Science.gov

Sample records for activated inflammatory cells

  1. Fractalkine mediates inflammatory pain through activation of satellite glial cells.

    PubMed

    Souza, Guilherme R; Talbot, Jhimmy; Lotufo, Celina M; Cunha, Fernando Q; Cunha, Thiago M; Ferreira, Sérgio H

    2013-07-02

    The activation of the satellite glial cells (SGCs) surrounding the dorsal root ganglion (DRG) neurons appears to play a role in pathological pain. We tested the hypothesis that fractalkine, which is constitutively expressed by primary nociceptive neurons, is the link between peripheral inflammation and the activation of SGCs and is thus responsible for the genesis of the inflammatory pain. The injection of carrageenin into the rat hind paw induced a decrease in the mechanical nociceptive threshold (hypernociception), which was associated with an increase in mRNA and GFAP protein expression in the DRG. Both events were inhibited by anti-fractalkine antibody administered directly into the DRG (L5) [intraganglionar (i.gl.)]. The administration of fractalkine into the DRG (L5) produced mechanical hypernociception in a dose-, time-, and CX3C receptor-1 (CX3CR1)-dependent manner. Fractalkine's hypernociceptive effect appears to be indirect, as it was reduced by local treatment with anti-TNF-α antibody, IL-1-receptor antagonist, or indomethacin. Accordingly, the in vitro incubation of isolated and cultured SGC with fractalkine induced the production/release of TNF-α, IL-1β, and prostaglandin E2. Finally, treatment with i.gl. fluorocitrate blocked fractalkine (i.gl.)- and carrageenin (paw)-induced hypernociception. Overall, these results suggest that, during peripheral inflammation, fractalkine is released in the DRG and contributes to the genesis of inflammatory hypernociception. Fractalkine's effect appears to be dependent on the activation of the SGCs, leading to the production of TNFα, IL-1β, and prostanoids, which are likely responsible for the maintenance of inflammatory pain. Thus, these results indicate that the inhibition of fractalkine/CX3CR1 signaling in SGCs may serve as a target to control inflammatory pain.

  2. Cell-to-cell distances between tumor-infiltrating inflammatory cells have the potential to distinguish functionally active from suppressed inflammatory cells

    PubMed Central

    Nagl, S.; Haas, M.; Lahmer, G.; Büttner-Herold, M.; Grabenbauer, G. G.; Fietkau, R.; Distel, L. V.

    2016-01-01

    ABSTRACT Beyond their mere presence, the distribution pattern of inflammatory cells is of special interest. Our hypothesis was that random distribution may be a clear indicator of being non-functional as a consequence of lack of interaction. Here, we have assessed the implication of cell-to-cell distances among inflammatory cells in anal squamous cell carcinoma and a possible association with survival data. Thirty-eight patients suffering from anal carcinoma were studied using tissue microarrays, double staining immunohistochemistry, whole slide scanning and image analysis software. Therapy consisted of concurrent radiochemotherapy. Numbers of stromal and intraepithelial tumor-infiltrating inflammatory cells (TIC) and the distances between cells were quantified. Double-staining of FoxP3+ cells with either CD8+, CD1a+ or CD20+ cells was performed. Measured cell-to-cell distances were compared to computer simulated cell-to-cell distances leading to the assumption of non-randomly distributed and therefore functional immune cells. Intraepithelial CD1a+ and CD20+ cells were randomly distributed and therefore regarded as non-functional. In contrary, stromal CD20+ cells had a non-random distribution pattern. A non-random distance between CD20+ and FoxP3+ cells was associated with a clearly unfavorable outcome. Measured distances between FoxP3+ cells were distinctly shorter than expected and indicate a functional active state of the regulatory T cells (Treg). Analysis of cell-to-cell distances between TIC has the potential to distinguish between suppressed non-functional and functionally active inflammatory cells. We conclude that in this tumor model most of the CD1a+ cells are non-functional as are the intraepithelial CD20+ cells, while stromal CD20+ cells and FoxP3+ cells are functional cells. PMID:27467940

  3. B cell activating factor (BAFF) selects IL-10(-)B cells over IL-10(+)B cells during inflammatory responses.

    PubMed

    Ma, Ning; Zhang, Yu; Liu, Qilin; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Yu, Dandan; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Ma, Yuanfang; Shen, Beifen; Li, Yan; Xiao, He; Wang, Renxi

    2017-05-01

    B cell activating factor (BAFF) regulates B cell maturation, survival, function, and plays a critical pathogenic role in autoimmune diseases. It remains unclear how BAFF affects IL-10(-)B cells versus regulatory B cells (Bregs) in inflammatory responses. In this study, we found that IL-10-expressing Bregs decreased in lupus-prone MRL/lpr mice and experimental allergic encephalomyelitis (EAE) mice. On blockade of the effects of BAFF with TACI-IgG, IL-10(+) Bregs were upregulated in MRL/lpr and EAE mice. In addition, BAFF expanded IL-10(+)B cells over IL-10(-)B cells under noninflammatory conditions in vitro, whereas it expanded IL-10(-)B cells over IL-10(+)B cells during inflammatory responses, such as stimulation with autoantigen and LPS. Finally, the selection of IL-10(-)B cells over IL-10(+)B cells by BAFF was dependent on BAFF receptors (BAFFR, TACI, and BCMA) that were upregulated by inflammatory responses. This study suggests that BAFF selects IL-10(-)B cells over IL-10(+) regulatory B cells via BAFF receptors in inflammatory responses.

  4. CTGF Promotes Inflammatory Cell Infiltration of the Renal Interstitium by Activating NF-κB

    PubMed Central

    Sánchez-López, Elsa; Rayego, Sandra; Rodrigues-Díez, Raquel; Rodriguez, Javier Sánchez; Rodrigues-Díez, Raúl; Rodríguez-Vita, Juan; Carvajal, Gisselle; Aroeira, Luiz Stark; Selgas, Rafael; Mezzano, Sergio A.; Ortiz, Alberto; Egido, Jesús; Ruiz-Ortega, Marta

    2009-01-01

    Connective tissue growth factor (CTGF) is an important profibrotic factor in kidney diseases. Blockade of endogenous CTGF ameliorates experimental renal damage and inhibits synthesis of extracellular matrix in cultured renal cells. CTGF regulates several cellular responses, including adhesion, migration, proliferation, and synthesis of proinflammatory factors. Here, we investigated whether CTGF participates in the inflammatory process in the kidney by evaluating the nuclear factor-kappa B (NF-κB) pathway, a key signaling system that controls inflammation and immune responses. Systemic administration of CTGF to mice for 24 h induced marked infiltration of inflammatory cells in the renal interstitium (T lymphocytes and monocytes/macrophages) and led to elevated renal NF-κB activity. Administration of CTGF increased renal expression of chemokines (MCP-1 and RANTES) and cytokines (INF-γ, IL-6, and IL-4) that recruit immune cells and promote inflammation. Treatment with a NF-κB inhibitor, parthenolide, inhibited CTGF-induced renal inflammatory responses, including the up-regulation of chemokines and cytokines. In cultured murine tubuloepithelial cells, CTGF rapidly activated the NF-κB pathway and the cascade of mitogen-activated protein kinases, demonstrating crosstalk between these signaling pathways. CTGF, via mitogen-activated protein kinase and NF-κB activation, increased proinflammatory gene expression. These data show that in addition to its profibrotic properties, CTGF contributes to the recruitment of inflammatory cells in the kidney by activating the NF-κB pathway. PMID:19423687

  5. Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells.

    PubMed

    McCarthy, Claire E; Duffney, Parker F; Gelein, Robert; Thatcher, Thomas H; Elder, Alison; Phipps, Richard P; Sime, Patricia J

    2016-12-01

    Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.

  6. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells.

    PubMed

    Gallina, Giovanna; Dolcetti, Luigi; Serafini, Paolo; De Santo, Carmela; Marigo, Ilaria; Colombo, Mario P; Basso, Giuseppe; Brombacher, Frank; Borrello, Ivan; Zanovello, Paola; Bicciato, Silvio; Bronte, Vincenzo

    2006-10-01

    Active suppression of tumor-specific T lymphocytes can limit the efficacy of immune surveillance and immunotherapy. While tumor-recruited CD11b+ myeloid cells are known mediators of tumor-associated immune dysfunction, the true nature of these suppressive cells and the fine biochemical pathways governing their immunosuppressive activity remain elusive. Here we describe a population of circulating CD11b+IL-4 receptor alpha+ (CD11b+IL-4Ralpha+), inflammatory-type monocytes that is elicited by growing tumors and activated by IFN-gamma released from T lymphocytes. CD11b+IL-4Ralpha+ cells produced IL-13 and IFN-gamma and integrated the downstream signals of these cytokines to trigger the molecular pathways suppressing antigen-activated CD8+ T lymphocytes. Analogous immunosuppressive circuits were active in CD11b+ cells present within the tumor microenvironment. These suppressor cells challenge the current idea that tumor-conditioned immunosuppressive monocytes/macrophages are alternatively activated. Moreover, our data show how the inflammatory response elicited by tumors had detrimental effects on the adaptive immune system and suggest novel approaches for the treatment of tumor-induced immune dysfunctions.

  7. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein.

    PubMed

    Cossette, Émilie; Cloutier, Isabelle; Tardif, Kim; DonPierre, Geneviève; Tanguay, Jean-François

    2013-01-01

    In addition of being an important inflammatory biomarker and a risk factor for cardiovascular disease, much evidence indicates that the C-reactive protein (CRP) contributes to the atherosclerosis development process. This plasmatic protein synthesized by hepatocytes in response to inflammation and tissue injury induces pro-inflammatory molecules' expression by endothelial cells (ECs). Previous studies showed that the 17β-estradiol (E2) has beneficial effects on vascular cells by reducing in vitro pro-inflammatory molecules expressions in EC. Therefore, we hypothesize that E2 blocks or reduces CRP-mediated inflammatory responses by modulating endogenous production of CRP in EC and/or activation mechanisms. Using human aortic ECs (HAECs), we first evaluated CRP production by vascular EC and second demonstrated its self-induction. Indeed, recombinant human CRP stimulation induces a fivefold increase of CRP expression. A 1-h pre-treatment of E2 at a physiologic dose (10(-9 )M) leads to an important decrease of CRP production suggesting a partial blockage of its amplification loop mechanism. Furthermore, in HAEC, E2 reduces the secretion of the most potent agonist of CRP induction, the IL-6, by 21 %. E2 pre-treatment also decreased the expression of pro-inflammatory molecules IL-8, VCAM-1, and ICAM-1 induced by CRP and involved in leukocytes recruitment. In addition, we demonstrated that E2 could restore vascular endothelial growth factor-mediated EC migration response impaired by CRP suggesting another pro-angiogenic property of this hormone. These findings suggest that E2 can interfere with CRP pro-inflammatory effects via activation signals using its rapid, non-genomic pathway that may provide a new mechanism to improve vascular repair.

  8. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  9. The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation

    PubMed Central

    Stachelek, Stanley J.; Finley, Matthew J.; Alferiev, Ivan S.; Wang, Fengxiang; Tsai, Richard; Eckells, Edward C.; Tomczyk, Nancy; Connolly, Jeanne M.; Discher, Dennis E.; Eckmann, David M.; Levy, Robert J.

    2011-01-01

    CD47 is a transmembrane protein that is a marker of “self”. CD47 binding to its cognate receptor in leukocytes and macrophages, signal regulatory protein alpha (SIRPα), causes inhibition of inflammatory cell attachment. We hypothesized that immobilization of recombinant CD47 on polymeric surfaces would reduce inflammation. Recombinant CD47 was appended to polyvinyl chloride (PVC) or polyurethane (PU) surfaces via photoactivation chemistry. Cell culture studies showed that CD47 immobilization significantly reduced human neutrophil (HL-60) and human monocyte derived macrophage (MDM) (THP-1) attachment to PVC and PU respectively. A neutralizing antibody, directed against SIRPα, inhibited THP-1 and HL-60 binding to PU and PVC surfaces respectively. This antibody also increased the level of SIRPα tyrosine phosphorylation, thereby indicating a direct role for SIRPα mediated signaling in preventing inflammatory cell attachment. Studies using human blood in an ex vivo flow-loop showed that CD47 modified PVC tubing significantly reduced cell binding and neutrophil activation compared to unmodified tubing or poly-2-methoxy-ethylacrylate (PMEA) coated tubing. In ten-week rat subdermal implants, CD47 functionalized PU films showed a significant reduction in markers of MDM mediated oxidative degradation compared to unmodified PU. In conclusion, CD47 functionalized surfaces can resist inflammatory cell interactions both in vitro and in vivo. PMID:21429575

  10. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD.

    PubMed

    Awojoodu, Anthony O; Keegan, Philip M; Lane, Alicia R; Zhang, Yuying; Lynch, Kevin R; Platt, Manu O; Botchwey, Edward A

    2014-09-18

    Sphingolipids are a class of lipids containing a backbone of sphingoid bases that can be produced de novo through the reaction of palmitate and serine and further metabolized through the activity of various enzymes to produce intermediates with diverse roles in cellular processes and signal transduction. One of these intermediates, sphingosine 1-phosphate (S1P), is stored at high concentrations (1 μM) in red blood cells (RBCs) and directs a wide array of cellular processes mediated by 5 known G-protein coupled receptors (S1P1-S1P5). In this study, we show that RBC membrane alterations in sickle cell disease enhance the activation acid sphingomyelinase by 13%, resulting in increased production and storage of sphingosine (2.6-fold) and S1P (3.5-fold). We also show that acid sphingomyelinase enhances RBC-derived microparticle (MP) generation. These MPs are internalized by myeloid cells and promote proinflammatory cytokine secretion and endothelial cell adhesion, suggesting that potential crosstalk between circulating inflammatory cells and MPs may contribute to the inflammation-rooted pathogenesis of the disease. Treatment with amitriptyline reduces MP generation in vitro and in vivo and might be used to mitigate inflammatory processes in sickle cell disease.

  11. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  12. Cathelicidin impact on inflammatory cells

    PubMed Central

    Efenberger, Magdalena; Brzezińska-Błaszczyk, Ewa

    2015-01-01

    Cathelicidins, like other antimicrobial peptides, exhibit direct antimicrobial activities against a broad spectrum of microbes, including both Gram-positive and Gram-negative bacteria, enveloped viruses, and fungi. These host-derived peptides kill the invaded pathogens by perturbing their cell membranes and can neutralize biological activities of endotoxin. Nowadays, more and more data indicate that these peptides, in addition to their antimicrobial properties, possess various immunomodulatory activities. Cathelicidins have the potential to influence and modulate, both directly and indirectly, the activity of various cell populations involved in inflammatory processes and in host defense against invading pathogens. They induce migration of neutrophils, monocytes/macrophages, eosinophils, and mast cells and prolong the lifespan of neutrophils. These peptides directly activate inflammatory cells to production and release of different pro-inflammatory and immunoregulatory mediators, cytokines, and chemokines, however cathelicidins might mediate the generation of anti-inflammatory cytokines as well. Cathelicidins also modulate epithelial cell/keratinocyte responses to infecting pathogens. What is more, they affect activity of monocytes, dendritic cells, keratinocytes, or epithelial cells acting in synergy with cytokines or β-defensins. In addition, these peptides indirectly balance TLR-mediated responses of monocytes, macrophages, dendritic cells, epithelial cells, and keratinocytes. This review discusses the role and significance of cathelicidins in inflammation and innate immunity against pathogens. PMID:26557038

  13. Hyperosmolarity attenuates TNFα–mediated pro-inflammatory activation of human pulmonary microvascular endothelial cells

    PubMed Central

    Banerjee, Anirban; Moore, Ernest E.; McLaughlin, Nathan J.; Lee, Luis; Jones, Wilbert L.; Johnson, Jeffrey L.; Nydam, Trevor L.; Silliman, Christopher C.

    2013-01-01

    Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170mM vs. 140mM, osmolarity ranging from 360-300 mOsm/L) inhibits pro-inflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Pro-inflammatory activation of HMVECs was investigated in response to TNFα including IL-8 release, ICAM-1 surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression, but did lead to concentration-dependent decreases in TNFα–induced IL-8 release, ICAM-1 surface expression, and PMN:HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNFα activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNFα stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNFα induced NF-kB DNA binding, but HTS conditions attenuated this by 31% (p<0.01). In conclusion, HTS reduces PMN:HMVEC adhesion as well as TNFα-induced pro-inflammatory activation of primary HMVECs via attenuation of NF-kB signaling. PMID:23364439

  14. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses.

    PubMed

    Falcón, Cristian R; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite.

  15. Fasciola hepatica Kunitz Type Molecule Decreases Dendritic Cell Activation and Their Ability to Induce Inflammatory Responses

    PubMed Central

    Falcón, Cristian R.; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C.; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite. PMID:25486609

  16. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination.

    PubMed

    Hu, Hongbo; Wang, Hui; Xiao, Yichuan; Jin, Jin; Chang, Jae-Hoon; Zou, Qiang; Xie, Xiaoping; Cheng, Xuhong; Sun, Shao-Cong

    2016-03-07

    Signal transduction from the T cell receptor (TCR) is crucial for T cell-mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell-mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function.

  17. Macelignan inhibits histamine release and inflammatory mediator production in activated rat basophilic leukemia mast cells.

    PubMed

    Han, Young Sun; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-10-01

    Type I allergy is characterized by the release of granule-associated mediators, lipid-derived substances, cytokines, and chemokines by activated mast cells. To evaluate the anti-allergic effects of macelignan isolated from Myristica fragrans Houtt., we determined its ability to inhibit calcium (Ca(2+)) influx, degranulation, and inflammatory mediator production in RBL-2 H3 cells stimulated with A23187 and phorbol 12-myristate 13-acetate. Macelignan inhibited Ca(2+) influx and the secretion of β-hexosaminidase, histamine, prostaglandin E(2), and leukotriene C(4); decreased mRNA levels of cyclooxygenase-2, 5-lipoxygenase, interleukin-4 (IL-4), IL-13, and tumor necrosis factor-α; and attenuated phosphorylation of Akt and the mitogen-activated protein kinases extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. These results indicate the potential of macelignan as a type I allergy treatment.

  18. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells.

    PubMed

    Chou, Hsin-Hua; Yumoto, Hiromichi; Davey, Michael; Takahashi, Yusuke; Miyamoto, Takanari; Gibson, Frank C; Genco, Caroline A

    2005-09-01

    Epidemiological and pathological studies have suggested that infection with the oral pathogen Porphyromonas gingivalis can potentiate atherosclerosis and human coronary heart disease. Furthermore, infection with invasive, but not noninvasive P. gingivalis has been demonstrated to accelerate atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice and to accelerate local inflammatory responses in aortic tissue. In the present study, using high-density oligonucleotide microarrays, we have defined the gene expression profile of human aortic endothelial cells (HAEC) after infection with invasive and noninvasive P. gingivalis. After infection of HAEC with invasive P. gingivalis strain 381, we observed the upregulation of 68 genes. Genes coding for the cytokines Gro2 and Gro3; the adhesion molecules intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM)-1, and ELAM-1 (E-selectin); the chemokine interleukin-8 (IL-8); and the proinflammatory molecules IL-6 and cyclooxygenase-2 were among the most highly upregulated genes in P. gingivalis 381-infected HAEC compared to uninfected HAEC control. Increased mRNA levels for signaling molecules, transcriptional regulators, and cell surface receptors were also observed. Of note, only 4 of these 68 genes were also upregulated in HAEC infected with the noninvasive P. gingivalis fimA mutant. Reverse transcription-PCR, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting analysis confirmed the expression of ICAM-1, VCAM-1, E-/P-selectins, IL-6, and IL-8 in HAEC infected with invasive P. gingivalis. We also demonstrated that increased expression of ICAM-1 and VCAM-1 in aortic tissue of ApoE(-/-) mice orally challenged with invasive P. gingivalis but not with the noninvasive P. gingivalis fimA mutant by immunohistochemical analysis. Taken together, these results demonstrate that P. gingivalis fimbria-mediated invasion upregulates inflammatory gene expression in HAEC and in aortic

  19. H2S dependent and independent anti-inflammatory activity of zofenoprilat in cells of the vascular wall.

    PubMed

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2016-11-01

    Cardiovascular diseases as atherosclerosis are associated to an inflammatory state of the vessel wall which is accompanied by endothelial dysfunction, and adherence and activation of circulating inflammatory cells. Hydrogen sulfide, a novel cardiovascular protective gaseous mediator, has been reported to exert anti-inflammatory activity. We have recently demonstrated that the SH containing ACE inhibitor zofenoprilat, the active metabolite of zofenopril, controls the angiogenic features of vascular endothelium through H2S enzymatic production by cystathionine gamma lyase (CSE). Based on H2S donor/generator property of zofenoprilat, the objective of this study was to evaluate whether zofenoprilat exerts anti-inflammatory activity in vascular cells through its ability to increase H2S availability. Here we found that zofenoprilat, in a CSE/H2S-mediated manner, abolished all the inflammatory features induced by interlukin-1beta (IL-1β) in human umbilical vein endothelial cells (HUVEC), especially the NF-κB/cyclooxygenase-2 (COX-2)/prostanoid biochemical pathway. The pre-incubation with zofenoprilat/CSE dependent H2S prevented IL-1β induced paracellular hyperpermeability through the control of expression and localization of cell-cell junctional markers ZO-1 and VE-cadherin. Moreover, zofenoprilat/CSE dependent H2S reduced the expression of the endothelial markers CD40 and CD31, involved in the recruitment of circulating mononuclear cells and platelets. Interestingly, this anti-inflammatory activity was also confirmed in vascular smooth muscle cells and fibroblasts as zofenoprilat reduced, in both cell lines, proliferation, migration and COX-2 expression induced by IL-1β, but independently from the SH moiety and H2S availability. These in vitro data document the anti-inflammatory activity of zofenoprilat on vascular cells, reinforcing the cardiovascular protective effect of this multitasking drug.

  20. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    PubMed

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  1. Aβ and Inflammatory Stimulus Activate Diverse Signaling Pathways in Monocytic Cells: Implications in Retaining Phagocytosis in Aβ-Laden Environment

    PubMed Central

    Savchenko, Ekaterina; Malm, Tarja; Konttinen, Henna; Hämäläinen, Riikka H.; Guerrero-Toro, Cindy; Wojciechowski, Sara; Giniatullin, Rashid; Koistinaho, Jari; Magga, Johanna

    2016-01-01

    Background: Accumulation of amyloid β (Aβ) is one of the main hallmarks of Alzheimer’s disease (AD). The enhancement of Aβ clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aβ in monocytic cells are poorly known. We aimed to study whether different forms of Aβ induce inflammatory responses in monocytic phagocytes and how Aβ may affect monocytic cell survival and function to retain phagocytosis in Aβ-laden environment. Methods: Monocytic cells were differentiated from bone marrow hematopoietic stem cells (HSC) in the presence of macrophage-colony stimulating factor. Monocytic cells were stimulated with synthetic Aβ42 and intracellular calcium responses were recorded with calcium imaging. The formation of reactive oxygen species (ROS), secretion of cytokines and cell viability were also assessed. Finally, monocytic cells were introduced to native Aβ deposits ex vivo and the cellular responses in terms of cell viability, pro-inflammatory activation and phagocytosis were determined. The ability of monocytic cells to phagocytose Aβ plaques was determined after intrahippocampal transplantation in vivo. Results: Freshly solubilized Aβ induced calcium oscillations, which persisted after removal of the stimulus. After few hours of aggregation, Aβ was not able to induce oscillations in monocytic cells. Instead, lipopolysaccharide (LPS) induced calcium responses divergent from Aβ-induced response. Furthermore, while LPS induced massive production of pro-inflammatory cytokines, neither synthetic Aβ species nor native Aβ deposits were able to induce pro-inflammatory activation of monocytic cells, contrary to primary microglia. Finally, monocytic cells retained their viability in the presence of Aβ and exhibited phagocytic activity towards native fibrillar Aβ deposits and congophilic Aβ plaques. Conclusion: Monocytic cells carry diverse cellular responses to Aβ and inflammatory stimulus LPS. Even

  2. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination

    PubMed Central

    Hu, Hongbo; Wang, Hui; Xiao, Yichuan; Jin, Jin; Chang, Jae-Hoon; Zou, Qiang; Xie, Xiaoping; Cheng, Xuhong

    2016-01-01

    Signal transduction from the T cell receptor (TCR) is crucial for T cell–mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell–mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function. PMID:26903241

  3. Immunomodulatory properties of human serum immunoglobulin A: anti-inflammatory and pro-inflammatory activities in human monocytes and peripheral blood mononuclear cells

    PubMed Central

    Olas, K; Butterweck, H; Teschner, W; Schwarz, H P; Reipert, B M

    2005-01-01

    Our study investigated the immunomodulatory activities of human plasma-derived serum immunoglobulin (Ig)A. Previous findings seem contradictory indicating either pro- or anti-inflammatory activities. We used serum IgA purified from large plasma pools and studied the modulation of the release of cytokines and chemokines from resting and lipopolysaccharide (LPS, endotoxin)-stimulated human adherent monocytes and human peripheral blood mononuclear cells (PBMC). Our results indicate that IgA down-modulates the release of the pro-inflammatory chemokines monocyte chemoattractant protein (MCP) 1, macrophage inflammatory protein (MIP) 1α and MIP1β from LPS-stimulated PBMC and the release of MCP1, MIP1α and MIP1β from LPS-stimulated monocytes. Furthermore, we confirmed previous reports that plasma-derived serum IgA down-modulates the release of the pro-inflammatory cytokines, interleukin (IL)-6 and tumour necrosis factor (TNF)-α, from LPS-stimulated monocytes and PBMC, and up-regulates the release of IL-1 receptor antagonist (IL-1RA) from resting and LPS-stimulated monocytes and resting PBMC. This IgA-mediated up-regulation of IL-1RA is independent of the simultaneous up-regulation of IL-1β release, as shown by blocking the biological activity of IL-1β with a neutralizing antibody. On the other hand, we also found an IgA-induced pro-inflammatory activity, namely IgA-mediated up-regutation of the release of pro-inflammatory IL-1β as well as down-regulation of the anti-inflammatory cytokines IL-10 and IL-12p40 from LPS-stimulated monocytes and PBMC and a down-regulation of transforming growth factor (TGF)-β from resting and LPS-stimulated PBMC. We conclude that human serum IgA has both an anti-inflammatory and a pro-inflammatory capacity and this dual capacity might contribute to the feedback mechanisms maintaining a balance between pro-inflammatory and anti-inflammatory activities. PMID:15932509

  4. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells.

    PubMed

    Lovelace, Erica S; Maurice, Nicholas J; Miller, Hannah W; Slichter, Chloe K; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states.

  5. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells

    PubMed Central

    Lovelace, Erica S.; Maurice, Nicholas J.; Miller, Hannah W.; Slichter, Chloe K.; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J.

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states. PMID:28158203

  6. 6-Hydroxyflavone and derivatives exhibit potent anti-inflammatory activity among mono-, di- and polyhydroxylated flavones in kidney mesangial cells.

    PubMed

    Wang, Xing; Wang, Zhiwei; Sidhu, Preetpal Singh; Desai, Umesh R; Zhou, Qibing

    2015-01-01

    Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4',6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 μM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment.

  7. 6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells

    PubMed Central

    Sidhu, Preetpal Singh; Desai, Umesh R.; Zhou, Qibing

    2015-01-01

    Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4′,6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 μM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment. PMID:25790236

  8. PU/PTFE-stimulated monocyte-derived soluble factors induced inflammatory activation in endothelial cells.

    PubMed

    Xue, Yang; Liu, Xin; Sun, Jiao

    2010-03-01

    Polyurethane (PU) and polytetrafluoroethylene (PTFE) are two commonly used blood-contacting biomaterials. In the present study, we used a noncontact coculture model to evaluate the thrombosis-causing potential of monocyte-mediated PU and PTFE. We used human endothelial cells from umbilical cord (HUVECs) and human monocytes (THP1 cells). The THP1 cells were directly exposed to PU/PTFE, and the resultant cell-free supernatants were harvested for stimulating HUVECs. The treated HUVECs constituted the test group. HUVECs treated with supernatants of LPS-stimulated THP1 cells were used as the positive controls. To investigate the effects of the supernatant treatment on HUVECs, we measured the expression of the leukocyte-endothelial-cell adhesion molecules (CAMs) CD54 (ICAM-1), CD106 (VCAM-1), and CD62E (E-selectin) and evaluated the release of tissue factor (TF). The results demonstrated that both PU and PTFE induced the expressions of CD62E and TF. These activation effects were accompanied by activation of the NF-kappaB transcription factor. To further investigate the monocyte-derived soluble factors that might contribute to these effects, we evaluated the effects of the PU/PTFE stimulation on the expression of reactive oxygen species (ROS), TNF-alpha, IL-1beta, and IL-6 in monocyte monocultures. In comparison with the results for the negative control, both PU and PTFE significantly induced ROS release after 0.5h, while the expressions of TNF-alpha, IL-1beta, and IL-6 were variably increased after 24h. Our results suggest that the biomaterial induces monocytic activation and subsequently causes the release of soluble factors, which contribute to the inflammatory activation in HUVECs.

  9. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    SciTech Connect

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C.; Bishop-Bailey, David

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  10. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression.

  11. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  12. Toll-like receptor-2-activating bifidobacteria strains differentially regulate inflammatory cytokines in the porcine intestinal epithelial cell culture system: finding new anti-inflammatory immunobiotics.

    PubMed

    Fujie, Hitomi; Villena, Julio; Tohno, Masanori; Morie, Kyoko; Shimazu, Tomoyuki; Aso, Hisashi; Suda, Yoshihito; Shimosato, Takeshi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong; Yaeshima, Tomoko; Iwatsuki, Keiji; Saito, Tadao; Numasaki, Muneo; Kitazawa, Haruki

    2011-10-01

    A total of 23 strains of bifidobacteria taxonomically belonging to five species were tested for their potent immunomodulatory effect using a combination of two methods: the NF-κB-reporter assay using a toll-like receptor 2-expressing transfectant (HEK(pTLR2) system) and the mitogenic assay using porcine Peyer's patches immunocompetent cells. Among the four preselected strains from different immunomodulatory groups, Bifidobacterium breve MCC-117 was able to efficiently modulate the inflammatory response triggered by enterotoxigenic Escherichia coli (ETEC) in a porcine intestinal epithelial (PIE) cell line. Moreover, using PIE cells and swine Peyer's patches immunocompetent cell co-culture system, we demonstrated that the immunoregulatory effect of B. breve MCC-117 was related to the capacity of the strain to influence PIE and immune cell interactions, leading to the stimulation of regulatory T cells. The results suggested that bifidobacteria that express high activity in both the HEK(pTLR2) and the mitogenic assays may behave like potential anti-inflammatory strains. The combination of the HEK(pTLR2) system, the evaluation of mitogenic activity and PIE cells will be of value for the development of new immunologically functional foods and feeds that could prevent inflammatory intestinal disorders. Although our findings should be proven in appropriate experiments in vivo, the results of the present work provide a scientific rationale for the use of B. breve MCC-117 to prevent ETEC-induced intestinal inflammation.

  13. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    PubMed

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  14. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity of LPS-activated RAW264.7 cells.

    PubMed

    Badiei, Alireza; Rivers-Auty, Jack; Ang, Abel Damien; Bhatia, Madhav

    2013-09-01

    Hydrogen sulfide is an inflammatory mediator and is produced by the activity of the enzyme cystathionine γ-lyase (CSE) in macrophages. Previously, pharmacological inhibition of CSE has been reported to have conflicting results, and this may be due to the lack of specificity of the pharmacological agents. Therefore, this study used a very specific approach of small interfering RNA (siRNA) to inhibit the production of the CSE in an in vitro setting. We found that the activation of macrophages by lipopolysaccharide (LPS) resulted in higher levels of CSE mRNA and protein as well as the increased production of proinflammatory cytokines and nitric oxide (NO). We successfully used siRNA to specifically reduce the levels of CSE mRNA and protein in activated macrophages. Furthermore, the levels of proinflammatory cytokines in LPS-activated macrophages were significantly lower in siRNA-transfected cells compared to those in untransfected controls. However, the production levels of NO by the transfected cells were higher, suggesting that CSE activity has an inhibitory effect on NO production. These findings suggest that the CSE enzyme has a crucial role in the activation of macrophages, and its activity has an inhibitory effect on NO production by these cells.

  15. Docosahexanoic acid diet supplementation attenuates the peripheral mononuclear cell inflammatory response to exercise following LPS activation.

    PubMed

    Capó, X; Martorell, M; Llompart, I; Sureda, A; Tur, J A; Pons, A

    2014-10-01

    Exercise induces changes in circulating pro- and anti-inflammatory cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on the plasma cytokine levels and on the peripheral mononuclear (PBMCs) cells cytokine production after a training season or an acute bout of exercise. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA, whereas the placebo group consumed the same beverage without DHA. Three blood samples were taken: in basal conditions at the beginning of the nutritional intervention and after eight weeks of training season in basal and post-exercise conditions. The DHA content increased in erythrocytes after 8weeks of training and supplementation. Neither diet supplementation with DHA nor training season altered the basal plasma cytokines and growth factors. Only acute exercise significantly increased plasma IL6 in experimental and placebo groups. Lipopolysaccharide (LPS) activation induced the inflammatory response in PBMCs, with a significant production rate of TNFα, IL6 and IL8 mainly after acute exercise. DHA supplementation significantly reduced the rate of TNFα and IL6 production by stimulated PBMCs. Acute exercise increased the Toll-like receptor 4 (TLR4) protein levels in PBMCs, although the increase was only statistically significant in the placebo group. In conclusion, a training season does not induce significant changes in the circulating cytokine profile in well-trained soccer players. Exercise increases the PBMCs cell capabilities to produce cytokines after TLR4 stimulation with LPS and this rate of cytokine production is attenuated by diet DHA supplementation.

  16. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli

    SciTech Connect

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S.

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells. - Highlights: ► LPS stimulates generation of secretory vesicles containing SerpinB2. ► SerpinB2 concentrates in TGN46 positive vesicles close to the plasma membrane. ► Brefeldin A inhibits secretion of SerpinB2. ► The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa.

  17. Cholesterol Crystals Induce Inflammatory Cytokines Expression in nARPE-19 Cells by Activating the NF-κB Pathway

    PubMed Central

    Hu, Yijun; Lin, Haijiang; Dib, Bernard; Atik, Alp; Bouzika, Peggy; Lin, Christopher; Yan, Yueran; Tang, Shibo; Miller, Joan W.; Vavvas, Demetrios G.

    2015-01-01

    Purpose To investigate the expression of inflammatory cytokines in ARPE-19 cells after stimulation with cholesterol crystals. Methods APRE-19 cells were cultured, primed with IL-1α, and treated with cholesterol crystals under different concentrations. Inflammatory cytokines (mature-IL-1β, IL-6, and IL-8) in supernatant and inflammatory cytokines (pro-IL-1β, IL-18) in cell lysate were detected by western blot. The NF-κB pathway inhibitor BAY 11-7082 was used to determine the pathway of cytokine expression. Results Cholesterol crystals did not induce the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome, but did increase pro-IL-1β expression in ARPE-19 cells. Cholesterol crystals increased pro-IL-1β expression by activating the NF-κB pathway. Cholesterol crystal activation of the NF-κB pathway also leads to increased IL-6 and IL-8 expression. Conclusion Cholesterol crystals can induce inflammatory cytokine expression in ARPE-19 cells by activating the NF-κB pathway. PMID:25091484

  18. NF-κB activation primes cells to a pro-inflammatory polarized response to a TLR7 agonist

    PubMed Central

    Lee, Jongdae; Hayashi, Masaaki; Lo, Jeng-Fan; Fearns, Colleen; Chu, Wen-Ming; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2009-01-01

    Toll-like receptor 7 (TLR7) mediates anti-viral immunity by recognizing ssRNA viruses. Small molecular weight TLR7 agonists have been approved, or are being evaluated, for treatment of cancers or infectious diseases. Although TLR7 is predominantly expressed in a restricted set of immune cell types including plasmacytoid dendritic cells (pDCs), it is also expressed in non-native expressing cells (e.g., hepatocytes) under certain circumstances. To elucidate the molecular basis of TLR7 induction by pro-inflammatory stimulation and the subsequent cellular responses in these non-native TLR7-expressing cell types, we firstly cloned and characterized the 5′-promoter region of TLR7. The proximal region of this promoter drives the transcription of the TLR7 gene. Pro-inflammatory stimuli activated TLR7 transcription via a NF-κB binding motif in this region, and this activation could be blocked by mutation of the NF-κB binding site or addition of NF-κB inhibitors. Further studies showed that pretreatment of the Hep3B hepatocytes with TNF-α or IL-1 rendered them responsive to TLR7 activation by a TLR7 agonist. However, distinct from TLR7 activation in pDCs, which respond to stimulation with Th1 polarized cytokine production, TLR7 induction by pro-inflammatory signals in hepatocytes reconstitutes the NF-κB-dependent cascade but not the IRF7-dependent cascade, resulting in a pro-inflammatory polarized response rather than a Th1 polarized response. These results indicate that inflammatory stimulation is capable of priming cells to respond to TLR7 agonist with an immune response that differs from that in native TLR7-expressing cells. PMID:19426145

  19. Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation.

    PubMed

    Pourabdolhossein, Fereshteh; Gil-Perotín, Sara; Garcia-Belda, Paula; Dauphin, Aurelien; Mozafari, Sabah; Tepavcevic, Vanja; Manuel Garcia Verdugo, Jose; Baron-Van Evercooren, Anne

    2017-05-01

    Ependymal cells (E1/E2) and ciliated B1cells confer a unique pinwheel architecture to the ventricular surface of the subventricular zone (SVZ), and their cilia act as sensors to ventricular changes during development and aging. While several studies showed that forebrain demyelination reactivates the SVZ triggering proliferation, ectopic migration, and oligodendrogenesis for myelin repair, the potential role of ciliated cells in this process was not investigated. Using conventional and lateral wall whole mount preparation immunohistochemistry in addition to electron microscopy in a forebrain-targeted model of experimental autoimmune encephalomyelitis (tEAE), we show an early decrease in numbers of pinwheels, B1 cells, and E2 cells. These changes were transient and simultaneous to tEAE-induced SVZ stem cell proliferation. The early drop in B1/E2 cell numbers was followed by B1/E2 cell recovery. While E1 cell division and ependymal ribbon disruption were never observed, E1 cells showed important morphological modifications reflected by their enlargement, extended cytoskeleton, and reinforced cell-cell junction complexes overtime, possibly reflecting protective mechanisms against ventricular insults. Finally, tEAE disrupted motile cilia planar cell polarity and cilia orientation in ependymal cells. Therefore, significant ventricular modifications in ciliated cells occur early in response to tEAE suggesting a role for these cells in SVZ stem cell signalling not only during development/aging but also during inflammatory demyelination. These observations may have major implications for understanding pathophysiology of and designing therapeutic approaches for inflammatory demyelinating diseases such as MS.

  20. Inhibitory Effects of Viscum coloratum Extract on IgE/Antigen-Activated Mast Cells and Mast Cell-Derived Inflammatory Mediator-Activated Chondrocytes.

    PubMed

    Yoo, Jae-Myung; Yang, Ju-Hye; Kim, Young Soo; Yang, Hye Jin; Cho, Won-Kyung; Ma, Jin Yeul

    2016-12-28

    The accumulation and infiltration of mast cells are found in osteoarthritic lesions in humans and rodents. Nonetheless, the roles of mast cells in osteoarthritis are almost unknown. Although Viscum coloratum has various beneficial actions, its effect on allergic and osteoarthritic responses is unknown. In this study, we established an in vitro model of mast cell-mediated osteoarthritis and investigated the effect of the ethanol extract of Viscum coloratum (VEE) on IgE/antigen (IgE/Ag)-activated mast cells and mast cell-derived inflammatory mediator (MDIM)-stimulated chondrocytes. The anti-allergic effect of VEE was evaluated by degranulation, inflammatory mediators, and the FcεRI signaling cascade in IgE/Ag-activated RBL-2H3 cells. The anti-osteoarthritic action of VEE was evaluated by cell migration, and the expression, secretion, and activity of MMPs in MDIM-stimulated SW1353 cells. VEE significantly inhibited degranulation (IC50: 93.04 μg/mL), the production of IL-4 (IC50: 73.28 μg/mL), TNF-α (IC50: 50.59 μg/mL), PGD₂ and LTC₄, and activation of the FcεRI signaling cascade in IgE/Ag-activated RBL-2H3 cells. Moreover, VEE not only reduced cell migration but also inhibited the expression, secretion, and/or activity of MMP-1, MMP-3, or MMP-13 in MDIM-stimulated SW1353 cells. In conclusion, VEE possesses both anti-allergic and anti-osteoarthritic properties. Therefore, VEE could possibly be considered a new herbal drug for anti-allergic and anti-osteoarthritic therapy. Moreover, the in vitro model may be useful for the development of anti-osteoarthritic drugs.

  1. Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols.

    PubMed

    Figueirinha, Artur; Cruz, Maria Teresa; Francisco, Vera; Lopes, M Celeste; Batista, Maria Teresa

    2010-06-01

    Cymbopogon citratus, an herb known worldwide as lemongrass, is widely consumed as an aromatic drink, and its fresh and dried leaves are currently used in traditional cuisine. However, little is known about the mechanism of action of C. citratus, namely, the anti-inflammatory effects of its dietary components. Because nitric oxide (NO), produced in large quantities by activated inflammatory cells, has been demonstrated to be involved in the pathogenesis of acute and chronic inflammation, we evaluated the effects of the infusion of dried leaves from C. citratus, as well as its polyphenolic fractions--flavonoid-, tannin-, and phenolic acid-rich fractions (FF, TF, and PAF, respectively)--on the NO production induced by lipopolysaccharide (LPS) in a skin-derived dendritic cell line (FSDC). C. citratus infusion significantly inhibited the LPS-induced NO production and inducible NO synthase (iNOS) protein expression. All the polyphenolic fractions tested also reduced the iNOS protein levels and NO production stimulated by LPS in FSDC cells, without affecting cell viability, with the strongest effects being observed for the fractions with mono- and polymeric flavonoids (FF and TF, respectively). Our results also indicated that the anti-inflammatory properties of FF are mainly due to luteolin glycosides. In conclusion, C. citratus has NO scavenging activity and inhibits iNOS expression and should be explored for the treatment of inflammatory diseases, in particular of the gastrointestinal tract.

  2. IK acts as an immunoregulator of inflammatory arthritis by suppressing TH17 cell differentiation and macrophage activation

    PubMed Central

    Park, Hye-Lim; Lee, Sang-Myeong; Min, Jun-Ki; Moon, Su-Jin; Kim, Inki; Kang, Kyung-Won; Park, Sooho; Choi, SeulGi; Jung, Ha-Na; Lee, Dong-Hee; Nam, Jae-Hwan

    2017-01-01

    Pathogenic T helper cells (TH) and macrophages have been implicated in the development of rheumatoid arthritis (RA), which can lead to severe synovial inflammation and bone destruction. A range of therapies have been widely used for RA, including specific monoclonal antibodies and chemical inhibitors against inflammatory cytokines produced by these cells. However, these have not been sufficient to meet the medical need. Here, we show that in transgenic mice expressing truncated IK (tIK) cytokine, inflammatory arthritis symptoms were ameliorated as the result of suppression of the differentiation of TH1 and TH17 cells and of macrophage activation. During inflammatory responses, tIK cytokine systemically regulated macrophage functions and TH17 cell differentiation through inactivation of the MAPK and NF-κB pathways. Interestingly, the level of tIK cytokine was higher in synovial fluid of RA patients compared with that in osteoarthritis (OA) patients. Our observations suggest that tIK cytokine can counterbalance the induction of inflammatory cells related to RA and thus could be a new therapeutic agent for the treatment of RA. PMID:28071693

  3. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression.

    PubMed

    Chen, Xi-Lin; Dodd, Geraldine; Thomas, Suzanne; Zhang, Xiaolan; Wasserman, Martin A; Rovin, Brad H; Kunsch, Charles

    2006-05-01

    The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-alpha-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-alpha-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1beta-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-alpha-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-alpha-induced NF-kappaB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.

  4. Evaluation of the Anti-Inflammatory Activity of Raisins (Vitis vinifera L.) in Human Gastric Epithelial Cells: A Comparative Study

    PubMed Central

    Di Lorenzo, Chiara; Sangiovanni, Enrico; Fumagalli, Marco; Colombo, Elisa; Frigerio, Gianfranco; Colombo, Francesca; Peres de Sousa, Luis; Altindişli, Ahmet; Restani, Patrizia; Dell’Agli, Mario

    2016-01-01

    Raisins (Vitis vinifera L.) are dried grapes largely consumed as important source of nutrients and polyphenols. Several studies report health benefits of raisins, including anti-inflammatory and antioxidant properties, whereas the anti-inflammatory activity at gastric level of the hydro-alcoholic extracts, which are mostly used for food supplements preparation, was not reported until now. The aim of this study was to compare the anti-inflammatory activity of five raisin extracts focusing on Interleukin (IL)-8 and Nuclear Factor (NF)-κB pathway. Raisin extracts were characterized by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) analysis and screened for their ability to inhibit Tumor necrosis factor (TNF)α-induced IL-8 release and promoter activity in human gastric epithelial cells. Turkish variety significantly inhibited TNFα-induced IL-8 release, and the effect was due to the impairment of the corresponding promoter activity. Macroscopic evaluation showed the presence of seeds, absent in the other varieties; thus, hydro-alcoholic extracts from fruits and seeds were individually tested on IL-8 and NF-κB pathway. Seed extract inhibited IL-8 and NF-κB pathway, showing higher potency with respect to the fruit. Although the main effect was due to the presence of seeds, the fruit showed significant activity as well. Our data suggest that consumption of selected varieties of raisins could confer a beneficial effect against gastric inflammatory diseases. PMID:27447609

  5. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    SciTech Connect

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  6. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells

    PubMed Central

    Holland, James P.; Kirby, John A.; Deehan, David J.; Tyson, Alison J.

    2016-01-01

    Cobalt-containing metal-on-metal hip replacements are associated with adverse reactions to metal debris (ARMD), including inflammatory pseudotumours, osteolysis, and aseptic implant loosening. The exact cellular and molecular mechanisms leading to these responses are unknown. Cobaltions (Co2+) activate human Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to Gram negative bacterial lipopolysaccharide (LPS). We investigated the effect of Co2+-mediated TLR4 activation on human microvascular endothelial cells (HMEC-1), focusing on the secretion of key inflammatory cytokines and expression of adhesion molecules. We also studied the role of TLR4 in Co2+-mediated adhesion molecule expression in MonoMac 6 macrophages. We show that Co2+ increases secretion of inflammatory cytokines, including IL-6 and IL-8, in HMEC-1. The effects are TLR4-dependent as they can be prevented with a small molecule TLR4 antagonist. Increased TLR4-dependent expression of intercellular adhesion molecule 1 (ICAM1) was also observed in endothelial cells and macrophages. Furthermore, we demonstrate for the first time that Co2+ activation of TLR4 upregulates secretion of a soluble adhesion molecule, sICAM-1, in both endothelial cells and macrophages. Although sICAM-1 can be generated through activity of matrix metalloproteinase-9 (MMP-9), we did not find any changes in MMP9 expression following Co2+ stimulation. In summary we show that Co2+ can induce endothelial inflammation via activation of TLR4. We also identify a role for TLR4 in Co2+-mediated changes in adhesion molecule expression. Finally, sICAM-1 is a novel target for further investigation in ARMD studies. PMID:27835611

  7. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    SciTech Connect

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  8. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    PubMed

    Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana; O'Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B; Busik, Julia V

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  9. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy

    PubMed Central

    Navitskaya, Svetlana; O’Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B.; Busik, Julia V.

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy. PMID:26760976

  10. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells

    PubMed Central

    Lee, Y G; Lee, W M; Kim, J Y; Lee, J Y; Lee, I-K; Yun, B-S; Rhee, M H; Cho, J Y

    2008-01-01

    Background and purpose: Mushrooms are popular both as food and as a source of natural compounds of biopharmaceutical interest. Some mushroom-derived compounds such as β-glucan have been shown to be immunostimulatory; this study explores the anti-inflammatory properties of hispidin analogues derived from the mushroom, Inonotus xeranticus. We sought to identify the molecular mechanism of action of these hispidin analogues by determining their effects on lipopolysaccharide (LPS)-mediated inflammatory responses in a macrophage cell line. Experimental approach: The production of inflammatory mediators was determined by Griess assay, reverse transcription-PCR and ELISA. The inhibitory effect of davalliactone on LPS-induced activation of signalling cascades was assessed by western blotting, immunoprecipitation and direct kinase assay. Key results: In activated RAW264.7 cells, davallialactone strongly downregulated LPS-mediated inflammatory responses, including NO production, prostaglandin E2 release, expression of proinflammatory cytokine genes and cell surface expression of co-stimulatory molecules. Davallialactone treatment did not alter cell viability or morphology. Davallialactone was found to exert its anti-inflammatory effects by inhibiting a signalling cascade that activates nuclear factor kappa B via PI3K, Akt and IKK, but not mitogen-activated protein kinases. Treatment with davallialactone affected the phosphorylation of these signalling proteins, but not their level of expression. These inhibitory effects were not due to the interruption of toll-like receptor 4 binding to CD14. In particular, davallialactone strongly inhibited the LPS-induced phosphorylation and kinase activity of Src, implying that Src may be a potential pharmacological target of davallialactone. Conclusions and implications: Our data suggest that davallialactone, a small molecule found in edible mushrooms, has anti-inflammatory activity. Davallialactone can be developed as a pharmaceutically

  11. Activation of mucosal mast cells promotes inflammation-related colon cancer development through recruiting and modulating inflammatory CD11b(+)Gr1(+) cells.

    PubMed

    Xu, Lingzhi; Yi, Hong-Gan; Wu, Zhiyuan; Han, Wenxiao; Chen, Kun; Zang, Mengya; Wang, Dongmei; Zhao, Xinhua; Wang, Hongying; Qu, Chunfeng

    2015-08-10

    Mast cells (MCs) have been reported to be one of the important immunoregulatory cells in promoting the development of colitis-related colon cancer (CRC). It is not clear which MC subtypes play critical roles in CRC progression from colitis to cancer because mucosal mast cells (MMCs) are distinct from connective tissue mast cells (CTMCs) in maintaining intestinal barrier function under homeostatic and inflammatory conditions. In the current study, we found that MMC numbers and the gene expressions of MMC-specific proteases increased significantly in an induced CRC murine model. The production of mast cell protease-1 (mMCP-1) after MMC activation not only resulted in the accumulation of CD11b(+)Gr1(+) inflammatory cells in the colon tissues but also modulated the activities of CD11b(+)Gr1(+) cells to support tumor cell growth and to inhibit T cell activation. Blocking the MMC activity in mice that had developed colitis-related epithelium dysplasia, CD11b(+)Gr1(+) infiltration was reduced and CRC development was inhibited. Our results suggest that MMC activation recruited and modulated the CD11b(+)Gr1(+) cells to promote CRC and that MMCs can be potential therapeutic targets for the prevention of CRC development.

  12. Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity.

    PubMed

    Berruyer, Carole; Pouyet, Laurent; Millet, Virginie; Martin, Florent M; LeGoffic, Aude; Canonici, Alexandra; Garcia, Stéphane; Bagnis, Claude; Naquet, Philippe; Galland, Franck

    2006-12-25

    Colitis involves immune cell-mediated tissue injuries, but the contribution of epithelial cells remains largely unclear. Vanin-1 is an epithelial ectoenzyme with a pantetheinase activity that provides cysteamine/cystamine to tissue. Using the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-colitis model we show here that Vanin-1 deficiency protects from colitis. This protection is reversible by administration of cystamine or bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor (PPAR)gamma antagonist. We further demonstrate that Vanin-1, by antagonizing PPARgamma, licenses the production of inflammatory mediators by intestinal epithelial cells. We propose that Vanin-1 is an epithelial sensor of stress that exerts a dominant control over innate immune responses in tissue. Thus, the Vanin-1/pantetheinase activity might be a new target for therapeutic intervention in inflammatory bowel disease.

  13. Antioxidant and Anti-inflammatory Activities of Broccoli Florets in LPS-stimulated RAW 264.7 Cells

    PubMed Central

    Hwang, Joon-Ho; Lim, Sang-Bin

    2014-01-01

    Broccoli (Brassica oleracea var. italia) florets were extracted with 80% methanol and the extract was sequentially fractionated with n-hexane, ethyl acetate, n-butanol, and distilled water. The extract and the fractions were evaluated for total phenolic content, sulforaphane content, antioxidant activity, and anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The total phenolic content and sulforaphane content of the ethyl acetate fraction (EF) were 35.5 mg gallic acid equivalents/g and 620.2 μg/g, respectively. These values were higher than those of the 80% methanol extract and organic solvent fractions. The oxygen radical absorbance capacity of the EF [1,588.7 μM Trolox equivalents (TE)/mg] was 11-fold higher than that of the distilled water fraction (143.7 μM TE/mg). The EF inhibited nitric oxide release from LPS-stimulated RAW 264.7 cells in a dose-dependent manner and inhibited IκB-α degradation and nuclear factor-κB activation in LPS-stimulated RAW 264.7 cells. In conclusion, the EF of broccoli florets exerted potent antioxidant and anti-inflammatory effects. PMID:25054107

  14. The inclusion into PLGA nanoparticles enables α-bisabolol to efficiently inhibit the human dendritic cell pro-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Marongiu, Laura; Donini, Marta; Bovi, Michele; Perduca, Massimiliano; Vivian, Federico; Romeo, Alessandro; Mariotto, Sofia; Monaco, Hugo L.; Dusi, Stefano

    2014-08-01

    α-bisabolol, a natural sesquiterpene alcohol, has generated considerable interest for its anti-inflammatory activity. Since the mechanisms of this anti-inflammatory action remain poorly understood, we investigated whether α-bisabolol affects the release of pro-inflammatory cytokines IL-12, IL-23, IL-6, and TNFα by human dendritic cells (DCs). We found that α-bisabolol did not induce the secretion of these cytokines and did not affect their release induced upon DC challenge with lipopolysaccharide (LPS), a well-known immune cell stimulator. As α-bisabolol is scarcely ingested by the cells, we wondered whether the inclusion of α-bisabolol into nanoparticles could favor its internalization by DCs and consequently its effects on cytokine secretion. We then prepared and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, with a dynamic light scattering peak centered at 154 nm and a half width at half maximum of about 48 nm. These particles were unable to affect per se cytokine secretion by both resting and LPS-stimulated DCs and were internalized by human DCs as demonstrated by confocal microscopy analysis. We then loaded PLGA nanoparticles with α-bisabolol and we observed that PLGA-associated α-bisabolol did not stimulate the cytokine release by resting DCs, but decreased IL-12, IL-23, IL-6, and TNFα secretion by LPS-stimulated DCs. Our results indicate that α-bisabolol inclusion into PLGA nanoparticles represents a very promising tool for designing new anti-inflammatory, anti-pyretic and, possibly, immunosuppressive therapeutic strategies.

  15. Activation of circulated immune cells and inflammatory immune adherence are involved in the whole process of acute venous thrombosis

    PubMed Central

    Wang, Le-Min; Duan, Qiang-Lin; Yang, Fan; Yi, Xiang-Hua; Zeng, Yu; Tian, Hong-Yan; Lv, Wei; Jin, Yun

    2014-01-01

    Objective: To investigate localization and distribution of integrin subunit β1, β2 and β3 and morphological changes of ligand-recepter binding in thrombi of acute pulmonary embolism (PE) patients and explore activation of circulated immune cells, inflammatory immune adherence and coagulation response in acute venous thrombosis. Methods: Thrombi were collected from patients with acute PE. Immunohistochemistry was done to detect the expression and distribution of integrin β1, β2 and β3 in cells within thrombi, and ligands of integrin subunit β1, β2 and β3 were also determined by immunohistochemistry within the thrombi. Results: 1) Acute venous thrombi were red thrombi composed of skeletons and filamentous mesh containing large amounts of red blood cells and white blood cells; 2) Integrin subunit β1, β2 and β3 were expressed on lymphocytes, neutrophils and platelets; 3) No expression of integrin β1 ligands: Laminin, Fibronectin, Collagen I or Collagen-II on lymphocytes; integrin β2 ligands including ICAM, factor X and iC3b are distributed on neutrophils, and ligand fibrinogen bound to neutrophils; integrin β3 was expressed on platelets which form the skeleton of thrombi and bound to fibrinogen to construct mesh structure; 4) Factor Xa was expressed on the filamentous mesh; 5) Filamentous mesh was fully filled with red blood cell dominant blood cells. Conclusion: Acute venous thrombosis is an activation process of circulated lymphocytes, neutrophils and platelets mainly, and a whole process including integrin subunit β2 and β3 binding with their ligands. Activation of immune cells, inflammatory immune adherence and coagulation response are involved in the acute venous thrombosis. PMID:24753749

  16. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment

    PubMed Central

    Zachar, Lukáš; Bačenková, Darina; Rosocha, Ján

    2016-01-01

    Human mesenchymal stem cells (MSCs) are considered to be a promising source of cells in regenerative medicine. They have large potential to differentiate into various tissue-specific populations and may be isolated from diverse tissues in desired quantities. As cells of potential autologous origin, they allow recipients to avoid the alloantigen responses. They also have the ability to create immunomodulatory microenvironment, and thus help to minimize organ damage caused by the inflammation and cells activated by the immune system. Our knowledge about the reparative, regenerative, and immunomodulatory properties of MSCs is advancing. At present, there is a very comprehensible idea on how MSCs affect the immune system, particularly in relation to the tissue and organ damage on immunological basis. Hitherto a number of effective mechanisms have been described by which MSCs influence the immune responses. These mechanisms include a secretion of soluble bioactive agents, an induction of regulatory T cells, modulation of tolerogenic dendritic cells, as well as induction of anergy and apoptosis. MSCs are thus able to influence both innate and adaptive immune responses. Soluble factors that are released into local microenvironment with their subsequent paracrine effects are keys to the activation. As a result, activated MSCs contribute to the restoration of damaged tissues or organs through various mechanisms facilitating reparative and regenerative processes as well as through immunomodulation itself and differentiation into the cells of the target tissue. PMID:28008279

  17. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    PubMed Central

    Jones, Jane T.; Qian, Xi; van der Velden, Jos L.J.; Chia, Shi Biao; McMillan, David H.; Flemer, Stevenson; Hoffman, Sidra M.; Lahue, Karolyn G.; Schneider, Robert W.; Nolin, James D.; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M.; Tew, Kenneth D.; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  18. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  19. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells.

    PubMed

    Schluesener, H J; Seid, K; Kretzschmar, J; Meyermann, R

    1998-10-01

    Allograft inflammatory factor-1 (AIF-1) is a Ca2+ binding peptide expressed predominantly by activated monocytes. In order to investigate the role of AIF-1 in autoimmune lesions of the rat nervous system, we have used a synthetic gene to express AIF-1 in E. coli and have produced monoclonal antibodies against AIF-1. AIF-1 was localized to monocytes/macrophages with rather selective staining of a minor rat monocyte subpopulation of lymphoid tissue. We then investigated expression of AIF-1 in experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), and uveitis (EAU). Within the local inflammatory lesions, infiltrating macrophages are prominently stained. In the diseased brain, AIF-1-positive microglial cells are not only found in the direct vicinity of the infiltrate, but widespread activation is seen in the parenchyma. This is the first demonstration that AIF-1 is present in autoimmune lesions. Immunostaining of microglial cells is noteworthy, as these cells are strategically placed regulatory elements of CNS immunosurveillance. Thus, AIF-1 might be a valuable marker to dissect the local monocyte heterogeneity in autoimmune disease.

  20. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells.

    PubMed

    Venancio, Vinicius P; Cipriano, Paula A; Kim, Hyemee; Antunes, Lusânia M G; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2017-01-25

    Cocoplum (Chrysobalanus icaco L.) (CP) is an anthocyanin-rich fruit found in tropical areas around the globe. CP polyphenols are associated with beneficial effects on health, including reduction of inflammation and oxidative stress. Due to its functional properties, the consumption of this fruit may be beneficial in the promotion of human health and reduce the risk for chronic diseases. The objective of this study was to assess the anti-inflammatory and anti-proliferative activities of anthocyanins extracted from CP (1.0 to 20.0 μg ml(-1) gallic acid equivalents [GAE]) in CCD-18Co non-malignant colonic fibroblasts and HT-29 colorectal adenocarcinoma cells. Tumor necrosis factor alpha (TNF-α, 10 ng mL(-1)) was used to induce inflammation in CCD-18Co cells. CP anthocyanins were identified and quantified using HPLC-ESI-MS(n). The chemical analysis of CP extract identified delphinidin, cyanidin, petunidin and peonidin derivatives as major components. Cell proliferation was suppressed in HT-29 cells at 10.0 and 20.0 μg ml(-1) GAE and this was accompanied by increased intracellular ROS production as well as decreased TNF-α, IL-1β, IL-6, and NF-κB1 expressions at 20.0 μg ml(-1) GAE. Within the same concentration range, there was no cytotoxic effect of CP anthocyanins in CCD-18Co cells and TNF-α-induced intracellular ROS-production was decreased by 17.3%. IL-1β, IL-6 and TNF-α protein expressions were also reduced in TNF-α-treated CCD-18Co cells by CP anthocyanins at 20.0 μg ml(-1) GAE. These results suggest that cocoplum anthocyanins possess cancer-cytotoxic and anti-inflammatory activities in both inflamed colon and colon cancer cells.

  1. CXCR3-Dependent CD4+ T Cells Are Required to Activate Inflammatory Monocytes for Defense against Intestinal Infection

    PubMed Central

    Cohen, Sara B.; Maurer, Kirk J.; Egan, Charlotte E.; Oghumu, Steve; Satoskar, Abhay R.; Denkers, Eric Y.

    2013-01-01

    Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4+ and CD8+ T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3−/− mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4+ T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b+Ly6C/G+ inflammatory monocytes, recently reported to be major anti-Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3−/− mice. Strikingly, adoptive transfer of wild-type but not Ifnγ−/− CD4+ T lymphocytes into Cxcr3−/− animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes. PMID:24130498

  2. Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor γ activity

    PubMed Central

    Berruyer, Carole; Pouyet, Laurent; Millet, Virginie; Martin, Florent M.; LeGoffic, Aude; Canonici, Alexandra; Garcia, Stéphane; Bagnis, Claude; Naquet, Philippe; Galland, Franck

    2006-01-01

    Colitis involves immune cell–mediated tissue injuries, but the contribution of epithelial cells remains largely unclear. Vanin-1 is an epithelial ectoenzyme with a pantetheinase activity that provides cysteamine/cystamine to tissue. Using the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-colitis model we show here that Vanin-1 deficiency protects from colitis. This protection is reversible by administration of cystamine or bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor (PPAR)γ antagonist. We further demonstrate that Vanin-1, by antagonizing PPARγ, licenses the production of inflammatory mediators by intestinal epithelial cells. We propose that Vanin-1 is an epithelial sensor of stress that exerts a dominant control over innate immune responses in tissue. Thus, the Vanin-1/pantetheinase activity might be a new target for therapeutic intervention in inflammatory bowel disease. PMID:17145956

  3. Inflammatory cells and cellular activation in the lower respiratory tract in Churg-Strauss syndrome

    PubMed Central

    Schnabel, A.; Csernok, E.; Braun, J.; Gross, W.

    1999-01-01

    BACKGROUND—To obtain insight into the mechanisms of tissue injury in lung disease due to Churg-Strauss syndrome (CSS), the bronchoalveolar lavage (BAL) cell profile and the levels in the BAL fluid of cell products released by activated eosinophils and neutrophils were assessed.
METHODS—Thirteen patients with active progressive CSS (n = 7) or CSS in partial remission (n = 6) underwent clinical staging and bronchoalveolar lavage. The levels of eosinophil cationic protein (ECP), myeloperoxidase (MPO), and peroxidase activity in the BAL fluid were determined and the results were compared with those of 19 patients with pulmonary active Wegener's granulomatosis (WG) and nine control subjects.
RESULTS—In patients with progressive CSS the BAL cell profile was dominated by eosinophils, neutrophil elevation being the exception. The eosinophilia was associated with high ECP levels (4.39 ng/ml and 0.40 ng/ml in the two CSS groups compared with unmeasurable values in the controls). Individual patients with highly active CSS also had raised MPO levels, comparable to the levels in the most active WG patients. Peroxidase activity in the BAL fluid was 1.26 U/ml and 0.10 U/ml in the two groups of patients with CSS and 0.20 U/ml in the controls. Pulmonary disease in patients with WG was characterised by an extensive increase in MPO (0.30ng/ml versus 0.13 ng/ml in the controls) together with high peroxidase activity in the BAL fluid (4.37 U/ml), but only a small increase in ECP levels was seen. No correlation was found between the ECP and MPO levels in patients with CSS which suggests that eosinophil and neutrophil activation vary independently of each other.
CONCLUSIONS—These findings suggest that, in addition to eosinophil activation, neutrophil activation is an important feature in some patients with highly active CSS. The balance of neutrophil and eosinophil involvement appears to be variable and this may be one explanation for the individually variable treatment

  4. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line.

    PubMed

    Veronesi, B; Oortgiesen, M; Carter, J D; Devlin, R B

    1999-01-01

    Recent experiments have shown that human bronchial epithelial cells (i.e., BEAS-2B) release pro-inflammatory cytokines (i.e., IL-6 and TNFalpha) in a receptor-mediated fashion in response to the neuropeptides, substance P (SP), calcitonin gene-related protein (CGRP), and the prototype botanical irritant capsaicin. In the present experiments, we examined the relevance of these receptors to particulate matter (PM)-associated cellular inflammation. BEAS-2B cells, exposed to residual oil fly ash particles (ROFA), responded with an immediate (<30 s) increase in intracellular calcium levels ([Ca2+]i), increases of key inflammatory cytokine transcripts (i.e., IL-6, IL-8, TNFalpha) within 2 h exposure, and subsequent release of IL-6 and IL-8 cytokine protein after 4 h exposure. Pretreatment of BEAS-2B cells with pharmacological antagonists selective for the SP or CGRP receptors reduced the ROFA-stimulated IL-6 cytokine production by approximately 25 and 50%, respectively. However, pretreatment of these cells with capsazepine (CPZ), an antagonist for capsaicin (i.e., vanilloid) receptors, inhibited the immediate increases in [Ca2+]i, diminished transcript (i.e., IL-6, IL-8, TNFalpha) levels and reduced IL-6 cytokine release to control levels. BEAS-2B cells exposed to ROFA in calcium-free media failed to demonstrate increases of [Ca2+]i and showed reduced levels of cytokine transcript (i.e., IL-6, IL-8, TNFalpha) and IL-6 release, suggesting that ROFA-stimulated cytokine formation was partially dependent on extracellular calcium sources. A final set of experiments compared the inflammatory properties of the soluble and acidic insoluble components of ROFA. BEAS-2B cells, exposed to ROFA or ROFA that had been filtered through a 0.2-micrometer pore filter, produced equivocal IL-6. BEAS-2B cells exposed to pH 5.0 media for 15 min released moderate amounts of IL-6, 4 h later. This cytokine release could be blocked by amiloride, a pH receptor antagonist, but not by CPZ. BEAS-2B

  5. Cannabinoid CB2 receptor attenuates morphine-induced inflammatory responses in activated microglial cells

    PubMed Central

    Merighi, Stefania; Gessi, Stefania; Varani, Katia; Fazzi, Debora; Mirandola, Prisco; Borea, Pier Andrea

    2012-01-01

    BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB2 and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB2 receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB2 receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB2 receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids. PMID:22428664

  6. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells.

    PubMed

    Lee, Ik-Soo; Lim, Juhee; Gal, Jiyeong; Kang, Jeen Chu; Kim, Hyun Jung; Kang, Bok Yun; Choi, Hyun Jin

    2011-02-01

    Xanthohumol (2',4',4-trihydroxy-6'-methoxy-3'-prenylchalcone) is a major chalcone derivative isolated from hop (Humulus lupulus L.) commonly used in brewing due to its bitter flavors. Xanthohumol has anti-carcinogenic, free radical-scavenging, and anti-inflammatory activities, but its precise mechanisms are not clarified yet. The basic leucine zipper (bZIP) protein NRF2 is a key transcription factor mediating the antioxidant and anti-inflammatory responses in animals. Therefore, we tested whether xanthohumol exerts anti-inflammatory activity in mouse microglial BV2 cells via NRF2 signaling. Xanthohumol significantly inhibited the excessive production of inflammatory mediators NO, IL-1β, and TNF-α, and the activation of NF-κB signaling in LPS-induced stimulated BV2 cells. Xanthohumol up-regulated the transcription of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), and increased the level of the endogenous antioxidant GSH. In addition, xanthohumol induced nuclear translocation of NRF2 and further activation of ARE promoter-related transcription. The anti-inflammatory response of xanthohumol was attenuated by transfection with NRF2 siRNA and in the presence of the HO-1 inhibitor, ZnPP, but not the NQO1 inhibitor, dicoumarol. Taken together, our study suggests that xanthohumol exerts anti-inflammatory activity through NRF2-ARE signaling and up-regulation of downstream HO-1, and could be an attractive candidate for the regulation of inflammatory responses in the brain.

  7. PPARγ as a molecular target of EPA anti-inflammatory activity during TNF-α-impaired skeletal muscle cell differentiation.

    PubMed

    Magee, Peter; Pearson, Stephen; Whittingham-Dowd, Jayde; Allen, Jeremy

    2012-11-01

    Activated skeletal muscle satellite cells facilitate muscle repair or growth through proliferation, differentiation and fusion into new or existing myotubes. Elevated levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) impair this process and are documented to have significant roles in muscle pathology. Recent evidence shows that the ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) can block TNF-mediated suppression of progenitor cell differentiation, but the nature of this activity and its significance for local regulation of inflammation are not known. In the current study, we examined differentiation of the C2C12 myoblast line during treatment with TNF-α and EPA and measured the expression, activation and inhibition of peroxisome proliferator-activated receptor-γ (PPARγ), as several studies have shown its involvement in mediating EPA activity and the inhibition of nuclear factor (NF)-κB inflammatory gene activation. We found that TNF-α treatment increased NF-κB activity and reduced expression and activation of PPARγ, resulting in impaired myotube formation. EPA treatment attenuated these effects of TNF-α and was associated with up-regulation of PPARγ. Furthermore, EPA inhibited TNF-α-mediated transcription and secretion of interleukin (IL)-6, a key target gene of TNF-mediated NF-κB transcriptional activity. Pretreatment with a PPARγ selective antagonist inhibited some of the actions of EPA but was only partially effective in reversing inhibition of IL-6 production. These results show that EPA activity was associated with altered expression and activation of PPARγ, but exerted through both PPARγ-dependent and PPARγ-independent pathways leading to suppression of the proinflammatory cellular microenvironment.

  8. Endothelial mitochondrial ROS, un-coupled from ATP synthesis, determine both physiological endothelial activation for recruitment of patrolling cells, and pathological recruitment of inflammatory cells

    PubMed Central

    Li, Xinyuan; Fang, Pu; Yang, William Y.; Chan, Kylie; Lavallee, Muriel; Xu, Keman; Gao, Tracy; Wang, Hong; Yang, Xiaofeng

    2016-01-01

    Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light to this important question and found that during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade physiological EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage/death. Mapping the connections between mitochondrial metabolism, physiological EC activation, patrolling cell migration and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers. PMID:27925481

  9. Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway.

    PubMed

    Shimazu, Tomoyuki; Villena, Julio; Tohno, Masanori; Fujie, Hitomi; Hosoya, Shoichi; Shimosato, Takeshi; Aso, Hisashi; Suda, Yoshihito; Kawai, Yasushi; Saito, Tadao; Makino, Seiya; Ikegami, Shuji; Itoh, Hiroyuki; Kitazawa, Haruki

    2012-01-01

    The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation.

  10. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells.

    PubMed

    Candiracci, Manila; Piatti, Elena; Dominguez-Barragán, María; García-Antrás, Daniel; Morgado, Bruno; Ruano, Diego; Gutiérrez, Juan F; Parrado, Juan; Castaño, Angélica

    2012-12-19

    Neuroinflammation is an important contributor to pathogenesis of age-related neurodegenerative disorders such as Alzheimer's or Parkinson's disease. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for neurodegenerative processes. Flavonoids, widely distributed in the vegetable kingdom and in foods such as honey, have been suggested as novel therapeutic agents for the reduction of the deleterious effects of neuroinflammation. The present study investigated the potential protective effect of a honey flavonoid extract (HFE) on the production of pro-inflammatory mediators by lipopolysaccharide-stimulated N13 microglia. The results show that HFE significantly inhibited the release of pro-inflammatory cytokines such as TNF-α and IL-1β. The expressions of iNOS and the production of reactive oxygen intermediates (ROS) were also significantly inhibited. Accordingly, the present study demonstrates that HFE is a potent inhibitor of microglial activation and thus a potential preventive-therapeutic agent for neurodegenerative diseases involving neuroinflammation.

  11. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  12. Nuclear Factor of Activated T Cells and Cytokines Gene Expression of the T Cells in AIDS Patients with Immune Reconstitution Inflammatory Syndrome during Highly Active Antiretroviral Therapy

    PubMed Central

    Chen, Heling; Xie, Yirui; Su, Junwei; Huang, Ying; Xu, Lijun; Yin, Michael; Zhou, Qihui

    2017-01-01

    Background. The etiology of immune reconstitution inflammatory syndrome (IRIS) in AIDS patients after the initiation of HAART remains unknown. Several researches indicated that the development of IRIS is associated with the production and variation of cytokines, whose gene expression are closely related to the Ca2+/CN-nuclear factor of activated T cells (NFAT) pathway. Methods. We studied the expression of NFAT isoforms and their major target cytokines genes in peripheral blood CD3+ T cells of subjects through fluorescence quantitative PCR and explored the expression changes of these genes before and after HAART. Results. After the initiation of HARRT, NFAT1, IL-6, and IL-8 gene expression showed a reversal trend in the CD3+ T cells of the IRIS group and changed from low expression before HARRT to high expression after HARRT. In particular, the relative gene expression of NFAT1 was markedly higher compared with the other three isoforms. The IRIS group also showed higher NFAT4, NFAT2, NFAT1, IL-1β, IL-10, IL-2, IL-18, and TNF-α gene expression than the non-IRIS group. Conclusion. This study suggested that high expression levels of IL-2, IL-6, IL-8, TNF-α, IL-1β, IL-10, IL-12, and IL-18 can predict the risk of IRIS. The increased expression of NFAT1 and NFAT4 may promote the expression of cytokines, such as IL-6, IL-8, and TNF-α, which may promote the occurrence of IRIS. PMID:28316373

  13. Activation of an IL-6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2 Overexpressing Breast Cancers by Expanding the Cancer Stem Cell Population

    PubMed Central

    Korkaya, Hasan; Kim, Gwang-il; Davis, April; Malik, Fayaz; Henry, N. Lynn; Ithimakin, Suthinee; Quraishi, Ahmed A.; Tawakkol, Nader; D’Angelo, Rosemarie; Paulson, Amanda; Chung, Susan; Luther, Tahra; Paholak, Hayley S.; Liu, Suling; Hassan, Khaled; Zen, Qin; Clouthier, Shawn G.; Wicha, Max S.

    2012-01-01

    Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL-6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL-6 than parental cells. An IL-6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL-6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance. PMID:22819326

  14. Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells.

    PubMed

    Takahashi, Yusuke; Davey, Michael; Yumoto, Hiromichi; Gibson, Frank C; Genco, Caroline Attardo

    2006-05-01

    Epidemiological studies support that chronic periodontal infections are associated with an increased risk of cardiovascular disease. Previously, we reported that the periodontal pathogen Porphyromonas gingivalis accelerated atherosclerotic plaque formation in hyperlipidemic apoE-/- mice, while an isogenic fimbria-deficient (FimA-) mutant did not. In this study, we utilized 41 kDa (major) and 67 kDa (minor) fimbria mutants to demonstrate that major fimbria are required for efficient P. gingivalis invasion of human aortic endothelial cells (HAEC). Enzyme-linked immunosorbent assay (ELISA) revealed that only invasive P. gingivalis strains induced HAEC production of pro-inflammatory molecules interleukin (IL)-1beta, IL-8, monocyte chemoattractant protein (MCP)-1, intracellular adhesion molecule (ICAM)-1, vascular cellular adhesion molecule (VCAM)-1 and E-selectin. The purified native forms of major and minor fimbria induced chemokine and adhesion molecule expression similar to invasive P. gingivalis, but failed to elicit IL-1beta production. In addition, the major and minor fimbria-mediated production of MCP-1 and IL-8 was inhibited in a dose-dependent manner by P. gingivalis lipopolysaccharide (LPS). Both P. gingivalis LPS and heat-killed organisms failed to stimulate HAEC. Treatment of endothelial cells with cytochalasin D abolished the observed pro-inflammatory MCP-1 and IL-8 response to invasive P. gingivalis and both purified fimbria, but did not affect P. gingivalis induction of IL-1beta. These results suggest that major and minor fimbria elicit chemokine production in HAEC through actin cytoskeletal rearrangements; however, induction of IL-1beta appears to occur via a separate mechanism. Collectively, these data support that invasive P. gingivalis and fimbria stimulate endothelial cell activation, a necessary initial event in the development of atherogenesis.

  15. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  16. Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells.

    PubMed

    Ahn, Sungeun; Siddiqi, Muhammad Hanif; Aceituno, Veronica Castro; Simu, Shakina Yesmin; Yang, Deok Chun

    2016-07-01

    This study investigated the intestinal anti-inflammatory action of ginsenoside Rf in inflammatory bowel disease (IBD). IBD is a chronic inflammatory disease that affects the intestinal tract. It is associated with elevated levels of various inflammatory mediators, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), nitric oxide (NO), and reactive oxygen species (ROS). Ginsenosides, the main active constituents of ginseng, have been reported to exert potent therapeutic effects against diverse diseases. However, ginsenoside Rf treatment for inflammation has not yet been examined. In this study, we evaluated the inhibitory effect of ginsenoside Rf on the inflammatory mediators downstream of p38/NF-kB activation on TNF-α-stimulated intestinal epithelial cells (HT-29) and mouse macrophage cells (RAW264.7). Our results showed that ginsenoside Rf significantly reduced the production of IL-1β, IL-6, TNF-α, NO, and ROS, which are most highly activated in IBD. In addition, ginsenoside Rf significantly suppressed TNF-α/LPS-induced NF-κB transcriptional activity. These results suggest that ginsenoside Rf contains a compound that has potent intestinal anti-inflammatory effects that could be used to treat diseases such as IBD.

  17. Targeting mast cells in inflammatory diseases.

    PubMed

    Reber, Laurent L; Frossard, Nelly

    2014-06-01

    Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.

  18. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    PubMed

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  19. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  20. Suppression of Canine Dendritic Cell Activation/Maturation and Inflammatory Cytokine Release by Mesenchymal Stem Cells Occurs Through Multiple Distinct Biochemical Pathways.

    PubMed

    Wheat, William H; Chow, Lyndah; Kurihara, Jade N; Regan, Daniel P; Coy, Jonathan W; Webb, Tracy L; Dow, Steven W

    2017-02-15

    Mesenchymal stem cells (MSC) represent a readily accessible source of cells with potent immune modulatory activity. MSC can suppress ongoing inflammatory responses by suppressing T cell function, while fewer studies have examined the impact of MSC on dendritic cell (DC) function. The dog spontaneous disease model represents an important animal model with which to evaluate the safety and effectiveness of cellular therapy with MSC. This study evaluated the effects of canine MSC on the activation and maturation of canine monocyte-derived DC, as well as mechanisms underlying these effects. Adipose-derived canine MSC were cocultured with canine DC, and the MSC effects on DC maturation and activation were assessed by flow cytometry, cytokine ELISA, and confocal microscopy. We found that canine MSC significantly suppressed lipopolysaccharide (LPS)-stimulated upregulation of DC activation markers such as major histocompatibility class II (MHCII), CD86, and CD40. Furthermore, pretreatment of MSC with interferon gamma (IFNγ) augmented this suppressive activity. IFNγ-activated MSC also significantly reduced LPS-elicited DC secretion of tumor necrosis factor alpha without reducing secretion of interleukin-10. The suppressive effect of IFNγ-treated MSC on LPS-induced DC activation was mediated by soluble factors secreted by both MSC and DC. Pathways of DC functional suppression included programmed death ligand-1 expression and secretion of nitrous oxide, prostaglandin E2, and adenosine by activated MSC. Coculture of DC with IFNγ-treated MSC maintained DC in an immature state and prolonged DC antigen uptake during LPS maturation stimulus. Taken together, canine MSC are capable of potently suppressing DC function in a potentially inflammatory microenvironment through several separate immunological pathways and confirm the potential for immune therapy with MSC in canine immune-mediated disease models.

  1. Qing Hua Chang Yin attenuates lipopolysaccharide-induced inflammatory response in human intestinal cells by inhibiting NF-κB activation

    PubMed Central

    KE, XIAO; CHEN, JINGTUAN; ZHANG, XIN; FANG, WENYI; YANG, CHUNBO; PENG, JUN; CHEN, YOUQIN; SFERRA, THOMAS J.

    2013-01-01

    Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD), which is tightly regulated by the nuclear factor κB (NF-κB) pathway. Thus, the suppression of NF-κB signaling may provide a promising strategy for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation, which has been used for a number of years to clinically treat UC. However, little is known with regard to its anti-inflammatory properties. In the present study, lipopolysaccharide (LPS)-stimulated Caco-2 cells were used as an in vitro inflammatory model of the human intestinal epithelium to evaluate the anti-inflammatory effects of QHCY and its underlying molecular mechanisms. We observed that QHCY inhibited the inflammatory response in intestinal epithelial cells as it significantly and concentration-dependently reduced the LPS-induced secretion of pro-inflammatory TNF-α and IL-8 in Caco-2 cells. Furthermore, QHCY treatment inhibited the phosphorylation of IκB and the nuclear translocation of NF-κB in Caco-2 cells in a concentration-dependent manner, indicating that QHCY suppressed the activation of the NF-κB signaling pathway. Collectively, our results suggest that the inhibition of NF-κB-mediated inflammation may constitute a potential mechanism by which QHCY treats UC. PMID:23935744

  2. Qing Hua Chang Yin attenuates lipopolysaccharide-induced inflammatory response in human intestinal cells by inhibiting NF-κB activation.

    PubMed

    Ke, Xiao; Chen, Jingtuan; Zhang, Xin; Fang, Wenyi; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2013-07-01

    Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD), which is tightly regulated by the nuclear factor κB (NF-κB) pathway. Thus, the suppression of NF-κB signaling may provide a promising strategy for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation, which has been used for a number of years to clinically treat UC. However, little is known with regard to its anti-inflammatory properties. In the present study, lipopolysaccharide (LPS)-stimulated Caco-2 cells were used as an in vitro inflammatory model of the human intestinal epithelium to evaluate the anti-inflammatory effects of QHCY and its underlying molecular mechanisms. We observed that QHCY inhibited the inflammatory response in intestinal epithelial cells as it significantly and concentration-dependently reduced the LPS-induced secretion of pro-inflammatory TNF-α and IL-8 in Caco-2 cells. Furthermore, QHCY treatment inhibited the phosphorylation of IκB and the nuclear translocation of NF-κB in Caco-2 cells in a concentration-dependent manner, indicating that QHCY suppressed the activation of the NF-κB signaling pathway. Collectively, our results suggest that the inhibition of NF-κB-mediated inflammation may constitute a potential mechanism by which QHCY treats UC.

  3. Flavonoids Identified from Korean Scutellaria baicalensis Georgi Inhibit Inflammatory Signaling by Suppressing Activation of NF-κB and MAPK in RAW 264.7 Cells

    PubMed Central

    Hong, Gyeong-Eun; Kim, Jin-A.; Nagappan, Arulkumar; Yumnam, Silvia; Lee, Ho-Jeong; Kim, Eun-Hee; Lee, Won-Sup; Shin, Sung-Chul; Park, Hyeon-Soo; Kim, Gon-Sup

    2013-01-01

    Scutellaria baicalensis Georgi has been used as traditional medicine for treating inflammatory diseases, hepatitis, tumors, and diarrhea in Asia. Hence, we investigated the anti-inflammatory effect and determined the molecular mechanism of action of flavonoids isolated from Korean S. baicalensis G. in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine cytotoxicity of the flavonoids at various concentrations of 10, 40, 70, and 100 µg/mL. No cytotoxicity was observed in RAW 264.7 cells at these concentrations. Furthermore, the flavonoids decreased production of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-alpha and inhibited phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-induced RAW 264.7 cells. Moreover, to identify the differentially expressed proteins in RAW 264.7 cells of the control, LPS-treated, and flavonoid-treated groups, two-dimensional gel electrophoresis and mass spectrometry were conducted. The identified proteins were involved in the inflammatory response and included PRKA anchor protein and heat shock protein 70 kD. These findings suggest that the flavonoids isolated from S. baicalensis G. might have anti-inflammatory effects that regulate the expression of inflammatory mediators by inhibiting the NF-κB signaling pathway via the MAPK signaling pathway in RAW 264.7 cells. PMID:24348728

  4. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    PubMed Central

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  5. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway.

    PubMed

    Yang, Xinguang; Huo, Fuquan; Liu, Bei; Liu, Jing; Chen, Tao; Li, Junping; Zhu, Zhongqiao; Lv, Bochang

    2017-02-25

    Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.

  6. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells.

    PubMed

    Islam, Md Nurul; Ishita, Ishrat Jahan; Jin, Seong Eun; Choi, Ran Joo; Lee, Chan Mee; Kim, Yeong Shik; Jung, Hyun Ah; Choi, Jae Sue

    2013-05-01

    Anti-inflammatory activity of Saccharina japonica and its active components was evaluated via in vitro inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 murine macrophage cells. Since the methanolic extract of S. japonica showed strong anti-inflammatory activity, it was fractionated with several solvents. Among the fractions, the ethyl acetate fraction demonstrated the highest inhibition of LPS-induced NO production (IC50=25.32μg/mL), followed by the CH2Cl2 fraction (IC50=75.86μg/mL). Considering the yield and anti-inflammatory potential together, the CH2Cl2 fraction was selected for chromatographic separation to yield two active porphyrin derivatives, pheophorbide a and pheophytin a, together with an inactive fucoxanthin. In contrast to fucoxanthin, pheophorbide a and pheophytin a showed dose-dependent inhibition against LPS-induced NO production at nontoxic concentrations in RAW 264.7 cells. Both compounds also suppressed the expression of iNOS proteins, while they did not inhibit the COX-2 expression in LPS-stimulated macrophages. These results indicate that pheophorbide a and pheophytin a are two important candidates of S. japonica as anti-inflammatory agents which can inhibit the production of NO via inhibition of iNOS protein expression. Thus, these compounds hold great promise for use in the treatment of various inflammatory diseases.

  7. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    PubMed Central

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (Aβ)42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1β, prostaglandin (PG)E2, and nitric oxide (NO) because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD. PMID:28373747

  8. In vitro assesment of anti-inflammatory activities of coumarin and Indonesian cassia extract in RAW264.7 murine macrophage cell line

    PubMed Central

    Sandhiutami, Ni Made Dwi; Moordiani, Moordiani; Laksmitawati, Dian Ratih; Fauziah, Nurul; Maesaroh, Maesaroh; Widowati, Wahyu

    2017-01-01

    Objective(s): Inflammation is an immune response toward injuries. Although inflammation is healing response, but in some condition it will lead to chronic disease such as rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, Alzheimer’s and various cancer. Indonesian cassia (Cinnamomum burmannil C. Nees & T. Ness) known to contain coumarin, is widely used for alternative medicine especially as an anti-inflammatory. This study was conducted to determine the anti-inflammatory properties of coumarin and Indonesian cassia extract (ICE) in LPS-induced RAW264.7 cell line. Materials and Methods: The cytotoxic assay of coumarin and ICE against RAW264.7 cells was conducted using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium). The anti-inflammatory potential was determined using LPS-induced RAW 267.4 macrophages cells to measure inhibitory activity of compound and ISEon production of nitric oxide (NO), prostaglandin E2 (PGE2), and also cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and TNF-α. Results: Coumarin 10 µM and ICE 10 µg/ml were nontoxic to the RAW264.7 cells. Both of coumarin and ICE were capable to reduce the PGE2, TNF-α, NO, IL-6, and IL-β level in LPS-induced RAW264.7 cells. Coumarin had higher activity to decrease PGE2 and TNF-α, whilst ICE had higher activity to inhibit NO, IL-6, and IL-β levels. Conclusion: Coumarin and ICE possess anti-inflammatory properties through inhibition of PGE2 and NO along with pro-inflammatory cytokines TNF-α, IL-6, IL-1β production. PMID:28133531

  9. Inflammatory monocytes hinder antiviral B cell responses

    PubMed Central

    Sammicheli, Stefano; Kuka, Mirela; Di Lucia, Pietro; de Oya, Nereida Jimenez; De Giovanni, Marco; Fioravanti, Jessica; Cristofani, Claudia; Maganuco, Carmela G.; Fallet, Benedict; Ganzer, Lucia; Sironi, Laura; Mainetti, Marta; Ostuni, Renato; Larimore, Kevin; Greenberg, Philip D.; de la Torre, Juan Carlos; Guidotti, Luca G.; Iannacone, Matteo

    2016-01-01

    Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. Here we analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of the draining lymph node where they extensively interact with CD11b+Ly6Chi inflammatory monocytes. These myeloid cells were recruited to lymph nodes draining LCMV infection sites in a type I interferon-, CCR2-dependent fashion and they suppressed antiviral B cell responses by virtue of their ability to produce nitric oxide. Depletion of inflammatory monocytes, inhibition of their lymph node recruitment or impairment of their nitric oxide-producing ability enhanced LCMV-specific B cell survival and led to robust neutralizing antibody production. In conclusion, our results identify inflammatory monocytes as critical gatekeepers that prevent antiviral B cell responses and suggest that certain viruses take advantage of these cells to prolong their persistence within the host. PMID:27868108

  10. Antioxidative and anti-inflammatory activities of the natural food colorant purpurin and related anthraquinones in chemical and cell assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthraquinone (9,10-anthraquinone) and its hydroxy derivatives including purpurin (1,2,4-trihydroxyanthraquinone), anthrarufin (1,5-dihydroxyanthraquinone), and chrysazin (1,8-dihydroxy-9,10-anthracenedione) were evaluated for antioxidative and anti-inflammatory activities in chemical assays and mam...

  11. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  12. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity by downregulation of NF-κB and MAP kinase activity in LPS-activated RAW 264.7 cells.

    PubMed

    Badiei, Alireza; Muniraj, Nethaji; Chambers, Stephen; Bhatia, Madhav

    2014-01-01

    Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In this study, we used small interfering RNA (siRNA) to inhibit CSE expression in macrophages. We found that CSE silencing siRNA could reduce the LPS-induced activation of transcription factor nuclear factor-κB (NF-κB) significantly. Phosphorylation and activation of extra cellular signal-regulated kinase 1/2 (ERK1/2) increased in LPS-induced macrophages. We showed that phosphorylation of ERK in LPS-induced RAW 264.7 cells reached a peak 30 min after activation. Our findings show that silencing CSE gene by siRNA reduces phosphorylation and activation of ERK1/2 in LPS-induced RAW 264.7 cells. These findings suggest that siRNA reduces the inflammatory effects of hydrogen sulfide through the ERK-NF-κB signalling pathway and hydrogen sulfide plays its inflammatory role through ERK-NF-κB pathway in these cells.

  13. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells.

    PubMed

    Regan, Andrew D; Cohen, Rebecca D; Whittaker, Gary R

    2009-02-05

    Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process. However, the mechanism underlying this process remains unknown. Here we show that infection of primary blood-derived feline mononuclear cells by FIPV WSU 79-1146 and FIPV-DF2 leads to rapid activation of the p38 MAPK pathway and that this activation regulates production of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). FIPV-induced p38 MAPK activation and pro-inflammatory cytokine production was inhibited by the pyridinyl imidazole inhibitors SB 203580 and SC 409 in a dose-dependent manner. FIPV-induced p38 MAPK activation was observed in primary feline blood-derived mononuclear cells individually purified from multiple SPF cats, as was the inhibition of TNF-alpha production by pyridinyl imidazole inhibitors.

  14. Synthesis, characterization, anti-inflammatory and anti-proliferative activity against MCF-7 cells of O-alkyl and O-acyl flavonoid derivatives.

    PubMed

    Hoang, T Kim-Dung; Huynh, T Kim-Chi; Nguyen, Thanh-Danh

    2015-12-01

    A series of O-alkyl and O-acyl flavonoid derivatives was synthesized in high efficiency. Alkylation and acylation of 5-hydroxyflavonoids showed that the low reactivity hydroxyl group, 5-OH, well reacted with strong reagents whereas with weaker reagents, the different products were obtained dependently on structural characteristic of ring C of respective flavonoid. In order to evaluate anti-inflammatory activity, all compounds were tested for in vitro inhibition of bovine serum albumin denaturation and in vivo inhibition of carrageenan-induced mouse paw edema. Among them, the compounds 3, 3b, 4b and 4c demonstrated more effective anti-inflammatory activity than standard drugs (diclofenac sodium and ketoprofen) in both tests. Meanwhile, the flavonoids 2, 2c, 3a and 4b displayed anti-proliferative activity against MCF-7 cell lines. Triacetyl derivative of hesperetin 4b inducing degradation of DNA in MCF-7 cells was observed.

  15. B-1 cells temper endotoxemic inflammatory responses.

    PubMed

    Barbeiro, Denise Frediani; Barbeiro, Hermes Vieira; Faintuch, Joel; Ariga, Suely K Kubo; Mariano, Mario; Popi, Ana Flávia; de Souza, Heraldo Possolo; Velasco, Irineu Tadeu; Soriano, Francisco Garcia

    2011-03-01

    Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-α, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-α, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-α, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling.

  16. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells.

    PubMed

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-05-09

    Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.

  17. Transient expansion of activated CD8+ T cells characterizes tuberculosis-associated immune reconstitution inflammatory syndrome in patients with HIV: a case control study

    PubMed Central

    2013-01-01

    Background CD4+ T cell activation indicators have been reported to be a common phenomenon underlying diverse manifestations of immune reconstitution inflammatory syndrome (IRIS). However, we have found that a high frequency of circulating CD8+ T cells is a specific risk factor for mycobacterial IRIS. Therefore, we investigated whether CD8+ T cells from patients who develop TB IRIS were specifically activated. Methods We obtained PBMCs from HIV+ patients prior to and 4, 8, 12, 24, 52 and 104 weeks after initiating antiretroviral therapy. CD38 and HLADR expression on naive, central memory and effector memory CD8+ and CD4+ T cells were determined by flow cytometry. Absolute counts and frequencies of CD8+ T cell subsets were compared between patients who developed TB IRIS, who developed other IRIS forms and who remained IRIS-free. Results TB IRIS patients showed significantly higher counts of naive CD8+ T cells than the other groups at most time points, with a contraction of the effector memory subpopulation occurring later in the follow-up period. Activated (CD38+ HLADR+) CD8+ T cells from all groups decreased with treatment but transiently peaked in TB IRIS patients. This increase was due to an increase in activated naive CD8+ T cell counts during IRIS. Additionally, the CD8+ T cell subpopulations of TB IRIS patients expressed HLADR without CD38 more frequently and expressed CD38 without HLADR less frequently than cells from other groups. Conclusions CD8+ T cell activation is specifically relevant to TB IRIS. Different IRIS forms may involve different alterations in T cell subsets, suggesting different underlying inflammatory processes. PMID:23688318

  18. High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells

    SciTech Connect

    Huang, Wei; Xu, Ling; Zhou, Xueqin; Gao, Chenlin; Yang, Maojun; Chen, Guo; Zhu, Jianhua; Jiang, Lan; Gan, Huakui; Gou, Fang; Feng, Hong; Peng, Juan; Xu, Yong

    2013-08-30

    Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which

  19. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    SciTech Connect

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  20. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells

    PubMed Central

    Hwang, Pai-An; Phan, Nam Nhut; Lu, Wen-Jung; Ngoc Hieu, Bui Thi; Lin, Yen-Chang

    2016-01-01

    Background The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF) and high-stability fucoxanthin (HS-Fucox) in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. Methods We used various methods such as transepithelial resistance (TER) assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. Results LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. Conclusion These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells. PMID:27487850

  1. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells.

    PubMed

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE2, butyl lucidenateD2 (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum.

  2. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities.

    PubMed

    Gorgoglione, Bartolomeo; Wang, Tiehui; Secombes, Christopher J; Holland, Jason W

    2013-07-16

    The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate/inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell/antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease.

  3. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities

    PubMed Central

    2013-01-01

    The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate / inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell / antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease. PMID:23865616

  4. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells.

    PubMed

    Yu, Shaoqing; Chen, Xia; Xiu, Min; He, Feng; Xing, Juanjuan; Min, Dinghong; Guo, Fei

    2017-02-09

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatment recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.

  5. Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration.

    PubMed

    Cesaro, Annabelle; Brest, Patrick; Hofman, Véronique; Hébuterne, Xavier; Wildman, Scott; Ferrua, Bernard; Marchetti, Sandrine; Doglio, Alain; Vouret-Craviari, Valérie; Galland, Franck; Naquet, Philippe; Mograbi, Baharia; Unwin, Robert; Hofman, Paul

    2010-07-01

    Inflammatory bowel diseases (IBD) are characterized during their active phase by polymorphonuclear leukocyte (PMNL) transepithelial migration. The efflux of PMNL into the mucosa is associated with the production of proinflammatory cytokines and the release of ATP from damaged and necrotic cells. The expression and function of purinergic P2X(7) receptor (P2X(7)R) in intestinal epithelial cells (IEC) and its potential role in the "cross talk" between IEC and PMNL have not been explored. The aims of the present study were 1) to examine P2X(7)R expression in IEC (T84 cells) and in human intestinal biopsies; 2) to detect any changes in P2X(7)R expression in T84 cells during PMNL transepithelial migration, and during the active and quiescent phases of IBD; and 3) to test whether P2X(7)R stimulation in T84 monolayers can induce caspase-1 activation and IL-1beta release by IEC. We found that a functional ATP-sensitive P2X(7)R is constitutively expressed at the apical surface of IEC T84 cells. PMNL transmigration regulates dynamically P2X(7)R expression and alters its distribution from the apical to basolateral surface of IEC during the early phase of PMNL transepithelial migration in vitro. P2X(7)R expression was weak in intestinal biopsies obtained during the active phase of IBD. We show that activation of epithelial P2X(7)R is mandatory for PMNL-induced caspase-1 activation and IL-1beta release by IEC. Overall, these changes in P2X(7)R function may serve to tailor the intensity of the inflammatory response and to prevent IL-1beta overproduction and inflammatory disease.

  6. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    SciTech Connect

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz; and others

    2013-11-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  7. Sleep Loss Activates Cellular Inflammatory Signaling

    PubMed Central

    Irwin, Michael R.; Wang, Minge; Ribeiro, Denise; Cho, Hyong Jin; Olmstead, Richard; Breen, Elizabeth Crabb; Martinez-Maza, Otoniel; Cole, Steve

    2008-01-01

    Background Accumulating evidence suggests that sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. This study was undertaken to test the effects of sleep loss on activation of nuclear factor (NF) -κB, a transcription factor that serves a critical role in the inflammatory signaling cascade. Methods In 14 healthy adults (7 females; 7 males), peripheral blood mononuclear cell NF-κB was repeatedly assessed, along with enumeration of lymphocyte subpopulations, in the morning after baseline sleep, partial sleep deprivation (awake from 23:00 h to 03:00 h), and recovery sleep. Results In the morning after a night of sleep loss, mononuclear cell NF-κB activation was significantly greater compared with morning levels following uninterrupted baseline or recovery sleep, in which the response was found in females but not in males. Conclusions These results identify NF-κB activation as a molecular pathway by which sleep disturbance may influence leukocyte inflammatory gene expression and the risk of inflammation-related disease. PMID:18561896

  8. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation—NF-κB, COX-2 Activation, and Impact on Cell Differentiation

    PubMed Central

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M.

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  9. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation-NF-κB, COX-2 Activation, and Impact on Cell Differentiation.

    PubMed

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  10. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-09-02

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis.

  11. The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy.

    PubMed

    Tsaryk, Roman; Peters, Kirsten; Barth, Susanne; Unger, Ronald E; Scharnweber, Dieter; Kirkpatrick, C James

    2013-11-01

    Inflammation is an important step in the early phase of tissue regeneration around an implanted metallic orthopaedic device. However, prolonged inflammation, which can be induced by metallic corrosion products, can lead to aseptic loosening and implant failure. Cells in peri-implant tissue as well as metal corrosion can induce reactive oxygen species (ROS) formation, thus contributing to an oxidative microenvironment around an implant. Understanding cellular reactions to implant-induced oxidative stress and inflammatory activation is important to help prevent an adverse response to metallic materials. In an earlier study we have shown that endothelial cells grown on Ti6Al4V alloy are subjected to oxidative stress. Since endothelial cells play a critical role in inflammation, in this study we examined the role of oxidative stress in their response to pro-inflammatory activation. Therefore, we stimulated endothelial cells in contact with Ti6Al4V with tumour necrosis factor-α (TNF-α) and monitored the expression of inflammation-associated molecules, such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8). The induction of these proteins was lower in endothelial cells on Ti6Al4V compared to control tissue culture conditions. There was, however, a discrepancy in pro-inflammatory activation at protein compared to mRNA level in the cells on Ti6Al4V. To examine the role of oxidative stress in this response we utilized different ROS scavengers and showed that ROS depletion improved cellular response to TNF-α on Ti6Al4V. These results could contribute to developing strategies to improve tissue response to metal implants.

  12. Nestin+ cells direct inflammatory cell migration in atherosclerosis

    PubMed Central

    del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin+ cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin+ cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin+ cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin+ cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin+ stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin+ cells—but not in endothelial cells only— increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  13. Extraction optimization for obtaining Artemisia capillaris extract with high anti-inflammatory activity in RAW 264.7 macrophage cells.

    PubMed

    Jang, Mi; Jeong, Seung-Weon; Kim, Bum-Keun; Kim, Jong-Chan

    2015-01-01

    Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 57-65°C, ethanol concentrations of 45-57%, and extraction times of 5.5-6.8 h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products.

  14. Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons.

    PubMed

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Trubiani, Oriana; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela

    2016-11-15

    Conditioned medium derived from mesenchymal stem cells (MSCs) shows immunomodulatory and neuroprotective effects in preclinical models. Given the difficulty to harvest MSCs from bone marrow and adipose tissues, research has been focused to find alternative resources for MSCs, such as oral-derived tissues. Recently, we have demonstrated the protective effects of MSCs obtained from healthy human periodontal ligament tissue (hPDLSCs) in murine experimental autoimmune encephalomyelitis model. In the present in vitro study, we have investigated the immunomodulatory and neuroprotective effects of conditioned medium obtained from hPDLSCs of Relapsing Remitting- Multiple sclerosis (RR-MS) patients on NSC34 mouse motoneurons stimulated with lipopolysaccharide (LPS). Immunocytochemistry and western blotting were performed. Increased level of TLR4 and NFκB, and reduced level of IκB-α were observed in LPS-stimulated motoneurons, which were modulated by pre-conditioning with hPDLSC-conditioned medium. Inflammatory cytokines (TNF-α, IL-10), neuroprotective markers (Nestin, NFL 70, NGF, GAP43), and apoptotic markers (Bax, Bcl-2, p21) were modulated. Moreover, extracellular vesicles of hPDLSC-conditioned medium showed the presence of anti-inflammatory cytokines IL-10 and TGF-β. Our results demonstrate the immunosuppressive properties of hPDLSC-conditioned medium of RR-MS patients in motoneurons subjected to inflammation. Our findings warrant further preclinical and clinical studies to elucidate the autologous therapeutic efficacy of hPDLSC-conditioned medium in neurodegenerative diseases.

  15. Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis.

    PubMed

    Munić, Vesna; Banjanac, Mihailo; Koštrun, Sanja; Nujić, Krunoslav; Bosnar, Martina; Marjanović, Nikola; Ralić, Jovica; Matijašić, Mario; Hlevnjak, Mario; Eraković Haber, Vesna

    2011-09-01

    Some macrolide antibiotics were reported to inhibit interleukin-6 (IL6) and prostaglandin-E2 (PGE(2)) production by bacterial lipopolysaccharide (LPS) stimulated J774A.1 cells. Macrolides are also known to accumulate in cells and some were proven inducers of phospholipidosis. In the present study, with a set of 18 mainly 14- and 15-membered macrolides, we have investigated whether these macrolide induced phenomena in J774A.1 cells are connected. In LPS-stimulated J774A.1 cells, the extent of inhibition of proinflammatory markers (IL6 and PGE(2)) by macrolides significantly correlated with their extent of accumulation in cells, as well as with the induction of phospholipidosis, and cytotoxic effects in prolonged culture (with correlation coefficients (R) ranging from 0.78 to 0.93). The effects observed were related to macrolide binding to phospholipids (CHI IAM), number of positively charged centres, and were inversely proportional to the number of hydrogen bond donors. Similar interdependence of effects was obtained with chloroquine and amiodarone, whereas for dexamethasone and indomethacin these effects were not linked. The observed macrolide induced phenomena in J774A.1 cells were reversible and elimination of the macrolides from the culture media prevented phospholipidosis and the development of cytotoxicity in long-term cultures. Based on comparison with known clinical data, we conclude that LPS-stimulated J774A.1 cells in presented experimental setup are not a representative cellular model for the evaluation of macrolide anti-inflammatory potential in clinical trials. Nevertheless, our study shows that, at least in in vitro models, binding to biological membranes may be the crucial factor of macrolide mechanism of action.

  16. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  17. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-02-08

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  18. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  19. Pro-inflammatory caspase-1 activation during the immune response in cells from rainbow trout Oncorhynchus mykiss (Walbaum 1792) challenged with pathogen-associated molecular patterns.

    PubMed

    Rojas, V; Camus-Guerra, H; Guzmán, F; Mercado, L

    2015-11-01

    In response to pathogens, the higher vertebrate innate immune system activates pro-inflammatory caspase-1 which is responsible for the processing and secretion of several important cytokines involved in the host's defence against infection. To date, caspase-1 has been described in few teleost fish, and its activity has been demonstrated through substrate cleavage and inhibition by pharmacological agents. In this study, the detection of the active form of caspase-1 during the immune response in salmonid fish is described, where two antibodies were produced. These antibodies differentially recognize the structural epitopes of the inactive pro-caspase-1 and the processed active form of the caspase. Firstly, caspase-1 activation was demonstrated in vitro by ELISA, Western blotting and immunocytochemistry in rainbow trout macrophages exposed to different pathogen-associated molecular patterns plus the pathogen Aeromonas hydrophila. This activity was clearly abrogated by a caspase inhibitor and seems to be unrelated to IL-1β secretion. Caspase-1 activation was then validated in vivo in gill cells from fish challenged with Aeromonas salmonicida. These results represent the first demonstration of caspase-1 activation in salmonids, and the first evidence of the putative regulatory role which this protease plays in inflammatory response in this fish group, as described for some other teleosts and mammals.

  20. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells

    PubMed Central

    Sanjeewa, Kalu Kapuge Asanka; Fernando, Ilekkuttige Priyan Shanura; Kim, Eun-A; Jee, Youngheun

    2017-01-01

    BACKGROUND/OBJECTIVES Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells (IC50 value: 95.7 µg/mL). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-α and IL-1β, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-κB p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar

  1. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-07-24

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  2. Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells.

    PubMed

    Li, Cong-Jun; Li, Robert W; Kahl, Stanislaw; Elsasser, Theodore H

    2012-01-01

    To further investigate the potential role of α-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-α as an immuno-stimulant to simulate inflammation response in cells with or without α-tocopherol pre-treatment. Using microarray global-profiling and IPA (Ingenuity Pathways Analysis, Ingenuity(®) Systems, http://www.ingenuity.com) data analysis on TNF-α-induced gene perturbation in those cells, we focused on determining whether α-tocopherol treatment of normal bovine cells in a standard cell culture condition can modify cell's immune response induced by TNF-α challenge. When three datasets were filtered and compared using IPA, there were a total of 1750 genes in all three datasets for comparison, 97 genes were common in all three sets; 615 genes were common in at least two datasets; there were 261 genes unique in TNF-α challenge, 399 genes were unique in α-tocopherol treatment, and 378 genes were unique in the α-tocopherol plus TNF-α treatment. TNF-α challenge induced significant change in gene expression. Many of those genes induced by TNF-α are related to the cells immune and inflammatory responses. The results of IPA data analysis showed that α-tocopherol-pretreatment of cells modulated cell's response to TNF-α challenge. In most of the canonical pathways, α-tocopherol pretreatment showed the antagonistic effect against the TNF-α-induced pro-inflammatory responses. We concluded that α-tocopherol pre-treatment has a significant antagonistic effect that modulates the cell's response to the TNF-α challenge by altering the gene expression activities of some important signaling molecules.

  3. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals.

    PubMed

    Ma, Juan; Liu, Rui; Wang, Xiang; Liu, Qian; Chen, Yunan; Valle, Russell P; Zuo, Yi Y; Xia, Tian; Liu, Sijin

    2015-10-27

    Graphene oxide (GO) is increasingly used in biomedical applications because it possesses not only the unique properties of graphene including large surface area and flexibility but also hydrophilicity and dispersibility in aqueous solutions. However, there are conflicting results on its biocompatibility and biosafety partially due to large variations in physicochemical properties of GO, and the role of these properties including lateral size in the biological or toxicological effects of GO is still unclear. In this study, we focused on the role of lateral size by preparing a panel of GO samples with differential lateral sizes using the same starting material. We found that, in comparison to its smaller counterpart, larger GO showed a stronger adsorption onto the plasma membrane with less phagocytosis, which elicited more robust interaction with toll-like receptors and more potent activation of NF-κB pathways. By contrast, smaller GO sheets were more likely taken up by cells. As a result, larger GO promoted greater M1 polarization, associated with enhanced production of inflammatory cytokines and recruitment of immune cells. The in vitro results correlated well with local and systemic inflammatory responses after GO administration into the abdominal cavity, lung, or bloodstream through the tail vein. Together, our study delineated the size-dependent M1 induction of macrophages and pro-inflammatory responses of GO in vitro and in vivo. Our data also unearthed the detailed mechanism underlying these effects: a size-dependent interaction between GO and the plasma membrane.

  4. N-myc downstream-regulated gene 1 promotes tumor inflammatory angiogenesis through JNK activation and autocrine loop of interleukin-1α by human gastric cancer cells.

    PubMed

    Murakami, Yuichi; Watari, Kosuke; Shibata, Tomohiro; Uba, Manami; Ureshino, Hiroki; Kawahara, Akihiko; Abe, Hideyuki; Izumi, Hiroto; Mukaida, Naofumi; Kuwano, Michihiko; Ono, Mayumi

    2013-08-30

    The expression of N-myc downstream-regulated gene 1 (NDRG1) was significantly correlated with tumor angiogenesis and malignant progression together with poor prognosis in gastric cancer. However, the underlying mechanism for the role of NDRG1 in the malignant progression of gastric cancer remains unknown. Here we examined whether and how NDRG1 could modulate tumor angiogenesis by human gastric cancer cells. We established NU/Cap12 and NU/Cap32 cells overexpressing NDRG1 in NUGC-3 cells, which show lower tumor angiogenesis in vivo. Compared with parental NU/Mock3, NU/Cap12, and NU/Cap32 cells: 1) induced higher tumor angiogenesis than NU/Mock3 cells accompanied by infiltration of tumor-associated macrophages in mouse dorsal air sac assay and Matrigel plug assay; 2) showed much higher expression of CXC chemokines, MMP-1, and the potent angiogenic factor VEGF-A; 3) increased the expression of the representative inflammatory cytokine, IL-1α; 4) augmented JNK phosphorylation and nuclear expression of activator protein 1 (AP-1). Further analysis demonstrated that knockdown of AP-1 (Jun and/or Fos) resulted in down-regulation of the expression of VEGF-A, CXC chemokines, and MMP-1, and also suppressed expression of IL-1α in NDRG1-overexpressing cell lines. Treatment with IL-1 receptor antagonist (IL-1ra) resulted in down-regulation of JNK and c-Jun phosphorylation, and the expression of VEGF-A, CXC chemokines, and MMP-1 in NU/Cap12 and NU/Cap32 cells. Finally, administration of IL-1ra suppressed both tumor angiogenesis and infiltration of macrophages by NU/Cap12 in vivo. Together, activation of JNK/AP-1 thus seems to promote tumor angiogenesis in relationship to NDRG1-induced inflammatory stimuli by gastric cancer cells.

  5. Anti-Inflammatory Activity of a Novel Family of Aryl Ureas Compounds in an Endotoxin-Induced Airway Epithelial Cell Injury Model

    PubMed Central

    Cabrera-Benitez, Nuria E.; Pérez-Roth, Eduardo; Casula, Milena; Ramos-Nuez, Ángela; Ríos-Luci, Carla; Rodríguez-Gallego, Carlos; Sologuren, Ithaisa; Jakubkiene, Virginija; Slutsky, Arthur S.; Padrón, José M.; Villar, Jesús

    2012-01-01

    Background Despite our increased understanding of the mechanisms involved in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS)-induced ALI/ARDS. Methodology/Principal Findings After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103) was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4) and nuclear factor kappa B inhibitor alpha (IκBα) was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings. Conclusions/Significance Using a novel screening methodology, we identified a compound – CKT0103 – with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and

  6. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    PubMed

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.

  7. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million

  8. Natural killer cells in inflammatory heart disease.

    PubMed

    Ong, SuFey; Rose, Noel R; Čiháková, Daniela

    2017-02-01

    Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.

  9. Vanillin suppresses Kupffer cell-related colloidal carbon-induced respiratory burst activity in isolated perfused rat liver: anti-inflammatory implications.

    PubMed

    Galgani, José E; Núñez, Bárbara; Videla, Luis A

    2012-12-01

    The inhibition of NADPH oxidase has become a potential therapeutic target for oxidative stress-related diseases. We investigated whether vanillin modifies hepatic O(2) consumption associated with Kupffer cell functioning. The influence of vanillin on Kupffer cell functioning was studied in isolated perfused rat liver by colloidal carbon (CC) infusion (0.5 mg ml(-1)), concomitantly with sinusoidal efflux of lactate dehydrogenase (LDH) as an organ viability parameter. CC infusion increased the rate of O(2) consumption of the liver above basal values, an effect that represents the respiratory burst activity of Kupffer cells. However, CC-dependent respiratory burst activity was suppressed by previous infusion of 2 mM vanillin. Vanillin did not affect the liver CC uptake rate and liver sinusoidal efflux of LDH efflux. These findings, elicited by vanillin, were reproduced by the well-established NADPH oxidase inhibitor apocynin. In conclusion, vanillin suppresses the respiratory burst activity of Kupffer cells as assessed in intact liver, which may be associated with the inhibition of macrophage NADPH oxidase activity. Such a finding may have relevance in conditions underlying Kupffer cell-dependent up-regulation of the expression and release of pro-inflammatory mediators by redox-dependent mechanisms.

  10. Differential Diagnostics of Neoplastic and Inflammatory Processes in the Brain by Modifications NMDA Receptor Activity in Blood Cells with Verapamil and Ketamine.

    PubMed

    Syatkin, S P; Frolov, V A; Gridina, N Ya; Draguntseva, N G; Skorik, A S

    2016-09-01

    For the development of methods of additional differential diagnostics of gliomas of various grades of malignancy and gliomas and local inflammatory processes in the CNS we studied the intensity of aggregation of peripheral blood cells under the influence of channel blockers ketamine and verapamil. In in vitro experiments, verapamil and ketamine in various dilutions (from 10 to 100,000 times) were added to blood samples and the effects of these dilutions on the intensity of blood aggregation in patients with gliomas of different degree of malignancy, traumatic brain injuries, and other types of neurosurgical pathologies were studied. A correlation was revealed between the decrease in surface charge of blood cells and the type of neurosurgical pathology. The use of functional properties of potential-dependent inotropic NMDA receptors and calcium channels allowed indirect estimation of their activity via parameters of blood cell aggregation induced by channel blockers ketamine and verapamil.

  11. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    PubMed Central

    2011-01-01

    Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily

  12. Antioxidant components of naturally-occurring oils exhibit marked anti-inflammatory activity in epithelial cells of the human upper respiratory system

    PubMed Central

    2011-01-01

    Background The upper respiratory tract functions to protect lower respiratory structures from chemical and biological agents in inspired air. Cellular oxidative stress leading to acute and chronic inflammation contributes to the resultant pathology in many of these exposures and is typical of allergic disease, chronic sinusitis, pollutant exposure, and bacterial and viral infections. Little is known about the effective means by which topical treatment of the nose can strengthen its antioxidant and anti-inflammatory defenses. The present study was undertaken to determine if naturally-occurring plant oils with reported antioxidant activity can provide mechanisms through which upper respiratory protection might occur. Methods Controlled exposure of the upper respiratory system to ozone and nasal biopsy were carried out in healthy human subjects to assess mitigation of the ozone-induced inflammatory response and to assess gene expression in the nasal mucosa induced by a mixture of five naturally-occurring antioxidant oils - aloe, coconut, orange, peppermint and vitamin E. Cells of the BEAS-2B and NCI-H23 epithelial cell lines were used to investigate the source and potential intracellular mechanisms of action responsible for oil-induced anti-inflammatory activity. Results Aerosolized pretreatment with the mixed oil preparation significantly attenuated ozone-induced nasal inflammation. Although most oil components may reduce oxidant stress by undergoing reduction, orange oil was demonstrated to have the ability to induce long-lasting gene expression of several antioxidant enzymes linked to Nrf2, including HO-1, NQO1, GCLm and GCLc, and to mitigate the pro-inflammatory signaling of endotoxin in cell culture systems. Nrf2 activation was demonstrated. Treatment with the aerosolized oil preparation increased baseline levels of nasal mucosal HO-1 expression in 9 of 12 subjects. Conclusions These data indicate that selected oil-based antioxidant preparations can effectively

  13. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition.

    PubMed

    Tinsley, Heather N; Gary, Bernard D; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y; Keeton, Adam B; Piazza, Gary A

    2010-10-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme-specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin-mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs.

  14. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men.

    PubMed

    Kelley, D S; Taylor, P C; Nelson, G J; Schmidt, P C; Ferretti, A; Erickson, K L; Yu, R; Chandra, R K; Mackey, B E

    1999-04-01

    The purpose of this study was to examine the effects of feeding docosahexaenoic acid (DHA) as triacylglycerol on the fatty acid composition, eicosanoid production, and select activities of human peripheral blood mononuclear cells (PBMNC). A 120-d study with 11 healthy men was conducted at the Metabolic Research Unit of Western Human Nutrition Reach Center. Four subjects (control group) were fed the stabilization diet throughout the study; the remaining seven subjects were fed the basal diet for the first 30 d, followed by 6 g DHA/d for the next 90 d. DHA replaced an equivalent amount of linoleic acid; the two diets were comparable in their total fat and all other nutrients. Both diets were supplemented with 20 mg D alpha-tocopherol acetate per day. PBMNC fatty acid composition and eicosanoid production were examined on day 30 and 113; immune cell functions were tested on day 22, 30, 78, 85, 106, and 113. DHA feeding increased its concentration from 2.3 to 7.4 wt% in the PBMNC total lipids, and decreased arachidonic acid concentration from 19.8 to 10.7 wt%. It also lowered prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) production, in response to lipopolysaccharide, by 60-75%. Natural killer cell activity and in vitro secretion of interleukin-1beta and tumor necrosis factor alpha were significantly reduced by DHA feeding. These parameters remained unchanged in the subjects fed the control diet. B-cell functions as reported here and T-cell functions that we reported previously were not altered by DHA feeding. Our results show that inhibitory effects of DHA on immune cell functions varied with the cell type, and that the inhibitory effects are not mediated through increased production of PGE2 and LTB4.

  15. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses.

    PubMed

    Jacob, Fenila; Pérez Novo, Claudina; Bachert, Claus; Van Crombruggen, Koen

    2013-09-01

    Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.

  16. Associations of T cell activation and inflammatory biomarkers with virological response to darunavir/ritonavir plus raltegravir therapy

    PubMed Central

    Taiwo, Babafemi; Matining, Roy M.; Zheng, Lu; Lederman, Michael M.; Rinaldo, Charles R.; Kim, Peter S.; Berzins, Baiba I.; Kuritzkes, Daniel R.; Jennings, Amy; Eron, Joseph J.; Wilson, Cara C.

    2013-01-01

    Objectives One of the goals of antiretroviral therapy (ART) is to attenuate HIV-induced systemic immune activation and inflammation. We determined the dynamics of biomarkers of immune activation, microbial translocation and inflammation during initial ART with a nucleos(t)ide-sparing regimen of darunavir/ritonavir plus raltegravir. We also evaluated associations between these biomarkers and the virological response to the regimen. Methods We determined baseline and week 24 and 48 levels of CD4+ and CD8+ T cell activation (% HLA-DR+/CD38+), interleukin-6 (IL-6), interferon-γ-inducible protein-10 (IP-10), soluble CD14 (sCD14), D-dimer and lipopolysaccharide. Associations between the biomarkers at baseline were assessed using Spearman's rank correlation. The Wilcoxon signed rank test analysed changes from baseline. Comparisons between groups were made using the Wilcoxon rank sum test, and Cox proportional hazards models assessed predictors of virological failure (VF). Results Assays were completed on 107 of 112 subjects after excluding five subjects who had only baseline samples. The subjects included were 94 (88%) men with a median age of 37 years, a median baseline CD4 count of 261.5 cells/mm3 and a median baseline viral load (VL) of 75 876 copies/mL. Subjects with a baseline VL >100 000 copies/mL had higher baseline T cell activation, IL-6, IP-10, sCD14 and D-dimer. These biomarkers declined during treatment (P < 0.05). Although subjects who experienced VF had higher baseline CD4+ T cell activation (P = 0.035), only baseline VL independently predicted VF (hazard ratio for >100 000 versus ≤100 000 copies/mL was 4.5–5.6, P ≤ 0.002). Conclusions Darunavir/ritonavir plus raltegravir attenuated immune activation, inflammation and microbial translocation. T cell activation remained higher in subjects with VF than those without. Baseline VL >100 000 copies/mL remained the primary driver of VF. PMID:23599363

  17. Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases.

    PubMed

    Röhner, Eric; Matziolis, Georg; Perka, Carsten; Füchtmeier, Bernd; Gaber, Timo; Burmester, Gerd-Rüdiger; Buttgereit, Frank; Hoff, Paula

    2012-06-01

    The role of human chondrocytes in the pathogenesis of cartilage degradation in rheumatic joint diseases has presently gained increasing interest. An active chondrocyte participation in local inflammation may play a role in the initiation and progression of inflammatory joint diseases and in a disruption of cartilage repair mechanisms resulting in cartilage degradation. In the present study, we hypothesized that inflammatory synovial fluid triggers human chondrocytes to actively take part in inflammatory processes in rheumatic joint diseases. Primary human chondrocytes were incubated in synovial fluids gained from patients with rheumatoid arthritis, psoriasis arthritis and reactive arthritis. The detection of vital cell numbers was determined by using Casy Cell Counter System. Apoptosis was measured by Annexin-V and 7AAD staining. Cytokine and chemokine secretion was determined by a multiplex suspension array. Detection of vital cells showed a highly significant decrease in chondrocyte numbers. Flow cytometry demonstrated a significant increase in apoptotic chondrocytes after the incubation. An active secretion of cytokines such as MCP-1 and MIF by chondrocytes was observed. The inflammatory synovial fluid microenvironment mediates apoptosis and cell death of chondrocytes. Moreover, in terms of cytokine secretion, it also induces an active participation of chondrocytes in ongoing inflammation.

  18. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells.

    PubMed

    Dias, Manoela Maciel dos Santos; Martino, Hércia Stampini Duarte; Noratto, Giuliana; Roque-Andrade, Andrea; Stringheta, Paulo César; Talcott, Stephen; Ramos, Afonso Mota; Mertens-Talcott, Susanne U

    2015-10-01

    The demand for tropical fruits high in polyphenolics including açai (Euterpe oleracea Mart.) has been increasing based on ascribed health benefits and antioxidant properties. This study evaluated the anti-inflammatory activities of açai polyphenolics in human colon myofibroblastic CCD-18Co cells to investigate the suppression of reactive oxygen species (ROS), and mRNA and protein expression of inflammatory proteins. Non-cytotoxic concentrations of açai extract, 1-5 mg gallic acid equivalent L(-1), were selected. The generation of ROS was induced by lipopolysaccharide (LPS) and açai extract partially reversed this effect to 0.53-fold of the LPS-control. Açai extract (5 mg GAE L(-1)) down-regulated LPS-induced mRNA-expression of tumor necrosis factor alpha, TNF-α (to 0.42-fold), cyclooxygenase 2, COX-2 (to 0.61-fold), toll-like receptor-4, TLR-4 (to 0.52-fold), TNF receptor-associated factor 6, TRAF-6 (to 0.64-fold), nuclear factor kappa-B, NF-κB (to 0.76-fold), vascular cell adhesion molecule 1, VCAM-1 (to 0.71-fold) and intercellular adhesion molecule 1, ICAM-1 (to 0.68-fold). The protein levels of COX-2, TLR-4, p-NF-κB and ICAM-1 were induced by LPS and the açai extract partially reversed this effect in a dose-dependent manner. These results suggest the anti-inflammatory effect of açai polyphenolic extract in intestinal cells are at least in part mediated through the inhibition of ROS and the expression of TLR-4 and NF-κB. Results indicate the potential for açai polyphenolics in the prevention of intestinal inflammation.

  19. Transcription Factors Regulating Inflammatory Cytokine Production Are Differentially Expressed in Peripheral Blood Mononuclear Cells of Behçet Disease Depending on Disease Activity

    PubMed Central

    Woo, Min-Yeong; Yun, Su Jin; Lee, Mi Jin; Kim, Kyongmin

    2017-01-01

    Background Behçet disease (BD) is a relapsing inflammatory disease with increased production of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs); however, the underlying molecular mechanisms are not well known. Objective To analyze whether the differential expression of transcription factors is involved in the increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production by PBMCs of BD patients compared to healthy controls (HCs). Methods Expression of transcription factors was examined by real-time reverse transcriptase-polymerase chain reaction and western blotting. Cytokine production by CD11b+ cells transfected with siRNAs against transcription factors was measured by enzyme-linked immunosorbent assay. Results In the absence of lipopolysaccharide stimulation, the transcript level of CCAAT-enhancer-binding proteins (C/EBP) β was increased in PBMCs from patients with active BD compared to that in PBMCs from patients with stable BD. The C/EBPδ transcript level was higher in PBMCs from patients with active BD than in those from HCs. The activating transcription factor 3 (ATF3) transcript level was increased in PBMCs from patients with stable BD compared to that in PBMCs from HCs. siRNAs targeting C/EBPβ and C/EBPδ significantly reduced the production of IL-6 and TNF-α in lipopolysaccharide-stimulated CD11b+ cells from patients with BD as well as from HCs. Conclusion We found differential expression of C/EBPβ, C/EBPδ, and ATF3 in PBMCs from patients with BD depending on disease activity, indicating the involvement of these molecules in BD pathogenesis.

  20. Calpeptin Attenuated Apoptosis and Intracellular Inflammatory Changes in Muscle Cells

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca2+-sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-gamma (IFN-γ) caused expression of MHC-I and inflammation related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B). We also demonstrated that treatment with tumor necrosis factor-alpha (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Further, we found that post-treatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs. PMID:21290412

  1. Platelet Activating Factor (PAF) biosynthesis is inhibited by phenolic compounds in U-937 cells under inflammatory conditions.

    PubMed

    Vlachogianni, Ioanna C; Fragopoulou, Elizabeth; Stamatakis, George M; Kostakis, Ioannis K; Antonopoulou, Smaragdi

    2015-09-01

    Interleukin 1 beta (IL-1β) induced platelet activating factor (PAF) synthesis in U-937 cells through stimulation of acetyl-CoA:lysoPAF-acetyltransferase (lyso PAF-AT) at 3 h and DTT-independentCDP-choline-1-alkyl-2-acetyl-sn-glycerol cholinophosphotransferase (PAF-CPT) at 0.5 h. The aim of this study was to investigate the effect of tyrosol (T), resveratrol (R) and their acetylated derivatives(AcDs) which exhibit enhanced bioavailability, on PAF synthesis in U-937 after IL-1β stimulation. The specific activity of PAF enzymes and intracellular levels were measured in cell homogenates. T and R concentration capable of inducing 50% inhibition in IL-1β effect on lyso PAF-AT was 48 μΜ ± 11 and 157 μΜ ± 77, for PAF-CPT 246 μΜ ± 61 and 294 μΜ ± 102, respectively. The same order of concentration was also observed on inhibiting PAF levels produced by IL-1β. T was more potent inhibitor than R (p<0.05). AcDs of T retain parent compound inhibitory activity, while in the case of R only two AcDs retain the activity. The observed inhibitory effect by T,R and their AcDs, may partly explain their already reported beneficial role.

  2. Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer.

    PubMed

    Moon, Chang Mo; Kwon, Ji-Hee; Kim, Ji Suk; Oh, Sun-Hee; Jin Lee, Kyoung; Park, Jae Jun; Pil Hong, Sung; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2014-02-01

    Cancer stem cells (CSCs) play a pivotal role in cancer relapse or metastasis. We investigated the CSC-suppressing effect of nonsteroidal anti-inflammatory drugs (NSAIDs) and the relevant mechanisms in colorectal cancer. We measured the effect of NSAIDs on CSC populations in Caco-2 or SW620 cells using colosphere formation and flow cytometric analysis of PROM1 (CD133)(+) CD44(+) cells after indomethacin treatment with/without prostaglandin E2 (PGE2) or peroxisome proliferator-activated receptor γ (PPARG) antagonist, and examined the effect of indomethacin on transcriptional activity and protein expression of NOTCH/HES1 and PPARG. These effects of indomethacin were also evaluated in a xenograft mouse model. NSAIDs (indomethacin, sulindac and aspirin), celecoxib, γ-secretase inhibitor and PPARG agonist significantly decreased the number of colospheres formation compared to controls. In Caco-2 and SW620 cells, compared to controls, PROM1 (CD133)(+) CD44(+) cells were significantly decreased by indomethacin treatment, and increased by 5-fluorouracil (5-FU) treatment. This 5-FU-induced increase of PROM1 (CD133)(+) CD44(+) cells was significantly attenuated by combination with indomethacin. This CSC-inhibitory effect of indomethacin was reversed by addition of PGE2 and PPARG antagonist. Indomethacin significantly decreased CBFRE and increased PPRE transcriptional activity and their relative protein expressions. In xenograft mouse experiments using 5-FU-resistant SW620 cells, the 5-FU treatment combined with indomethacin significantly reduced tumor growth, compared to 5-FU alone. In addition, treatment of indomethacin alone or combination of 5-FU and indomethacin decreased the expressions of PROM1 (CD133), CD44, PTGS2 (cyclooxygenase 2) and HES1, and increased PPARG expression. NSAIDs could selectively reduce the colon CSCs and suppress 5-FU-induced increase of CSCs via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1, and activating PPARG.

  3. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis

    PubMed Central

    Bocca, Claudia; Foglia, Beatrice; Benetti, Elisa; Novo, Erica; Chiazza, Fausto; Rogazzo, Mara; Fantozzi, Roberto; Povero, Davide; Sutti, Salvatore; Bugianesi, Elisabetta; Feldstein, Ariel E.; Albano, Emanuele; Collino, Massimo; Parola, Maurizio

    2017-01-01

    Non-Alcoholic Fatty Liver Disease (NAFLD) is a major form of chronic liver disease in the general population in relation to its high prevalence among overweight/obese individuals and patients with diabetes type II or metabolic syndrome. NAFLD can progress to steatohepatitis (NASH), fibrosis and cirrhosis and end-stage of liver disease but mechanisms involved are still incompletely characterized. Within the mechanisms proposed to mediate the progression of NAFLD, lipotoxicity is believed to play a major role. In the present study we provide data suggesting that microvesicles (MVs) released by fat-laden cells undergoing lipotoxicity can activate NLRP3 inflammasome following internalization by either cells of hepatocellular origin or macrophages. Inflammasome activation involves NF-kB-mediated up-regulation of NLRP3, pro-caspase-1 and pro-Interleukin-1, then inflammasome complex formation and Caspase-1 activation leading finally to an increased release of IL-1β. Since the release of MVs from lipotoxic cells and the activation of NLRP3 inflammasome have been reported to occur in vivo in either clinical or experimental NASH, these data suggest a novel rational link between lipotoxicity and increased inflammatory response. PMID:28249038

  4. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  5. Atherosclerosis: a chronic inflammatory disease mediated by mast cells.

    PubMed

    Conti, Pio; Shaik-Dasthagirisaeb, Yazdami

    2015-01-01

    Inflammation is a process that plays an important role in the initiation and progression of atherosclerosis and immune disease, involving multiple cell types, including macrophages, T-lymphocytes, endothelial cells, smooth muscle cells and mast cells. The fundamental damage of atherosclerosis is the atheromatous or fibro-fatty plaque which is a lesion that causes several diseases. In atherosclerosis the innate immune response, which involves macrophages, is initiated by the arterial endothelial cells which respond to modified lipoproteins and lead to Th1 cell subset activation and generation of inflammatory cytokines and chemoattractant chemokines. Other immune cells, such as CD4+ T inflammatory cells, which play a critical role in the development and progression of atherosclerosis, and regulatory T cells [Treg], which have a protective effect on the development of atherosclerosis are involved. Considerable evidence indicates that mast cells and their products play a key role in inflammation and atherosclerosis. Activated mast cells can have detrimental effects, provoking matrix degradation, apoptosis, and enhancement as well as recruitment of inflammatory cells, which actively contributes to atherosclerosis and plaque formation. Here we discuss the relationship between atherosclerosis, inflammation and mast cells.

  6. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells

    PubMed Central

    2011-01-01

    Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p < 0.05). None of the test samples exhibited catalase activity or had a significant effect on the spontaneous secretion of IL-8 in the control cells which was further corroborated with the microscopy results and the Neutral Red viability test. Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found. PMID:21995704

  7. ANTI-INFLAMMATORY ACTIVITY OF DODONAEA VISCOSE

    PubMed Central

    Mahadevan, N.; Venkatesh, Sama; Suresh, B.

    1998-01-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats. PMID:22556883

  8. Isolation of inflammatory cells from human tumours.

    PubMed

    Polak, Marta E

    2011-01-01

    Inflammatory cells are present in many tumours, and understanding their function is of increasing importance, particularly to studies of tumour immunology. The tumour-infiltrating leukocytes encompass a variety of cell types, e.g. T lymphocytes, macrophages, dendritic cells, NK cells, and mast cells. Choice of the isolation method greatly depends on the tumour type and the leukocyte subset of interest, but the protocol usually includes tissue disaggregation and cell enrichment. We recommend density centrifugation for initial enrichment, followed by specific magnetic bead negative or positive panning with leukocyte and tumour cell selective antibodies.

  9. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    PubMed

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  10. Antioxidant and Anti-Inflammatory Activities of Barettin

    PubMed Central

    Lind, Karianne F.; Hansen, Espen; Østerud, Bjarne; Eilertsen, Karl-Erik; Bayer, Annette; Engqvist, Magnus; Leszczak, Kinga; Jørgensen, Trond Ø.; Andersen, Jeanette H.

    2013-01-01

    In this paper, we present novel bioactivity for barettin isolated from the marine sponge Geodia barretti. We found that barettin showed strong antioxidant activity in biochemical assays as well as in a lipid peroxidation cell assay. A de-brominated synthetic analogue of barettin did not show the same activity in the antioxidant cell assay, indicating that bromine is important for cellular activity. Barettin was also able to inhibit the secretion of the inflammatory cytokines IL-1β and TNFα from LPS-stimulated THP-1 cells. This combination of anti-inflammatory and antioxidant activities could indicate that barettin has an atheroprotective effect and may therefore be an interesting product to prevent development of atherosclerosis. PMID:23880935

  11. Distinct inflammatory properties of late-activated macrophages in inflammatory myopathies

    PubMed Central

    Rostasy, KM; Schmidt, J; Bahn, E; Pfander, T; Piepkorn, M; Wilichowski, E; Schulz-Schaeffer, J

    2008-01-01

    Summary Distinct mechanisms such as humeral immunity in dermatomyositis (DM) and T-cell-mediated cytotoxicity in polymyositis (PM) contribute to the pathology of inflammatory myopathies. In addition, different subsets of macrophages are present in both diseases. Herein, the characteristics of 25F9-positive macrophages in skeletal muscle inflammation are outlined. Muscle biopsies of subjects with DM and PM were studied by immunohistochemical multi-labelling using the late-activation marker 25F9, together with markers characterizing macrophage function including IFN-γ, iNOS, and TGF-β. In PM, a robust expression of IFN-γ, iNOS, and TGF-β was observed in inflammatory cells. Double- and serial-labelling revealed that a subset of 25F9-positive macrophages in the vicinity of injured muscle fibres expressed iNOS and TGF-β, but not IFN-γ. In DM, IFN-γ, iNOS and TGF-β were also expressed in inflammatory cells in the endomysium. Double- and serial-labelling studies in DM indicated that 25F9-positive macrophages expressed TGF-β and to a lesser degree iNOS, but not IFN-γ. In conclusion, our data suggest that late-activated macrophages contribute to the pathology of inflammatory myopathies. PMID:19364061

  12. Distinct inflammatory properties of late-activated macrophages in inflammatory myopathies.

    PubMed

    Rostasy, K M; Schmidt, J; Bahn, E; Pfander, T; Piepkorn, M; Wilichowski, E; Schulz-Schaeffer, J

    2008-10-01

    Distinct mechanisms such as humeral immunity in dermatomyositis (DM) and T-cell-mediated cytotoxicity in polymyositis (PM) contribute to the pathology of inflammatory myopathies. In addition, different subsets of macrophages are present in both diseases. Herein, the characteristics of 25F9-positive macrophages in skeletal muscle inflammation are outlined. Muscle biopsies of subjects with DM and PM were studied by immunohistochemical multi-labelling using the late-activation marker 25F9, together with markers characterizing macrophage function including IFN-gamma, iNOS, and TGF-beta. In PM, a robust expression of IFN-gamma, iNOS, and TGF-beta was observed in inflammatory cells. Double- and serial-labelling revealed that a subset of 25F9-positive macrophages in the vicinity of injured muscle fibres expressed iNOS and TGF-beta, but not IFN-gamma. In DM, IFN-gamma, iNOS and TGF-beta were also expressed in inflammatory cells in the endomysium. Double- and serial-labelling studies in DM indicated that 25F9-positive macrophages expressed TGF-beta and to a lesser degree iNOS, but not IFN-gamma. In conclusion, our data suggest that late-activated macrophages contribute to the pathology of inflammatory myopathies.

  13. Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio)

    PubMed Central

    Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, Karl

    2016-01-01

    Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L−1 aeruginosin 828A, and 100 µmol·L−1 cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A. PMID:27428998

  14. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge.

    PubMed

    Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho

    2016-02-28

    A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.

  15. Bim-BH3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosis

    PubMed Central

    Scatizzi, John C.; Hutcheson, Jack; Pope, Richard M.; Firestein, Gary S.; Koch, Alisa E.; Mavers, Melissa; Smason, Avraham; Agrawal, Hemant; Haines, G. Kenneth; Chandel, Navdeep S.; Hotchkiss, Richard S.; Perlman, Harris

    2010-01-01

    Objective Rheumatoid arthritis (RA) is a destructive autoimmune disease characterized by an increased inflammation in the joint. Therapies which activate the apoptotic cascade may have potential as a future therapy for RA, however few therapeutics fit this category. Recently, therapies that mimic the action of Bcl-2 homology 3 (BH3) domain-only proteins such as Bim have shown success in preclinical studies of cancer but their potential in autoimmune disease is unknown. Methods Synovial tissue from RA and osteoarthritis (OA) patients were analyzed for expression of Bim and CD68 using immunohistochemistry. Macrophages from mice lacking (Bim−/−) were examined for response to lipopolysaccharide (LPS) using flow cytometry, real time PCR, ELISA, and immunoblot analysis. Bim−/− mice were stimulated with thioglycollate or LPS and examined for macrophage activation and cytokine production. Experimental arthritis was induced using the K/BxN serum-transfer model. A mimetic peptide corresponding to the BH3 domain of Bim (TAT-BH3) was administered as a prophylactic and as a therapeutic. Edema of the ankles and histopathogical analysis of ankle sections were used to determine severity of arthritis, cellular composition, and apoptosis. Results The expression of Bim was reduced in RA synovial tissue as compared to controls, particularly in macrophages. Bim−/− macrophages displayed elevated expression of markers of inflammation and secreted more IL-1β following stimulation with LPS or thioglycollate. TAT-BH3 ameliorated arthritis development, reduced the number of myeloid cells in the joint, and enhanced apoptosis without inducing cytotoxicity. Conclusion These data demonstrate that BH3 mimetic therapy may have significant potential for RA treatment. PMID:20112357

  16. Anti-inflammatory activity of natural dietary flavonoids.

    PubMed

    Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2010-10-01

    Over the past few decades, inflammation has been recognized as a major risk factor for various human diseases. Acute inflammation is short-term, self-limiting and it's easy for host defenses to return the body to homeostasis. Chronic inflammatory responses are predispose to a pathological progression of chronic illnesses characterized by infiltration of inflammatory cells, excessive production of cytokines, dysregulation of cellular signaling and loss of barrier function. Targeting reduction of chronic inflammation is a beneficial strategy to combat several human diseases. Flavonoids are widely present in the average diet in such foods as fruits and vegetables, and have been demonstrated to exhibit a broad spectrum of biological activities for human health including an anti-inflammatory property. Numerous studies have proposed that flavonoids act through a variety mechanisms to prevent and attenuate inflammatory responses and serve as possible cardioprotective, neuroprotective and chemopreventive agents. In this review, we summarize current knowledge and underlying mechanisms on anti-inflammatory activities of flavonoids and their implicated effects in the development of various chronic inflammatory diseases.

  17. [Systemic inflammatory response syndrome (SIRS) and endothelial cell injury].

    PubMed

    Gando, Satoshi

    2004-12-01

    During recent years, evidences have been accumulated demonstrating bidirectional crosstalk between coagulation and inflammation. This review outlines the influences that coagulation and inflammation exert on each other to the endothelium and how these systems induce systemic inflammatory response syndrome (SIRS). Then we discussed the implications of leucocyte-endothelial activation to endothelial cell injury followed by multiple organ dysfunction syndrome (MODS) in patients with sustained SIRS. Last we demonstrated an important role of inflammatory circulation disturbance induced by endothelial cell injury for the pathogenesis of MODS in SIRS and sepsis.

  18. Immunosuppressive and anti-inflammatory activities of sinomenine.

    PubMed

    Wang, Quanxing; Li, Xiao-Kang

    2011-03-01

    Sinomenine (SN), a pure compound extracted from the Sinomenium acutum plant, has been found to inhibit T- and B-lymphocyte activation, proliferation and function and to interfere with the differentiation, recruitment and function of several other cell types, such as dendritic cells (DC). SN has demonstrated its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications. This review will summarize its potential effects, mechanisms and applications.

  19. Activation of Inflammatory Responses Correlate With Hedgehog Activation and Precede Expansion of Cancer Stem-Like Cells in an Animal Model of Residual Triple Negative Breast Cancer after Neoadjuvant Chemotherapy.

    PubMed

    Arnold, Kimberly M; Flynn, Nicole J; Sims-Mourtada, Jennifer

    2015-01-01

    Triple Negative Breast Cancer (TNBC) is characterized as a lack of expression of the hormonal receptors, estrogen and progesterone, and Human epidermal growth factor receptor 2 (HER2) and as such is unresponsive to current targeted therapy. Resistance of breast cancers to treatment is thought to be due to a sub-population of tumor cells called Breast Cancer Stem Cells (BCSCs) and contributes to poor prognosis and increased risk of recurrence. Previously, we have shown that hedgehog activation is induced by chemotherapy and promotes expansion of a stem-like population in breast cancer cell lines. In addition, chemotherapy can induce an inflammatory response and inflammatory factors can lead to activation of Hedgehog (HH) at sites of tissue injury. Therefore, we wanted to investigate how chemotherapy altered hedgehog signaling and correlated with the release of inflammatory cytokines in a mouse model of breast cancer. Patient derived triple negative breast tumor bearing mice were treated with weekly doses of docetaxel. Following treatment, tumor volume decreased reaching a nadir around 15 days after the start of treatment and increased back to pre-treatment size 35-39 days post treatment. Immunohistochemical staining of mice tumors revealed that Sonic hedgehog and nuclear Gli-1 expression transiently increased following docetaxel treatment, reached peak expression at day 8, and subsequently decreased to almost pre-treatment levels following regrowth of the tumor. Similarly, Interleukin 6 (IL-6) and Interleukin 8 (IL-8) expression transiently increased, peaked around day 8, and decreased upon tumor regrowth, however, remained above pre-treatment levels. Expression of the stem cell marker ALDH1A3 proceeded activation of hedgehog signaling and expression of inflammatory cytokines, increasing around day 15 post treatment and continued to be elevated during tumor regrowth. Thus, chemotherapy treatment resulted in activation of the hedgehog pathway and release of

  20. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia.

    PubMed

    Steiner, Nicole; Balez, Rachelle; Karunaweera, Niloo; Lind, Joanne M; Münch, Gerald; Ooi, Lezanne

    2016-05-01

    Chronic inflammation is a hallmark of neurodegenerative disease and cytotoxic levels of nitric oxide (NO) and pro-inflammatory cytokines can initiate neuronal death pathways. A range of cellular assays were used to assess the anti-inflammatory and neuroprotective action of resveratrol using murine microglial (C8-B4), macrophage (RAW264.7) and neuronal-like (Neuro2a) cell lines. We examined the release of NO by Griess assay and used a Bioplex array to measure a panel of pro- and anti-inflammatory cytokines and chemokines, in response to the inflammatory stimuli lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Resveratrol was a potent inhibitor of NO and cytokine release in activated macrophages and microglia. The activity of resveratrol increased marginally in potency with longer pre-incubation times in cell culture that was not due to cytotoxicity. Using an NO donor we show that resveratrol can protect Neuro2a cells from cytotoxic concentrations of NO. The protective effect of resveratrol from pro-inflammatory signalling in RAW264.7 cells was confirmed in co-culture experiments leading to increased survival of Neuro2a cells. Together our data are indicative of the potential neuroprotective effect of resveratrol during nitrosative stress and neuroinflammation.

  1. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response

    PubMed Central

    Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L.; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T.; Riccioli, Anna

    2016-01-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract. PMID:27600504

  2. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response.

    PubMed

    Conte, Maria P; Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T; Riccioli, Anna; Longhi, Catia

    2016-11-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract.

  3. Down-regulation of mitogen-activated protein kinases and nuclear factor-κB signaling is involved in rapamycin suppression of TLR2-induced inflammatory response in monocytic THP-1 cells.

    PubMed

    Sun, Ruili; Zhang, Yi; Ma, Shijiang; Qi, Hengtian; Wang, Mingyong; Duan, Juhong; Ma, Shujun; Zhu, Xiaofei; Li, Guancheng; Wang, Hui

    2015-10-01

    Tripalmitoyl-S-glycero-Cys-(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signal pathway. Rapamycin can suppress TLR-induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2-induced inflammatory responses was investigated. It was found that Pam3CSK4-induced pro-inflammatory cytokines were significantly down-regulated at both the mRNA and protein levels in THP-1 cells pre-treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling did not suppress the expression of pro-inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT-PCR showed that Erk and NF-κB signal pathways are related to the production of pro-inflammatory cytokines. Inhibition of Erk or NF-κB signaling significantly down-regulated production of pro-inflammatory cytokines. Additionally, western blot showed that pre-treatment of THP-1 cells with rapamycin down-regulates MAPKs and NF-κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4-induced pro-inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2-induced inflammatory responses by down-regulation of Erk and NF-κB signaling.

  4. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    PubMed

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

  5. Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent

    PubMed Central

    2014-01-01

    Introduction Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation. Methods Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers. Results Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86. Conclusion Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC. PMID:24745366

  6. Liraglutide protects Rin-m5f β cells by reducing procoagulant tissue factor activity and apoptosis prompted by microparticles under conditions mimicking Instant Blood-Mediated Inflammatory Reaction.

    PubMed

    Gleizes, Céline; Constantinescu, Andrei; Abbas, Malak; Bouhadja, Houda; Zobairi, Fatiha; Kessler, Laurence; Toti, Florence

    2014-07-01

    Instant Blood-Mediated Inflammatory Reaction (IBMIR) occurs at the vicinity of transplanted islets immediately after intraportal infusion and is characterized by cytokine secretion, tissue factor (TF) expression, and ß cell loss. Microparticles (MPs) are cellular effectors shed from the plasma membrane of apoptotic cells. Modulation of the properties of ß cell-derived MPs by liraglutide was assessed in a cellular model designed to mimic IBMIR oxidative and inflammatory conditions. Rin-m5f rat β cells were stimulated by H2 O2 or a combination of IL-1β and TNF-α. Cell-derived MPs were applied to naive Rin-m5f for 24 h. Apoptosis, MP release, TF activity, P-IκB expression, and MP-mediated apoptosis were measured in target cells. Direct protection by liraglutide was shown by a significant decrease in the oxidative stress-induced apoptosis (18.7% vs. 7.6%, P < 0.0001 at 1 μm liraglutide) and cellular TF activity (-40% at 100 nm liraglutide). Indirect cytoprotection led to 20% reduction in MP generation, thereby lowering MP-mediated apoptosis (6.3% vs. 3.7%, P = 0.022) and NF-κB activation (-50%) in target cells. New cytoprotective effects of liraglutide were evidenced, limiting the expression of TF activity by ß cells and the generation of noxious MPs. Altogether, these data suggest that liraglutide could target pro-apoptotic and pro-inflammatory MPs in transplanted islets.

  7. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets

    PubMed Central

    Szebeni, Gabor J.; Vizler, Csaba; Nagy, Lajos I.; Kitajka, Klara; Puskas, Laszlo G.

    2016-01-01

    Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs. PMID:27886105

  8. Persistent activation of nuclear factor-kappa B and expression of pro-inflammatory cytokines in bone marrow cells after exposure of mice to protons

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Reungpatthanaphong, Paiboon; Honikel, Louise; Whorton, Elbert

    Protons are the most abundant component of solar particle events (SPEs) in space. Information is limited on early-and late-occurring in vivo biological effects of exposure to protons at doses and dose rates that are similar to what astronauts encounter in space. We conducted a study series to fill this knowledge gap. We focused on the biological effects of 100 MeV/n protons, which are one of the most abundant types of protons induced during SPEs. We gave BALB/cJ mice a whole-body exposure to 0.5 or 1.0 Gy of 100 MeV/n protons, delivered at 0.5 or 1.0 cGy/min. These doses and dose rates of protons were selected because they are comparable to those of SPEs taking place in space. For each dose and dose rate of 100 MeV/n protons, mice exposed to 0 Gy of protons served as sham controls. Mice included in this study were also part of a study series conducted to examine the extent and the mechanisms involved in in vivo induction of genomic instability (expressed as late-occurring chromosome instability) by 100 MeV/n protons. Bone marrow (BM) cells were collected from groups of mice for analyses at different times post-exposure, i.e. early time-points (1.5, 3, and 24 hr) and late time-points (1 and 6 months). At each harvest time, there were five mice per treatment group. Several endpoints were used to investigate the biological effects of 100 MeV/n protons in BM cells from irradiated and sham control mice. The scope of this study was to determine the dose-rate effects of 0.5 Gy of 100 MeV/n protons in BM cells on the kinetics of nuclear factor-kappa B (NF-kappa B) activation and the expression of selected NF-kappa B target proteins known to be involved in inflammatory response, i.e. pro-inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6). Significantly high levels (p values ranging from p¡0.01 and p¡0.05) of activated NF-kappa B were observed in BM cells collected from irradiated mice, relative to those obtained from the corresponding sham controls, at all time

  9. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  10. Characterization of inflammatory cell infiltration in feline allergic skin disease.

    PubMed

    Taglinger, K; Day, M J; Foster, A P

    2007-11-01

    Sixteen cats with allergic dermatitis and six control cats with no skin disease were examined. Lymphoid and histiocytic cells in skin sections were examined immunohistochemically and mast cells were identified by toluidine blue staining. The 16 allergic cats showed one or more of several features (alopecia, eosinophilic plaques or granulomas, papulocrusting lesions), and histopathological findings were diverse. In control cats there were no cells that expressed IgM or MAC387, a few that were immunolabelled for IgG, IgA or CD3, and moderate numbers of mast cells. In allergic cats, positively labelled inflammatory cells were generally more numerous in lesional than in non-lesional skin sections, and were particularly associated with the superficial dermis and perifollicular areas. There were low numbers of plasma cells expressing cytoplasmic immunoglobulin; moderate numbers of MHC II-, MAC387- and CD3-positive cells; and moderate to numerous mast cells. MHC class II expression was associated with inflammatory cells morphologically consistent with dermal dendritic cells and macrophages, and epidermal Langerhans cells. Dendritic cells expressing MHC class II were usually associated with an infiltrate of CD3 lymphocytes, suggesting that these cells participate in maintenance of the local immune response by presenting antigen to T lymphocytes. These findings confirm that feline allergic skin disease is characterized by infiltration of activated antigen-presenting cells and T lymphocytes in addition to increased numbers of dermal mast cells. This pattern mimics the dermal inflammation that occurs in the chronic phase of both canine and human atopic dermatitis.

  11. Anti-inflammatory and antinociceptive activity of Urera aurantiaca.

    PubMed

    Riedel, R; Marrassini, C; Anesini, C; Gorzalczany, S

    2015-01-01

    Urera aurantiaca Wedd. (Urticaceae) is a medicinal plant commonly used in traditional medicine to relieve pain in inflammatory processes. In the present study, the in vivo anti-inflammatory and antinociceptive effects of U. aurantiaca methanolic extract and its possible mechanisms of action were investigated. The extract showed anti-inflammatory activity in the ear edema in mice test (34.3% inhibition), myeloperoxidase (MPO) activity was markedly reduced in animals administered with the extract: within 49.6% and 68.5%. In the histological analysis, intense dermal edema and intense cellular infiltration of inflammatory cells were markedly reduced in the ear tissue of the animals treated with the extract. In the carrageenan-induced hind paw edema in rats assay the extract provoked a significant inhibition of the inflammation (45.5%, 5 h after the treatment) and the MPO activity was markedly reduced (maximum inhibition 71.7%), The extract also exhibited significant and dose-dependent inhibitory effect on the increased vascular permeability induced by acetic acid. The extract presented antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis 3-ethylbenzothiazoline 6-sulfonic acid tests and its total phenol content was 35.4 ± 0.06 mg GAE/g of extract. Also, the extract produced significant inhibition on nociception induced by acetic acid (ED50 : 8.7 mg/kg, i.p.) administered intraperitoneally and orally. Naloxone significantly prevented this activity.

  12. Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    PubMed Central

    Buddeberg, Felix; Schuppli, Caroline; Roth Z'graggen, Birgit; Hasler, Melanie; Schanz, Urs; Mehr, Manuela; Spahn, Donat R.; Beck Schimmer, Beatrice

    2012-01-01

    Background Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. Methods The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. Results Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. Conclusion Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells. PMID:22438924

  13. Anti-inflammatory activity of arctigenin from Forsythiae Fructus.

    PubMed

    Kang, Hyo Sook; Lee, Ji Yun; Kim, Chang Jong

    2008-03-05

    Oleaceae Forsythiae Fructus has been used for anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. Our previous screening of medicinal plants showed that methanol (MeOH) extract of Forsythiae Fructus had significant anti-inflammatory activity, but the active ingredients remain unclear. For isolation of active ingredient of MeOH extract of Forsythiae Fructus, it was partitioned with n-hexane and ethylacetate (EtOAc), and arctigenin was isolated from EtOAc fraction by column chromatography with anti-inflammatory activity-guided separation. Its activity was evaluated in the animal models of inflammation including myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities in the edematous tissues homogenate, and silica-induced reactive oxygen species (ROS) production in the RAW 264.7 cell line. It was shown that arctigenin (100 mg/kg) had significantly decreased not only carrageenan-induced paw edema 3 and 4h after injection of carrageenan, arachidonic acid (AA)-induced ear edema at a painting dose of 0.1-1.0mg/ear, and acetic acid-induced writhing response and acetic acid-induced capillary permeability accentuation at an oral dose of 25-100, and 100 mg/kg, respectively, but also MPO and EPO activities at a painting dose of 0.1-1.0mg/ear in the AA-induced edematous tissues homogenate as indicators of neutrophils and eosinophils recruitment into the inflamed tissue. Further, arctigenin (0.1-10 microM) also significantly inhibited the intracellular ROS production by silica. These results indicate that arctigenin is a bioactive agent of Forsythiae Fructus having significant anti-inflammatory action by inhibition of the exudation, and leukocytes recruitment into the inflamed tissues. The pharmacologic mechanism of action of arctigenin may be due to the inhibition of release/production of inflammatory mediators such as AA metabolites and free radicals.

  14. Photopheresis with UV-A light and 8-methoxypsoralen leads to cell death and to release of blebs with anti-inflammatory phenotype in activated and non-activated lymphocytes

    SciTech Connect

    Stadler, K.; Frey, B.; Munoz, L.E.; Finzel, S.; Rech, J.; Fietkau, R.; Herrmann, M.; Hueber, A.; Gaipl, U.S.

    2009-08-14

    Background: Extracorporeal photopheresis is a therapy for treatment of autoimmune diseases, cutaneous T-cell lymphoma, organ graft rejection as well as graft-versus-host diseases. The exact mechanism how the combination of 8-methoxypsoralen plus UV-A irradiation (PUVA) acts is still unclear. We investigated the cell death of activated and non-activated lymphocytes after PUVA treatment as well as the rate of released blebs and their antigen composition. Results: In presence of 8-MOP, UV-A light highly significantly increased the cell death of activated lymphocytes. The same was observed to a lesser extent in non-activated cells. Blebs derived from activated lymphocytes after PUVA treatment showed the highest surface exposition of phosphatidylserine. These blebs also displayed a high exposure of the antigens CD5 and CD8 as well as a low exposure of CD28 and CD86. Conclusion: PUVA treatment exerts anti-inflammatory effects by inducing apoptosis and apoptotic cell-derived blebs with immune suppressive surface composition.

  15. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

    PubMed Central

    Sung, Nak Yoon

    2015-01-01

    Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation. PMID:26330757

  16. Development of curcumin-loaded poly(hydroxybutyrate- co-hydroxyvalerate) nanoparticles as anti-inflammatory carriers to human-activated endothelial cells

    NASA Astrophysics Data System (ADS)

    Simion, Viorel; Stan, Daniela; Gan, Ana-Maria; Pirvulescu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Deleanu, Mariana; Andrei, Eugen; Durdureanu-Angheluta, Anamaria; Bota, Marian; Enachescu, Marius; Calin, Manuela; Simionescu, Maya

    2013-12-01

    Curcumin (Cm)-loaded poly(hydroxybutyrate- co-hydroxyvalerate) (PHBV) nanoparticles (CmPN) were obtained and characterized and their effect on human endothelial cells (HEC) was assessed. Different CmPN formulations have been prepared using the emulsion solvent evaporation technique, and characterized for size, structure, Zeta potential, Cm entrapment efficiency, and in vitro Cm release. CmPN cytotoxicity and cellular uptake have been followed using HEC. Also, the effect of CmPN treatment on the p38MAPK signaling pathway in endothelial cells was investigated. The results obtained by electron and atomic force microscopy revealed the spherical shape of the CmPN formulation. Based on size and encapsulation efficiency, the CmPN formulation with the average diameter of 186 nm and with the highest encapsulation efficiency (83 %) has been used in the further studies. The release of Cm from CmPN was 18 % after 8 h of incubation at 37 °C, followed by a slow release until 144 h, when it reached 44 %, indicating a controlled release. CmPN are taken up by HEC and exhibited low cytotoxicity at concentrations up to 10 μM. The pre-treatment of HEC with CmPN before exposure to tumor necrosis factor-alpha (TNF-α) determined a decrease of p38MAPK phosphorylation. In conclusion, Cm encapsulated into PHBV nanoparticles, at concentration up to 10 μM, has low cytotoxicity and display anti-inflammatory activity on TNF-α-activated HEC by suppressing the phosphorylation of p38MAPK.

  17. Berberine inhibits tumor necrosis factor-α-induced expression of inflammatory molecules and activation of nuclear factor-κB via the activation of AMPK in vascular endothelial cells.

    PubMed

    Liu, Su-Jian; Yin, Cai-Xia; Ding, Ming-Chao; Wang, Yi-Zhong; Wang, Hong

    2015-10-01

    Berberine, which is a well‑known drug used in traditional medicine, has been demonstrated to exert diverse pharmacological effects, including anti‑inflammatory effects. However, whether berberine can affect the production of inflammatory molecules in vascular endothelial cells remains to be elucidated. Therefore, the present study aimed to determine the effects of berberine, and the underlying molecular mechanisms of these effects. The effect of berberine on tumor necrosis factor (TNF)‑α‑induced inflammatory molecule expression was examined in cultured human aortic endothelial cells (HAECs). The HAECs were stimulated with TNF‑α and incubated with or without berberine. The activation of nuclear factor (NF)‑κB and adenosine monophosphate‑activated protein kinase (AMPK) were analyzed using western blotting, and the protein secretion of intercellular adhesion molecule (ICAM)‑1 and monocyte chemoattractant protein (MCP)‑1 was measured using ELISA kits. The mRNA expression levels of ICAM‑1 and MCP‑1 were analyzed using reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that berberine significantly inhibited the TNF‑α‑induced expression of ICAM‑1 and MCP‑1, as well as the activation of NF‑κB in the HAECs. These effects were attenuated following co‑treatment with AMPK inhibitor compound C, or specific small interfering RNAs. In conclusion, the results of the present study indicated that berberine inhibits the TNF‑α‑induced expression of ICAM‑1 and MCP‑1, and the activation of NF‑κB in HAECs in vitro, possibly through the AMPK‑dependent pathway.

  18. Synthesis and anti-inflammatory activities of novel dihydropyranoaurone derivatives.

    PubMed

    Wang, Zheng; Bae, Eun Ju; Han, Young Taek

    2017-04-10

    A novel series of dihydropyranoaurone derivatives were synthesized and evaluated as potential anti-inflammatory agents. Late-stage derivatization by versatile piperazine-catalyzed aldol reaction between dihydropyanobenzofuran intermediate 2 and diverse aldehydes readily afforded the novel dihydropyranoaurone analogs. Evaluation of the synthesized dihydropyranoaurone derivatives and related compounds regarding their inhibiting inducible nitric oxide synthase and nitrite production of lipopolysaccaride-stimulated RAW 264.7 cells provided insight into the structure-activity relationship of aurone derivatives.

  19. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  20. Chemopreventive effect of cactus (Opuntia humifusa) extracts: radical scavenging activity, pro-apoptosis, and anti-inflammatory effect in human colon (SW480) and breast cancer (MCF7) cells.

    PubMed

    Kim, Jinhee; Jho, Kwang Hyun; Choi, Young Hee; Nam, Sang-Yong

    2013-04-30

    Cactus (Opuntia spp) is widely cultivated as a vegetable, fruit, and forage crop and has been used in traditional medicine in American Indian, Mexican, and Korean cultures. Accumulative evidence from both in vitro and in vivo studies using cacti suggests their biological and pharmacological activities, such as their anti-cancer and anti-inflammatory roles in different cancer cells. In this study, the Opuntia humifusa stem (OHS) was extracted with different solvents and screened for radical scavenging activity using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS˙(+)) and 1,1-diphenyl-2-picryl hydrazyl (DPPH). In addition, the total phenolic and flavonoid contents of each extract were analyzed using the Folin-Ciocalteu method and high performance liquid chromatography, respectively. Further, the cacti's bioactive fractions were evaluated for cell cytotoxicity and to understand their mechanism of action on human colon cancer (SW480) and breast cancer (MCF7) cells. An ethyl acetate (EtOAc) extract exhibited the highest cytotoxicity and resulted in an up-regulated expression of the pro-apoptotic protein Bax (bcl-2 associated X protein) and a down-regulated expression of the anti-apoptotic protein Bcl2 in both SW480 and MCF7 cells. The apoptosis was mediated through activation of caspase 8, 9, and 3/7 activities as well as PARP cleavage in SW480 cells, while the same extract activated only a caspase 9 activity in MCF7 cells. Furthermore, incubation of cells with the EtOAc extract down-regulated the expression of inflammatory molecules such as cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) in SW480 cells but not in MCF7 cells. Taken together, these results suggest that SW480 colon cancer cells are more susceptible to bioactive compounds present in OHS and may have potential in the prevention of cancer through modulation of apoptosis markers and inhibition of inflammatory pathways.

  1. Increased circulating inflammatory endothelial cells in blacks with essential hypertension.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Woollard, John R; Herrmann, Sandra M; Gloviczki, Monika L; Saad, Ahmed; Juncos, Luis A; Calhoun, David A; Rule, Andrew D; Lerman, Amir; Textor, Stephen C; Lerman, Lilach O

    2013-09-01

    Morbidity and mortality attributable to hypertension are higher in black essential hypertensive (EH) compared with white EH patients, possibly related to differential effects on vascular injury and repair. Although circulating endothelial progenitor cells (EPCs) preserve endothelial integrity, inflammatory endothelial cells (IECs) detach from sites of injury and represent markers of vascular damage. We hypothesized that blood levels of IECs and inflammatory markers would be higher in black EH compared with white EH patients. Inferior vena cava and renal vein levels of CD34+/KDR+ (EPC) and VAP-1+ (IEC) cells were measured by fluorescence-activated cell sorting in white EH and black EH patients under fixed sodium intake and blockade of the renin-angiotensin system, and compared with systemic levels in normotensive control subjects (n=19 each). Renal vein and inferior vena cava levels of inflammatory cytokines and EPC homing factors were measured by Luminex. Blood pressure, serum creatinine, lipids, and antihypertensive medications did not differ between white and black EH patients, and EPC levels were decreased in both. Circulating IEC levels were elevated in black EH patients, and inversely correlated with EPC levels (R(2)=0.58; P=0.0001). Systemic levels of inflammatory cytokines and EPC homing factors were higher in black EH compared with white EH patients, and correlated directly with IECs. Renal vein inflammatory cytokines, EPCs, and IECs did not differ from their circulating levels. Most IECs expressed endothelial markers, fewer expressed progenitor cell markers, but none showed lymphocyte or phagocytic cell markers. Thus, increased release of cytokines and IECs in black EH patients may impair EPC reparative capacity and aggravate vascular damage, and accelerate hypertension-related complications.

  2. Phagocytic activity and pro-inflammatory cytokines production by the murine macrophage cell line J774A.1 stimulated by a recombinant BCG (rBCG) expressing the MSP1-C of Plasmodium falciparum.

    PubMed

    Rapeah, S; Dhaniah, M; Nurul, A A; Norazmi, M N

    2010-12-01

    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.

  3. NS6180, a new KCa3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease

    PubMed Central

    Strøbæk, D; Brown, DT; Jenkins, DP; Chen, Y-J; Coleman, N; Ando, Y; Chiu, P; Jørgensen, S; Demnitz, J; Wulff, H; Christophersen, P

    2013-01-01

    Background and Purpose The KCa3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of KCa3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses. Experimental Approach We characterized the benzothiazinone NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) with respect to potency and molecular site of action on KCa3.1 channels, selectivity towards other targets, effects on T-cell activation as well as pharmacokinetics and inflammation control in colitis induced by 2,4-dinitrobenzene sulfonic acid, a rat model of inflammatory bowel disease (IBD). Key Results NS6180 inhibited cloned human KCa3.1 channels (IC50 = 9 nM) via T250 and V275, the same amino acid residues conferring sensitivity to triarylmethanes such as like TRAM-34. NS6180 inhibited endogenously expressed KCa3.1 channels in human, mouse and rat erythrocytes, with similar potencies (15–20 nM). NS6180 suppressed rat and mouse splenocyte proliferation at submicrolar concentrations and potently inhibited IL-2 and IFN-γ production, while exerting smaller effects on IL-4 and TNF-α and no effect on IL-17 production. Antibody staining showed KCa3.1 channels in healthy colon and strong up-regulation in association with infiltrating immune cells after induction of colitis. Despite poor plasma exposure, NS6180 (3 and 10 mg·kg−1 b.i.d.) dampened colon inflammation and improved body weight gain as effectively as the standard IBD drug sulfasalazine (300 mg·kg−1 q.d.). Conclusions and Implications NS6180 represents a novel class of KCa3.1 channel inhibitors which inhibited experimental colitis, suggesting KCa3.1 channels as targets for pharmacological control of intestinal inflammation. PMID:22891655

  4. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    PubMed Central

    Wheat, Rachel; Roberts, Claudia; Waterboer, Tim; Steele, Jane; Marsden, Jerry; Steven, Neil M.; Blackbourn, David J.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus. PMID:24961933

  5. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  6. Flavone deglycosylation increases their anti-inflammatory activity and absorption

    PubMed Central

    Hostetler, Gregory; Riedl, Ken; Cardenas, Horacio; Diosa-Toro, Mayra; Arango, Daniel; Schwartz, Steven; Doseff, Andrea I.

    2014-01-01

    Scope Flavones have reported anti-inflammatory activities, but the ability of flavone-rich foods to reduce inflammation is unclear. Here, we report the effect of flavone glycosylation in the regulation of inflammatory mediators in vitro and the absorption of dietary flavones in vivo. Methods and results The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects. Deglycosylation of flavones increased cellular uptake and cytoplasmic localization as shown by high-performance liquid chromatography (HPLC) and microscopy using the flavonoid fluorescent dye diphenyl-boric acid 2-aminoethyl ester (DPBA). Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5 or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). Conclusion These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases. PMID:22351119

  7. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells

    PubMed Central

    Palmieri, Erika M.; Menga, Alessio; Lebrun, Aurore; Hooper, Douglas C.; Butterfield, D. Allan

    2017-01-01

    Abstract Aims: Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. Results: GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. Innovation: Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. Conclusions: Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351–363. PMID:27758118

  8. Importance of mast cells in human periapical inflammatory lesions.

    PubMed

    Ledesma-Montes, Constantino; Garcés-Ortíz, Maricela; Rosales-García, Gilberto; Hernández-Guerrero, Juan Carlos

    2004-12-01

    The role of mast cells (MCs) in periapical inflammatory lesions is not well understood. The objective of this work was to quantify MC numbers in human periapical lesions with the aim to clarify their role in the pathogenesis of these lesions. We analyzed the slides of 64 human periapical inflammatory lesions stained with pH 8.0 toluidine blue technique, quantified the number of MCs, and evaluated any correlation with age, gender, size, and location. The results of this study suggest that MCs were more numerous in females (p < 0.01); MC numbers were higher in biopsies from granulomas with proliferating epithelium and lower in biopsies from chronic apical abscesses; MC counts did not correlate with patients' age or size. MCs were observed more commonly in areas containing inflammatory infiltrate and degranulation was a frequent finding in these zones. Our results suggest that MCs play an active role in the pathogenesis of the periapical inflammatory lesions. The potential role of MCs related with the initiation, development, and persistence of the periapical inflammatory process are discussed.

  9. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    PubMed Central

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance. PMID:22778497

  10. Enhanced natural killer activity and production of pro-inflammatory cytokines in mice selected for high acute inflammatory response (AIRmax).

    PubMed

    Castoldi, Lindsey; Golim, Marjorie Assis; Filho, Orlando Garcia Ribeiro; Romagnoli, Graziela Gorete; Ibañez, Olga Célia Martinez; Kaneno, Ramon

    2007-03-01

    Strains of mice with maximal and minimal acute inflammatory responsiveness (AIRmax and AIRmin, respectively) were developed through selective breeding based on their high- or low-acute inflammatory responsiveness. Previous reports have shown that AIRmax mice are more resistant to the development of a variety of tumours than AIRmin mice, including spontaneous metastasis of murine melanoma. Natural killer activity is involved in immunosurveillance against tumour development, so we analysed the number and activity of natural killer cells (CD49b(+)), T-lymphocyte subsets and in vitro cytokine production by spleen cells of normal AIRmax and AIRmin mice. Analysis of lymphocyte subsets by flow cytometry showed that AIRmax mice had a higher relative number of CD49b(+) cells than AIRmin mice, as well as cytolytic activity against Yac.1 target cells. The number of CD3(+) CD8(+) cells was also higher in AIRmax mice. These findings were associated with the ability of spleen cells from AIRmax mice in vitro to produce higher levels of the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin-12p40 and interferon-gamma but not the anti-inflammatory interleukin-10. Taken together, our data suggest that the selective breeding to achieve the AIRmax and AIRmin strains was able to polarize the genes associated with cytotoxic activity, which can be responsible for the antitumour resistance observed in AIRmax mice.

  11. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    PubMed

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 μg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

  12. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.

  13. Anti-inflammatory activity of Taraxacum officinale.

    PubMed

    Jeon, Hye-Jin; Kang, Hyun-Jung; Jung, Hyun-Joo; Kang, Young-Sook; Lim, Chang-Jin; Kim, Young-Myeong; Park, Eun-Hee

    2008-01-04

    Taraxacum officinale has been widely used as a folkloric medicine for the treatment of diverse diseases. The dried plant was extracted with 70% ethanol to generate its ethanol extract (TEE). For some experiments, ethyl acetate (EA), n-butanol (BuOH) and aqueous (Aq) fractions were prepared in succession from TEE. TEE showed a scavenging activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, a diminishing effect on intracellular reactive oxygen species (ROS) level, and an anti-angiogenic activity in the chicken chorioallantoic (CAM) assay. In the carrageenan-induced air pouch model, TEE inhibited production of exudate, and significantly diminished nitric oxide (NO) and leukocyte levels in the exudate. It also possessed an inhibitory effect on acetic acid-induced vascular permeability and caused a dose-dependent inhibition on acetic acid-induced abdominal writhing in mice. Suppressive effects of TEE on the production of NO and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated macrophages were also assessed. Among the fractions, the n-butanol fraction (BuOH) was identified to be most effective in the CAM assay. Collectively, Taraxacum officinale contains anti-angiogenic, anti-inflammatory and anti-nociceptive activities through its inhibition of NO production and COX-2 expression and/or its antioxidative activity.

  14. Ethanol Extract of Peanut Sprout Exhibits a Potent Anti-Inflammatory Activity in Both an Oxazolone-Induced Contact Dermatitis Mouse Model and Compound 48/80-Treated HaCaT Cells

    PubMed Central

    Choi, Da-In; Choi, Jee-Young; Kim, Young Jee; Lee, Jee-Bum; Kim, Sun-Ouck; Shin, Hyong-Taek

    2015-01-01

    Background We developed an ethanol extract of peanut sprouts (EPS), a peanut sprout-derived natural product, which contains a high level of trans-resveratrol (176.75 µg/ml) and was shown to have potent antioxidant activity. Objective We evaluated the potential anti-inflammatory activity of EPS by measuring its antioxidant potential in skin. Methods The anti-inflammatory activity of EPS was tested using two models of skin inflammation: oxazolone (OX)-induced contact dermatitis in mice and compound 48/80-treated HaCaT cells. As biomarkers of skin inflammation, cyclooxygenase-2 (COX-2) and nerve growth factor (NGF) levels were measured. Results OX-induced contact dermatitis was suppressed markedly in mice that were treated with an ointment containing 5% EPS as evidenced by a decrease in the extent of scaling and thickening (p<0.05) and supported by a histological study. COX-2 (messenger RNA [mRNA] and protein) and NGF (mRNA) levels, which were upregulated in the skin of OX-treated mice, were suppressed markedly in the skin of OX+EPS-treated mice. Consistent with this, compound 48/80-induced expression of COX-2 (mRNA and protein) and NGF (mRNA) in HaCaT cells were suppressed by EPS treatment in a dose-dependent manner. As an inhibitor of NF-κB, IκB protein levels were dose-dependently upregulated by EPS. Fluorescence-activated cell sorting (FACS) analysis revealed that EPS scavenged compound 48/80-induced reactive oxygen species (ROS) in HaCaT cells. Conclusion EPS exerts a potent anti-inflammatory activity via its anti-oxidant activity in both mouse skin and compound 48/80-treated HaCaT cells in vitro. Compound 48/80-treated HaCaT cells are a useful new in vitro model of skin inflammation. PMID:25834352

  15. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

    PubMed Central

    Seo, Dong-Won; Yi, Young-Joo; Lee, Myeong-Seok

    2015-01-01

    Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius. PMID:26839505

  16. The Active Form of Vitamin D Transcriptionally Represses Smad7 Signaling and Activates Extracellular Signal-regulated Kinase (ERK) to Inhibit the Differentiation of a Inflammatory T Helper Cell Subset and Suppress Experimental Autoimmune Encephalomyelitis.

    PubMed

    Nanduri, Ravikanth; Mahajan, Sahil; Bhagyaraj, Ella; Sethi, Kanupriya; Kalra, Rashi; Chandra, Vemika; Gupta, Pawan

    2015-05-08

    The ability of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), to transcriptionally modulate Smads to inhibit Th17 differentiation and experimental autoimmune encephalomyelitis (EAE) has not been adequately studied. This study reports modulation of Smad signaling by the specific binding of the VDR along with its heterodimeric partner RXR to the negative vitamin D response element on the promoter of Smad7, which leads to Smad7 gene repression. The vitamin D receptor-mediated increase in Smad3 expression partially explains the IL10 augmentation seen in Th17 cells. Furthermore, the VDR axis also modulates non-Smad signaling by activating ERK during differentiation of Th17 cells, which inhibits the Th17-specific genes il17a, il17f, il22, and il23r. In vivo EAE experiments revealed that, 1,25(OH)2D3 suppression of EAE correlates with the Smad7 expression in the spleen and lymph nodes. Furthermore, Smad7 expression also correlates well with IL17 and IFNγ expression in CNS infiltered inflammatory T cells. We also observed similar gene repression of Smad7 in in vitro differentiated Th1 cells when cultured in presence of 1,25(OH)2D3. The above canonical and non-canonical pathways in part address the ability of 1,25(OH)2D3-VDR to inhibit EAE.

  17. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    PubMed

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases.

  18. Anti-inflammatory effects of shea butter through inhibition of iNOS, COX-2, and cytokines via the Nf-κB pathway in LPS-activated J774 macrophage cells.

    PubMed

    Verma, Nandini; Chakrabarti, Rina; Das, Rakha H; Gautam, Hemant K

    2012-01-12

    Shea butter is traditionally used in Africa for its anti-inflammatory and analgesic effects. In this study we explored the anti-inflammatory activities of the methanolic extract of shea butter (SBE) using lipopolysaccharide (LPS)-induced murine macrophage cell line J774. It was observed that SBE significantly reduced the levels of LPS-induced nitric oxide, Tumor necrosis factor-α (TNF-α), interleukins, 1β (IL-1β), and -12 (IL-12) in the culture supernatants in a dose dependent manner. Expression of pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were also inhibited by SBE. These anti-inflammatory effects were due to an inhibitory action of SBE on LPS-induced iNOS, COX-2, TNF-α, IL-1β, and IL-12 mRNA expressions. Moreover, SBE efficiently suppressed IκB phosphorylation and NF-κB nuclear translocation induced by LPS. These findings explain the molecular bases of shea butter's bioactivity against various inflammatory conditions and substantiate it as a latent source of novel therapeutic agents.

  19. Inflammatory Levels of Nitric Oxide Inhibit Airway Epithelial Cell Migration by Inhibition of the Kinase ERK1/2 and Activation of Hypoxia-inducible Factor-1α*S⃞

    PubMed Central

    Bove, Peter F.; Hristova, Milena; Wesley, Umadevi V.; Olson, Nels; Lounsbury, Karen M.; van der Vliet, Albert

    2008-01-01

    Increased synthesis of NO during airway inflammation, caused by induction of nitric-oxide synthase 2 in several lung cell types, may contribute to epithelial injury and permeability. To investigate the consequence of elevated NO production on epithelial function, we exposed cultured monolayers of human bronchial epithelial cells to the NO donor diethylenetriaamine NONOate. At concentrations generating high nanomolar levels of NO, representative of inflammatory conditions, diethylenetriaamine NONOate markedly reduced wound closure in an in vitro scratch injury model, primarily by inhibiting epithelial cell migration. Analysis of signaling pathways and gene expression profiles indicated a rapid induction of the mitogen-activated protein kinase phosphatase (MPK)-1 and decrease in extracellular signal-regulated kinase (ERK)1/2 activation, as well as marked stabilization of hypoxia-inducible factor (HIF)-1α and activation of hypoxia-responsive genes, under these conditions. Inhibition of ERK1/2 signaling using U0126 enhanced HIF-1α stabilization, implicating ERK1/2 dephosphorylation as a contributing mechanism in NO-mediated HIF-1α activation. Activation of HIF-1α by the hypoxia mimic cobalt chloride, or cell transfection with a degradation-resistant HIF-1α mutant construct inhibited epithelial wound repair, implicating HIF-1α in NO-mediated inhibition of cell migration. Conversely, NO-mediated inhibition of epithelial wound closure was largely prevented after small interfering RNA suppression of HIF-1α. Finally, NO-mediated inhibition of cell migration was associated with HIF-1α-dependent induction of PAI-1 and activation of p53, both negative regulators of epithelial cell migration. Collectively, our results demonstrate that inflammatory levels of NO inhibit epithelial cell migration, because of suppression of ERK1/2 signaling, and activation of HIF-1α and p53, with potential consequences for epithelial repair and remodeling during airway inflammation. PMID

  20. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells.

    PubMed

    Koh, Yoon-Jeoung; Cha, Dong-Soo; Ko, Je-Sang; Park, Hyun-Jin; Choi, Hee-Don

    2010-08-01

    To investigate the efficacy and the mechanism of the anti-inflammatory effect of Taraxacum officinale leaves (TOLs), the effect of a methanol extract and its fractions recovered from TOLs on lipopolysaccharide (LPS)-induced responses was studied in the mouse macrophage cell line, RAW 264.7. Cells were pretreated with various concentrations of the methanol extract and its fractions and subsequently incubated with LPS (1 microg/mL). The levels of nitric oxide (NO), prostaglandin (PG) E(2), and pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined using enzyme-linked immunosorbent assays. Expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and activation of mitogen-activated protein (MAP) kinases were analyzed using western blotting. The methanol extract and its fractions inhibited LPS-induced production of NO, pro-inflammatory cytokines, and PGE(2) in a dose-dependent manner. The chloroform fraction significantly suppressed production of NO, PGE(2), and two pro-inflammatory cytokines (TNF-alpha and IL-1beta) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 microg/mL, respectively. The ethyl acetate fraction also inhibited production of the inflammatory molecules. The chloroform and ethyl acetate fractions reduced LPS-induced expressions of iNOS and COX-2 and activation of MAP kinases in a dose-dependent manner. Among the fractions of the methanol extract, the chloroform and ethyl acetate fractions exhibited the most effective anti-inflammatory activities. These results show that the anti-inflammatory effects of TOLs are probably due to down-regulation of NO, PGE(2), and pro-inflammatory cytokines and reduced expressions of iNOS and COX-2 via inactivation of the MAP kinase signal pathway.

  1. Mast Cell Proteases as Protective and Inflammatory Mediators

    PubMed Central

    Caughey, George H.

    2014-01-01

    Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them—notably tryptases and chymases—are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms, and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptides like endothelin and neurotensin during septic peritonitis, and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence non-mast cell proteases, such as by activating matrix metalloproteinase cascades

  2. A novel inflammatory role for platelets in sickle cell disease.

    PubMed

    Davila, Jennifer; Manwani, Deepa; Vasovic, Ljiljana; Avanzi, Mauro; Uehlinger, Joan; Ireland, Karen; Mitchell, W Beau

    2015-01-01

    The severe pain, ischemia and organ damage that characterizes sickle cell disease (SCD) is caused by vaso-occlusion, which is the blockage of blood vessels by heterotypic aggregates of sickled erythrocytes and other cells. Vaso-occlusion is also a vasculopathy involving endothelial cell dysfunction, leukocyte activation, platelet activation and chronic inflammation resulting in the multiple adhesive interactions between cellular elements. Since platelets mediate inflammation as well as thrombosis via release of pro- and anti-inflammatory molecules, we hypothesized that platelets may play an active inflammatory role in SCD by secreting increased amounts of cytokines. Since platelets have been shown to contain mRNA and actively produce proteins, we also hypothesized that SCD platelets may contain increased cytokine mRNA. In this cross-sectional study, we sought to compare both the quantity of cytokines secreted and the cytokine mRNA content, between SCD and control platelets. We measured the secretion of Th1, Th2, and Th17-related cytokines from platelets in a cohort of SCD patients. We simultaneously measured platelet mRNA levels of those cytokines. Platelets from SCD patients secreted increased quantities of IL-1β, sCD40L, and IL-6 compared to controls. Secretion was increased in patients with alloantibodies. Additionally, mRNA of those cytokines was increased in SCD platelets. Platelets from sickle cell patients secrete increased amounts of inflammatory cytokines, and contain increased cytokine mRNA. These findings suggest a novel immunological role for platelets in SCD vasculopathy, in addition to their thrombotic role, and strengthen the rationale for the use of anti-platelet therapy in SCD.

  3. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  4. TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells.

    PubMed

    He, Aiqin; Ji, Rui; Shao, Jia; He, Chenyun; Jin, Ming; Xu, Yunzhao

    2016-02-01

    The synthetic compound 7-4-[Bis-(2-hydroxyethyl)-amino]-butoxy-5-hydroxy-8-methoxy-2-phenylchromen-4-one (V8) is a novel flavonoid-derived compound. In this study, we investigated the effects of V8 on Toll-like receptor 4 (TLR4)-mediated inflammatory reaction in human cervical cancer SiHa cells and lipopolysaccharide (LPS)-induced TLR4 activity in cervical cancer SiHa (HPV16+) cells, but not in HeLa (HPV18+) and C33A (HPV-) cells. In addition, V8 inhibited LPS-induced expression of TLR4, MyD88, TRAF6 and phosphorylation of TAK1, and their interaction with TLR4 in SiHa cells, resulting in an inhibition of TLR4-MyD88-TRAF6-TAK1 complex. Moreover, V8 blocked LPS-induced phosphorylation of IκB and IKK, resulting in inhibition of the nuclear translocation of P65-NF-κB in SiHa cells. We also found that V8 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, IL-6, IL-8, CCL-2, and TNF-α in LPS-stimulated SiHa cells. These results suggested that V8 exerted an anti-inflammatory effect on SiHa cells by inhibiting the TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation.

  5. Detailed analysis of inflammatory cell infiltration in colorectal cancer

    PubMed Central

    Väyrynen, J P; Tuomisto, A; Klintrup, K; Mäkelä, J; Karttunen, T J; Mäkinen, M J

    2013-01-01

    Background: Higher-grade inflammatory infiltrate is a promising marker for better prognosis in colorectal cancer (CRC). However, the knowledge on the interrelationships between different inflammatory cells and classifications is fragmentary. Methods: We analysed the densities of eight types of inflammatory cells in a prospectively recruited group of 117 CRC patients and determined their interrelationships and contributions to Klintrup–Mäkinen (K–M) score of overall peritumoural inflammation. We characterised the inflammatory infiltrate in relation to stage and recurrences in 24-month follow-up. Results: There were high positive correlations between the inflammatory cell densities, with the exception of mast cells and CD1a+ immature dendritic cells. High K–M score associated with high peri- and intratumoural densities of CD3+, CD8+, CD68+, CD83+, and FoxP3+ cells and neutrophils. Advanced stage associated with low K–M score, as well as low CD3+, CD8+, CD83+, and FoxP3+ cell counts, of which low K–M score, low CD3+ T-cell count, and low FoxP3+ T-cell count were linked to higher recurrence rate. Conclusion: The density of CRC inflammatory infiltrate declines as stage advances. Especially, low K–M score and low T-cell counts predict higher recurrence rate. The high positive correlations between the individual inflammatory markers support the value of overall inflammatory reaction scoring. PMID:24008661

  6. Anti-inflammatory activity of IFN-beta in carrageenan-induced pleurisy in the mouse.

    PubMed Central

    Ghiara, P; Bartalini, M; Tagliabue, A; Boraschi, D

    1986-01-01

    The effect of IFN-beta on the development of the inflammatory reaction was studied in an experimental animal model, carrageenan-induced pleurisy in the mouse. Intrapleural inoculation of IFN-beta at the same time as carrageenan administration inhibited both migration of inflammatory cells and exudate formation in the pleural cavity in a dose-dependent fashion. Similarly, IFN-beta decreased the presence of the arachidonate metabolites PGI2, TXA2 and PGE2 (highly active molecules involved in the regulation of the inflammatory reaction) in inflammatory exudates. A marked inhibition of the inflammatory response to carrageenan was also evident when IFN-beta was administered several hours after the inflammatory challenge. In contrast, administration of IFN-gamma did not modify significantly any of the inflammatory parameters considered. PMID:3105936

  7. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site

    PubMed Central

    Haverkamp, Jessica M.; Crist, Scott A.; Elzey, Bennett D.; Cimen, Cansu; Ratliff, Timothy L.

    2011-01-01

    Current thinking suggests that despite the heterogeneity of myeloid-derived suppressor cells (MDSC), all Gr-1+CD11b+ cells can become suppressive when exposed to inflammatory stimuli. In vitro evaluation shows MDSC from multiple tissue sites have suppressive activity, and in vivo inhibition of MDSC function enhances T cell responses. However, the relative capacity of MDSC present at localized inflammatory sites or in peripheral tissues to suppress T cell responses in vivo has not been directly evaluated. We now demonstrate that during a tissue specific inflammatory response, MDSC inhibition of CD8 T cell proliferation and IFN-γ production is restricted to the inflammatory site. Using a prostate specific inflammatory model and a heterotopic prostate tumor model, we show that MDSC from inflammatory sites or from tumor tissue possess immediate capacity to inhibit T cell function, whereas those isolated from peripheral tissues (spleens and liver) are not suppressive without activation of iNOS by exposure to IFN-γ. These data show MDSC are important regulators of immune responses in the prostate during acute inflammation and the chronic inflammatory setting of tumor growth and that regulation of T cell function by MDSC during a localized inflammatory response is restricted in vivo to the site of an ongoing immune response. PMID:21287554

  8. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  9. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation.

    PubMed

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; Meza-Cervantez, Patricia; Arroyo, Rossana; Tsutsumi, Víctor; Shibayama, Mineko

    2009-11-01

    Naegleria fowleri is an amoeboflagellate responsible for the fatal central nervous system (CNS) disease primary amoebic meningoencephalitis (PAM). This amoeba gains access to the CNS by invading the olfactory mucosa and crossing the cribriform plate. Studies using a mouse model of infection have shown that the host secretes mucus during the very early stages of infection, and this event is followed by an infiltration of neutrophils into the nasal cavity. In this study, we investigated the role of N. fowleri trophozoites in inducing the expression and secretion of airway mucin and pro-inflammatory mediators. Using the human mucoepidermal cell line NCI-H292, we demonstrated that N. fowleri induced the expression of the MUC5AC gene and protein and the pro-inflammatory mediators interleukin-8 (IL-8) and interleukin-1 beta (IL-1 beta), but not tumour necrosis factor-alpha or chemokine c-c motif ligand 11 (eotaxin). Since the production of reactive oxygen species (ROS) is a common phenomenon involved in the signalling pathways of these molecules, we analysed if trophozoites were capable of causing ROS production in NCI-H292 cells by detecting oxidation of the fluorescent probe 2,7-dichlorofluorescein diacetate. NCI-H292 cells generated ROS after 15-30 min of trophozoite stimulation. Furthermore, the expression of MUC5AC, IL-8 and IL-1 beta was inhibited in the presence of the ROS scavenger DMSO. In addition, the use of an epidermal growth factor receptor inhibitor decreased the expression of MUC5AC and IL-8, but not IL-1 beta. We conclude that N. fowleri induces the expression of some host innate defence mechanisms, such as mucin secretion (MUC5AC) and local inflammation (IL-8 and IL-1 beta) in respiratory epithelial cells via ROS production and suggest that these innate immune mechanisms probably prevent most PAM infections.

  10. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins.

    PubMed

    Tubaro, Aurelia; Giangaspero, Anna; Sosa, Silvio; Negri, Roberto; Grassi, Gianpaolo; Casano, Salvatore; Della Loggia, Roberto; Appendino, Giovanni

    2010-10-01

    A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids.

  11. Anti-allergic inflammatory activities of compounds of amomi fructus.

    PubMed

    Choi, Hyun Gyu; Je, In-Gyu; Kim, Geum Jin; Choi, Hyukjae; Kim, Sang Hyun; Kim, Jeong Ah; Lee, Kim Seung Ho

    2015-04-01

    Activity-guided isolation of compounds from the fruits of Amomum xanthioides resulted in the purification of fourteen phenolic compounds, 4-hydroxy-benzaldehyde (1), 3,4-dihydroxybenzaldehyde (2), 3,5-dimethoxy-4-methylbenzaldehyde (3), syringic aldehyde (4), benzoic acid (5), 3,4-dihydroxy benzoic acid (6), vanillic acid (7), 3-hydroxy-2-methoxybenzoic acid (8), o-vanillic acid (9), phenylacetic acid (10), tyrosol (11), pyrocatechol (12), 1,2,4,5-tetramethoxybenzene (13), and 3,3',5,5'-tetramethoxybiphenyl-4,4'-diol (14). To evaluate the anti-allergic inflammatory activities of these compounds, we examined the inhibitory effects of the isolates (1-14) on histamine release and on the expressions of tumor necrosis factor (TNF)-ca and interleukin (IL)-6 genes by using human mast cells. Of the tested compounds, 9, 11, and 13 suppressed histamine release from mast cells, and all isolates attenuated the expressions of the pro-inflammatory cytokines, TNF-α and IL-6 genes in human mast cells.

  12. Photoreceptor Cells Produce Inflammatory Mediators That Contribute to Endothelial Cell Death in Diabetes

    PubMed Central

    Tonade, Deoye; Liu, Haitao; Kern, Timothy S.

    2016-01-01

    Purpose Recent studies suggest that photoreceptor cells regulate local inflammation in the retina in diabetes. The purpose of this study was to determine if photoreceptor cells themselves produce inflammatory proteins in diabetes and if soluble factors released by photoreceptors in elevated glucose induce inflammatory changes in nearby cells. Methods Laser capture microdissection was used to isolate the outer retina (photoreceptors) from the inner retina in nondiabetic and diabetic mice. Diabetes-induced changes in the expression of inflammatory targets were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. Cell culture experiments were carried out to determine if photoreceptors in vitro and ex vivo release soluble mediators that can stimulate nearby cells. Photoreceptor contribution to leukocyte-mediated endothelial cell death was tested using coculture models. Results Messenger ribonucleic acid and protein expression levels for inflammatory proteins intercellular adhesion molecule 1 (ICAM1), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) were increased in photoreceptors cells in diabetes. In vitro and ex vivo studies show that photoreceptor cells in elevated glucose release mediators that can induce tumor necrosis factor-α in leukocytes and endothelial cells, but not in glia. The soluble mediators released by photoreceptor cells in elevated glucose are regulated by transforming growth factor β-activated kinase 1 and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) signaling. In contrast to enhanced leukocyte-mediated killing of endothelial cells by leukocytes from wild-type diabetic mice, leukocytes from diabetic mice lacking photoreceptor cells (opsin−/−) did not kill endothelial cells. Conclusions These data indicate that photoreceptor cells are a source of inflammatory proteins in diabetes, and their release of soluble mediators can contribute to the death of retinal capillaries

  13. Anti-Inflammatory Activity of Sanghuangporus sanghuang Mycelium

    PubMed Central

    Lin, Wang-Ching; Deng, Jeng-Shyan; Huang, Shyh-Shyun; Wu, Sheng-Hua; Chen, Chin-Chu; Lin, Wan-Rong; Lin, Hui-Yi; Huang, Guan-Jhong

    2017-01-01

    Acute lung injury (ALI) is characterized by inflammation of the lung tissue and oxidative injury caused by excessive accumulation of reactive oxygen species. Studies have suggested that anti-inflammatory or antioxidant agents could be used for the treatment of ALI with a good outcome. Therefore, our study aimed to test whether the mycelium extract of Sanghuangporus sanghuang (SS-1), believed to exhibit antioxidant and anti-inflammatory properties, could be used against the excessive inflammatory response associated with lipopolysaccharides (LPS)-induced ALI in mice and to investigate its possible mechanism of action. The experimental results showed that the administration of SS-1 could inhibit LPS-induced inflammation. SS-1 could reduce the number of inflammatory cells, inhibit myeloperoxidase (MPO) activity, regulate the TLR4/PI3K/Akt/mTOR pathway and the signal transduction of NF-κB and MAPK pathways in the lung tissue, and inhibit high mobility group box-1 protein 1 (HNGB1) activity in BALF. In addition, SS-1 could affect the synthesis of antioxidant enzymes Heme oxygenase 1 (HO-1) and Thioredoxin-1 (Trx-1) in the lung tissue and regulate signal transduction in the KRAB-associated protein-1 (KAP1)/nuclear factor erythroid-2-related factor Nrf2/Kelch Like ECH associated Protein 1 (Keap1) pathway. Histological results showed that administration of SS-1 prior to induction could inhibit the large-scale LPS-induced neutrophil infiltration of the lung tissue. Therefore, based on all experimental results, we propose that SS-1 exhibits a protective effect against LPS-induced ALI in mice. The mycelium of S. sanghuang can potentially be used for the treatment or prevention of inflammation-related diseases. PMID:28178212

  14. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  15. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    PubMed

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients.

  16. Flavonoids from Anoectochilus annamensis and their Anti-inflammatory Activity.

    PubMed

    Hoi, Tran Minh; Thai, Tran Van; Ha, Chu Thi Thu; Anh, Ha Thi Van; Minh, Phan Xuan Binh; Dat, Nguyen Tien

    2016-05-01

    One new flavonol diglycoside, 4',5-dihydroxy-3,3',7-trimethoxyflavone 4'-O-α-L-rhamnopyranosyl-(1 --> 6)-β-D-glucopyranoside (1), and two known compounds (2-3) were isolated from the methanolic extract of Anoectochilus annamensis Aver. aerial parts. The effects were evaluated of all isolated compounds (1-3) on LPS-induced production of the inflammatory mediator nitric oxide (NO) by RAW264.7 cells. 4',5-Dihydroxy-3,3',7-trimethoxyflavone (2) was the most active while the addition of a rutinoside at C4' (compound 1) decreased the inhibitory activity. This is the first report on the chemical composition and biological activity of A. annamensis.

  17. [The role of IRA B cells in selected inflammatory processes].

    PubMed

    Zasada, Magdalena; Rutkowska-Zapała, Magdalena; Lenart, Marzena; Kwinta, Przemko

    2016-03-16

    The first report about the discovery of new, previously unknown immune cells named IRA B cells (innate response activator B cells) appeared in 2012. So far, their presence has been verified in both mice and humans. However, IRA B cells belong to the family of B lymphocytes and have a number of characteristics unique to this group of cells. IRA B cells are formed from activated B1a lymphocytes after their contact with a pathogen. B1a lymphocytes mainly reside within body cavities. Activated by the pathogen, they move on into secondary lymphoid organs (spleen, lymph nodes) where they differentiate into IRA B cells. IRA B cells are a rich source of granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF can stimulate IRA B cells in an autocrine manner for the secretion of intracellular stocks of immunoglobulin M (IgM), which can facilitate pathogens' phagocytosis by neutrophils. GM-CSF also stimulates neutrophils into active phagocytosis. Rapid eradication of the pathogen can prevent the development of an excessive inflammatory response, which can be dangerous for the organism. Until now the involvement of IRA B lymphocytes in the pathogenesis of sepsis and pneumonia has been proven, as well as their role in the progression of atherosclerotic lesions in mice. There is research in progress on the possibility of increasing the number of IRA B cells, for example by intravenous supply of modified immunoglobulins. It is necessary to characterize human IRA B cells and to determine their role in the functioning of the immune system.

  18. Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/orai channels normally prevented by mitochondria.

    PubMed

    Muñoz, Eva; Valero, Ruth A; Quintana, Ariel; Hoth, Markus; Núñez, Lucía; Villalobos, Carlos

    2011-05-06

    Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).

  19. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Prieto, Patricia; Fernández-Velasco, María; Fernández-Santos, María E.; Sánchez, Pedro L.; Terrón, Verónica; Martín-Sanz, Paloma; Fernández-Avilés, Francisco; Boscá, Lisardo

    2016-01-01

    Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to “cell aging” related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression) and to anti-inflammatory cytokines (i.e., HO1 and Arg1) until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6, and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies. PMID:27899899

  20. Inflammatory Cytokines and White Blood Cell Counts ...

    EPA Pesticide Factsheets

    Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lympho

  1. Inflammatory Kinetics and Efficacy of Anti-inflammatory Treatments on Human Nucleus Pulposus Cells

    PubMed Central

    Walter, Benjamin A; Purmessur, Devina; Likhitpanichkul, Morakot; Weinberg, Alan; Cho, Samuel K.; Qureshi, Sheeraz A.; Hecht, Andrew C.; Iatridis, James C.

    2015-01-01

    Study Design Human nucleus pulposus (NP) cell culture study investigating response to tumor necrosis factor-α (TNFα), effectiveness of clinically available anti-inflammatory drugs, and interactions between pro-inflammatory cytokines. Objective To characterize the kinetic response of pro-inflammatory cytokines released by human NP cells to TNFα stimulation and the effectiveness of multiple anti-inflammatories with 3 sub-studies: Timecourse, Same-time blocking, Delayed blocking. Summary of Background Data Chronic inflammation is a key component of painful intervertebral disc (IVD) degeneration. Improved efficacy of anti-inflammatories requires better understanding of how quickly NP cells produce pro-inflammatory cytokines and which pro-inflammatory mediators are most therapeutically advantageous to target. Methods Degenerated human NP cells (n=10) were cultured in alginate with or without TNFα (10ng/mL). Cells were incubated with one of four anti-inflammatories (anti-IL-6 receptor/atlizumab, IL-1 receptor anatagonist, anti-TNFα/infliximab and sodium pentosan polysulfate/PPS) in two blocking-studies designed to determine how intervention timing influences drug efficacy. Cell viability, protein and gene expression for IL-1β, IL-6 & IL-8 were assessed. Results Timecourse: TNFα substantially increased the amount of IL-6, IL-8 & IL-1β, with IL-1β and IL-8 reaching equilibrium within ~72 hours (IL-1β: 111±40pg/mL, IL-8: 8478±957pg/mL), and IL-6 not reaching steady state after 144 hours (1570±435 pg/mL). Anti-TNFα treatment was most effective at reducing the expression of all cytokines measured when added at the same time as TNFα stimulation. Similar trends were observed when drugs were added 72 hours after TNFα stimulation, however, no anti-inflammatories significantly reduced cytokine levels compared to TNF control. Conclusion IL-1β, IL-6 and IL-8 were expressed at different rates and magnitudes suggesting different roles for these cytokines in disease

  2. Linking estrogen receptor β expression with inflammatory bowel disease activity

    PubMed Central

    Pierdominici, Marina; Maselli, Angela; Varano, Barbara; Barbati, Cristiana; Cesaro, Paola; Spada, Cristiano; Zullo, Angelo; Lorenzetti, Roberto; Rosati, Marco; Rainaldi, Gabriella; Limiti, Maria Rosaria; Guidi, Luisa

    2015-01-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity. PMID:26497217

  3. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors.

    PubMed

    Salvi, Valentina; Vermi, William; Gianello, Veronica; Lonardi, Silvia; Gagliostro, Vincenzo; Naldini, Antonella; Sozzani, Silvano; Bosisio, Daniela

    2016-06-28

    Lymph node expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Previous work in mice has shown that this process depends on the presence of VEGF-A produced by B cells, macrophages and stromal cells. In humans, however, the cell types and the mechanisms regulating the intranodal production of VEGF-A remain elusive. Here we show that CD11c+ cells represent the main VEGF-A-producing cell population in human reactive secondary lymphoid organs. In addition we find that three transcription factors, namely CREB, HIF-1α and STAT3, regulate the expression of VEGF-A in inflamed DCs. Both HIF-1α and STAT3 are activated by inflammatory agonists. Conversely, CREB phosphorylation represents the critical contribution of endogenous or exogenous PGE2. Taken together, these results propose a crucial role for DCs in lymph node inflammatory angiogenesis and identify novel potential cellular and molecular targets to limit inflammation in chronic diseases and tumors.

  4. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors

    PubMed Central

    Salvi, Valentina; Vermi, William; Gianello, Veronica; Lonardi, Silvia; Gagliostro, Vincenzo; Naldini, Antonella

    2016-01-01

    Lymph node expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Previous work in mice has shown that this process depends on the presence of VEGF-A produced by B cells, macrophages and stromal cells. In humans, however, the cell types and the mechanisms regulating the intranodal production of VEGF-A remain elusive. Here we show that CD11c+ cells represent the main VEGF-A-producing cell population in human reactive secondary lymphoid organs. In addition we find that three transcription factors, namely CREB, HIF-1α and STAT3, regulate the expression of VEGF-A in inflamed DCs. Both HIF-1α and STAT3 are activated by inflammatory agonists. Conversely, CREB phosphorylation represents the critical contribution of endogenous or exogenous PGE2. Taken together, these results propose a crucial role for DCs in lymph node inflammatory angiogenesis and identify novel potential cellular and molecular targets to limit inflammation in chronic diseases and tumors. PMID:27256980

  5. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response.

    PubMed

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William; Evans, Jodi F

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.

  6. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    PubMed Central

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases. PMID:28191017

  7. Accumulation and activation of epidermal γδ T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype.

    PubMed

    Sulcova, Jitka; Maddaluno, Luigi; Meyer, Michael; Werner, Sabine

    2015-09-01

    Chronic skin inflammation resulting from a defective epidermal barrier is a hallmark of atopic dermatitis (AD). We previously demonstrated that mice lacking FGF receptors 1 and 2 in keratinocytes (K5-R1/R2 mice) develop an AD-like chronic dermatitis as a result of an impaired epidermal barrier. Here, we show that γδ T cells, which rapidly respond to various insults, accumulate in the epidermis of K5-R1/R2 mice before the development of histological abnormalities. Their number and activation further increase as the phenotype progresses, most likely as a consequence of increased expression of Il-2 and Il-7 and the stress-induced proteins Rae-1, H60c, Mult1, PlexinB2, and Skint1. To determine the role of γδ T cells in the skin phenotype, we generated quadruple mutant K5-R1/-R2 mice lacking γδ T cells. Surprisingly, loss of γδ T cells did not or only marginally affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, and accumulation and activation of different immune cells in the skin of K5-R1/R2 mice, possibly due to partial compensation by αβ T cells. These results demonstrate that γδ T cells do not contribute to the development or maintenance of chronic inflammation in response to a defect in the epidermal barrier.

  8. Anti-Inflammatory Action of Pterostilbene is Mediated Through the p38 Mitogen-Activated Protein Kinase Pathway in Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation and nitration/nitrosation stress and generation of pro-inflammatory cytokines are hallmarks of inflammation. Since chronic inflammation is implicated in several pathological conditions in humans, including cancers of the colon, we have been interested in identifying new anti-inflammatory c...

  9. Antibacterial and Anti-Inflammatory Activities of Physalis Alkekengi var. franchetii and Its Main Constituents

    PubMed Central

    Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue

    2016-01-01

    This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196

  10. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  11. Polarization dictates iron handling by inflammatory and alternatively activated macrophages

    PubMed Central

    Corna, Gianfranca; Campana, Lara; Pignatti, Emanuele; Castiglioni, Alessandra; Tagliafico, Enrico; Bosurgi, Lidia; Campanella, Alessandro; Brunelli, Silvia; Manfredi, Angelo A.; Apostoli, Pietro; Silvestri, Laura; Camaschella, Clara; Rovere-Querini, Patrizia

    2010-01-01

    Background Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and Methods Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. Results M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize – albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. Conclusions Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with

  12. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    PubMed Central

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p < 0.05 (two-tailed). Results Results indicate that the curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  13. Cell surface adrenergic receptor stimulation modifies the endothelial response to SIRS. Systemic Inflammatory Response Syndrome.

    PubMed

    Tighe, D; Moss, R; Bennett, D

    1996-11-01

    The complex pathway seen in patients with the systemic inflammatory response syndrome (SIRS) does not readily respond to mediator blockade. All such trials conducted in SIRS patients have shown no benefit in reducing mortality. We have shown experimentally that in sepsis, the administration of beta 2-adrenoceptor agonists reduces hepatic cellular injury, whereas administration of an alpha 1-adrenoceptor agonist increases hepatic cellular injury. Inflammatory mediators can cause a dose-related reversible change in target endothelial cells (ECs). There is a substantial body of literature describing the anti-inflammatory effects of beta 2-adrenoceptor agonists. They reduce both the increased permeability and the production of inflammatory mediators from ECs. Cellular transduction processes are involved when adrenergic receptor agonists modify either the anti-inflammatory or proinflammatory response to sepsis in ECs. Inflammatory mediators and alpha 1-adrenoceptor agonists stimulate their trimeric G protein-linked receptors to produce diacylglycerol (DAG) and increase the intracellular concentration of calcium. DAG is involved in the production of both inflammatory proteins and lipids. In addition, mitogen-activated protein kinase (MAPK) is activated which is also involved in the production of inflammatory proteins and lipids. beta 2-adrenoceptor agonists activate their trimeric G protein-linked receptors to produce the stimulatory G protein (Gs). Gs stimulates adenyl cyclase to form cyclic adenosine monophosphate (cAMP) and activate protein kinase A (PKA). PKA is involved in activating gene transcription agents to produce anti-inflammatory proteins such as interleukin-10. PKA also inhibits phospholipase C and MAPK. Although promising, the use of beta-adrenoceptor agonists or agonists that increase cellular cAMP to activate the cells' endogenous anti-inflammatory pathway requires further study.

  14. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    PubMed

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  15. Stem cells on fire: inflammatory signaling in HSC emergence.

    PubMed

    Veldman, Matthew B; Lin, Shuo

    2014-12-08

    Inflammatory pathways protect the body from infection and promote healing following injury. Recent reports demonstrate the surprising involvement of these pathways during hematopoietic stem cell emergence from the hemogenic endothelium in both zebrafish and mice.

  16. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research.

    PubMed

    Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi

    2015-10-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples.

  17. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites.

    PubMed

    Wang, Qilong; Ren, Yi; Mu, Jingyao; Egilmez, Nejat K; Zhuang, Xiaoyin; Deng, Zhongbin; Zhang, Lifeng; Yan, Jun; Miller, Donald; Zhang, Huang-Ge

    2015-06-15

    Inflammation is a hallmark of cancer. Activated immune cells are intrinsically capable of homing to inflammatory sites. Using three inflammatory-driven disease mouse models, we show that grapefruit-derived nanovectors (GNV) coated with inflammatory-related receptor enriched membranes of activated leukocytes (IGNVs) are enhanced for homing to inflammatory tumor tissues. Blocking LFA-1 or CXCR1 and CXCR2 on the IGNVs significantly inhibits IGNV homing to the inflammatory tissue. The therapeutic potential of IGNVs was further demonstrated by enhancing the chemotherapeutic effect as shown by inhibition of tumor growth in two tumor models and inhibiting the inflammatory effects of dextran sulfate sodium-induced mouse colitis. The fact that IGNVs are capable of homing to inflammatory tissue and that chemokines are overexpressed in diseased human tissue provides the rationale for using IGNVs to more directly deliver therapeutic agents to inflammatory tumor sites and the rationale for the use of IGNVs as treatment for certain cancers in personalized medicine.

  18. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites

    PubMed Central

    Wang, Qilong; Ren, Yi; Mu, Jingyao; Egilmez, Nejat; Zhuang, Xiaoyin; Deng, Zhongbin; Zhang, Lifeng; Yan, Jun; Miller, Donald; Zhang, Huang-Ge

    2015-01-01

    Inflammation is a hallmark of cancer. Activated immune cells are intrinsically capable of homing to inflammatory sites. Using three inflammatory driven disease mouse models, we show that grapefruit-derived nanovectors (GNVs) coated with inflammatory related receptor enriched membranes of activated leukocytes (IGNVs) are enhanced for homing to inflammatory tumor tissues. Blocking LFA-1 or CXCR1 and CXCR2 on the IGNVs significantly inhibits IGNV homing to the inflammatory tissue. The therapeutic potential of IGNVs was further demonstrated by enhancing the chemotherapeutic effect as shown by inhibition of tumor growth in two tumor models and inhibiting the inflammatory effects of DSS induced mouse colitis. The fact that IGNVs are capable of homing to inflammatory tissue and that there is an overexpression of chemokines in diseased human tissue provides the rationale for using IGNVs to more directed delivery of therapeutic agents to inflammatory tumor sites and the use of IGNVs as personalized medicine for treatment of certain cancers. PMID:25883092

  19. Anti-inflammatory and analgesic activities of Melanthera scandens

    PubMed Central

    Okokon, Jude E; Udoh, Anwanga E; Frank, Samuel G; Amazu, Louis U

    2012-01-01

    Objective To evaluate the anti-inflammatory and analgesic activities of leaf extract of Melanthera scandens (M. scandens). Methods The crude leaf extract (39–111 mg/kg) of M. scandens was investigated for anti-inflammatory and analgesic activities using various experimental models. The anti-inflammatory activity was investigated using carragenin, egg-albumin induced oedema models, while acetic acid, formalin-induced paw licking and thermal-induced pain models were used to evaluate the antinociceptive property. Results The extract caused a significant (P<0.05 – 0.001) dose-dependent reduction of inflammation and pains induced by different agents used. Conclusions The leaf extract possesses anti-inflammatory and analgesic effects which may be mediated through the phytochemical constituents of the plant. PMID:23569885

  20. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    PubMed Central

    Cruz Paredes, Carla; Bolívar Balbás, Paulina; Juárez, Zaida Nelly; Sánchez Arreola, Eugenio; Hernández, Luis Ricardo

    2013-01-01

    The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities. PMID:23843731

  1. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  2. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  3. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury.

    PubMed

    Chatterjee, Nabanita; Das, Subhadip; Bose, Dipayan; Banerjee, Somenath; Das, Sujata; Chattopadhyay, Debprasad; Saha, Krishna Das

    2012-10-15

    Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)-phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model was and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P<0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P<0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P<0.01). These findings indicate that 3-(arylideneamino)-phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent.

  4. The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: a potential mechanism for thrombosis in eosinophilic inflammatory states.

    PubMed

    Wang, Jian-Guo; Mahmud, Shawn A; Thompson, Jacob A; Geng, Jian-Guo; Key, Nigel S; Slungaard, Arne

    2006-01-15

    In vivo, bromide (Br(-)), nitrite (NO(2)(-)), and thiocyanate (SCN(-)) compete for oxidation by eosinophil peroxidase (EPO) and H(2)O(2), yielding, respectively, HOBr, NO(2)., and HOSCN. We have recently shown that SCN(-) is the strongly preferred substrate for EPO in vivo and that HOSCN, in contrast with other EPO-generated oxidants and HOCl, is a relatively weak, cell-permeant, sulfhydryl (SH)-reactive oxidant. We here show that HOSCN is a uniquely potent (up to 100-fold) phagocyte oxidant inducer of tissue factor (TF) activity in human umbilical vein endothelial cells (HUVECs). This induction is attributable to transcriptional up-regulation of TF gene expression dependent upon both activation of the p65/c-Rel TF-kappaB transcription factor and activity of the ERK1/2 kinase pathway upstream of Egr-1 and was markedly further enhanced in the presence of wortmannin, an inhibitor of the PI3 kinase/Akt pathway. HOSCN also markedly activates the proinflammatory p65/p50 NF-kappaB pathway. Based on these findings we hypothesize that HOSCN generated by adherent and infiltrating eosinophils may provoke the development of a prothrombotic and proinflammatory endothelial/endocardial phenotype that promotes the pronounced thrombotic diathesis characteristic of the hypereosinophilic syndrome.

  5. The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: a potential mechanism for thrombosis in eosinophilic inflammatory states

    PubMed Central

    Wang, Jian-Guo; Mahmud, Shawn A.; Thompson, Jacob A.; Geng, Jian-Guo; Key, Nigel S.; Slungaard, Arne

    2006-01-01

    In vivo, bromide (Br–), nitrite (NO2–), and thiocyanate (SCN–) compete for oxidation by eosinophil peroxidase (EPO) and H2O2, yielding, respectively, HOBr, NO2·, and HOSCN. We have recently shown that SCN– is the strongly preferred substrate for EPO in vivo and that HOSCN, in contrast with other EPO-generated oxidants and HOCl, is a relatively weak, cell-permeant, sulfhydryl (SH)–reactive oxidant. We here show that HOSCN is a uniquely potent (up to 100-fold) phagocyte oxidant inducer of tissue factor (TF) activity in human umbilical vein endothelial cells (HUVECs). This induction is attributable to transcriptional up-regulation of TF gene expression dependent upon both activation of the p65/c-Rel TF-κB transcription factor and activity of the ERK1/2 kinase pathway upstream of Egr-1 and was markedly further enhanced in the presence of wortmannin, an inhibitor of the PI3 kinase/Akt pathway. HOSCN also markedly activates the proinflammatory p65/p50 NF-κB pathway. Based on these findings we hypothesize that HOSCN generated by adherent and infiltrating eosinophils may provoke the development of a prothrombotic and proinflammatory endothelial/endocardial phenotype that promotes the pronounced thrombotic diathesis characteristic of the hypereosinophilic syndrome. PMID:16166591

  6. Anti-inflammatory activity of AP-SF, a ginsenoside-enriched fraction, from Korean ginseng

    PubMed Central

    Baek, Kwang-Soo; Hong, Yong Deog; Kim, Yong; Sung, Nak Yoon; Yang, Sungjae; Lee, Kyoung Min; Park, Joo Yong; Park, Jun Seong; Rho, Ho Sik; Shin, Song Seok; Cho, Jae Youl

    2014-01-01

    Background Korean ginseng is an ethnopharmacologically valuable herbal plant with various biological properties including anticancer, antiatherosclerosis, antidiabetic, and anti-inflammatory activities. Since there is currently no drug or therapeutic remedy derived from Korean ginseng, we developed a ginsenoside-enriched fraction (AP-SF) for prevention of various inflammatory symptoms. Methods The anti-inflammatory efficacy of AP-SF was tested under in vitro inflammatory conditions including nitric oxide (NO) production and inflammatory gene expression. The molecular events of inflammatory responses were explored by immunoblot analysis. Results AP-SF led to a significant suppression of NO production compared with a conventional Korean ginseng saponin fraction, induced by both lipopolysaccharide and zymosan A. Interestingly, AP-SF strongly downregulated the mRNA levels of genes for inducible NO synthase, tumor necrosis factor-α, and cyclooxygenase) without affecting cell viability. In agreement with these observations, AP-SF blocked the nuclear translocation of c-Jun at 2 h and also reduced phosphorylation of p38, c-Jun N-terminal kinase, and TAK-1, all of which are important for c-Jun translocation. Conclusion Our results suggest that AP-SF inhibits activation of c-Jun-dependent inflammatory events. Thus, AP-SF may be useful as a novel anti-inflammatory remedy. PMID:26045689

  7. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P.; Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena; Makeschin, Marie-Christine; Mayr, Doris; Rust, Christian; Trauner, Michael; Denk, Gerald U.

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  8. Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer

    PubMed Central

    Andersson, Marianne; Arvidsson, Annette; Nordgren, Svante; Brevinge, Hans; Lagerstedt, Kristina; Lundholm, Kent

    2008-01-01

    This study evaluates HLA gene expression and tumor infiltration by B-cells, macrophages, dendritic cells, T-helper and cytotoxic T-lymphocytes in response to short-term preoperative treatment with cyclooxygenase inhibitors. Patients with colorectal carcinoma were randomized to receive oral NSAID (indomethacin or celebrex) for three days preoperatively; controls received esomeprazol. Peroperative tumor biopsies and normal colon tissue were analyzed by microarray, quantitative PCR and immunohistochemistry. Efficacy of short-term systemic NSAID treatment was confirmed by measurement of PGE2 production in blood monocytes from healthy volunteers. NSAID treatment upregulated genes at the MHC locus on chromosome 6p21 in tumor tissue, but not in normal colon tissue, from the same patient. 23 of the 100 most upregulated genes belonged to MHC class II. HLA-DM, -DO (peptide loading), HLA-DP, -DQ, -DR (antigen presentation), granzyme B, H, perforin and FCGR3A (CD16) (cytotoxicity) displayed increased expression, as did CD8, a marker of cytotoxic T-lymphocytes, while HLA-A and -C expression were not increased by NSAID treatment. MHC II protein (HLA-DP, -DQ, -DR) levels and infiltration by CD4+ T-helper cells of tumor stroma increased upon NSAID treatment, while CD8+ cytotoxic T-lymphocytes increased in both tumor stroma and epithelium. Molecules associated with immunosuppressive T regulatory cells (FOXP3, IL-10) were significantly decreased in indomethacin-exposed tumors. Standard oral administration of NSAID three days preoperatively was enough to increase tumor infiltration by seemingly activated immune cells. These findings agree with previous information that high prostanoid activities in colorectal cancer increase the risk for reduced disease-specific survival following tumor resection. PMID:18307280

  9. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis.

    PubMed

    Nooh, Hanaa Z; Nour-Eldien, Nermeen M

    2016-07-01

    A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified.

  10. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  11. Mesenchymal Stem Cells and Inflammatory Cardiomyopathy: Cardiac Homing and Beyond

    PubMed Central

    Van Linthout, S.; Stamm, Ch.; Schultheiss, H.-P.; Tschöpe, C.

    2011-01-01

    Under conventional heart failure therapy, inflammatory cardiomyopathy usually has a progressive course, merging for alternative interventional strategies. There is accumulating support for the application of cellular transplantation as a strategy to improve myocardial function. Mesenchymal stem cells (MSCs) have the advantage over other stem cells that they possess immunomodulatory features, making them attractive candidates for the treatment of inflammatory cardiomyopathy. Studies in experimental models of inflammatory cardiomyopathy have consistently demonstrated the potential of MSCs to reduce cardiac injury and to improve cardiac function. This paper gives an overview about how inflammation triggers the functionality of MSCs and how it induces cardiac homing. Finally, the potential of intravenous application of MSCs by inflammatory cardiomyopathy is discussed. PMID:21403844

  12. CARMA3/Bcl10/MALT1-dependent NF-κB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells

    PubMed Central

    McAllister-Lucas, Linda M.; Ruland, Jürgen; Siu, Katy; Jin, Xiaohong; Gu, Shufang; Kim, David S. L.; Kuffa, Peter; Kohrt, Dawn; Mak, Tak W.; Nuñez, Gabriel; Lucas, Peter C.

    2007-01-01

    Angiotensin II (Ang II) is a peptide hormone that, like many cytokines, acts as a proinflammatory agent and growth factor. After injury to the liver, the hormone assists in tissue repair by stimulating hepatocytes and hepatic stellate cells to synthesize extracellular matrix proteins and secrete secondary cytokines and by stimulating myofibroblasts to proliferate. However, under conditions of chronic liver injury, all of these effects conspire to promote pathologic liver fibrosis. Much of this effect of Ang II results from activation of the proinflammatory NF-κB transcription factor in response to stimulation of the type 1 Ang II receptor, a G protein-coupled receptor. Here, we characterize a previously undescribed signaling pathway mediating Ang II-dependent activation of NF-κB, which is composed of three principal proteins, CARMA3, Bcl10, and MALT1. Blocking the function of any of these proteins, through the use of either dominant-negative mutants, RNAi, or gene targeting, effectively abolishes Ang II-dependent NF-κB activation in hepatocytes. In addition, Bcl10−/− mice show defective hepatic cytokine production after Ang II treatment. Evidence also is presented that this pathway activates NF-κB through ubiquitination of IKKγ, the regulatory subunit of the IκB kinase complex. These results elucidate a concrete series of molecular events that link ligand activation of the type 1 Ang II receptor to stimulation of the NF-κB transcription factor. These findings also uncover a function of the CARMA, Bcl10, and MALT1 proteins in cells outside the immune system. PMID:17101977

  13. Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions

    PubMed Central

    Cicero, Arrigo

    2012-01-01

    Since the 19th century, many studies have enlightened the role of inflammation in atherosclerosis, changing our perception of “vessel plaque due to oxidized lipoproteins”, similar to a “rusted pipe”, towards a disease with involvement of many cell types and cytokines with more complex mechanisms. Although “physical activity” and “physical exercise” are two terms with some differences in meaning, compared to sedentary lifestyle, active people have lower cardiovascular risk and lower inflammatory markers. Activities of skeletal muscle reveal “myokines” which have roles in both the immune system and adipose tissue metabolism. In vitro and ex-vivo studies have shown beneficial effects of exercise on inflammation markers. Meanwhile in clinical studies, some conflicting results suggested that type of activity, exercise duration, body composition, gender, race and age may modulate anti-inflammatory effects of physical exercise. Medical data on patients with inflammatory diseases have shown beneficial effects of exercise on disease activity scores, patient well-being and inflammatory markers. Although the most beneficial type of activity and the most relevant patient group for anti-inflammatory benefits are still not clear, studies in elderly and adult people generally support anti-inflammatory effects of physical activity and moderate exercise could be advised to patients with cardiovascular risk such as patients with metabolic syndrome. PMID:23185187

  14. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    PubMed

    Zughaier, Susu; Karna, Prasanthi; Stephens, David; Aneja, Ritu

    2010-02-11

    Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  15. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  16. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483.

    PubMed

    Papoutsi, Z; Kassi, E; Chinou, I; Halabalaki, M; Skaltsounis, L A; Moutsatsou, P

    2008-04-01

    Epidemiological studies suggest that the incidence of CVD and postmenopausal osteoporosis is low in the Mediterranean area, where herbs and nuts, among others, play an important role in nutrition. In the present study, we sought a role of walnuts (Juglans regia L.) in endothelial and bone-cell function. As the endothelial cell expression of adhesion molecules has been recognised as an early step in inflammation and atherogenesis, we examined the effect of walnut methanolic extract and ellagic acid, one of its major polyphenolic components (as shown by HPLC analysis), on the expression of vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1 in human aortic endothelial cells. After incubating the cells with TNF-alpha (1 ng/ml) in the absence and in the presence of walnut extract (10-200 microg/ml) or ellagic acid (10- 7-10- 5 m), the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. We further evaluated the effect of walnut extract (10-50 microg/ml), in comparison with ellagic acid (10- 9-10- 6m), on nodule formation in the osteoblastic cell line KS483. Walnut extract and ellagic acid decreased significantly the TNF-alpha-induced endothelial expression of both VCAM-1 and ICAM-1 (P < 0.01; P < 0.001). Both walnut extract (at 10-25 microg/ml) and ellagic acid (at 10- 9-10- 8 m) induced nodule formation in KS483 osteoblasts. The present results suggest that the walnut extract has a high anti-atherogenic potential and a remarkable osteoblastic activity, an effect mediated, at least in part, by its major component ellagic acid. Such findings implicate the beneficial effect of a walnut-enriched diet on cardioprotection and bone loss.

  17. Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators

    PubMed Central

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Yang, Evert; Pattani, Sagar; Zaheer, Smita; Santillan, Donna A.; Santillan, Mark K.; Zaheer, Asgar

    2015-01-01

    Parkinson’s disease (PD) is characterized by the presence of Lewy bodies and degeneration of dopaminergic neurons. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Lewy body component α-synuclein activates glia in PD pathogenesis. Mast cells and glia maturation factor (GMF) are implicated in neuroinflammatory conditions including Multiple Sclerosis. However, the role of mast cells in PD is not yet known. We have analyzed the effect of recombinant GMF, MPP+, α-synuclein and interleukin-33 (IL-33) on mouse bone marrow-derived cultured mast cells (BMMCs), human umbilical cord blood-derived cultured mast cells (hCBMCs) and mouse brain-derived cultured astrocytes by quantifying cytokines/chemokines released using ELISA or by detecting the expression of co-stimulatory molecules CD40 and CD40L by flow cytometry. GMF significantly released chemokine (C-C motif) ligand 2 (CCL2) from BMMCs but its release was reduced in BMMCs from GMF knockout mice. GMF, α-synuclein and MPP+ released IL-1β, β-hexosaminidase from BMMCs, and IL-8 from hCBMCs. GMF released CCL5, and IL-33- induced the expression of GMF from hCBMCs. Novel GMF expression was detected in hCBMCs and BMMCs by immunocytochemistry. GMF released tumor necrosis factor-alpha (TNF-α) from mouse astrocytes, and this release was greater in BMMC- astrocyte coculture than in individual cultures. Flow cytometry results showed increased IL-33 expression by GMF and MPP+, and GMF-induced CD40 expression in astrocytes. Proinflammatory mediator release by GMF, MPP+ and α-synuclein, as well as GMF expression by mast cells indicate a potential therapeutic target for neurodegenerative diseases including PD. PMID:26275153

  18. Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts.

    PubMed

    Zhang, Huan-Li; Gan, Xiao-Qing; Fan, Qing-Fei; Yang, Jing-Jing; Zhang, Ping; Hu, Hua-Bin; Song, Qi-Shi

    2017-04-06

    In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark.

  19. Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts

    PubMed Central

    Zhang, Huan-li; Gan, Xiao-qing; Fan, Qing-fei; Yang, Jing-jing; Zhang, Ping; Hu, Hua-bin; Song, Qi-shi

    2017-01-01

    In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark. PMID:28383530

  20. Sleep disorders and inflammatory disease activity: chicken or the egg?

    PubMed

    Parekh, Parth J; Oldfield Iv, Edward C; Challapallisri, Vaishnavi; Ware, J Catsby; Johnson, David A

    2015-04-01

    Sleep dysfunction is a highly prevalent condition that has long been implicated in accelerating disease states characterized by having an inflammatory component such as systemic lupus erythematosus, HIV, and multiple sclerosis. Inflammatory bowel disease (IBD) is a chronic, debilitating disease that is characterized by waxing and waning symptoms, which are a direct result of increased circulating inflammatory cytokines. Recent studies have demonstrated sleep dysfunction and the disruption of the circadian rhythm to result in an upregulation of inflammatory cytokines. Not only does this pose a potential trigger for disease flares but also an increased risk of malignancy in this subset of patients. This begs to question whether or not there is a therapeutic role of sleep cycle and circadian rhythm optimization in the prevention of IBD flares. Further research is needed to clarify the role of sleep dysfunction and alterations of the circadian rhythm in modifying disease activity and also in reducing the risk of malignancy in patients suffering from IBD.

  1. Ellagic Acid, a Dietary Polyphenol, Inhibits Tautomerase Activity of Human Macrophage Migration Inhibitory Factor and Its Pro-inflammatory Responses in Human Peripheral Blood Mononuclear Cells.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Mazumder, Somnath; De, Rudranil; Saha, Shubhra J; Banerjee, Chinmoy; Iqbal, Mohd S; Adhikari, Susanta; Alam, Athar; Roy, Siddhartha; Bandyopadhyay, Uday

    2015-05-27

    Ellagic acid (EA), a phenolic lactone, inhibited tautomerase activity of human macrophage migration inhibitory factor (MIF) noncompetitively (Ki = 1.97 ± 0.7 μM). The binding of EA to MIF was determined by following the quenching of tryptophan fluorescence. We synthesized several EA derivatives, and their structure-activity relationship studies indicated that the planar conjugated lactone moiety of EA was essential for MIF inhibition. MIF induces nuclear translocation of NF-κB and chemotaxis of peripheral blood mononuclear cells (PBMCs) to promote inflammation. We were interested in evaluating the effect of EA on nuclear translocation of NF-κB and chemotactic activity in human PBMCs in the presence of MIF. The results showed that EA inhibited MIF-induced NF-κB nuclear translocation in PBMCs, as evident from confocal immunofluorescence microscopic data. EA also inhibited MIF-mediated chemotaxis of PBMCs. Thus, we report MIF-inhibitory activity of EA and inhibition of MIF-mediated proinflammatory responses in PBMCs by EA.

  2. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  3. Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry.

    PubMed

    Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo

    2016-09-09

    Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column.

  4. Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus.

    PubMed

    Wilson, Jayne Louise; Bouillaud, Frédéric; Almeida, Ana S; Vieira, Helena L; Ouidja, Mohand Ouidir; Dubois-Randé, Jean-Luc; Foresti, Roberta; Motterlini, Roberto

    2017-03-01

    Microglia fulfill important immunological functions in the brain by responding to pathological stresses and modulating their activities according to pro- or anti-inflammatory stimuli. Recent evidence indicates that changes in metabolism accompany the switch in microglia activation state, favoring glycolysis over oxidative phosphorylation when cells exhibit a pro-inflammatory phenotype. Carbon monoxide (CO), a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory action and affects mitochondrial function in cells and tissues. In the present study, we analyzed the metabolic profile of BV2 and primary mouse microglia exposed to the CO-releasing molecules CORM-401 and CORM-A1 and investigated whether CO affects the metabolic adaptation of cells to the inflammatory stimulus lipopolysaccharide (LPS). Microglia respiration and glycolysis were measured using an Extracellular Flux Analyzer to provide a real-time bioenergetic assessment, and biochemical parameters were evaluated to define the metabolic status of the cells under normal or inflammatory conditions. We show that CO prevents LPS-induced depression of microglia respiration and reduction in ATP levels while altering the early expression of inflammatory markers, suggesting the metabolic changes induced by CO are associated with control of inflammation. CO alone affects microglia respiration depending on the concentration, as low levels increase oxygen consumption while higher amounts inhibit respiration. Increased oxygen consumption was attributed to an uncoupling activity observed in cells, at the molecular level (respiratory complex activities) and during challenge with LPS. Thus, application of CO is a potential countermeasure to reverse the metabolic changes that occur during microglia inflammation and in turn modulate their inflammatory profile.

  5. Reverse signaling initiated from GITRL induces NF-kappaB activation through ERK in the inflammatory activation of macrophages.

    PubMed

    Bae, Eun Mi; Kim, Won-Jung; Suk, Kyoungho; Kang, Young-Mo; Park, Jeong-Euy; Kim, Won Young; Choi, Eun Mi; Choi, Beom Kyu; Kwon, Byoung S; Lee, Won-Ha

    2008-01-01

    Glucocorticoid-induced TNF receptor family related protein ligand (GITRL) is known to interact with its cognate receptor GITR. In order to investigate the potential role of GITRL in the pro-inflammatory activation of macrophages and the signaling pathway induced by GITRL, we stimulated the macrophage cell line, THP-1, and primary macrophages with an anti-GITRL monoclonal antibody or a GITR:Fc fusion protein and analyzed the cellular responses. The stimulation of GITRL induced the expression of pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9 and up-regulated ICAM-1 expression levels, which was responsible for enhanced cellular aggregation and adhesion to extracellular matrix proteins. The activation of these pro-inflammatory mediators required the activation of ERK1/2 mitogen-activated protein kinase (MAPK) and negatively regulated by p38 MAPK and JNK. Immunofluorescence analysis detected nuclear translocation of the NF-kappaB p50 subunit and this was blocked by ERK inhibitor, indicating that GITRL stimulation induced ERK1/2 phosphorylation and subsequent activation of NF-kappaB. Furthermore, the expression of GITRL and GITR was detected in macrophages in inflammatory disease specimens such as atherosclerotic plaques and synovial tissues of rheumatoid arthritis. These observations raise the possibility that the GITRL-mediated inflammatory activation of macrophages is involved in the pathogenesis of inflammatory diseases.

  6. Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages

    PubMed Central

    Lei, Wei; Browning, Jimmy D.; Eichen, Peggy A.; Brownstein, Korey J.; Folk, William R.; Sun, Grace Y.; Lubahn, Dennis B.; Rottinghaus, George E.; Fritsche, Kevin L.

    2015-01-01

    Sutherlandia frutescens is a botanical widely used in southern Africa for treatment of inflammatory and other conditions. Previously, an ethanolic extract of S. frutescens (SFE) has been shown to inhibit the production of reactive oxygen species (ROS) and nitric oxide (NO) by murine neurons and a microglia cell line (BV-2 cells). In this study we sought to confirm the anti-inflammatory activities of SFE on a widely used murine macrophage cell line (i.e., RAW 264.7 cells) and primary mouse macrophages. Furthermore, experiments were conducted to investigate the anti-inflammatory activity of the flavonol and cycloartanol glycosides found in high quantities in S. frutescens. While the SFE exhibited anti-inflammatory activities upon murine macrophages similar to that reported with the microglia cell line, this effect does not appear to be mediated by sutherlandiosides or sutherlandins. In contrast, chlorophyll in our extracts appeared to be partly responsible for some of the activity observed in our macrophage-dependent screening assay. PMID:26585972

  7. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity.

    PubMed

    Hua, J; Scott, R W; Diamond, G

    2010-12-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 μg ml(-1) mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues.

  8. Control of inflammatory heart disease by CD4+ T cells.

    PubMed

    Barin, Jobert G; Čiháková, Daniela

    2013-05-01

    This review focuses on autoimmune myocarditis and its sequela, inflammatory dilated cardiomyopathy (DCMI), and the inflammatory and immune mechanisms underlying the pathogenesis of these diseases. Several mouse models of myocarditis and DCMI have improved our knowledge of the pathogenesis of these diseases, informing more general problems of cardiac remodeling and heart failure. CD4(+) T cells are critical in driving the pathogenesis of myocarditis. We discuss in detail the role of T helper cell subtypes in the pathogenesis of myocarditis, the biology of T cell-derived effector cytokines, and the participation of other leukocytic effectors in mediating disease pathophysiology. We discuss interactions between these subsets in both suppressive and collaborative fashions. These findings indicate that cardiac inflammatory disease, and autoimmunity in general, may be more diverse in divergent effector mechanisms than has previously been appreciated.

  9. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  10. Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.

    PubMed

    Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-03-01

    Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action.

  11. Periprosthetic breast capsules and immunophenotypes of inflammatory cells.

    PubMed

    Meza Britez, Maria Elsa; Caballero Llano, Carmelo; Chaux, Alcides

    2012-09-01

    BACKGROUND: Silicone gel-containing breast implants have been widely used for aesthetic and reconstructive mammoplasty. The development of a periprosthetic capsule is considered a local reparative process against the breast implant in which a variety of inflammatory cells may appear. Nevertheless, only few reports have evaluated the immunophenotypes of those inflammatory cells. Herein, we aim to provide more information in this regard evaluating 40 patients with breast implants. METHODS: We studied the immunophenotype of the inflammatory cells of capsular implants using antibodies against lymphocytes (CD3, CD4, CD8, CD20, CD45, and CD30) and histiocytes (CD68). Percentages of CD3 and CD20 positive cells were compared using the unpaired Student's t test. Fisher's test was also used to compare Baker grades by implant type, implant profile, and location and the presence of inflammatory cells by implant type. RESULTS: The associations between Baker grades and implant type and location were statistically nonsignificant (p = 0.42 in both cases). However, the use of low profile implants was significantly associated (p = 0.002) with a higher proportion of Baker grades 3 and 4. We found evidence of inflammation in 92.5 % of all implant capsules, with a statistically significant (p = 0.036) higher proportion in textured breast implants. T cells predominated over B cells. Textured implants elicited a more marked response to T cells than smooth implants, with a similar proportion of helper and cytotoxic T cells. Textured implants showed statistically significant higher percentages of CD3 positive cells than smooth implants. Percentages of CD20 positive cells were similar in textured and smooth implants. CONCLUSIONS: These results suggest that textured breast implants might induce a stronger local T cell immune response. Our findings could shed some light to understand the association of silicone breast implants and some cases of anaplastic large cell lymphomas

  12. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    PubMed

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-06-18

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes.

  13. Elevated granulocyte strontium in inflammatory arthritides is related to the inflammatory activity

    SciTech Connect

    Haellgren, R.; Svensson, K.; Johansson, E.; Lindh, U.

    1984-12-01

    Total cellular strontium and calcium were measured by the nuclear microprobe technique. Increased mass fraction of both elements was found in granulocytes isolated from patients with active rheumatoid arthritis and other kinds of inflammatory arthritides. Increased granulocyte calcium but only marginally elevated granulocyte strontium was demonstrated in patients with scleroderma. The granulocyte accumulation of strontium and calcium seems to be linked to the degree of inflammatory activity, because the granulocyte content of both elements was positively correlated to the plasma concentration of acute-phase proteins. Corticosteroid therapy induced a marked reduction of granulocyte strontium but a more modest decrease of granulocyte calcium. The serum levels of strontium and calcium were within the normal ranges in all patients and were not significantly altered by corticosteroids. 21 references, 4 figures, 3 tables.

  14. Inflammatory Cell Migration in Rheumatoid Arthritis: A Comprehensive Review.

    PubMed

    Nevius, Erin; Gomes, Ana Cordeiro; Pereira, João P

    2016-08-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affects the joints. Self-reactive B and T lymphocytes cooperate to promote antibody responses against self proteins and are major drivers of disease. T lymphocytes also promote RA independently of B lymphocytes mainly through the production of key inflammatory cytokines, such as IL-17, that promote pathology. While the innate signals that initiate self-reactive adaptive immune responses are poorly understood, the disease is predominantly caused by inflammatory cellular infiltration and accumulation in articular tissues, and by bone erosions driven by bone-resorbing osteoclasts. Osteoclasts are giant multinucleated cells formed by the fusion of multiple myeloid cells that require short-range signals, such as the cytokines MCSF and RANKL, for undergoing differentiation. The recruitment and positioning of osteoclast precursors to sites of osteoclast differentiation by chemoattractants is an important point of control for osteoclastogenesis and bone resorption. Recently, the GPCR EBI2 and its oxysterol ligand 7a, 25 dihydroxycholesterol, were identified as important regulators of osteoclast precursor positioning in proximity to bone surfaces and of osteoclast differentiation under homeostasis. In chronic inflammatory diseases like RA, osteoclast differentiation is also driven by inflammatory cytokines such as TNFa and IL-1, and can occur independently of RANKL. Finally, there is growing evidence that the chemotactic signals guiding osteoclast precursors to inflamed articular sites contribute to disease and are of great interest. Furthering our understanding of the complex osteoimmune cell interactions should provide new avenues of therapeutic intervention for RA.

  15. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    PubMed

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  16. Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss.

    PubMed

    Dunmyer, J; Herbert, B; Li, Q; Zinna, R; Martin, K; Yu, H; Kirkwood, K L

    2012-10-01

    Aggregatibacter actinomycetemcomitans is a gram-negative facultative capnophile involved in pathogenesis of aggressive forms of periodontal disease. In the present study, we interrogated the ability of A. actinomycetemcomitans to stimulate innate immune signaling and cytokine production and established that A. actinomycetemcomitans causes bone loss in a novel rat calvarial model. In vitro studies indicated that A. actinomycetemcomitans stimulated considerable production of soluble cytokines, tumor necrosis factor-α, interleukin-6 and interleukin-10 in both primary bone marrow-derived macrophages and NR8383 macrophages. Immunoblot analysis indicated that A. actinomycetemcomitans exhibits sustained activation of all major mitogen-activated protein kinase (MAPK) pathways, as well as the negative regulator of MAPK signaling, MAPK phosphatase-1 (MKP-1), for at least 8 h. In a rat calvarial model of inflammatory bone loss, high and low doses of formalin-fixed A. actinomycetemcomitans were microinjected into the supraperiosteal calvarial space for 1-2 weeks. Histological staining and micro-computed tomography of rat calvariae revealed a significant increase of inflammatory and fibroblast infiltrate and increased bone resorption as measured by total lacunar pit formation. From these data, we provide new evidence that fixed whole cell A. actinomycetemcomitans stimulation elicits a pro-inflammatory host response through sustained MAPK signaling, leading to enhanced bone resorption within the rat calvarial bone.

  17. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation.

    PubMed

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Song, Hyuck-Hwan; Shin, Na-Rae; Jeon, Chan-Mi; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop

    2015-01-01

    Physalis alkekengi has been traditionally used for the treatment of coughs, middle ear infections, and sore throats in Korea, Europe, and China. It exhibits a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, and anti-cancer effects. The anti-inflammatory effects of the P. alkekengi methanol extract (PA) and its molecular mechanisms have not yet been fully investigated. In the present study, the chromatogram of PA was established by UPLC analysis. The anti-inflammatory effects of PA were also investigated using murine microphage cell lines, RAW 264.7 cells, and a murine model of OVA induced asthma. In LPS-stimulated RAW264.7 cells, PA reduced the MMP-9 expression with decreases in the production of nitric oxide, inteleukin-6, and tumor necrosis factor-α. Furthermore, PA suppressed the phosphorylation of MAPKs, which resulted in the inhibition of AP-1 activation. These effects of PA were consistent with the results of the in vivo experiment. PA-treated mice significantly inhibited inflammatory cell counts and cytokine production in bronchoalveolar lavage fluids and airway-hyperresponsiveness in OVA-induced asthmatic mice. PA treated mice also showed a marked inhibition of inducible nitric oxide synthase and MMP-9 expression. In conclusion, our results suggest that PA may be a valuable therapeutic material in treating various inflammatory diseases, including allergic asthma.

  18. Anti-inflammatory intestinal activity of Combretum duarteanum Cambess. in trinitrobenzene sulfonic acid colitis model

    PubMed Central

    de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria

    2017-01-01

    AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd). METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease. PMID:28293082

  19. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers

    PubMed Central

    Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Mesquita-Ferrari, Raquel Agnelli; da Silva, Daniela de Fatima Teixeira; Rocha, Lilia Alves; Alves, Agnelo Neves; Sousa, Kaline de Brito; Bussadori, Sandra Kalil; Hamblin, Michael R.; Nunes, Fábio Daumas

    2015-01-01

    M1 profile macrophages exert a major influence on initial tissue repair process. Few days after the occurrence of injury, macrophages in the injured region exhibit a M2 profile, attenuate the effects of the M1 population, and stimulate the reconstruction of the damaged tissue. The different effects of macrophages in the healing process suggest that these cells could be the target of therapeutic interventions. Photobiomodulation has been used to accelerate tissue repair, but little is known regarding its effect on macrophages. In the present study, J774 macrophages were activated to simulate the M1 profile and irradiated with two different sets of laser parameters (780 nm, 70 mW, 2.6 J/cm2, 1.5 s and 660 nm, 15 mW, 7.5 J/cm2, 20 s). IL-6, TNF-α, iNOS and COX-2 gene and protein expression were analyzed by RT-qPCR and ELISA. Both lasers were able to reduce TNF-α and iNOS expression, and TNF-α and COX-2 production, although the parameters used for 780 nm laser provided an additional decrease. 660 nm laser parameters resulted in an up-regulation of IL-6 expression and production. These findings imply a distinct, time-dependent modulation by the two different sets of laser parameters, suggesting that the best modulation may involve more than one combination of parameters. PMID:26519828

  20. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  1. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses

    PubMed Central

    Chen, Qian-Qian; Yan, Li; Wang, Chang-Zheng; Wang, Wei-Hua; Shi, Hui; Su, Bin-Bin; Zeng, Qing-Huan; Du, Hai-Tao; Wan, Jun

    2013-01-01

    AIM: To investigate the potential therapeutic effects of mesenchymal stem cells (MSCs) in inflammatory bowel disease (IBD), we transplanted MSCs into an experimental model of IBD. METHODS: A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg body weight) was administered to female BALB/c mice. Bone marrow mesenchymal stem cells (BMSCs) were derived from male green fluorescent protein (GFP) transgenic mice and were transplanted intravenously into the experimental animals after disease onset. Clinical activity scores and histological changes were evaluated. GFP and Sex determining region Y gene (SRY) expression were used for cell tracking. Ki67 positive cells and Lgr5-expressing cells were determined to measure proliferative activity. Inflammatory response was determined by measuring the levels of different inflammatory mediators in the colon and serum. The inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-17, IL-4, IL-10, and transforming growth factor (TGF-β). Master regulators of Th1 cells (T-box expressed in T cells, T-bet), Th17 cells (retinoid related orphan receptor gamma(t), RORγt), Th2 cells (GATA family of transcription factors 3, GATA3) and regulatory T cells (forkhead box P3, Foxp3) were also determined. RESULTS: Systemic infusion of GFP-BMSCs ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea and inflammation, and increased survival (P < 0.05). The cell tracking study showed that MSCs homed to the injured colon. MSCs promoted proliferation of intestinal epithelial cells and differentiation of intestinal stem cells (P < 0.01). This therapeutic effect was mainly mediated by down-regulation of both Th1-Th17-driven autoimmune and inflammatory responses (IL-2, TNF-α, IFN-γ, T-bet; IL-6, IL-17, RORγt), and by up-regulation of Th2 activities (IL-4, IL-10, GATA-3) (P < 0.05). MSCs also induced activated CD4+CD25+Foxp3

  2. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury

    SciTech Connect

    Chatterjee, Nabanita; Das, Subhadip; Bose, Dipayan; Banerjee, Somenath; Das, Sujata; Chattopadhyay, Debprasad; Saha, Krishna Das

    2012-10-15

    Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model was and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P < 0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P < 0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P < 0.01). These findings indicate that 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent. -- Highlights: ► 2-phenylquinazoline analog suppresses the cytokines in stimulated macrophages. ► 2-phenylquinazoline analog down regulated NF-kB P65 translocation. ► Role of 2-phenylquinazoline analog in endotoximia and peripheral inflammations.

  3. An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis).

    PubMed

    Phosri, Santi; Mahakunakorn, Pramote; Lueangsakulthai, Jiraporn; Jangpromma, Nisachon; Swatsitang, Prasan; Daduang, Sakda; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-10-01

    Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.

  4. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    PubMed

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics.

  5. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses.

    PubMed

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Ledesma, Maria Dolores; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2015-09-01

    The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4(+) T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation, and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward proinflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD(+) levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify strategies for intervention in mitochondrial-related diseases.

  6. Dimethyl sulfoxide (DMSO) attenuates the inflammatory response in the in vitro intestinal Caco-2 cell model.

    PubMed

    Hollebeeck, Sylvie; Raas, Thomas; Piront, Neil; Schneider, Yves-Jacques; Toussaint, Olivier; Larondelle, Yvan; During, Alexandrine

    2011-10-30

    This study aimed to investigate dose effects of dimethyl sulfoxide (DMSO) (0.05-1%) on the intestinal inflammatory response in confluent- and differentiated-Caco-2 cells stimulated with interleukin (IL)-1β or a pro-inflammatory cocktail for 24 h. Cyclooxygenase-2 (COX-2) activity was assayed by incubating inflamed cells with arachidonic acid and then measuring prostaglandin-E(2) (PGE(2)) produced. Soluble mediators (IL-8, IL-6, macrophage chemoattractant protein-1 (MCP-1), and COX-2-derived PGE(2)) were quantified by enzyme immunoassays and mRNA expression of 33 proteins by high throughput TaqMan Low Density Array. Data showed that DMSO decreased induced IL-6 and MCP-1 secretions in a dose-dependent manner (P<0.05), but not IL-8; these effects were cell development- and stimulus- independent. Moreover, in IL-1β-stimulated confluent-cells, DMSO dose-dependently reduced COX-2-derived PGE(2) (P<0.05). DMSO at 0.5% decreased significantly mRNA levels of 14 proteins involved in the inflammatory response (including IL-6, IL-1α, IL-1β, and COX-2). Thus, DMSO at low concentrations (0.1-0.5%) exhibits anti-inflammatory properties in the in vitro intestinal Caco-2 cell model. This point is important to be taken into account when assessing anti-inflammatory properties of bioactive compounds requiring DMSO as vehicle, such as phenolic compounds, in order to avoid miss-interpretation of the results.

  7. Cell Death and Inflammatory Bowel Diseases: Apoptosis, Necrosis, and Autophagy in the Intestinal Epithelium

    PubMed Central

    2014-01-01

    Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn's disease and in specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and inflammatory bowel diseases. PMID:25126549

  8. [Regulation of inflammatory responses by endothelial cells--understanding the molecular mechanism(s) and its therapeutic application to sepsis].

    PubMed

    Okajima, Kenji

    2008-03-01

    Endothelial cells are activated by shear-stress and inflammatory mediators that are capable of activating sensory neurons. Activated endothelial cells increase the production of nitric oxide and prostaglandins, thereby regulating inflammatory responses induced by various insults. Dysfunction of sensory neurons and excess inflammatory mediators released from activated neutrophils damage endothelial cells, thereby increasing inflammatory responses such as an increase in tumor necrosis factor production. Pulmonary endothelial dysfunction plays a critical role in the development of acute lung injury and shock, leading to multi-organ failure. Determination of soluble E-selectin in serum samples of patients with sepsis predicts the future development of acute lung injury. Therapeutic agents that are capable of stimulating sensory neurons or inhibiting leukocyte activation might be useful in the treatment of severe sepsis especially when these agents are administered in the early stage of severe sepsis.

  9. Splenic Inflammatory Pseudotumor-Like Follicular Dendritic Cell Tumor

    PubMed Central

    Vardas, Konstantinos; Manganas, Dimitrios; Papadimitriou, Georgios; Kalatzis, Vasileios; Kyriakopoulos, Georgios; Chantziara, Maria; Exarhos, Dimitrios; Drakopoulos, Spiros

    2014-01-01

    Inflammatory pseudotumor of the spleen with expression of follicular dendritic cell markers is an extremely rare lesion with only a few cases reported previously. The present study reports on an inflammatory pseudotumor of the spleen 10 × 8 × 7 cm in size that was incidentally found in a 61-year-old man and increased gradually in size during a period of 3 months. Abdominal ultrasonography revealed a well-circumscribed splenic mass, and abdominal computed tomography confirmed the presence of a well-circumscribed isodense lesion in the splenic hilum with inhomogenous enhancement in the early-phase images and no enhancement on delayed-phase contrast-enhanced images. Magnetic resonance imaging of the abdomen showed a well-defined isodense tumor on T1-weighted images with mildly increased signal intensity on T2-weighted images, and this is only the second study that provides MRI findings of this entity. The patient underwent an uncomplicated open splenectomy for definitive histologic diagnosis. Under microscopic examination, the lesion was an admixture of lymphocytes, plasma cells and spindle cells. In situ hybridization analysis for Epstein-Barr virus (EBV) revealed that most of the spindle cells were positive for EBV, and immunochemistry showed the expression of the follicular dendritic cell markers CD21, CD35 and CD23 within the tumor. The diagnosis of inflammatory pseudotumor-like follicular dendritic cell tumor was established. PMID:25076893

  10. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid.

    PubMed

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.

  11. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid

    PubMed Central

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs. PMID:27057092

  12. Evidence for Inflammatory Cell Involvement in Brain Arteriovenous Malformations

    PubMed Central

    Chen, Yongmei; Zhu, Wei; Bollen, Andrew W.; Lawton, Michael T.; Barbaro, Nicholas M.; Dowd, Christopher F.; Hashimoto, Tomoki; Yang, Guo-Yuan; Young, William L.

    2008-01-01

    Objective Brain arteriovenous malformations (AVM) have high MMP-9, IL-6 and MPO expression, and polymorphic variations in inflammatory genes are associated with increased risk of hemorrhage. In this study, we characterized the presence of inflammatory cells in AVM lesional tissues. Methods Immunohistochemistry was used to identify and localize neutrophils (MPO as marker), macrophages/microglia (CD68 as marker), T lymphocytes (CD3 as marker), and B lymphocytes (CD20 as marker). Endothelial cell (EC) marker CD31 was used as an index to assess vascular mass (EC mass). Surgical specimens from 20 unruptured, non-embolized AVMs were examined; seven cortical samples from temporal lobectomy were used as controls. Positive signals for inflammatory cell markers were counted and analyzed by normalizing to the area of the tissue section and the amount of endothelial cells (cells/mm2/EC mass pixels). Levels of MPO and MMP-9 were determined by ELISA. Results Neutrophils and macrophages are all frequently identified in the vascular wall of AVM tissues. In contrast, T and B lymphocytes are rarely observed in AVM tissues. AVM tissues displayed more neutrophil and macrophage/microglia markers than epilepsy control tissues (MPO: 434 ± 333 vs 5 ± 4, P=0.0001; CD68: 454 ± 404 vs 4 ± 2, P=0.0001; cells/mm2/EC mass pixels). In ex vivo studies, neutrophil quantity, MPO, and MMP-9 levels were all co-linear(R2=0.98–0.99). Conclusion Our study demonstrates that inflammatory cells are present in AVM tissues. Taken together with prior genetic and cytokine studies, these data are consistent with a novel view that inflammation is associated with AVM disease progression and rupture. PMID:18825001

  13. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance.

  14. Enhanced Gamma Oscillatory Activity in Rats with Chronic Inflammatory Pain

    PubMed Central

    Wang, Jing; Wang, Jing; Xing, Guo-Gang; Li, Xiaoli; Wan, You

    2016-01-01

    It has been reported that oscillatory gamma activity participates in brief acute pain and tonic ongoing pain. It is of great interest to determine whether the gamma activity is involved in chronic pain since chronic pain is a more severe pathological condition characterized by pain persistency. To investigate the oscillatory gamma activity in chronic pain, in the present study, we recorded spontaneous electrocorticogram (ECoG) signals during chronic pain development in rats with chronic inflammatory pain induced by monoarthritis. Power spectrum analysis of ECoG data showed that gamma power increased significantly at the late stage of chronic inflammatory pain. The increased gamma activity occurred mainly at electrodes over primary somatosensory cortices. In rats with chronic pain, the gamma power was positively correlated with the hyperalgesia measured by laser energy that elicited hindpaw withdrawal response. Furthermore, an increased coupling between the amplitude of gamma power and the phase of theta oscillations was observed in chronic inflammatory pain condition. These results indicate an enhanced spontaneous gamma activity in chronic pain and suggest a potential biomarker for the severity of chronic pain. PMID:27847461

  15. Biomechanical changes in endothelial cells result from an inflammatory response

    NASA Astrophysics Data System (ADS)

    Vaitkus, Janina; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    During periods of infection and disease, the immune system induces the release of TNF-α, an inflammatory cytokine, from a variety of cell types, such as macrophages. TNF-α, while circulating in the vasculature, binds to the apical surface of endothelial cells and causes a wide range of biological and mechanical changes to the endothelium. While the biological changes have been widely studied, the biomechanical aspects have been largely unexplored. Here, we investigated the biomechanical changes of the endothelium as a function of TNF-α treatment. First, we studied the traction forces applied by the endothelium, an effect that is much less studied than others. Through the use of traction force microscopy, we found that TNF-α causes an increase in traction forces applied by the endothelial cells as compared to non-treated cells. Then, we investigated cell morphology, cell mechanics, migration, and cytoskeletal dynamics. We found that in addition to increasing applied traction forces, TNF-α causes an increase in cell area and aspect ratio on average, as well as a shift in the organization of F-actin filaments within the cell. Combining these findings together, our results show that an inflammatory response heavily impacts the morphology, cell mechanics, migration, cytoskeletal dynamics, and applied traction forces of endothelial cells.

  16. Interleukin-27 exhibited anti-inflammatory activity during Plasmodium berghei infection in mice.

    PubMed

    Fazalul Rahiman, S S; Basir, R; Talib, H; Tie, T H; Chuah, Y K; Jabbarzare, M; Chong, W C; Mohd Yusoff, M A; Nordin, N; Yam, M F; Abdullah, W O; Abdul Majid, R

    2013-12-01

    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.

  17. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation

    PubMed Central

    Singh, Tej Pratap; Zhang, Howard H.; Borek, Izabela; Wolf, Peter; Hedrick, Michael N.; Singh, Satya P.; Kelsall, Brian L.; Clausen, Bjorn E.; Farber, Joshua M.

    2016-01-01

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells. PMID:27982014

  18. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  19. Myeloid cells in atherosclerosis: a delicate balance of anti-inflammatory and proinflammatory mechanisms

    PubMed Central

    Koltsova, Ekaterina K.; Hedrick, Catherine C.; Ley, Klaus

    2016-01-01

    Purpose of review Atherosclerosis is chronic disease, whose progression is orchestrated by the balance between proinflammatory and anti-inflammatory mechanisms. Various myeloid cells, including monocytes, macrophages, dendritic cells and neutrophils can be found in normal and atherosclerotic aortas, in which they regulate inflammation and progression of atherosclerosis. The lineage relationship between blood monocyte subsets and the various phenotypes and functions of myeloid cells in diseased aortas is under active investigation. Recent findings Various subsets of myeloid cells play diverse roles in atherosclerosis. This review discusses new findings in phenotypic and functional characterization of different subsets of macrophages, in part determined by the transcription factors IRF5 and Trib1, and dendritic cells, characterized by the transcription factor Zbtb46, in atherosclerosis. Summary Improved understanding proinflammatory and anti-inflammatory mechanisms of macrophages and dendritic cell functions is needed for better preventive and therapeutic measures in atherosclerosis. PMID:24005215

  20. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  1. Collagen-Derived N-Acetylated Proline-Glycine-Proline in Intervertebral Discs Modulates CXCR1/2 Expression and Activation in Cartilage Endplate Stem Cells to Induce Migration and Differentiation Toward a Pro-Inflammatory Phenotype.

    PubMed

    Feng, Chencheng; Zhang, Yang; Yang, Minghui; Huang, Bo; Zhou, Yue

    2015-12-01

    The factors that regulate the migration and differentiation of cartilage endplate stem cells (CESCs) remain unknown. N-Acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine that is involved in inflammatory diseases. The purpose of this study was to detect N-Ac-PGP in degenerative intervertebral discs (IVDs) and to determine its roles in the migration and differentiation of CESCs. Enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry results indicated that the levels of the proteases that generate N-Ac-PGP as well as N-Ac-PGP levels themselves increase with the progression of IVD degeneration. Immunohistochemistry and an N-Ac-PGP generation assay demonstrated that nucleus pulposus (NP) cells generate N-Ac-PGP from collagen. The effects of N-Ac-PGP on the migration and differentiation of CESCs were determined using migration assays, RT-PCR, immunoblot analysis, and ELISA. The results showed that the expression of N-Ac-PGP receptors (CXCR1 and CXCR2) in CESCs was upregulated by N-Ac-PGP. Additionally, N-Ac-PGP induced F-actin cytoskeletal rearrangement in CESCs and increased CESC chemotaxis. Furthermore, N-Ac-PGP recruited chondrocytes and spindle-shaped cells from the cartilage endplate (CEP) into the NP in vivo. These spindle-shaped cells expressed CD105 and Stro-1 (mesenchymal stem cell markers). N-Ac-PGP induced the differentiation of CESCs toward a pro-inflammatory phenotype with increased production of inflammatory cytokines rather than toward an NP-like phenotype. Our study indicated that, in the complex microenvironment of a degenerative disc, N-Ac-PGP is generated by NP cells and induces the migration of CESCs from the CEP into the NP. N-Ac-PGP induces a pro-inflammatory phenotype in CESCs, and these cells promote the inflammatory response in degenerative discs.

  2. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis.

  3. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis

    PubMed Central

    Zhao, Yuechao; Gong, Ping; Chen, Yiru; Nwachukwu, Jerome C.; Srinivasan, Sathish; Ko, CheMyong; Bagchi, Milan K.; Taylor, Robert N.; Korach, Kenneth S.; Nettles, Kendall W.; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2016-01-01

    Estrogenic and inflammatory components play key roles in a broad range of diseases including endometriosis, a common estrogen-dependent gynecological disorder in which endometrial tissue creates inflammatory lesions at extrauterine sites, causing pelvic pain and reduced fertility. Current medical therapies focus primarily on reducing systemic levels of estrogens, but these are of limited effectiveness and have considerable side effects. We developed estrogen receptor (ER) ligands, chloroindazole (CLI) and oxabicycloheptene sulfonate (OBHS), which showed strong ER-dependent anti-inflammatory activity in a preclinical model of endometriosis that recapitulates the estrogen dependence and inflammatory responses of the disease in immunocompetent mice and in primary human endometriotic stromal cells in culture. Estrogen-dependent phenomena, including cell proliferation, cyst formation, vascularization, and lesion growth, were all arrested by CLI or OBHS, which prevented lesion expansion and also elicited regression of established lesions, suppressed inflammation, angiogenesis, and neurogenesis in the lesions, and interrupted crosstalk between lesion cells and infiltrating macrophages. Studies in ERα or ERβ knockout mice indicated that ERα is the major mediator of OBHS effectiveness and ERβ is dominant in CLI actions, implying involvement of both ERs in endometriosis. Neither ligand altered estrous cycling or fertility at doses that were effective for suppression of endometriosis. Hence, CLI and OBHS are able to restrain endometriosis by dual suppression of the estrogen-inflammatory axis. Our findings suggest that these compounds have the desired characteristics of preventive and therapeutic agents for clinical endometriosis and possibly other estrogen-driven and inflammation-promoted disorders. PMID:25609169

  4. The tumoricidal properties of inflammatory tissue macrophages and multinucleate giant cells.

    PubMed Central

    Poste, G.

    1979-01-01

    Peritoneal exudate cells from C3H/HeN mice infected with bacille Calmette Guérin (BCG) and subcutaneous inflammatory macrophages from uninfected mice exhibit spontaneous cytotoxicity for tumor cells in vitro, but their tumoricidal activity can be increased by incubation in vitro with lymphokines released by mitogen- or antigen-stimulated lymphocytes. Inflammatory macrophages from these sites are only susceptible to activation in vitro by lymphokines for a short period (less than 4 days) following their initial emigration from the circulation to the site of inflammation. The expression of tumoricidal activity by activated macrophages is similarly short-lived (less than 4 days). Once the tumoricidal state is lost it cannot be restored by further incubation with lymphokines in vitro. Fusion of macrophages to form multinucleate giant cells (MGCs) accompanies the loss of tumoricidal activity and the onset of resistance to activation by lymphokines, but the fusion process is not responsible for these changes, since unfused macrophages are similarly affected. Activation and acquisition of tumoricidal properties is confined to young macrophages recruited from the circulation during acute inflammation. Older macrophages and MGCs in chronic inflammatory lesions in which recruitment of new macrophages has ceased are nontumoricidal and are refractory to activation by lymphokines in vitro. These findings are discussed in relation to the efficiency of macrophage-mediated destruction of tumors in vivo and the amplification of macrophage antitumor activity by immunotherapeutic agents. Images Figure 3 Figure 1 Figure 2 PMID:382866

  5. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    PubMed Central

    Suzuki, Keita; Sawada, Shunsuke; Takizawa, Naoki; Yaegashi, Takashi; Ishisaki, Akira

    2017-01-01

    Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue. PMID:28167967

  6. Oscillation of p38 activity controls efficient pro-inflammatory gene expression

    PubMed Central

    Tomida, Taichiro; Takekawa, Mutsuhiro; Saito, Haruo

    2015-01-01

    The p38 MAP kinase signalling pathway controls inflammatory responses and is an important target of anti-inflammatory drugs. Although pro-inflammatory cytokines such as interleukin-1β (IL-1β) appear to induce only transient activation of p38 (over ∼60 min), longer cytokine exposure is necessary to induce p38-dependent effector genes. Here we study the dynamics of p38 activation in individual cells using a Förster resonance energy transfer (FRET)-based p38 activity reporter. We find that, after an initial burst of activity, p38 MAPK activity subsequently oscillates for more than 8 h under continuous IL-1β stimulation. However, as this oscillation is asynchronous, the measured p38 activity population average is only slightly higher than basal level. Mathematical modelling, which we have experimentally verified, indicates that the asynchronous oscillation of p38 is generated through a negative feedback loop involving the dual-specificity phosphatase MKP-1/DUSP1. We find that the oscillatory p38 activity is necessary for efficient expression of pro-inflammatory genes such as IL-6, IL-8 and COX-2. PMID:26399197

  7. Inflammatory cytokines presented from polymer matrices differentially generate and activate DCs in situ

    PubMed Central

    Ali, Omar A.; Tayalia, Prakriti; Shvartsman, Dmitry; Lewin, Sarah; Mooney, David J.

    2014-01-01

    During infection, inflammatory cytokines mobilize and activate dendritic cells (DCs), which are essential for efficacious T cell priming and immune responses that clear the infection. Here we designed macroporous poly(lactide-co-glycolide) (PLG) matrices to release the inflammatory cytokines GM-CSF, Flt3L and CCL20, in order to mimic infection-induced DC recruitment. We then tested the ability of these infection mimics to function as cancer vaccines via induction of specific, anti-tumor T cell responses. All vaccine systems tested were able to confer specific anti-tumor T cell responses and longterm survival in a therapeutic, B16-F10 melanoma model. However, GM-CSF and Flt3L vaccines resulted in similar survival rates, and outperformed CCL20 loaded scaffolds, even though they had differential effects on DC recruitment and generation. GM-CSF signaling was identified as the most potent chemotactic factor for conventional DCs and significantly enhanced surface expression of MHC(II) and CD86(+), which are utilized for priming T cell immunity. In contrast, Flt3L vaccines led to greater numbers of plasmacytoid DCs (pDCs), correlating with increased levels of T cell priming cytokines that amplify T cell responses. These results demonstrate that 3D polymer matrices modified to present inflammatory cytokines may be utilized to effectively mobilize and activate different DC subsets in vivo for immunotherapy. PMID:24688455

  8. IL-17A Signaling in Colonic Epithelial Cells Inhibits Pro-Inflammatory Cytokine Production by Enhancing the Activity of ERK and PI3K

    PubMed Central

    Xiao, Yan; Zhou, Tingting; Guo, Yueling; Wang, Renxi; Zhao, Zhi; Xiao, He; Hou, Chunmei; Ma, Lingyun; Lin, Yanhua; Lang, Xiaoling; Feng, Jiannan; Chen, Guojiang; Shen, Beifen; Han, Gencheng; Li, Yan

    2014-01-01

    Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-ãinduced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD. PMID:24586980

  9. MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K/Akt/eNOS signaling pathway

    PubMed Central

    Song, Chun-Li; Liu, Bin; Shi, Yong-Feng; Liu, Ning; Yan, You-You; Zhang, Ji-Chang; Xue, Xin; Wang, Jin-Peng; Zhao, Zhuo; Liu, Jian-Gen; Li, Yang-Xue; Zhang, Xiao-Hao; Wu, Jun-Duo

    2016-01-01

    Our study aims to investigate the roles of microRNA-130a (miR-130a) in human coronary artery endothelial cells (HCAECs) injury and inflammatory responses by targeting PTEN through the PI3K/Akt/eNOS signaling pathway. HCAECs were treated with 1.0 mmol/L homocysteine (HCY) and assigned into eight groups: the blank group, the negative control (NC) group, the miR-130a mimics group, the miR-130a inhibitors group, the si-PTEN group, the Wortmannin group, the miR-130a inhibitors + si-PTEN group and the miR-130a mimics + Wortmannin group. Luciferase reporter gene assay was used to validate the relationship between miR-130a and PTEN. The expressions of miR-130a, PTEN and PI3K/Akt/eNOS signaling pathway-related proteins were detected by qRT-PCR assay and Western blotting. MTT assay and Hoechst 33258 staining were adopted to testify cell growth and apoptosis. The NO kit assay was used to detect the NO release. ELISA was conducted to measure serum cytokine levels. Luciferase reporter gene assay confirmed the target relationship between miR-130a and PTEN. Compared with the blank and NC groups, the miR-130a mimics and si-PTEN groups showed significant increases in the expressions of PI3K/Akt/eNOS signaling pathway-related proteins, cell viability and the NO release, while serum cytokine levels and cell apoptosis were decreased; by contrast, an opposite trend was observed in miR-130a inhibitors and Wortmannin groups. However, no significant difference was found in the miR-130a inhibitors + si-PTEN and miR-130a mimics + Wortmannin groups when compared with the blank group. These results indicate that miR-130a could alleviate HCAECs injury and inflammatory responses by down-regulating PTEN and activating PI3K/Akt/eNOS signaling pathway. PMID:27713121

  10. Anti-inflammatory activity and composition of Senecio salignus Kunth.

    PubMed

    González, Cuauhtemoc Pérez; Vega, Roberto Serrano; González-Chávez, Marco; Sánchez, Miguel Angel Zavala; Gutiérrez, Salud Pérez

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h.

  11. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  12. ANTI-INFLAMMATORY ACTIVITY OF MIRABILIS JALAPA LINN. LEAVES

    PubMed Central

    Nath, Lekshmi. R.; Manjunath, K. P.; Savadi, R. V.; Akki, K. S.

    2010-01-01

    Mirabilis Jalapa Linn. is a widely used traditional medicine in many parts of the world for the treatment of various diseases viz. virus inhibitory activity, anti tumour activity. It is claimed in traditional medicine that the leaves of the plant are used in the treatment of inflammation. In the present study, the total alcoholic extract and successive petroleum ether fractions of leaves of Mirabilis Jalapa Linn were screened for its anti-inflammatory activity using carageenan induced rat paw edema and cotton pellet induced granuloma models. The total alcoholic extract at the dose of 300 mg/kg p.o and successive petroleum ether fraction at the dose of 200 mg/kg exhibited significant anti-inflammatory activity in carrageenan induced paw edema model (p<0.01). In cotton pellet granuloma model, the total alcoholic extract at the dose of 300 mg/kg and successive petroleum ether fraction at the dose of 200 mg/kg inhibited granuloma formation significantly (p<0.05) indicating that both test samples inhibit the increase in number of fibroblasts and synthesis of collagen and mucopolysaccharides during granuloma tissue formation during the chronic inflammation. These experimental results have established a pharmacological evidence for the folklore claim of the drug to be used as an anti inflammatory agent. PMID:24825972

  13. Structural basis of the anti-inflammatory activity of melatonin.

    PubMed

    de la Rocha, Nadir; Rotelli, Alejandra; Aguilar, Carlos F; Pelzer, Lilian

    2007-01-01

    The anti-inflammatory activity of melatonin (CAS 73-31-4) was examined, using the rat paw edema model, and compared with the non-steroidal anti-inflammatory drug (NSAID) indometacin (CAS 53-86-1) which exerts its effects by inhibition of prostaglandin production on acute inflammation. The experiments showed that melatonin has an important effect on acute inflammatory processes acting as an inhibitor in a similar manner to indometacin. The structural interactions of melatonin with cyclooxygenase (COX), the pharmacological target of NSAIDs, were investigated using computer graphics applications. The results indicated that melatonin has an excellent steric and electronic complementarity with COX. It was found, similarly to previously studied crystal structures of protein-inhibitor complexes, that almost all interactions were of the hydrophobic type but for the typical carboxylate or electronegative group interaction, at the mouth of the active site channel, with Arg 120 and Tyr 355. Therefore, it seems possible that melatonin might bind to the active site of COX-1 and COX-2 suggesting that it may act as a natural inhibitor of the functions of cyclooxygenase modulating in a natural manner the activity of this enzyme.

  14. Allergen-sensitization in vivo enhances mast cell-induced inflammatory responses and supports innate immunity.

    PubMed

    Salinas, Eva; Quintanar, J Luis; Ramírez-Celis, Nora Alejandra; Quintanar-Stephano, Andrés

    2009-12-02

    Mast cells are immune cells that play a crucial role in inflammatory reactions related to allergic reactions and the defense against certain parasites and bacteria. In allergy, the binding of immunoglobulin E (IgE) to its high-affinity receptor (FcepsilonRI) sensitizes mast cells. Subsequent cross-linking of IgE-FcepsilonRI by multivalent antigen results in cellular activation and the release of proinflammatory mediators. Recent in vivo and in vitro experiments suggest that IgE not only acts as an allergen sensor, but also induces molecular and biological changes in mast cells. In the present study we examined whether allergen-sensitization in vivo could modify the magnitude of mast cells-induced inflammatory responses. Moreover, we studied changes in peritoneal mast cell number and histamine amount during and after sensitization. We provided evidence that sensitization, at the time of the maximum allergen-specific IgE-titer, increases the intensity of a local inflammatory process generated in a cutaneous anaphylactic reaction. Sensitization also supports innate immunity, improving survival and speeding up the resolution of an acute inflammatory reaction induced by polymicrobial sepsis, while decreasing the amount of histamine in peritoneal mast cells. In addition, our results showed that sensitization induces a late increase in the number and histamine amount of peritoneal mast cells. Thus, our findings clearly demonstrated that sensitization induces changes in mast cells which prepare the cell to induce more intense inflammatory responses. This entails an increased detrimental role in subsequent IgE-dependent allergic reactions and an improved protective function in innate defense against pathogens.

  15. Bacterial activation of mast cells.

    PubMed

    Chi, David S; Walker, Elaine S; Hossler, Fred E; Krishnaswamy, Guha

    2006-01-01

    Mast cells often are found in a perivascular location but especially in mucosae, where they may response to various stimuli. They typically associate with immediate hypersensitive responses and are likely to play a critical role in host defense. In this chapter, a common airway pathogen, Moraxella catarrhalis, and a commensal bacterium, Neiserria cinerea, are used to illustrate activation of human mast cells. A human mast cell line (HMC-1) derived from a patient with mast cell leukemia was activated with varying concentrations of heat-killed bacteria. Active aggregation of bacteria over mast cell surfaces was detected by scanning electron microscopy. The activation of mast cells was analyzed by nuclear factor-kappaB (NF-kappaB) activation and cytokine production in culture supernatants. Both M. catarrhalis and N. cinerea induce mast cell activation and the secretion of two key inflammatory cytokines, interleukin-6 and MCP-1. This is accompanied by NF-kappaB activation. Direct bacterial contact with mast cells appears to be essential for this activation because neither cell-free bacterial supernatants nor bacterial lipopolysaccharide induce cytokine secretion.

  16. Blood and inflammatory cells of the lungfish Lepidosiren paradoxa.

    PubMed

    Ribeiro, Maria Lucia da S; DaMatta, Renato A; Diniz, José A P; de Souza, Wanderley; do Nascimento, Jose Luiz M; de Carvalho, Tecia Maria U

    2007-07-01

    A special interest exists concerning lungfish because they may possess characteristics of the common ancestor of land vertebrates. However, little is known about their blood and inflammatory cells; thus the fine structure, cytochemistry and differential cell counts of coelomic exudate and blood leucocytes were studied in Lepidosiren paradoxa. Blood smear analyses revealed erythrocytes, lymphocytes, monocytes, polymorphonuclear agranulocytes, thrombocytes and three different granulocytes. Blood monocytes and lymphocytes had typical vertebrate morphology. Thrombocytes had large vacuoles filled with a myelin rich structure. The polymorphonuclear agranulocyte had a nucleus morphologically similar to the human neutrophil with no apparent granules. Types I and II granulocytes had eosinophilic granules. Type I granulocytes had round or elongated granules heterogeneous in size, while type II had granules with an electron dense core. Type III granulocyte had many basophilic granules. The order of frequency was: type I granulocyte, followed by lymphocyte, type II granulocyte, monocyte, polymorphonuclear agranulocyte and type III granulocyte. Peroxidase localized mainly at the periphery of the granules from type II granulocytes, while no peroxidase expression was detected in type I granulocytes. Alkaline phosphatase was localized in the granules of type II granulocyte and acid phosphatase cytochemistry also labelled a few vacuoles of polymorphonuclear agranulocyte. About 85% of the coelomic inflammatory exudate cell population was type II granulocyte, 10% polymorphonuclear agranulocyte and 5% macrophages as judged by the nucleus and granule morphology. These results indicate that this lungfish utilises type II granulocytes as its main inflammatory granulocytes and that the polymorphonuclear agranulocyte may also be involved in the inflammatory response. The other two granulocytes appear similar to the mammalian eosinophil and basophil. In summary, this lungfish appears to

  17. Anti-inflammatory activity of Heliotropium strigosum in animal models.

    PubMed

    Khan, Haroon; Khan, Murad Ali; Gul, Farah; Hussain, Sajjid; Ashraf, Nadeem

    2015-12-01

    The current project was designed to evaluate the anti-inflammatory activity of crude extract of Heliotropium strigosum and its subsequent solvent fractions in post carrageenan-induced edema and post xylene-induced ear edema at 50, 100, and 200 mg/kg intraperitoneally. The results revealed marked attenuation of edema induced by carrageenan injection in a dose-dependent manner. The ethyl acetate fraction was most dominant with 73.33% inhibition followed by hexane fraction (70.66%). When the extracts were challenged against xylene-induced ear edema, again ethyl acetate and hexane fractions were most impressive with 38.21 and 35.77% inhibition, respectively. It is concluded that various extracts of H. strigosum possessed strong anti-inflammatory activity in animal models.

  18. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-05

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity.

  19. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis

    PubMed Central

    Bell, G M; Anderson, A E; Diboll, J; Reece, R; Eltherington, O; Harry, R A; Fouweather, T; MacDonald, C; Chadwick, T; McColl, E; Dunn, J; Dickinson, A M; Hilkens, C M U; Isaacs, John D

    2017-01-01

    Objectives To assess the safety of intra-articular (IA) autologous tolerogenic dendritic cells (tolDC) in patients with inflammatory arthritis and an inflamed knee; to assess the feasibility and acceptability of the approach and to assess potential effects on local and systemic disease activities. Methods An unblinded, randomised, controlled, dose escalation Phase I trial. TolDC were differentiated from CD14+ monocytes and loaded with autologous synovial fluid as a source of autoantigens. Cohorts of three participants received 1×106, 3×106 or 10×106 tolDC arthroscopically following saline irrigation of an inflamed (target) knee. Control participants received saline irrigation only. Primary outcome was flare of disease in the target knee within 5 days of treatment. Feasibility was assessed by successful tolDC manufacture and acceptability via patient questionnaire. Potential effects on disease activity were assessed by arthroscopic synovitis score, disease activity score (DAS)28 and Health Assessment Questionnaire (HAQ). Immunomodulatory effects were sought in peripheral blood. Results There were no target knee flares within 5 days of treatment. At day 14, arthroscopic synovitis was present in all participants except for one who received 10×106 tolDC; a further participant in this cohort declined day 14 arthroscopy because symptoms had remitted; both remained stable throughout 91 days of observation. There were no trends in DAS28 or HAQ score or consistent immunomodulatory effects in peripheral blood. 9 of 10 manufactured products met quality control release criteria; acceptability of the protocol by participants was high. Conclusion IA tolDC therapy appears safe, feasible and acceptable. Knee symptoms stabilised in two patients who received 10×106 tolDC but no systemic clinical or immunomodulatory effects were detectable. Trial registration number NCT01352858. PMID:27117700

  20. Guggulipid and nimesulide differentially regulated inflammatory genes mRNA expressions via inhibition of NF-kB and CHOP activation in LPS-stimulated rat astrocytoma cells, C6.

    PubMed

    Niranjan, Rituraj; Nath, Chandishwar; Shukla, Rakesh

    2011-07-01

    Neuroinflammation is an integral part of neurodegenerative diseases. Lipo-polysacharide (LPS) induces reactive astrogliosis, the cellular manifestation of neuroinflammation, in various models of neurological diseases, but its mechanism of action is still not properly known. The effect of guggulipid and nimesulide on LPS-induced neuroinflammatory changes is also not properly understood. This work demonstrated the mechanism of actions of guggulipid and nimesulide on inflammatory genes expressions in LPS-stimulated rat astrocytoma cells, C6. We observed that LPS (10 μg/ml) treatment of rat astrocytoma cells, C6, for 24 h significantly increased intracellular Ca(2+) ion and expression of inducible nitric oxide synthase (iNOS), nuclear factor kappa-B (NF-kB), C/EBP homologous protein 10 (CHOP), c-fos, and c-jun proteins. At transcriptional stage, LPS upregulated mRNA levels of cyclooxygenase-2 and IL-6 with downregulation in IL-1α, IL-1β, and microsomal prostaglandin E synthase-1 (mPGES-1) through activating NF-kB translocation. Treatment with guggulipid reversed these LPS-induced changes in rat astrocytoma cells. Treatment with nimesulide also attenuated LPS-induced Ca(2+) ion, iNOS, NF-kB, and c-fos expressions, but does not significantly influence CHOP, c-jun protein expressions, and mRNA levels of IL-6, IL-1α, IL-1β, and mPGES-1 genes. In conclusion, our findings elucidated the molecular mechanism of neuroinflammation in response to LPS and its modulation by guggulipid and nimesulide in rat astrocytoma cells (C6), which suggest the use of these drugs in the treatment of neuroinflammation-associated disorders.

  1. Lactobacillus paracasei CBA L74 Metabolic Products and Fermented Milk for Infant Formula Have Anti-Inflammatory Activity on Dendritic Cells In Vitro and Protective Effects against Colitis and an Enteric Pathogen In Vivo

    PubMed Central

    Zagato, Elena; Mileti, Erika; Massimiliano, Lucia; Fasano, Francesca; Budelli, Andrea; Penna, Giuseppe; Rescigno, Maria

    2014-01-01

    The rapid expansion of commercially available fermented food products raises important safety issues particularly when infant food is concerned. In many cases, the activity of the microorganisms used for fermentation as well as what will be the immunological outcome of fermented food intake is not known. In this manuscript we used complex in vitro, ex-vivo and in vivo systems to study the immunomodulatory properties of probiotic-fermented products (culture supernatant and fermented milk without live bacteria to be used in infant formula). We found in vitro and ex-vivo that fermented products of Lactobacillus paracasei CBA L74 act via the inhibition of proinflammatory cytokine release leaving anti-inflammatory cytokines either unaffected or even increased in response to Salmonella typhimurium. These activities are not dependent on the inactivated bacteria but to metabolic products released during the fermentation process. We also show that our in vitro systems are predictive of an in vivo efficacy by the fermented products. Indeed CBA L74 fermented products (both culture medium and fermented milk) could protect against colitis and against an enteric pathogen infection (Salmonella typhimurium). Hence we found that fermented products can act via the inhibition of immune cell inflammation and can protect the host from pathobionts and enteric pathogens. These results open new perspectives in infant nutrition and suggest that L. paracasei CBA L74 fermented formula can provide immune benefits to formula-fed infants, without carrying live bacteria that may be potentially dangerous to an immature infant immune system. PMID:24520333

  2. Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have anti-inflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo.

    PubMed

    Zagato, Elena; Mileti, Erika; Massimiliano, Lucia; Fasano, Francesca; Budelli, Andrea; Penna, Giuseppe; Rescigno, Maria

    2014-01-01

    The rapid expansion of commercially available fermented food products raises important safety issues particularly when infant food is concerned. In many cases, the activity of the microorganisms used for fermentation as well as what will be the immunological outcome of fermented food intake is not known. In this manuscript we used complex in vitro, ex-vivo and in vivo systems to study the immunomodulatory properties of probiotic-fermented products (culture supernatant and fermented milk without live bacteria to be used in infant formula). We found in vitro and ex-vivo that fermented products of Lactobacillus paracasei CBA L74 act via the inhibition of proinflammatory cytokine release leaving anti-inflammatory cytokines either unaffected or even increased in response to Salmonella typhimurium. These activities are not dependent on the inactivated bacteria but to metabolic products released during the fermentation process. We also show that our in vitro systems are predictive of an in vivo efficacy by the fermented products. Indeed CBA L74 fermented products (both culture medium and fermented milk) could protect against colitis and against an enteric pathogen infection (Salmonella typhimurium). Hence we found that fermented products can act via the inhibition of immune cell inflammation and can protect the host from pathobionts and enteric pathogens. These results open new perspectives in infant nutrition and suggest that L. paracasei CBA L74 fermented formula can provide immune benefits to formula-fed infants, without carrying live bacteria that may be potentially dangerous to an immature infant immune system.

  3. Evaluation of the wound-healing activity and anti-inflammatory activity of aqueous extracts from Acorus calamus L.

    PubMed

    Shi, Guo-bing; Wang, Bing; Wu, Qiong; Wang, Tong-chao; Wang, Chang-li; Sun, Xue-hui; Zong, Wen-tao; Yan, Ming; Zhao, Qing-chun; Chen, Yu-feng; Zhang, Wei

    2014-01-01

    In folklore medicine, Acorus calamus has been used as a wound-healing agent for thousands of years; however, there have been few scientific reports on this activity so far. Now, we explored deeply the wound-healing effect of aqueous extracts from the fresh roots and rhizomes of A. calamus in vivo, as well as anti-inflammatory activity in vitro, so as to provide scientific evidence for the traditional application. The wound-healing effect was determined by the image analysis techniques and the histological analysis in the excisional wounding test, and the anti-inflammatory activity was evaluated by the real-time RT-PCR techniques in the lipopolysaccharide-induced RAW 264.7 cells test. Aqueous extracts, administered topically at the dose range from twice to thrice in a day, could enhance significantly the rate of skin wound-healing. Moreover, the extracts could effectively inhibit the mRNA expressions of inflammatory mediators induced by lipopolysaccharide in RAW 264.7 cells. These results showed significantly the wound-healing activity of aqueous extracts in the animal model of excise wound healing, and anti-inflammatory activity in vitro.

  4. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells.

    PubMed

    Jeong, Sun-Oh; Son, Yong; Lee, Ju Hwan; Cheong, Yong-Kwan; Park, Seong Hoon; Chung, Hun-Taeg; Pae, Hyun-Ock

    2015-07-01

    Growing evidence suggests that the elevation of free fatty acids, including palmitic acid (PA), are associated with inflammation and oxidative stress, which may be involved in endothelial dysfunction, characterized by the reduced bioavailability of nitric oxide (NO) synthesized from endothelial NO synthase (eNOS). Heme oxygenase-1 (HO-1) is important in the preservation of NO bioavailability. Piceatannol (Pic), with similar chemical structure to resveratrol, is suggested to possess similar protective effects as resveratrol. In the present study, human umbilical vein endothelial cells (HUVECs), stimulated with PA, were used to examine the endothelial protective effects of Pic. Pic increased the expression of HO-1 via nuclear factor erythroid-2-related factor-2 activation in the HUVECs, and decreased the PA-induced secretions of interleukin-6 and tumor necrosis factor-α, and the formation of reactive oxygen species ROS via inhibition of NF-κB activation. Notably, following inhibition of HO-1 activity by tin protoporphryin-IX, Pic did not prevent cytokine secretion, ROS formation, and NF-κB activation in the PA-stimulated HUVECs. PA attenuated insulin-mediated insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, leading to decreased glucose uptake, and phosphorylation of eNOS, leading to a reduction in the production of NO. Pic effectively mitigated the inhibitory effects of PA on the insulin-mediated phosphorylation of IRS-1 and eNOS, which was not observed following inhibition of HO‑1 activity. The results of the present study suggested that Pic may have the potential to prevent PA-induced impairment of insulin signaling and eNOS function, by inducing the expression of the anti-inflammatory and antioxidant, HO-1.

  5. NG2, a member of chondroitin sulfate proteoglycans family mediates the inflammatory response of activated microglia.

    PubMed

    Gao, Q; Lu, J; Huo, Y; Baby, N; Ling, E A; Dheen, S T

    2010-01-20

    Activation of microglial cells, the resident immune cells of the CNS causes neurotoxicity through the release of a wide array of inflammatory mediators including proinflammatory cytokines, chemokines and reactive oxygen species. In this study, we have investigated the expression of NG2 (also known as CSPG4), one of the members of transmembrane chondroitin sulfate proteoglycans family, in microglial cells and its role on inflammatory reaction of microglia by analyzing the expression of the proinflammation cytokines (interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha)), chemokines (stromal cell-derived factor-1alpha and monocyte chemotactic protein-1) and inducible nitric oxide synthase (iNOS). NG2 expression was not detectable in microglial cells expressing OX-42 in the brains of 1-day old postnatal rat pups and adult rats; it was, however, induced in activated microglial cells in pups and adult rats injected with lipopolysaccharide (LPS). In vitro analysis further confirmed that LPS induced the expression of NG2 in primary microglial cells and this was inhibited by dexamethasone. It has been well demonstrated that LPS induces the expression of iNOS and proinflammatory cytokines in microglia. However in this study, LPS did not induce the mRNA expression of iNOS and cytokines including IL-1beta, and TNF-alpha in microglial cells transfected with CSPG4 siRNA. On the contrary, mRNA expression of chemokines such as monocyte chemoattractant protein-1 (MCP-1) and stromal cell-derived factor-1alpha (SDF-1alpha) was significantly increased in LPS-activated microglial cells after CSPG4 siRNA transfection in comparison with the control. The above results indicate that NG2 mediates the induction of iNOS and inflammatory cytokine expression, but not the chemokine expression in activated microglia.

  6. Reasons for rarity of Th17 cells in inflammatory sites of human disorders.

    PubMed

    Annunziato, Francesco; Santarlasci, Veronica; Maggi, Laura; Cosmi, Lorenzo; Liotta, Francesco; Romagnani, Sergio

    2013-11-15

    T helper 17 (Th17) cells have been reported to be responsible for several chronic inflammatory diseases. However, a peculiar feature of human Th17 cells is that they are very rare in the inflammatory sites in comparison with Th1 cells. The first reason for this rarity is the existence of some self-regulatory mechanisms that limit their expansion. The limited expansion of human Th17 cells is related to the retinoic acid orphan (ROR)C-dependent up-regulation of the interleukin (IL)-4 induced gene 1 (IL4I1), which encodes for a l-phenylalanine oxidase, that has been shown to down-regulate CD3ζ expression in T cells. This results in abnormalities of the molecular pathway which is responsible for the impairment of IL-2 production and therefore for the lack of cell proliferation in response to T-cell receptor (TCR) signalling. IL4I1 up-regulation also associates with the increased expression of Tob1, a member of the Tob/BTG anti-proliferative protein family, which is involved in cell cycle arrest. A second reason for the rarity of human Th17 cells in the inflammatory sites is their rapid shifting into the Th1 phenotype, which is mainly related to the activity of IL-12 and TNF-α. We have named these Th17-derived Th1 cells as non-classic because they differ from classic Th1 cells for the expression of molecules specific for Th17 cells, such as RORC, CD161, CCR6, IL4I1, and IL-17 receptor E. This distinction may be important for defining the respective pathogenic role of Th17, non-classic Th1 and classic Th1 cells in many human inflammatory disorders.

  7. Salvianolic acid B inhibits platelets-mediated inflammatory response in vascular endothelial cells.

    PubMed

    Xu, Shixin; Zhong, Aiqin; Bu, Xiaokun; Ma, Huining; Li, Wei; Xu, Xiaomin; Zhang, Junping

    2015-01-01

    Salvianolic acid B (SAB) is a hydrophilic component isolated from the Chinese herb Salviae miltiorrhizae, which has been used clinically for the treatment of ischemic cardiovascular and cerebrovascular diseases. Platelets-mediated vascular inflammatory response contributes to the initiation and progression of atherosclerosis. In this paper, we focus on the modulating effects of SAB on the inflammatory reaction of endothelial cells triggered by activated platelets. Human umbilical vein endothelial cells (EA.hy926) were pretreated with SAB followed by co-culture with ADP-activated platelets. Adhesion of platelets to endothelial cells was observed by amorphological method. The activation of nuclear factor-kappa B was evaluated by NF-κB p65 nuclear translocation and the protein phosphorylation. A determination of the pro-inflammatory mediators (ICAM-1, IL-1β, IL-6, IL-8, MCP-1) mRNA and protein were also conducted. In addition, the inhibitory effects of SAB on platelets activation were also evaluated using a platelet aggregation assay and assessing the release level of soluble P-selectin. The results showed that SAB dose-dependently inhibited ADP- or α-thrombin-induced human platelets aggregation in platelet rich plasma (PRP) samples, and significantly decreased soluble P-selectin release from both agonists stimulated washed platelets. It was also found that pre-treatment with SAB reduced adhesion of ADP-activated platelets to EA.hy926 cells and inhibited NF-κB activation. In addition, SAB significantly suppressed pro-inflammatory mediators mRNA and protein in EA.hy926 cells in a dose-dependent manner. These results indicated that, in addition to its inhibitory effects on platelets activation, SAB was able to attenuate platelets-mediated inflammatory responses in endothelial cells even if the platelets had already been activated. This anti-inflammatory effect was related to the inhibition of NF-κB activation. Our findings suggest that SAB may be a potential

  8. Anti-Inflammatory Effects of Chloranthalactone B in LPS-Stimulated RAW264.7 Cells

    PubMed Central

    Li, Xueqin; Shen, Jun; Jiang, Yunyao; Shen, Ting; You, Long; Sun, Xiaobo; Xu, Xudong; Hu, Weicheng; Wu, Haifeng; Wang, Gongcheng

    2016-01-01

    Chloranthalactone B (CTB), a lindenane-type sesquiterpenoid, was obtained from the Chinese medicinal herb Sarcandra glabra, which is frequently used as a remedy for inflammatory diseases. However, the anti-inflammatory mechanisms of CTB have not been fully elucidated. In this study, we investigated the molecular mechanisms underlying these effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CTB strongly inhibited the production of nitric oxide and pro-inflammatory mediators such as prostaglandin E2, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 in RAW264.7 cells stimulated with LPS. A reverse-transcription polymerase chain reaction assay and Western blot further confirmed that CTB inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α, and IL-1β at the transcriptional level, and decreased the luciferase activities of activator protein (AP)-1 reporter promoters. These data suggest that inhibition occurred at the transcriptional level. In addition, CTB blocked the activation of p38 mitogen-activated protein kinase (MAPK) but not c-Jun N-terminal kinase or extracellular signal-regulated kinase 1/2. Furthermore, CTB suppressed the phosphorylation of MKK3/6 by targeting the binding sites via formation of hydrogen bonds. Our findings clearly show that CTB inhibits the production of inflammatory mediators by inhibiting the AP-1 and p38 MAPK pathways. Therefore, CTB could potentially be used as an anti-inflammatory agent. PMID:27879664

  9. Different GATA factors dictate CCR3 transcription in allergic inflammatory cells in a cell type-specific manner.

    PubMed

    Kong, Su-Kang; Kim, Byung Soo; Uhm, Tae Gi; Lee, Wonyong; Lee, Gap Ryol; Park, Choon-Sik; Lee, Chul-Hoon; Chung, Il Yup

    2013-06-01

    The chemokine receptor CCR3 is expressed in prominent allergic inflammatory cells, including eosinophils, mast cells, and Th2 cells. We previously identified a functional GATA element within exon 1 of the CCR3 gene that is responsible for GATA-1-mediated CCR3 transcription. Because allergic inflammatory cells exhibit distinct expression patterns of different GATA factors, we investigated whether different GATA factors dictate CCR3 transcription in a cell type-specific manner. GATA-2 was expressed in EoL-1 eosinophilic cells, GATA-1 and GATA-2 were expressed in HMC-1 mast cells, and GATA-3 was preferentially expressed in Jurkat cells. Unlike a wild-type CCR3 reporter, reporters lacking the functional GATA element were not active in any of the three cell types, implying the involvement of different GATA factors in CCR3 transcription. RNA interference assays showed that small interfering RNAs specific for different GATA factors reduced CCR3 reporter activity in a cell type-specific fashion. Consistent with these findings, chromatin immunoprecipitation and EMSA analyses demonstrated cell type-specific binding of GATA factors to the functional GATA site. More importantly, specific inhibition of the CCR3 reporter activity by different GATA small interfering RNAs was well preserved in respective cell types differentiated from cord blood; in particular, GATA-3 was entirely responsible for reporter activity in Th2 cells and replaced the role predominantly played by GATA-1 and GATA-2. These results highlight a mechanistic role of GATA factors in which cell type-specific expression is the primary determinant of transcription of the CCR3 gene in major allergic inflammatory cells.

  10. Thymoquinone inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells.

    PubMed

    Wang, Yanan; Gao, Hongmei; Zhang, Weina; Zhang, Wenjie; Fang, Liqun

    2015-05-01

    Thymoquinone, the major active compound isolated from the medicinal Nigella sativa, has been demonstrated to have anti-inflammatory activity. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of thymoquinone on LPS-stimulated BV2 microglial cells. The effects of thymoquinone on inflammatory mediators TNF-α, IL-1β, NO and PGE2 production were detected by ELISA. The effects of thymoquinone on PI3K, Akt phosphorylation, and NF-κB activation were detected by western blot analysis. Our results showed that thymoquinone dose-dependently inhibited LPS-induced TNF-α, IL-1β, NO and PGE2 production. Thymoquinone also inhibited LPS-induced NF-κB activation. Furthermore, thymoquinone was found to inhibit LPS-induced PI3K and Akt phosphorylation, which were upstream molecules of NF-κB. In conclusion, our data demonstrated that thymoquinone might inhibit LPS-induced PI3K and Akt phosphorylation, which leading to the inhibition of NF-κB activation and inflammatory mediator production in BV2 microglia cells.

  11. Gomisin N Decreases Inflammatory Cytokine Production in Human Periodontal Ligament Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-04-01

    Gomisin N, which is a lignan isolated from Schisandra chinensis, has some pharmacological effects. However, the anti-inflammatory effects of gomisin N on periodontal disease are uncertain. The aim of this study was to examine the effect of gomisin N on inflammatory mediator production in tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells (HPDLC). Gomisin N inhibited interleukin (IL)-6, IL-8, CC chemokine ligand (CCL) 2, and CCL20 production in TNF-α-stimulated HPDLC in a dose-dependent manner. Moreover, we revealed that gomisin N could suppress extracellular signal-regulated kinase (ERK) and c-Jun N terminal kinase (JNK) phosphorylation in TNF-α-stimulated HPDLC though protein kinase B (Akt) phosphorylation was not suppressed by gomisin N treatment. In summary, gomisin N might exert anti-inflammatory effects by attenuating cytokine production in periodontal ligament cells via inhibiting the TNF-α-stimulated ERK and JNK pathways activation.

  12. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients.

    PubMed

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N; Buttgereit, Frank

    2017-03-08

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients.

  13. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients

    PubMed Central

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2017-01-01

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868

  14. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  15. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  16. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction.

    PubMed

    Liu, Po-Len; Chong, Inn-Wen; Lee, Yi-Chen; Tsai, Jong-Rung; Wang, Hui-Min; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Liu, Wei-Lun; Chen, Yung-Hsiang; Chen, Hsiu-Lin

    2015-11-04

    Reducing oxidative stress is crucial to prevent hypoxia-reoxygenation (H/R)-induced lung injury. Resveratrol has excellent antioxidant and anti-inflammatory effects, and this study investigated its role in H/R-induced type II pneumocyte dysfunction. H/R conditions increased expression of inflammatory cytokines including interleukin (IL)-1β (142.3 ± 21.2%, P < 0.05) and IL-6 (301.9 ± 35.1%, P < 0.01) in a type II alveolar epithelial cell line (A549), while the anti-inflammatory cytokine IL-10 (64.6 ± 9.8%, P < 0.05) and surfactant proteins (SPs) decreased. However, resveratrol treatment effectively inhibited these effects. H/R significantly activated an inflammatory transcription factor, nuclear factor (NF)-κB, while resveratrol significantly inhibited H/R-induced NF-κB transcription activities. To the best of our knowledge, this is the first study showing resveratrol-mediated reversal of H/R-induced inflammatory responses and dysfunction of type II pneumocyte cells in vitro. The effects of resveratrol were partially mediated by promoting SP expression and inhibiting inflammation with NF-κB pathway involvement. Therefore, our study provides new insights into mechanisms underlying the action of resveratrol in type II pneumocyte dysfunction.

  17. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice.

    PubMed

    Kim, Tae Hoon; Ku, Sae-Kwang; Bae, Jong-Sup

    2013-02-01

    High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that elicits severe vascular inflammatory diseases. Oenanthe javanica (water dropwort) extract has anti-arrhythmic, neuroprotective and anti-diabetic activity. However, isorhamnetin-3-O-galactoside (I3G), an active compound from O. javanica, is not researched well for its biological activity. Here, we investigated the anti-inflammatory activities of I3G by monitoring the effects of I3G on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1 or CLP-mediated modulation of inflammatory responses. I3G potently inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. I3G also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. Further studies revealed that I3G suppressed the production of tumor necrosis factor-α and activation of nuclear factor-κB by HMGB1. In addition, I3G reduced CLP-induced HMGB1 release and sepsis-related mortality. Given these results, I3G should be viewed as a candidate therapeutic agent for the treatment of severe vascular inflammatory diseases such as sepsis or septic shock via inhibition of the HMGB1 signaling pathway.

  18. Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Palacios, Eduardo; Montoya, José Ascención; Gómez-Vidales, Virginia; Ramírez-Apán, María Teresa

    2013-11-01

    Halloysite is a naturally-occurring nanomaterial occurring in the thousands of tons and that serves as biomaterial, with applications in the areas of biotechnology, pharmaceutical, and medical research. This study reports on the anti-inflammatory, cytotoxic, and anti-oxidant activity of halloysite Jarrahdale (collected at ∼ 45 km SE of Perth, Western Australia; JA), Dragon Mine (provided by Natural Nano Inc., Rochester, New York; NA), and Kalgoorie Archean (collected at Siberia, ∼ 85km NW of Kalgoorlie, West Australia; PA). Prior to biological testing, halloysites were characterized by 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy, the anti-inflammatory activity was determined by (a) the mouse ear edema method, using 12-o-tetradecanoylphorbol-13-acetate (TPA) as anti-inflammatory agent; and (b) the myeloperoxidase enzymatic activity method (MPO). Cell viability was determined using the MTT method. Sample characterization by NMR method showed similar symmetry and atomic environments, with no evidence of distortion(s) due to shiftings in atomic ordering or electron density. The anti-inflammatory activity followed the order: PA>JA>NA, and remained invariant with time. Prolonged anti-inflammatory activity related inversely to surface area and lumen space. The low extent of infiltration at shorter reaction times confirmed a limiting number of active surface sites. EPR intensity signals followed the order: JA>NA>PA. The poor stabilization of RO species in PA suspensions was explained by tube alignment provoking occlusion, thus limiting transfer of H(+) or e(-) from-and-to the surface, and decreases in acidity associated to Al(oct). Cell viability (%) varied from one surface to the other, PA(92.3 ± 6.0), JA(84.9 ± 7.8), and NA(78.0 ± 5.6), but related directly to SBET values.

  19. The Anti-inflammatory Activities of Two Major Withanolides from Physalis minima Via Acting on NF-κB, STAT3, and HO-1 in LPS-Stimulated RAW264.7 Cells.

    PubMed

    Li, Rui-Jun; Gao, Cai-Yun; Guo, Chao; Zhou, Miao-Miao; Luo, Jun; Kong, Ling-Yi

    2016-12-02

    Physalis minima has been traditionally used as a folk herbal medicine in China for the treatment of many inflammatory diseases. However, little is known about its anti-inflammatory constituents and associated molecular mechanisms. In our study, withaphysalin A (WA) and 2, 3-dihydro-withaphysalin C (WC), two major withanolide-type compounds, were obtained from the anti-inflammatory fraction of P. minima. Both WA and WC significantly inhibited the production of nitrite oxide (NO), prostaglandin E2 (PGE2), and several pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Further research indicated that they downregulated the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, they also suppressed nuclear translocation of NF-κB p65, phosphorylation of STAT3, and upregulated HO-1 expression. Intriguingly, the activation of MAPKs was suppressed by WA but was not altered by WC. Taken together, these data provide scientific evidence for elucidating the major bioactive constituents and related molecular mechanisms for the traditional use of P. minima and suggest that WA and WC can be attractive therapeutic candidates for various inflammatory diseases.

  20. Analysis of antioxidant and anti-inflammatory activity of silicon in murine macrophages.

    PubMed

    Kim, Eun-Jin; Bu, So-Young; Sung, Mi-Kyung; Kang, Myung-Hwa; Choi, Mi-Kyeong

    2013-12-01

    The purpose of this study is to investigate the antioxidant and anti-inflammatory properties of silicon (Si) in the RAW 264.7 murine macrophage cell line. Lipopolysaccharide (LPS) was used to induce inflammatory conditions, and cells were treated with 0, 1, 5, 10, 25, 50, and 100 μM Si in the form of sodium metasilicate. Tert-butylhydroquinone (TBHQ), a well-known antioxidative substance, was used as a positive control to assess the degree of antioxidative and anti-inflammatory properties of Si. Sodium metasilicate at 100 μM suppressed LPS-induced nitric oxide generation from macrophages 36 h after treatment. In addition, 50 μM sodium metasilicate decreased interleukin-6 production, and the degree of suppression was comparable to that of 10 μM TBHQ treatment. LPS-induced messenger RNA (mRNA) expression of tumor necrosis factor-α and inducible nitric oxide synthase was significantly decreased by 1, 5, 10, and 50 μM sodium metasilicate. Cyclooxygenase-2 mRNA expression was also suppressed by 1, 5, 25, and 50 μM sodium metasilicate. Based on these data, Si has the ability to suppress the production of inflammatory cytokines and mediators, possibly through the suppression of radical scavenger activity and down-regulation of gene expression of inflammatory mediators.

  1. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells

    PubMed Central

    Jovanovic, K; Siebeck, M; Gropp, R

    2014-01-01

    T helper type 2 (Th2)-characterized inflammatory responses are highly dynamic processes initiated by epithelial cell damage resulting in remodelling of the tissue architecture to prevent further harm caused by a dysfunctional epithelial barrier or migrating parasites. This process is a temporal and spatial response which requires communication between immobile cells such as epithelial, endothelial, fibroblast and muscle cells and the highly mobile cells of the innate and adaptive immunity. It is further characterized by a high cellular plasticity that enables the cells to adapt to a specific inflammatory milieu. Incipiently, this milieu is shaped by cytokines released from epithelial cells, which stimulate Th2, innate lymphoid and invariant natural killer (NK) T cells to secrete Th2 cytokines and to activate dendritic cells which results in the further differentiation of Th2 cells. This milieu promotes wound-healing processes which are beneficial in parasitic infections or toxin exposure but account for increasingly dysfunctional vital organs, such as the lung in the case of asthma and the colon in ulcerative colitis. A better understanding of the dynamics underlying relapses and remissions might lead ultimately to improved therapeutics for chronic inflammatory diseases adapted to individual needs and to different phases of the inflammation. PMID:24981014

  2. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium.

    PubMed

    Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Cho, Jae Youl

    2016-01-01

    Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.

  3. New Isorhamnetin Derivatives from Salsola imbricata Forssk. Leaves with Distinct Anti-inflammatory Activity

    PubMed Central

    Osman, Samir M.; El Kashak, Walaa A.; Wink, Michael; El Raey, Mohamed A.

    2016-01-01

    Background: Salsola imbricata Forssk. is a shrub widely growing in Egypt, used as a camel food, traditionally, used as anti-inflammatory agent. Literature survey showed no report about the anti-inflammatory activity of S. imbricata. Aim of the Study: This work was designed to study the phenolic constituents and to provide evidence for the traditional use of S. imbricata as an anti-inflammatory agent. Materials and Methods: The in vitro anti-inflammatory activity of the total aqueous methanol extract and some isolated compounds were investigated in RAW 264.7 macrophage cells using nitric oxide assay. All chemical structures were identified on the basis of electrospray ionization-mass spectrometry, one- and two-dimension nuclear magnetic resonance. Results: Nine phenolic compounds, among them two new natural products; isorhamnetin-3-O-β-D-glucuronyl (1’’’→4’’) glucuronide (1) and its dimethyl ester; isorhamnetin-3-O-β-D-di glucuronate dimethyl ester (2), two isorhamnetin glycosides: Isorhamnetin-3-O-β-D-galactopyranoside (3), isorhamnetin-3-O-β-D-glucopyranoside (4), and isorhamnetin (5). In addition, an alkaloidal phenolic; trans N-feruloyl tyramine (6), three phenolic acids: Isovanillic acid (7), ferulic acid (8), and p-hydroxy benzoic acid (9) were isolated from salsola imbricata leaves. All compounds were isolated and identified for the first time from this plant except compound (6). The extract and the tested compounds showed distintict anti-inflammatory activities with no toxicity on RAW 264.7 macrophage cells. Conclusion: The extract and the tested compounds showed distintict anti-inflammatory activities with no toxicity on RAW 264.7 macrophage cells. SUMMARY Investigation of the chemical constituents of the leaves of Salsola imbricata led to isolation of two new isorhamnetin derivatives: isorhamnetin.3-O-β-D.glucuronyl (1’“→”) glucuronide (1) and its dimethyl ester (2), together with seven known phenolic compounds. The extract and the

  4. Anti-inflammatory activities of essential oil isolated from the calyx of Hibiscus sabdariffa L.

    PubMed

    Shen, Chun-Yan; Zhang, Tian-Tian; Zhang, Wen-Li; Jiang, Jian-Guo

    2016-10-12

    Hibiscus sabdariffa Linn., belonging to the family of Malvaceae, is considered to be a plant with health care applications in China. The main purpose of this study was to analyze the composition of its essential oil and assess its potential therapeutic effect on anti-inflammatory activity. A water steam distillation method was used to extract the essential oil from H. Sabdariffa. The essential oil components were determined by gas chromatography/mass spectrometry (GC-MS) analysis and a total of 18 volatile constituents were identified, the majority of which were fatty acids and ester compounds. Biological activity showed that the essential oil extracted from H. Sabdariffa exhibited excellent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. The nitric oxide (NO) inhibition rate reached 67.46% when the concentration of the essential oil was 200 μg mL(-1). Further analysis showed that the anti-inflammatory activity of the essential oil extracted from H. Sabdariffa might be exerted through inhibiting the activation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways to decrease NO and pro-inflammatory cytokine (IL-1, IL-6, TNF-α, COX-2, and iNOS) production. Thus, the essential oil extracted from H. Sabdariffa is a good source of a natural product with a beneficial effect against inflammation, and it may be applied as a food supplement and/or functional ingredient.

  5. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing.

    PubMed

    Liu, Qiong; Smith, C Wayne; Zhang, Wanyu; Burns, Alan R; Li, Zhijie

    2012-08-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that have crucial cytotoxic and regulatory roles in adaptive immunity and inflammation. Herein, we consider a role for these cells in corneal wound healing. After a 2-mm central epithelial abrasion of the mouse cornea, a subset of classic NK cells migrated into the limbus and corneal stroma, peaking at 24 hours with an eightfold increase over baseline. Depletion of γδ T cells significantly reduced NK cell accumulation (>70%; P < 0.01); however, in neutrophil-depleted animals, NK cell influx was normal. Isolated spleen NK cells migrated to the wounded cornea, and this migration was reduced by greater than 60% (P < 0.01) by ex vivo antibody blocking of NK cell CXCR3 or CCR2. Antibody-induced depletion of NK cells significantly altered the inflammatory reaction to corneal wounding, as evidenced by a 114% increase (P < 0.01) in neutrophil influx at a time when acute inflammation is normally waning. Functional blocking of NKG2D, an activating receptor for NK cell cytotoxicity and cytokine secretion, did not inhibit NK cell immigration, but significantly increased neutrophil influx. Consistent with excessive neutrophil accumulation, NK depletion and blocking of NKG2D also inhibited corneal nerve regeneration and epithelial healing (P < 0.01). Findings of this study suggest that NK cells are actively involved in corneal healing by limiting the innate acute inflammatory reaction to corneal wounding.

  6. Protease-activated receptors and prostaglandins in inflammatory lung disease

    PubMed Central

    Peters, Terence; Henry, Peter J

    2009-01-01

    Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E2, which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19845685

  7. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity.

    PubMed

    Zheng, Long Tai; Ryu, Geun-Mu; Kwon, Byoung-Mog; Lee, Won-Ha; Suk, Kyoungho

    2008-06-24

    Microglial activation plays a pivotal role in the pathogenesis of neurodegenerative diseases by producing various proinflammatory cytokines and nitric oxide (NO). In the present study, the anti-inflammatory and subsequent neuroprotective effects of catechol and its derivatives including 3-methylcatechol, 4-methylcatechol, and 4-tert-butylcatechol were investigated in microglia and neuroblastoma cells in culture. The four catechol compounds showed anti-inflammatory effects with different potency. The catechols significantly decreased lipopolysaccharide (LPS)-induced NO and tumor necrosis factor (TNF)-alpha production in BV-2 microglia cells. The catechols also inhibited the expression of inducible nitric oxide synthase (iNOS) and TNF-alpha at mRNA or protein levels in the LPS-stimulated BV-2 cells. In addition, the catechols inhibited LPS-induced nuclear translocation of p65 subunit of nuclear factor (NF)-kappaB, IkappaB degradation, and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in BV-2 cells. Moreover, the catechols attenuated the cytotoxicity of LPS-stimulated BV-2 microglia toward co-cultured rat B35 neuroblastoma cells. The catechols, however, did not protect B35 cells against H(2)O(2) toxicity, indicating that the compounds exerted the neuroprotective effect by inhibiting the inflammatory activation of microglia in the co-culture. The anti-inflammatory and neuroprotective properties of the catechols in cultured microglia and neuroblastoma cells suggest a therapeutic potential of these compounds for the treatment of neurodegenerative diseases that are associated with an excessive microglial activation.

  8. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells.

    PubMed

    Kim, You Ah; Kong, Chang-Suk; Park, Hyo Hyun; Lee, Eunkyung; Jang, Mi-Soon; Nam, Ki-Ho; Seo, Youngwan

    2015-08-10

    The inhibitory effect of three chromones 1-3 and two coumarins 4-5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6).

  9. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors.

    PubMed

    Maes, Michael; Fišar, Zdenĕk; Medina, Miguel; Scapagnini, Giovanni; Nowak, Gabriel; Berk, Michael

    2012-06-01

    This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.

  10. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer

    PubMed Central

    Phillips, Joseph D.; Blatner, Nichole R.; Haghi, Leila; DeCamp, Malcolm M.; Meyerson, Shari L.; Heiferman, Michael J.; Heiferman, Jeffrey R.; Gounari, Fotini; Bentrem, David J.; Khazaie, Khashayarsha

    2016-01-01

    Objectives Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. Methods Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA+Foxp3int (naïve, Fr. I) or CD45RA−Foxp3hi (activated Fr. II). Activated conventional T cells were CD4+CD45RA−Foxp3int (Fr. III). Results Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2 % (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. Conclusions This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC. PMID:26047578

  11. Anti-Inflammatory Activities of a Chinese Herbal Formula IBS-20 In Vitro and In Vivo

    PubMed Central

    Yang, Zhonghan; Grinchuk, Viktoriya; Ip, Siu Po; Che, Chun-Tao; Fong, Harry H. S.; Lao, Lixing; Wu, Justin C.; Sung, Joseph J.; Berman, Brian; Shea-Donohue, Terez; Zhao, Aiping

    2012-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder and the etiology is not well understood. Currently there is no cure for IBS and no existing medication induces symptom relief in all patients. IBS-20 is a 20-herb Chinese medicinal formula that offers beneficial effects in patients with IBS; however, the underlying mechanisms are largely unknown. This study showed that IBS-20 potently inhibited LPS- or IFNΓ-stimulated expression of pro-inflammatory cytokines, as well as classically activated macrophage marker nitric oxide synthase 2. Similarly, IBS-20 or the component herb Coptis chinensis decreased LPS-stimulated pro-inflammatory cytokine secretion from JAWS II dendritic cells. IBS-20 or the component herbs also blocked or attenuated the IFNΓ-induced drop in transepithelial electric resistance, an index of permeability, in fully differentiated Caco-2 monolayer. Finally, the up-regulation of key inflammatory cytokines in inflamed colon from TNBS-treated mice was suppressed significantly by orally administrated IBS-20, including IFNΓ and IL-12p40. These data indicate that the anti-inflammatory activities of IBS-20 may contribute to the beneficial effects of the herbal extract in patients with IBS, providing a potential mechanism of action for IBS-20. In addition, IBS-20 may be a potential therapeutic agent against other Th1-dominant gut pathologies such as inflammatory bowel disease. PMID:22461841

  12. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    PubMed Central

    Shen, Ting; Yang, Woo Seok; Sung, Gi-Ho; Rhee, Man Hee; Poo, Haryoung; Kim, Mi-Yeon; Kim, Kyung-Woon; Kim, Jong Heon; Cho, Jae Youl

    2013-01-01

    Andrographolide (AG) is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the mRNA abundance of inducible NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX)-2, and interferon-beta (IFN-β) in a dose-dependent manner in both lipopolysaccharide- (LPS-) activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1) extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 and (2) IκB kinase ε (IKKε)/interferon regulatory factor (IRF)-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets. PMID:23840248

  13. Mechanisms of Inflammatory Injury of Renal Tubular Cells in a Cellular Model of Pyelonephritis.

    PubMed

    Morosanova, M A; Plotnikov, E Y; Zorova, L D; Pevzner, I B; Popkov, V A; Silachev, D N; Jankauskas, S S; Babenko, V A; Zorov, D B

    2016-11-01

    Previously, we have assembled a cellular model of pyelonephritis which contains a primary culture of renal tubular epithelial cells, mononuclear leukocytes, and bacterial lysate or lipopolysaccharide. After cocultivation of renal cells with leukocytes and bacterial lysate, proinflammatory changes were observed in the renal cells, followed by nitrosative and oxidative stress and cell death. The interaction of bacterial antigens not only with leukocytes, but also with epithelial cells of the renal tubules, was partially mediated by signaling pathways involving Toll-like receptors (TLR2 and TLR4). Activation of these receptors led to increased levels of oxidative stress and synthesis of proinflammatory cytokines (TNF, IL-6, IL-1α) in the renal epithelium, while TLR4 blockade decreased the severity of these processes. Apart from the fact that activation of inflammatory signaling in response to bacterial antigens is observed directly in the renal cells, the presence of leukocytes significantly amplifies the inflammatory response as measured by the level of cytokines generated in the ensemble. In the presence of activated leukocytes, higher expression of TLR2 on the surface of renal cells was observed in response to exposure to bacterial components, which might explain the increased inflammatory response in the presence of leukocytes. The synthesis of IL-1α in the epithelial cells of the renal tubules in this inflammatory model leads to its accumulation in the nuclei, which has been reduced by the TLR4 antagonist polymyxin. TLR2 agonists also led to increased levels of IL-1α. The elevation in the content of IL-1α in nuclei was accompanied by increased acetylation of nuclear proteins, which has been reduced to control values after exposure to protective agents (Trolox, mitochondria-targeted antioxidant SkQR1 or LiCl). The high level of acetylation of histones is probably regulated by proinflammatory cytokines, and to some extent it is a marker of inflammation, which

  14. Terpenoids with anti-inflammatory activity from Abies chensiensis.

    PubMed

    Zhao, Qian-Qian; Wang, Shu-Fang; Li, Ya; Song, Qiu-Yan; Gao, Kun

    2016-06-01

    The phytochemical investigation of Abies chensiensis led to the isolation and identification of nine new compounds including eight triterpenoids (1-8) and a new abietane-type diterpene (9), along with three known compounds (10-12). The absolute configuration of 9 was assigned by X-ray diffraction analysis. Compounds 1-11 were evaluated for the anti-inflammatory activity. Among the tested compounds, 1, 2, 5 and 6 exhibited potent inhibitory activity with IC50 values of 15.97, 18.73, 20.18 and 10.97μM, respectively.

  15. Interaction of inflammatory cells and oral microorganisms. VIII. Detection of leukotoxic activity of a plaque-derived gram-negative microorganism.

    PubMed Central

    Baehni, P; Tsai, C C; McArthur, W P; Hammond, B F; Taichman, N S

    1979-01-01

    In the present study we identified a gram-negative anaerobic rod referred to as Y4 which was cytotoxic for human polymorphonuclear leukocytes. Y4 was isolated from dental plaque of a patient with juvenile periodontitis and presented most of the taxonomic characteristics of Actinobacillus species. Under experimental conditions, viable Y4 were cytotoxic for human peripheral blood polymorphonuclear leukocytes in serum-free cultures. Cytotoxicity was dependent on bacterial concentrations and was enhanced in the presence of a fresh or heat-inactivated (56 degrees C, 30 min) autologous serum. Leukotoxicity was independent of phagocytosis. Y4 leukotoxic effect was abolished when bacteria were heat treated (56 degrees C, 30 min) or when incubations were carried out at 4 degrees C instead of at 37 degrees C. The leukotoxicity was monitored by electron microscopy and biochemically by measuring lactate dehydrogenase indicator of cell viability. No cytotoxic effects of Y4 on human mononuclear cells, chicken fibroblasts, or mouse macrophages were detected under the conditions studied. Polymorphonuclear leukocytes may play an important role in the host defense against bacteria in periodontal disease. The cytotoxic effect of Y4 for polymorphonuclear leukocytes presented in this study is the first report of a direct offensive microbial vector in a plaque-derived microorganism and may prove to be relevant in the pathogenesis of juvenile periodontitis. Images PMID:222679

  16. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments.

    PubMed

    Zhang, Jing; Li, Zhi-Gang; Si, Ya-Meng; Chen, Bin; Meng, Jian

    2014-01-01

    Periodontitis is a major cause of tooth loss in adults and periodontal ligament stem cells (PDLSCs) is the most favorable candidate for the reconstruction of tissues destroyed by periodontal diseases. However, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. Bone-marrow-derived human mesenchymal stem cells (hBMSCs) would accelerate alveolar bone regeneration by transplantation, compared to PDLSCs. Therefore, a better understanding of the osteogenic differentiation between PDLSCs and BMSCs in inflammatory microenviroments is therefore warranted. In this study, human PDLSCs were investigated for their stem cell characteristics via analysis of cell surface marker expression, colony forming unit efficiency, osteogenic differentiation and adipogenic differentiation, and compared to BMSCs. To determine the impact of both inflammation and the NF-κβ signal pathway on osteogenic differentiation, cells were challenged with TNF-α under osteogenic induction conditions and investigated for mineralization, alkaline phosphatase (ALP) activity, cell proliferation and relative genes expression. Results showed that PDLSCs exhibit weaker mineralization and ALP activity compared to BMSCs. TNF-α inhibited genes expression of osteogenic differentiation in PDLSCs, while, it stimulates gene expressions (BSP and Runx2) in BMSCs. Enhanced NF-κβ activity in PDLSCs decreases expression of Runx2 but it does not impede the osteogenic differentiation of BMSCs. Taken together, these results may suggest that the BMSCs owned the stronger immunomodulation in local microenvironment via anti-inflammatory functions, compared to PDLSCs.

  17. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  18. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

    PubMed

    Schmitt, Anja; Grondona, Paula; Maier, Tabea; Brändle, Marc; Schönfeld, Caroline; Jäger, Günter; Kosnopfel, Corinna; Eberle, Franziska C; Schittek, Birgit; Schulze-Osthoff, Klaus; Yazdi, Amir S; Hailfinger, Stephan

    2016-04-01

    The protease activity of the paracaspase mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor nuclear factor-κB and is thus essential for the expression of inflammatory target genes. MALT1 is not only present in cells of the hematopoietic lineage, but is ubiquitously expressed. Here we report that stimulation with zymosan or Staphylococcus aureus induced MALT1 protease activity in human primary keratinocytes. Inhibition of the Src family of kinases or novel protein kinase C isoforms as well as silencing of CARMA2 or BCL10 interfered with activation of MALT1 protease. Silencing or inhibition of MALT1 protease strongly decreased the expression of important inflammatory genes such as TNFα, IL-17C, CXCL8 and HBD-2. MALT1-inhibited cells were unable to mount an antimicrobial response upon zymosan stimulation or phorbolester/ionomycin treatment, demonstrating a central role of MALT1 protease activity in keratinocyte immunity and suggesting MALT1 as a potential target in inflammatory skin diseases.

  19. Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).

    PubMed

    Padilha, Marina M; Avila, Ana A L; Sousa, Pergentino J C; Cardoso, Luis Gustavo V; Perazzo, Fábio F; Carvalho, José Carlos T

    2009-04-01

    The effects of aqueous and alkaline extracts from Agaricus blazei Murill, an edible mushroom used as folk medicine in Brazil, Japan, and China to treat several illnesses, were investigated on the basis of the inflammatory process induced by different agents. Oral administration of A. blazei extracts marginally inhibited the edema induced by nystatin. In contrast, when complete Freund's adjuvant was used as the inflammatory stimulus, both extracts were able to inhibit this process significantly (P < .05, analysis of variance followed by Tukey-Kramer multiple comparison post hoc test), although it inhibited the granulomatous tissue induction moderately. These extracts were able to decrease the ulcer wounds induced by stress. Also, administration of extracts inhibited neutrophil migration to the exudates present in the peritoneal cavity after carrageenin injection. Therefore, it is possible that A. blazei extracts can be useful in inflammatory diseases because of activation of the immune system and its cells induced by the presence of polysaccharides such as beta-glucans.

  20. Bisphosphonate effects in cancer and inflammatory diseases: in vitro and in vivo modulation of cytokine activities.

    PubMed

    Santini, Daniele; Fratto, Maria E; Vincenzi, Bruno; La Cesa, Annalisa; Dianzani, Caterina; Tonini, Giuseppe

    2004-01-01

    Bisphosphonates are endogenous pyrophosphate analogs in which a carbon atom replaces the central atom of oxygen. They are indicated in non-neoplastic diseases including osteoporosis, corticosteroid-induced bone loss, Paget disease, and in cancer-related diseases such as neoplastic hypercalcemia, multiple myeloma and bone metastases secondary to breast and prostate cancer. There is now extensive in vitro evidence suggesting a direct antitumor effect of bisphosphonates at different levels of action. Some new in vitro and in vivo studies support the cytostatic effects of bisphosphonates on tumor cells, and the effects on the regulation of cell growth, apoptosis, angiogenesis, cell adhesion, and invasion, with particular attention to biological properties. Well designed clinical trials are necessary to investigate whether the antitumor potential of bisphosphonates may be clinically relevant. On the basis of their effects on macrophages, we may divide bisphosphonates into two distinct categories: aminobisphosphonates, which sensitize macrophages to an inflammatory stimulus inducing an acute-phase response, and non-aminobisphosphonates that can be metabolized into macrophages and that may inhibit the inflammatory response of macrophages. There is evidence of aminobisphosphonate-induced pro-inflammatory response, in particular, related to modifications of the cytokine network. Several in vivo studies have demonstrated an acute-phase reaction after the first administration of aminobisphosphonates, with a significant increase in the main pro-inflammatory cytokines. However, a peculiar aspect concerning the action of non-aminobisphosphonates seems to be an anti-inflammatory activity caused by the inhibition of the release of inflammatory mediators from activated macrophages, such as interleukin (IL)-6, tumor necrosis factor-alpha and IL-1. The inhibition of inflammatory responses is demonstrated in both in vivo and in vitro models. This activity suggests the use of non

  1. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells.

    PubMed

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the AMPK-PTEN pathway might be important in the regulation of the inflammatory response in VSMCs.

  2. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets.

    PubMed

    Serre, Karine; Silva-Santos, Bruno

    2013-12-05

    γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses.

  3. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets

    PubMed Central

    Serre, Karine; Silva-Santos, Bruno

    2013-01-01

    γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses. PMID:24367369

  4. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB‑induced DNA damage in skin cells.

    PubMed

    Shiratake, Sawako; Nakahara, Tatsuo; Iwahashi, Hiroyasu; Onodera, Takefumi; Mizushina, Yoshiyuki

    2015-10-01

    A number of naturally occurring agents are hypothesized to protect against ultraviolet (UV)‑induced skin damage. The present study screened >50 plant extracts for inhibitors of UVB‑induced cytotoxicity, using cultured normal human epidermal keratinocytes (NHEK), and identified that the fruit of rose myrtle (Rhodomyrtus tomentosa) was the most marked inhibitor of cell death. The protective effect of rose myrtle extract and the two key components, piceatannol and piceatannol‑4'‑O‑β‑D‑glucopyranoside, on UVB‑induced damage and inflammation in cultured NHEK was investigated. The 80% ethanol extract from rose myrtle fruit with piceatannol exhibited protection of UVB‑induced cytotoxicity in NHEK; however, piceatannol‑4'‑O‑β‑D‑glucopyranoside exhibited no protection, as determined by a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. This extract and piceatannol reduced the production of UVB‑induced cyclobutane pyrimidine dimers and enhanced the cellular enzyme activity of the DNA polymerases in UVB‑irradiated NHEK, suggesting that UVB‑stimulated DNA damage was repaired by the polymerases. In addition, the secretion of prostaglandin E2, which is an inflammatory mediator, was decreased. These results indicated that rose myrtle fruit extract and its key constituent, piceatannol, are potential photoprotective candidates for UV‑induced skin damage.

  5. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    PubMed

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  6. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  7. In Vitro Neuroprotective and Anti-Inflammatory Activities of Natural and Semi-Synthetic Spirosteroid Analogues.

    PubMed

    García-Pupo, Laura; Zaldo-Castro, Armando; Exarchou, Vassiliki; Tacoronte-Morales, Juan Enrique; Pieters, Luc; Vanden Berghe, Wim; Nuñez-Figueredo, Yanier; Delgado-Hernández, René

    2016-07-29

    Two spirosteroid analogues were synthesized and evaluated for their in vitro neuroprotective activities in PC12 cells, against glutamate-induced excitotoxicity and mitochondrial damage in glucose deprivation conditions, as well as their anti-inflammatory potential in LPS/IFNγ-stimulated microglia primary cultures. We also evaluated the in vitro anti-excitotoxic and anti-inflammatory activities of natural and endogenous steroids. Our results show that the plant-derived steroid solasodine decreased PC12 glutamate-induced excitotoxicity, but not the cell death induced by mitochondrial damage and glucose deprivation. Among the two synthetic spirosteroid analogues, only the (25R)-5α-spirostan-3,6-one (S15) protected PC12 against ischemia-related in vitro models and inhibited NO production, as well as the release of IL-1β by stimulated primary microglia. These findings provide further insights into the role of specific modifications of the A and B rings of sapogenins for their neuroprotective potential.

  8. Anti-inflammatory activity of Chinese medicinal vine plants.

    PubMed

    Li, Rachel W; David Lin, G; Myers, Stephen P; Leach, David N

    2003-03-01

    Anti-inflammatory activities of ethanol extracts from nine vine plants used in traditional Chinese medicine to treat inflammatory conditions were evaluated against a panel of key enzymes relating to inflammation. The enzymes included cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), phospholipase A(2) (PLA(2)), 5-lipoxygenase (5-LO) and 12-lipoxygenase (12-LO). The vine plants studied were: the stem of Spatholobus suberectus Dunn, the stem of Trachelospermum jasminoides Lem., the root from Tripterygium wilfordii Hook. f., the stem of Sinomenium acutum Rehder and Wilson, the stem of Piper kadsura (Choisy) Ohwi, the stem of Polygonum multiflorum Thunb., the root and stem from Tinospora sagittata Gagnep., the root of Tinospora sinensis (Lour.) Merrill, and the stem of Clematis chinensis Osbeck. All of the plant extracts showed inhibitory activities against at least one of the enzymes in various percentages depending upon the concentrations. The extract from S. suberectus was found to be active against all enzymes except COX-2. Its IC(50) values were 158, 54, 31 and 35 microg/ml in COX-1, PLA(2), 5-LO and 12-LO assays, respectively. T. jasminoides showed potent inhibitory activities against both COX-1 (IC(50) 35 microg/ml) and PLA(2) (IC(50) 33 microg/ml). The most potent COX-1, COX-2 and 5-LO inhibition was observed in the extract of T. wilfordii with the IC(50) values of 27, 125 and 22 microg/ml, respectively. The findings of this study may partly explain the use of these vine plants in traditional Chinese medicine for the treatment of inflammatory conditions.

  9. Valosin containing protein (VCP) interacts with macrolide antibiotics without mediating their anti-inflammatory activities.

    PubMed

    Nujić, Krunoslav; Smith, Marjorie; Lee, Michael; Belamarić, Daniela; Tomašković, Linda; Alihodžić, Sulejman; Malnar, Ivica; Polančec, Denis; Schneider, Klaus; Eraković Haber, Vesna

    2012-02-29

    In addition to antibacterial activity, some macrolide antibiotics, such as azithromycin and clarithromycin, also exhibit anti-inflammatory properties in vitro and in vivo, although the targets and mechanism(s) of action remain unknown. The aim of the present study was to identify protein targets of azithromycin and clarithromycin which could potentially explain their anti-inflammatory effects. Using chemical proteomics approach, based on compound-immobilized affinity chromatography, valosin containing protein (VCP) was identified as a potential target of the macrolides. Validation studies confirmed the interaction of macrolides and VCP and gave some structural characteristics of this interaction. Cell based assays however, including the use of gene silencing and the study of VCP specific cellular functions in J774.A1 (murine macrophage) and IB3-1 (human cystic fibrotic epithelial) cell lines, failed to confirm an association between the binding of the macrolides to VCP and anti-inflammatory effects. These findings suggest the absence of an abundant high affinity protein target and the potential involvement of other biological molecules in the anti-inflammatory activity of macrolides.

  10. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  11. Duration of red blood cell storage and inflammatory marker generation

    PubMed Central

    Sut, Caroline; Tariket, Sofiane; Chou, Ming Li; Garraud, Olivier; Laradi, Sandrine; Hamzeh-Cognasse, Hind; Seghatchian, Jerard; Burnouf, Thierry; Cognasse, Fabrice

    2017-01-01

    Red blood cell (RBC) transfusion is a life-saving treatment for several pathologies. RBCs for transfusion are stored refrigerated in a preservative solution, which extends their shelf-life for up to 42 days. During storage, the RBCs endure abundant physicochemical changes, named RBC storage lesions, which affect the overall quality standard, the functional integrity and in vivo survival of the transfused RBCs. Some of the changes occurring in the early stages of the storage period (for approximately two weeks) are reversible but become irreversible later on as the storage is extended. In this review, we aim to decipher the duration of RBC storage and inflammatory marker generation. This phenomenon is included as one of the causes of transfusion-related immunomodulation (TRIM), an emerging concept developed to potentially elucidate numerous clinical observations that suggest that RBC transfusion is associated with increased inflammatory events or effects with clinical consequence. PMID:28263172

  12. In situ detection of frequent and active infection of human cytomegalovirus in inflammatory abdominal aortic aneurysms: possible pathogenic role in sustained chronic inflammatory reaction.

    PubMed

    Yonemitsu, Y; Nakagawa, K; Tanaka, S; Mori, R; Sugimachi, K; Sueishi, K

    1996-04-01

    Inflammatory abdominal aortic aneurysm (IAAA) is histopathologically characterized by extensive adventitial fibrosis, mononuclear cell infiltration with lymph follicle formation, and severe atheromatous changes in the aneurysmal wall. We previously reported a frequent prevalence and immediate early gene expression of human cytomegalovirus (CMV) in IAAA by solution-phase PCR and reverse transcription PCR, respectively, and suggested that this virus might play a role in chronic inflammatory reaction in IAAA. To evaluate the pathogenic role of CMV infection, the frequency and distribution of CMV infected cells in IAAA were examined by in situ PCR, and compared with those in atherosclerotic aneurysms (AA) and control cases with minimal atherosclerotic changes. Human leukocyte antigen (HLA)-DR was simultaneously evaluated as a marker for immune response related to CMV infection. Immediate early gene expression was also detected by reverse transcription PCR and in situ hybridization, to certify whether the CMV infection in IAAA is active or latent. In the fibrously thickened adventitia of IAAA, CMV infected cells and HLA-DR-positive cells were more frequently encountered than in that of AA and control cases (p < 0.01). CMV infected cells were largely identified as macrophages, fibroblasts, endothelial cells, and lymphocytes. The expression of CMV immediate early mRNA, which suggests an active infection inducing active inflammatory reaction, was detected in most of the macrophages, endothelial cells, and fibroblasts. Our results strongly suggest that frequent and active infection of CMV in IAAA plays a significant role in the induction and acceleration of chronic inflammatory reaction in aortas of IAAA.

  13. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis

    PubMed Central

    Elisia, Ingrid; Nakamura, Hisae; Lam, Vivian; Hofs, Elyse; Cederberg, Rachel; Cait, Jessica; Hughes, Michael R.; Lee, Leora; Jia, William; Adomat, Hans H.; Guns, Emma S.; McNagny, Kelly M.; Samudio, Ismael; Krystal, Gerald

    2016-01-01

    Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%– 2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential. PMID:27031833

  14. Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities

    PubMed Central

    Kim, Myungsuk; Lee, Hee Ju; Randy, Ahmad; Yun, Ji Ho; Oh, Sang-Rok; Nho, Chu Won

    2017-01-01

    Stellera chamaejasme L. (Thymelaeaceae) is a perennial herb that is widely used in traditional Chinese medicine to treat tumours, tuberculosis and psoriasis. S. chamaejasme extract (SCE) possesses anti-inflammatory, analgesic and wound healing activities; however, the effect of S. chamaejasme and its active compounds on cutaneous wound healing has not been investigated. We assessed full-thickness wounds of Sprague-Dawley (SD) rats and topically applied SCE for 2 weeks. In vitro studies were performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW 264.7 macrophages to determine cell viability (MTT assay), cell migration, collagen expression, nitric oxide (NO) production, prostaglandin E2 (PGE2) production, inflammatory cytokine expression and β-catenin activation. In vivo, wound size was reduced and epithelisation was improved in SCE-treated SD rats. In vitro, SCE and its active compounds induced keratinocyte migration by regulating the β-catenin, extracellular signal-regulated kinase and Akt signalling pathways. Furthermore, SCE and its active compounds increased mRNA expression of type I and III collagen in Hs68 fibroblasts. SCE and chamechromone inhibited NO and PGE2 release and mRNA expression of inflammatory mediators in RAW 264.7 macrophages. SCE enhances the motility of HaCaT keratinocytes and improves cutaneous wound healing in SD rats. PMID:28220834

  15. Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities.

    PubMed

    Kim, Myungsuk; Lee, Hee Ju; Randy, Ahmad; Yun, Ji Ho; Oh, Sang-Rok; Nho, Chu Won

    2017-02-21

    Stellera chamaejasme L. (Thymelaeaceae) is a perennial herb that is widely used in traditional Chinese medicine to treat tumours, tuberculosis and psoriasis. S. chamaejasme extract (SCE) possesses anti-inflammatory, analgesic and wound healing activities; however, the effect of S. chamaejasme and its active compounds on cutaneous wound healing has not been investigated. We assessed full-thickness wounds of Sprague-Dawley (SD) rats and topically applied SCE for 2 weeks. In vitro studies were performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW 264.7 macrophages to determine cell viability (MTT assay), cell migration, collagen expression, nitric oxide (NO) production, prostaglandin E2 (PGE2) production, inflammatory cytokine expression and β-catenin activation. In vivo, wound size was reduced and epithelisation was improved in SCE-treated SD rats. In vitro, SCE and its active compounds induced keratinocyte migration by regulating the β-catenin, extracellular signal-regulated kinase and Akt signalling pathways. Furthermore, SCE and its active compounds increased mRNA expression of type I and III collagen in Hs68 fibroblasts. SCE and chamechromone inhibited NO and PGE2 release and mRNA expression of inflammatory mediators in RAW 264.7 macrophages. SCE enhances the motility of HaCaT keratinocytes and improves cutaneous wound healing in SD rats.

  16. An overview of the effects of annexin 1 on cells involved in the inflammatory process.

    PubMed

    Kamal, Ahmad M; Flower, Roderick J; Perretti, Mauro

    2005-03-01

    The concept of anti-inflammation is currently evolving with the definition of several endogenous inhibitory circuits that are important in the control of the host inflammatory response. Here we focus on one of these pathways, the annexin 1 (ANXA1) system. Originally identified as a 37 kDa glucocorticoid-inducible protein, ANXA1 has emerged over the last decade as an important endogenous modulator of inflammation. We review the pharmacological effects of ANXA1 on cell types involved in inflammation, from blood-borne leukocytes to resident cells. This review reveals that there is scope for more research, since most of the studies have so far focused on the effects of the protein and its peptido-mimetics on neutrophil recruitment and activation. However, many other cells central to inflammation, e.g. endothelial cells or mast cells, also express ANXA1: it is foreseen that a better definition of the role(s) of the endogenous protein in these cells will open the way to further pharmacological studies. We propose that a more systematic analysis of ANXA1 physio-pharmacology in cells involved in the host inflammatory reaction could aid in the design of novel anti-inflammatory therapeutics based on this endogenous mediator.

  17. Increased Circulating Anti-inflammatory Cells in Marathon-trained Runners.

    PubMed

    Rehm, K; Sunesara, I; Marshall, G D

    2015-10-01

    Exercise training can alter immune function. Marathon training has been associated with an increased susceptibility to infectious diseases and an increased activity of inflammatory-based diseases, but the precise mechanisms are unknown. The purpose of this study was to compare levels of circulating CD4+  T cell subsets in the periphery of marathon-trained runners and matched non-marathon controls. 19 recreational marathoners that were 4 weeks from running a marathon and 19 demographically-matched healthy control subjects had the percentage of CD4+ T cell subpopulations (T helper 1, T helper 2, T helper 1/T helper 2 ratio, regulatory T cells, CD4+ IL10+, and CD4+ TGFβ+ (Transforming Growth Factor-beta) measured by flow cytometry. Marathon-trained runners had significantly less T helper 1 and regulatory T cells and significantly more T helper 2, CD4+ IL10+, and TGFβ+ cells than the control subjects. The alterations in the percentage of T helper 1 and T helper 2 cells led to a significantly lower T helper 1/T helper 2 ratio in the marathon-trained runners. These data suggest that endurance-based training can increase the number of anti-inflammatory cells. This may be a potential mechanism for the increased incidence of both infectious and inflammatory diseases observed in endurance athletes.

  18. Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: a structure-activity relationship study.

    PubMed

    Kilani-Jaziri, Soumaya; Mustapha, Nadia; Mokdad-Bzeouich, Imen; El Gueder, Dorra; Ghedira, Kamel; Ghedira-Chekir, Leila

    2016-05-01

    Flavonoids impart a variety of biological activities, including anti-oxidant, anti-inflammatory, and anti-genotoxic effects. This study investigated the effects of flavone luteolin and apigenin on immune cell functions, including proliferation, natural killer (NK) cell activity, and cytotoxic T lymphocyte (CTL) activity of isolated murine splenocytes. We report for the first time that flavones enhance lymphocyte proliferation at 10 μM. Luteolin and apigenin significantly promote lipopolysaccharide (LPS)-stimulated splenocyte proliferation and enhance humoral immune responses. Luteolin induces a weak cell proliferation of lectin-stimulated splenic T cells, when compared to apigenin. In addition, both flavones significantly enhance NK cell and CTL activities. Furthermore, our study demonstrated that both flavones could inhibit lysosomal enzyme activity, suggesting a potential anti-inflammatory effect. The anti-inflammatory activity was concomitant with the cellular anti-oxidant effect detected in macrophages, red blood cells, and splenocytes. We conclude from this study that flavones exhibited an immunomodulatory effect which could be ascribed, in part, to its cytoprotective capacity via its anti-oxidant activity.

  19. Anti-inflammatory activity of Euphorbia aegyptiaca extract in rats

    PubMed Central

    Abo-dola, Marium A.; Lutfi, Mohamed F.

    2016-01-01

    Background There were no studies on the anti-inflammatory activity of Euphorbia aegyptiaca, though it is commonly used by Sudanese herbalists in the treatment of rheumatoid arthritis. Objectives To determine phytochemical constituents of Euphorbia aegyptiaca To investigate the anti-inflammatory activity of Euphorbia aegyptiaca in rats. Methodology Plant material was extracted by ethanol and phytochemical screening was done according to standard methods. The thickness of Albino rats’ paws were measured before injection of 0.1 ml of 1% formalin in the sub planter region and then, 1, 2, 3, 4 and 24 hours after oral dose of ethanolic extract of Euphorbia aegyptiaca at a rate of 400mg/kg, 800mg/kg, indomethacin (5mg/kg) and normal saline (5ml/kg). Edema inhibition percentage (EI%) and mean paw thickness (MPT) were measured in the different groups and compared using appropriate statistical methods. Results The phytochemical screening revealed the presence of saponins, cumarins, flavonoids, tannins, sterols, triterpenes, and absence of alkaloids, anthraquinones glycosides and cyanogenic glycosides. The mean of EI% of rats treated with indomethacin at a dose of 5 mg/kg over different time intervals (64.0%) was significantly lower compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (75.0%, P< 0.001), but higher compared to rats treated at higher dose of 400 mg/kg (57.4%, P< 0.001). In contrast, MPT of rats treated with indomethacin at a dose of 5 mg/kg (6.5±1.1 mm) was significantly higher compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (6.1±.7 mm, P< 0.001) as well as 400 mg/kg (5.9±.5, P< 0.001). Conclusion Euphorbia aegyptiaca ethanolic extract has a sustained dose-dependent anti-inflammatory activity. PMID:27004059

  20. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  1. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-κB, p38 and JNK.

    PubMed

    Daniele, Simona; Da Pozzo, Eleonora; Zappelli, Elisa; Martini, Claudia

    2015-08-01

    Growing evidence suggests that alterations of the inflammatory/immune system contribute to the pathogenesis of major depression and that inflammatory processes may influence the antidepressant treatment response. Depressed patients exhibit increased levels of inflammatory markers in both the periphery and brain, and high co-morbidity exists between depression and diseases associated with inflammatory alterations. Trazodone (TDZ) is a triazolopyridine derivative that belongs to the class of serotonin receptor antagonists and reuptake inhibitors. Although the trophic and protective properties of classic antidepressants have extensively been exploited, the effects of TDZ remain to be fully elucidated. In this study, the pharmacological activities of TDZ on human neuronal-like cells were investigated under both physiological and inflammatory conditions. An in vitro inflammatory model was established using lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α), which efficiently mimic the stress-related changes in neurotrophic and pro-inflammatory genes. Our results showed that TDZ significantly increased the mRNA expression of both brain-derived nerve factor (BDNF) and cAMP response element-binding protein (CREB) and decreased the cellular release of the pro-inflammatory cytokine interferon gamma (IFN-γ) in neuronal-like cells. In contrast, neuronal cell treatment with LPS and TNF-α decreased the expression of CREB and BDNF and increased the expression of nuclear factor kappa B (NF-κB), a primary transcription factor that functions in inflammatory response initiation. Moreover, the two agents induced the release of pro-inflammatory cytokines (i.e., interleukin-6 and IFN-γ) and decreased the production of the anti-inflammatory cytokine interleukin-10. TDZ pre-treatment completely reversed the decrease in cell viability and counteracted the decrease in BDNF and CREB expression mediated by LPS-TNF-α. In addition, the production of inflammatory mediators was

  2. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  3. Divergent T-Cell Cytokine Patterns in Inflammatory Arthritis

    NASA Astrophysics Data System (ADS)

    Simon, A. K.; Seipelt, E.; Sieper, J.

    1994-08-01

    A major immunoregulatory mechanism in inflammatory infections and allergic diseases is the control of the balance of cytokines secreted by Th1/Th2 subsets of T helper (Th) cells. This might also be true in autoimmune diseases; a Th2 pattern that prevents an effective immune response in infections with intracellular bacteria may favor immunosuppression in autoimmune diseases. The pattern of cytokine expression was compared in the synovial tissue from patients with a typical autoimmune disease, rheumatoid arthritis, and with a disorder with similar synovial pathology but driven by persisting exogenous antigen, reactive arthritis. We screened 12 rheumatoid and 9 reactive arthritis synovial tissues by PCR and in situ hybridization for their expression of T-cell cytokines. The cytokine pattern differs significantly between the two diseases; rheumatoid arthritis samples express a Th1-like pattern whereas in reactive arthritis interferon γ expression is accompanied by that of interleukin 4. Studying the expression of cytokines by in situ hybridization confirmed the results found by PCR; they also show an extremely low frequency of cytokine-transcribing cells. In a double-staining experiment, it was demonstrated that interleukin 4 is made by CD4 cells. These experiments favor the possibility of therapeutic intervention in inflammatory rheumatic diseases by means of inhibitory cytokines.

  4. Anti-inflammatory activity of four Bolivian Baccharis species (Compositae).

    PubMed

    Abad, M J; Bessa, A L; Ballarin, B; Aragón, O; Gonzales, E; Bermejo, P

    2006-02-20

    Hexanic, dichloromethanic, ethanolic and aqueous extracts from Baccharis obtusifolia HBK, Baccharis latifolia (R. et P.) Pers., Baccharis pentlandii D.C. and Baccharis subulata Wedd., plants used in the traditional medicine of South America have been studied for their in vitro anti-inflammatory activity in cellular systems. Calcium ionophore A23187-stimulated mouse peritoneal macrophages were validated as a source of cyclooxygenase-1 (COX-1) (prostaglandin E2, PGE2) and 5-lipoxygenase (5-LOX) (leukotriene C4, LTC4), and mouse peritoneal macrophages stimulated with Escherichia coli lipopolysaccharide (LPS) were used for testing cyclooxygenase-2 (COX-2) (PGE2), nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) activity. Most of the extracts tested were active in all assays.

  5. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses.

    PubMed Central

    Dow, S W; Potter, T A

    1997-01-01

    Bacterial superantigens are potent T cell activators, and superantigen proteins have been injected into mice and other animals to study T cell responses in vivo. When superantigen proteins are injected, however, the T cell stimulatory effects cannot be confined to specific tissues. Therefore, to target superantigen expression to specific tissues, we used gene transfer techniques to express bacterial superantigen genes in mammalian cells in vitro and in tissues in vivo. Murine, human, and canine cells transfected with superantigen genes in vitro all produced superantigen proteins both intracellularly and extracellularly, as assessed by bioassay, immunocytochemistry, and antigen ELISA. Superantigens produced by transfected eukaryotic cells retained their biologic specificity for T cell receptor binding. Intramuscular injection of superantigen plasmid DNA in vivo induced an intense intramuscular mononuclear cell infiltrate, an effect that could not be reproduced by intramuscular injection of superantigen protein. Intradermal and intravenous injection of superantigen DNA induced cutaneous and intrapulmonary mononuclear cell inflammatory responses, respectively. Thus, superantigen genes can be expressed by mammalian cells in vivo. Superantigen gene therapy represents a novel method of targeting localized T cell inflammatory reactions, with potential application to treatment of cancer and certain infectious diseases. PMID:9169491

  6. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  7. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Wang, Yuqiong; Jin, Gang; Li, Quanjiang; Wang, Zhiping; Hu, Weimin; Li, Ping; Li, Shude; Wu, Hongyu; Kong, Xiangyu; Gao, Jun; Li, Zhaoshen

    2016-01-01

    Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways. PMID:27877222

  8. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    PubMed Central

    Huerta-García, Elizabeth; Montiél-Dávalos, Angélica; Alfaro-Moreno, Ernesto; Gutiérrez-Iglesias, Gisela; López-Marure, Rebeca

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture with U937 cells, proliferation by crystal violet staining, and oxidative stress through DCFDA and Griess reagent. PM10 and TiO2 NPs induced adhesion and oxidative stress and inhibited proliferation of HUVEC; however, when particles were added in combination with DHEA, the effects previously observed were abolished independently from the tested concentrations and the time of addition of DHEA to the cultures. These results indicate that DHEA exerts significant anti-inflammatory and antioxidative effects on the damage induced by particles in HUVEC, suggesting that DHEA could be useful to counteract the harmful effects and inflammatory diseases induced by PM and NPs. PMID:23484113

  9. FoxP3+ Regulatory T Cells Determine Disease Severity in Rodent Models of Inflammatory Neuropathies

    PubMed Central

    Meyer zu Hörste, Gerd; Cordes, Steffen; Mausberg, Anne K.; Zozulya, Alla L.; Wessig, Carsten; Sparwasser, Tim; Mathys, Christian; Wiendl, Heinz; Hartung, Hans-Peter; Kieseier, Bernd C.

    2014-01-01

    Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies. PMID:25286182

  10. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  11. TSG attenuates LPC-induced endothelial cells inflammatory damage through notch signaling inhibition.

    PubMed

    Zhao, Jing; Liang, Yuan; Song, Fan; Xu, Shouzhu; Nian, Lun; Zhou, Xuanxuan; Wang, Siwang

    2016-01-01

    Lysophosphatidylcholine (LPC) induces inflammation in endothelial cells (ECs) but the mechanism is not fully understood. The Notch signaling pathway is involved in chronic EC inflammation, but its functions in LPC-induced endothelial inflammatory damage and 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside's (TSG) protective effect during LPC-induced inflammatory damage in human umbilical vein endothelial cells (HUVECs) is largely unknown. We report that Notch signaling activation contributed to LPC-induced injury in HUVECs, and that TSG protected HUVECs from LPC-induced injury by antagonizing Notch signaling activation by LPC. γ-secretase inhibitor (DAPT), a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to inhibit Notch activity. HUVECs were exposed to LPC in the presence or absence of TSG, DAPT, and Notch1 siRNA. LPC treatment of HUVECs resulted in reduced cell viability, and Notch1 and Hes1 upregulation. Either silencing of Notch1 by siRNA or pharmacological inhibition of Notch signaling by DAPT prevented the loss of cell viability, and induction of apoptosis, and enhanced expression Notch1, Hes1 and MCP-1 by LPC in HUVECs. Similarly, TSG reduced LPC stimulation of Notch1, Hes1, and MCP-1 expression, prevented the release of IL-6 and CRP and rescued HUVECs from LPC-induced cell damage. Our data indicate that the Notch signaling pathway is a crucial mediator of endothelial inflammatory damage and that TSG protects against endothelial inflammatory damage by inhibiting the Notch signaling pathway. Our findings suggest that targeting Notch signaling by natural products such as TSG is a promising strategy for the prevention and treatment of chronic inflammation associated diseases, including atherosclerosis. © 2015 IUBMB Life, 68(1):37-50, 2016.

  12. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    PubMed

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties.

  13. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids.

    PubMed

    Ramesh, Radha; Kozhaya, Lina; McKevitt, Kelly; Djuretic, Ivana M; Carlson, Thaddeus J; Quintero, Maria A; McCauley, Jacob L; Abreu, Maria T; Unutmaz, Derya; Sundrud, Mark S

    2014-01-13

    IL-17A-expressing CD4(+) T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6(+)CXCR3(hi)CCR4(lo)CCR10(-)CD161(+) cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1(-) Th1 or Th17 cells, MDR1(+) Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-γ) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1(+) Th17 cells are enriched and activated in the gut of Crohn's disease patients. Furthermore, MDR1(+) Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1(+) Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease.

  14. Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera.

    PubMed

    Gokhale, A B; Damre, A S; Kulkami, K R; Saraf, M N

    2002-07-01

    Saussurea lappa, Argyreia speciosa and Achyranthes aspera are well known Indian medicinal plants used in the indigenous systems of medicine for the treatment of inflammatory conditions. The ethanolic extracts of the plants at the doses of 50, 100 and 200 mg/kg, p.o. were screened for their effect on acute and chronic inflammation induced in mice and rats. S. lappa and A. speciosa were found to significantly inhibit paw edema induced by carrageenan and Freund's complete adjuvant and to prevent accumulation of inflammatory cells in carrageenan-induced peritonitis at doses of 50-200 mg/kg. A. aspera inhibited these inflammatory responses at doses of 100-200 mg/kg. The studies reveal that the ethanolic extracts of S. lappa, A. speciosa and A. aspera possess anti-inflammatory and anti-arthritic activity and support the rationale behind the traditional use of these plants in inflammatory conditions.

  15. Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis.

    PubMed

    Marone, Gianni; Varricchi, Gilda; Loffredo, Stefania; Granata, Francescopaolo

    2016-05-05

    Angiogenesis, namely, the growth of new blood vessels from pre-existing ones, is an essential process of embryonic development and post-natal growth. In adult life, it may occur in physiological conditions (menstrual cycle and wound healing), during inflammatory disorders (autoimmune diseases and allergic disorders) and in tumor growth. The angiogenic process requires a tightly regulated interaction among different cell types (e.g. endothelial cells and pericytes), the extracellular matrix, several specific growth factors (e.g. VEGFs, Angiopoietins), cytokines and chemokines. Lymphangiogenesis, namely, the growth of new lymphatic vessels, is an important process in tumor development, in the formation of metastasis and in several inflammatory and metabolic disorders. In addition to tumors, several effector cells of inflammation (mast cells, macrophages, basophils, eosinophils, neutrophils, etc.) are important sources of a wide spectrum of angiogenic and lymphangiogenic factors. Human mast cells produce a large array of angiogenic and lymphangiogenic molecules. Primary human mast cells and two mast cell lines constitutiv