression of the Mac-1 on eosinophils and of E-selectin and ICAM-1 molecules on HUVEC, but also the eosinophil chemotactic activities.

  7. Triglycerides potentiate the inflammatory response in rat Kupffer cells.

    PubMed

    Budick-Harmelin, Noga; Dudas, Jozsef; Demuth, Julia; Madar, Zecharia; Ramadori, Giuliano; Tirosh, Oren

    2008-12-01

    Accumulation of fat in the liver, also known as steatosis, may lead to inflammation and tissue damage. Kupffer cells (KCs) are the resident macrophages of the liver and have an important role in inflammatory reactions. The inflammatory response of isolated rat KCs to endotoxin in the presence of lipids was investigated in this study. KCs were treated with lipopolysaccharide (LPS) and triglycerides (TGs) alone or in combination. TGs had no effect on the expression of pro-inflammatory mediators, but adding TGs to LPS enhanced the induction of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF), compared with LPS treatment alone. Increased DNA binding of NF-kappaB transcription factor was seen on simultaneous exposure of the cells to TGs and LPS, which was accompanied by decreased intracellular ROS production and increased GSH levels. The inflammation-potentiating effect of TGs on iNOS expression was abolished on NF-kappaB inhibition. This enhanced inflammatory response might indicate a contribution of lipids to the inflammatory conditions in the fatty liver by increased activation of KCs. PMID:18710323

  8. Triglycerides potentiate the inflammatory response in rat Kupffer cells.

    PubMed

    Budick-Harmelin, Noga; Dudas, Jozsef; Demuth, Julia; Madar, Zecharia; Ramadori, Giuliano; Tirosh, Oren

    2008-12-01

    Accumulation of fat in the liver, also known as steatosis, may lead to inflammation and tissue damage. Kupffer cells (KCs) are the resident macrophages of the liver and have an important role in inflammatory reactions. The inflammatory response of isolated rat KCs to endotoxin in the presence of lipids was investigated in this study. KCs were treated with lipopolysaccharide (LPS) and triglycerides (TGs) alone or in combination. TGs had no effect on the expression of pro-inflammatory mediators, but adding TGs to LPS enhanced the induction of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF), compared with LPS treatment alone. Increased DNA binding of NF-kappaB transcription factor was seen on simultaneous exposure of the cells to TGs and LPS, which was accompanied by decreased intracellular ROS production and increased GSH levels. The inflammation-potentiating effect of TGs on iNOS expression was abolished on NF-kappaB inhibition. This enhanced inflammatory response might indicate a contribution of lipids to the inflammatory conditions in the fatty liver by increased activation of KCs.

  9. Berberine inhibits tumor necrosis factor-α-induced expression of inflammatory molecules and activation of nuclear factor-κB via the activation of AMPK in vascular endothelial cells.

    PubMed

    Liu, Su-Jian; Yin, Cai-Xia; Ding, Ming-Chao; Wang, Yi-Zhong; Wang, Hong

    2015-10-01

    Berberine, which is a well‑known drug used in traditional medicine, has been demonstrated to exert diverse pharmacological effects, including anti‑inflammatory effects. However, whether berberine can affect the production of inflammatory molecules in vascular endothelial cells remains to be elucidated. Therefore, the present study aimed to determine the effects of berberine, and the underlying molecular mechanisms of these effects. The effect of berberine on tumor necrosis factor (TNF)‑α‑induced inflammatory molecule expression was examined in cultured human aortic endothelial cells (HAECs). The HAECs were stimulated with TNF‑α and incubated with or without berberine. The activation of nuclear factor (NF)‑κB and adenosine monophosphate‑activated protein kinase (AMPK) were analyzed using western blotting, and the protein secretion of intercellular adhesion molecule (ICAM)‑1 and monocyte chemoattractant protein (MCP)‑1 was measured using ELISA kits. The mRNA expression levels of ICAM‑1 and MCP‑1 were analyzed using reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that berberine significantly inhibited the TNF‑α‑induced expression of ICAM‑1 and MCP‑1, as well as the activation of NF‑κB in the HAECs. These effects were attenuated following co‑treatment with AMPK inhibitor compound C, or specific small interfering RNAs. In conclusion, the results of the present study indicated that berberine inhibits the TNF‑α‑induced expression of ICAM‑1 and MCP‑1, and the activation of NF‑κB in HAECs in vitro, possibly through the AMPK‑dependent pathway.

  10. Increased circulating inflammatory endothelial cells in blacks with essential hypertension.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Woollard, John R; Herrmann, Sandra M; Gloviczki, Monika L; Saad, Ahmed; Juncos, Luis A; Calhoun, David A; Rule, Andrew D; Lerman, Amir; Textor, Stephen C; Lerman, Lilach O

    2013-09-01

    Morbidity and mortality attributable to hypertension are higher in black essential hypertensive (EH) compared with white EH patients, possibly related to differential effects on vascular injury and repair. Although circulating endothelial progenitor cells (EPCs) preserve endothelial integrity, inflammatory endothelial cells (IECs) detach from sites of injury and represent markers of vascular damage. We hypothesized that blood levels of IECs and inflammatory markers would be higher in black EH compared with white EH patients. Inferior vena cava and renal vein levels of CD34+/KDR+ (EPC) and VAP-1+ (IEC) cells were measured by fluorescence-activated cell sorting in white EH and black EH patients under fixed sodium intake and blockade of the renin-angiotensin system, and compared with systemic levels in normotensive control subjects (n=19 each). Renal vein and inferior vena cava levels of inflammatory cytokines and EPC homing factors were measured by Luminex. Blood pressure, serum creatinine, lipids, and antihypertensive medications did not differ between white and black EH patients, and EPC levels were decreased in both. Circulating IEC levels were elevated in black EH patients, and inversely correlated with EPC levels (R(2)=0.58; P=0.0001). Systemic levels of inflammatory cytokines and EPC homing factors were higher in black EH compared with white EH patients, and correlated directly with IECs. Renal vein inflammatory cytokines, EPCs, and IECs did not differ from their circulating levels. Most IECs expressed endothelial markers, fewer expressed progenitor cell markers, but none showed lymphocyte or phagocytic cell markers. Thus, increased release of cytokines and IECs in black EH patients may impair EPC reparative capacity and aggravate vascular damage, and accelerate hypertension-related complications.

  11. Capsaicin attenuates palmitate-induced expression of macrophage inflammatory protein 1 and interleukin 8 by increasing palmitate oxidation and reducing c-Jun activation in THP-1 (human acute monocytic leukemia cell) cells.

    PubMed

    Choi, Sung-E; Kim, Tae Ho; Yi, Sang-A; Hwang, Yun Cheong; Hwang, Won Sun; Choe, Sun Jung; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-06-01

    Capsaicin, a spicy component of hot peppers, has been shown to improve inflammatory disease and obesity. In this study, we tested the hypothesis that the anti-inflammatory activity of capsaicin can be used to improve free fatty acid (FFA)-induced inflammation by reducing gene expression of macrophage inflammatory protein 1 (MIP-1) and interleukin 8 (IL-8) in THP-1 (human acute monocytic leukemia cell) macrophages. To investigate whether capsaicin ameliorates palmitate-induced MIP-1 and IL-8 gene expressions, we treated THP-1 cells with palmitate in the presence or absence of capsaicin and measured MIP-1 and IL-8 by real-time polymerase chain reaction. To elucidate the mechanism by which capsaicin effects on palmitate-induced MIP-1 and IL-8 gene expressions, we performed immunoblotting with stress kinase-related antibodies and measured palmitate oxidation and palmitate oxidation-related gene expression. Palmitate and stearate but not the unsaturated FFA oleate significantly increased MIP-1 and IL-8 expressions in THP-1 macrophages. Treatment with capsaicin or FFA oxidation stimulators inhibited palmitate-induced MIP-1 and IL-8 expressions in THP-1 macrophages. Capsaicin increased the gene expression of carnitine palmitoyltransferase 1 and the β-oxidation of palmitate. Furthermore, capsaicin significantly reduced palmitate-stimulated activation of c-Jun N-terminal kinase, c-Jun, and p38. Our data suggest that the attenuation of palmitate-induced MIP-1 and IL-8 gene expressions by capsaicin is associated with reduced activation of c-Jun N-terminal kinase, c-Jun, and p38 and preserved β-oxidation activity.

  12. Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor-kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells.

    PubMed

    Dong, Xiao-Qiao; Du, Quan; Yu, Wen-Hua; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Chen, Feng; Wang, Hao; Chen, Jun

    2013-01-01

    Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2 microglia were pretreated with different concentrations of oxymatrine (1, 10 and 20 μg/mL) for 30 min as followed by stimulation with LPS (1 μg/mL) for different times (30 min, 1 h, 3 h, and 6 h). Concentrations of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-6 (IL-6) in supernatant, mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), cytosolic inhibitor of kappa B-alpha (I-κBα) and phospho- I-κBα and nuclear p65 protein levels, and the phosphorylations of MAPK molecules such as extracellular-signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK) were determined. It was shown that oxymatrine inhibited the productions of NO, PGE2, TNF-α, IL-1β and IL-6, attenuated the mRNA levels of iNOS and COX-2, suppressed the phosphorylation of I-κBα in cytosol, decreased the nuclear levels of p65, and also blocked ERK, p38 and JNK pathway in LPS-stimulated BV2 microglial cells in a dose-dependent manner. According to the results; It is suggested that oxymatrine may attenuate inflammatory responses of microglia and could be potentially useful in modulation of inflammatory status in the brain disorders. PMID:24250585

  13. Blocking of CD1d Decreases Trypanosoma cruzi-Induced Activation of CD4-CD8- T Cells and Modulates the Inflammatory Response in Patients With Chagas Heart Disease.

    PubMed

    Passos, Lívia Silva Araújo; Villani, Fernanda Nobre Amaral; Magalhães, Luísa Mourão Dias; Gollob, Kenneth J; Antonelli, Lis Ribeiro do Vale; Nunes, Maria Carmo Pereira; Dutra, Walderez Ornelas

    2016-09-15

    The control of inflammatory responses to prevent the deadly cardiac pathology in human Chagas disease is a desirable and currently unattained goal. Double-negative (DN) T cells are important sources of inflammatory and antiinflammatory cytokines in patients with Chagas heart disease and those with the indeterminate clinical form of Chagas disease, respectively. Given the importance of DN T cells in immunoregulatory processes and their potential as targets for controlling inflammation-induced pathology, we studied the involvement of CD1 molecules in the activation and functional profile of Trypanosoma cruzi-specific DN T cells. We observed that parasite stimulation significantly increased the expression of CD1a, CD1b, CD1c, and CD1d by CD14(+) cells from patients with Chagas disease. Importantly, among the analyzed molecules, only CD1d expression showed an association with the activation of DN T cells, as well as with worse ventricular function in patients with Chagas disease. Blocking of CD1d-mediated antigen presentation led to a clear reduction of DN T-cell activation and a decrease in the expression of interferon γ (IFN-γ) by DN T cells. Thus, our results showed that antigen presentation via CD1d is associated with activation of DN T cells in Chagas disease and that CD1d blocking leads to downregulation of IFN-γ by DN T cells from patients with Chagas heart disease, which may be a potential target for preventing progression of inflammation-mediated dilated cardiomyopathy.

  14. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways

    PubMed Central

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  15. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    PubMed

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 μg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

  16. Synthesis and anti-inflammatory activity of indole glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2014-01-15

    The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs. PMID:24360830

  17. AMP-activated protein kinase is activated by non-steroidal anti-inflammatory drugs.

    PubMed

    King, Tanya S; Russe, Otto Quintus; Möser, Christine V; Ferreirós, Nerea; Kynast, Katharina L; Knothe, Claudia; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-09-01

    AMP-activated kinase (AMPK) is a cellular energy sensor, which is activated in stages of increased adenosine triphosphate (ATP) consumption. Its activation has been associated with a number of beneficial effects such as decrease of inflammatory processes and inhibition of disease progression of diabetes and obesity. A recent study suggested that salicylate, the active metabolite of the non-steroidal anti-inflammatory drug (NSAID) acetyl-salicylic acid (aspirin), is able to activate AMPK pharmacologically. This observation raised the question whether or not other NSAIDs might also act as AMPK activators and whether this action might contribute to their cyclooxygenase (COX)-independent anti-inflammatory properties. In this study, we investigated mouse and human neuronal cells and liver tissue of mice after treatment with various NSAIDs. Our results showed that the non-selective acidic NSAIDs ibuprofen and diclofenac induced AMPK activation similar to aspirin while the COX-2 selective drug etoricoxib and the non-opioid analgesic paracetamol, both drugs have no acidic structure, failed to activate AMPK. In conclusion, our results revealed that AMPK can be activated by specific non-steroidal anti-inflammatory drugs such as salicylic acid, ibuprofen or diclofenac possibly depending on the acidic structure of the drugs. AMPK might therefore contribute to their antinociceptive and anti-inflammatory properties. PMID:26049010

  18. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-κB activation and pro-inflammatory gene expression in intestinal epithelial cells

    PubMed Central

    Haller, D; Holt, L; Parlesak, A; Zanga, J; Bäuerlein, A; Sartor, R B; Jobin, C

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-κB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-κB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression of the Toll-like receptor-4 accessory protein MD-2 as well as endogenous IκBα phosphorylation, demonstrating similar capabilities of these bacteria to induce proximal NF-κB signalling. However, B. vulgatus failed to trigger IκBα degradation and NF-κB transcriptional activity in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation, PBMC from patients with active ulcerative colitis and Crohn's disease differentially trigger epithelial cell activation in response to E. coli and E. coli-derived LPS. In conclusion, this study provides evidence for a differential regulation of non-pathogenic Gram-negative bacteria-induced NF-κB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally

  19. Anti-inflammatory activity of Bacopa monniera in rodents.

    PubMed

    Channa, Shabana; Dar, Ahsana; Anjum, Shazia; Yaqoob, Muhammad; Atta-Ur-Rahman

    2006-03-01

    The ethanol extract of Bacopa monniera (Scrophulariaceae) exhibited marked anti-inflammatory activity against carrageenan-induced paw edema in mice and rats, an acute inflammatory model. To assess the possible mechanism of anti-inflammatory action against carrageenan, the ethanol extract was treated with chemical mediators (histamine, serotonin, bradykinin, prostaglandin E(2) and arachidonic acid)-induced edema in rats. The extract selectively inhibited prostaglandin E(2)-induced inflammation. Thus, it may be inferred that B. monniera possesses significant anti-inflammatory activity that may well be relevant for its effectiveness in the healing of various inflammatory conditions in traditional medicine.

  20. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

    PubMed Central

    Seo, Dong-Won; Yi, Young-Joo; Lee, Myeong-Seok

    2015-01-01

    Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius. PMID:26839505

  1. Interleukin-1 Receptor-associated Kinase-4 (IRAK4) Promotes Inflammatory Osteolysis by Activating Osteoclasts and Inhibiting Formation of Foreign Body Giant Cells*

    PubMed Central

    Katsuyama, Eri; Miyamoto, Hiroya; Kobayashi, Tami; Sato, Yuiko; Hao, Wu; Kanagawa, Hiroya; Fujie, Atsuhiro; Tando, Toshimi; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Niki, Yasuo; Morioka, Hideo; Matsumoto, Morio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Formation of foreign body giant cells (FBGCs) occurs following implantation of medical devices such as artificial joints and is implicated in implant failure associated with inflammation or microbial infection. Two major macrophage subpopulations, M1 and M2, play different roles in inflammation and wound healing, respectively. Therefore, M1/M2 polarization is crucial for the development of various inflammation-related diseases. Here, we show that FBGCs do not resorb bone but rather express M2 macrophage-like wound healing and inflammation-terminating molecules in vitro. We also found that FBGC formation was significantly inhibited by inflammatory cytokines or infection mimetics in vitro. Interleukin-1 receptor-associated kinase-4 (IRAK4) deficiency did not alter osteoclast formation in vitro, and IRAK4-deficient mice showed normal bone mineral density in vivo. However, IRAK4-deficient mice were protected from excessive osteoclastogenesis induced by IL-1β in vitro or by LPS, an infection mimetic of Gram-negative bacteria, in vivo. Furthermore, IRAK4 deficiency restored FBGC formation and expression of M2 macrophage markers inhibited by inflammatory cytokines in vitro or by LPS in vivo. Our results demonstrate that osteoclasts and FBGCs are reciprocally regulated and identify IRAK4 as a potential therapeutic target to inhibit stimulated osteoclastogenesis and rescue inhibited FBGC formation under inflammatory and infectious conditions without altering physiological bone resorption. PMID:25404736

  2. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    PubMed

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases. PMID:23171279

  3. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases

    PubMed Central

    Vegeto, Elisabetta; Benedusi, Valeria; Maggi, Adriana

    2008-01-01

    Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia. PMID:18522863

  4. Activation of Plasmacytoid Dendritic Cells in Colon-Draining Lymph Nodes during Citrobacter rodentium Infection Involves Pathogen-Sensing and Inflammatory Pathways Distinct from Conventional Dendritic Cells.

    PubMed

    Toivonen, Raine; Kong, Lingjia; Rasool, Omid; Lund, Riikka J; Lahesmaa, Riitta; Hänninen, Arno

    2016-06-01

    Dendritic cells (DCs) bear the main responsibility for initiation of adaptive immune responses necessary for antimicrobial immunity. In the small intestine, afferent lymphatics convey Ags and microbial signals to mesenteric lymph nodes (LNs) to induce adaptive immune responses against microbes and food Ags derived from the small intestine. Whether the large intestine is covered by the same lymphatic system or represents its own lymphoid compartment has not been studied until very recently. We identified three small mesenteric LNs, distinct from small intestinal LNs, which drain lymph specifically from the colon, and studied DC responses to the attaching and effacing pathogen Citrobacter rodentium in these. Transcriptional profiling of conventional (CD11c(high)CD103(high)) DC and plasmacytoid (plasmacytoid DC Ag-1(high)B220(+)CD11c(int)) DC (pDC) populations during steady-state conditions revealed activity of distinct sets of genes in these two DC subsets, both in small intestinal and colon-draining LNs. C. rodentium activated DC especially in colon-draining LNs, and gene expression changed in pDC more profoundly than in conventional DC. Among the genes most upregulated in pDC were C-type lectin receptor CLEC4E, IL-1Rs (IL-1R1 and -2), proinflammatory cytokines (IL-1a and IL-6), and TLR6. Our results indicate that colon immune surveillance is distinct from that of the small intestine in terms of draining LNs, and identify pDC as active sentinels of colonic inflammation and/or microbial dysbiosis. PMID:27183629

  5. BET Inhibition Attenuates Helicobacter pylori-Induced Inflammatory Response by Suppressing Inflammatory Gene Transcription and Enhancer Activation.

    PubMed

    Chen, Jinjing; Wang, Zhen; Hu, Xiangming; Chen, Ruichuan; Romero-Gallo, Judith; Peek, Richard M; Chen, Lin-Feng

    2016-05-15

    Helicobacter pylori infection causes chronic gastritis and peptic ulceration. H. pylori-initiated chronic gastritis is characterized by enhanced expression of many NF-κB-regulated inflammatory cytokines. Brd4 has emerged as an important NF-κB regulator and regulates the expression of many NF-κB-dependent inflammatory genes. In this study, we demonstrated that Brd4 was not only actively involved in H. pylori-induced inflammatory gene mRNA transcription but also H. pylori-induced inflammatory gene enhancer RNA (eRNA) synthesis. Suppression of H. pylori-induced eRNA synthesis impaired H. pylori-induced mRNA synthesis. Furthermore, H. pylori stimulated NF-κB-dependent recruitment of Brd4 to the promoters and enhancers of inflammatory genes to facilitate the RNA polymerase II-mediated eRNA and mRNA synthesis. Inhibition of Brd4 by JQ1 attenuated H. pylori-induced eRNA and mRNA synthesis for a subset of NF-κB-dependent inflammatory genes. JQ1 also inhibited H. pylori-induced interaction between Brd4 and RelA and the recruitment of Brd4 and RNA polymerase II to the promoters and enhancers of inflammatory genes. Finally, we demonstrated that JQ1 suppressed inflammatory gene expression, inflammation, and cell proliferation in H. pylori-infected mice. These studies highlight the importance of Brd4 in H. pylori-induced inflammatory gene expression and suggest that Brd4 could be a potential therapeutic target for the treatment of H. pylori-triggered inflammatory diseases and cancer. PMID:27084101

  6. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  7. Anti-inflammatory and redox-protective activities of citronellal.

    PubMed

    Melo, Mônica S; Guimarães, Adriana G; Santana, Michele F; Siqueira, Rosana S; De Lima, Amanda Do Carmo B; Dias, Antonio S; Santos, Márcio Roberto V; Onofre, Alexandre S C; Quintans, Jullyana S S; De Sousa, Damião P; Almeida, Jackson R G S; Estevam, Charles S; Araujo, Brancilene S; Quintans-Júnior, Lucindo J

    2011-01-01

    The anti-inflammatory and redox protective effects of the citronellal (CT) were evaluated using in vivo and in vitro tests. Intraperitoneal (i.p.) administration of CT (50, 100, and 200 mg/kg) inhibited (p < 0.05) the carrageenan-induced leukocyte migration to the peritoneal cavity. Additionally, the carrageenan- and arachidonic acid-induced rat hind paw edema was significantly inhibited (p < 0.05) by i.p. administration of 100 and 200 mg/kg of the compound. When the redox activity was evaluated, CT (200 mg/kg) significantly reduced hepatic lipoperoxidation (p < 0.001), as well as oxidation of plasmatic (p < 0.05) and hepatic (p < 0.01) proteins. The results of the present study support the hypothesis that CT possesses anti-inflammatory and redox protective activities. It is suggested that its effects are associated with the inhibition of the enzymes in the arachidonic acid pathway, which prevent cell migration by inhibiting leukotriene production, edema formation and the increase of reactive oxygen species in tissues. Therefore, CT is of potential benefit to manage inflammatory disorders and correlated damages caused by oxidant agents.

  8. Photoreceptor Cells Produce Inflammatory Mediators That Contribute to Endothelial Cell Death in Diabetes

    PubMed Central

    Tonade, Deoye; Liu, Haitao; Kern, Timothy S.

    2016-01-01

    Purpose Recent studies suggest that photoreceptor cells regulate local inflammation in the retina in diabetes. The purpose of this study was to determine if photoreceptor cells themselves produce inflammatory proteins in diabetes and if soluble factors released by photoreceptors in elevated glucose induce inflammatory changes in nearby cells. Methods Laser capture microdissection was used to isolate the outer retina (photoreceptors) from the inner retina in nondiabetic and diabetic mice. Diabetes-induced changes in the expression of inflammatory targets were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. Cell culture experiments were carried out to determine if photoreceptors in vitro and ex vivo release soluble mediators that can stimulate nearby cells. Photoreceptor contribution to leukocyte-mediated endothelial cell death was tested using coculture models. Results Messenger ribonucleic acid and protein expression levels for inflammatory proteins intercellular adhesion molecule 1 (ICAM1), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) were increased in photoreceptors cells in diabetes. In vitro and ex vivo studies show that photoreceptor cells in elevated glucose release mediators that can induce tumor necrosis factor-α in leukocytes and endothelial cells, but not in glia. The soluble mediators released by photoreceptor cells in elevated glucose are regulated by transforming growth factor β-activated kinase 1 and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) signaling. In contrast to enhanced leukocyte-mediated killing of endothelial cells by leukocytes from wild-type diabetic mice, leukocytes from diabetic mice lacking photoreceptor cells (opsin−/−) did not kill endothelial cells. Conclusions These data indicate that photoreceptor cells are a source of inflammatory proteins in diabetes, and their release of soluble mediators can contribute to the death of retinal capillaries

  9. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation.

    PubMed

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; Meza-Cervantez, Patricia; Arroyo, Rossana; Tsutsumi, Víctor; Shibayama, Mineko

    2009-11-01

    Naegleria fowleri is an amoeboflagellate responsible for the fatal central nervous system (CNS) disease primary amoebic meningoencephalitis (PAM). This amoeba gains access to the CNS by invading the olfactory mucosa and crossing the cribriform plate. Studies using a mouse model of infection have shown that the host secretes mucus during the very early stages of infection, and this event is followed by an infiltration of neutrophils into the nasal cavity. In this study, we investigated the role of N. fowleri trophozoites in inducing the expression and secretion of airway mucin and pro-inflammatory mediators. Using the human mucoepidermal cell line NCI-H292, we demonstrated that N. fowleri induced the expression of the MUC5AC gene and protein and the pro-inflammatory mediators interleukin-8 (IL-8) and interleukin-1 beta (IL-1 beta), but not tumour necrosis factor-alpha or chemokine c-c motif ligand 11 (eotaxin). Since the production of reactive oxygen species (ROS) is a common phenomenon involved in the signalling pathways of these molecules, we analysed if trophozoites were capable of causing ROS production in NCI-H292 cells by detecting oxidation of the fluorescent probe 2,7-dichlorofluorescein diacetate. NCI-H292 cells generated ROS after 15-30 min of trophozoite stimulation. Furthermore, the expression of MUC5AC, IL-8 and IL-1 beta was inhibited in the presence of the ROS scavenger DMSO. In addition, the use of an epidermal growth factor receptor inhibitor decreased the expression of MUC5AC and IL-8, but not IL-1 beta. We conclude that N. fowleri induces the expression of some host innate defence mechanisms, such as mucin secretion (MUC5AC) and local inflammation (IL-8 and IL-1 beta) in respiratory epithelial cells via ROS production and suggest that these innate immune mechanisms probably prevent most PAM infections.

  10. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  11. Anti-inflammatory effects of glaucocalyxin B in microglia cells.

    PubMed

    Gan, Ping; Zhang, Li; Chen, Yanke; Zhang, Yu; Zhang, Fali; Zhou, Xiang; Zhang, Xiaohu; Gao, Bo; Zhen, Xuechu; Zhang, Jian; Zheng, Long Tai

    2015-05-01

    Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and generation of reactive oxygen species (ROS) in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO)-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases. PMID:26003084

  12. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  13. Immunologic Targeting of FOXP3 in Inflammatory Breast Cancer Cells

    PubMed Central

    McDonnell, Eoin; Cheng, Qing; Aggarwal, Anshu; Patel, Pujan; Williams, Monique M.; Boczkowski, David; Lyerly, H. Kim; Morse, Michael A.; Devi, Gayathri R.

    2013-01-01

    The forkhead transcription factor FOXP3 is necessary for induction of regulatory T lymphocytes (Tregs) and their immunosuppressive function. We have previously demonstrated that targeting Tregs by vaccination of mice with murine FOXP3 mRNA-transfected dendritic cells (DCs) elicits FOXP3-specific T cell responses and enhances tumor immunity. It is clear that FOXP3 expression is not restricted to T-cell lineage and herein, using RT-PCR, flow cytometry, and western immunoblot we demonstrate for the first time that FOXP3 is expressed in inflammatory breast cancer (IBC) cells, SUM149 (triple negative, ErbB1-activated) and SUM190 (ErbB2-overexpressing). Importantly, FOXP3-specific T cells generated in vitro using human FOXP3 RNA-transfected DCs as stimulators efficiently lyse SUM149 cells. Interestingly, an isogenic model (rSUM149) derived from SUM149 with an enhanced anti-apoptotic phenotype was resistant to FOXP3-specific T cell mediated lysis. The MHC class I cellular processing mechanism was intact in both cell lines at the protein and transcription levels suggesting that the resistance to cytolysis by rSUM149 cells was not related to MHC class I expression or to the MHC class I antigen processing machinery in these cells. Our data suggest that FOXP3 may be an effective tumor target in IBC cells however increased anti-apoptotic signaling can lead to immune evasion. PMID:23341929

  14. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells.

    PubMed

    Jeong, Jin-Woo; Jin, Cheng-Yun; Kim, Gi-Young; Lee, Jae-Dong; Park, Cheol; Kim, Gun-Do; Kim, Wun-Jae; Jung, Won-Kyo; Seo, Su Kil; Choi, Il-Whan; Choi, Yung Hyun

    2010-12-01

    Cordyceps militaris, a traditional medicinal mushroom, produces the bioactive compound cordycepin (3'-deoxyadenosine). Although cordycepin has been shown to have pharmacological, immunological stimulating, anti-cancer, and anti-inflammatory activities, its activities and cellular mechanisms during microglial activation have yet to be elucidated. Thus, we evaluated the anti-inflammatory effect of cordycepin on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of cordycepin on LPS-induced nuclear factor-kappaB (NF-κB) activation and on phosphorylation of mitogen-activated protein kinases (MAPKs). After LPS stimulation, nitric oxide (NO), prostaglandin E₂ (PGE₂), and pro-inflammatory cytokine production was detected in BV2 microglia. However, we found that cordycepin significantly inhibited the excessive production of NO, PGE₂, and pro-inflammatory cytokines in a concentration-dependent manner without causing cytotoxicity. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB-α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS-stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Therefore, cordycepin may be useful in treating neurodegenerative diseases by inhibiting inflammatory mediator production in activated microglia. PMID:20937401

  15. Acetylsalicylic acid enhances the anti-inflammatory effect of fluoxetine through inhibition of NF-κB, p38-MAPK and ERK1/2 activation in lipopolysaccharide-induced BV-2 microglia cells.

    PubMed

    Yang, J M; Rui, B B; Chen, C; Chen, H; Xu, T J; Xu, W P; Wei, W

    2014-09-01

    The latest advancements in neurobiological research provide increasing evidence that inflammatory and neurodegenerative pathways play an important role in depression. According to the cytokine hypothesis, depression could be due to the increased production of pro-inflammatory cytokines by microglia activation. Thus, using the BV-2 microglial cell line, the aim of the present study was to investigate whether fluoxetine (FLX) or acetylsalicylic acid (ASA) could inhibit this microglia activation and could achieve better results in combination. Our results showed that FLX could attenuate lipopolysaccharide (LPS)-induced production of interleukin-1β (IL-1β), the expression of the indoleamine 2,3 dioxygenase (IDO) enzyme and the depletion of 5-HT. Moreover, FLX could inhibit phosphorylation of nuclear factor-κB (NF-κB) and phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the combined use with ASA could enhance these effects. Notably, the adjunctive agent ASA could also inhibit phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2). Taken together, our results suggest that FLX may have some anti-inflammatory effects by modulating microglia activation and that ASA served as an effective adjunctive agent by enhancing these therapeutic effects.

  16. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    PubMed

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency. PMID:27413170

  17. Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/orai channels normally prevented by mitochondria.

    PubMed

    Muñoz, Eva; Valero, Ruth A; Quintana, Ariel; Hoth, Markus; Núñez, Lucía; Villalobos, Carlos

    2011-05-01

    Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).

  18. Inflammatory Kinetics and Efficacy of Anti-inflammatory Treatments on Human Nucleus Pulposus Cells

    PubMed Central

    Walter, Benjamin A; Purmessur, Devina; Likhitpanichkul, Morakot; Weinberg, Alan; Cho, Samuel K.; Qureshi, Sheeraz A.; Hecht, Andrew C.; Iatridis, James C.

    2015-01-01

    Study Design Human nucleus pulposus (NP) cell culture study investigating response to tumor necrosis factor-α (TNFα), effectiveness of clinically available anti-inflammatory drugs, and interactions between pro-inflammatory cytokines. Objective To characterize the kinetic response of pro-inflammatory cytokines released by human NP cells to TNFα stimulation and the effectiveness of multiple anti-inflammatories with 3 sub-studies: Timecourse, Same-time blocking, Delayed blocking. Summary of Background Data Chronic inflammation is a key component of painful intervertebral disc (IVD) degeneration. Improved efficacy of anti-inflammatories requires better understanding of how quickly NP cells produce pro-inflammatory cytokines and which pro-inflammatory mediators are most therapeutically advantageous to target. Methods Degenerated human NP cells (n=10) were cultured in alginate with or without TNFα (10ng/mL). Cells were incubated with one of four anti-inflammatories (anti-IL-6 receptor/atlizumab, IL-1 receptor anatagonist, anti-TNFα/infliximab and sodium pentosan polysulfate/PPS) in two blocking-studies designed to determine how intervention timing influences drug efficacy. Cell viability, protein and gene expression for IL-1β, IL-6 & IL-8 were assessed. Results Timecourse: TNFα substantially increased the amount of IL-6, IL-8 & IL-1β, with IL-1β and IL-8 reaching equilibrium within ~72 hours (IL-1β: 111±40pg/mL, IL-8: 8478±957pg/mL), and IL-6 not reaching steady state after 144 hours (1570±435 pg/mL). Anti-TNFα treatment was most effective at reducing the expression of all cytokines measured when added at the same time as TNFα stimulation. Similar trends were observed when drugs were added 72 hours after TNFα stimulation, however, no anti-inflammatories significantly reduced cytokine levels compared to TNF control. Conclusion IL-1β, IL-6 and IL-8 were expressed at different rates and magnitudes suggesting different roles for these cytokines in disease

  19. Traditional herbal formula Jakyakgamcho-tang (Paeonia lactiflora and Glycyrrhiza uralensis) impairs inflammatory chemokine production by inhibiting activation of STAT1 and NF-κB in HaCaT cells.

    PubMed

    Jeong, Soo-Jin; Lim, Hye-Sun; Seo, Chang-Seob; Kim, Jung-Hoon; Jin, Seong-Eun; Yoo, Sae-Rom; Shin, Hyeun-Kyoo

    2015-02-15

    A traditional herbal formula Jakyakgamcho-tang (JYGCT; Paeonia lactiflora and Glycyrrhiza uralensis) has been used for treatment of backache, muscle pain, acute abdominal pain, neuralgia, bronchial asthma, and painful peripheral neuropathy in Oriental medicine. We report on our experiments using the HaCaT human keratinocyte cell line showing that a traditional herbal formula JYGCT has inhibitory effects on inflammatory responses in skin. Stimulation with tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) caused a significant increase in the production of the following chemokines: thymus- and activation-regulated chemokine (TARC)/CCL17; macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8) in HaCaT cells. By contrast, treatment with JYGCT extract significantly reduced the production of TARC, MDC, RANTES, and IL-8, but caused no cytotoxicity, compared with TNF-α and IFN-γ-treated control cells. Consistently, JYGCT extract downregulated the mRNA expression of TARC, MDC, RANTES, and IL-8 induced by TNF-α and IFN-γ in a dose-dependent manner. In addition, TNF-α and IFN-γ markedly increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and the nuclear translocation of nuclear factor kappa B (NF-κB) in HaCaT cells. By contrast, TNF-α and IFN-γ-induced activation of STAT1 and NF-κB activation was inhibited by JYGCT treatment in a dose-dependent manner. Our data indicate that JYGCT attenuates TNF-α and IFN-γ-mediated chemokine production by targeting the STAT1 and NF-κB signalling in keratinocytes. Our findings suggest that JYGCT has potential as a therapeutic drug candidate for the treatment of inflammatory skin diseases. PMID:25765840

  20. Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines.

    PubMed

    Tsunekawa, Naoki; Higashi, Nobuaki; Kogane, Yusuke; Waki, Michihiko; Shida, Hiroaki; Nishimura, Yoshio; Adachi, Hayamitsu; Nakajima, Motowo; Irimura, Tatsuro

    2016-01-22

    To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production. PMID:26713365

  1. Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis.

    PubMed

    Shamamian, P; Schwartz, J D; Pocock, B J; Monea, S; Whiting, D; Marcus, S G; Mignatti, P

    2001-11-01

    Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis. PMID:11598905

  2. The Nurr1 Activator 1,1-Bis(3'-Indolyl)-1-(p-Chlorophenyl)Methane Blocks Inflammatory Gene Expression in BV-2 Microglial Cells by Inhibiting Nuclear Factor κB.

    PubMed

    De Miranda, Briana R; Popichak, Katriana A; Hammond, Sean L; Jorgensen, Bryce A; Phillips, Aaron T; Safe, Stephen; Tjalkens, Ronald B

    2015-06-01

    NR4A family orphan nuclear receptors are an important class of transcription factors for development and homeostasis of dopaminergic neurons that also inhibit expression of inflammatory genes in glial cells. The identification of NR4A2 (Nurr1) as a suppressor of nuclear factor κB (NF-κB)-related neuroinflammatory genes in microglia and astrocytes suggests that this receptor could be a target for pharmacologic intervention in neurologic disease, but compounds that promote this activity are lacking. Selected diindolylmethane compounds (C-DIMs) have been shown to activate or inactivate nuclear receptors, including Nurr1, in cancer cells and also suppress astrocyte inflammatory signaling in vitro. Based upon these data, we postulated that C-DIM12 [1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane] would suppress inflammatory signaling in microglia by a Nurr1-dependent mechanism. C-DIM12 inhibited lipopolysaccharide (LPS)-induced expression of NF-κB-regulated genes in BV-2 microglia including nitric oxide synthase (NOS2), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2), and the effects were attenuated by Nurr1-RNA interference. Additionally, C-DIM12 decreased NF-κB activation in NF-κB-GFP (green fluorescent protein) reporter cells and enhanced nuclear translocation of Nurr1 primary microglia. Chromatin immunoprecipitation assays indicated that C-DIM12 decreased lipopolysaccharide-induced p65 binding to the NOS2 promoter and concurrently enhanced binding of Nurr1 to the p65-binding site. Consistent with these findings, C-DIM12 also stabilized binding of the Corepressor for Repressor Element 1 Silencing Transcription Factor (CoREST) and the Nuclear Receptor Corepressor 2 (NCOR2). Collectively, these data identify C-DIM12 as a modulator of Nurr1 activity that results in inhibition of NF-κB-dependent gene expression in glial cells by stabilizing nuclear corepressor proteins, which reduces binding of p65 to inflammatory gene promoters.

  3. A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: up-regulation of SOCS3 expression through STAT3 activation.

    PubMed

    Pirvulescu, Monica; Manduteanu, Ileana; Gan, Ana Maria; Stan, Daniela; Simion, Viorel; Butoi, Elena; Calin, Manuela; Simionescu, Maya

    2012-06-01

    Resistin is a significant local and systemic regulatory cytokine involved in inflammation. Suppressors of cytokine signaling (SOCS) proteins are intracellular regulators of receptor signal transduction induced by several cytokines in a cytokine and cell specific manner. Resistin up-regulates SOCS3 expression in mice adipocytes but it is not known whether this is a common occurrence in other cells. We questioned whether resistin-induces SOCS3 in human endothelial cells and if signal transducer and activator of transcription (STAT) proteins are involved in the process. The Real-Time PCR and Western blot analysis showed that in resistin-activated HEC the gene and protein expression of SOCS3 were significantly increased. Furthermore, resistin induced activation of STAT3 as characterized by increased tyrosine phosphorylation. Resistin-induced SOCS3 expression was blocked by specific inhibitors of STAT3 signaling and by the transfection of siRNA specific for STAT3. Silencing of SOCS3 gene expression by transfection with SOCS3 siRNA reduced the expression of resistin induced-P-selectin and fractalkine in HEC. Together, our results demonstrate that in HEC (1) resistin up-regulates SOCS3 expression and activates STAT3 transcription factor; (2) the increase in SOCS3 mRNA and protein expression as well as STAT3 activation have a long-lasting effect (up to 18h); (3) inhibition of SOCS3 function prevents resistin-induced expression of cell adhesion molecules P-selectin and fractalkine and thus activation of endothelial cells. The data uncover a new resistin-mediated mechanism in human endothelial cells and designate SOCS3 as a novel therapeutic target to modulate resistin-dependent inflammation in vessel wall diseases.

  4. Accumulation and activation of epidermal γδ T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype.

    PubMed

    Sulcova, Jitka; Maddaluno, Luigi; Meyer, Michael; Werner, Sabine

    2015-09-01

    Chronic skin inflammation resulting from a defective epidermal barrier is a hallmark of atopic dermatitis (AD). We previously demonstrated that mice lacking FGF receptors 1 and 2 in keratinocytes (K5-R1/R2 mice) develop an AD-like chronic dermatitis as a result of an impaired epidermal barrier. Here, we show that γδ T cells, which rapidly respond to various insults, accumulate in the epidermis of K5-R1/R2 mice before the development of histological abnormalities. Their number and activation further increase as the phenotype progresses, most likely as a consequence of increased expression of Il-2 and Il-7 and the stress-induced proteins Rae-1, H60c, Mult1, PlexinB2, and Skint1. To determine the role of γδ T cells in the skin phenotype, we generated quadruple mutant K5-R1/-R2 mice lacking γδ T cells. Surprisingly, loss of γδ T cells did not or only marginally affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, and accumulation and activation of different immune cells in the skin of K5-R1/R2 mice, possibly due to partial compensation by αβ T cells. These results demonstrate that γδ T cells do not contribute to the development or maintenance of chronic inflammation in response to a defect in the epidermal barrier.

  5. Antibacterial and Anti-Inflammatory Activities of Physalis Alkekengi var. franchetii and Its Main Constituents

    PubMed Central

    Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue

    2016-01-01

    This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196

  6. Circulating Inflammatory Cells Are Associated with Vein Graft Stenosis

    PubMed Central

    Moreno, Katherine; Murray-Wijelath, Jacqui; Yagi, Mayumi; Kohler, Ted; Hatsukami, Thomas; Clowes, Alexander; Sobel, Michael

    2011-01-01

    Objective Infrainguinal autogenous vein grafts are especially prone to narrowing and failure, and both inflammatory and thrombotic pathways are implicated. Platelets and monocytes are the key thrombo-inflammatory cells that arrive first at sites of vascular injury. These cells have potent interactions that recruit and activate one another, propagating thrombotic and inflammatory responses within the vessel wall. We therefore hypothesized that elevated levels of platelet-monocyte aggregates might be associated with stenosis, and could possibly discriminate between patients with or without vein graft stenosis. Design of Study Thirty-six vascular surgery patients were studied, in a stable quiescent period after infrainguinal autogenous vein graft bypasses for occlusive disease. Eighteen patients had hemodynamically significant graft stenoses confirmed by imaging, and 18 were free from stenosis. The level of platelet-monocyte aggregates (PMA) in whole blood was quantified after blood draw using 2-color flow cytometry. Three measurements were made per sample: the basal, in-vivo level of aggregates (Baseline PMA); the predisposition to spontaneously generate PMA (Spontaneous PMA); and PMA generation by the addition of exogenous thrombin receptor activating peptide (Stimulated PMA). The baseline, in-vivo level of PMA was estimated by immediate flow analysis. The predisposition to spontaneously generate PMA was measured after in-vitro incubation. Responsiveness to thrombin stimulation of the blood was quantified by the in vitro dose response to an exogenous thrombin receptor activating peptide (sfllrn). Results Baseline PMA levels were similar in patients with vein graft stenosis vs. non-stenosis (14.8% ±3.2 versus 10.1% ±1.5 respectively, mean ±sem). However, patients with stenosis showed higher Spontaneous PMA levels (58.5% ±4.5 vs. 28.3 % ±4.3, P< .01), and higher Stimulated PMA levels (P< .001, ANOVA). Covariables of smoking, diabetes, statin or antithrombotic

  7. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  8. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells.

    PubMed

    Lim, Ji-Youn; Sul, Donggeun; Hwang, Bang Yeon; Hwang, Kwang Woo; Yoo, Ki-Yeol; Park, So-Young

    2013-02-01

    Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs. PMID:23458198

  9. Synthesis and anti-inflammatory activity of chalcone derivatives.

    PubMed

    Herencia, F; Ferrándiz, M L; Ubeda, A; Domínguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1998-05-19

    Chalcones and their derivatives were synthesized and evaluated for their anti-inflammatory activity. In vitro, chalcones 2, 4, 8, 10 and 13 inhibited degranulation and 5-lipoxygenase in human neutrophils, whereas 11 behaved as scavenger of superoxide. Only four compounds (4-7) inhibited cyclo-oxygenase-2 activity. The majority of these samples showed anti-inflammatory effects in the mouse air pouch model.

  10. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  11. Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells.

    PubMed

    Schwager, Joseph; Richard, Nathalie; Mussler, Bernd; Raederstorff, Daniel

    2016-01-01

    Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed. PMID:26840280

  12. Anti-inflammatory and antinociceptive activities of azadirachtin in mice.

    PubMed

    Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flávio A; Paulino, Tony P; Coelho, Márcio M; Machado, Renes R

    2014-06-01

    Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation

  13. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    PubMed Central

    Cruz Paredes, Carla; Bolívar Balbás, Paulina; Juárez, Zaida Nelly; Sánchez Arreola, Eugenio; Hernández, Luis Ricardo

    2013-01-01

    The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities. PMID:23843731

  14. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  15. Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword.

    PubMed

    Liu, Jiaqi; Wang, Haijuan; Li, Jun

    2016-01-01

    Myocardial infarction (MI) is the most common cause of cardiac injury, and subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Therefore, inflammation and inflammatory cell infiltration are the hallmarks of MI and reperfusion injury. Ischemic cardiac injury activates the innate immune response via toll-like receptors and upregulates chemokine and cytokine expressions in the infarcted heart. The recruitment of inflammatory cells is a dynamic and superbly orchestrated process. Sequential infiltration of the injured myocardium with neutrophils, monocytes and their descendant macrophages, dendritic cells, and lymphocytes contributes to the initiation and resolution of inflammation, infarct healing, angiogenesis, and ventricular remodeling. Both detrimental effects and a beneficial role in the pathophysiology of MI and reperfusion injury may be attributed to the subset heterogeneity and functional diversity of these inflammatory cells. PMID:27279755

  16. Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword

    PubMed Central

    Liu, Jiaqi; Wang, Haijuan; Li, Jun

    2016-01-01

    Myocardial infarction (MI) is the most common cause of cardiac injury, and subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Therefore, inflammation and inflammatory cell infiltration are the hallmarks of MI and reperfusion injury. Ischemic cardiac injury activates the innate immune response via toll-like receptors and upregulates chemokine and cytokine expressions in the infarcted heart. The recruitment of inflammatory cells is a dynamic and superbly orchestrated process. Sequential infiltration of the injured myocardium with neutrophils, monocytes and their descendant macrophages, dendritic cells, and lymphocytes contributes to the initiation and resolution of inflammation, infarct healing, angiogenesis, and ventricular remodeling. Both detrimental effects and a beneficial role in the pathophysiology of MI and reperfusion injury may be attributed to the subset heterogeneity and functional diversity of these inflammatory cells. PMID:27279755

  17. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    PubMed Central

    2012-01-01

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immuno-inflammatory function and genomic signaling in those with heightened inflammatory responsiveness to ozone is not well understood. Objectives Determine baseline predictors and post exposure discriminators for the immuno-inflammatory response to ozone in inflammatory responsive adult volunteers. Methods Sputum induction was performed on 27 individuals before and after a two hour chamber exposure to 0.4 ppm ozone. Subjects were classified as inflammatory responders or non-responders to ozone based on their PMN response. Innate immune function, inflammatory cell and cytokine modulation and transcriptional signaling pathways were measured in sputum. Results Post exposure, responders showed activated innate immune function (CD16: 31,004 MFI vs 8988 MFI; CD11b: 44,986 MFI vs 24,770 MFI; CD80: 2236 MFI vs 1506 MFI; IL-8: 37,603 pg/ml vs 2828 pg/ml; and IL-1β: 1380 pg/ml vs 318 pg/ml) with muted signaling of immune cell trafficking pathways. In contrast, non-responders displayed decreased innate immune activity (CD16, CD80; phagocytosis: 2 particles/PMN vs 4 particles/PMN) post exposure that was accompanied by a heightened signaling of immune cell trafficking pathways. Conclusions Inflammatory responsive and non responsive individuals to ozone show an inverse relationship between immune cell trafficking and immuno-inflammatory functional responses to ozone. These distinct genomic signatures may further our understanding about ozone-induced morbidity in individuals with different levels of inflammatory responsiveness. PMID:23033980

  18. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  19. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  20. Anti-inflammatory activity of some traditional medicinal plants.

    PubMed

    Singh, R K; Joshi, V K; Gambhir, S S

    1998-10-01

    The ethanol extract of roots, fruits and roots of solanum indicum and saccharum munja respectively and water soluble resin of commiphora myrrha were studied for antiinflammatory activity against carrageenin induced oedema in rats, the significant antiinflammatory activity were found in former two plants will slight anti inflammatory activity was observed in latter plant.

  1. Polyacrylic acid-coated and non-coated iron oxide nanoparticles induce cytokine activation in human blood cells through TAK1, p38 MAPK and JNK pro-inflammatory pathways.

    PubMed

    Couto, Diana; Freitas, Marisa; Porto, Graça; Lopez-Quintela, M Arturo; Rivas, José; Freitas, Paulo; Carvalho, Félix; Fernandes, Eduarda

    2015-10-01

    Iron oxide nanoparticles (ION) can have a wide scope of applications in biomedicine, namely in magnetic resonance imaging, tissue repair, drug delivery, hyperthermia, transfection, tissue soldering, and as antimicrobial agents. The safety of these nanoparticles, however, is not completely established, namely concerning their effect on immune system and inflammatory pathways. The aim of this study was to evaluate the in vitro effect of polyacrylic acid (PAA)-coated ION and non-coated ION on the production of six cytokines [interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), interferon gamma (IFN-γ) and interleukin 10 (IL-10)] by human peripheral blood cells, and to determine the inflammatory pathways involved in this production. The obtained results showed that PAA-coated and non-coated ION were able to induce all the tested cytokines and that activation of transforming growth factor beta (TGF-β)-activated kinase (TAK1), p38 mitogen-activated protein kinases (p38 MAPK) and c-Jun N-terminal kinases (JNK) were involved in this effect. PMID:25108419

  2. Triggering receptor expressed on myeloid cells-1 as a new therapeutic target during inflammatory diseases

    PubMed Central

    Derive, Marc; Massin, Frédéric

    2010-01-01

    The Triggering Receptor Expressed on Myeloid cells (TREM)-1 is a recently identified molecule involved in monocytic activation and inflammatory response. It belongs to a family related to Natural Killer cell-receptors and is expressed on neutrophils, mature monocytes and macrophages. The engagement of TREM-1 synergizes with several Toll Like Receptors (TLR) and/or NOD Like Receptors (NLR) activation in amplifying the inflammatory response mediated by microbial components or danger signals. The implication of TREM-1 during experimental models of acute or chronic inflammatory conditions, as well as during cancer, begins to understand. Furthermore, the modulation of the TREM-1 signaling pathway by the use of small synthetic peptides derived from its extracellular moiety confers interesting survival advantages during experimental murine septic shock and protects from organ damage during other inflammatory diseases. This review summarizes the recent advances on TREM-1 biology and highlights the promises of its therapeutic modulation. PMID:21487478

  3. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  4. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P.; Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena; Makeschin, Marie-Christine; Mayr, Doris; Rust, Christian; Trauner, Michael; Denk, Gerald U.

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  5. Heparanase induces inflammatory cell recruitment in vivo by promoting adhesion to vascular endothelium.

    PubMed

    Lever, Rebecca; Rose, Mark J; McKenzie, Edward A; Page, Clive P

    2014-06-15

    Heparanase (HPSE1) is known to be involved in mechanisms of metastatic tumor cell migration. This enzyme selectively cleaves heparan sulfate proteoglycans (HSPG), which are ubiquitously expressed in mammals and are known to be involved in regulating the activity of an array of inflammatory mediators. In the present study, we have investigated the effects of human recombinant heparanase, the inactive precursor of this enzyme (proheparanase) and enzymatically inactivated heparanase, on inflammatory cell recruitment in the rat and on human leukocyte-endothelial adhesion in vitro. Intraperitoneal injection of heparanase (500 μg) induced a significant inflammatory cell infiltrate in the rat, as assessed by peritoneal lavage 4 h later. Intravital microscopy of the mesenteric microcirculation of anesthetized rats showed an increase in rolling and adherent cells in postcapillary venules that was sensitive to heparin, a nonselective inhibitor of heparanase activity. In vitro, heparanase augmented the adhesion of human neutrophils and mononuclear cells to human umbilical vein endothelial cells in a concentration-dependent manner. Proheparanase had similar effects to the active enzyme both with respect to leukocyte accumulation in the peritoneal cavity and adhesion in vitro. However, heat-inactivated heparanase induced cell adhesion in vitro but was without effect in vivo. Together, these data indicate a role for heparanase in inflammatory cell trafficking in vivo that appears to require enzymatic activity.

  6. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis.

    PubMed

    Nooh, Hanaa Z; Nour-Eldien, Nermeen M

    2016-07-01

    A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified. PMID:27378376

  7. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  8. Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions

    PubMed Central

    Cicero, Arrigo

    2012-01-01

    Since the 19th century, many studies have enlightened the role of inflammation in atherosclerosis, changing our perception of “vessel plaque due to oxidized lipoproteins”, similar to a “rusted pipe”, towards a disease with involvement of many cell types and cytokines with more complex mechanisms. Although “physical activity” and “physical exercise” are two terms with some differences in meaning, compared to sedentary lifestyle, active people have lower cardiovascular risk and lower inflammatory markers. Activities of skeletal muscle reveal “myokines” which have roles in both the immune system and adipose tissue metabolism. In vitro and ex-vivo studies have shown beneficial effects of exercise on inflammation markers. Meanwhile in clinical studies, some conflicting results suggested that type of activity, exercise duration, body composition, gender, race and age may modulate anti-inflammatory effects of physical exercise. Medical data on patients with inflammatory diseases have shown beneficial effects of exercise on disease activity scores, patient well-being and inflammatory markers. Although the most beneficial type of activity and the most relevant patient group for anti-inflammatory benefits are still not clear, studies in elderly and adult people generally support anti-inflammatory effects of physical activity and moderate exercise could be advised to patients with cardiovascular risk such as patients with metabolic syndrome. PMID:23185187

  9. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  10. MicroRNA-122 Inhibits the Production of Inflammatory Cytokines by Targeting the PKR Activator PACT in Human Hepatic Stellate Cells.

    PubMed

    Nakamura, Masato; Kanda, Tatsuo; Sasaki, Reina; Haga, Yuki; Jiang, Xia; Wu, Shuang; Nakamoto, Shingo; Yokosuka, Osamu

    2015-01-01

    MicroRNA-122 (miR-122) is one of the most abundant miRs in the liver. Previous studies have demonstrated that miR-122 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the space of Disse. Here, we showed that the transient inhibition of PKR-activating protein (PACT) expression, by miR-122 or siRNA targeting of PACT, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, in human HSC LX-2. Sequence and functional analyses confirmed that miR-122 directly targeted the 3'-untranslated region of PACT. Immunofluorescence analysis revealed that miR-122 blocked NF-κB-nuclear translocation in LX-2 cells. We also showed that conditioned medium from miR-122-transfected LX-2 cells suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that miR-122 may downregulate cytokine production in HSCs and macrophage chemotaxis and that the targeting of miR-122 may have therapeutic potential for preventing the progression of liver diseases. PMID:26636761

  11. Mast cells mediate acute inflammatory responses to implanted biomaterials

    PubMed Central

    Tang, Liping; Jennings, Timothy A.; Eaton, John W.

    1998-01-01

    Implanted biomaterials trigger acute and chronic inflammatory responses. The mechanisms involved in such acute inflammatory responses can be arbitrarily divided into phagocyte transmigration, chemotaxis, and adhesion to implant surfaces. We earlier observed that two chemokines—macrophage inflammatory protein 1α/monocyte chemoattractant protein 1—and the phagocyte integrin Mac-1 (CD11b/CD18)/surface fibrinogen interaction are, respectively, required for phagocyte chemotaxis and adherence to biomaterial surfaces. However, it is still not clear how the initial transmigration of phagocytes through the endothelial barrier into the area of the implant is triggered. Because implanted biomaterials elicit histaminic responses in the surrounding tissue, and histamine release is known to promote rapid diapedesis of inflammatory cells, we evaluated the possible role of histamine and mast cells in the recruitment of phagocytes to biomaterial implants. Using i.p. and s.c. implantation of polyethylene terephthalate disks in mice we find: (i) Extensive degranulation of mast cells, accompanied by histamine release, occurs adjacent to short-term i.p. implants. (ii) Simultaneous administration of H1 and H2 histamine receptor antagonists (pyrilamine and famotidine, respectively) greatly diminishes recruitment and adhesion of both neutrophils (<20% of control) and monocytes/macrophages (<30% of control) to implants. (iii) Congenitally mast cell-deficient mice also exhibit markedly reduced accumulation of phagocytes on both i.p. and s.c implants. (iv) Finally, mast cell reconstitution of mast cell-deficient mice restores “normal” inflammatory responses to biomaterial implants. We conclude that mast cells and their granular products, especially histamine, are important in recruitment of inflammatory cells to biomaterial implants. Improved knowledge of such responses may permit purposeful modulation of both acute and chronic inflammation affecting implanted biomaterials. PMID

  12. Systemic Administration of Tolerogenic Dendritic Cells Ameliorates Murine Inflammatory Arthritis

    PubMed Central

    Healy, Louise J; Collins, Helen L; Thompson, Stephen J

    2008-01-01

    The expression of various cell surface molecules and the production of certain cytokines are important mechanisms by which dendritic cells (DC) are able to bias immune responses. This paper describes the effects of the inflammatory cytokine tumor necrosis factor (TNF)-α on DC phenotype and function. TNF-α treatment resulted in upregulation of MHC class II and CD86 in the absence of increased cell surface CD40 and CD80 or the production of IL-12. Additionally TNF-α treated cells were able to bias T cell responses towards an anti-inflammatory profile. On a note of caution this tolerogenic phenotype of the DC was not stable upon subsequent TLR-4 ligation as a 4 hour pulse of the TNF-α treated DC with lipopolysaccharide (LPS) resulted in the restoration of IL-12 production and an enhancement of their T cell stimulatory capacity which resulted in an increased IFN-γ production. However, TNF-α treated DC, when administered in vivo, were shown to ameliorate disease in collagen induced arthritis, an experimental model of inflammatory joint disease. Mice receiving TNF-α treated DC but not LPS matured DC had a delayed onset, and significantly reduced severity, of arthritis. Disease suppression was associated with reduced levels of collagen specific IgG2a and decreased inflammatory cell infiltration into affected joints. In summary the treatment of DC with TNF-α generates an antigen presenting cell with a phenotype that can reduce the pro-inflammatory response and direct the immune system towards a disease modifying, anti-inflammatory state. PMID:19156221

  13. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  14. Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators.

    PubMed

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Yang, Evert; Pattani, Sagar; Zaheer, Smita; Santillan, Donna A; Santillan, Mark K; Zaheer, Asgar

    2015-01-01

    Parkinson's disease (PD) is characterized by the presence of Lewy bodies and degeneration of dopaminergic neurons. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Lewy body component α-synuclein activates glia in PD pathogenesis. Mast cells and glia maturation factor (GMF) are implicated in neuroinflammatory conditions including Multiple Sclerosis. However, the role of mast cells in PD is not yet known. We have analyzed the effect of recombinant GMF, MPP+, α-synuclein and interleukin-33 (IL-33) on mouse bone marrow-derived cultured mast cells (BMMCs), human umbilical cord blood-derived cultured mast cells (hCBMCs) and mouse brain-derived cultured astrocytes by quantifying cytokines/chemokines released using ELISA or by detecting the expression of co-stimulatory molecules CD40 and CD40L by flow cytometry. GMF significantly released chemokine (C-C motif) ligand 2 (CCL2) from BMMCs but its release was reduced in BMMCs from GMF knockout mice. GMF, α-synuclein and MPP+ released IL-1β, β-hexosaminidase from BMMCs, and IL-8 from hCBMCs. GMF released CCL5, and IL-33- induced the expression of GMF from hCBMCs. Novel GMF expression was detected in hCBMCs and BMMCs by immunocytochemistry. GMF released tumor necrosis factor-alpha (TNF-α) from mouse astrocytes, and this release was greater in BMMC- astrocyte coculture than in individual cultures. Flow cytometry results showed increased IL-33 expression by GMF and MPP+, and GMF-induced CD40 expression in astrocytes. Proinflammatory mediator release by GMF, MPP+ and α-synuclein, as well as GMF expression by mast cells indicate a potential therapeutic target for neurodegenerative diseases including PD. PMID:26275153

  15. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483.

    PubMed

    Papoutsi, Z; Kassi, E; Chinou, I; Halabalaki, M; Skaltsounis, L A; Moutsatsou, P

    2008-04-01

    Epidemiological studies suggest that the incidence of CVD and postmenopausal osteoporosis is low in the Mediterranean area, where herbs and nuts, among others, play an important role in nutrition. In the present study, we sought a role of walnuts (Juglans regia L.) in endothelial and bone-cell function. As the endothelial cell expression of adhesion molecules has been recognised as an early step in inflammation and atherogenesis, we examined the effect of walnut methanolic extract and ellagic acid, one of its major polyphenolic components (as shown by HPLC analysis), on the expression of vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1 in human aortic endothelial cells. After incubating the cells with TNF-alpha (1 ng/ml) in the absence and in the presence of walnut extract (10-200 microg/ml) or ellagic acid (10- 7-10- 5 m), the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. We further evaluated the effect of walnut extract (10-50 microg/ml), in comparison with ellagic acid (10- 9-10- 6m), on nodule formation in the osteoblastic cell line KS483. Walnut extract and ellagic acid decreased significantly the TNF-alpha-induced endothelial expression of both VCAM-1 and ICAM-1 (P < 0.01; P < 0.001). Both walnut extract (at 10-25 microg/ml) and ellagic acid (at 10- 9-10- 8 m) induced nodule formation in KS483 osteoblasts. The present results suggest that the walnut extract has a high anti-atherogenic potential and a remarkable osteoblastic activity, an effect mediated, at least in part, by its major component ellagic acid. Such findings implicate the beneficial effect of a walnut-enriched diet on cardioprotection and bone loss.

  16. Sleep disorders and inflammatory disease activity: chicken or the egg?

    PubMed

    Parekh, Parth J; Oldfield Iv, Edward C; Challapallisri, Vaishnavi; Ware, J Catsby; Johnson, David A

    2015-04-01

    Sleep dysfunction is a highly prevalent condition that has long been implicated in accelerating disease states characterized by having an inflammatory component such as systemic lupus erythematosus, HIV, and multiple sclerosis. Inflammatory bowel disease (IBD) is a chronic, debilitating disease that is characterized by waxing and waning symptoms, which are a direct result of increased circulating inflammatory cytokines. Recent studies have demonstrated sleep dysfunction and the disruption of the circadian rhythm to result in an upregulation of inflammatory cytokines. Not only does this pose a potential trigger for disease flares but also an increased risk of malignancy in this subset of patients. This begs to question whether or not there is a therapeutic role of sleep cycle and circadian rhythm optimization in the prevention of IBD flares. Further research is needed to clarify the role of sleep dysfunction and alterations of the circadian rhythm in modifying disease activity and also in reducing the risk of malignancy in patients suffering from IBD.

  17. Ellagic Acid, a Dietary Polyphenol, Inhibits Tautomerase Activity of Human Macrophage Migration Inhibitory Factor and Its Pro-inflammatory Responses in Human Peripheral Blood Mononuclear Cells.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Mazumder, Somnath; De, Rudranil; Saha, Shubhra J; Banerjee, Chinmoy; Iqbal, Mohd S; Adhikari, Susanta; Alam, Athar; Roy, Siddhartha; Bandyopadhyay, Uday

    2015-05-27

    Ellagic acid (EA), a phenolic lactone, inhibited tautomerase activity of human macrophage migration inhibitory factor (MIF) noncompetitively (Ki = 1.97 ± 0.7 μM). The binding of EA to MIF was determined by following the quenching of tryptophan fluorescence. We synthesized several EA derivatives, and their structure-activity relationship studies indicated that the planar conjugated lactone moiety of EA was essential for MIF inhibition. MIF induces nuclear translocation of NF-κB and chemotaxis of peripheral blood mononuclear cells (PBMCs) to promote inflammation. We were interested in evaluating the effect of EA on nuclear translocation of NF-κB and chemotactic activity in human PBMCs in the presence of MIF. The results showed that EA inhibited MIF-induced NF-κB nuclear translocation in PBMCs, as evident from confocal immunofluorescence microscopic data. EA also inhibited MIF-mediated chemotaxis of PBMCs. Thus, we report MIF-inhibitory activity of EA and inhibition of MIF-mediated proinflammatory responses in PBMCs by EA.

  18. Simple synthesis of modafinil derivatives and their anti-inflammatory activity.

    PubMed

    Jung, Jae-Chul; Lee, Yeonju; Son, Jee-Young; Lim, Eunyoung; Jung, Mankil; Oh, Seikwan

    2012-09-03

    Simple synthesis of modafinil derivatives and their biological activity are described. The key synthetic strategies involve substitution and coupling reactions. We determined the anti-inflammatory effects of modafinil derivatives in cultured BV2 cells by measuring the inhibition of nitrite production and expression of iNOS and COX-2 after LPS stimulation. It was found that for sulfide analogues introduction of aliphatic groups on the amide part (compounds 11a–d) resulted in lower anti-inflammatory activity compared with cyclic or aromatic moieties (compounds 11e–k). However, for the sulfoxide analogues, introduction of aliphatic moieties (compounds 12a–d) showed higher anti-inflammatory activity than cyclic or aromatic fragments (compounds 12e–k) in BV-2 microglia cells.

  19. Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry.

    PubMed

    Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo

    2016-09-01

    Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column.

  20. Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry.

    PubMed

    Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo

    2016-09-01

    Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column. PMID:27524299

  1. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner.

  2. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  3. Pro-inflammatory activities in elapid snake venoms.

    PubMed Central

    Tambourgi, D. V.; dos Santos, M. C.; Furtado, M. de F.; de Freitas, M. C.; da Silva, W. D.; Kipnis, T. L.

    1994-01-01

    1. Snake venoms from the genera Micrurus (M. ibiboboca and M. spixii) and Naja (N. naja, N. melanoleuca and N. nigricollis) were analysed, using biological and immunochemical methods, to detect pro-inflammatory activities, cobra venom factor (COF), proteolytic enzymes, thrombin-like substances, haemorrhagic and oedema-producing substances. 2. The venoms of the five snake species activate the complement system (C) in normal human serum (NHS) in a dose-related fashion, at concentrations ranging from 5 micrograms to 200 micrograms ml-1 serum. Electrophoretic conversion of C3 was observed with all venoms in NHS containing normal concentrations of Ca2+ and Mg2+, but only by venoms from N. naja and N. melanoleuca when Ca2+ was chelated by adding Mg(2+)-EGTA. 3. Purified human C3 was electrophoretically converted, in the absence of other C components, by the venoms from N. naja, N. nigricollis and M. ibiboboca. However, only the venoms from N. naja and N. melanoleuca contained a 144 kDa protein revealed in Western blot with sera against COF or human C3. 4. All venoms, at minimum concentrations of 30 ng ml-1, were capable of lysing sheep red blood cells, also in a dose-related fashion, when incubated with these cells in presence of egg yolk as a source of lecithin. Although the venoms from M. spixii and N. nigricollis showed detectable thrombin-like activity, these and the other venoms were free of proteolytic activity when fibrin, gelatin and casein, were used as substrates. 5. When tested on mice skin, all five venoms were capable of inducing an increase in vascular permeability and oedema, but were devoid of haemorrhagic producing substances (haemorrhagins).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7921595

  4. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  5. Calpain inhibition attenuates intracellular changes in muscle cells in response to extracellular inflammatory stimulation

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2010-01-01

    Idiopathic inflammatory myopathies (IIMs), comprising of polymyositis, dermatomyositis, and inclusion-body myositis, are characterized by muscle weakness and various types of inflammatory changes in muscle cells. They also show non-inflammatory changes, including perifascicular atrophy, mitochondrial changes, and amyloid protein accumulation. It is possible that some molecules/mechanisms bridge the extracellular inflammatory stimulation and intracellular non-inflammatory changes. One such mechanism, Ca2+ influx leading to calpain activation has been proposed. In this study, we demonstrated that post-treatment with calpeptin (calpain inhibitor) attenuated intracellular changes to prevent apoptosis (Wright staining) through both mitochondrial pathway (increase in Bax:Bcl-2 ratio) and endoplasmic reticulum stress pathway (activation of caspase-12), which were induced by interferon-gamma (IFN-γ) stimulation in rat L6 myoblast cells. Our results also showed that calpeptin treatment inhibited the expression of calpain, aspartyl protease cathepsin D, and amyloid precursor protein. Thus, our results indicate that calpain inhibition plays a pivotal role in attenuating muscle cell damage from inflammatory stimulation due to IFN-γ, and this may suggest calpain as a possible therapeutic target in IIMs. PMID:20673830

  6. Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.

    PubMed

    Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-03-01

    Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action.

  7. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    PubMed

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-06-18

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes.

  8. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    PubMed

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-01-01

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes. PMID:26096431

  9. Anti-inflammatory activity of Syzygium cumini bark.

    PubMed

    Muruganandan, S; Srinivasan, K; Chandra, S; Tandan, S K; Lal, J; Raviprakash, V

    2001-05-01

    The ethanolic extract of the bark of Syzygium cumini was investigated for its anti-inflammatory activity in animal models. The extract did not show any sign of toxicity up to a dose of 10.125 g/kg, p.o. in mice. Significant anti-inflammatory activity was observed in carrageenin (acute), kaolin-carrageenin (subacute), formaldehyde (subacute)-induced paw oedema and cotton pellet granuloma (chronic) tests in rats. The extract did not induce any gastric lesion in both acute and chronic ulcerogenic tests in rats. Thus, the present study demonstrated that S. cumini bark extract has a potent anti-inflammatory action against different phases of inflammation without any side effect on gastric mucosa. PMID:11395258

  10. Elevated granulocyte strontium in inflammatory arthritides is related to the inflammatory activity

    SciTech Connect

    Haellgren, R.; Svensson, K.; Johansson, E.; Lindh, U.

    1984-12-01

    Total cellular strontium and calcium were measured by the nuclear microprobe technique. Increased mass fraction of both elements was found in granulocytes isolated from patients with active rheumatoid arthritis and other kinds of inflammatory arthritides. Increased granulocyte calcium but only marginally elevated granulocyte strontium was demonstrated in patients with scleroderma. The granulocyte accumulation of strontium and calcium seems to be linked to the degree of inflammatory activity, because the granulocyte content of both elements was positively correlated to the plasma concentration of acute-phase proteins. Corticosteroid therapy induced a marked reduction of granulocyte strontium but a more modest decrease of granulocyte calcium. The serum levels of strontium and calcium were within the normal ranges in all patients and were not significantly altered by corticosteroids. 21 references, 4 figures, 3 tables.

  11. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    PubMed

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  12. Tenascin-C in chronic canine hepatitis: immunohistochemical localization and correlation with necro-inflammatory activity, fibrotic stage, and expression of alpha-smooth muscle actin, cytokeratin 7, and CD3+ cells.

    PubMed

    Mekonnen, G A; Ijzer, J; Nederbragt, H

    2007-11-01

    During fibrosis, the extracellular matrix (ECM) is continuously remodeled and increases in volume due to the production of various proteins. We studied the distribution of tenascin-C (TN-C) and the correlation of TN-C with the necro-inflammatory activity and expression of alpha-smooth muscle actin (alpha-SMA), cytokeratin 7 (CK7), and CD3+ T-lymphocytes in canine chronic hepatitis. This was analyzed using immunohistochemistry and semiquantitative scoring. We used 3 groups (n = 19) of dogs: group 1 (n = 5) with neonatal hepatitis/lobular dissecting hepatitis (NH/LDH), group 2 (n = 8) with chronic hepatitis/cirrhosis (CH/CIRR), and group 3 (n = 6) consisting of healthy animals. In normal livers, TN-C was localized in Disse's space and around bile ducts and blood vessels. In CH/CIRR livers, TN-C was localized at the periphery of the regenerating nodules and was conspicuous in the bridging fibrous bands. In NH/LDH, TN-C was diffusely distributed along the reticular fibers that dissected between single cells or groups of hepatocytes. alpha-SMA in the normal hepatic parenchyma showed an irregular distribution along the perisinusoidal linings. In other groups, alpha-SMA was increased in fibrotic septa and perisinusoidal linings. In normal livers, CK7 was positive in bile ducts. In other groups, CK7-expressing cells were conspicuous in the portal-parenchymal interface, the periphery of the regenerative nodules, and the degenerated parenchyma. The pattern of CD3+ lymphocytes was inversely proportional to that of TN-C. These results also showed that TN-C is strongly correlated with increased fibrotic stage, inflammatory activity, and expression of CK7 and alpha-SMA. TN-C, CK7, and CD3 expression did not differ between diagnostic groups.

  13. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    PubMed

    González-Cortazar, Manasés; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca.

  14. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    PubMed

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  15. Inflammatory regulatory T cells in the microenvironments of ulcerative colitis and colon carcinoma.

    PubMed

    Kryczek, Ilona; Wang, Lin; Wu, Ke; Li, Wei; Zhao, Ende; Cui, Tracy; Wei, Shuang; Liu, Yan; Wang, Yin; Vatan, Linda; Szeliga, Wojciech; Greenson, Joel K; Roliński, Jacek; Zgodzinski, Witold; Huang, Emina; Tao, Kaixiong; Wang, Guobin; Zou, Weiping

    2016-08-01

    Foxp3(+)CD4(+) regulatory T (Treg) cells are thought to express negligible levels of effector cytokines, and inhibit immune responses and inflammation. Here, we have identified a population of IL-8(+)Foxp3(+)CD4(+) T cells in human peripheral blood, which is selectively increased in the microenvironments of ulcerative colitis and colon carcinoma. Phenotypically, this population is minimally overlapping with IL-17(+)Foxp3(+)CD4(+) T cells, and is different from IL-8(-)Foxp3(+)CD4(+) T cells in the same microenvironment. 40-60% of IL-8(+)Foxp3(+)CD4(+) T cells exhibit naive phenotype and express CD127, whereas IL-8(-)Foxp3(+)CD4(+) cells are basically memory T cells and express minimal CD127. The levels of CXCR5 expression are higher in IL-8(+)Foxp3(+) cells than in IL-8(-)Foxp3(+) cells. IL-2 and TGFβ induce IL-8(+)Foxp3(+) T cells. Exogenous Foxp3 expression promotes IL-8(+)Foxp3(+) T cells and inhibits effector cytokine IFNγ and IL-2 expression. Furthermore, Foxp3 binds to IL-8 proximal promoter and increases its activity. Functionally, IL-8(+)Foxp3(+) T cells inhibit T cell proliferation and effector cytokine production, but stimulate inflammatory cytokine production in the colon tissues, and promote neutrophil trafficking through IL-8. Thus, IL-8(+)Foxp3(+) cells may be an "inflammatory" Treg subset, and possess inflammatory and immunosuppressive dual biological activities. Given their dual roles and localization, these cells may be in a unique position to support tumor initiation and development in human chronic inflammatory environment. PMID:27622054

  16. Analgesic and anti-inflammatory activity of Leonurus sibiricus.

    PubMed

    Islam, M Amirul; Ahmed, Firoj; Das, A K; Bachar, S C

    2005-06-01

    The methanolic extract of Leonurus sibiricus aerial parts injected intraperitoneally at dose of 250 and 500 mg/kg showed a significant analgesic effect in acetic acid-induced writhing in mice. Moreover, when given orally to rats at dose of 200 and 400 mg/kg, it showed a significant anti-inflammatory activity against carrageenin induced rat paw edema in rats.

  17. Anti-inflammatory, antiangiogenic, and apoptosis-inducing activity of DLBS1442, a bioactive fraction of Phaleria macrocarpa, in a RL95-2 cell line as a molecular model of endometriosis.

    PubMed

    Tandrasasmita, Olivia M; Sutanto, Adeline M; Arifin, Poppy F; Tjandrawinata, Raymond R

    2015-01-01

    DLBS1442 is a bioactive fraction extracted from the fruit of the native Indonesian plant, Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae). This bioactive fraction is a potential treatment for dysmenorrhea and endometriosis. The present study investigated the pharmacological action of DLBS1442 in endometrial cells. The effect of various doses of DLBS1442 (0-200 μg/mL) over 24 hours was studied using the human endometrial RL95-2 cell line to observe its effect on angiogenesis, cell migration, estrogen and progesterone receptor levels, the eicosanoid pathway, cell viability, and apoptosis. The impact of DLBS1442 on nuclear factor kappa B (NFκB) and the eicosanoid pathway was also studied through its marker gene expression using a quantitative real-time polymerase chain reaction method. DLBS1442 showed an ability to inhibit angiogenesis and cell migration in a dose-dependent manner. At a dose of 100 μg/mL, DLBS1442 increased the cell population in sub-G1 phase from 7% to 34%. DLBS1442 also significantly downregulated the estrogen receptor level and upregulated the progesterone receptor level. Further, it inhibited the eicosanoid signaling pathway by reducing the NFκB transcription level and subsequent reduction of inducible nitric oxide synthase. A dose-dependent decrease in viability and increased apoptosis in RL95-2 cells were also evident after exposure to DLBS1442, where the IC50 was obtained at around 100 μg/mL. In conclusion, DLBS1442 is a potential agent for alleviating symptoms of endometriosis via its antiangiogenic, anti-inflammatory, and proapoptotic activity. PMID:25678821

  18. Anti-inflammatory, antiangiogenic, and apoptosis-inducing activity of DLBS1442, a bioactive fraction of Phaleria macrocarpa, in a RL95-2 cell line as a molecular model of endometriosis

    PubMed Central

    Tandrasasmita, Olivia M; Sutanto, Adeline M; Arifin, Poppy F; Tjandrawinata, Raymond R

    2015-01-01

    DLBS1442 is a bioactive fraction extracted from the fruit of the native Indonesian plant, Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae). This bioactive fraction is a potential treatment for dysmenorrhea and endometriosis. The present study investigated the pharmacological action of DLBS1442 in endometrial cells. The effect of various doses of DLBS1442 (0–200 μg/mL) over 24 hours was studied using the human endometrial RL95-2 cell line to observe its effect on angiogenesis, cell migration, estrogen and progesterone receptor levels, the eicosanoid pathway, cell viability, and apoptosis. The impact of DLBS1442 on nuclear factor kappa B (NFκB) and the eicosanoid pathway was also studied through its marker gene expression using a quantitative real-time polymerase chain reaction method. DLBS1442 showed an ability to inhibit angiogenesis and cell migration in a dose-dependent manner. At a dose of 100 μg/mL, DLBS1442 increased the cell population in sub-G1 phase from 7% to 34%. DLBS1442 also significantly downregulated the estrogen receptor level and upregulated the progesterone receptor level. Further, it inhibited the eicosanoid signaling pathway by reducing the NFκB transcription level and subsequent reduction of inducible nitric oxide synthase. A dose-dependent decrease in viability and increased apoptosis in RL95-2 cells were also evident after exposure to DLBS1442, where the IC50 was obtained at around 100 μg/mL. In conclusion, DLBS1442 is a potential agent for alleviating symptoms of endometriosis via its antiangiogenic, anti-inflammatory, and proapoptotic activity. PMID:25678821

  19. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response

    PubMed Central

    Li, Chang Xian; Lo, Chung Mau; Lian, Qizhou; Ng, Kevin Tak-Pan; Liu, Xiao Bing; Ma, Yuen Yuen; Qi, Xiang; Yeung, Oscar Wai Ho; Tergaonkar, Vinay; Yang, Xin Xiang; Liu, Hui; Liu, Jiang; Shao, Yan; Man, Kwan

    2016-01-01

    Repressor and activator protein (Rap1) directly regulates nuclear factor-κB (NF-κB) dependent signaling, which contributes to hepatic IRI. We here intended to investigate the effect of Rap1 in hepatic ischemia reperfusion injury (IRI) and to explore the underlying mechanisms. The association of Rap1 expression with hepatic inflammatory response were investigated in both human and rat liver transplantation. The effect of Rap1 in hepatic IRI was studied in Rap1 knockout mice IRI model in vivo and primary cells in vitro. Our results showed that over expression of Rap1 was associated with severe liver graft inflammatory response, especially in living donor liver transplantation. The results were also validated in rat liver transplantation model. In mice hepatic IRI model, the knockout of Rap1 reduced hepatic damage and hepatic inflammatory response. In primary cells, the knockout of Rap1 suppressed neutrophils migration activity and adhesion in response to liver sinusoidal endothelial cells through down-regulating neutrophils F-Actin expression and CXCL2/CXCR2 pathway. In addition, the knockout of Rap1 also decreased production of pro-inflammatory cytokines/chemokines in primary neutrophils and neutrophils-induced hepatocyte damage. In conclusion, Rap1 may induce hepatic IRI through promoting neutrophils inflammatory response. Rap1 may be the potential therapeutic target of attenuating hepatic IRI. PMID:27050284

  20. Distribution of Th17 cells and Th1 cells in peripheral blood and cerebrospinal fluid in chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Chi, Li Jun; Xu, Wan Hai; Zhang, Zong Wen; Huang, Hui Tao; Zhang, Li Ming; Zhou, Jin

    2010-12-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated demyelinating disease of the peripheral nervous system. Th17 and Th1 cells contribute to the pathogenesis of most autoimmune diseases, but little is known about their distribution and reciprocal relationship in CIDP. In this study, we analyzed the distribution of Th17, Th1, and Th17/Th1 cells in the peripheral blood and cerebrospinal fluid (CSF). The results showed that the frequency of Th17 cells was significantly higher in the peripheral blood mononuclear cell (PBMCs) and CSF of active CIDP in comparison with remitting CIDP or to other non-inflammatory neurological diseases (ONDs), accompanied by similar findings for Th17/Th1 cells. Both active and remitting CIDP have higher percentage of Th1 cells in the CSF than OND. CSF protein levels positively correlated with the frequencies of Th17 cells either in the PBMCs or CSF of active CIDP, while there was no significant correlation with Th1 cells. In line with these observations, the levels of interleukin-17 (IL-17) in plasma and transcript factors retinoic acid receptor-related orphan receptor (ROR)γt expressed by PBMCs were significantly higher in the active CIDP than remitting CIDP or OND. In summary, our preliminary findings suggest that elevated numbers of inflammatory T cells, especially for Th17 cells, might be an important determinant in the evolution of CIDP.

  1. Aluminum induces inflammatory and proteolytic alterations in human monocytic cell line.

    PubMed

    Ligi, D; Santi, M; Croce, L; Mannello, F

    2015-11-01

    The increasing exposure to aluminum has been linked with the development of different human pathologies (e.g., breast cancer, myofasciitis, neurodegenerative diseases), probably due to the consistent presence of aluminum salts in widely diffused cosmetic products and vaccines. However, the mechanisms underlying immunologic and proliferative alterations still remain unknown. In the present study we investigated the ability of different aluminum compounds (i.e., aluminum chloride vs Imject® Alum, a mixture of aluminum and magnesium hydroxide) to trigger both inflammatory and proteolytic responses in U-937 human monocytic cell line. We demonstrated, by multiplex immunoassay analyses, that monocytic cells treated with both Imject Alum and aluminum chloride showed different and peculiar expression profiles of 27 inflammatory mediators and 5 matrix metalloproteinases, with respect to untreated control cells. In particular, we found dose-dependent significantly increased levels of pro-inflammatory cytokines, growth factors, and chemoattractant chemokines; whereas among metalloproteinases, only collagenolytic protease showed a significant dose-dependent increase in Imject-treated cells with respect to controls and Al-chloride treated cells. Noteworthy, we found only in Imject Alum-treated cells the significant positive correlations among collagenolytic metalloproteinase and increased expression of pro-inflammatory chemokines, suggesting a possible involvement of aluminum in regulating the acute inflammatory responses. In agreement to emerging evidences, for the first time we demonstrated that the treatment of monocyte cells with aluminum-based adjuvant is able to induce an inflammatory status and a proteolytic cascade activation. In fact, the cell treatment with Imject Alum induced increased levels of several cytokines and proteinases, suggesting these monocyte mediators as possible biomarkers for aluminum-linked diseases. The identification of the biochemical pathways

  2. Plasma cell granuloma of the lung (inflammatory pseudotumor).

    PubMed

    Fassina, A S; Rugge, M; Scapinello, A; Viale, G; Dell'Orto, P; Ninfo, V

    1986-10-31

    A case of plasma cell granuloma (PCG) of the lung in a 54-year old man is reported. PCG is a rare benign lesion that usually presents as a solitary nodule in the lung (coin lesion) at routine X-ray examination. Microscopically it consists of a granulomatous tissue where the major components are mature plasma cells. The immunohistochemical demonstration of polyclonality of plasma cells, excluding the diagnosis of plasmacytoma, confirms the inflammatory pseudotumoral nature of this lesion, although the etiology remains obscure. The presence of lymphocytes, histiocytes, macrophages, blood vessels with prominent endothelial cells and peripheral sclero-hyalinized connective tissue may pose problems in the differential diagnosis with sclerosing hemangioma, pseudolymphoma, nodular amyloidosis, pulmonary hyalinizing granuloma, chronic abscess and neoplasms of true histiocytic origin. The term inflammatory pseudotumor is preferable in describing this type of lesion. PMID:3798575

  3. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses.

    PubMed

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Ledesma, Maria Dolores; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2015-09-01

    The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4(+) T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation, and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward proinflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD(+) levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify strategies for intervention in mitochondrial-related diseases.

  4. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers.

    PubMed

    Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Mesquita-Ferrari, Raquel Agnelli; Silva, Daniela de Fatima Teixeira da; Rocha, Lilia Alves; Alves, Agnelo Neves; Sousa, Kaline de Brito; Bussadori, Sandra Kalil; Hamblin, Michael R; Nunes, Fábio Daumas

    2015-12-01

    M1 profile macrophages exert a major influence on initial tissue repair process. Few days after the occurrence of injury, macrophages in the injured region exhibit a M2 profile, attenuate the effects of the M1 population, and stimulate the reconstruction of the damaged tissue. The different effects of macrophages in the healing process suggest that these cells could be the target of therapeutic interventions. Photobiomodulation has been used to accelerate tissue repair, but little is known regarding its effect on macrophages. In the present study, J774 macrophages were activated to simulate the M1 profile and irradiated with two different sets of laser parameters (780 nm, 70 mW, 2.6J/cm(2), 1.5s and 660 nm, 15 mW, 7.5 J/cm(2), 20s). IL-6, TNF-α, iNOS and COX-2 gene and protein expression were analyzed by RT-qPCR and ELISA. Both lasers were able to reduce TNF-α and iNOS expression, and TNF-α and COX-2 production, although the parameters used for 780 nm laser provided an additional decrease. 660 nm laser parameters resulted in an up-regulation of IL-6 expression and production. These findings imply a distinct, time-dependent modulation by the two different sets of laser parameters, suggesting that the best modulation may involve more than one combination of parameters.

  5. Cell Death and Inflammatory Bowel Diseases: Apoptosis, Necrosis, and Autophagy in the Intestinal Epithelium

    PubMed Central

    2014-01-01

    Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn's disease and in specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and inflammatory bowel diseases. PMID:25126549

  6. Anti-inflammatory activity of traditional Chinese medicinal herbs

    PubMed Central

    Pan, Min-Hsiung; Chiou, Yi-Shiou; Tsai, Mei-Ling; Ho, Chi-Tang

    2011-01-01

    Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM) have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB)), pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α), chemokines (for example, chemokine (C-C motif) ligand (CCL)-24), intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)). However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology. PMID:24716101

  7. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury

    SciTech Connect

    Chatterjee, Nabanita; Das, Subhadip; Bose, Dipayan; Banerjee, Somenath; Das, Sujata; Chattopadhyay, Debprasad; Saha, Krishna Das

    2012-10-15

    Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model was and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P < 0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P < 0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P < 0.01). These findings indicate that 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent. -- Highlights: ► 2-phenylquinazoline analog suppresses the cytokines in stimulated macrophages. ► 2-phenylquinazoline analog down regulated NF-kB P65 translocation. ► Role of 2-phenylquinazoline analog in endotoximia and peripheral inflammations.

  8. An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis).

    PubMed

    Phosri, Santi; Mahakunakorn, Pramote; Lueangsakulthai, Jiraporn; Jangpromma, Nisachon; Swatsitang, Prasan; Daduang, Sakda; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-10-01

    Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.

  9. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    PubMed

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics. PMID:27236308

  10. Inflammatory cell infiltration of tumors: Jekyll or Hyde.

    PubMed

    Talmadge, James E; Donkor, Moses; Scholar, Eric

    2007-12-01

    Inflammatory cell infiltration of tumors contributes either positively or negatively to tumor invasion, growth, metastasis, and patient outcomes, creating a Dr. Jekyll or Mr. Hyde conundrum when examining mechanisms of action. This is due to tumor heterogeneity and the diversity of the inflammatory cell phenotypes that infiltrate primary and metastatic lesions. Tumor infiltration by macrophages is generally associated with neoangiogenesis and negative outcomes, whereas dendritic cell (DC) infiltration is typically associated with a positive clinical outcome in association with their ability to present tumor antigens (Ags) and induce Ag-specific T cell responses. Myeloid-derived suppressor cells (MDSCs) also infiltrate tumors, inhibiting immune responses and facilitating tumor growth and metastasis. In contrast, T cell infiltration of tumors provides a positive prognostic surrogate, although subset analyses suggest that not all infiltrating T cells predict a positive outcome. In general, infiltration by CD8(+) T cells predicts a positive outcome, while CD4(+) cells predict a negative outcome. Therefore, the analysis of cellular phenotypes and potentially spatial distribution of infiltrating cells are critical for an accurate assessment of outcome. Similarly, cellular infiltration of metastatic foci is also a critical parameter for inducing therapeutic responses, as well as establishing tumor dormancy. Current strategies for cellular, gene, and molecular therapies are focused on the manipulation of infiltrating cellular populations. Within this review, we discuss the role of tumor infiltrating, myeloid-monocytic cells, and T lymphocytes, as well as their potential for tumor control, immunosuppression, and facilitation of metastasis. PMID:17717638

  11. Distribution and immunophenotype of the inflammatory cell population in the benign lymphoepithelial lesion (Mikulicz's disease).

    PubMed

    Andrade, R E; Hagen, K A; Manivel, J C

    1988-08-01

    Benign lymphoepithelial lesion (BLL) is an autoimmune process characterized by swelling and diffuse inflammation of the major salivary glands. Autoantibodies have been isolated from lymphocyte cultures obtained from affected salivary glands, but the pathogenesis is still unknown. Previous studies have shown that the predominant population of inflammatory cells is represented by helper T cells, with only brief mention of the B cell population. Twenty-five surgical specimens from patients with BLL were studied immunohistochemically. Antisera used included monoclonal antibodies LN-1 and LN-2 for B cells, LN-3 for cells expressing human leukocyte antigen-DR (HLA-DR) antigens, UCHL-1 for T cells, Leu-7 for natural killer (NK) cells, and T suppressor lymphocytes and the polyclonal antibody to S100 protein for dendritic cells. A peculiar distribution of the inflammatory infiltrate was observed in all cases, characterized by the presence of very irregular "germinal centers" with pseudopod-like extensions surrounding epimyoepithelial islands. Lymphoid cells in this location were reactive with LN-1 and LN-2 antibodies. These structures were surrounded by a "mantle" of mixed small B and T lymphocytes. A well-defined "interfollicular" zone was composed of cells strongly reactive with UCHL-1 and LN-3 antibodies, indicating the presence and activation of T cells. Dendritic cells defined by S100 and LN-2 reactivity were intermixed with epimyoepithelial cells, and were identified in 18 cases. Epithelial expression of HLA-DR antigens was restricted to inflamed areas. In contrast to previous reports denying the presence of Leu-7-positive cells in these lesions, cells reactive for this antibody were identified in 13 of 20 cases, predominantly within germinal centers. The presence of dendritic cells, complex organization of the inflammatory infiltrate into well-defined B cell proliferation centers and activated interfollicular T areas, and the abnormal expression of HLA-DR antigens in

  12. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  13. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10.

    PubMed

    Xie, Luokun; Choudhury, Gourav Roy; Winters, Ali; Yang, Shao-Hua; Jin, Kunlin

    2015-01-01

    Forkhead box P3 (Foxp3)(+) regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ (+) CD4(+) Foxp3(+) T-cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4(+) T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state.

  14. Emerging roles for platelets as immune and inflammatory cells.

    PubMed

    Morrell, Craig N; Aggrey, Angela A; Chapman, Lesley M; Modjeski, Kristina L

    2014-05-01

    Despite their small size and anucleate status, platelets have diverse roles in vascular biology. Not only are platelets the cellular mediator of thrombosis, but platelets are also immune cells that initiate and accelerate many vascular inflammatory conditions. Platelets are linked to the pathogenesis of inflammatory diseases such as atherosclerosis, malaria infection, transplant rejection, and rheumatoid arthritis. In some contexts, platelet immune functions are protective, whereas in others platelets contribute to adverse inflammatory outcomes. In this review, we will discuss platelet and platelet-derived mediator interactions with the innate and acquired arms of the immune system and platelet-vessel wall interactions that drive inflammatory disease. There have been many recent publications indicating both important protective and adverse roles for platelets in infectious disease. Because of this new accumulating data, and the fact that infectious disease continues to be a leading cause of death globally, we will also focus on new and emerging concepts related to platelet immune and inflammatory functions in the context of infectious disease.

  15. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  16. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. PMID:26832322

  17. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis.

  18. Interleukin-27 exhibited anti-inflammatory activity during Plasmodium berghei infection in mice.

    PubMed

    Fazalul Rahiman, S S; Basir, R; Talib, H; Tie, T H; Chuah, Y K; Jabbarzare, M; Chong, W C; Mohd Yusoff, M A; Nordin, N; Yam, M F; Abdullah, W O; Abdul Majid, R

    2013-12-01

    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.

  19. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid

    PubMed Central

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs. PMID:27057092

  20. T-cell immunosenescence and inflammatory response in atomic bomb survivors.

    PubMed

    Kusunoki, Yoichiro; Yamaoka, Mika; Kubo, Yoshiko; Hayashi, Tomonori; Kasagi, Fumiyoshi; Douple, Evan B; Nakachi, Kei

    2010-12-01

    In this paper we summarize the long-term effects of A-bomb radiation on the T-cell system and discuss the possible involvement of attenuated T-cell immunity in the disease development observed in A-bomb survivors. Our previous observations on such effects include impaired mitogen-dependent proliferation and IL-2 production, decreases in naive T-cell populations, and increased proportions of anergic and functionally weak memory CD4 T-cell subsets. In addition, we recently found a radiation dose-dependent increase in the percentages of CD25(+)/CD127(-) regulatory T cells in the CD4 T-cell population of the survivors. All these effects of radiation on T-cell immunity resemble effects of aging on the immune system, suggesting that ionizing radiation might direct the T-cell system toward a compromised phenotype and thereby might contribute to an enhanced immunosenescence. Furthermore, there are inverse, significant associations between plasma levels of inflammatory cytokines and the relative number of naïve CD4 T cells, also suggesting that the elevated levels of inflammatory markers found in A-bomb survivors can be ascribed in part to T-cell immunosenescence. We suggest that radiation-induced T-cell immunosenescence may result in activation of inflammatory responses and may be partly involved in the development of aging-associated and inflammation-related diseases frequently observed in A-bomb survivors.

  1. IL‐10 differentially controls the infiltration of inflammatory macrophages and antigen‐presenting cells during inflammation

    PubMed Central

    Liao, Chia‐Te; Rosas, Marcela; Davies, Luke C.; Giles, Peter J.; Tyrrell, Victoria J.; O'Donnell, Valerie B.; Topley, Nicholas; Humphreys, Ian R.; Fraser, Donald J.; Jones, Simon A.

    2016-01-01

    The inflammatory activation and recruitment of defined myeloid populations is essential for controlling the bridge between innate and adaptive immunity and shaping the immune response to microbial challenge. However, these cells exhibit significant functional heterogeneity and the inflammatory signals that differentially influence their effector characteristics are poorly characterized. In this study, we defined the phenotype of discrete subsets of effective antigen‐presenting cells (APCs) in the peritoneal cavity during peritonitis. When the functional properties of these cells were compared to inflammatory monocyte‐derived macrophages we noted differential responses to the immune‐modulatory cytokine IL‐10. In contrast to the suppressive actions of IL‐10 on inflammatory macrophages, the recruitment of APCs was relatively refractory and we found no evidence for selective inhibition of APC differentiation. This differential response of myeloid cell subsets to IL‐10 may thus have limited impact on development of potentially tissue‐damaging adaptive immune responses, while restricting the magnitude of the inflammatory response. These findings may have clinical relevance in the context of peritoneal dialysis patients, where recurrent infections are associated with immune‐mediated membrane dysfunction, treatment failure, and increased morbidity. PMID:27378515

  2. Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas.

    PubMed

    Zhang, Yang; Li, Jun; Yu, Feng; He, Xiaocui; Yu, Ziniu

    2013-05-01

    Allograft inflammatory factor-1 (AIF-1) is a calcium-binding cytokine associated with immune cell activation and inflammatory response. Presently, we have identified and characterized an AIF-1 in a marine bivalve mollusk, Crassostrea gigas, and designated it as CgAIF-1. The full-length CgAIF-1 cDNA is 794 bp, encoding a protein of 149 amino acids with two conserved EF hand Ca(2+)-binding motifs. CgAIF-1 is constitutively expressed in various tissues with enriched expression in hemocytes. Moreover, CgAIF-1 transcription is induced by multiple Pathogen-Associated Molecular Patterns (PAMPs), including poly (I: C), LPS, PGN, HKLM and HKVA, but is limited by 1,3-β-glucan. Furthermore, recombinant CgAIF-1 can specifically stimulate phagocytic ability of granulocytes, but not of intermediate cells and hyalinocytes. CgAIF-1 also enhances mRNA levels of MIF, TNF and IL-17. These results provide the first functional evidence that CgAIF-1 is involved in hemocyte activation in C. gigas, revealing conserved functions of AIF-1 in host defense from mollusks to mammals.

  3. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  4. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  5. Anti-inflammatory activity of Abutilon indicum extract.

    PubMed

    Tripathi, Priyanka; Chauhan, N S; Patel, J R

    2012-01-01

    Abutilon indicum Linn. had been broadly used for its reported biological activities in indigenous system of medicine. The ethanolic extract of the whole plant of A. indicum Linn. was evaluated for its anti-inflammatory activity at doses 250, 500 and 750 mg kg⁻¹ using the carrageenan-induced paw oedema in healthy Wistar albino rats. Results of in vivo activity led to the conclusion that the ethanolic extract of A. indicum showed predominantly significant activity in a dose-dependent manner, which is comparable to the reference standard ibuprofen. The results prove the traditional use of plant in the treatment of inflammation. PMID:21999427

  6. Helicobacter bilis Gamma-Glutamyltranspeptidase Enhances Inflammatory Stress Response via Oxidative Stress in Colon Epithelial Cells

    PubMed Central

    Javed, Sundus; Mejías-Luque, Raquel; Kalali, Behnam; Bolz, Christian; Gerhard, Markus

    2013-01-01

    Helicobacter bilis (H. bilis) infection is associated with cases of inflammatory bowel Disease, thyphlocolitis, hepatitis and cholecystitis. However, little is known about the bacterial virulence determinants or the molecular mechanisms involved. Recently, H. bilis γ-glutamyltranspeptidase (HBgGT) was shown to be a virulence factor decreasing host cell viability. Bacterial gGTs play a key role in synthesis and degradation of glutathione and enables the bacteria to utilize extracellular glutamine and glutathione as sources of glutamate. gGT-mediated loss of cell viability has so far been linked to DNA damage via oxidative stress, but the signaling cascades involved herein have not been described. In this study, we identified enhanced ROS production induced by HBgGT as a central factor involved in the activation of the oxidative stress response cascades, which finally activate CREB, AP-1 and NF-κB in H. bilis infected colon cancer cells. IL-8, an important pro-inflammatory chemokine that is a common downstream target of these transcription factors, was up-regulated upon H. bilis infection in an HBgGT dependent manner. Moreover, the induction of these signaling responses and inflammatory cytokine production in host cells could be linked to HBgGT-mediated glutamine deprivation. This study implicates for the first time HBgGT as an important regulator of signaling cascades regulating inflammation in H. bilis infected host epithelial cells that could be responsible for induction of inflammatory disorders by the bacterium. PMID:24009737

  7. Cajanus cajan- a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects.

    PubMed

    Schuster, Roswitha; Holzer, Wolfgang; Doerfler, Hannes; Weckwerth, Wolfram; Viernstein, Helmut; Okonogi, Siriporn; Mueller, Monika

    2016-09-14

    Cajanus cajan is an important legume crop in the human diet in many parts of the world. Due to its pharmacological properties, C. cajan is, moreover, used in traditional medicine for treating skin diseases, diabetes, inflammatory disorders and various other dysfunctions. In this study, we focused on the role of peroxisome proliferator-activated receptor gamma (PPARγ) as a potential therapeutic target of Cajanus cajan and its main compounds for the treatment of cancer, inflammation and inflammation-related disorders. The anti-inflammatory potential of C. cajan and its bioactive compounds and their cytotoxicity on the human cervical adenocarcinoma cell line HeLa, the human colorectal adenocarcinoma cell line CaCo-2 and the human breast adenocarcinoma cell line MCF-7 were elucidated. C. cajan and its compounds exerted significant anti-inflammatory activity on lipopolysaccharide-stimulated macrophages, showed good cytotoxic effects on the 3 different cancer cell lines and proved PPARγ activity in vitro. The main active compounds were orientin, pinostrobin and vitexin. Cajaninstilbene acid and pinosylvin monomethylether were identified as novel PPARγ activators. Based on these data, C. cajan provides excellent beneficial medicinal attributes and may be used as a potential food or a pharmaceutical supplement. PMID:27603115

  8. Cajanus cajan- a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects.

    PubMed

    Schuster, Roswitha; Holzer, Wolfgang; Doerfler, Hannes; Weckwerth, Wolfram; Viernstein, Helmut; Okonogi, Siriporn; Mueller, Monika

    2016-09-14

    Cajanus cajan is an important legume crop in the human diet in many parts of the world. Due to its pharmacological properties, C. cajan is, moreover, used in traditional medicine for treating skin diseases, diabetes, inflammatory disorders and various other dysfunctions. In this study, we focused on the role of peroxisome proliferator-activated receptor gamma (PPARγ) as a potential therapeutic target of Cajanus cajan and its main compounds for the treatment of cancer, inflammation and inflammation-related disorders. The anti-inflammatory potential of C. cajan and its bioactive compounds and their cytotoxicity on the human cervical adenocarcinoma cell line HeLa, the human colorectal adenocarcinoma cell line CaCo-2 and the human breast adenocarcinoma cell line MCF-7 were elucidated. C. cajan and its compounds exerted significant anti-inflammatory activity on lipopolysaccharide-stimulated macrophages, showed good cytotoxic effects on the 3 different cancer cell lines and proved PPARγ activity in vitro. The main active compounds were orientin, pinostrobin and vitexin. Cajaninstilbene acid and pinosylvin monomethylether were identified as novel PPARγ activators. Based on these data, C. cajan provides excellent beneficial medicinal attributes and may be used as a potential food or a pharmaceutical supplement.

  9. Anticancer and anti-inflammatory activities of shallot (Allium ascalonicum) extract

    PubMed Central

    Mohammadi-Motlagh, Hamid-Reza; Mostafaie, Ali; Mansouri, Kamran

    2011-01-01

    Introduction Alliumplants are an important part of the diet of many populations and there is a long-held belief in their health-enhancing properties such as cancer prevention. In this study, the anticancer and anti-inflammatory activities of the aqueous extract of the Allium ascalonicum bulbs have been studied. Material and methods The antiproliferative and anti-growth activity of the aqueous extract of A. ascalonicum was examined in vitro on different tumor cell lines. Furthermore, the acetic acid-induced vascular permeability as an in vivo assay was used for studying anti-inflammatory activity of the extract. Results The aqueous extract of A. ascalonicum had the most anti-growth activity on the cancer cell lines; Jurkat and K562 against Wehi 164 with lower cytotoxic preference. The extract also showed much less cytotoxicity against the normal cell (HUVEC) line and significant anti-inflammatory activity in vivo. Conclusions It is of interest that the extract of this plant has shown much less cytotoxicity against the normal cell line, and, if this also occurs in vivo, the use of this plant clinically for the treatment of cancer patients would have some scientific support. The results of these assays indicated that A. ascalonicum can be a candidate for prevention and treatment of many diseases related to inflammation and malignancy. PMID:22291731

  10. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  11. Stem cells as potential therapeutic targets for inflammatory bowel disease

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Mishra, Manoj K.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Shree Ram

    2010-01-01

    The rates of incidence and prevalence of Crohn’s disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. Estimates indicate >1 million new cases of IBD in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD. PMID:20515838

  12. Inflammatory environment and oxidized LDL convert circulating human proangiogenic cells into functional antigen-presenting cells.

    PubMed

    Vinci, Maria Cristina; Piacentini, Luca; Chiesa, Mattia; Saporiti, Federica; Colombo, Gualtiero I; Pesce, Maurizio

    2015-09-01

    The function of human circulating PACs has been described extensively. However, little focus has been placed on understanding how these cells differ in their functions in the presence of microenvironments mimicking vascular inflammation. We hypothesized that exposure to proinflammatory cytokines or the oxLDL, an autoantigen abundant in advanced atherosclerotic plaques, converts PACs into immune-modulating/proinflammatory cells. Hence, we examined the effect of oxLDL and inflammatory stimuli on their phenotype by use of a functional genomics model based on secretome and whole genome transcriptome profiling. PACs obtained from culturing a PBMC fraction in angiogenic medium were primed with DC differentiation cytokines and then exposed to proinflammatory cytokines or oxLDL. Under these conditions, PACs converted into APCs, expressed maturation markers CD80 and CD83, and showed an increased up-regulation of CD86. APCcy and APCox induced a robust T cell BrdU incorporation. Despite a similar ability to induce lymphocyte proliferation, APCcy and APCox differed for the secretory pathway and mRNA expression. Analysis of the differentially expressed genes identified 4 gene "clusters," showing reciprocal modulation in APCcy vs. APCox, justifying, according to functional genomics analyses, a different putative function of the cells in antigen processing. Together, these data show that treatment with inflammatory cytokines or oxLDL converts human PAC phenotypes and functions into that of APCs with similar lymphocyte-activating ability but distinct maturation degree and paracrine functions.

  13. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-01

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. PMID:26079211

  14. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  15. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  16. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  17. Blocking Pro-Inflammatory Cytokine Release Modulates Peripheral Blood Mononuclear Cell Response to Porphyromonas Gingivalis

    PubMed Central

    Berker, Ezel; Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E.

    2013-01-01

    Background Chronic periodontitis is an inflammatory disease in which cytokines play a major role in the progression of disease. Anti-inflammatory cytokines (IL-4 and IL-10) were reported to be absent or reduced in diseased periodontal tissues, suggesting an imbalance between the pro- and anti-inflammatory mediators. We have tested the hypothesis that there is cellular cross-talk mediated by pro- and anti-inflammatory cytokines and that blocking pro-inflammatory cytokine (TNF-α and IL-1) production will enhance anti-inflammatory cytokine (IL-4 and IL-10) production from peripheral blood mononuclear cells (PBMC) in response to P. gingivalis. Methods PBMC were isolated from individuals diagnosed with chronic periodontitis or healthy individuals and cultured for 24 hours. Concanavalin-A (ConA) was used as an activator of lymphocyte function. Live and heat-killed P .gingivalis or lipopolysaccharide from P. gingivalis was used as the bacterial stimulants. TNF-α and IL-1 production was neutralized by specific antibodies against TNF-α and IL-1α or β. Culture supernatants were evaluated by ELISA for TNF-α, IL-1β, IL-4, and IL-10 production. Results Live P. gingivalis did not result in any significant IL-10 or IL-4 release while heat-killed P. gingivalis led to a significant increase in IL-10 levels compared to unstimulated or live P. gingivalis-stimulated cells from both healthy and periodontitis individuals. Overall, PBMC from patients with chronic periodontitis produced significantly lower IL-10 in response to ConA and P. gingivalis suggesting chronic suppression of the anti-inflammatory cytokine production. Blocking the pro-inflammatory cytokine response did not result in any substantial change in IL-10 or IL-4 response to live P. gingivalis. Blocking the pro-inflammatory cytokine response restored IL-10 production by cells from chronic periodontitis in response to P. gingivalis LPS. Conclusion These findings suggest that PBMC from patients with chronic

  18. Hepatoprotective and anti-inflammatory activities of Plantago major L

    PubMed Central

    Türel, Idris; Özbek, Hanefi; Erten, Remzi; Öner, Ahmet Cihat; Cengiz, Nureddin; Yilmaz, Orhan

    2009-01-01

    Objective: The aim of this study was to investigate anti-inflammatory and hepatoprotective activities of Plantago major L. (PM). Materials and Methods: Anti-inflammatory activity: Control and reference groups were administered isotonic saline solution (ISS) and indomethacin, respectively. Plantago major groups were injected PM in doses of 5 mg/kg (PM-I), 10 mg/kg (PM-II), 20 mg/kg (PM-III) and 25 mg/kg (PM-IV). Before and three hours after the injections, the volume of right hind-paw of rats was measured using a plethysmometer. Hepatoprotective Activity: The hepatotoxicity was induced by carbon tetrachloride (CCl4) administration. Control, CCl4 and reference groups received isotonic saline solution, CCl4 and silibinin, respectively. Plantago major groups received CCl4 (0.8 ml/kg) and PM in doses of 10, 20 and 25 mg/kg, respectively for seven days. Blood samples and liver were collected on the 8th day after the animals were killed. Results: Plantago major had an anti-inflammatory effect matching to that of control group at doses of 20 and 25 mg/kg. It was found that reduction in the inflammation was 90.01% with indomethacin, 3.10% with PM-I, 41.56% with PM-II, 45.87% with PM-III and 49.76% with PM-IV. Median effective dose (ED50) value of PM was found to be 7.507 mg/kg. Plantago major (25 mg/kg) significantly reduced the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels when compared to the CCl4 group. The histopathological findings showed a significant difference between the PM (25 mg/kg) and CCl4 groups. Conclusion: The results showed that PM had a considerable anti-inflammatory and hepatoprotective activities. PMID:20442819

  19. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells.

    PubMed

    Yang, Xing-Wang; Li, Yan-Hua; Zhang, Hui; Zhao, Yong-Fei; Ding, Zhi-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Jiang, Wei-Jia; Feng, Qian-Jin; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-03-01

    Activated microglia, especially polarized M1 cells, produce pro-inflammatory cytokines and free radicals, thereby contributing directly to neuroinflammation and various brain disorders. Given that excessive or chronic neuroinflammation within the central nervous system (CNS) exacerbates neuronal damage, molecules that modulate neuroinflammation are candidates as neuroprotective agents. In this study, we provide evidence that Safflor yellow (SY), the main active component in the traditional Chinese medicine safflower, modulates inflammatory responses by acting directly on BV2 microglia. LPS stimulated BV2 cells to upregulate expression of TLR4-Myd88 and MAPK-NF-κB signaling pathways and to release IL-1β, IL-6, TNF-α, and COX-2. However, SY treatment inhibited expression of TLR4-Myd88 and p-38/p-JNK-NF-κB, downregulated expression of iNOS, CD16/32, and IL-12, and upregulated CD206 and IL-10. In conclusion, our results demonstrate that SY exerts an anti-inflammatory effect on BV2 microglia, possibly through TLR-4/p-38/p-JNK/NF-κB signaling pathways and the conversion of microglia from inflammatory M1 to an anti-inflammatory M2 phenotype. PMID:26634402

  20. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  1. Evaluation of the wound-healing activity and anti-inflammatory activity of aqueous extracts from Acorus calamus L.

    PubMed

    Shi, Guo-bing; Wang, Bing; Wu, Qiong; Wang, Tong-chao; Wang, Chang-li; Sun, Xue-hui; Zong, Wen-tao; Yan, Ming; Zhao, Qing-chun; Chen, Yu-feng; Zhang, Wei

    2014-01-01

    In folklore medicine, Acorus calamus has been used as a wound-healing agent for thousands of years; however, there have been few scientific reports on this activity so far. Now, we explored deeply the wound-healing effect of aqueous extracts from the fresh roots and rhizomes of A. calamus in vivo, as well as anti-inflammatory activity in vitro, so as to provide scientific evidence for the traditional application. The wound-healing effect was determined by the image analysis techniques and the histological analysis in the excisional wounding test, and the anti-inflammatory activity was evaluated by the real-time RT-PCR techniques in the lipopolysaccharide-induced RAW 264.7 cells test. Aqueous extracts, administered topically at the dose range from twice to thrice in a day, could enhance significantly the rate of skin wound-healing. Moreover, the extracts could effectively inhibit the mRNA expressions of inflammatory mediators induced by lipopolysaccharide in RAW 264.7 cells. These results showed significantly the wound-healing activity of aqueous extracts in the animal model of excise wound healing, and anti-inflammatory activity in vitro.

  2. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells.

    PubMed

    Wu, Shu-Jing; Liu, Po-Len; Ng, Lean-Teik

    2008-08-01

    Tocotrienol-rich fraction (TRF) of palm oil has been shown to possess potent antioxidant, anticancer, and cholesterol lowering activities. In this study, our aim was to examine the effects of TRF on LPS-induced inflammatory response through measuring the production of inflammatory mediators, namely nitric oxide (NO), prostaglandin E(2) (PGE(2)), inducible nitric oxide synthase (iNOS), cytokines (TNF-alpha, IL-4, and IL-8), cyclooxygenase-1 and -2 (COX-1 and COX-2), and nuclear factor-kappaB (NF-kappaB) in human monocytic (THP-1) cells. At concentrations 0.5-5.0 microg/mL, TRF dose-dependently protected against LPS-induced cell death. At same concentrations, TRF also showed potent anti-inflammatory activity as demonstrated by a dose-dependent inhibition of LPS (1 microg/mL)-induced release of NO and PGE(2), and a significant decrease in the transcription of proinflammatory cytokines. TRF at 1.0 microg/mL significantly blocked the LPS induction of iNOS and COX-2 expression, but not COX-1. This anti-inflammatory activity was further supported by the inhibition of NF-kappaB expression. These results conclude that TRF possesses potent anti-inflammatory activity, and its mechanism of action could be through the inhibition of iNOS and COX-2 production, as well as NF-kappaB expression. PMID:18481320

  3. Gene therapy with the caspase activation and recruitment domain reduces the ocular inflammatory response.

    PubMed

    Ildefonso, Cristhian J; Jaime, Henrique; Biswal, Manas R; Boye, Shannon E; Li, Qiuhong; Hauswirth, William W; Lewin, Alfred S

    2015-05-01

    Inflammation is a key component of chronic and acute diseases of the eye. Our goal is to test anti-inflammatory genes delivered by an adeno-associated virus (AAV) vector as potential treatments for retinal inflammation. We developed a secretable and cell penetrating form of the caspase activation and recruitment domain (CARD) from the apoptosis-associated speck-like protein containing a CARD (ASC) gene that binds caspase-1 and inhibits its activation by the inflammasome. The secretion and cell penetration characteristics of this construct were validated in vitro by measuring its effects on inflammasome signaling in a monocyte cell line and in an retinal pigmented epithelium (RPE) cell line. This vector was then packaged as AAV particles and tested in the endotoxin-induced uveitis mouse model. Gene expression was monitored one month after vector injection by fluorescence fundoscopy. Ocular inflammation was then induced by injecting lipopolysaccharide into the vitreous and was followed by enucleation 24 hours later. Eyes injected with the secretable and cell penetrating CARD AAV vector had both a significantly lower concentration of IL-1β as well as a 64% reduction in infiltrating cells detected in histological sections. These results suggest that anti-inflammatory genes such as the CARD could be used to treat recurring inflammatory diseases like uveitis or chronic subacute inflammations of the eye.

  4. Gene Therapy With the Caspase Activation and Recruitment Domain Reduces the Ocular Inflammatory Response

    PubMed Central

    Ildefonso, Cristhian J; Jaime, Henrique; Biswal, Manas R; Boye, Shannon E; Li, Qiuhong; Hauswirth, William W; Lewin, Alfred S

    2015-01-01

    Inflammation is a key component of chronic and acute diseases of the eye. Our goal is to test anti-inflammatory genes delivered by an adeno-associated virus (AAV) vector as potential treatments for retinal inflammation. We developed a secretable and cell penetrating form of the caspase activation and recruitment domain (CARD) from the apoptosis-associated speck-like protein containing a CARD (ASC) gene that binds caspase-1 and inhibits its activation by the inflammasome. The secretion and cell penetration characteristics of this construct were validated in vitro by measuring its effects on inflammasome signaling in a monocyte cell line and in an retinal pigmented epithelium (RPE) cell line. This vector was then packaged as AAV particles and tested in the endotoxin-induced uveitis mouse model. Gene expression was monitored one month after vector injection by fluorescence fundoscopy. Ocular inflammation was then induced by injecting lipopolysaccharide into the vitreous and was followed by enucleation 24 hours later. Eyes injected with the secretable and cell penetrating CARD AAV vector had both a significantly lower concentration of IL-1β as well as a 64% reduction in infiltrating cells detected in histological sections. These results suggest that anti-inflammatory genes such as the CARD could be used to treat recurring inflammatory diseases like uveitis or chronic subacute inflammations of the eye. PMID:25698151

  5. Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    PubMed

    Kang, Sukyung; Lee, Jae Sung; Lee, Hai Chon; Petriello, Michael C; Kim, Bae Yong; Do, Jeong Tae; Lim, Dae-Seog; Lee, Hong Gu; Han, Sung Gu

    2016-03-01

    Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPS-induced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.

  6. Sigma Receptor 1 activation attenuates release of inflammatory cytokines MIP1γ, MIP2, MIP3α and IL12 (p40/p70) by retinal Müller glial cells

    PubMed Central

    Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.

    2015-01-01

    The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327

  7. Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Palacios, Eduardo; Montoya, José Ascención; Gómez-Vidales, Virginia; Ramírez-Apán, María Teresa

    2013-11-01

    Halloysite is a naturally-occurring nanomaterial occurring in the thousands of tons and that serves as biomaterial, with applications in the areas of biotechnology, pharmaceutical, and medical research. This study reports on the anti-inflammatory, cytotoxic, and anti-oxidant activity of halloysite Jarrahdale (collected at ∼ 45 km SE of Perth, Western Australia; JA), Dragon Mine (provided by Natural Nano Inc., Rochester, New York; NA), and Kalgoorie Archean (collected at Siberia, ∼ 85km NW of Kalgoorlie, West Australia; PA). Prior to biological testing, halloysites were characterized by 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy, the anti-inflammatory activity was determined by (a) the mouse ear edema method, using 12-o-tetradecanoylphorbol-13-acetate (TPA) as anti-inflammatory agent; and (b) the myeloperoxidase enzymatic activity method (MPO). Cell viability was determined using the MTT method. Sample characterization by NMR method showed similar symmetry and atomic environments, with no evidence of distortion(s) due to shiftings in atomic ordering or electron density. The anti-inflammatory activity followed the order: PA>JA>NA, and remained invariant with time. Prolonged anti-inflammatory activity related inversely to surface area and lumen space. The low extent of infiltration at shorter reaction times confirmed a limiting number of active surface sites. EPR intensity signals followed the order: JA>NA>PA. The poor stabilization of RO species in PA suspensions was explained by tube alignment provoking occlusion, thus limiting transfer of H(+) or e(-) from-and-to the surface, and decreases in acidity associated to Al(oct). Cell viability (%) varied from one surface to the other, PA(92.3 ± 6.0), JA(84.9 ± 7.8), and NA(78.0 ± 5.6), but related directly to SBET values. PMID:23907053

  8. Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Palacios, Eduardo; Montoya, José Ascención; Gómez-Vidales, Virginia; Ramírez-Apán, María Teresa

    2013-11-01

    Halloysite is a naturally-occurring nanomaterial occurring in the thousands of tons and that serves as biomaterial, with applications in the areas of biotechnology, pharmaceutical, and medical research. This study reports on the anti-inflammatory, cytotoxic, and anti-oxidant activity of halloysite Jarrahdale (collected at ∼ 45 km SE of Perth, Western Australia; JA), Dragon Mine (provided by Natural Nano Inc., Rochester, New York; NA), and Kalgoorie Archean (collected at Siberia, ∼ 85km NW of Kalgoorlie, West Australia; PA). Prior to biological testing, halloysites were characterized by 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy, the anti-inflammatory activity was determined by (a) the mouse ear edema method, using 12-o-tetradecanoylphorbol-13-acetate (TPA) as anti-inflammatory agent; and (b) the myeloperoxidase enzymatic activity method (MPO). Cell viability was determined using the MTT method. Sample characterization by NMR method showed similar symmetry and atomic environments, with no evidence of distortion(s) due to shiftings in atomic ordering or electron density. The anti-inflammatory activity followed the order: PA>JA>NA, and remained invariant with time. Prolonged anti-inflammatory activity related inversely to surface area and lumen space. The low extent of infiltration at shorter reaction times confirmed a limiting number of active surface sites. EPR intensity signals followed the order: JA>NA>PA. The poor stabilization of RO species in PA suspensions was explained by tube alignment provoking occlusion, thus limiting transfer of H(+) or e(-) from-and-to the surface, and decreases in acidity associated to Al(oct). Cell viability (%) varied from one surface to the other, PA(92.3 ± 6.0), JA(84.9 ± 7.8), and NA(78.0 ± 5.6), but related directly to SBET values.

  9. Maternal immune activation leads to activated inflammatory macrophages in offspring

    PubMed Central

    Onore, Charity E.; Schwartzer, Jared J.; Careaga, Milo; Bennan, Robert F.; Ashwood, Paul

    2015-01-01

    Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20 mg/kg polyinosinic–polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10 weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24 h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p < 0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p = 0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p < 0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting

  10. New Isorhamnetin Derivatives from Salsola imbricata Forssk. Leaves with Distinct Anti-inflammatory Activity

    PubMed Central

    Osman, Samir M.; El Kashak, Walaa A.; Wink, Michael; El Raey, Mohamed A.

    2016-01-01

    Background: Salsola imbricata Forssk. is a shrub widely growing in Egypt, used as a camel food, traditionally, used as anti-inflammatory agent. Literature survey showed no report about the anti-inflammatory activity of S. imbricata. Aim of the Study: This work was designed to study the phenolic constituents and to provide evidence for the traditional use of S. imbricata as an anti-inflammatory agent. Materials and Methods: The in vitro anti-inflammatory activity of the total aqueous methanol extract and some isolated compounds were investigated in RAW 264.7 macrophage cells using nitric oxide assay. All chemical structures were identified on the basis of electrospray ionization-mass spectrometry, one- and two-dimension nuclear magnetic resonance. Results: Nine phenolic compounds, among them two new natural products; isorhamnetin-3-O-β-D-glucuronyl (1’’’→4’’) glucuronide (1) and its dimethyl ester; isorhamnetin-3-O-β-D-di glucuronate dimethyl ester (2), two isorhamnetin glycosides: Isorhamnetin-3-O-β-D-galactopyranoside (3), isorhamnetin-3-O-β-D-glucopyranoside (4), and isorhamnetin (5). In addition, an alkaloidal phenolic; trans N-feruloyl tyramine (6), three phenolic acids: Isovanillic acid (7), ferulic acid (8), and p-hydroxy benzoic acid (9) were isolated from salsola imbricata leaves. All compounds were isolated and identified for the first time from this plant except compound (6). The extract and the tested compounds showed distintict anti-inflammatory activities with no toxicity on RAW 264.7 macrophage cells. Conclusion: The extract and the tested compounds showed distintict anti-inflammatory activities with no toxicity on RAW 264.7 macrophage cells. SUMMARY Investigation of the chemical constituents of the leaves of Salsola imbricata led to isolation of two new isorhamnetin derivatives: isorhamnetin.3-O-β-D.glucuronyl (1’“→”) glucuronide (1) and its dimethyl ester (2), together with seven known phenolic compounds. The extract and the

  11. Activation of inflammatory responses in human U937 macrophages by particulate matter collected from dairy farms: an in vitro expression analysis of pro-inflammatory markers

    PubMed Central

    2012-01-01

    Background The purpose of the present study was to investigate activation of inflammatory markers in human macrophages derived from the U937 cell line after exposure to particulate matter (PM) collected on dairy farms in California and to identify the most potent components of the PM. Methods PM from different dairies were collected and tested to induce an inflammatory response determined by the expression of various pro-inflammatory genes, such as Interleukin (IL)-8, in U937 derived macrophages. Gel shift and luciferase reporter assays were performed to examine the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like-receptor 4 (TLR4). Results Macrophage exposure to PM derived from dairy farms significantly activated expression of pro-inflammatory genes, including IL-8, cyclooxygenase 2 and Tumor necrosis factor-alpha, which are hallmarks of inflammation. Acute phase proteins, such as serum amyloid A and IL-6, were also significantly upregulated in macrophages treated with PM from dairies. Coarse PM fractions demonstrated more pro-inflammatory activity on an equal-dose basis than fine PM. Urban PM collected from the same region as the dairy farms was associated with a lower concentration of endotoxin and produced significantly less IL-8 expression compared to PM collected on the dairy farms. Conclusion The present study provides evidence that the endotoxin components of the particles collected on dairies play a major role in mediating an inflammatory response through activation of TLR4 and NF-κB signaling. PMID:22452745

  12. Anti-inflammatory active gold(I) complexes involving 6-substituted-purine derivatives.

    PubMed

    Trávníček, Zdeněk; Starha, Pavel; Vančo, Ján; Silha, Tomáš; Hošek, Jan; Suchý, Pavel; Pražanová, Gabriela

    2012-05-24

    The gold(I) complexes of the general formula [Au(L(n))(PPh(3))]·xH(2)O (1-8; n = 1-8 and x = 0-1.5), where L(n) stands for a deprotonated form of the benzyl-substituted derivatives of 6-benzylaminopurine, were prepared, thoroughly characterized (elemental analyses, FT-IR, Raman and multinuclear NMR spectroscopy, ESI+ mass spectrometry, conductivity, DFT calculations), and studied for their in vitro cytotoxicity and in vitro and in vivo anti-inflammatory effects on LPS-activated macrophages (derived from THP-1 cell line) and using the carrageenan-induced hind paw edema model on rats. The obtained results indicate that the representative complexes (1, 3, 6) exhibit a strong ability to reduce the production of pro-inflammatory cytokines TNF-α, IL-1β and HMGB1 without influence on the secretion of anti-inflammatory cytokine IL-1RA in the LPS-activated macrophages. The complexes also significantly influence the formation of edema, caused by the intraplantar application of polysaccharide λ-carrageenan to rats in vivo. All the tested complexes showed similar or better biological effects as compared with Auranofin, but contrary to Auranofin they were found to be less cytotoxic in vitro. The obtained results clearly indicate that the gold(I) complexes behave as very effective anti-inflammatory agents and could prove to be useful for the treatment of difficult to treat inflammatory diseases such as rheumatoid arthritis. PMID:22541000

  13. Danish cohort of monozygotic inflammatory bowel disease twins: Clinical characteristics and inflammatory activity

    PubMed Central

    Moller, Frederik Trier; Knudsen, Lina; Harbord, Marcus; Satsangi, Jack; Gordon, Hannah; Christiansen, Lene; Christensen, Kaare; Jess, Tine; Andersen, Vibeke

    2016-01-01

    AIM: To describe the establishment of a Danish inflammatory bowel diseases (IBD) twin cohort with focus on concordance of treatment and inflammatory markers. METHODS: We identified MZ twins, likely to be discordant or concordant for IBD, by merging information from the Danish Twin Register and the National Patient Register. The twins were asked to provide biological samples, questionnaires, and data access to patient files and public registries. Biological samples were collected via a mobile laboratory, which allowed for immediate centrifugation, fractionation, and storage of samples. The mean time from collection of samples to storage in the -80 °C mobile freezer was less than one hour. The diagnoses where validated using the Copenhagen diagnostic criteria. RESULTS: We identified 159 MZ IBD twin pairs, in a total of 62 (39%) pairs both twins agreed to participate. Of the supposed 62 IBD pairs, the IBD diagnosis could be confirmed in 54 pairs. The cohort included 10 concordant pairs, whereof some were discordant for either treatment or surgery. The 10 concordant pairs, where both pairs suffered from IBD, included eight CD/CD pairs, one UC/UC pair and one UC/IBDU pair. The discordant pairs comprised 31 UC, 5 IBDU (IBD unclassified), and 8 CD discordant pairs. In the co-twins not affected by IBD, calprotectin was above 100 μg/g in 2 participants, and above 50 μg/g in a further 5 participants. CONCLUSION: The presented IBD twin cohorts are an excellent resource for bioinformatics studies with proper adjustment for disease-associated exposures including medication and inflammatory activity in the co-twins. PMID:27275097

  14. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside.

    PubMed

    Sala, Araceli; Recio, M Carmen; Schinella, Guillermo R; Máñez, Salvador; Giner, Rosa M; Cerdá-Nicolás, Miguel; Rosí, José Luis

    2003-02-01

    Three flavonoids, gnaphaliin, pinocembrin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their antioxidant and/or scavenger properties and in vivo in different models of inflammation. In vitro tests included lipid peroxidation in rat liver microsomes, superoxide radical generation in the xanthine/xanthine oxidase system and the reduction of the stable radical 1,1-diphenyl-2-pycryl-hydrazyl (DPPH). Acute inflammation was induced by application of 12-O-tetradecanoylphorbol 13-acetate (TPA) to the mouse ear or by subcutaneous injection of phospholipase A(2) or serotonin in the mouse paw. Eczema provoked on the mouse ear by repeated administration of TPA was selected as a model of chronic inflammation. The flavonoids were assayed against sheep red blood cell-induced mouse paw oedema as a model of delayed-type hypersensitivity reaction. The most active compound, both in vitro and in vivo, was tiliroside. It significantly inhibited enzymatic and non-enzymatic lipid peroxidation (IC(50)=12.6 and 28 microM, respectively). It had scavenger properties (IC(50)=21.3 microM) and very potent antioxidant activity in the DPPH test (IC(50)=6 microM). In vivo, tiliroside significantly inhibited the mouse paw oedema induced by phospholipase A(2)(ED(50)=35.6 mg/kg) and the mouse ear inflammation induced by TPA (ED(50)=357 microg/ear). Pinocembrin was the only flavonoid that exhibited anti-inflammatory activity in the sheep red blood cell-induced delayed-type hypersensitivity reaction. However, only tiliroside significantly reduced the oedema and leukocyte infiltration induced by TPA. As in the case of other flavonoids, the anti-inflammatory activity of tiliroside could be based on its antioxidant properties, although other mechanisms are probably involved.

  15. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells.

    PubMed

    Wang, Jingjing; Guo, Changming; Wei, Zhengkai; He, Xuexiu; Kou, Jinhua; Zhou, Ershun; Yang, Zhengtao; Fu, Yunhe

    2016-04-01

    Morin, a flavonoid isolated from Chinese herbs of the Moraceae family, has been reported to possess antiinflammatory activity. However, the effects of morin on mastitis have not been investigated. The present study was conducted to elucidate the antiinflammatory properties of morin on lipopolysaccharide (LPS)-stimulated primary bovine mammary epithelial cells (bMEC). The viability of bMEC was analyzed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] assay. Subsequently, bMEC were stimulated with LPS in the presence or absence of morin. Gene expression of proinflammatory cytokines was determined by quantitative real-time PCR (qRT-PCR). Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) were detected by Western blotting. The results showed that cell viability was not affected by morin. Moreover, morin inhibited the gene expression of tumor necrosis factor-α (TNF-α), IL-6, and IL-1β in LPS-stimulated bMEC in a dose-dependent manner. Western blot analysis showed that morin suppressed the phosphorylation of IκBα, NF-κB unit p65, ERK, p38, and JNK in LPS-stimulated bMEC. In conclusion, the protective effects of morin on LPS-induced inflammatory response in bMEC may be due to its ability to suppress NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. These findings suggest that morin may be used as antiinflammatory drug for mastitis.

  16. Interaction of inflammatory cells and oral microorganisms. VIII. Detection of leukotoxic activity of a plaque-derived gram-negative microorganism.

    PubMed Central

    Baehni, P; Tsai, C C; McArthur, W P; Hammond, B F; Taichman, N S

    1979-01-01

    In the present study we identified a gram-negative anaerobic rod referred to as Y4 which was cytotoxic for human polymorphonuclear leukocytes. Y4 was isolated from dental plaque of a patient with juvenile periodontitis and presented most of the taxonomic characteristics of Actinobacillus species. Under experimental conditions, viable Y4 were cytotoxic for human peripheral blood polymorphonuclear leukocytes in serum-free cultures. Cytotoxicity was dependent on bacterial concentrations and was enhanced in the presence of a fresh or heat-inactivated (56 degrees C, 30 min) autologous serum. Leukotoxicity was independent of phagocytosis. Y4 leukotoxic effect was abolished when bacteria were heat treated (56 degrees C, 30 min) or when incubations were carried out at 4 degrees C instead of at 37 degrees C. The leukotoxicity was monitored by electron microscopy and biochemically by measuring lactate dehydrogenase indicator of cell viability. No cytotoxic effects of Y4 on human mononuclear cells, chicken fibroblasts, or mouse macrophages were detected under the conditions studied. Polymorphonuclear leukocytes may play an important role in the host defense against bacteria in periodontal disease. The cytotoxic effect of Y4 for polymorphonuclear leukocytes presented in this study is the first report of a direct offensive microbial vector in a plaque-derived microorganism and may prove to be relevant in the pathogenesis of juvenile periodontitis. Images PMID:222679

  17. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  18. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine.

    PubMed

    Caiaffo, Vitor; Oliveira, Belisa D R; de Sá, Fabrício B; Evêncio Neto, Joaquim

    2016-06-01

    Fluoxetine is a selective serotonin uptake inhibitor that has been widely used to determine the neurotransmission of serotonin in the central nervous system. This substance has emerged as the drug of choice for the treatment of depression due to is safer profile, fewer side effects, and greater tolerability. Studies have found the following important functions of fluoxetine related to the central nervous system: neuroprotection; anti-inflammatory properties similar to standard drugs for the treatment of inflammatory conditions; antioxidant properties, contributing to its therapeutic action and an important intracellular mechanism underlying the protective pharmacological effects seen in clinical practice in the treatment of different stress-related adverse health conditions; and antiapoptotic properties, with greater neuron survival and a reduction in apoptosis mediators as well as oxidative substances, such as superoxide dismutase and hydrogen peroxide. The aim of this study was to perform a review of the literature on the important role of fluoxetine in anti-inflammatory, cell survival, and neuron trophicity mechanisms (antiapoptotic properties) as well as its role regarding enzymes of the antioxidant defense system. PMID:27433341

  19. HSPA12B inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells

    PubMed Central

    Wu, Jun; Li, Xuehan; Huang, Lei; Jiang, Surong; Tu, Fei; Zhang, Xiaojin; Ma, He; Li, Rongrong; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2015-01-01

    Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway. PMID:25545050

  20. RTA 408, A Novel Synthetic Triterpenoid with Broad Anticancer and Anti-Inflammatory Activity.

    PubMed

    Probst, Brandon L; Trevino, Isaac; McCauley, Lyndsey; Bumeister, Ron; Dulubova, Irina; Wigley, W Christian; Ferguson, Deborah A

    2015-01-01

    Semi-synthetic triterpenoids are antioxidant inflammation modulator (AIM) compounds that inhibit tumor cell growth and metastasis. Compounds in the AIM class bind to Keap1 and attenuate Nrf2 degradation. In the nucleus, Nrf2 increases antioxidant gene expression and reduces pro-inflammatory gene expression. By increasing Nrf2 activity, AIMs reduce reactive oxygen species and inflammation in the tumor microenvironment, which reverses tumor-mediated immune evasion and inhibits tumor growth and metastasis. AIMs also directly inhibit tumor cell growth by modulating oncogenic signaling pathways, such as IKKβ/NF-κB. Here, we characterized the in vitro antioxidant, anti-inflammatory, and anticancer activities of RTA 408, a novel AIM that is currently being evaluated in patients with advanced malignancies. At low concentrations (≤ 25 nM), RTA 408 activated Nrf2 and suppressed nitric oxide and pro-inflammatory cytokine levels in interferon-γ-stimulated RAW 264.7 macrophage cells. At higher concentrations, RTA 408 inhibited tumor cell growth (GI50 = 260 ± 74 nM) and increased caspase activity in tumor cell lines, but not in normal primary human cells. Consistent with the direct effect of AIMs on IKKβ, RTA 408 inhibited NF-κB signaling and decreased cyclin D1 levels at the same concentrations that inhibited cell growth and induced apoptosis. RTA 408 also increased CDKN1A (p21) levels and JNK phosphorylation. The in vitro activity profile of RTA 408 is similar to that of bardoxolone methyl, which was well-tolerated by patients at doses that demonstrated target engagement. Taken together, these data support clinical evaluation of RTA 408 for cancer treatment.

  1. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  2. Absinthin attenuates LPS-induced ALI through MIP-1α-mediated inflammatory cell infiltration.

    PubMed

    Guo, Nailiang; Xu, Yinghua; Cao, Zhongqiang

    2015-01-01

    Acute lung injury (ALI) is characterized by severe lung inflammation, and anti-inflammatory treatment is proposed to be a pertinent therapeutic strategy for the disease. Absinthin is a triterpene, extracted from a Chinese herb, with anti-inflammatory properties. The aim of this study was to evaluate whether absinthin can attenuate ALI in a mouse model of lung injury. Mice were treated with various concentrations (20 mg/kg, 40 mg/kg, and 80mg/kg) of absinthin, and lipopolysaccharide (LPS) to induce ALI. We found that the administration of absinthin relieved LPS-induced acute lung injury, as suggested by reduced histological scores, wet-to-dry ratio, myeloperoxidase activity, and accumulation of inflammatory cells in lung bronchoalveolar lavage fluid. Moreover, we demonstrated that absinthin significantly enhanced the expression of matrix metalloproteinase-8 (MMP-8); this effect could inhibit the accumulation of inflammatory cells in lung tissues through a mechanism dependent on MMP-8-mediated inactivation of macrophage inflammatory protein-1α. Therefore, we propose that absinthin is a promising novel therapeutic candidate for the treatment of ALI.

  3. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB‑induced DNA damage in skin cells.

    PubMed

    Shiratake, Sawako; Nakahara, Tatsuo; Iwahashi, Hiroyasu; Onodera, Takefumi; Mizushina, Yoshiyuki

    2015-10-01

    A number of naturally occurring agents are hypothesized to protect against ultraviolet (UV)‑induced skin damage. The present study screened >50 plant extracts for inhibitors of UVB‑induced cytotoxicity, using cultured normal human epidermal keratinocytes (NHEK), and identified that the fruit of rose myrtle (Rhodomyrtus tomentosa) was the most marked inhibitor of cell death. The protective effect of rose myrtle extract and the two key components, piceatannol and piceatannol‑4'‑O‑β‑D‑glucopyranoside, on UVB‑induced damage and inflammation in cultured NHEK was investigated. The 80% ethanol extract from rose myrtle fruit with piceatannol exhibited protection of UVB‑induced cytotoxicity in NHEK; however, piceatannol‑4'‑O‑β‑D‑glucopyranoside exhibited no protection, as determined by a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. This extract and piceatannol reduced the production of UVB‑induced cyclobutane pyrimidine dimers and enhanced the cellular enzyme activity of the DNA polymerases in UVB‑irradiated NHEK, suggesting that UVB‑stimulated DNA damage was repaired by the polymerases. In addition, the secretion of prostaglandin E2, which is an inflammatory mediator, was decreased. These results indicated that rose myrtle fruit extract and its key constituent, piceatannol, are potential photoprotective candidates for UV‑induced skin damage.

  4. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB‑induced DNA damage in skin cells.

    PubMed

    Shiratake, Sawako; Nakahara, Tatsuo; Iwahashi, Hiroyasu; Onodera, Takefumi; Mizushina, Yoshiyuki

    2015-10-01

    A number of naturally occurring agents are hypothesized to protect against ultraviolet (UV)‑induced skin damage. The present study screened >50 plant extracts for inhibitors of UVB‑induced cytotoxicity, using cultured normal human epidermal keratinocytes (NHEK), and identified that the fruit of rose myrtle (Rhodomyrtus tomentosa) was the most marked inhibitor of cell death. The protective effect of rose myrtle extract and the two key components, piceatannol and piceatannol‑4'‑O‑β‑D‑glucopyranoside, on UVB‑induced damage and inflammation in cultured NHEK was investigated. The 80% ethanol extract from rose myrtle fruit with piceatannol exhibited protection of UVB‑induced cytotoxicity in NHEK; however, piceatannol‑4'‑O‑β‑D‑glucopyranoside exhibited no protection, as determined by a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. This extract and piceatannol reduced the production of UVB‑induced cyclobutane pyrimidine dimers and enhanced the cellular enzyme activity of the DNA polymerases in UVB‑irradiated NHEK, suggesting that UVB‑stimulated DNA damage was repaired by the polymerases. In addition, the secretion of prostaglandin E2, which is an inflammatory mediator, was decreased. These results indicated that rose myrtle fruit extract and its key constituent, piceatannol, are potential photoprotective candidates for UV‑induced skin damage. PMID:26239705

  5. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis

    PubMed Central

    Elisia, Ingrid; Nakamura, Hisae; Lam, Vivian; Hofs, Elyse; Cederberg, Rachel; Cait, Jessica; Hughes, Michael R.; Lee, Leora; Jia, William; Adomat, Hans H.; Guns, Emma S.; McNagny, Kelly M.; Samudio, Ismael; Krystal, Gerald

    2016-01-01

    Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%– 2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential. PMID:27031833

  6. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  7. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  8. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated.

  9. Anti-inflammatory Activity of Pyrrolizidine Alkaloids from the Leaves of Madhuca pasquieri (Dubard).

    PubMed

    Hoang, Le Son; Tran, Manh Hung; Lee, Joo Sang; To, Dao Cuong; Nguyen, Van Thu; Kim, Jeong Ah; Lee, Jeong Hyung; Woo, Mi Hee; Min, Byung Sun

    2015-01-01

    A novel pyrrolizidine alkaloids, madhumidine A (1), and two known alkaloids, lindelofidine benzoic acid ester (2) and minalobine B (3) were isolated from the leaves of Madhuca pasquieri (Dubard) H. J. LAM. The chemical structures of these alkaloids were established mainly by NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against lipopolysaccharide-induced nitric oxide production in macrophage RAW264.7 cell. In addition, the cytotoxic activity of all isolated compounds was tested against a panel of cancer cell lines. PMID:26027474

  10. New labdane diterpenoids from Croton laui and their anti-inflammatory activities.

    PubMed

    Yang, Li; Zhang, Yu-Bo; Chen, Li-Feng; Chen, Neng-Hua; Wu, Zhong-Nan; Jiang, Si-Qi; Jiang, Lin; Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai

    2016-10-01

    Nine new labdane diterpenoids (1-9) were isolated from the aerial parts of Croton laui, along with eight known analogues (10-17). Their structures were identified on the basis of the spectral data (IR, UV, HRESIMS, 1D and 2D NMR), and the structure of 8 was confirmed by single crystal X-ray diffraction analyses. In addition, compounds 1, 4, 7, 8, and 14 showed weak anti-inflammatory activities in LPS-stimulated RAW 264.7 cells.

  11. Synthesis of Aromatic Retinoids and Curcuminoids and Evaluation of their Antiproliferative, Antiradical, and Anti‐inflammatory Activities

    PubMed Central

    Morzycki, Jacek W.; Rárová, Lucie; Grúz, Jiři; Sawczuk, Tomasz; Kiełczewska, Urszula; Siergiejczyk, Leszek

    2016-01-01

    Abstract Natural retinoids and curcuminoids are known for their broad spectrum of biological properties, such as antioxidant, anti‐inflammatory, antitumor, and so forth. In this work, a convenient synthesis of aromatic retinoids and curcuminoids from vinyl or allyl ketones, and the corresponding alcohols, using olefin metathesis as a key reaction, was elaborated. The best yields and diastereoselectivities were obtained from allylic or homoallylic alcohols by employing the two‐step cross‐metathesis/oxidation procedure. The synthesized analogues were tested for their antiproliferative activity on human cancer cell lines of various origin (leukemia CEM, adenocarcinoma MCF7, cervical carcinoma HeLa) as well as for their antioxidant and anti‐inflammatory activity in vitro. All examined derivatives exhibited strong anti‐inflammatory activity in vitro without affecting cell viability. They also showed strong cytotoxicity against leukemia cell line CEM, except for 18 and 35. The antioxidant activity of the tested compounds was rather weak. PMID:27547644

  12. Synthesis of Aromatic Retinoids and Curcuminoids and Evaluation of their Antiproliferative, Antiradical, and Anti-inflammatory Activities.

    PubMed

    Morzycki, Jacek W; Rárová, Lucie; Grúz, Jiři; Sawczuk, Tomasz; Kiełczewska, Urszula; Siergiejczyk, Leszek; Wojtkielewicz, Agnieszka

    2016-08-01

    Natural retinoids and curcuminoids are known for their broad spectrum of biological properties, such as antioxidant, anti-inflammatory, antitumor, and so forth. In this work, a convenient synthesis of aromatic retinoids and curcuminoids from vinyl or allyl ketones, and the corresponding alcohols, using olefin metathesis as a key reaction, was elaborated. The best yields and diastereoselectivities were obtained from allylic or homoallylic alcohols by employing the two-step cross-metathesis/oxidation procedure. The synthesized analogues were tested for their antiproliferative activity on human cancer cell lines of various origin (leukemia CEM, adenocarcinoma MCF7, cervical carcinoma HeLa) as well as for their antioxidant and anti-inflammatory activity in vitro. All examined derivatives exhibited strong anti-inflammatory activity in vitro without affecting cell viability. They also showed strong cytotoxicity against leukemia cell line CEM, except for 18 and 35. The antioxidant activity of the tested compounds was rather weak. PMID:27547644

  13. Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models.

    PubMed

    Chamberlain, Lisa M; Godek, Marisha L; Gonzalez-Juarrero, Mercedes; Grainger, David W

    2009-03-15

    Cells of the mononuclear phagocytic system including monocytes and macrophages (e.g., pooled human monocytes, bone marrow-derived macrophages, etc.) are often employed for in vitro assessment of novel biomaterials and to assay anti-inflammatory drug activity. In this context, numerous macrophage cells are treated interchangeably in the literature despite a lack of demonstrated equivalence among immortalized cell lines and further, between cell lines and primary-derived macrophages of different species. Three murine (monocyte-) macrophage cell lines (IC-21, J774A.1, and RAW 264.7), commonly utilizedin biomaterial and pharmaceutical screening research, have been compared with primary-derived murine bone marrow macrophages. Significant differences were discovered in the expression of cell surface proteins requisite for cell adhesion and activation among cell lines and primary-derived cells as well as between the different cell lines. Results demonstrate activation but with reduced cytokine expression to chemical stimulus (lipopolysaccharide) by cell lines compared with that of primary-derived macrophages. Limited correlation between cultured primary and immortalized cells in cytokine production, phenotype and intrinsic activation states has relevance to fidelity for in vitro testing. These differences warrant justification for selection of various cell lines for specific assay purposes, and merit caution if comparisons to primary cell types (i.e., for biocompatibility) are required. PMID:18357567

  14. Rutin-loaded chitosan microspheres: Characterization and evaluation of the anti-inflammatory activity.

    PubMed

    Cosco, Donato; Failla, Paola; Costa, Nicola; Pullano, Salvatore; Fiorillo, Antonino; Mollace, Vincenzo; Fresta, Massimo; Paolino, Donatella

    2016-11-01

    Rutin was microencapsulated in a chitosan matrix using the spray-drying technique and the resulting system was investigated. High amounts of rutin were efficiently entrapped within polymeric microspheres, and these microparticles were characterized by a smooth surface and afforded a controlled release of the active compound. The anti-inflammatory activity of rutin-loaded microspheres was investigated in in vitro models of NCTC 2544 and C-28 cells treated with LPS by determining the levels of IL-1β and IL-6. The rutin-loaded microspheres showed an increase of in vitro anti-inflammatory activity with respect to the free active compound. Confocal laser scanning microscopy demonstrated that massive intracellular uptake of the chitosan microspheres took place after a few hours of incubation and that the drug was localized in the cytosol compartment of the treated cells. The improved anti-inflammatory activity of the rutin-loaded microspheres was further confirmed by an in vivo model of carrageenan-induced paw edema. PMID:27516307

  15. Divergent T-Cell Cytokine Patterns in Inflammatory Arthritis

    NASA Astrophysics Data System (ADS)

    Simon, A. K.; Seipelt, E.; Sieper, J.

    1994-08-01

    A major immunoregulatory mechanism in inflammatory infections and allergic diseases is the control of the balance of cytokines secreted by Th1/Th2 subsets of T helper (Th) cells. This might also be true in autoimmune diseases; a Th2 pattern that prevents an effective immune response in infections with intracellular bacteria may favor immunosuppression in autoimmune diseases. The pattern of cytokine expression was compared in the synovial tissue from patients with a typical autoimmune disease, rheumatoid arthritis, and with a disorder with similar synovial pathology but driven by persisting exogenous antigen, reactive arthritis. We screened 12 rheumatoid and 9 reactive arthritis synovial tissues by PCR and in situ hybridization for their expression of T-cell cytokines. The cytokine pattern differs significantly between the two diseases; rheumatoid arthritis samples express a Th1-like pattern whereas in reactive arthritis interferon γ expression is accompanied by that of interleukin 4. Studying the expression of cytokines by in situ hybridization confirmed the results found by PCR; they also show an extremely low frequency of cytokine-transcribing cells. In a double-staining experiment, it was demonstrated that interleukin 4 is made by CD4 cells. These experiments favor the possibility of therapeutic intervention in inflammatory rheumatic diseases by means of inhibitory cytokines.

  16. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis.

    PubMed

    Gu, H; Werner, J; Bergmann, F; Whitcomb, D C; Büchler, M W; Fortunato, F

    2013-01-01

    The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury.

  17. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis

    PubMed Central

    Gu, H; Werner, J; Bergmann, F; Whitcomb, D C; Büchler, M W; Fortunato, F

    2013-01-01

    The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury. PMID:24091659

  18. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  19. Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.

    PubMed

    Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A

    2016-06-14

    Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines.

  20. Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.

    PubMed

    Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A

    2016-06-14

    Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines. PMID:27185281

  1. Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.

    PubMed

    Park, Sun Young; Kim, Young Hun; Park, Geuntae

    2016-05-01

    Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent. PMID:27478097

  2. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(-/-) colitis.

    PubMed

    Hagenlocher, Yvonne; Hösel, Angela; Bischoff, Stephan C; Lorentz, Axel

    2016-04-01

    Inflammatory bowel disease (IBD) shows an increasing prevalence and harm in western countries. Conventional therapies are associated with bad compliance and adverse side effects. Natural substances like cinnamon extract (CE) could be an additional therapy. We found recently that CE acts anti-inflammatory on mast cells - discussed of being relevant in IBD. Here, we analysed the effects of CE on murine IL-10(-/-) colitis as model for IBD. Mice were treated 12 weeks with or without CE in drinking water. Clinical scores and disease activity index were assessed. Colonic tissue samples were analysed for infiltration, tissue damage, bowel wall thickness, expression of pro-inflammatory mediators, mast cell proteases, tight junction proteins, and NF-κB signaling. Following treatment with CE, symptoms of murine colitis as well as increased infiltration of immune cells, tissue damage and bowel wall thickness in colon tissue of IL-10(-/-) mice were diminished significantly. MIP-2, TNF, IFNγ, CCL2, CCL3, CCL4 and IL-1β as well as MC-CPA, MCP-1 and MCP-4 were strongly upregulated in IL-10(-/-) mice compared to WT, but noteworthy not in CE group. Expression of tight junction proteins was not influenced by CE. Phosphorylation of IκB was slightly down-regulated in CE treated IL-10(-/-) mice compared to IL-10(-/-) controls. In summary, CE decreases inflammatory symptoms and expression of inflammatory markers in murine IL-10(-/-) colitis. CE has no influence on tight junction proteins, but seems acting via reducing pro-inflammatory mediators and recruitment of neutrophil granulocytes probably by inhibiting NF-κB signaling. PMID:27012624

  3. Bioaccessibility, in vitro antioxidant activities and in vivo anti-inflammatory activities of a purple tomato (Solanum lycopersicum L.).

    PubMed

    Li, Hongyan; Deng, Zeyuan; Liu, Ronghua; Loewen, Steven; Tsao, Rong

    2014-09-15

    The bioaccessibility, antioxidant activities and anti-inflammatory activities of phytochemicals in a purple tomato (Solanum lycopersicum L.) V118 was studied using a simulated gastrointestinal digestion model, chemical and cell based antioxidant assays. The total phenolic and carotenoid contents and the antioxidant activities were significantly lowered (37-72%) and degradation seemed to have occurred during the in vitro digestion. Results indicated that these phytochemicals were bioavailable to the cells as demonstrated by the cell based antioxidant assay. Extracts from the purple tomato showed significant and dose dependent anti-inflammatory effect in the in vivo carrageenan-induced paw oedema rat study (oedematous inhibition: 7.48% and 13.8%), suggesting that anthocyanins may play a role in the anti-inflammatory effect. Direct antioxidant actions as indicated by reduced MDA and NO production and indirect actions as shown in increased GPx and SOD activities in oedematous tissue support the conclusion that tomatoes containing anthocyanins can potentially provide better protection against oxidative stress related chronic diseases of humans. PMID:24767066

  4. Screening for anti-inflammatory and bronchorelaxant activities of 12 commonly used Chinese herbal medicines.

    PubMed

    Yue, Grace G L; Chan, Ben C L; Kwok, Hin-Fai; To, Ming-Ho; Hon, Kam-Lun; Fung, Kwok-Pui; Lau, Clara B S; Leung, Ping-Chung

    2012-06-01

    The use of health supplements derived from medicinal herbs as self-medication for the relief of respiratory tract pathology symptoms is increasing in Chinese communities as air pollution is worsening. Twelve herbs from two formulae of our previous studies were evaluated for their anti-inflammatory, immunomodulatory and bronchorelaxant activities in this study. Among the extracts tested, those of Herba Schizonepetae and Radix Glycyrrhizae showed significant inhibitory effects on LPS-induced nitric oxide production (p < 0.05) in mouse macrophage RAW264.7 cells, suggesting their anti-inflammatory activities. Radix Scutellariae and Radix Glycyrrhizae extracts showed significant inhibitory effects on phytohaemagglutinin-induced proliferation in human peripheral blood mononuclear cells (p < 0.05). These extracts also showed inhibition of TNF-α, IFN-γ and IL-10 production. For the bronchorelaxant assay, Rhizoma Cynanchi Stauntonii and Radix Glycyrrhizae extracts showed potent attenuation of the acetylcholine- and carbachol-induced contractions in rat trachea (p < 0.05), implying their relaxant activities. In conclusion, Herba Schizonepetae, Radix Glycyrrhizae, Radix Scutellariae and Rhizoma Cynanchi Stauntonii extracts were demonstrated to exert anti-inflammatory, immunomodulatory and bronchorelaxant activities, which may help to ameliorate the symptoms of respiratory tract pathologies. The findings have thus provided some scientific evidence on the efficacy and mechanisms of action of these herbs, which are useful for the further development of clinical applications. PMID:22105892

  5. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  6. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation. PMID:26852703

  7. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  8. Glucose and Inflammatory Cells Decrease Adiponectin in Epicardial Adipose Tissue Cells: Paracrine Consequences on Vascular Endothelium.

    PubMed

    Fernández-Trasancos, Ángel; Guerola-Segura, Raquel; Paradela-Dobarro, Beatriz; Álvarez, Ezequiel; García-Acuña, José María; Fernández, Ángel Luis; González-Juanatey, José Ramón; Eiras, Sonia

    2016-05-01

    Epicardial adipose tissue (EAT) is a source of energy for heart that expresses the insulin-sensitizer, anti-inflammatory and anti-atherogenic protein, adiponectin. But, in coronary artery disease, adiponectin production declines. Our objective was to determine its regulation by glucose and inflammation in stromal cells from EAT and subcutaneous adipose tissue (SAT) and its paracrine effect on endothelial cells. Stromal cells of EAT and SAT were obtained from patients who underwent cardiac surgery. Adipogenesis was induced at 117, 200, or 295 mg/dl glucose, with or without macrophage-conditioned medium (MCM). Expression of adiponectin, GLUT-4 and the insulin receptor was analyzed by real-time PCR. The paracrine effect of stromal cells was determined in co-cultures with endothelial cells, by exposing them to high glucose and/or MCM, and, additionally, to leukocyte-conditioned medium from patients with myocardial infarction. The endothelial response was determined by analyzing vascular adhesion molecule expression. Our results showed a U-shaped dose-response curve of glucose on adiponectin in EAT, but not in SAT stromal cells. Conversely, MCM reduced the adipogenesis-induced adiponectin expression of EAT stromal cells. The presence of EAT stromal increased the inflammatory molecules of endothelial cells. This deleterious effect was emphasized in the presence of inflammatory cell-conditioned medium from patients with myocardial infarction. Thus, high glucose and inflammatory cells reduced adipogenesis-induced adiponectin expression of EAT stromal cells, which induced an inflammatory paracrine process in endothelial cells. This inflammatory effect was lower in presence of mature adipocytes, producers of adiponectin. These results contribute to understanding the role of EAT dysfunction on coronary atherosclerosis progression.

  9. Chemokine receptor expression by inflammatory T cells in EAE.

    PubMed

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  10. Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages.

    PubMed

    Correa, Luana Barbosa; Pádua, Tatiana Almeida; Seito, Leonardo Noboru; Costa, Thadeu Estevam Moreira Maramaldo; Silva, Magaiver Andrade; Candéa, André Luis Peixoto; Rosas, Elaine Cruz; Henriques, Maria G

    2016-06-24

    Methyl gallate (MG) is a prevalent phenolic acid in the plant kingdom, and its presence in herbal medicines might be related to its remarkable biological effects, such as its antioxidant, antitumor, and antimicrobial activities. Although some indirect evidence suggests anti-inflammatory activity for MG, there are no studies demonstrating this effect in animal models. Herein, we demonstrated that MG (0.7-70 mg/kg) inhibited zymosan-induced experimental arthritis in a dose-dependent manner. The oral administration of MG (7 mg/kg) attenuates arthritis induced by zymosan, affecting edema formation, leukocyte migration, and the production of inflammatory mediators (IL-1β, IL-6, TNF-α, CXCL-1, LTB4, and PGE2). Pretreatment with MG inhibited in vitro neutrophil chemotaxis elicited by CXCL-1, as well as the adhesion of these cells to TNF-α-primed endothelial cells. MG also impaired zymosan-stimulated macrophages by inhibiting IL-6 and NO production, COX-2 and iNOS expression, and intracellular calcium mobilization. Thus, MG is likely to present an anti-inflammatory effect by targeting multiple cellular events such as the production of various inflammatory mediators, as well as leukocyte activation and migration. PMID:27227459

  11. Human Mesenchymal Stem Cells Suppress the Stretch–Induced Inflammatory miR-155 and Cytokines in Bronchial Epithelial Cells

    PubMed Central

    Kuo, Yi-Chun; Li, Yi-Shuan Julie; Zhou, Jing; Shih, Yu-Ru Vernon; Miller, Marina; Broide, David; Lee, Oscar Kuang-Sheng; Chien, Shu

    2013-01-01

    Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma. PMID:23967196

  12. Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera.

    PubMed

    Gokhale, A B; Damre, A S; Kulkami, K R; Saraf, M N

    2002-07-01

    Saussurea lappa, Argyreia speciosa and Achyranthes aspera are well known Indian medicinal plants used in the indigenous systems of medicine for the treatment of inflammatory conditions. The ethanolic extracts of the plants at the doses of 50, 100 and 200 mg/kg, p.o. were screened for their effect on acute and chronic inflammation induced in mice and rats. S. lappa and A. speciosa were found to significantly inhibit paw edema induced by carrageenan and Freund's complete adjuvant and to prevent accumulation of inflammatory cells in carrageenan-induced peritonitis at doses of 50-200 mg/kg. A. aspera inhibited these inflammatory responses at doses of 100-200 mg/kg. The studies reveal that the ethanolic extracts of S. lappa, A. speciosa and A. aspera possess anti-inflammatory and anti-arthritic activity and support the rationale behind the traditional use of these plants in inflammatory conditions.

  13. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  14. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide

    PubMed Central

    Vaziri, Nosratola D; Moradi, Hamid; Pahl, Madeleine V; Fogelman, Alan M; Navab, Mohamad

    2010-01-01

    Features of end-stage renal disease such as oxidative stress, inflammation, hypertension, and dyslipidemia are associated with accelerated atherosclerosis and increased risk of death from cardiovascular disease. By inhibiting the formation and increasing the disposal of oxidized lipids, HDL exerts potent antioxidant and anti-inflammatory actions. Given that apolipoproteinA-1 can limit atherosclerosis, we hypothesized that an apolipoproteinA-1 mimetic peptide, 4F, may reduce the proinflammatory properties of LDL and enhance the anti-inflammatory properties of HDL in uremic plasma. To test this, plasma from each of 12 stable hemodialysis patients and age-matched control subjects was incubated with 4F or vehicle. The isolated HDL and LDL fractions were added to cultured human aortic endothelial cells to quantify monocyte chemotactic activity, thus measuring their pro- or anti-inflammatory index. The LDL from the hemodialysis patients was more pro-inflammatory and their HDL was less anti-inflammatory than those of the control subjects. Pre-incubation of the plasma from the hemodialysis patients with 4F decreased LDL pro-inflammatory activity and enhanced HDL anti-inflammatory activity. Whether 4F or other apolipoproteinA-1 mimetic peptides will have any therapeutic benefit in end-stage renal disease will have to be examined directly in clinical studies. PMID:19471321

  15. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    SciTech Connect

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  16. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides

    PubMed Central

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845

  17. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Ramesh, Govindarajan T; Chidananda Sharma, S

    2015-05-01

    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases. PMID:25666088

  18. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface.

    PubMed

    Neacsu, Patricia; Mazare, Anca; Cimpean, Anisoara; Park, Jung; Costache, Marieta; Schmuki, Patrik; Demetrescu, Ioana

    2014-10-01

    Macrophages play a pivotal role in the hosts response to biomaterials being considered as an essential cell type during both optimal tissue-implant integration and pathologic process of implant failure. Hence, understanding of their cellular activity on biomaterials is important for improving evaluation and design of biomaterials for biomedical applications. In the present study, we have comparatively investigated the interactions of titania nanotubes (78 nm diameter) and commercial pure Ti with RAW 264.7 macrophages in both standard and pro-inflammatory (stimulation with lipopolysaccharide, LPS) culture conditions. In vitro tests showed that TiO2 nanotubes exhibited significantly decreased inflammatory activity of macrophages with respect to cytokine and chemokine gene expression/protein secretion, induction of foreign body giant cells (FBGCs) and nitric oxide (NO) release thereby mitigating the inflammatory response induced by LPS as compared to flat Ti surface. Therefore, our results suggest a novel role of TiO2 nanotubes in modulating macrophage response in biomaterial-associated bacterial infections. Overall, the current study provides new insight into how TiO2 nanotubes can be involved in macrophage activation and supports the great promise of such surface modifications for biomedical applications.

  19. A Functional Variant of Elafin With Improved Anti-inflammatory Activity for Pulmonary Inflammation

    PubMed Central

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene MA; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  20. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling

    PubMed Central

    Fleming, Bryan D.; Chandrasekaran, Prabha; Dillon, Laura A. L.; Dalby, Elizabeth; Suresh, Rahul; Sarkar, Arup; El-Sayed, Najib M.; Mosser, David M.

    2015-01-01

    Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1β, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4. PMID:26048978

  1. Soluble Mediators in Platelet Concentrates Modulate Dendritic Cell Inflammatory Responses in an Experimental Model of Transfusion.

    PubMed

    Perros, Alexis J; Christensen, Anne-Marie; Flower, Robert L; Dean, Melinda M

    2015-10-01

    The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose-associated suppression of the production of DC IL-12, IL-6, IL-1α, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein (MIP)-1β and storage-associated suppression of the production of DC IL-10, TNF-α, and IL-8. For the overall inflammatory response, IL-6, TNF-α, MIP-1α, MIP-1β, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1β significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications. PMID:26133961

  2. Anti-oxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial essential oils.

    PubMed

    Aazza, Smail; Lyoussi, Badiaa; Megías, Cristina; Cortés-Giraldo, Isabel; Vioque, Javier; Figueiredo, A Cristina; Miguel, Maria G

    2014-04-01

    Essential oils (EO) possess antimicrobial, anti-inflammatory, insect repellent, anti-cancer, and antioxidant properties, among others. In the present work, the antioxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial EOs (Citrus aurantium, C. limon, Cupressus sempervirens, Eucalyptus globulus, Foeniculum vulgare and Thymus vulgaris) were evaluated and compared with their main constituents. T. vulgaris EO showed the best free radicals scavenging capacity. This EO was also the most effective against lipid peroxidation along with C. limon and F. vulgare EOs. C. sempervirens EO was the most effective in scavenging NO free radicals, whereas C. limon EO showed the best chelating power. Not all of the major compounds of the EO were responsible for the whole activity of the EOs. T. vulgaris EO showed the best anti-proliferative activity against THP-1 cells in contrast to that of F. vulgare. The antioxidant and anti-inflammatory activities of the EOs were plant species dependent and not always attributable to the EOs main components. Nevertheless, the EOs anti-proliferative activities were more related to their main components, as with T. vulgaris, C. limon, E. globulus and C. sempervirens. PMID:24868891

  3. Anti-inflammatory activities of cecropin A and its mechanism of action.

    PubMed

    Lee, Eunjung; Shin, Areum; Kim, Yangmee

    2015-01-01

    Cecropin A is a novel 37-residue cecropin-like antimicrobial peptide isolated from the cecropia moth, Hyalophora cecropia. We have demonstrated that cecropin A is an antibacterial agent and have investigated its mode of action. In this study, we show that cecropin A has potent antimicrobial activity against 2 multidrug resistant organisms-Acinetobacter baumanii and-Pseudomonas aeruginosa. Interactions between cecropin A and membrane phospholipids were studied using tryptophan blue shift experiments. Cecropin A has a strong interaction with bacterial cell mimetic membranes. These results imply that cecropin A has selectivity for bacterial cells. To address the potential the rapeutic efficacy of cecropin A, its anti-inflammatory activities and mode of action in mouse macrophage-derived RAW264.7 cells stimulated with lipopolysaccharide (LPS) were examined. Cecropin A suppressed nitrite production, mTNF-α, mIL-1β, mMIP-1, and mMIP-2 cytokine release in LPS-stimulated RAW264.7 cells. Furthermore, cecropin A inhibited intracellular cell signaling via the ERK, JNK, and p38 MAPK pathway, leading to the prevention of COX-2 expression in LPS-stimulated RAW264.7 cells. These results strongly suggest that cecropin A should be investigated as a potential agent for the prevention and treatment of inflammatory diseases.

  4. Anti-inflammatory activity of Dasyphyllum brasiliensis (Asteraceae) on acute peritonitis induced by beta-glucan from Histoplasma capsulatum.

    PubMed

    Castelucci, Simone; de Paula Rogerio, Alexandre; Ambrosio, Sérgio Ricardo; Arakawa, Nilton Syogo; de Lira, Simone Possedente; Faccioli, Lúcia Helena; Da Costa, Fernando Batista

    2007-05-30

    The tea prepared from leaves and thorns of Dasyphyllum brasiliensis (Asteraceae) is used in the traditional medicine in Brazil for the treatment of oral and oropharyngeal diseases. In this study, we investigated the anti-inflammatory activity of this plant. The aqueous crude extract (ACE), the methanol-water (MeOH-H(2)O) fraction obtained by solvent partition and its fractionation products were evaluated for their anti-inflammatory activities on acute peritonitis induced by beta-glucan from the cell walls of Histoplasma capsulatum. The antiedematogenic activity was also tested using the carrageenan-induced paw edema assay in mice. Oral administration of 100 and 300mg/kg of the ACE in mice caused a significant reduction of neutrophil and eosinophil recruitment in the acute peritonitis assay. In addition, ACE at 300mg/kg inhibited the number of mononuclear cells recruitment. The MeOH-H(2)O fraction and its fractionation products (all at 100mg/kg) also presented anti-inflammatory activities, confirmed by the inhibition of cells recruited to the peritoneal cavity. ACE at 100mg/kg did not show any significant reduction of the edema in the mice paw injected with carrageenan. These data together suggest that Dasyphyllum brasiliensis presents significant anti-inflammatory activity, thus supporting the popular use of the tea in the treatment of inflammatory diseases.

  5. Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum.

    PubMed

    Azelmat, Jabrane; Fiorito, Serena; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2015-01-01

    The diisopentenyloxy quinolobactin derivative 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy] quinoline-2-carboxylate, also named as Ppc-1, has been initially isolated from the fruiting bodies of the cellular slime mold Polysphondylium pseudo-candidum. Given that few data are available in the literature concerning the biological properties of this compound, this study was undertaken to evaluate its antibacterial and anti-inflammatory properties. Ppc-1 exerted antibacterial activity on the Gram negative periodontopathogen Porphyromonas gingivalis, while it had no such effect on the other bacterial species tested. The antibacterial activity of Ppc-1 appeared to result from its ability to permeate the cell membrane. Using the U937-3xκB-LUC human monocytic cell line, Ppc-1 was found to dose-dependently inhibit the lipopolysaccharide-induced NF-κB activation, a signaling pathway that has been associated with inflammatory mediator secretion. In conclusion, Ppc-1, by exhibiting a dual mode of action including antibacterial and anti-inflammatory activities, may represent a promising targeted therapeutic agent for periodontal diseases.

  6. Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum.

    PubMed

    Azelmat, Jabrane; Fiorito, Serena; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2015-01-01

    The diisopentenyloxy quinolobactin derivative 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy] quinoline-2-carboxylate, also named as Ppc-1, has been initially isolated from the fruiting bodies of the cellular slime mold Polysphondylium pseudo-candidum. Given that few data are available in the literature concerning the biological properties of this compound, this study was undertaken to evaluate its antibacterial and anti-inflammatory properties. Ppc-1 exerted antibacterial activity on the Gram negative periodontopathogen Porphyromonas gingivalis, while it had no such effect on the other bacterial species tested. The antibacterial activity of Ppc-1 appeared to result from its ability to permeate the cell membrane. Using the U937-3xκB-LUC human monocytic cell line, Ppc-1 was found to dose-dependently inhibit the lipopolysaccharide-induced NF-κB activation, a signaling pathway that has been associated with inflammatory mediator secretion. In conclusion, Ppc-1, by exhibiting a dual mode of action including antibacterial and anti-inflammatory activities, may represent a promising targeted therapeutic agent for periodontal diseases. PMID:25925558

  7. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  8. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells.

    PubMed

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-04-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2-16h at concentrations of 0-50 μg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways.

  9. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    SciTech Connect

    Tsou, Tsui-Chun; Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan; Chao, How-Ran

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause

  10. Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling.

    PubMed

    Martire, Alessandra; Bedada, Fikru B; Uchida, Shizuka; Pöling, Jochen; Krüger, Marcus; Warnecke, Henning; Richter, Manfred; Kubin, Thomas; Herold, Susanne; Braun, Thomas

    2016-09-01

    Mesenchymal stem cells (MSC) have been used to treat different clinical conditions although the mechanisms by which pathogenetic processes are affected are still poorly understood. We have previously analyzed the homing of bone marrow-derived MSC to diseased tissues characterized by a high degree of mononuclear cell infiltration and postulated that MSC might modulate inflammatory responses. Here, we demonstrate that MSC mitigate adverse tissue remodeling, improve organ function, and extend lifespan in a mouse model of inflammatory dilative cardiomyopathy (DCM). Furthermore, MSC attenuate Lipopolysaccharide-induced acute lung injury indicating a general role in the suppression of inflammatory processes. We found that MSC released sTNF-RI, which suppressed activation of the NFκBp65 pathway in cardiomyocytes during DCM in vivo. Substitution of MSC by recombinant soluble TNF-R partially recapitulated the beneficial effects of MSC while knockdown of TNF-R prevented MSC-mediated suppression of the NFκBp65 pathway and improvement of tissue pathology. We conclude that sTNF-RI is a major part of the paracrine machinery by which MSC effect local inflammatory reactions. PMID:27435289

  11. Moringa oleifera pod inhibits inflammatory mediator production by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell lines.

    PubMed

    Muangnoi, Channarong; Chingsuwanrote, Pimjai; Praengamthanachoti, Phawachaya; Svasti, Saovaros; Tuntipopipat, Siriporn

    2012-04-01

    Pro-inflammatory mediators produced during inflammatory response have been demonstrated to initiate and aggravate pathological development of several chronic diseases. Plant bioactive constituents have been reported to exert anti-inflammatory activities. Various parts of Moringa oleifera have long been used as habitual diets and traditional remedy along the tropical region. Anti-inflammatory activity of boiled M. oleifera pod extract was assessed by measuring pro-inflammatory mediator expression in the lipopolysaccharide-induced murine RAW264.7 macrophage cells. Prior treatment with 31-250 μg/mL M. oleifera extract for 1 h inhibited elevation of mRNA and protein level of interleukine-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenease-2, induced by lipopolysaccharide for 24 h in a dose-dependent manner. The suppressive effect was mediated partly by inhibiting phosphorylation of inhibitor kappa B protein and mitogen-activated protein kinases. These results indicate that the anti-inflammatory activity from bioactive compounds present in the M. oleifera pod constituents may contribute to ameliorate the pathogenesis of inflammatory-associated chronic diseases. PMID:21537903

  12. [Mast cells, their adenosine receptors and reactive oxygen species in chronic inflammatory pathologies of childhood].

    PubMed

    Renke, Joanna; Popadiuk, Stefan; Wozniak, Michał; Szlagatys-Sidorkiewicz, Agnieszka; Hansdorfer-Korzon, Rita

    2006-01-01

    Mast cells were described by Erhlich at the end of XIX-th century. Their role was deeply investigated in asthma and allergy. The massive degranulation of mast cells in allergy can lead to anaphylactic shock. Recently, mast cells have been recognized again as a very interesting topic for investigation, due to their possible role in chronic inflammation. Moreover, through adenosine receptors, mast cells can be activated or inactivated. That is why these cells are regarded as a potential target of new drugs. It has been reported, that mast cells generate intracellular reactive oxygen species (ROS) in response to stimulation with divergent physiologically relevant stimulants. The intensification of ROS production may be measured by the level of carbonyl groups, as a marker of protein peroxidation. However, the role of mast cells in other than asthma diseases with chronic inflammation needs further investigation. It was found out that the information about mast cell distribution in colonic mucosa may serve as help in differentiation between inflammatory bowel disease and collagenous colitis. Moreover, its accumulation in focal active gastritis was confirmed in patients with Crohn's disease. An important role in regulation of inflammatory process seems to be reserved for adenosine receptors present on mastocytes. The activation of mast cells through the adenosine receptor is connected with 11-8 release, which stimulate the migration of leukocytes and oxidation reactions. The detection of mast cells in tissues should not be limited only to the simple histologic examination. It should be completed by the detection of products of degranulation, e.g. tryptase. This is the way to find out their actual function and state of activation. PMID:17203808

  13. Revisited anti-inflammatory activity of matricine in vitro: Comparison with chamazulene.

    PubMed

    Flemming, Marcel; Kraus, Birgit; Rascle, Anne; Jürgenliemk, Guido; Fuchs, Simone; Fürst, Robert; Heilmann, Jörg

    2015-10-01

    The proazulene matricine (1) is present in chamomile flower heads and has been proven to exhibit strong in vivo anti-inflammatory activity. In contrast to other secondary metabolites in chamomile preparations like its degradation product chamazulene (2), no plausible targets have been found to explain this activity. Therefore we revisited 1 regarding its in vitro anti-inflammatory activity in cellular and molecular studies. Using ICAM-1 as a marker for NF-κB activation, it was shown that ICAM-1 protein expression induced by TNF-α and LPS, but not by IFN-γ, was remarkably inhibited by 1 in endothelial cells (HMEC-1). Inhibition was concentration-dependent in a micromolar range (10-75 μM) and did not involve cytotoxic effects. At 75 μM expression of the adhesion molecule ICAM-1 was down to 52.7 ± 3.3% and 20.4 ± 1.8% of control in TNF-α and LPS-stimulated HMEC-1, respectively. In contrast, 2 showed no activity. Quantitative RT-PCR experiments revealed that TNF-α-induced expression of the ICAM-1 gene was also reduced by 1 in a concentration-dependent manner, reaching 32.3 ± 6.2% of control at 100 μM matricine. Additional functional assays (NF-κB promotor activity and cytoplasm to nucleus translocation) confirmed the inhibitory effect of 1 on NF-κB signaling. Despite the fact that 1 lacks an α,β-unsaturated carbonyl and is thus not able to act via a Michael reaction with electron rich SH groups of functional biological molecules, data gave strong evidence that 1 inhibits NF-κB transcriptional activity in endothelial cells by an hitherto unknown mechanism and this may contribute to its well-known anti-inflammatory activity in vivo. PMID:26304764

  14. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Maria Tuccillo, Franca; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; Laurentiis, Annamaria de; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Maria Buonaguro, Franco; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  15. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals.

    PubMed

    Afanas'eva, I B; Ostrakhovitch, E A; Mikhal'chik, E V; Ibragimova, G A; Korkina, L G

    2001-03-15

    The antioxidant and anti-inflammatory activities of two transition metal complexes of bioflavonoid rutin, Fe(rut)Cl(3) and Cu(rut)Cl(2), were studied. It was found that Cu(rut)Cl(2) was a highly efficient in vitro and ex vivo free radical scavenger that sharply decreased (by 2-30 times compared to the parent rutin): oxygen radical production by xanthine oxidase, rat liver microsomes, and rat peritoneal macrophages; the formation of thiobarbituric acid-reactive products in microsomal lipid peroxidation; and the generation of oxygen radicals by broncho-alveolar cells from bleomycin-treated rats. The copper-rutin complex was also a superior inhibitor of inflammatory and fibrotic processes (characterized by such parameters as macrophage/neutrophil ratio, wet lung weight, total protein content, and hydroxyproline concentration) in the bleomycin-treated rats. The antioxidant activity of Fe(rut)Cl(3) was much lower and in some cases approached that of rutin. Fe(rut)Cl(3) also stimulated to some degree spontaneous oxygen radical production by macrophages. We suggested that the superior antioxidant and anti-inflammatory activity of the copper-rutin complex is a consequence of its acquiring the additional superoxide-dismuting copper center. The inhibitory activity of Fe(rut)Cl(3) was lower, probably due to the partial reduction into Fe(rut)Cl(2) in the presence of biological reductants; however, similarly to the copper-rutin complex, this complex efficiently suppressed lung edema. PMID:11266652

  16. Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells

    PubMed Central

    Pommier, Arnaud; Audemard, Alexandra; Durand, Aurélie; Lengagne, Renée; Delpoux, Arnaud; Martin, Bruno; Douguet, Laetitia; Le Campion, Armelle; Kato, Masashi; Avril, Marie-Françoise; Auffray, Cédric; Lucas, Bruno; Prévost-Blondel, Armelle

    2013-01-01

    The present study evaluates the impact of immune cell populations on metastatic development in a model of spontaneous melanoma [mice expressing the human RET oncogene under the control of the metallothionein promoter (MT/ret mice)]. In this model, cancer cells disseminate early but remain dormant for several weeks. Then, MT/ret mice develop cutaneous metastases and, finally, distant metastases. A total of 35% of MT/ret mice develop a vitiligo, a skin depigmentation attributable to the lysis of normal melanocytes, associated with a delay in tumor progression. Here, we find that regulatory CD4+ T cells accumulate in the skin, the spleen, and tumor-draining lymph nodes of MT/ret mice not developing vitiligo. Regulatory T-cell depletion and IL-10 neutralization led to increased occurrence of vitiligo that correlated with a decreased incidence of melanoma metastases. In contrast, inflammatory monocytes/dendritic cells accumulate in the skin of MT/ret mice with active vitiligo. Moreover, they inhibit tumor cell proliferation in vitro through a reactive oxygen species-dependent mechanism, and both their depletion and reactive oxygen species neutralization in vivo increased tumor cell dissemination. Altogether, our data suggest that regulatory CD4+ T cells favor tumor progression, in part, by inhibiting recruitment and/or differentiation of inflammatory monocytes in the skin. PMID:23878221

  17. CD38 is expressed on inflammatory cells of the intestine and promotes intestinal inflammation.

    PubMed

    Schneider, Michael; Schumacher, Valéa; Lischke, Timo; Lücke, Karsten; Meyer-Schwesinger, Catherine; Velden, Joachim; Koch-Nolte, Friedrich; Mittrücker, Hans-Willi

    2015-01-01

    The enzyme CD38 is expressed on a variety of hematopoietic and non-hematopoietic cells and is involved in diverse processes such as generation of calcium-mobilizing metabolites, cell activation, and chemotaxis. Here, we show that under homeostatic conditions CD38 is highly expressed on immune cells of the colon mucosa of C57BL/6 mice. Myeloid cells recruited to this tissue upon inflammation also express enhanced levels of CD38. To determine the role of CD38 in intestinal inflammation, we applied the dextran sulfate sodium (DSS) colitis model. Whereas wild-type mice developed severe colitis, CD38-/- mice had only mild disease following DSS-treatment. Histologic examination of the colon mucosa revealed pronounced inflammatory damage with dense infiltrates containing numerous granulocytes and macrophages in wild-type animals, while these findings were significantly attenuated in CD38-/- mice. Despite attenuated histological findings, the mRNA expression of inflammatory cytokines and chemokines was only marginally lower in the colons of CD38-/- mice as compared to wild-type mice. In conclusion, our results identify a function for CD38 in the control of inflammatory processes in the colon.

  18. Anti-inflammatory, antioxidant and antitumor activities of ingredients of Curcuma phaeocaulis Val

    PubMed Central

    Hou, Yan; Lu, Chuan-Li; Zeng, Qiao-Hui; Jiang, Jian-Guo

    2015-01-01

    Curcuma phaeocaulis Val. is used in Chinese Pharmacopoeia as health food and folk medicine for removing blood stasis, alleviating pain and tumor therapy. This research was aimed to explore and compare three main bioactivities including anti-oxidant, antitumor and anti-inflammatory activities between the ethanol extract of C. Phaeocaulis and its fractions using different in vitro models. Firstly, 70 % ethanol was used to extract C. Phaeocaulis, and then the crude extract was re-extracted, resulting in petroleum ether (EZ-PE), ethyl acetate (EZ-EA), and water fractions (EZ-W), respectively, and then a series of index was detected. Results showed that all the extracts had medium DPPH radical scavenging activity when the concentration was 200 μg/ml and their DPPH radical scavenging activity was in a concentration-dependent manner. The extracts except ethanol extract of C. Phaeocaulis had almost no cytotoxicity to the survival of RAW264.7 cell when the concentration reached 80 μg/ml, and all of them had medium inhibitory effect on nitrite release. Extracts of C. Phaeocaulis had medium intensity antitumor activity, EZ-PE and EZ-EA fractions significantly inhibited the proliferation of four tumor cells (SMMC-7721 cell lines, HepG-2 cell lines, A549 cell lines and Hela cell lines). C. Phaeocaulis had antioxidant and anti-inflammatory activities, which did not carry out centralized phenomenon when re-extracted. EZ-PE and EZ-EA were active antitumor sites of C. Phaeocaulis. PMID:26648822

  19. Lack of glutathione peroxidase-1 facilitates a pro-inflammatory and activated vascular endothelium.

    PubMed

    Sharma, Arpeeta; Yuen, Derek; Huet, Olivier; Pickering, Raelene; Stefanovic, Nada; Bernatchez, Pascal; de Haan, Judy B

    2016-04-01

    A critical early event in the pathogenesis of atherosclerosis is vascular inflammation leading to endothelial dysfunction (ED). Reactive oxygen species and inflammation are inextricably linked and declining antioxidant defense is implicated in ED. We have previously shown that Glutathione peroxidase-1 (GPx1) is a crucial antioxidant enzyme in the protection against diabetes-associated atherosclerosis. In this study we aimed to investigate mechanisms by which lack of GPx1 affects pro-inflammatory mediators in primary aortic endothelial cells (PAECs) isolated from GPx1 knockout (GPx1 KO) mice. Herein, we demonstrate that lack of GPx1 prolonged TNF-α induced phosphorylation of P38, ERK and JNK, all of which was reversed upon treatment with the GPx1 mimetic, ebselen. In addition, Akt phosphorylation was reduced in GPx1 KO PAECs, which correlated with decreased nitric oxide (NO) bioavailability as compared to WT PAECs. Furthermore, IκB degradation was prolonged in GPx1 KO PAECS suggesting an augmentation of NF-κB activity. In addition, the expression of vascular cell adhesion molecule (VCAM-1) was significantly increased in GPx1 KO PAECs and aortas. Static and dynamic flow adhesion assays showed significantly increased adhesion of fluorescently labeled leukocytes to GPx1 KO PAECS and aortas respectively, which were significantly reduced by ebselen treatment. Our results suggest that GPx1 plays a critical role in regulating pro-inflammatory pathways, including MAPK and NF-κB, and down-stream mediators such as VCAM-1, in vascular endothelial cells. Lack of GPx1, via effects on p-AKT also affects signaling to eNOS-derived NO. We speculate based on these results that declining antioxidant defenses as seen in cardiovascular diseases, by failing to regulate these pro-inflammatory pathways, facilitates an inflammatory and activated endothelium leading to ED and atherogenesis. PMID:26569096

  20. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis.

    PubMed

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-04-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS). PMID:27180569

  1. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

    PubMed Central

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-01-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS). PMID:27180569

  2. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: implications for inflammatory demyelinating disease.

    PubMed

    Winkler, Clayton W; Foster, Scott C; Itakura, Asako; Matsumoto, Steven G; Asari, Akira; McCarty, Owen J T; Sherman, Larry S

    2013-04-24

    Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular endothelial cells and delays the onset of EAE. These effects could be due to the elimination of hyaluronan or the generation of hyaluronan digestion products that influence lymphocytes or endothelial cells. Here, we found that hyaluronan dodecasaccharides impaired activated lymphocyte slow rolling on brain vascular endothelial cells when applied to lymphocytes but not to the endothelial cells. The effects of hyaluronan dodecasaccharides on lymphocyte rolling were independent of CD44 and a receptor for degraded hyaluronan, Toll-like receptor-4. Subcutaneous injection of hyaluronan dodecasaccharides or tetrasaccharides delayed the onset of EAE in a manner similar to subcutaneous injection of hyaluronidase. Hyaluronan oligosaccharides can therefore act directly on lymphocytes to modulate the onset of inflammatory demyelinating disease.

  3. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  4. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages.

    PubMed

    Wang, Jenny W; Woodward, David F; Martos, Jose L; Cornell, Clive L; Carling, Robert W; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing

  5. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease

    PubMed Central

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R.; Naim, Hassan Y.; El-Sabban, Marwan E.

    2016-01-01

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins’ expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier. PMID:27417573

  6. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease.

    PubMed

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R; Naim, Hassan Y; El-Sabban, Marwan E

    2016-07-15

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins' expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier.

  7. Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid.

    PubMed

    Liu, Kelly Y P; Hu, Shuiqing; Chan, Ben C L; Wat, Elaine C L; Lau, Clara B S; Hon, Kam L; Fung, Kwok P; Leung, Ping C; Hui, Patrick C L; Lam, Christopher W K; Wong, Chun K

    2013-01-01

    Pentaherb formula (PHF) has been proven to improve the quality of life of children with atopic dermatitis without side effects. The aim of this study was to elucidate the potential anti-inflammatory and anti-allergic activities of PHF, Moutan Cortex (Danpi/DP) and gallic acid (GA) using human basophils (KU812 cells), which are crucial effector cells in allergic inflammation. PHF, DP and GA could significantly suppress the expression of allergic inflammatory cytokine IL-33-upregulated intercellular adhesion molecule (ICAM)-1, and the release of chemokines CCL2, CCL5, CXCL8 and inflammatory cytokine IL-6 from KU812 cells (all p < 0.05). With the combined use of dexamethasone (0.01 μg/mL) and GA (10 μg/mL), the suppression of ICAM-1 expression and CCL5 and IL-6 release of IL-33-activated KU812 cells were significantly greater than the use of GA alone (all p < 0.05). The suppression of the IL-33-induced activation of intracellular signalling molecules p38 mitogen activated protein kinase, nuclear factor-kB and c-Jun amino-terminal kinase in GA-treated KU812 cells could be the underlying mechanism for the suppression on ICAM-1, chemokines and cytokines. The combined use of dexamethasone with the natural products PHF or DP or GA might therefore enhance the development of a novel therapeutic modality for allergic inflammatory diseases with high potency and fewer side effects.

  8. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    PubMed

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2016-01-01

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.

  9. Nuclear presence of nuclear factor of activated T cells (NFAT) c3 and c4 is required for Toll-like receptor-activated innate inflammatory response of monocytes/macrophages.

    PubMed

    Minematsu, Hiroshi; Shin, Mike J; Celil Aydemir, Ayse B; Kim, Kyung-Ok; Nizami, Saqib A; Chung, Gook-Jin; Lee, Francis Young-In

    2011-11-01

    Nuclear factor of activated T cells (NFATs) are crucial transcription factors that tightly control proinflammatory cytokine expression for adaptive immunity in T and B lymphocytes. However, little is known about the role of NFATs for innate immunity in macrophages. In this study, we report that NFAT is required for Toll-like receptor (TLR)-initiated innate immune responses in bone marrow-derived macrophages (BMMs). All TLR ligand stimulation including LPS, a TLR4 ligand, and Pam(3)CSK(4), a TLR1/2 ligand, induced expression of TNF which was inhibited by VIVIT, an NFAT-specific inhibitor peptide. BMMs from NFATc4 knock-out mouse expressed less TNF than wild type. Despite apparent association between NFAT and TNF, LPS did not directly activate NFAT based on NFAT-luciferase reporter assay, whereas NF-κB was inducibly activated by LPS. Instead, macrophage exhibited constitutive NFAT activity which was not increased by LPS and was decreased by VIVIT. Immunocytochemical examination of NFATc1-4 of BMMs exhibited nuclear localization of NFATc3/c4 regardless of LPS stimulation. LPS stimulation did not cause nuclear translocation of NFATc1/c2. Treatment with VIVIT resulted in nuclear export of NFATc3/c4 and inhibited TLR-activated TNF expression, suggesting that nuclear residence of NFATc is required for TLR-related innate immune response. Chromatin immunoprecipitation (ChIP) assay using anti-RNA polymerase II (PolII) antibody suggested that VIVIT decreased PolII binding to TNF gene locus, consistent with VIVIT inhibition of LPS-induced TNF mRNA expression. This study identifies a novel paradigm of innate immune regulation rendered by NFAT which is a well known family of adaptive immune regulatory proteins.

  10. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC.) Polhill & Wiens (Loranthaceae) Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    PubMed Central

    Boly, Rainatou; Franck, Thierry; Kohnen, Stephan; Lompo, Marius; Guissou, Innocent Pierre; Dubois, Jacques; Serteyn, Didier; Mouithys-Mickalad, Ange

    2015-01-01

    The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO) activities. The reactive oxygen species (ROS) generation was assessed by lucigenin-enhanced chemiluminescence (CL) and dichlorofluorescein- (DCF-) induced fluorescence techniques from phorbol myristate acetate- (PMA-) stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3 ± 0.1 µg/mL) and the ELISA and SIEFED assays (IC50 = 2.8 ± 1.2 µg/mL and 1.3 ± 1.0 µg/mL), respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51%) while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds. PMID:25821497

  11. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation

    PubMed Central

    Kourtzelis, Ioannis; Rafail, Stavros; DeAngelis, Robert A.; Foukas, Periklis G.; Ricklin, Daniel; Lambris, John D.

    2013-01-01

    Although complement is a known contributor to biomaterial-induced complications, pathological implications and therapeutic options remain to be explored. Here we investigated the involvement of complement in the inflammatory response to polypropylene meshes commonly used for hernia repair. In vitro assays revealed deposition of complement activation fragments on the mesh after incubation in plasma. Moreover, significant mesh-induced complement and granulocyte activation was observed in plasma and leukocyte preparations, respectively. Pretreatment of plasma with the complement inhibitor compstatin reduced opsonization >2-fold, and compstatin and a C5a receptor antagonist (C5aRa) impaired granulocyte activation by 50 and 67%, respectively. We established a clinically relevant mouse model of implantation and could confirm deposition of C3 activation fragments on mesh implants in vivo using immunofluorescence. In meshes extracted after subcutaneous or peritoneal implantation, the amount of immune cell infiltrate in mice deficient in key complement components (C3, C5aR), or treated with C5aRa, was approximately half of that observed in wild-type littermates or mice treated with inactive C5aRa, respectively. Our data suggest that implantation of a widely used surgical mesh triggers the formation of an inflammatory cell microenvironment at the implant site through complement activation, and indicates a path for the therapeutic modulation of implant-related complications.—Kourtzelis, I., Rafail, S., DeAngelis, R. A., Foukas, P. G., Ricklin, D., Lambris, J. D. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation. PMID:23558338

  12. Chemical composition, antioxidant, anti-elastase, and anti-inflammatory activities of Illicium anisatum essential oil.

    PubMed

    Kim, Ji-Young; Kim, Sang-Suk; Oh, Tae-Heon; Baik, Jong Seok; Song, Gwanpil; Lee, Nam Ho; Hyun, Chang-Gu

    2009-09-01

    The essential oil of air-dried Illicium anisatum (Illiciaceae), obtained by hydrodistillation was analyzed by gas chromatography-mass spectrometry (GC-MS). Fifty-two components were identified in the essential oil and the main component was eucalyptol (21.8 %). The antioxidant and anti-elastase activities of the essential oil were also investigated; the essential oil exhibited moderate DPPH scavenging and anti-elastase activities. To clarify the mechanism of the anti-inflammatory activities of I. anisatum essential oil (IAE), we evaluated whether it could modulate the production of nitric oxide (NO) and prostaglandin E2 (PGE2) by activated macrophages. The results indicate that IAE is an effective inhibitor of LPS-induced NO and PGE2 production in RAW 264.7 cells. These inhibitory activities were accompanied by dose-dependent decreases in the expression of iNOS and COX-2 proteins and iNOS and COX-2 mRNA. In order to determine whether IAE can be safely applied to human skin, the cytotoxic effects of IAE were determined by colorimetric MTT assays in human dermal fibroblast and keratinocyte HaCaT cells. IAE exhibited low cytotoxicity at 100 microg mL-1. Based on these results, we suggest that IAE may be considered an anti-aging and anti-inflammatory candidate for cosmetic materials, but additional in vitro and in vivo tests have to be performed to prove its safety and efficacy.

  13. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata.

    PubMed

    Karker, Manel; Falleh, Hanen; Msaada, Kamel; Smaoui, Abderrazak; Abdelly, Chedly; Legault, Jean; Ksouri, Riadh

    2016-01-01

    Reaumuria vermiculata is a xero-halophytic specie widely distributed in the south of Tunisia. In the current study, antioxidant, anti-inflammatory and anticancer activities of Reaumuria vermiculata shoot extracts as well as its phenolic compounds were investigated in different solvent extracts (hexane, dichloromethane, methanol and water). Results showed a strong antioxidant activity, using the ORAC method and a cell based-assay, in methanol extract as well as an important phenolic composition (117.12 mg GAE/g). Hexane and dichloromethane proved an interesting anticancer activity against A-549 lung carcinoma cells, with IC50 values of 17 and 23 µg/ml, respectively. Besides, dichloromethane extract displayed the utmost anti-inflammatory activity, inhibiting NO release over 100 % at 80 µg/ml in LPS-stimulated RAW 264.7. Taken together, these finding suggest that R. vermiculata exhibited an interesting biological activities which may be related to the phenolic composition of this plant. Moreover, the identification of phenolic compounds in R. vermiculata dichloromethane extract using RP-HPLC revealed that myricetin was the major molecule. These results allow us to propose R. vermiculata as a valuable source for bioactive and natural compounds exhibiting interesting biological capacities.

  14. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata

    PubMed Central

    Karker, Manel; Falleh, Hanen; Msaada, Kamel; Smaoui, Abderrazak; Abdelly, Chedly; Legault, Jean; Ksouri, Riadh

    2016-01-01

    Reaumuria vermiculata is a xero-halophytic specie widely distributed in the south of Tunisia. In the current study, antioxidant, anti-inflammatory and anticancer activities of Reaumuria vermiculata shoot extracts as well as its phenolic compounds were investigated in different solvent extracts (hexane, dichloromethane, methanol and water). Results showed a strong antioxidant activity, using the ORAC method and a cell based-assay, in methanol extract as well as an important phenolic composition (117.12 mg GAE/g). Hexane and dichloromethane proved an interesting anticancer activity against A-549 lung carcinoma cells, with IC50 values of 17 and 23 µg/ml, respectively. Besides, dichloromethane extract displayed the utmost anti-inflammatory activity, inhibiting NO release over 100 % at 80 µg/ml in LPS-stimulated RAW 264.7. Taken together, these finding suggest that R. vermiculata exhibited an interesting biological activities which may be related to the phenolic composition of this plant. Moreover, the identification of phenolic compounds in R. vermiculata dichloromethane extract using RP-HPLC revealed that myricetin was the major molecule. These results allow us to propose R. vermiculata as a valuable source for bioactive and natural compounds exhibiting interesting biological capacities. PMID:27298615

  15. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    SciTech Connect

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  16. Geranyl flavonoid derivatives from the fresh leaves of Artocarpus communis and their anti-inflammatory activity.

    PubMed

    Hsu, Chin-Lin; Chang, Fang-Rong; Tseng, Pei-Yu; Chen, Yi-Fen; El-Shazly, Mohamed; Du, Ying-Chi; Fang, Song-Chwan

    2012-06-01

    Breadfruit (Artocarpus communis) is a widely distributed crop in tropical and subtropical regions of the world. It is used in Southeast Asia and India to treat several inflammatory disorders. The aim of this study was to investigate the presence of anti-inflammatory flavonoids in A. communis leaves. Three new geranyl flavonoids, arcommunol C (1), arcommunol D (3), and 5'-geranyl-3,4,2',4'-tetrahydroxychalcone (5), together with four known compounds, prostratol (2), arcommunol E (4), 3'-geranyl-3,4,2',4'-tetrahydroxydihydrochalcone (6), and 3'-geranyl-3,4,2',4'-tetrahydroxychalcone (7), were isolated from the leaves of A. communis. Compound 4 was isolated for the first time from natural sources. The anti-inflammatory activity of the isolated compounds (1-7) was evaluated by determining their inhibitory activity on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. Compounds 2, 3, and 4 suppressed the LPS-induced production of nitric oxide (NO) in RAW 264.7 cells with IC50 values of 8.13 ± 0.17, 18.45 ± 2.15, and 22.74 ± 1.74 µM, respectively. Furthermore, 2 decreased lipopolysaccharide (LPS)-mediated induction of protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW 264.7 cells. It was also found that 2 suppressed LPS-induced phosphorylation of JNK and p38 mitogen-activated protein kinase (MAPK) signaling.

  17. Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels.

    PubMed

    Ho, Su-Chen; Lin, Chih-Cheng

    2008-09-10

    In traditional Chinese medicine, dried citrus fruit peels are widely used as remedies to alleviate coughs and reduce phlegm in the respiratory tract. Induction of inducible nitric oxide synthase (iNOS) in inflammatory cells and increased airway production of nitric oxide (NO) are well recognized as key events in inflammation-related respiratory tract diseases. Despite the fact that the enhancing effect of heat treatment on the antioxidant activity of citrus fruit peels has been well documented, the impact of heat treatment on citrus peel beneficial activities regarding anti-inflammation is unclear. To address this issue, we determined the anti-inflammatory activities of heat-treated citrus peel extracts by measuring their inhibitory effect upon NO production by lipopolysaccharide-activated RAW 264.7 macrophages. Results showed that the anti-inflammatory activity of citrus peel was significantly elevated after 100 degrees C heat treatment in a time-dependent fashion during a period from 0 to 120 min. Inhibition of iNOS gene expression was the major NO-suppressing mechanism of the citrus peel extract. Additionally, the anti-inflammatory activity of citrus peel extract highly correlated with the content of nobiletin and tangeretin. Conclusively, proper and reasonable heat treatment helped to release nobiletin and tangeretin, which were responsible for the increased anti-inflammatory activity of heat-treated citrus peels. PMID:18683945

  18. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  19. Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis.

    PubMed

    Geurts, Jeroen; Patel, Amit; Hirschmann, Michael T; Pagenstert, Geert I; Müller-Gerbl, Magdalena; Valderrabano, Victor; Hügle, Thomas

    2016-02-01

    Subchondral osteosclerosis, characterized by an increase of hypomineralized bone material, is a pathological hallmark of osteoarthritis. The cellular components in the subchondral marrow compartment that participate in this aberrant bone remodeling process remain to be elucidated. This study assessed the presence of marrow inflammatory cells and their relative abundance between nonsclerotic and sclerotic tissues in knee osteoarthritis. Bone samples from osteoarthritic knee tibial plateaus were stratified for histological analyses using computed tomography osteoabsorptiometry. Immunohistological analysis revealed the presence of CD20 (B-lymphocyte) and CD68 (macrophage), but not CD3 (T-lymphocyte) immunoreactive mononuclear cells in subchondral marrow tissues and their relative abundance was significantly increased in sclerotic compared with nonsclerotic bone samples. Multinucleated osteoclasts that stained positive for CD68 and tartrate-resistant acid phosphatase, predominantly associated with CD34-positive blood vessels and their abundance was strongly increased in sclerotic samples. Bone-specific alkaline phosphatase activity in outgrowth osteoblasts was induced by conditioned medium from nonsclerotic, but not sclerotic, bone pieces. These results suggest that an interaction between bone-resident cells and marrow inflammatory cells might play a role in aberrant bone remodeling leading to subchondral osteosclerosis. Elevated osteoclast activity in sclerotic bone suggests that bone formation and resorption activities are increased, yet uncoupled, in human knee osteoarthritis. PMID:26250062

  20. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  1. Endoplasmic Reticulum Stress in Intestinal Epithelial Cell Function and Inflammatory Bowel Disease

    PubMed Central

    Luo, Katherine; Cao, Stewart Siyan

    2015-01-01

    In eukaryotic cells, perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) causes accumulation of unfolded and misfolded proteins in the ER lumen, which activates intracellular signaling pathways termed the unfolded protein response (UPR). Recent studies have linked ER stress and the UPR to inflammatory bowel disease (IBD). The microenvironment of the ER is affected by a myriad of intestinal luminal molecules, implicating ER stress and the UPR in proper maintenance of intestinal homeostasis. Several intestinal cell populations, including Paneth and goblet cells, require robust ER function for protein folding, maturation, and secretion. Prolonged ER stress and impaired UPR signaling may cause IBD through: (1) induction of intestinal epithelial cell apoptosis, (2) disruption of mucosal barrier function, and (3) induction of the proinflammatory response in the gut. Based on our increased understanding of ER stress in IBD, new pharmacological approaches can be developed to improve intestinal homeostasis by targeting ER protein-folding in the intestinal epithelial cells (IECs). PMID:25755668

  2. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells.

    PubMed

    Calvello, Rosa; Aresta, Antonella; Trapani, Adriana; Zambonin, Carlo; Cianciulli, Antonia; Salvatore, Rosaria; Clodoveo, Maria Lisa; Corbo, Filomena; Franchini, Carlo; Panaro, Maria Antonietta

    2016-11-01

    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms. PMID:27211648

  3. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    PubMed Central

    Sales, Katiuchia Uzzun; Friis, Stine; Abusleme, Loreto; Moutsopoulos, Niki M.; Bugge, Thomas H.

    2014-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-mTor proliferation/survival signaling and PAR-2-Gαi-NFκB inflammatory signaling. Matriptase was congenitally and constitutively deregulated in our prior studies, and therefore it was unclear if aberrant matriptase signaling supports only initiation of tumor formation or if it is also critical for the progression of established tumors. To determine this, we here have generated triple-transgenic mice with constitutive deregulation of matriptase and simultaneous inducible expression of the cognate matriptase inhibitor, hepatocyte growth factor inhibitor (HAI)-2. As expected, constitutive expression of HAI-2 suppressed the formation of matriptase-dependent tumors in 7,12-Dimethylbenz(a)anthracene (DMBA)-treated mouse skin. Interestingly, however, the induction of HAI-2 expression in already established tumors markedly impaired malignant progression and caused regression of individual tumors. Tumor regression correlated with reduced accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment of established tumors. PMID:25486433

  4. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    PubMed

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  5. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    PubMed

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-11-11

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  6. Hydrocortisone supresses inflammatory activity of metalloproteinase - 8 in carotid plaque

    PubMed Central

    Gabriel, Sthefano Atique; Antonangelo, Leila; Capelozzi, Vera Luiza; Beteli, Camila Baumann; de Camargo Júnior, Otacílio; de Aquino, José Luis Braga; Caffaro, Roberto Augusto

    2015-01-01

    Objective Matrix metalloproteinases are inflammatory biomarkers involved in carotid plaque instability. Our objective was to analyze the inflammatory activity of plasma and carotid plaque MMP-8 and MMP-9 after intravenous administration of hydrocortisone. Methods The study included 22 patients with stenosis ≥ 70% in the carotid artery (11 symptomatic and 11 asymptomatic) who underwent carotid endarterectomy. The patients were divided into two groups: Control Group - hydrocortisone was not administered, and Group 1 - 500 mg intravenous hydrocortisone was administered during anesthetic induction. Plasma levels of MMP-8 and MMP-9 were measured preoperatively (24 hours before carotid endarterectomy) and at 1 hour, 6 hours and 24 hours after carotid endarterectomy. In carotid plaque, tissue levels of MMP-8 and MMP-9 were measured. Results Group 1 showed increased serum levels of MMP- 8 (994.28 pg/ml and 408.54 pg/ml, respectively; P=0.045) and MMP-9 (106,656.34 and 42,807.69 respectively; P=0.014) at 1 hour after carotid endarterectomy compared to the control group. Symptomatic patients in Group 1 exhibited lower tissue concentration of MMP-8 in comparison to the control group (143.89 pg/ml and 1317.36 respectively; P=0.003). There was a correlation between preoperative MMP-9 levels and tissue concentrations of MMP-8 (P=0.042) and MMP-9 (P=0.019) between symptomatic patients in the control group. Conclusion Hydrocortisone reduces the concentration of MMP- 8 in carotid plaque, especially in symptomatic patients. There was an association between systemic and tissue inflammation. PMID:26313719

  7. Disrupted regulatory T cell homeostasis in inflammatory bowel diseases

    PubMed Central

    Pedros, Christophe; Duguet, Fanny; Saoudi, Abdelhadi; Chabod, Marianne

    2016-01-01

    In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20th century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population. PMID:26811641

  8. Effects of RAMEA-complexed polyunsaturated fatty acids on the response of human dendritic cells to inflammatory signals

    PubMed Central

    Rajnavölgyi, Éva; Laczik, Renáta; Kun, Viktor; Szente, Lajos

    2014-01-01

    Summary The n−3 fatty acids are not produced by mammals, although they are essential for hormone synthesis and maintenance of cell membrane structure and integrity. They have recently been shown to inhibit inflammatory reactions and also emerged as potential treatment options for inflammatory diseases, such as rheumatoid arthritis, asthma and inflammatory bowel diseases. Dendritic cells (DC) play a central role in the regulation of both innate and adaptive immunity and upon inflammatory signals they produce various soluble factors among them cytokines and chemokines that act as inflammatory or regulatory mediators. In this study we monitored the effects of α-linoleic acid, eicosapentaenoic acid and docosahexaenoic acid solubilized in a dimethyl sulfoxide (DMSO)/ethanol 1:1 mixture or as complexed by randomly methylated α-cyclodextrin (RAMEA) on the inflammatory response of human monocyte-derived dendritic cells (moDC). The use of RAMEA for enhancing aqueous solubility of n−3 fatty acids has the unambiguous advantage over applying RAMEB (the β-cyclodextrin analog), since there is no interaction with cell membrane cholesterol. In vitro differentiated moDC were left untreated or were stimulated by bacterial lipopolysaccharide and polyinosinic:polycytidylic acid, mimicking bacterial and viral infections, respectively. The response of unstimulated and activated moDC to n−3 fatty acid treatment was tested by measuring the cell surface expression of CD1a used as a phenotypic and CD83 as an activation marker of inflammatory moDC differentiation and activation by using flow cytometry. Monocyte-derived DC activation was also monitored by the secretion level of the pro- and anti-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-10 and IL-12, respectively. We found that RAMEA-complexed n−3 fatty acids reduced the expression of CD1a protein in both LPS and Poly(I:C) stimulated moDC significantly, but most efficiently by eicosapentaenic acid, while no significant change

  9. Triterpene glycosides from red ginseng marc and their anti-inflammatory activities.

    PubMed

    Chung, Ill-Min; Kim, Young-Ock; Ali, Mohammed; Kim, Seung-Hyun; Park, Inmyoung; Kim, Eun-Hye; Yang, Ye-Sul; Park, Hye-Ran; Son, Eun-Suk; Ahmad, Ateeque

    2014-09-01

    Three new triterpene glycosides ursan-3β,19α,22β-triol-3-O-β-D-glucopyranosyl (2'→1″)-β-D-glucopyranoside (1), ursan-3α,11β-diol-3-O-α-D-glucopyranosyl-(6'→1″)-α-D-glucopyranosyl-(6″→1‴)-α-D-glucopyranosyl-(6‴→1‴')-α-D-glucopyranoside (2) and lanost-5,24-dien-3β-ol-3-O-β-D-glucopyranosyl-(6'→1″)-β-D-glucopyranosyl-(6″→1‴)-β-D-glucopyranoside (3), together with one known compound were isolated and identified from the marc of red ginseng. Their structures were elucidated by spectroscopic data analysis. Compounds (1-3) were investigated for anti-inflammatory effects using the RAW 264.7 macrophage cell line. In the cell proliferation assay, lipopolysaccharide stimulation decreased cell proliferation of RAW 264.7 macrophage cells, but the suppression of cell proliferation was significantly protected by treatment with compounds 2 and 3. Compounds 2 and 3 had a suppressive effect on the production of nitric oxide (NO), and they inhibited mRNA expression of proinflammatory mediators such as inducible nitric oxide synthase, and cyclooxygenase-2, and proinflammatory cytokines such as two interleukins and tumor necrosis factor-α. These findings suggest that compounds 2 and 3 have potential anti-inflammatory activities.

  10. ANTI-INFLAMMATORY AND MAST CELL PROTECTIVE EFFECT OF FICUS RELIGIOSA

    PubMed Central

    Viswanathan, S.; Thirugnanasambantham, P.; Reddy, M. Kannappa; Narasimhan, S.; Subramaniam, G. Anantha

    1990-01-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  11. Anti-inflammatory and mast cell protective effect of ficus religiosa.

    PubMed

    Viswanathan, S; Thirugnanasambantham, P; Reddy, M K; Narasimhan, S; Subramaniam, G A

    1990-10-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  12. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases

    PubMed Central

    Qian, Feng; Deng, Jing; Wang, Gang; Ye, Richard D.; Christman, John W.

    2016-01-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways is a potential therapeutic strategy for treatment of inflammatory and fibrotic lung diseases and lung cancer. PMID:26119506

  13. Inhibitory effects of Blueberry Extract on the Production of Inflammatory Mediators in LPS-activated BV2 Microglia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustained microglial activation in the central nervous system (CNS) has been extensively investigated in age-related neurodegenerative diseases and has been postulated to lead to neuronal cell loss in these conditions. Recent studies have shown that anti-inflammatory drugs may suppress microglial ac...

  14. Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39

    PubMed Central

    Hyman, Matthew C.; Petrovic-Djergovic, Danica; Visovatti, Scott H.; Liao, Hui; Yanamadala, Sunitha; Bouïs, Diane; Su, Enming J.; Lawrence, Daniel A.; Broekman, M. Johan; Marcus, Aaron J.; Pinsky, David J.

    2009-01-01

    Leukocyte and platelet accumulation at sites of cerebral ischemia exacerbate cerebral damage. The ectoenzyme CD39 on the plasmalemma of endothelial cells metabolizes ADP to suppress platelet accumulation in the ischemic brain. However, the role of leukocyte surface CD39 in regulating monocyte and neutrophil trafficking in this setting is not known. Here we have demonstrated in mice what we believe to be a novel mechanism by which CD39 on monocytes and neutrophils regulates their own sequestration into ischemic cerebral tissue, by catabolizing nucleotides released by injured cells, thereby inhibiting their chemotaxis, adhesion, and transmigration. Bone marrow reconstitution and provision of an apyrase, an enzyme that hydrolyzes nucleoside tri- and diphosphates, each normalized ischemic leukosequestration and cerebral infarction in CD39-deficient mice. Leukocytes purified from Cd39–/– mice had a markedly diminished capacity to phosphohydrolyze adenine nucleotides and regulate platelet reactivity, suggesting that leukocyte ectoapyrases modulate the ambient vascular nucleotide milieu. Dissipation of ATP by CD39 reduced P2X7 receptor stimulation and thereby suppressed baseline leukocyte αMβ2-integrin expression. As αMβ2-integrin blockade reversed the postischemic, inflammatory phenotype of Cd39–/– mice, these data suggest that phosphohydrolytic activity on the leukocyte surface suppresses cell-cell interactions that would otherwise promote thrombosis or inflammation. These studies indicate that CD39 on both endothelial cells and leukocytes reduces inflammatory cell trafficking and platelet reactivity, with a consequent reduction in tissue injury following cerebral ischemic challenge. PMID:19381014

  15. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite.

  16. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. PMID:25819359

  17. STAT3-Activating Cytokines: A Therapeutic Opportunity for Inflammatory Bowel Disease?

    PubMed Central

    Nguyen, Paul M.; Putoczki, Tracy L.

    2015-01-01

    The gastrointestinal tract is lined by a single layer of epithelial cells that secrete mucus toward the lumen, which collectively separates the immune sentinels in the underlying lamina propria from the intestinal microflora to prevent aberrant immune responses. Inflammatory bowel disease (IBD) describes a group of autoimmune diseases that arise from defects in epithelial barrier function and, as a consequence, aberrant production of inflammatory cytokines. Among these, interleukin (IL)-6, IL-11, and IL-22 are elevated in human IBD patients and corresponding mouse models and, through activation of the JAK/STAT3 pathway, can both propagate and ameliorate disease. In particular, cytokine-mediated activation of STAT3 in the epithelial lining cells affords cellular protection, survival, and proliferation, thereby affording therapeutic opportunities for the prevention and treatment of colitis. In this review, we focus on recent insights gained from therapeutic modulation of the activities of IL-6, IL-11, and IL-22 in models of IBD and advocate a cautionary approach with these cytokines to minimize their tumor-promoting activities on neoplastic epithelium. PMID:25760898

  18. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity

    PubMed Central

    Trivedi, Palak J.; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M.; Weston, Chris J.; Adams, David H.

    2016-01-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4+) and 30% (CD8+) of tissue-infiltrating T-cells in colitis were identified as CCR9+ effector lymphocytes, compared to <10% of T-cells being CCR9+ in normal colon. Sorted CCR9+ lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9– counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  19. Anti-inflammatory activity of liposomes of Asparagus racemosus root extracts prepared by various methods

    PubMed Central

    Plangsombat, Nathsiree; Rungsardthong, Kanin; Kongkaneramit, Lalana; Waranuch, Neti; Sarisuta, Narong

    2016-01-01

    Asparagus racemosus root extracts (AR) have been reported to possess a variety of pharmacological properties. The aim of the present study was to develop liposomes of AR and to assess their physicochemical characteristics and anti-inflammatory activity in the monocytic leukemia cell line THP-1. Liposomes containing various ratios of AR to lipid and a phosphatidylcholine to cholesterol molar ratio of 7:3 were prepared by thin-film hydration (TF), reverse-phase evaporation (REV) and polyol dilution (PD). The results showed that AR liposomes prepared by TF had a multilamellar structure and a large size, whereas those prepared by REV and PD were oligolamellar in structure, and of a smaller size. The particle sizes and zeta potentials of the liposomes ranged from 196.5 to 456.6 nm and from −4.34 to −18.94 mV, respectively. The AR to lipid ratio was shown to have no significant influence on particle size, while the zeta potential generally increased with increasing AR to lipid ratio. The highest entrapment efficiency values were detected in liposomes with an AR to lipid ratio of 1:5, and for liposomes prepared by TF, REV and PD methods, the entrapment efficiencies were 55.71±2.04, 56.21±3.59 and 67.68±1.37%, respectively. AR was found to exert no toxicity on THP-1 cells. The maximum anti-inflammatory activities of AR and AR liposomes, evaluated in terms of the percentage inhibition of tumor necrosis factor-α in THP-1 cells, were ~52% at a concentration of 1 µg/ml. It can be concluded from the present study that AR liposomes have the potential to be used a formulation for topical and/or transdermal drug delivery to provide anti-inflammatory activity. PMID:27698785

  20. Anti-inflammatory activity of liposomes of Asparagus racemosus root extracts prepared by various methods

    PubMed Central

    Plangsombat, Nathsiree; Rungsardthong, Kanin; Kongkaneramit, Lalana; Waranuch, Neti; Sarisuta, Narong

    2016-01-01

    Asparagus racemosus root extracts (AR) have been reported to possess a variety of pharmacological properties. The aim of the present study was to develop liposomes of AR and to assess their physicochemical characteristics and anti-inflammatory activity in the monocytic leukemia cell line THP-1. Liposomes containing various ratios of AR to lipid and a phosphatidylcholine to cholesterol molar ratio of 7:3 were prepared by thin-film hydration (TF), reverse-phase evaporation (REV) and polyol dilution (PD). The results showed that AR liposomes prepared by TF had a multilamellar structure and a large size, whereas those prepared by REV and PD were oligolamellar in structure, and of a smaller size. The particle sizes and zeta potentials of the liposomes ranged from 196.5 to 456.6 nm and from −4.34 to −18.94 mV, respectively. The AR to lipid ratio was shown to have no significant influence on particle size, while the zeta potential generally increased with increasing AR to lipid ratio. The highest entrapment efficiency values were detected in liposomes with an AR to lipid ratio of 1:5, and for liposomes prepared by TF, REV and PD methods, the entrapment efficiencies were 55.71±2.04, 56.21±3.59 and 67.68±1.37%, respectively. AR was found to exert no toxicity on THP-1 cells. The maximum anti-inflammatory activities of AR and AR liposomes, evaluated in terms of the percentage inhibition of tumor necrosis factor-α in THP-1 cells, were ~52% at a concentration of 1 µg/ml. It can be concluded from the present study that AR liposomes have the potential to be used a formulation for topical and/or transdermal drug delivery to provide anti-inflammatory activity.

  1. Effect of inflammatory environment on equine bone marrow derived mesenchymal stem cells immunogenicity and immunomodulatory properties.

    PubMed

    Barrachina, L; Remacha, A R; Romero, A; Vázquez, F J; Albareda, J; Prades, M; Ranera, B; Zaragoza, P; Martín-Burriel, I; Rodellar, C

    2016-03-01

    Mesenchymal stem cells (MSCs) are being investigated for the treatment of equine joint diseases because of their regenerative potential. Recently, the focus mainly has addressed to their immunomodulatory capacities. Inflammation plays a central role in joint pathologies, since the release of proinflammatory mediators to the synovial fluid (SF) leads to the activation of enzymatic degradation of the cartilage. MSCs can modulate the local immune environment through direct or paracrine interaction with immune cells, suppressing their proliferation and re-addressing their functions. Proinflammatory molecules can induce MSC immunoregulatory potential, but they could also increase the expression of immunogenic molecules. Studying the effect of inflammatory environment on MSC immunomodulation and immunogenicity profiles is mandatory to improve cellular therapies. The aim of this study was to analyse the response of equine bone marrow MSCs (eBM-MSCs) to three inflammatory conditions. Equine BM-MSCs from three animals were exposed to: (a) 20% allogeneic inflammatory SF (SF); (b) 50 ng/ml of TNFα and IFNγ (CK50) and (c) 20 ng/ml of TNFα and IFNγ (CK20). After 72 h of exposure, expression of immunogenic and immunomodulation-related molecules, including cell-to-cell contact and paracrine signalling molecules, were analysed by RT-qPCR and flow cytometry. The gene expression of adhesion molecules was upregulated whereas MSC migration-related genes were downregulated by all inflammatory conditions tested. CK culture conditions significantly upregulated the expression of COX-2, iNOS, IDO and IL-6. MHC-I gene expression was upregulated by all conditions, whereas MHC-II was upregulated only after CK priming. The expression of CD40 did not significantly change, whereas the ligand, CD40L, was downregulated in CK conditions. Flow cytometry showed an increase in the percentage of positive cells and mean fluorescence intensity (MFI) of the MHC-I and MHC-II molecules at CK50

  2. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  3. Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao.

    PubMed

    Du, Yong-Hua; Feng, Rui-Zhang; Li, Qun; Wei, Qin; Yin, Zhong-Qiong; Zhou, Li-Jun; Tao, Cui; Jia, Ren-Yong

    2014-01-01

    The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection.

  4. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  5. Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao

    PubMed Central

    Du, Yong-Hua; Feng, Rui-Zhang; Li, Qun; Wei, Qin; Yin, Zhong-Qiong; Zhou, Li-Jun; Tao, Cui; Jia, Ren-Yong

    2014-01-01

    The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection. PMID:25664080

  6. The histone H3K27 methylation mark regulates intestinal epithelial cell density-dependent proliferation and the inflammatory response.

    PubMed

    Turgeon, Naomie; Blais, Mylène; Delabre, Jean-François; Asselin, Claude

    2013-05-01

    Polycomb-group proteins form multimeric protein complexes involved in transcriptional silencing. The Polycomb Repressive complex 2 (PRC2) contains the Suppressor of Zeste-12 protein (Suz12) and the histone methyltransferase Enhancer of Zeste protein-2 (Ezh2). This complex, catalyzing the di- and tri-methylation of histone H3 lysine 27, is essential for embryonic development and stem cell renewal. However, the role of Polycomb-group protein complexes in the control of the intestinal epithelial cell (IEC) phenotype is not known. We show that Suz12 and Ezh2 were differentially expressed along the intestinal crypt-villus axis. ShRNA-mediated Suz12 depletion in the IEC-6 rat crypt-derived cell line decreased Ezh2 expression and H3K27 di-trimethylation. Suz12-depleted cells achieved higher cell densities after confluence, with increased cyclin D2 and cyclin D3 protein levels, and increased STAT3 activation in post-confluent cells. Suz12 depletion specifically increased mostly developmental, cell adhesion and immune response gene expression, including neuronal and inflammatory genes. Suz12 depletion directly and indirectly de-regulated the IL-1β-dependent inflammatory response, as demonstrated by decreased MAPK p38 activation as opposed to JNK activation, and altered basal and stimulated expression of inflammatory genes, including transcription factors such as C/EBPβ. Of note, this positive effect on cell proliferation and inflammatory gene expression was revealed in the absence of the cyclin-dependent kinase inhibitor p16, a main target negatively regulated by PRC2. These results demonstrate that the PRC2 complex, in addition to keeping in check non-IEC differentiation pathways, insures the proper IEC response to cell density as well as to external growth and inflammatory signals, by controlling specific signaling pathways.

  7. Immunologic and inflammatory reactions to exogenous stem cells implications for experimental studies and clinical trials for myocardial repair.

    PubMed

    Buja, L Maximilian; Vela, Deborah

    2010-11-16

    Intense research is under way to determine the optimal stem cell type and regimen for repairing diseased myocardium. Although initial studies in humans focused on the use of homologous stem cells, allogeneic or xenogeneic stem cells have been studied extensively in experimental work. Clinical trials with allogeneic stem cells are now under way, an approach based on the premise that stem cells and precursor cells are characterized as being immunotolerant. However, evidence indicates that stem cells may gain immune potency in vivo, especially when delivered to inflamed tissue, such as acutely infarcted myocardium. Histopathologic studies show the presence of a lymphohistiocytic inflammatory reaction at the sites of delivery of allogeneic stem cells, a response that is exaggerated with the use of xenogeneic stem cells. The immune-mediated inflammatory reaction to allogeneic and xenogeneic stem cells may elicit a spectrum of effects, ranging from beneficial (e.g., increased paracrine activity) to detrimental (e.g., accelerated damage and removal of stem cells). Although the issue of immune-mediated inflammatory responses to non-self stem cells requires further evaluation, non-self stem cells should not be considered as immunologically inert or exclusively immunosuppressive in vivo.

  8. Chemical composition and antioxidant, anti-inflammatory, and antiproliferation act