Sample records for activated lymphoid cells

  1. Lymphoid microenvironments and innate lymphoid cells in the gut.

    PubMed

    Pearson, Claire; Uhlig, Holm H; Powrie, Fiona

    2012-06-01

    Gut-associated lymphoid tissue (GALT) is a sensor region for luminal content and plays an important role in lymphoid maturation, activation and differentiation. It comprises isolated and aggregated lymphoid follicles, cryptopatches (CPs) and tertiary lymphoid tissue. Innate lymphoid cells (ILCs) play a central role within GALT. Prenatal GALT development is dependent on ILC lymphoid-inducer function. Postnatally, these cells rapidly respond to commensal and pathogenic intestinal bacteria, parasites and food components by polarized cytokine production [such as interleukin (IL)-22, IL-17 or IL-13] and further contribute to GALT formation and function. Here, we discuss how ILCs shape lymphoid intestinal microenvironments and act as amplifier cells for innate and adaptive immune responses. Copyright © 2012. Published by Elsevier Ltd.

  2. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development.

    PubMed

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Kenian; Jin, Yi; Turner, Jacob; Moore, Amanda J; Saito, Rintaro; Yoshida, Kenichi; Ogawa, Seishi; Rodewald, Hans-Reimer; Lin, Yin C; Kawamoto, Hiroshi; Murre, Cornelis

    2017-05-16

    Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Innate lymphoid cells in secondary lymphoid organs.

    PubMed

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Protein S is inducible by interleukin 4 in T cells and inhibits lymphoid cell procoagulant activity

    PubMed Central

    Smiley, Stephen T.; Boyer, Sarah N.; Heeb, Mary J.; Griffin, John H.; Grusby, Michael J.

    1997-01-01

    Extravascular procoagulant activity often accompanies cell-mediated immune responses and systemic administration of pharmacologic anticoagulants prevents cell-mediated delayed-type hypersensitivity reactions. These observations suggest a direct association between coagulation and cell-mediated immunity. The cytokine interleukin (IL)-4 potently suppresses cell-mediated immune responses, but its mechanism of action remains to be determined. Herein we demonstrate that the physiologic anticoagulant protein S is IL-4-inducible in primary T cells. Although protein S was known to inhibit the classic factor Va-dependent prothrombinase assembled by endothelial cells and platelets, we found that protein S also inhibits the factor Va-independent prothrombinase assembled by lymphoid cells. Thus, protein S-mediated down-regulation of lymphoid cell procoagulant activity may be one mechanism by which IL-4 antagonizes cell-mediated immunity. PMID:9326636

  5. ID’ing Innate and Innate-like Lymphoid Cells

    PubMed Central

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  6. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  7. A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Narang, Priyanka; Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R; Coles, Mark C; Cupedo, Tom

    2015-11-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. ID'ing innate and innate-like lymphoid cells.

    PubMed

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates.

    PubMed

    Shikhagaie, Medya Mara; Björklund, Åsa K; Mjösberg, Jenny; Erjefält, Jonas S; Cornelissen, Anne S; Ros, Xavier Romero; Bal, Suzanne M; Koning, Jasper J; Mebius, Reina E; Mori, Michiko; Bruchard, Melanie; Blom, Bianca; Spits, Hergen

    2017-02-14

    Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1 + group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1 + ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1 + ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1 - cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1 + ILC3s. NRP1 + ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  11. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    PubMed

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Innate lymphoid cells: the new kids on the block.

    PubMed

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  13. Innate lymphoid cells and their stromal microenvironments.

    PubMed

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Human innate lymphoid cells.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A.; Veazey, Ronald S.

    2015-01-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit+IL-7Rα+ (CD117+CD127+) cells. These ILC3 cells highly expressed CD90 (∼63%) and aryl hydrocarbon receptor and produced IL-17 (∼63%), IL-22 (∼36%), and TNF-α (∼72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4+ T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P < 0.001). Notably, ILC3 could be induced to undergo apoptosis by microbial products through the TLR2 (lipoteichoic acid) and/or TLR4 (LPS) pathway. These findings indicated that persistent microbial translocation may result in loss of ILC3 in lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues.—Xu, H., Wang, X., Lackner, A. A., Veazey, R. S. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques. PMID:26283536

  16. Mapping of NKp46+ Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues

    PubMed Central

    Tomasello, Elena; Yessaad, Nadia; Gregoire, Emilie; Hudspeth, Kelly; Luci, Carmelo; Mavilio, Domenico; Hardwigsen, Jean; Vivier, Eric

    2012-01-01

    Understanding Natural Killer (NK) cell anatomical distribution is key to dissect the role of these unconventional lymphocytes in physiological and disease conditions. In mouse, NK cells have been detected in various lymphoid and non-lymphoid organs, while in humans the current knowledge of NK cell distribution at steady state is mainly restricted to lymphoid tissues. The translation to humans of findings obtained in mice is facilitated by the identification of NK cell markers conserved between these two species. The Natural Cytotoxicity Receptor (NCR) NKp46 is a marker of the NK cell lineage evolutionary conserved in mammals. In mice, NKp46 is also present on rare T cell subsets and on a subset of gut Innate Lymphoid Cells (ILCs) expressing the retinoic acid receptor-related orphan receptor γt (RORγt) transcription factor. Here, we documented the distribution and the phenotype of human NKp46+ cells in lymphoid and non-lymphoid tissues isolated from healthy donors. Human NKp46+ cells were found in splenic red pulp, in lymph nodes, in lungs, and gut lamina propria, thus mirroring mouse NKp46+ cell distribution. We also identified a novel cell subset of CD56dimNKp46low cells that includes RORγt+ ILCs with a lineage−CD94−CD117brightCD127bright phenotype. The use of NKp46 thus contributes to establish the basis for analyzing quantitative and qualitative changes of NK cell and ILC subsets in human diseases. PMID:23181063

  17. Type two innate lymphoid cells; the Janus cells in health and disease

    PubMed Central

    Maazi, Hadi; Akbari, Omid

    2017-01-01

    Summary Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2 and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by costimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease. PMID:28658553

  18. Type two innate lymphoid cells: the Janus cells in health and disease.

    PubMed

    Maazi, Hadi; Akbari, Omid

    2017-07-01

    Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2, and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity, and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by co-stimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus-infected macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2015-12-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit(+)IL-7Rα(+) (CD117(+)CD127(+)) cells. These ILC3 cells highly expressed CD90 (∼ 63%) and aryl hydrocarbon receptor and produced IL-17 (∼ 63%), IL-22 (∼ 36%), and TNF-α (∼ 72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4(+) T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P < 0.001). Notably, ILC3 could be induced to undergo apoptosis by microbial products through the TLR2 (lipoteichoic acid) and/or TLR4 (LPS) pathway. These findings indicated that persistent microbial translocation may result in loss of ILC3 in lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues. © FASEB.

  20. Innate Lymphoid Cells in Tumor Immunity.

    PubMed

    van Beek, Jasper J P; Martens, Anne W J; Bakdash, Ghaith; de Vries, I Jolanda M

    2016-02-25

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.

  1. Innate Lymphoid Cells in Tumor Immunity

    PubMed Central

    van Beek, Jasper J. P.; Martens, Anne W. J.; Bakdash, Ghaith; de Vries, I. Jolanda M.

    2016-01-01

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring. PMID:28536374

  2. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE.

    PubMed

    Hatfield, Julianne K; Brown, Melissa A

    2015-10-01

    Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The lymphoid cell network in the skin.

    PubMed

    Tikoo, Shweta; Jain, Rohit; Kurz, Angela Rm; Weninger, Wolfgang

    2018-05-01

    Cutaneous immunity represents a crucial component of the mammalian immune response. The presence of a large array of commensal microorganisms along with a myriad of environmental stresses necessitates constant immuno-surveillance of the tissue. To achieve a perfect balance between immune-tolerance and immune-activation, the skin harbors strategically localized immune cell populations that modulate these responses. To maintain homeostasis, innate and adaptive immune cells assimilate microenvironmental cues and coordinate cellular and molecular functions in a spatiotemporal manner. The role of lymphoid cells in cutaneous immunity is gaining much appreciation due to their important roles in regulating skin health and pathology. In this review, we aim to highlight the recent advances in the field of cutaneous lymphoid biology. © 2018 Australasian Society for Immunology Inc.

  4. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.

    PubMed

    Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge

    2015-01-01

    Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.

  5. Isolation of Human Innate Lymphoid Cells.

    PubMed

    Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M

    2018-06-29

    Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  6. Why Innate Lymphoid Cells?

    PubMed

    Kotas, Maya E; Locksley, Richard M

    2018-06-19

    Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4 + T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program

    PubMed Central

    Hamey, Fiona K.; Errami, Youssef

    2017-01-01

    Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro–B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell–programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation. PMID:28899870

  8. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation.

    PubMed

    Emgård, Johanna; Kammoun, Hana; García-Cassani, Bethania; Chesné, Julie; Parigi, Sara M; Jacob, Jean-Marie; Cheng, Hung-Wei; Evren, Elza; Das, Srustidhar; Czarnewski, Paulo; Sleiers, Natalie; Melo-Gonzalez, Felipe; Kvedaraite, Egle; Svensson, Mattias; Scandella, Elke; Hepworth, Matthew R; Huber, Samuel; Ludewig, Burkhard; Peduto, Lucie; Villablanca, Eduardo J; Veiga-Fernandes, Henrique; Pereira, João P; Flavell, Richard A; Willinger, Tim

    2018-01-16

    Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Innate lymphoid cells and asthma.

    PubMed

    Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T

    2014-04-01

    Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  10. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue.

    PubMed

    Steere, A C; Duray, P H; Butcher, E C

    1988-04-01

    Using monoclonal antibodies to spirochetal antigenes and lymphoid cell surface markers, we examined the synovial lesions of 12 patients with Lyme disease, and compared them with rheumatoid synovium and tonsillar lymphoid tissue. The synovial lesions of Lyme disease patients and rheumatoid arthritis patients were similar and often consisted of the elements found in normal organized lymphoid tissue. In both diseases, T cells, predominantly of the helper/inducer subset, were distributed diffusely in subsynovial lining areas, often with nodular aggregates of tightly intermixed T and B cells. IgD-bearing B cells were scattered within the aggregates, and a few follicular dendritic cells and activated germinal center B cells were sometimes present. Outside the aggregates, many plasma cells, high endothelial venules, scattered macrophages, and a few dendritic macrophages were found. HLA-DR and DQ expression was intense throughout the lesions. In 6 of the 12 patients with Lyme arthritis, but in none of those with rheumatoid arthritis, a few spirochetes and globular antigen deposits were seen in and around blood vessels in areas of lymphocytic infiltration. Thus, in Lyme arthritis, a small number of spirochetes are probably the antigenic stimulus for chronic synovial inflammation.

  11. [Comparative immunophenotypic characterization of human and monkey permanent lymphoid culture cells].

    PubMed

    Agrba, V Z; Lapin, B A; Medvedeva, N M; Ignatova, I E; Karal-Ogly, D D

    2007-01-01

    The aim of the study was to define the comparative immunophenotypic characteristics ofwidely spread lymphoid cell cultures, derived from Burkett's lymphoma named as Raji and P3HR-1 in comparison with analogous monkey cultures. It has been shown that P3HR-1 culture consists of similar type cells - activated B-lymphocytes CD23 with k phenotype, which demonstrates its monoclonality. Raji culture includes cells with markers of immature B-lymphocytes CD10 and CD24, as well as elements expressing CD10 antigens. T-cell markers were found in none of the cultures. In contrast to human cells, monkey lymphoid culture expressed both B- and T-cell markers. Moreover, in one of them, obtained from a green monkey, T-cells of suppressor type (CD8) prevailed. The immunophenotypic characteristics of primate lymphoid cell cultures, revealed by the study, are of great importance for their proper application to medical and biological studies.

  12. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells

    PubMed Central

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ. PMID:29467768

  13. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    PubMed

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  14. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  15. Establishment and function of tissue-resident innate lymphoid cells in the skin.

    PubMed

    Yang, Jie; Zhao, Luming; Xu, Ming; Xiong, Na

    2017-07-01

    Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.

  16. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  17. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs

    PubMed Central

    Wang, Chao; Sun, Wujin; Ye, Yanqi; Bomba, Hunter N.; Gu, Zhen

    2017-01-01

    The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed. PMID:28912891

  18. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs.

    PubMed

    Wang, Chao; Sun, Wujin; Ye, Yanqi; Bomba, Hunter N; Gu, Zhen

    2017-01-01

    The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.

  19. Innate lymphoid cells, precursors and plasticity.

    PubMed

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. The Role of TOX in the Development of Innate Lymphoid Cells.

    PubMed

    Seehus, Corey R; Kaye, Jonathan

    2015-01-01

    TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  1. A synthetic cannabinoid JWH-210 reduces lymphoid organ weights and T-cell activator levels in mice via CB2 receptors.

    PubMed

    Gu, Sun Mi; Lee, Hyun Jin; Lee, Tac-Hyung; Song, Yun Jeong; Kim, Young-Hoon; Han, Kyoung-Moon; Shin, Jisoon; Park, Hye-Kyung; Kim, Hyung Soo; Cha, Hye Jin; Yun, Jaesuk

    2017-12-01

    The problem of new psychoactive substances (NPS) is emerging globally. However, the immunotoxicity of synthetic cannabinoids is not evaluated extensively yet. The purpose of the present study was to investigate whether synthetic cannabinoids (JWH-210 and JWH-030) induce adverse effects on lymphoid organs, viability of splenocytes and thymocytes, and immune cell activator and cytokines in mice. JWH-210 (10 mg/kg, 3 days, i.p.) is more likely to have cytotoxicity and reduce lymphoid organ weight than JWH-030 of ICR mice in vivo. We also demonstrated that JWH-210 administration resulted in the decrease of expression levels of T-cell activator including Cd3e, Cd3g, Cd74p31, and Cd74p41, while JWH-030 increased Cd3g levels. In addition, JWH-210 reduced expression levels of cytokines, such as interleukin-3, interleukin-5, and interleukin-6. Furthermore, we demonstrated that a CB 2 receptor antagonist, AM630 inhibited JWH-210-induced cytotoxicity, whereas a CB 1 receptor antagonist, rimonabant did not in primary cultured splenocytes. These results suggest that JWH-210 has a cytotoxicity via CB 2 receptor action and results in decrement of lymphoid organ weights, T-cell activator, and cytokine mRNA expression levels.

  2. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Innate lymphoid cells in atherosclerosis.

    PubMed

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  4. Development, differentiation and diversity of innate lymphoid cells

    PubMed Central

    Diefenbach, Andreas; Colonna, Marco; Koyasu, Shigeo

    2014-01-01

    Recent years have witnessed the discovery of an unprecedented complexity in innate lymphocyte lineages, now collectively referred to as innate lymphoid cells (ILC). ILC are preferentially located at barrier surfaces and are important for protection against pathogens and for the maintenance of organ homeostasis. Inappropriate activation of ILC has been linked to the pathogenesis of inflammatory and autoimmune disorders. Recent evidence suggests that ILC can be grouped into two separate lineages, cytotoxic ILC represented by conventional natural killer (cNK) cells and cytokine-producing helper-like ILC (i.e., ILC1, ILC2, ILC3). We will focus here on current work in humans and mice that has identified core transcriptional circuitry required for the commitment of lymphoid progenitors to the ILC lineage. The striking similarities in transcriptional control of ILC and T cell lineages reveal important insights into the evolution of transcriptional programs required to protect multicellular organisms against infections and to fortify barrier surfaces. PMID:25238093

  5. Suppression of HIV Replication by Lymphoid Tissue CD8+ Cells Correlates with the Clinical State of HIV-Infected Individuals

    NASA Astrophysics Data System (ADS)

    Blackbourn, David J.; Mackewicz, Carl E.; Barker, Edward; Hunt, Thomas K.; Herndier, Brian; Haase, Ashley T.; Levy, Jay A.

    1996-11-01

    Lymphoid tissues from asymptomatic HIV-infected individuals, as compared with symptomatic HIV-infected subjects, show limited histopathological changes and lower levels of HIV expression. In this report we correlate the control of HIV replication in lymph nodes to the non-cytolytic anti-HIV activity of lymphoid tissue CD8+ cells. Five subjects at different stages of HIV-related disease were studied and the ability of their CD8+ cells, isolated from both lymphoid tissue and peripheral blood, to inhibit HIV replication was compared. CD8+ cells from lymphoid tissue and peripheral blood of two HIV-infected long-term survivors suppressed HIV replication at a low CD8+:CD4+ cell ratio of 0.1. The CD8+ cells from the lymphoid tissue of a third asymptomatic subject suppressed HIV replication at a CD8+:CD4+ cell ratio of 0.25; the subject's peripheral blood CD8+ cells showed this antiviral response at a lower ratio of 0.05. The lymphoid tissue CD8+ cells from two AIDS patients were not able to suppress HIV replication, and the peripheral blood CD8+ cells of only one of them suppressed HIV replication. The plasma viremia, cellular HIV load as well as the extent of pathology and virus expression in the lymphoid tissue of the two long-term survivors, were reduced compared with these parameters in the three other subjects. The data suggest that the extent of anti-HIV activity by CD8+ cells from lymphoid tissue relative to peripheral blood correlates best with the clinical state measured by lymphoid tissue pathology and HIV burden in lymphoid tissues and blood. The results and further emphasis to the importance of this cellular immune response in controlling HIV pathogenesis.

  6. Circulating activated innate lymphoid cells and mucosal-associated invariant T cells are associated with airflow limitation in patients with asthma.

    PubMed

    Ishimori, Ayako; Harada, Norihiro; Chiba, Asako; Harada, Sonoko; Matsuno, Kei; Makino, Fumihiko; Ito, Jun; Ohta, Shoichiro; Ono, Junya; Atsuta, Ryo; Izuhara, Kenji; Takahashi, Kazuhisa; Miyake, Sachiko

    2017-04-01

    A variety of innate subsets of lymphoid cells such as natural killer (NK) cells, several populations of innate lymphoid cells (ILCs), and mucosal-associated invariant T (MAIT) cells as innate-like T lymphocytes are involved in asthma and may have important effector functions in asthmatic immune responses. In the present study, we investigated whether NK cells, ILCs, and MAIT cells in the peripheral blood of patients with asthma would be associated with clinical asthma parameters. We recruited 75 adult patients with mild to severe asthma. The peripheral blood mononuclear cells in peripheral venous blood samples from the patients were purified and stained with different combinations of appropriate antibodies. The cells were analyzed by flow cytometry. The percentage of activated (i.e., CD69 + ) NK cells in the total NK cell population was negatively correlated with FEV 1 % which is calculated by the forced expiratory volume in 1 s (FEV 1 )/the forced vital capacity (FVC). The percentages of CD69 + ILC1s and ILC2s were negatively correlated with FEV 1 % and %FEV 1 . The percentage of CD69 + ILC3s was positively correlated with BMI, and the percentage of CD69 + MAIT cells was negatively correlated with FEV 1 %. Moreover, the percentage of CD69 + NK cells, ILC1s, ILC2s, ILC3s, and MAIT cells were positively correlated with each other. For the first time, our data showed that activated NK cells, ILC1s, ILC2s, ILC3s, and MAIT cells were positively correlated with each other and may be associated with airflow limitation in patients with asthma. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  7. Group 3 innate lymphoid cells (ILC3s): Origin, differentiation, and plasticity in humans and mice.

    PubMed

    Montaldo, Elisa; Juelke, Kerstin; Romagnani, Chiara

    2015-08-01

    Since their discovery, innate lymphoid cells (ILCs) have been the subject of intense research. As their name implies, ILCs are innate cells of lymphoid origin, and can be grouped into subsets based on their cytotoxic activity, cytokine profile, and the transcriptional requirements during ILC differentiation. The main ILC groups are "killer" ILCs, comprising NK cells, and "helper-like" ILCs (including ILC1s, ILC2s, and ILC3s). This review examines the origin, differentiation stages, and plasticity of murine and human ILC3s. ILC3s express the retinoic acid receptor (RAR) related orphan receptor RORγt and the signature cytokines IL-22 and IL-17. Fetal ILC3s or lymphoid tissue inducer cells are required for lymphoid organogenesis, while postnatally developing ILC3s are important for the generation of intestinal cryptopatches and isolated lymphoid follicles as well as for the defence against pathogens and epithelial homeostasis. Here, we discuss the transcription factors and exogenous signals (including cytokines, nutrients and cell-to-cell interaction) that drive ILC3 lineage commitment and acquisition of their distinctive effector program. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging.

    PubMed

    Young, Kira; Borikar, Sneha; Bell, Rebecca; Kuffler, Lauren; Philip, Vivek; Trowbridge, Jennifer J

    2016-10-17

    Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging. © 2016 Young et al.

  9. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    PubMed

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  10. Transcription factors controlling innate lymphoid cell fate decisions.

    PubMed

    Klose, Christoph S N; Diefenbach, Andreas

    2014-01-01

    The mucosal epithelium is in direct contact with symbiotic and pathogenic microorganisms. Therefore, the mucosal surface is the principal portal of entry for invading pathogens and immune cells accumulated in the intestine to prevent infections. In addition to these conventional immune system functions, it has become clear that immune cells during steady-state continuously integrate microbial and nutrient-derived signals from the environment to support organ homeostasis. A major role in both processes is played by a recently discovered group of lymphocytes referred to as innate lymphoid cells (ILCs) Innate lymphoid cells (ILCs) that are specifically enriched at mucosal surfaces but are rather rare in secondary lymphoid organs. In analogy to the dichotomy between CD8 and CD4 T cells, we propose to classify ILCs into interleukin-7 receptor α-negative cytotoxic ILCs and IL-7Rα(+) helper-like ILCs. Dysregulated immune responses triggered by the various ILC subsets have been linked to inflammatory diseases such as inflammatory bowel disease, atopic dermatitis and airway hyperresponsiveness. Here, we will review recent progress in determining the transcriptional and developmental programs that control ILC fate decisions.

  11. Bronchus-associated Lymphoid Tissue in Pulmonary Hypertension Produces Pathologic Autoantibodies

    PubMed Central

    Colvin, Kelley L.; Cripe, Patrick J.; Ivy, D. Dunbar; Stenmark, Kurt R.

    2013-01-01

    Rationale: Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. Objectives: We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. Methods: We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Measurements and Main Results: Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3+ T cells over a core of CD45RA+ B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1+ high endothelial venules and vascular cell adhesion molecule–positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Conclusions: Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue–directed therapies may be beneficial in treating pulmonary hypertension. PMID:24093638

  12. Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production.

    PubMed

    Dalmas, Elise; Lehmann, Frank M; Dror, Erez; Wueest, Stephan; Thienel, Constanze; Borsigova, Marcela; Stawiski, Marc; Traunecker, Emmanuel; Lucchini, Fabrizio C; Dapito, Dianne H; Kallert, Sandra M; Guigas, Bruno; Pattou, Francois; Kerr-Conte, Julie; Maechler, Pierre; Girard, Jean-Philippe; Konrad, Daniel; Wolfrum, Christian; Böni-Schnetzler, Marianne; Finke, Daniela; Donath, Marc Y

    2017-11-21

    Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

    NASA Astrophysics Data System (ADS)

    van de Pavert, Serge A.; Ferreira, Manuela; Domingues, Rita G.; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F.; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R.; Habani, Yasmin; Haak, Esther; Santori, Fabio R.; Littman, Dan R.; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J. Pedro; Mebius, Reina E.; Veiga-Fernandes, Henrique

    2014-04-01

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

  14. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity.

    PubMed

    van de Pavert, Serge A; Ferreira, Manuela; Domingues, Rita G; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R; Habani, Yasmin; Haak, Esther; Santori, Fabio R; Littman, Dan R; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J Pedro; Mebius, Reina E; Veiga-Fernandes, Henrique

    2014-04-03

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

  15. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations.

    PubMed

    Chicha, Laurie; Jarrossay, David; Manz, Markus G

    2004-12-06

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.

  16. Clonal Type I Interferon–producing and Dendritic Cell Precursors Are Contained in Both Human Lymphoid and Myeloid Progenitor Populations

    PubMed Central

    Chicha, Laurie; Jarrossay, David; Manz, Markus G.

    2004-01-01

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348

  17. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells.

    PubMed

    Cautivo, Kelly M; Molofsky, Ari B

    2016-06-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Beyond NK cells: the expanding universe of innate lymphoid cells.

    PubMed

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  19. Aberrant Huntingtin interacting protein 1 in lymphoid malignancies.

    PubMed

    Bradley, Sarah V; Smith, Mitchell R; Hyun, Teresa S; Lucas, Peter C; Li, Lina; Antonuk, Danielle; Joshi, Indira; Jin, Fang; Ross, Theodora S

    2007-09-15

    Huntingtin interacting protein 1 (HIP1) is an inositol lipid, clathrin, and actin binding protein that is overexpressed in a variety of epithelial malignancies. Here, we report for the first time that HIP1 is elevated in non-Hodgkin's and Hodgkin's lymphomas and that patients with lymphoid malignancies frequently had anti-HIP1 antibodies in their serum. Moreover, p53-deficient mice with B-cell lymphomas were 13 times more likely to have anti-HIP1 antibodies in their serum than control mice. Furthermore, transgenic overexpression of HIP1 was associated with the development of lymphoid neoplasms. The HIP1 protein was induced by activation of the nuclear factor-kappaB pathway, which is frequently activated in lymphoid malignancies. These data identify HIP1 as a new marker of lymphoid malignancies that contributes to the transformation of lymphoid cells in vivo.

  20. Human natural killer cell development in secondary lymphoid tissues

    PubMed Central

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  1. Innate lymphoid cells in normal and disease: An introductory overview.

    PubMed

    Moretta, Lorenzo; Locatelli, Franco

    2016-11-01

    Innate lymphoid cells (ILC) represent a novel group of lymphocytes that, different from T and B-lymphocytes lack recombinant activating genes (RAG-1 or RAG-2) and thus do not express rearranged antigen-specific receptors. Members of this family, i.e. NK cells, have been known since long time, while the other ILCs have been discovered only in recent years, possibly because of their predominant localization in tissues, primarily in mucosal tissues, skin and mucosa-associated lymphoid organs. ILC have been grouped in three major subsets on the basis of their phenotypic and functional features as well as of their dependency on given transcription factors (TF). Briefly, ILC-1 are dependent on T-bet TF and produce interferon (IFN)-γ. Group 2 ILC (ILC2) express GATA-3 TF and produce IL-5, IL-4 and IL-13 (Type 2) cytokines while group 3 ILC (ILC3) express RORγt TF and produce IL-17 and IL-22. ILC provide early defenses against pathogens and intervene in the repair of damaged tissues. ILC activation is mediated by cytokines (specifically acting on different ILC groups) and/or by activating receptors that are, at least in part, the same that had been previously identified in NK cells [1]. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    PubMed

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  3. Automatic classification of atypical lymphoid B cells using digital blood image processing.

    PubMed

    Alférez, S; Merino, A; Mujica, L E; Ruiz, M; Bigorra, L; Rodellar, J

    2014-08-01

    There are automated systems for digital peripheral blood (PB) cell analysis, but they operate most effectively in nonpathological blood samples. The objective of this work was to design a methodology to improve the automatic classification of abnormal lymphoid cells. We analyzed 340 digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96:150 chronic lymphocytic leukemia (CLL) cells, 100 hairy cell leukemia (HCL) cells, and 90 normal lymphocytes (N). We implemented the Watershed Transformation to segment the nucleus, the cytoplasm, and the peripheral cell region. We extracted 44 features and then the clustering Fuzzy C-Means (FCM) was applied in two steps for the lymphocyte classification. The images were automatically clustered in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was clustered again using FCM and texture features. The two new groups contained 83.3% of the N cells and 71.3% of the CLL cells, respectively. The approach has been able to automatically classify with high precision three types of lymphoid cells. The addition of more descriptors and other classification techniques will allow extending the classification to other classes of atypical lymphoid cells. © 2013 John Wiley & Sons Ltd.

  4. Human innate lymphoid cells.

    PubMed

    Montaldo, Elisa; Vacca, Paola; Vitale, Chiara; Moretta, Francesca; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-11-01

    The interest in innate lymphoid cells (ILC) has rapidly grown during the last decade. ILC include distinct cell types that are collectively involved in host protection against pathogens and tumor cells and in the regulation of tissue homeostasis. Studies in mice enabled a broad characterization of ILC function and of their developmental requirements. In humans all mature ILC subsets have been characterized and their role in the pathogenesis of certain disease is emerging. Nonetheless, still limited information is available on human ILC development. Indeed, only the cell precursors committed toward NK cells or ILC3 have been described. Here, we review the most recent finding on human mature ILC, discussing their tissue localization and function. Moreover, we summarize the available data regarding human ILC development. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Interactions between the intestinal microbiota and innate lymphoid cells

    PubMed Central

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  6. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors.

    PubMed

    Alberti-Servera, Llucia; von Muenchow, Lilly; Tsapogas, Panagiotis; Capoferri, Giuseppina; Eschbach, Katja; Beisel, Christian; Ceredig, Rhodri; Ivanek, Robert; Rolink, Antonius

    2017-12-15

    Single-cell RNA sequencing is a powerful technology for assessing heterogeneity within defined cell populations. Here, we describe the heterogeneity of a B220 + CD117 int CD19 - NK1.1 - uncommitted hematopoietic progenitor having combined lymphoid and myeloid potential. Phenotypic and functional assays revealed four subpopulations within the progenitor with distinct lineage developmental potentials. Among them, the Ly6D + SiglecH - CD11c - fraction was lymphoid-restricted exhibiting strong B-cell potential, whereas the Ly6D - SiglecH - CD11c - fraction showed mixed lympho-myeloid potential. Single-cell RNA sequencing of these subsets revealed that the latter population comprised a mixture of cells with distinct lymphoid and myeloid transcriptional signatures and identified a subgroup as the potential precursor of Ly6D + SiglecH - CD11c - Subsequent functional assays confirmed that B220 + CD117 int CD19 - NK1.1 - single cells are, with rare exceptions, not bipotent for lymphoid and myeloid lineages. A B-cell priming gradient was observed within the Ly6D + SiglecH - CD11c - subset and we propose a herein newly identified subgroup as the direct precursor of the first B-cell committed stage. Therefore, the apparent multipotency of B220 + CD117 int CD19 - NK1.1 - progenitors results from underlying heterogeneity at the single-cell level and highlights the validity of single-cell transcriptomics for resolving cellular heterogeneity and developmental relationships among hematopoietic progenitors. © 2017 The Authors.

  7. Pathological and therapeutic roles of innate lymphoid cells in diverse diseases.

    PubMed

    Kim, Jisu; Kim, Geon; Min, Hyeyoung

    2017-11-01

    Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.

  8. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    PubMed

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  9. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency

    PubMed Central

    Maglione, Paul J.; Cols, Montserrat

    2018-01-01

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches. PMID:28983810

  10. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    PubMed

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner.

    PubMed

    Liu, Rui; King, Ashleigh; Bouillet, Philippe; Tarlinton, David M; Strasser, Andreas; Heierhorst, Jörg

    2018-01-01

    The proapoptotic BH3-only protein BIM ( Bcl2l11 ) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre ) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre ) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim -deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro , conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc -driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.

  12. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner

    PubMed Central

    Liu, Rui; King, Ashleigh; Bouillet, Philippe; Tarlinton, David M.; Strasser, Andreas; Heierhorst, Jörg

    2018-01-01

    The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions. PMID:29623080

  13. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method.

    PubMed

    Zotova, Anastasia; Lopatukhina, Elena; Filatov, Alexander; Khaitov, Musa; Mazurov, Dmitriy

    2017-11-02

    Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN), we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1) ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1) locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1) in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.

  14. Artificial engineering of secondary lymphoid organs.

    PubMed

    Tan, Jonathan K H; Watanabe, Takeshi

    2010-01-01

    Secondary lymphoid organs such as spleen and lymph nodes are highly organized immune structures essential for the initiation of immune responses. They display distinct B cell and T cell compartments associated with specific stromal follicular dendritic cells and fibroblastic reticular cells, respectively. Interweaved through the parenchyma is a conduit system that distributes small antigens and chemokines directly to B and T cell zones. While most structural aspects between lymph nodes and spleen are common, the entry of lymphocytes, antigen-presenting cells, and antigen into lymphoid tissues is regulated differently, reflecting the specialized functions of each organ in filtering either lymph or blood. The overall organization of lymphoid tissue is vital for effective antigen screening and recognition, and is a feature which artificially constructed lymphoid organoids endeavor to replicate. Synthesis of artificial lymphoid tissues is an emerging field that aims to provide therapeutic application for the treatment of severe infection, cancer, and age-related involution of secondary lymphoid tissues. The development of murine artificial lymphoid tissues has benefited greatly from an understanding of organogenesis of lymphoid organs, which has delineated cellular and molecular elements essential for the recruitment and organization of lymphocytes into lymphoid structures. Here, the field of artificial lymphoid tissue engineering is considered including elements of lymphoid structure and development relevant to organoid synthesis. (c) 2010 Elsevier Inc. All rights reserved.

  15. Immune Modules Shared by Innate Lymphoid Cells and T Cells

    PubMed Central

    Robinette, Michelle L.; Colonna, Marco

    2016-01-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core “immune modules” that encompass transcriptional circuitry and effector functions, while utilizing non-redundant, complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. PMID:27817796

  16. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station

    PubMed Central

    Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid

    2013-01-01

    The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction. PMID:19609626

  17. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells.

    PubMed

    Hashiguchi, Masaaki; Kashiwakura, Yuji; Kojima, Hidefumi; Kobayashi, Ayano; Kanno, Yumiko; Kobata, Tetsuji

    2015-03-01

    Eosinophils are multifunctional leukocytes involved in allergic reactions as well as adipose tissue regulation. IL-5 is required for eosinophil survival; however, the in vivo mechanisms of eosinophil regulation are not fully understood. A tg mouse model with il5 promoter-driven EGFP expression was established for detecting the IL-5-producing cells in vivo. Il5-egfp tg mice expressed high levels of EGFP in gonadal adipose tissue (GAT) cells. EGFP(+) cells in GAT were mainly group 2 innate lymphoid cells (ILCs). IL-33 preferentially expanded EGFP(+) cells and eosinophils in GAT in vivo. EGFP(+) ILCs were found to upregulate prg2 mRNA expression in GAT eosinophils. These results demonstrate that ILCs activate eosinophils in GAT. The blockage of IL-33Rα, on the other hand, did not impair EGFP(+) ILC numbers but did impair eosinophil numbers in vivo. GAT eosinophils expressed IL-33Rα and IL-33 expanded eosinophil numbers in CD90(+) cell-depleted mice. IL-33 was further observed to induce the expression of retnla and epx mRNA in eosinophils. These findings demonstrate that IL-33 directly activates eosinophils in GAT, and together with our other findings described above, our findings show that IL-33 has dual pathways via which it activates eosinophils in vivo: a direct activation pathway and a group 2 ILC-mediated pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    PubMed

    Horton, Sarah J; Giotopoulos, George; Yun, Haiyang; Vohra, Shabana; Sheppard, Olivia; Bashford-Rogers, Rachael; Rashid, Mamunur; Clipson, Alexandra; Chan, Wai-In; Sasca, Daniel; Yiangou, Loukia; Osaki, Hikari; Basheer, Faisal; Gallipoli, Paolo; Burrows, Natalie; Erdem, Ayşegül; Sybirna, Anastasiya; Foerster, Sarah; Zhao, Wanfeng; Sustic, Tonci; Petrunkina Harrison, Anna; Laurenti, Elisa; Okosun, Jessica; Hodson, Daniel; Wright, Penny; Smith, Ken G; Maxwell, Patrick; Fitzgibbon, Jude; Du, Ming Q; Adams, David J; Huntly, Brian J P

    2017-09-01

    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.

  19. Epigenomic Views of Innate Lymphoid Cells.

    PubMed

    Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O'Shea, John J

    2017-01-01

    The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.

  20. Epigenomic Views of Innate Lymphoid Cells

    PubMed Central

    Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O’Shea, John J.

    2017-01-01

    The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity. PMID:29250060

  1. Human innate lymphoid cells (ILCs) in filarial infections.

    PubMed

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    PubMed

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  3. Immunological Characterization of Intraocular Lymphoid Follicles in a Spontaneous Recurrent Uveitis Model.

    PubMed

    Kleinwort, Kristina J H; Amann, Barbara; Hauck, Stefanie M; Feederle, Regina; Sekundo, Walter; Deeg, Cornelia A

    2016-08-01

    Recently, formation of tertiary lymphoid structures was demonstrated and further characterized in the R161H mouse model of spontaneous autoimmune uveitis. In the horse model of spontaneous recurrent uveitis, intraocular lymphoid follicle formation is highly characteristic, and found in all stages and scores of disease, but in depth analyses of immunologic features of these structures are lacking to date. Paraffin-embedded eye sections of cases with equine spontaneous recurrent uveitis (ERU) were characterized with immunohistochemistry to gain insight into the distribution, localization, and signaling of immune cells in intraocular tertiary lymphoid tissues. Ectopic lymphoid tissues were located preferentially in the iris, ciliary body, and retina at the ora serrata of horses with naturally-occurring ERU. The majority of cells in the tertiary lymphoid follicles were T cells with a scattered distribution of B cells and PNA+ cells interspersed. A fraction of T cells was additionally positive for memory cell marker CD45RO. Almost all cells coexpressed CD166, a molecule associated with activation and transmigration of T cells into inflamed tissues. Several transcription factors that govern immune cell responses were detectable in the tertiary lymphoid follicles, among them Zap70, TFIIB, GATA3, and IRF4. A high expression of the phosphorylated signal transducers and activators of transcription (STAT) proteins 1 and 5 were found at the margin of the structures. Cellular composition and structural organization of these inflammation-associated tertiary lymphoid tissue structures and the expression of markers of matured T and B cells point to highly organized adaptive immune responses in these follicles in spontaneous recurrent uveitis.

  4. Characterization of lymphoid cells in the blood of healthy adults: sequential immunological, cytochemical and cytokinetic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirt, A.; Wagner, H.P.

    1980-01-01

    With a new method, sequential immunological, cytochemical and cytokinetic studies were done on lymphoid cells in the peripheral blood of 12 healthy adults. Every single lymphoid cell could therefore be characterized by the following markers: surface immunoglobulins (sIg); rosetting with sheep red blood cells (E); unspecific acid alpha-naphthyl acetate esterase (ANAE); and 3HdT incorporation. Significantly more E+sIg-ANAE-cells (51% and 22% of all lymphoid cells, respectively). Of all ANAE+ cells 90% were E+, but 64% of all ANAE- cells were also E+. In all individuals a subpopulation of E+sIg+ cells was found. The esterase pattern of these cells was similar tomore » that of E-sIg+ cells. The overall labeling index of the lymphoid cells examined was less than or equal to 0.2%.« less

  5. Absence of tissue factor is characteristic of lymphoid malignancies of both T- and B-cell origin

    PubMed Central

    Cesarman-Maus, Gabriela; Braggio, Esteban; Lome-Maldonado, Carmen; Morales-Leyte, Ana Lilia; Fonseca, Rafael

    2014-01-01

    Summary Background Thrombosis is a marker of poor prognosis in individuals with solid tumors. The expression of tissue factor (TF) on the cell surface membrane of malignant cells is a pivotal molecular link between activation of coagulation, angiogenesis, metastasis, aggressive tumor behavior and poor survival. Interestingly, thrombosis is associated with shortened survival in solid, but not in lymphoid neoplasias. Objectives We sought to study whether the lack of impact of thrombosis on survival in lymphoid neoplasias could be due to a lack of tumor-derived TF expression. Methods We analyzed TF gene (F3) expression in lymphoid (N=114), myeloid (N=49) and solid tumor (N=856) cell lines using the publicly available dataset from the Broad-Novartis Cancer Cell Line Encyclopedia (http://www.broadinstitute.org/ccle/home), and in 90 patient-derived lymphoma samples. TF protein expression was studied by immunohistochemistry (IHC). Results In sharp contrast to wide F3 expression in solid tumors (74.2%), F3 was absent in all low and high grade T- and B-cell lymphomas, and in most myeloid tumors, except for select acute myeloid leukemias with monocytic component. IHC confirmed the absence of TF protein in all indolent and high-grade B-cell (0/90) and T-cell (0/20) lymphomas, and acute leukemias (0/11). Conclusions We show that TF in lymphomas does not derive from the malignant cells, since these do not express either F3 or TF protein. Therefore, it is unlikely that thrombosis in patients with lymphoid neoplasms is secondary to tumor-derived tissue factor. PMID:24491425

  6. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Developmental acquisition of regulomes underlies innate lymphoid cell functionality

    USDA-ARS?s Scientific Manuscript database

    Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis, and they mirror adaptive CD4+ T helper (Th) cell subtypes in both usages of effector molecules and ·transcription factors. To better understand ILC subsets and their relationship with Th cells, we measur...

  8. Determination of the Fate and Function of Innate Lymphoid Cells Following Adoptive Transfer of Innate Lymphoid Cell Precursors.

    PubMed

    O'Sullivan, Timothy E; Sun, Joseph C

    2018-01-01

    Innate lymphoid cells are a heterogeneous family of tissue-resident and circulating lymphocytes that play an important role in host immunity. Recent studies have profiled the developmental pathways of mature ILCs and have identified ILC progenitors in the bone marrow through the use of transcription factor reporter mice. Here we describe methodology to identify and isolate bone marrow CHILP and ILC2 progenitor (ILC2P) cells based on cell surface marker expression for adoptive transfer into lymphopenic mice to track the fate of developing ILCs.

  9. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Immune modules shared by innate lymphoid cells and T cells.

    PubMed

    Robinette, Michelle L; Colonna, Marco

    2016-11-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Identification of Natural RORγ Ligands that Regulate the Development of Lymphoid Cells

    PubMed Central

    Santori, Fabio R.; Huang, Pengxiang; van de Pavert, Serge A.; Douglass, Eugene F.; Leaver, David J.; Haubrich, Brad A.; Keber, Rok; Lorbek, Gregor; Konijn, Tanja; Rosales, Brittany N.; Horvat, Simon; Rozman, Damjana; Rahier, Alain; Mebius, Reina E.; Rastinejad, Fraydoon; Nes, W. David; Littman, Dan R.

    2015-01-01

    SUMMARY Mice deficient in the nuclear hormone receptor RORγt have defective development of thymocytes, lymphoid organs, Th17 cells and type 3 innate lymphoid cells. RORγt binds to oxysterols derived from cholesterol catabolism but it is not clear whether these are its natural ligands. Here, we show that sterol lipids are necessary and sufficient to drive RORγt-dependent transcription. We combined overexpression, RNA interference and genetic deletion of metabolic enzymes to study RORγ-dependent transcription. Our results are consistent with the RORγt ligand(s) being a cholesterol biosynthetic intermediate (CBI) downstream of lanosterol and upstream of zymosterol. Analysis of lipids bound to RORγ identified molecules with molecular weights consistent with CBIs. Furthermore, CBIs stabilized the RORγ ligand-binding domain and induced co-activator recruitment. Genetic deletion of metabolic enzymes upstream of the RORγt-ligand(s) affected the development of lymph nodes and Th17 cells. Our data suggest that CBIs play a role in lymphocyte development potentially through regulation of RORγt. PMID:25651181

  12. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    PubMed

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  13. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications.

    PubMed

    Kortekaas Krohn, I; Shikhagaie, M M; Golebski, K; Bernink, J H; Breynaert, C; Creyns, B; Diamant, Z; Fokkens, W J; Gevaert, P; Hellings, P; Hendriks, R W; Klimek, L; Mjösberg, J; Morita, H; Ogg, G S; O'Mahony, L; Schwarze, J; Seys, S F; Shamji, M H; Bal, S M

    2018-04-01

    Innate lymphoid cells (ILC) represent a group of lymphocytes that lack specific antigen receptors and are relatively rare as compared to adaptive lymphocytes. ILCs play important roles in allergic and nonallergic inflammatory diseases due to their location at barrier surfaces within the airways, gut, and skin, and they respond to cytokines produced by activated cells in their local environment. Innate lymphoid cells contribute to the immune response by the release of cytokines and other mediators, forming a link between innate and adaptive immunity. In recent years, these cells have been extensively characterized and their role in animal models of disease has been investigated. Data to translate the relevance of ILCs in human pathology, and the potential role of ILCs in diagnosis, as biomarkers and/or as future treatment targets are also emerging. This review, produced by a task force of the Immunology Section of the European Academy of Allergy and Clinical Immunology (EAACI), encompassing clinicians and researchers, highlights the role of ILCs in human allergic and nonallergic diseases in the airways, gastrointestinal tract, and skin, with a focus on new insights into clinical implications, therapeutic options, and future research opportunities. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  14. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen.

    PubMed

    Rumfelt, L L; McKinney, E C; Taylor, E; Flajnik, M F

    2002-08-01

    Secondary lymphoid tissue and immunoglobulin (Ig) production in mammals is not fully developed at birth, requiring time postnatally to attain all features required for adaptive immune responses. The immune system of newborn sharks - the oldest vertebrate group having adaptive immunity - also displays immature characteristics such as low serum IgM concentration and high levels of IgM1gj, an innate-like Ig. Primary and secondary lymphoid tissues in sharks and other cartilaginous fish were identified previously, but their cellular organization was not examined in detail. In this study of nurse shark lymphoid tissue, we demonstrate that the adult spleen contains well-defined, highly vascularized white pulp (WP) areas, composed of a central T-cell zone containing a major histocompatibility complex (MHC) class II+ dendritic cell (DC) network and a small number of Ig+ secretory cells, surrounded by smaller zones of surface Ig+ (sIg+) B cells. In neonates, splenic WPs are exclusively B-cell zones containing sIgM+-MHC class IIlow B cells; thus compartmentalized areas with T cells and DCs, as well as surface Ig novel antigen receptor (sIgNAR)-expressing B cells are absent at birth. Not until the pups are 5 months old do these WP areas become adult-like; concomitantly, sIgNAR+ B cells are readily detectable, indicating that this Ig class requires a 'mature immune-responsive environment'. The epigonal organ is the major site of neonatal B lymphopoiesis, based on the presence of developing B cells and recombination-activating gene 1 (RAG1)/terminal deoxynucleotidyl transferase (TdT) expression, indicative of antigen receptor rearrangement; such expression persists into adult life, whereas the spleen has negligible lymphopoietic activity. In adults but not neonates, many secretory B cells reside in the epigonal organ, suggesting, like in mammals, that B cells home to this primary lymphoid tissue after activation in other areas of the body.

  15. Innate Lymphoid Cells in HIV/SIV Infections.

    PubMed

    Shah, Spandan V; Manickam, Cordelia; Ram, Daniel R; Reeves, R Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  16. Innate Lymphoid Cells in HIV/SIV Infections

    PubMed Central

    Shah, Spandan V.; Manickam, Cordelia; Ram, Daniel R.; Reeves, R. Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections. PMID:29326704

  17. Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies

    PubMed Central

    Gupta, Mamta; Hendrickson, Andrea E. Wahner; Yun, Seong Seok; Han, Jing Jing; Schneider, Paula A.; Koh, Brian D.; Stenson, Mary J.; Wellik, Linda E.; Shing, Jennifer C.; Peterson, Kevin L.; Flatten, Karen S.; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Barr, Sharon

    2012-01-01

    The mammalian target of rapamycin (mTOR) plays crucial roles in proliferative and antiapoptotic signaling in lymphoid malignancies. Rapamycin analogs, which are allosteric mTOR complex 1 (mTORC1) inhibitors, are active in mantle cell lymphoma and other lymphoid neoplasms, but responses are usually partial and short-lived. In the present study we compared the effects of rapamycin with the dual mTORC1/mTORC2 inhibitor OSI-027 in cell lines and clinical samples representing divers lymphoid malignancies. In contrast to rapamycin, OSI-027 markedly diminished proliferation and induced apoptosis in a variety of lymphoid cell lines and clinical samples, including specimens of B-cell acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone lymphoma and Sezary syndrome. Additional analysis demonstrated that OSI-027–induced apoptosis depended on transcriptional activation of the PUMA and BIM genes. Overexpression of Bcl-2, which neutralizes Puma and Bim, or loss of procaspase 9 diminished OSI-027–induced apoptosis in vitro. Moreover, OSI-027 inhibited phosphorylation of mTORC1 and mTORC2 substrates, up-regulated Puma, and induced regressions in Jeko xenografts. Collectively, these results not only identify a pathway that is critical for the cytotoxicity of dual mTORC1/mTORC2 inhibitors, but also suggest that simultaneously targeting mTORC1 and mTORC2 might be an effective anti-lymphoma strategy in vivo. PMID:22080480

  18. Innate lymphoid cells in graft-versus-host disease.

    PubMed

    Konya, V; Mjösberg, J

    2015-11-01

    Innate lymphoid cells (ILC) are lymphocytes lacking rearranged antigen receptors such as those expressed by T and B cells. ILC are important effector and regulatory cells of the innate immune system, controlling lymphoid organogenesis, tissue inflammation, and homeostasis. The family of ILC consists of cytotoxic NK cells and the more recently described noncytotoxic group 1, 2, and 3 ILC. The classification of noncytotoxic ILC-in many aspects-mirrors that of T helper cells, which is based on the expression of master transcription factors and signature cytokines specific for each subset. The IL-22 producing RORγt(+) ILC3 subset was recently found to be critical in the prevention of intestinal graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT) via strengthening the intestinal mucosal barrier. In this review, we summarize the current view of the immunological functions of human noncytotoxic ILC subsets and discuss the potentially beneficial features of IL-22 producing ILC3 in improving allo-HCT efficacy by attenuating susceptibility to GVHD. In addition, we explore the possibility of other ILC subsets playing a role in GVHD. © 2015 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  19. Innate lymphoid cells and the MHC.

    PubMed

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Distribution of Interleukin-22-secreting Immune Cells in Conjunctival Associated Lymphoid Tissue.

    PubMed

    Yoon, Chang Ho; Lee, Daeseung; Jeong, Hyun Jeong; Ryu, Jin Suk; Kim, Mee Kum

    2018-04-01

    Interleukin (IL)-22 is a cytokine involved in epithelial cell regeneration. Currently, no research studies have analyzed the distribution of the three distinct IL-22-secreting cell populations in human or mouse conjunctiva. This study investigated the distribution of the three main populations of IL-22-secreting immune cells, αβ Th cells, γδ T cells, or innate cells (innate lymphoid cells [ILCs] or natural killer cells), in conjunctival associated lymphoid tissues (CALTs) in human and mouse models. We collected discarded cadaveric bulbar conjunctival tissue specimens after preservation of the corneo-limbal tissue for keratoplasty from four enucleated eyes of the domestic donor. The bulbar conjunctiva tissue, including the cornea from normal (n = 27) or abraded (n = 4) B6 mice, were excised and pooled in RPMI 1640 media. After the lymphoid cells were gated in forward and side scattering, the αβ Th cells, γδ T cells, or innate lymphoid cells were positively or negatively gated using anti-CD3, anti-γδ TCR, and anti-IL-22 antibodies, with a FACSCanto flow cytometer. In normal human conjunctiva, the percentage and number of cells were highest in αβ Th cells, followed by γδ T cells and CD3- γδ TCR- IL-22+ innate cells (presumed ILCs, pILCs) (Kruskal-Wallis test, p = 0.012). In normal mice keratoconjunctiva, the percentage and total number were highest in γδ T cells, followed by αβ Th cells and pILCs (Kruskal-Wallis test, p = 0.0004); in corneal abraded mice, the population of αβ Th cells and pILCs tended to increase. This study suggests that three distinctive populations of IL-22-secreting immune cells are present in CALTs of both humans and mice, and the proportions of IL-22+αβ Th cells, γδ T cells, and pILCs in CALTs in humans might be differently distributed from those in normal mice. © 2018 The Korean Ophthalmological Society.

  1. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  2. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  3. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    PubMed Central

    Mindt, Barbara C.; Fritz, Jörg H.; Duerr, Claudia U.

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung. PMID:29760695

  4. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    PubMed

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  5. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells.

    PubMed

    Camelo, Ana; Rosignoli, Guglielmo; Ohne, Yoichiro; Stewart, Ross A; Overed-Sayer, Catherine; Sleeman, Matthew A; May, Richard D

    2017-04-11

    Innate lymphoid cells (ILCs) represent a distinct branch of the lymphoid lineage composed of 3 major subpopulations: ILC1, ILC2, and ILC3. ILCs are mainly described as tissue-resident cells but can be detected at low levels in human blood. However, unlike mouse ILCs, there is still no consistent methodology to purify and culture these cells that enables in-depth analysis of their intrinsic biology. Here, we describe defined culture conditions for ILC2s, which allowed us to dissect the roles of interleukin 2 (IL-2), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) individually, or in combination, in modulating ILC2 phenotype and function. We show that TSLP is important for ILC2 survival, while ILC2 activation is more dependent on IL-33, especially when in combination with IL-2 or TSLP. We found that activation of ILC2s by IL-33 and TSLP dramatically upregulated their surface expression of c-Kit and downregulated expression of the canonical markers IL-7Rα and CRTH2. IL-2 further amplified ILC2 production of IL-5, IL-13, and granulocyte-macrophage colony-stimulating factor but also induced a more natural killer (NK)-like phenotype in ILC2, with upregulation of granzyme B production by these cells. Furthermore, ILC2 plasticity was observed in serum-free SFEM II media in response to IL-33, IL-25, and TSLP stimulation and independently of IL-12 and IL-1β. This is the first comprehensive report of an in vitro culture system for human ILC2s, without the use of feeder layers, which additionally evaluates the impact of IL-25, IL-33, and TSLP alone or in combination on ILC2 surface phenotype and activation status.

  6. Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy.

    PubMed

    Gillard, Geoffrey O; Saenz, Steven A; Huss, David J; Fontenot, Jason D

    2016-05-15

    Innate lymphoid cells (ILCs) play an important role in immunity, inflammation, and tissue remodeling and their dysregulation is implicated in autoimmune and inflammatory disorders. We analyzed the impact of daclizumab, a humanized monoclonal anti-CD25 antibody, on circulating natural killer (NK) cells and ILCs in a cohort of multiple sclerosis patients. An increase in CD56(bright) NK cells and CD56(hi)CD16(intermediate) transitional NK cells was observed. No significant change in total ILCs or major ILC subpopulations was observed. These results refine our understanding of the impact of daclizumab on innate lymphoid cell populations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Homeostatic migration and distribution of innate immune cells in primary and secondary lymphoid organs with ageing.

    PubMed

    Nikolich-Žugich, J; Davies, J S

    2017-03-01

    Ageing of the innate and adaptive immune system, collectively termed immune senescence, is a complex process. One method to understand the components of ageing involves dissociating the effects of ageing on the cells of the immune system, on the microenvironment in lymphoid organs and tissues where immune cells reside and on the circulating factors that interact with both immune cells and their microenvironment. Heterochronic parabiosis, a surgical union of two organisms of disparate ages, is ideal for this type of study, as it has the power to dissociate the age of the cell and the age of the microenvironment into which the cell resides or is migrating. So far, however, it has been used sparingly to study immune ageing. Here we review the limited literature on homeostatic innate immune cell trafficking in ageing in the absence of chronic inflammation. We also review our own recent data on trafficking of innate immune subsets between primary and secondary lymphoid organs in heterochronic parabiosis. We found no systemic bias in retention or acceptance of neutrophils, macrophages, dendritic cells or natural killer cells with ageing in primary and secondary lymphoid organs. We conclude that these four innate immune cell types migrate to and populate lymphoid organs (peripheral lymph nodes, spleen and bone marrow), regardless of their own age and of the age of lymphoid organs. © 2017 British Society for Immunology.

  8. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells

    PubMed Central

    Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development. PMID:28396671

  9. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    PubMed

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  10. Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy.

    PubMed

    Kini Bailur, Jithendra; Mehta, Sameet; Zhang, Lin; Neparidze, Natalia; Parker, Terri; Bar, Noffar; Anderson, Tara; Xu, Mina L; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2017-11-28

    Altered number, subset composition, and function of bone marrow innate lymphoid cells are early events in monoclonal gammopathies.Pomalidomide therapy leads to reduction in Ikzf1 and Ikzf3 and enhanced human innate lymphoid cell function in vivo.

  11. Innate lymphoid cells in tissue homeostasis and diseases

    PubMed Central

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-01-01

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver. PMID:28878863

  12. Innate lymphoid cells in tissue homeostasis and diseases.

    PubMed

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  13. The Development of Adult Innate Lymphoid Cells

    PubMed Central

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  14. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    PubMed Central

    Li, Shiyang; Bostick, John W.; Zhou, Liang

    2018-01-01

    With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease. PMID:29354125

  15. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.

    PubMed

    Shaw, Joanne L; Fakhri, Samer; Citardi, Martin J; Porter, Paul C; Corry, David B; Kheradmand, Farrah; Liu, Yong-Jun; Luong, Amber

    2013-08-15

    Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP) are associated with Th1 and Th2 cytokine polarization, respectively; however, the pathophysiology of CRS remains unclear. The importance of innate lymphoid cells in Th2-mediated inflammatory disease has not been clearly defined. The objective of this study was to investigate the role of the epithelial cell-derived cytokine IL-33 and IL-33-responsive innate lymphoid cells in the pathophysiology of CRS. Relative gene expression was evaluated using quantitative real-time polymerase chain reaction. Innate lymphoid cells in inflamed ethmoid sinus mucosa from patients with CRSsNP and CRSwNP were characterized using flow cytometry. Cytokine production from lymphoid cells isolated from inflamed mucosa of patients with CRS was examined using ELISA and intracellular cytokine staining. Elevated expression of ST2, the ligand-binding chain of the IL-33 receptor, was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP and healthy control subjects. An increased percentage of innate lymphoid cells was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP. ST2(+) innate lymphoid cells are a consistent source of IL-13 in response to IL-33 stimulation. Significant induction of IL-33 was observed in epithelial cells derived from patients with CRSwNP compared with patients with CRSsNP in response to stimulation with Aspergillus fumigatus extract. These data suggest a role for sinonasal epithelial cell-derived IL-33 and an IL-33-responsive innate lymphoid cell population in the pathophysiology of CRSwNP demonstrating the functional importance of innate lymphoid cells in Th2-mediated inflammatory disease.

  16. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells

    PubMed Central

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe

    2014-01-01

    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-3395–270, IL-33107–270, and IL-33109–270, were 30-fold more potent than full-length human IL-331–270 for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33–dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66–111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33–mediated responses in allergic asthma and other inflammatory diseases. PMID:25313073

  17. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    PubMed

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  18. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.

    PubMed

    Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan

    2017-10-01

    Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.

  19. The Yin and Yang of Innate Lymphoid Cells in Cancer.

    PubMed

    Carrega, Paolo; Campana, Stefania; Bonaccorsi, Irene; Ferlazzo, Guido

    2016-11-01

    The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation

    PubMed Central

    Khan, Deena; Ahmed, S. Ansar

    2015-01-01

    Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system. PMID:26097467

  1. Neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terasawa, Masao; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-12-12

    Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naive T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity,more » and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1{sup -} and Gr-1{sup +} ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.« less

  2. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    PubMed

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Colonization and effector functions of innate lymphoid cells in mucosal tissues

    PubMed Central

    Kim, Myunghoo; Kim, Chang H.

    2016-01-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. PMID:27365193

  4. Cutting edge: Contact with secondary lymphoid organs drives postthymic T cell maturation.

    PubMed

    Houston, Evan G; Nechanitzky, Robert; Fink, Pamela J

    2008-10-15

    T cell development, originally thought to be completed in the thymus, has recently been shown to continue for several weeks in the lymphoid periphery. The forces that drive this peripheral maturation are unclear. The use of mice transgenic for GFP driven by the RAG2 promoter has enabled the ready identification and analysis of recent thymic emigrants. Here, we show that recent thymic emigrant maturation is a progressive process and is promoted by T cell exit from the thymus. Further, we show that this maturation occurs within secondary lymphoid organs and does not require extensive lymphocyte recirculation.

  5. Emerging concepts and future challenges in innate lymphoid cell biology

    PubMed Central

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  6. Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation.

    PubMed

    Wang, Shuo; Xia, Pengyan; Chen, Yi; Qu, Yuan; Xiong, Zhen; Ye, Buqing; Du, Ying; Tian, Yong; Yin, Zhinan; Xu, Zhiheng; Fan, Zusen

    2017-09-21

    An emerging family of innate lymphoid cells (termed ILCs) has an essential role in the initiation and regulation of inflammation. However, it is still unclear how ILCs are regulated in the duration of intestinal inflammation. Here, we identify a regulatory subpopulation of ILCs (called ILCregs) that exists in the gut and harbors a unique gene identity that is distinct from that of ILCs or regulatory T cells (Tregs). During inflammatory stimulation, ILCregs can be induced in the intestine and suppress the activation of ILC1s and ILC3s via secretion of IL-10, leading to protection against innate intestinal inflammation. Moreover, TGF-β1 is induced by ILCregs during the innate intestinal inflammation, and autocrine TGF-β1 sustains the maintenance and expansion of ILCregs. Therefore, ILCregs play an inhibitory role in the innate immune response, favoring the resolution of intestinal inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity

    PubMed Central

    Simonetti, Giorgia; Carette, Amanda; Silva, Kathryn; Wang, Haowei; De Silva, Nilushi S.; Heise, Nicole; Siebel, Christian W.; Shlomchik, Mark J.

    2013-01-01

    The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity. PMID:24323359

  8. Role of Type 2 Innate Lymphoid Cells in Allergic Diseases.

    PubMed

    Cosmi, Lorenzo; Liotta, Francesco; Maggi, Laura; Annunziato, Francesco

    2017-09-11

    The adaptive immune response orchestrated by type 2 T helper (Th2) lymphocytes, strictly cooperates with the innate response of group 2 innate lymphoid cells (ILC2), in the protection from helminths infection, as well as in the pathogenesis of allergic disease. The aim of this review is to explore the pathogenic role of ILC2 in different type 2-mediated disorders. Recent studies have shown that epithelial cell-derived cytokines and their responding cells, ILC2, play a pathogenic role in bronchial asthma, chronic rhinosinusitis, and atopic dermatitis. The growing evidences of the contribution of ILC2 in the induction and maintenance of allergic inflammation in such disease suggest the possibility to target them in therapy. Biological therapies blocking ILC2 activation or neutralizing their effector cytokines are currently under evaluation to be used in patients with type 2-dominated diseases.

  9. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  10. Inflammation-induced formation of fat-associated lymphoid clusters

    PubMed Central

    Bénézech, Cécile; Kruglov, Andrei A.; Loo, Yunhua; Nakamura, Kyoko; Zhang, Yang; Nayar, Saba; Jones, Lucy H.; Flores-Langarica, Adriana; McIntosh, Alistair; Marshall, Jennifer; Barone, Francesca; Besra, Gurdyal; Miles, Katherine; Allen, Judith E.; Gray, Mohini; Kollias, George; Cunningham, Adam F.; Withers, David R.; Toellner, Kai Michael; Jones, Nick D.; Veldhoen, Marc; Nedospasov, Sergei A.; McKenzie, Andrew N.J.; Caamaño, Jorge H.

    2015-01-01

    Fat-associated lymphoid clusters (FALCs) are a recently discovered type of lymphoid tissue associated with visceral fat. Here we show that distribution of FALCs was heterogeneous with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 B cells in the peritoneal cavity through high expression of the chemokine CXCL13 and supported B cell proliferation and germinal center differentiation during peritoneal immune challenges. FALC formation was induced by inflammation, which triggered recruitment of myeloid cells that express tumor necrosis factor (TNF) necessary for TNF receptor-signaling in stromal cells. CD1d-restricted Natural killer T (NKT) cells were likewise required for inducible formation of FALCs. Thus, FALCs support and coordinate innate B and T cell activation during serosal immune responses. PMID:26147686

  11. Isolation and characterization of mouse innate lymphoid cells.

    PubMed

    Halim, Timotheus Y F; Takei, Fumio

    2014-08-01

    Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.

  12. Colonization and effector functions of innate lymphoid cells in mucosal tissues.

    PubMed

    Kim, Myunghoo; Kim, Chang H

    2016-10-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    PubMed Central

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  14. Growth hormone and Pit-1 expression in bovine fetal lymphoid cells.

    PubMed

    Chen, H T; Schuler, L A; Schultz, R D

    1997-11-01

    Bovine fetal lymphoid cells were examined for growth hormone (GH) and the transcription factor Pit-1/GHF-1 mRNA. GH and Pit-1/GHF-1 transcripts were detected in thymocytes and splenocytes from fetuses at 60, 90, 120, and 270 d of gestation using reverse transcription-polymerase chain reaction (RT-PCR). Northern analysis indicated that the lymphoid GH mRNA was approximately 350 nucleotides larger than in the pituitary. RT-PCR analysis demonstrated that the coding regions as well as 3' untranslated region of the lymphocyte GH and pituitary transcripts were the same. Analysis of the 5'-untranslated region of the lymphocyte GH mRNA showed that transcription began upstream from the start site in the pituitary gland, suggesting differences in regulation in these tissues. Fetal thymocytes and splenocytes expressed Pit-1/GHF-1 mRNA; however, they contained only the 2.5-kb transcript. The GH and Pit-1/GHF-1 mRNA in fetal lymphoid cells supports the hypothesis that lymphocyte-derived GH may function as an autocrine and/or paracrine factor during the development and maturation of the bovine fetal immune system.

  15. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  16. Separation of plasmacytoid dendritic cells from B-cell-biased lymphoid progenitor (BLP) and Pre-pro B cells using PDCA-1.

    PubMed

    Medina, Kay L; Tangen, Sarah N; Seaburg, Lauren M; Thapa, Puspa; Gwin, Kimberly A; Shapiro, Virginia Smith

    2013-01-01

    B-cell-biased lymphoid progenitors (BLPs) and Pre-pro B cells lie at a critical juncture between B cell specification and commitment. However, both of these populations are heterogenous, which hampers investigation into the molecular changes that occur as lymphoid progenitors commit to the B cell lineage. Here, we demonstrate that there are PDCA-1(+)Siglec H(+) plasmacytoid dendritic cells (pDCs) that co-purify with BLPs and Pre-pro B cells, which express little or no CD11c or Ly6C. Removal of PDCA-1(+) pDCs separates B cell progenitors that express high levels of a Rag1-GFP reporter from Rag1-GFP(low/neg) pDCs within the BLP and Pre-pro B populations. Analysis of Flt3-ligand knockout and IL-7Rα knockout mice revealed that there is a block in B cell development at the all-lymphoid progenitor (ALP) stage, as the majority of cells within the BLP or Pre-pro B gates were PDCA-1(+) pDCs. Thus, removal of PDCA-1(+) pDCs is critical for analysis of BLP and Pre-pro B cell populations. Analysis of B cell potential within the B220(+)CD19(-) fraction demonstrated that AA4.1(+)Ly6D(+)PDCA-1(-) Pre-pro B cells gave rise to CD19(+) B cells at high frequency, while PDCA-1(+) pDCs in this fraction did not. Interestingly, the presence of PDCA-1(+) pDCs within CLPs may help to explain the conflicting results regarding the origin of these cells.

  17. Effect of radon on the immune system: alterations in the cellularity and functions of T cells in lymphoid organs of mouse.

    PubMed

    Nagarkatti, M; Nagarkatti, P S; Brooks, A

    1996-04-19

    Exposure to radon and its progeny induces significant damage to the cells of the respiratory tract and causes lung cancer. Whether a similar exposure to radon would alter the functions of the immune system has not been previously investigated. In the current study, we investigated the effect of exposure of C57BL/6 mice to 1000 or 2500 working-level months (WLM) of radon and its progeny by inhalation, on the number and function of T lymphocytes in lymphoid organs. The control mice received uranium ore dust carrier aerosol by inhalation. Exposure to radon induced marked decrease in the total cellularity of most lymphoid organs such as thymus, peripheral lymph nodes (PLN), and lung-associated lymph nodes (LALN), when compared to the controls. The percentage of T cells increased, while that of non-T cells decreased, in all peripheral lymphoid organs at both the doses of radon. In the thymus, particularly at 2500 WLM of radon exposure, there was a marked decrease in CD4+CD8+ T cells and an increase in the immature CD4-CD8- T cells. Such alterations in both the numbers and percentages of lymphocytes and macrophages in radon-exposed mice may have resulted from the cell killing by the alpha particles as the immune cells were migrating through the lungs, or it may have been caused by altered migration of cells, inasmuch as expression of CD44, a molecule involved in migration and homing of immune cells, was significantly altered on cells found in different lymphoid organs. In the LALN, where one would predict the largest number of damaged cells to be present, there was a significant decrease in the T-cell responsiveness to mitogens while the B-cell response was not affected. Such alterations may have resulted from the direct effect of alpha-particle exposure on the migrating lymphocytes, altered percentage of lymphocytes as seen in secondary lymphoid organs, or altered expression of adhesion molecules involved in cell activation such as CD44 and CD3. Interestingly, radon

  18. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity

    PubMed Central

    Germain, Claire; Gnjatic, Sacha; Dieu-Nosjean, Marie-Caroline

    2015-01-01

    It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools. PMID:25755654

  19. cell-derived IFN-γ downregulates protective group 2 innate lymphoid cells in murine lupus erythematosus.

    PubMed

    Düster, Mathis; Becker, Martina; Gnirck, Ann-Christin; Wunderlich, Malte; Panzer, Ulf; Turner, Jan-Eric

    2018-04-19

    Innate lymphoid cells (ILCs) are important regulators of the immune response and play a crucial role in the restoration of tissue homeostasis after injury. GATA-3 + IL-13- and IL-5-producing group 2 innate lymphoid cells (ILC2s) have been shown to promote tissue repair in barrier organs, but despite extensive research on ILCs in the recent years, their potential role in autoimmune diseases is still incompletely understood. In the present study, we investigate the role of ILC2s in the MRL/MpJ-Fas lpr (MRL-lpr) mouse model for severe organ manifestation of systemic lupus erythematosus (SLE). We show that in these MRL-lpr mice, progression of lupus nephritis is accompanied with a reduction of ILC2 abundance in the inflamed renal tissue. Proliferation/survival and cytokine production of kidney-residing ILC2s was suppressed by IFN-γ and, to a lesser extent, by IL-27 which were produced by activatedcells and myeloid cells in the nephritic kidney, respectively. Most importantly, restoration of ILC2 numbers by IL-33-mediated expansion ameliorated lupus nephritis and prevented mortality in MRL-lpr mice. In summary, we show here that development of SLE-like kidney inflammation leads to a downregulation of the renal ILC2 response and identify an ILC2-expanding therapy as a promising treatment approach for autoimmune diseases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential.

    PubMed

    Galat, Yekaterina; Dambaeva, Svetlana; Elcheva, Irina; Khanolkar, Aaruni; Beaman, Kenneth; Iannaccone, Philip M; Galat, Vasiliy

    2017-03-17

    The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research, including mechanistic studies of hematopoiesis, the development of cellular therapies for autoimmune diseases, induced transplant tolerance, anticancer immunotherapies, disease modeling, and drug/toxicity screening. Over the past years, significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal, endothelial, and hematopoietic specification. Thus, it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free, defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. The hemogenic endothelium differentiation was accomplished in an adherent, serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial, myeloid, and lymphoid potential. Monolayer induction based on GSK3 inhibition, described here, yielded a large number of CD31 + CD34 + hemogenic endothelium cells. When isolated and propagated in adherent conditions, these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells, these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid, T-lymphoid

  1. Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract.

    PubMed

    Rangel-Moreno, Javier; Carragher, Damian; Randall, Troy D

    2007-01-01

    Secondary lymphoid organs are strategically placed to recruit locally activated antigen presenting cells (APCs) as well as naïve, recirculating T and B cells. The structure of secondary lymphoid organs - separated B and T zones, populations of specialized stromal cells, high endothelial venules and lymphatic vessles - has also evolved to maximize encounters between APCs and lymphocytes and to facilitate the expansion and differentiation of antigen-stimulated T and B cells. Many of the general mechanisms that govern the development and organization of secondary lymphoid organs have been identified over the last decade. However, the specific cellular and molecular interactions involved in the development and organization of each secondary lymphoid organ are slightly different and probably reflect the cell types available at that time and location. Here we review the mechanisms involved in the development, organization and function of local lymphoid tissues in the respiratory tract, including Nasal Associated Lymphoid Tissue (NALT) and inducible Bronchus Associated Lymphoid Tissue (iBALT).

  2. Lymphoid stromal reaction in gastrointestinal lymphomas: immunohistochemical study of 14 cases.

    PubMed Central

    Jarry, A; Brousse, N; Souque, A; Barge, J; Molas, G; Potet, F

    1987-01-01

    The lymphoid stromal reaction, particularly the T lymphoid reaction, was studied immunohistochemically on cryostat sections in 14 cases of primary gastrointestinal B lymphomas, and compared with the type and distribution of lymphoid cells in three cases of gastric lymphoid hyperplasia. A pronounced T lymphoid reaction, mainly of the T helper phenotype, occurred in both lesions. Most of these T cells bore HLA-DR antigens, but only a few of them had the receptor for interleukin 2. The T lymphoid reaction was observed inside the lymphomas in seven of a total of 14 cases, and around the lymphomas in four of the six cases clinically classified as stage I. Perivascular mucosal and submucosal nodules, entirely composed of T cells, seemed characteristic of gastric lymphoid hyperplasias. A T lymphoid reaction in lymphoid hyperplasias suggests an amplification of the cell mediated immune response; in lymphomas it could represent a host reaction against the lymphomatous infiltrate, therefore favouring a better prognosis. Images Fig 1 Fig 2 Fig 3 PMID:3305585

  3. Interleukin-7 Availability Is Maintained by a Hematopoietic Cytokine Sink Comprising Innate Lymphoid Cells and T Cells.

    PubMed

    Martin, Christopher E; Spasova, Darina S; Frimpong-Boateng, Kwesi; Kim, Hee-Ok; Lee, Minji; Kim, Kwang Soon; Surh, Charles D

    2017-07-18

    Interleukin-7 (IL-7) availability determines the size and proliferative state of the resting T cell pool. However, the mechanisms that regulate steady-state IL-7 amounts are unclear. Using experimental lymphopenic mouse models and IL-7-induced homeostatic proliferation to measure IL-7 availability in vivo, we found that radioresistant cells were the source of IL-7 for both CD4 + and CD8 + T cells. Hematopoietic lineage cells, although irrelevant as a source of IL-7, were primarily responsible for limiting IL-7 availability via their expression of IL-7R. Unexpectedly, innate lymphoid cells were found to have a potent influence on IL-7 amounts in the primary and secondary lymphoid tissues. These results demonstrate that IL-7 homeostasis is achieved through consumption by multiple subsets of innate and adaptive immune cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cytokine Expression, Natural Killer Cell Activation, and Phenotypic Changes in Lymphoid Cells from Rhesus Macaques during Acute Infection with Pathogenic Simian Immunodeficiency Virus

    PubMed Central

    Giavedoni, Luis D.; Velasquillo, M. Cristina; Parodi, Laura M.; Hubbard, Gene B.; Hodara, Vida L.

    2000-01-01

    We studied the innate and adaptive immune system of rhesus macaques infected with the virulent simian immunodeficiency virus isolate SIVmac251 by evaluating natural killer (NK) cell activity, cytokine levels in plasma, humoral and virological parameters, and changes in the activation markers CD25 (interleukin 2R [IL-2R] α chain), CD69 (early activation marker), and CD154 (CD40 ligand) in lymphoid cells. We found that infection with SIVmac251 induced the sequential production of interferon-α/β (IFN-α/β), IL-18, and IL-12. IFN-γ, IL-4, and granulocyte-macrophage colony-stimulating factor were undetected in plasma by the assays used. NK cell activity peaked at 1 to 2 weeks postinfection and paralleled changes in viral loads. Maximum expression of CD69 on CD3−CD16+ lymphocytes correlated with NK cytotoxicity during this period. CD25 expression, which is associated with proliferation, was static or slightly down-regulated in CD4+ T cells from both peripheral blood (PB) and lymph nodes (LN). CD69, which is normally present in LN CD4+ T cells and absent in peripheral blood leukocyte (PBL) CD4+ T cells, was down-regulated in LN CD4+ T cells and up-regulated in PBL CD4+ T cells immediately after infection. CD8+ T cells increased CD69 but not CD25 expression, indicating the activation of this cellular subset in PB and LN. Finally, CD154 was transiently up-regulated in PBL CD4+ T cells but not in LN CD4+ T cells. Levels of antibodies to SIV Gag and Env did not correlate with the level of activation of CD154, a critical costimulatory molecule for T-cell-dependent immunity. In summary, we present the first documented evidence that the innate immune system of rhesus macaques recognizes SIV infection by sequential production of proinflammatory cytokines and transient activation of NK cytotoxic activity. Additionally, pathogenic SIV induces drastic changes in the level of activation markers on T cells from different anatomic compartments. These changes involve activation

  5. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency.

    PubMed

    Cols, Montserrat; Rahman, Adeeb; Maglione, Paul J; Garcia-Carmona, Yolanda; Simchoni, Noa; Ko, Huai-Bin M; Radigan, Lin; Cerutti, Andrea; Blankenship, Derek; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2016-04-01

    Common variable immunodeficiency (CVID) is an antibody deficiency treated with immunoglobulin; however, patients can have noninfectious inflammatory conditions that lead to heightened morbidity and mortality. Modular analyses of RNA transcripts in whole blood previously identified an upregulation of many interferon-responsive genes. In this study we sought the cell populations leading to this signature. Lymphoid cells were measured in peripheral blood of 55 patients with CVID (31 with and 24 without inflammatory/autoimmune complications) by using mass cytometry and flow cytometry. Surface markers, cytokines, and transcriptional characteristics of sorted innate lymphoid cells (ILCs) were defined by using quantitative PCR. Gastrointestinal and lung biopsy specimens of subjects with inflammatory disease were stained to seek ILCs in tissues. The linage-negative, CD127(+), CD161(+) lymphoid population containing T-box transcription factor, retinoic acid-related orphan receptor (ROR) γt, IFN-γ, IL-17A, and IL-22, all hallmarks of type 3 innate lymphoid cells, were expanded in the blood of patients with CVID with inflammatory conditions (mean, 3.7% of PBMCs). ILCs contained detectable amounts of the transcription factors inhibitor of DNA binding 2, T-box transcription factor, and RORγt and increased mRNA transcripts for IL-23 receptor (IL-23R) and IL-26, demonstrating inflammatory potential. In gastrointestinal and lung biopsy tissues of patients with CVID, numerous IFN-γ(+)RORγt(+)CD3(-) cells were identified, suggesting a role in these mucosal inflammatory states. An expansion of this highly inflammatory ILC population is a characteristic of patients with CVID with inflammatory disease; ILCs and the interferon signature are markers for the uncontrolled inflammatory state in these patients. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Innate Lymphoid Cells: a new paradigm in immunology

    PubMed Central

    Eberl, Gérard; Colonna, Marco; Di Santo, James P.; McKenzie, Andrew N.J.

    2016-01-01

    Summary Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex crosstalk between microenvironment, ILCs and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed to regulate or enhance immune responses in disease prevention and therapy. PMID:25999512

  7. Effects of HIV infection and ART on phenotype and function of circulating monocytes, natural killer, and innate lymphoid cells.

    PubMed

    Nabatanzi, Rose; Cose, Stephen; Joloba, Moses; Jones, Sarah Rowland; Nakanjako, Damalie

    2018-03-15

    HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.

  8. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    PubMed Central

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  9. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells

    PubMed Central

    Rauber, Simon; Luber, Markus; Weber, Stefanie; Maul, Lisa; Soare, Alina; Wohlfahrt, Thomas; Lin, Neng-Yu; Dietel, Katharina; Bozec, Aline; Herrmann, Martin; Kaplan, Mark H.; Weigmann, Benno; Zaiss, Mario M.; Fearon, Ursula; Veale, Douglas J.; Canete, Juan D.; Distler, Oliver; Rivellese, Felice; Pitzalis, Costantino; Neurath, Markus F.; McKenzie, Andrew N.J.; Wirtz, Stefan; Schett, Georg; Distler, Jörg H.W.; Ramming, Andreas

    2017-01-01

    Inflammatory diseases such as arthritis are chronic conditions that fail to resolve spontaneously. While the cytokine and cellular pathways triggering arthritis are well defined, those responsible for the resolution of inflammation are incompletely characterized. Here we identified IL-9-producing type 2 innate lymphoid cells (ILC2s) as a molecular and cellular pathway that orchestrates the resolution of chronic inflammation. In mice, the absence of IL-9 impaired ILC2 proliferation, activation of regulatory T cells (Treg) and resulted in chronic arthritis with excessive cartilage destruction and bone loss. In contrast, treatment with IL-9 promoted ILC2-dependent Treg activation and effectively induced resolution of inflammation and protection of bone. Rheumatoid arthritis patients in remission demonstrated high numbers of IL-9+ ILC2s in the joints and in the circulation. Hence, fostering IL-9-mediated ILC2 activation may offer a novel therapeutic approach inducing resolution of inflammation rather than suppression of inflammatory responses. PMID:28714991

  10. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells

    PubMed Central

    Cautivo, Kelly M.; Molofsky, Ari B.

    2016-01-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus (T2DM). In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy adipose tissue, including those associated with type 2 or “allergic” immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, adipose tissue “browning”, and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and T2DM. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines IL-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of ILC2 cells and type 2 immunity in adipose tissue metabolism and homeostasis. PMID:27120716

  11. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma.

    PubMed

    Aron, J L; Akbari, O

    2017-08-01

    Group 2 innate lymphoid cells (ILC2s) are a recently identified group of cells with the potent capability to produce Th2-type cytokines such as interleukin (IL)-5 and IL-13. Several studies suggest that ILC2s play an important role in the development of allergic diseases and asthma. Activation of pulmonary ILC2s in murine models lacking T and B cells induces eosinophilia and airway hyper-reactivity (AHR), which are cardinal features of asthma. More importantly, numerous recent studies have highlighted the role of ILC2s in asthma persistence and exacerbation among human subjects, and thus, regulation of pulmonary ILC2s is a major area of investigation aimed at curbing allergic lung inflammation and exacerbation. Emerging evidence reveals that a group of regulatory T cells, induced Tregs (iTregs), effectively suppress the production of ILC2-driven, pro-inflammatory cytokines IL-5 and IL-13. The inhibitory effects of iTregs are blocked by preventing direct cellular contact or by inhibiting the ICOS-ICOS-ligand (ICOSL) pathway, suggesting that both direct contact and ICOS-ICOSL interaction are important in the regulation of ILC2 function. Also, cytokines such as IL-10 and TGF-β1 significantly reduce cytokine secretion by ILC2s. Altogether, these new findings uncover iTregs as potent regulators of ILC2 activation and implicate their utility as a therapeutic approach for the treatment of ILC2-mediated allergic asthma and respiratory disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update).

    PubMed

    Yazdani, Reza; Sharifi, Mehri; Shirvan, Aylar Saba; Azizi, Gholamreza; Ganjalikhani-Hakemi, Mazdak

    2015-01-01

    Innate lymphoid cells (ILCs) are a novel family of hematopoietic effectors and regulators of innate immunity. Although these cells are morphologically similar to B cells and T cells, however they do not express antigen receptors. ILCs seems to have emerging roles in innate immune responses against infectious or non-infectious microorganisms, protection of the epithelial barrier, lymphoid organogenesis and inflammation, tissue remodeling and regulating homeostasis of tissue stromal cells. In addition, it has recently been reported that ILCs have a crucial role in several disorders such as allergy and autoimmunity. Based on their phenotype and functions, ILCs are classified into three major groups called ILCs1, ILCs2, and ILCs3. Here we reviewed the most recent data concerning diverse ILC phenotypes, subclasses, functions in immune responses as well as in immune mediated disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    PubMed

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  14. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells.

    PubMed

    Melo-Gonzalez, Felipe; Hepworth, Matthew R

    2017-03-01

    Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR + ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  15. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    PubMed

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-05-01

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  17. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis. [X radiation, mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.

    1978-12-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log/sub 10/PD/sub 50/ values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplantedmore » Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain.« less

  18. Back to the drawing board: Understanding the complexity of hepatic innate lymphoid cells.

    PubMed

    Marotel, Marie; Hasan, Uzma; Viel, Sébastien; Marçais, Antoine; Walzer, Thierry

    2016-09-01

    Recent studies of immune populations in nonlymphoid organs have highlighted the great diversity of the innate lymphoid system. It has also become apparent that mouse and human innate lymphoid cells (ILCs) have distinct phenotypes and properties. In this issue of the European Journal of Immunology, Harmon et al. [Eur. J. Immunol. 2016. 46: 2111-2120] characterized human hepatic NK-cell subsets. The authors report that hepatic CD56(bright) NK cells resemble mouse liver ILC1s in that they express CXCR6 and have an immature phenotype. However, unlike mouse ILC1s, they express high levels of Eomes and low levels of T-bet, and upon stimulation with tumor cells, secrete low amounts of cytokines. These unexpected findings further support the differences between human and mouse immune populations and prompt the study of the role of hepatic ILC subsets in immune responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery

    PubMed Central

    Harris, Nancy Lee; Stein, Harald; Isaacson, Peter G.

    2008-01-01

    In the past 50 years, we have witnessed explosive growth in the understanding of normal and neoplastic lymphoid cells. B-cell, T-cell, and natural killer (NK)–cell neoplasms in many respects recapitulate normal stages of lymphoid cell differentiation and function, so that they can be to some extent classified according to the corresponding normal stage. Likewise, the molecular mechanisms involved the pathogenesis of lymphomas and lymphoid leukemias are often based on the physiology of the lymphoid cells, capitalizing on deregulated normal physiology by harnessing the promoters of genes essential for lymphocyte function. The clinical manifestations of lymphomas likewise reflect the normal function of lymphoid cells in vivo. The multiparameter approach to classification adopted by the World Health Organization (WHO) classification has been validated in international studies as being highly reproducible, and enhancing the interpretation of clinical and translational studies. In addition, accurate and precise classification of disease entities facilitates the discovery of the molecular basis of lymphoid neoplasms in the basic science laboratory. PMID:19029456

  20. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis

    PubMed Central

    Bombardieri, Michele; Greenhill, Claire J.; McLeod, Louise; Nerviani, Alessandra; Rocher-Ros, Vidalba; Cardus, Anna; Williams, Anwen S.; Pitzalis, Costantino; Jenkins, Brendan J.

    2015-01-01

    Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment. PMID:26417004

  1. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules

    PubMed Central

    Elemam, Noha Mousaad

    2017-01-01

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce TH2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation. PMID:29232860

  2. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules.

    PubMed

    Elemam, Noha Mousaad; Hannawi, Suad; Maghazachi, Azzam A

    2017-12-10

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce T H 2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  3. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer

    PubMed Central

    Davenport, Kristen A.; Hoover, Clare E.; Bian, Jifeng; Telling, Glenn C.; Mathiason, Candace K.; Hoover, Edward A.

    2017-01-01

    The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs. PMID:28880938

  4. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    PubMed

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  5. Innate lymphoid cells and parasites: Ancient foes with shared history.

    PubMed

    Neill, D R; Fallon, P G

    2018-02-01

    This special issue of Parasite Immunology charts the rapid advances made in our understanding of the myriad interactions between innate lymphoid cells and parasites and how these interactions have shaped our evolutionary history. Here, we provide an overview of the issue and highlight key findings from studies in mice and man. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  6. Genetic landscape and deregulated pathways in B-cell lymphoid malignancies.

    PubMed

    Rosenquist, R; Beà, S; Du, M-Q; Nadel, B; Pan-Hammarström, Q

    2017-11-01

    With the introduction of next-generation sequencing, the genetic landscape of the complex group of B-cell lymphoid malignancies has rapidly been unravelled in recent years. This has provided important information about recurrent genetic events and identified key pathways deregulated in each lymphoma subtype. In parallel, there has been intense search and development of novel types of targeted therapy that 'hit' central mechanisms in lymphoma pathobiology, such as BTK, PI3K or BCL2 inhibitors. In this review, we will outline the current view of the genetic landscape of selected entities: follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and marginal zone lymphoma. We will detail recurrent alterations affecting important signalling pathways, that is the B-cell receptor/NF-κB pathway, NOTCH signalling, JAK-STAT signalling, p53/DNA damage response, apoptosis and cell cycle regulation, as well as other perhaps unexpected cellular processes, such as immune regulation, cell migration, epigenetic regulation and RNA processing. Whilst many of these pathways/processes are commonly altered in different lymphoid tumors, albeit at varying frequencies, others are preferentially targeted in selected B-cell malignancies. Some of these genetic lesions are either involved in disease ontogeny or linked to the evolution of each disease and/or specific clinicobiological features, and some of them have been demonstrated to have prognostic and even predictive impact. Future work is especially needed to understand the therapy-resistant disease, particularly in patients treated with targeted therapy, and to identify novel targets and therapeutic strategies in order to realize true precision medicine in this clinically heterogeneous patient group. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  7. Conjunctival lymphoma arising from reactive lymphoid hyperplasia.

    PubMed

    Fukuhara, Junichi; Kase, Satoru; Noda, Mika; Ishijima, Kan; Yamamoto, Teppei; Ishida, Susumu

    2012-09-18

    Extra nodal marginal zone B-cell lymphoma (EMZL) of the conjunctiva typically arises in the marginal zone of mucosa-associated lymphoid tissue. The pathogenesis of conjunctival EMZL remains unknown. We describe an unusual case of EMZL arising from reactive lymphoid hyperplasia (RLH) of the conjunctiva. A 35-year-old woman had fleshy salmon-pink conjunctival tumors in both eyes, oculus uterque (OU). Specimens from conjunctival tumors in the right eye, oculus dexter (OD), revealed a collection of small lymphoid cells in the stroma. Immunohistochemically, immunoglobulin (Ig) light chain restriction was not detected. In contrast, diffuse atypical lymphoid cell infiltration was noted in the left eye, oculus sinister (OS), and positive for CD20, a marker for B cells OS. The tumors were histologically diagnosed as RLH OD, and EMZL OS. PCR analysis detected IgH gene rearrangement in the joining region (JH) region OU. After 11 months, a re-biopsy specimen demonstrated EMZL based on compatible pathological and genetic findings OD, arising from RLH. This case suggests that even if the diagnosis of the conjunctival lymphoproliferative lesions is histologically benign, confirmation of the B-cell clonality by checking IgH gene rearrangement should be useful to predict the incidence of malignancy.

  8. Behavior of autologous indium-114m-labeled lymphocytes in patients with lymphoid cell malignancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, D.; Cowan, R.A.; Sharma, H.L.

    1988-04-01

    It has been shown that radioactive material can be localized to lymphocyte traffic areas using radiolabeled autologous lymphocytes and that /sup 114m/In deposited in such a way in rats produces a lymphopoenia by establishing a selective internal irradiation of circulating lymphocytes. The study reported here was undertaken to investigate the feasibility of using this technique in patients with lymphoid cell malignancy. Up to 22.7 MBq was administered to seven patients with active non-Hodgkin's lymphoma involving the spleen and the behavior of the radioactive material was followed over subsequent months. Estimates of the activity in peripheral blood, bone marrow, excreta samples,more » and of the variation in the whole-body distribution were obtained. The administered radioactive material cleared rapidly from the blood, 85% being removed within the first 30 min. There was an almost immediate uptake of most of this by the spleen and liver with less than 5% of administered activity accumulating in the bone marrow. After 48 hr, the whole-body distribution changed only slowly and there was a regular decrease of the activity in the spleen. Excretion of radioactive material occurred via both the urine and feces and amounted to less than 1% of administered activity per day. This pharmacokinetic data was used to calculate radiation absorbed doses to various organs for a standard man. It is concluded that this represents a feasible technique for the targeting of radioactive material for the treatment of lymphoid malignancy.« less

  9. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, N.; Sakaguchi, S.; Miyai, K.

    1992-11-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and themore » peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4[sup +] T cells mediated the autoimmune prevention but CD8[sup +] T cells did not. CD4[sup +] T cells also appeared to mediate the TLI-induced autoimmune disease because CD4[sup +] T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs.« less

  10. Diminished potential for B-lymphoid differentiation after murine leukemia virus infection in vivo and in EML hematopoietic progenitor cells.

    PubMed

    Finstad, Samantha L; Rosenberg, Naomi; Levy, Laura S

    2007-07-01

    Infection with a recombinant murine-feline gammaretrovirus, MoFe2, or with the parent virus, Moloney murine leukemia virus, caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective, in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.

  11. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2015-10-01

    reduction in the number of regulatory T cells (Tregs) in STING2/2 lpr/lpr secondary lymphoid organs. Apoptotic debris induces the production of IDO...DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol. 184: 4338–4348... cells remain relatively unchanged. Nevertheless, nearly all peripheral lymphoid pools exhibit altered dynamics, shifts in functional subset representation

  12. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  13. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  14. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation.

    PubMed

    Krishnamoorthy, Nandini; Burkett, Patrick R; Dalli, Jesmond; Abdulnour, Raja-Elie E; Colas, Romain; Ramon, Sesquile; Phipps, Richard P; Petasis, Nicos A; Kuchroo, Vijay K; Serhan, Charles N; Levy, Bruce D

    2015-02-01

    Asthma is a chronic inflammatory disease that fails to resolve. Recently, a key role for type 2 innate lymphoid cells (ILC2s) was linked to asthma pathogenesis; however, mechanisms for ILC2 regulation remain to be determined. In this study, metabololipidomics of murine lungs identified temporal changes in endogenous maresin 1 (MaR1) during self-limited allergic inflammation. Exogenous MaR1 reduced lung inflammation and ILC2 expression of IL-5 and IL-13 and increased amphiregulin. MaR1 augmented de novo generation of regulatory T cells (Tregs), which interacted with ILC2s to markedly suppress cytokine production in a TGF-β-dependent manner. Ab-mediated depletion of Tregs interrupted MaR1 control of ILC2 expression of IL-13 in vivo. Together, the findings uncover Tregs as potent regulators of ILC2 activation; MaR1 targets Tregs and ILC2s to restrain allergic lung inflammation, suggesting MaR1 as the basis for a new proresolving therapeutic approach to asthma and other chronic inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. The extent of clonal structure in different lymphoid organs

    PubMed Central

    1992-01-01

    To gain insight into the clonal organization of lymphoid organs, we studied the distribution in situ of donor-derived cells in near- physiological chimeras. We introduced RT7b fetal liver cells into nonirradiated congenic RT7a neonatal rats. The chimerism 6-20 wk after injection ranged from 0.3 to 20%. The numbers of cell clones simultaneously contributing to cell generation in a particular histological feature were deduced from the variance in donor cell distribution. In bone marrow and thymus, donor-derived lymphoid cells were found scattered among host cells, indicating a high mobility of cells. In bone marrow, donor cells were evenly distributed over the entire marrow, even at low chimerism. This indicates that leukopoiesis is maintained by the proliferation of many clones. In the thymus, the various lobules showed different quantities of donor-derived lymphoid cells. Mathematical analysis of these differences indicated that 17-18 cell division cycles occur in the cortex. In spleen, the distribution of donor-derived cells over the germinal centers indicated that 5 d after antigenic stimulation, germinal centers develop oligoclonally. The main conclusions of this work are that (a) bone marrow and thymus are highly polyclonal; (b) 17-18 divisions occur between prothymocyte and mature T cell; and (c) lymphoid cells disperse rapidly while proliferating and differentiating. PMID:1569396

  16. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution.

    PubMed

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C; Beilman, Greg J; Chipman, Jeffrey G; Schacker, Timothy W; Silvestri, Guido; Haase, Ashley T

    2012-08-30

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.

  17. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution

    PubMed Central

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C.; Beilman, Greg J.; Chipman, Jeffrey G.; Schacker, Timothy W.; Silvestri, Guido

    2012-01-01

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1–infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution. PMID:22613799

  18. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  19. Migration and Tissue Tropism of Innate Lymphoid Cells

    PubMed Central

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  20. Phosphatidylazidothymidine and phosphatidyl-ddC: assessment of uptake in mouse lymphoid tissues and antiviral activities in human immunodeficiency virus-infected cells and in Rauscher leukemia virus-infected mice.

    PubMed Central

    Hostetler, K Y; Richman, D D; Sridhar, C N; Felgner, P L; Felgner, J; Ricci, J; Gardner, M F; Selleseth, D W; Ellis, M N

    1994-01-01

    During the early stages of human immunodeficiency virus (HIV) infection, although symptoms are absent and viral replication in peripheral blood mononuclear cells is low, substantial levels of HIV replication can be documented in lymphoid tissue [G. Pantaleo, C. Graziosi, J.F. Demarest, L. Butini, M. Montroni, C.H. Fox, J.M. Orenstein, D.P. Kotler, and A.S. Fauci, Nature (London) 362:355-358, 1993, and J. Embretsen, M. Zupancic, J.L. Ribas, A. Burke, P. Racz, K. Tenner-Tacz, and A.T. Haase, Nature (London) 362:359-362, 1993]. This observation suggests that earlier treatment of HIV infection may be indicated and that strategies for enhancing drug targeting to the lymphoid tissue reservoris of HIV infection may be beneficial. To address this issue, we synthesized dioleoylphosphatidyl-ddC (DOP-ddC) and dipalmitoylphosphatidyl-3'-azido-3'-deoxythymidine (DPP-AZT), phospholipid prodrugs which form lipid bilayers and which are readily incorporated into liposomes. The anti-HIV activity of DOP-ddC was similar to that of ddC in HIV type 1-infected HT4-6C cells, but DPP-AZT was considerably less active than AZT in HT4-6C cells. Liposomes containing DOP-[3H]ddC or DPP-[3H]AZT administered intraperitoneally to mice produced greater levels of total radioactivity over time in plasma, spleen, and lymphoid tissue relative to the results with [3H]ddC and [3H]AZT, respectively. DPP-AZT administered intraperitoneally in liposomes as a single daily dose to mice infected with Rauscher leukemia virus prevented increased spleen weight and reverse transcriptase levels in serum with a dose-response roughly comparable to that of AZT given continuously in the drinking water. DOP-ddC, DPP-AZT, and lipid conjugates of other antiretroviral nucleosides may provide higher levels of drug over time in plasma and in lymph nodes and spleen, important reservoirs of HIV infection, and may represent an interesting alternative approach to antiviral nucleoside treatment of AIDS. PMID:7695264

  1. Innate lymphoid cells: the role in respiratory infections and lung tissue damage.

    PubMed

    Głobińska, Anna; Kowalski, Marek L

    2017-10-01

    Innate lymphoid cells (ILCs) represent a diverse family of cells of the innate immune system, which play an important role in regulation of tissue homeostasis, immunity and inflammation. Emerging evidence has highlighted the importance of ILCs in both protective immunity to respiratory infections and their pathological roles in the lungs. Therefore, the aim of this review is to summarize the current knowledge, interpret and integrate it into broader perspective, enabling greater insight into the role of ILCs in respiratory diseases. Areas covered: In this review we highlighted the role of ILCs in the lungs, citing the most recent studies in this area. PubMed searches (2004- July 2017) were conducted using the term 'innate lymphoid cells respiratory viral infections' in combination with other relevant terms including various respiratory viruses. Expert commentary: Since studies of ILCs have opened new areas of investigation, understanding the role of ILCs in respiratory infections may help to clarify the mechanisms underlying viral-induced exacerbations of lung diseases, providing the basis for novel therapeutic strategies. Potential therapeutic targets have already been identified. So far, the most promising strategy is cytokine-targeting, although further clinical trials are needed to verify its effectiveness.

  2. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease

    PubMed Central

    McLane, Laura M.; Steblyanko, Maria; Anikeeva, Nadia; Ablanedo-Terrazas, Yuria; Demers, Korey; Eller, Michael A.; Streeck, Hendrik; Jansson, Marianne; Sönnerborg, Anders; Canaday, David H.; Naji, Ali; Wherry, E. John; Robb, Merlin L.; Reyes-Teran, Gustavo; Sykulev, Yuri; Betts, Michael R.

    2018-01-01

    CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. PMID:29652923

  3. Lymphoid hyperplasia in transgenic mice over-expressing a secreted form of the human interleukin-1β gene product

    PubMed Central

    Björkdahl, O; Åkerblad, P; Gjörloff-wingren, A; Leanderson, T; Dohlsten, M

    1999-01-01

    To evaluate the biological effects of over-expression of interleukin-1β (IL-1β) on the immune system we have generated transgenic mice, expressing the IL-1β gene fused to a heterologous signal sequence under the control of the mouse immunoglobulin enhancer (Eμ). A prominent hyperplasia and a disturbed microarchitecture of lymphoid tissues were observed in the transgenic mice. The CD4+ T cells in the hyperplastic lymphoid organs seemed to invade the majority of the lymphoid organs including B-cell restricted areas. Analysis of lymph node cells revealed an increased frequency of CD4+ CD44high CD62L− T cells and local secretion of IL-2 and IL-4, compatible with an elevated number of activated T cells. Furthermore, significant levels of human IL-1β in sera and high concentrations of serum immunoglobulin G (IgG) were observed in the transgenic mice. The data suggest a role for IL-1β in controlling lymphoid microarchitecture and, when over-expressed, breaking the threshold in T-helper–B-cell interaction. PMID:10233687

  4. Immunofluorescent staining of nuclear antigen in lymphoid cells transformed by Herpesvirus papio (HVP).

    PubMed

    Schmitz, H

    1981-01-01

    An improved fixation method for antigen detection in lymphoblastoid cells is described. Herpesvirus papio nuclear antigen (HUPNA) could be stained in several transformed lymphoid cell lines by anti-complement immunofluorescence (ACIF). Antibody to HUPNA was detected in many human sera containing antibodies to Epstein-Barr virus capsid and nuclear antigen (EBNA). Rheumatoid arthritis sera showed a high incidence of both anti-EBNA and anti-HUPNA antibodies.

  5. Group 2 innate lymphoid cells in disease

    PubMed Central

    2016-01-01

    Abstract Group 2 innate lymphoid cells (ILC2) are now recognized as an important innate source of type-2 effector cytokines. Although initially associated with mucosal tissues, it is clear that ILC2 are present in diverse anatomical locations. The function of ILC2 at these sites is equally varied, and although ILC2 represent a relatively minor population, they are fundamentally important regulators of innate and adaptive immune processes. As such, there is much interest to understand the role of ILC2 in diseases with a type-2 inflammatory component. This review explores the known roles of ILC2 in disease, and the diseases that show associations or other strong evidence for the involvement of ILC2. PMID:26306498

  6. The bone marrow is not only a primary lymphoid organ: The critical role for T lymphocyte migration and housing of long-term memory plasma cells.

    PubMed

    Pabst, Reinhard

    2018-05-22

    In immunology and anatomy textbooks the bone marrow is described as a typical "primary lymphoid organ" producing lymphoid cells independent of antigens. The hematopoietic bone marrow is largely age-dependent organ with great anatomical and functional differences among various species. There are estimates that about 12% of all lymphoid cells in the human body are found in the bone marrow at any given time (2% in the peripheral blood). Enormous numbers of T lymphocytes migrate to the bone marrow and partly return later to the blood. Many of these lymphocytes are memory CD4 + and CD8 + T cells. A few days after immunization a wave of plasma cells and their precursors migrate to the bone marrow where they lose their migratory response to CXCL-12 and CXCL9. There is a relative enrichment of CD19 + B cells in the bone marrow outnumbering those in the blood and secondary lymphoid organs. This is not due to local production. The proliferation and migration kinetics of these lymphoid cells in the bone marrow have to be studied in more detail as this is of major clinical relevance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pathogenetic Importance and Therapeutic Implications of NF-κB in Lymphoid Malignancies

    PubMed Central

    Lim, Kian-Huat; Yang, Yibin; Staudt, Louis M.

    2014-01-01

    Summary Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be ‘addicted’ to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies. PMID:22435566

  8. Identification of innate lymphoid cells in single-cell RNA-Seq data.

    PubMed

    Suffiotti, Madeleine; Carmona, Santiago J; Jandus, Camilla; Gfeller, David

    2017-07-01

    Innate lymphoid cells (ILCs) consist of natural killer (NK) cells and non-cytotoxic ILCs that are broadly classified into ILC1, ILC2, and ILC3 subtypes. These cells recently emerged as important early effectors of innate immunity for their roles in tissue homeostasis and inflammation. Over the last few years, ILCs have been extensively studied in mouse and human at the functional and molecular level, including gene expression profiling. However, sorting ILCs with flow cytometry for gene expression analysis is a delicate and time-consuming process. Here we propose and validate a novel framework for studying ILCs at the transcriptomic level using single-cell RNA-Seq data. Our approach combines unsupervised clustering and a new cell type classifier trained on mouse ILC gene expression data. We show that this approach can accurately identify different ILCs, especially ILC2 cells, in human lymphocyte single-cell RNA-Seq data. Our new model relies only on genes conserved across vertebrates, thereby making it in principle applicable in any vertebrate species. Considering the rapid increase in throughput of single-cell RNA-Seq technology, our work provides a computational framework for studying ILC2 cells in single-cell transcriptomic data and may help exploring their conservation in distant vertebrate species.

  9. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    PubMed

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  10. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    PubMed

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  11. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing.

    PubMed

    Björklund, Åsa K; Forkel, Marianne; Picelli, Simone; Konya, Viktoria; Theorell, Jakob; Friberg, Danielle; Sandberg, Rickard; Mjösberg, Jenny

    2016-04-01

    Innate lymphoid cells (ILCs) are increasingly appreciated as important participants in homeostasis and inflammation. Substantial plasticity and heterogeneity among ILC populations have been reported. Here we have delineated the heterogeneity of human ILCs through single-cell RNA sequencing of several hundreds of individual tonsil CD127(+) ILCs and natural killer (NK) cells. Unbiased transcriptional clustering revealed four distinct populations, corresponding to ILC1 cells, ILC2 cells, ILC3 cells and NK cells, with their respective transcriptomes recapitulating known as well as unknown transcriptional profiles. The single-cell resolution additionally divulged three transcriptionally and functionally diverse subpopulations of ILC3 cells. Our systematic comparison of single-cell transcriptional variation within and between ILC populations provides new insight into ILC biology during homeostasis, with additional implications for dysregulation of the immune system.

  12. Innate lymphoid cells at the interface between obesity and asthma.

    PubMed

    Everaere, Laetitia; Ait Yahia, Saliha; Bouté, Mélodie; Audousset, Camille; Chenivesse, Cécile; Tsicopoulos, Anne

    2018-01-01

    Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma. © 2017 John Wiley & Sons Ltd.

  13. Treatment of lupus nephritis with total lymphoid irradiation. Observations during a 12-79-month followup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strober, S.; Farinas, M.C.; Field, E.H.

    1988-07-01

    Seventeen patients with intractable lupus nephritis and nephrotic syndrome were treated with total lymphoid irradiation. Statistically significant improvement in mean renal disease and serologic activity parameters occurred within 3 months and persisted for at least 3 years. Although there was a marked reduction of T helper cell numbers and function after total lymphoid irradiation, recovery of these parameters was not associated with a return of disease activity. Risks of sterility, severe infections, and hematologic malignancy appeared to be lower than with alkylating agents.

  14. Immunohistochemistry of the lymphoid tissues of the tammar wallaby, Macropus eugenii

    PubMed Central

    Old, Julie M; Deane, Elizabeth M

    2002-01-01

    The lymphoid tissues of the metatherian mammal, the adult tammar wallaby, Macropus eugenii, were investigated using immunohistochemical techniques. Five cross-reactive antibodies previously shown to recognize surface markers in marsupial tissues and five previously untested antibodies were used. The distribution of T-cells in the tissue beds of spleen, lymph node, thymus, gut-associated lymphoid tissue (GALT) and bronchus-associated lymphoid tissue (BALT) was documented using antibodies to CD3 and CD5. Similarly, B-cells were identified in the same tissues using anti-CD79b. Antibodies to CD8, CD31, CD79a and CD68 failed to recognize cells in these tissue beds. In general the pattern of cellular distribution identified using these antibodies was similar to that observed in other marsupial and eutherian lymphoid tissues. This study provides further information on the commonality of lymphoid tissue structure in the two major groups of extant mammals, metatherians and eutherians. PMID:12363276

  15. ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies

    PubMed Central

    Mesuraca, Maria; Chiarella, Emanuela; Scicchitano, Stefania; Codispoti, Bruna; Giordano, Marco; Nappo, Giovanna; Bond, Heather M.; Morrone, Giovanni

    2015-01-01

    The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies. PMID:26788497

  16. An unusual initial presentation of mantle cell lymphoma arising from the lymphoid stroma of warthin tumor.

    PubMed

    Arcega, Ramir S; Feinstein, Aaron J; Bhuta, Sunita; Blackwell, Keith E; Rao, Nagesh P; Pullarkat, Sheeja T

    2015-12-03

    Warthin tumors presenting concomitantly with a lymphoma is vanishingly rare with only 15 reported cases in English literature. Herein, we report an unusual initial presentation of a mantle cell lymphoma involving the lymphoid stroma of a Warthin tumor. A seventy-seven year old otherwise healthy gentleman with a 50-pack year smoking history presents with a slowly enlarging left cheek mass. CT scan of the neck demonstrated a left parotid gland tumor measuring 3.4 cm in greatest dimension. He underwent a left superficial parotidectomy, with subsequent histopathologic examination revealing a Warthin tumor with extensive expansion of the lymphoid stroma. Flow cytometric, immunohistochemical, and cytogenetic studies of the stromal component of the tumor confirmed the presence of a mantle cell lymphoma. Clinical staging demonstrated stage IVa disease, and was considered to be at low to intermediate risk due to the slow growth of the parotid lesion. The patient is undergoing close follow up with repeat PET-CT scans at six months. To the best of our knowledge, this is the first well documented collision tumor between mantle cell lymphoma and a Warthin tumor. This case also brings to light the significance of thorough evaluation of the lymphoid component of Warthin tumor.

  17. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    USDA-ARS?s Scientific Manuscript database

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  18. Distribution of the lingual lymphoid tissue in domestic ruminants.

    PubMed

    Breugelmans, S; Casteleyn, C; Simoens, P; Van den Broeck, W

    2011-12-01

    The distribution and organisation of the intralingual lymphoid tissue was studied in sheep, goat and cattle. For each species, the tongues of two animals were harvested and divided in sample blocks extending over the total surface of the tongue. With 2.5 mm intervals, ten serial histological sections were made for conventional histological staining (haematoxylin-eosin, Van Gieson, Masson's trichrome) and immunohistochemical staining of lymphoid cells (anti-CD3, anti-CD21, anti-CD45). Lymphocytes were scattered in the subepithelial propria-submucosa and in the connective tissue cores of the lingual papillae. The connective tissue cores of fungiform papillae, including those located on the lingual apex, and vallate papillae showed relatively more lymphocytes than the propria-submucosa. Lymphoid cell aggregations were even more abundant beneath the grooves surrounding the vallate papillae in small ruminants. In cattle, a well-organised lingual tonsil was additionally found at the root of the tongue. CD3-positive lymphocytes were observed in all species examined. CD21-positive lymphocytes were numerous in the lymphoid nodules of the bovine lingual tonsil but very scarce in the ovine and caprine tongues. Therefore, the lymphoid cell aggregations in the tongues of small ruminants should not be referred to by the term 'lingual tonsil'. © 2011 Blackwell Verlag GmbH.

  19. The Role of Antigenic Drive and Tumor-Infiltrating Accessory Cells in the Pathogenesis of Helicobacter-Induced Mucosa-Associated Lymphoid Tissue Lymphoma

    PubMed Central

    Mueller, Anne; O’Rourke, Jani; Chu, Pauline; Chu, Amanda; Dixon, Michael F.; Bouley, Donna M.; Lee, Adrian; Falkow, Stanley

    2005-01-01

    Gastric B-cell lymphoma of mucosa-associated lymphoid tissue type is closely linked to chronic Helicobacter pylori infection. Most clinical and histopathological features of the tumor can be reproduced by prolonged Helicobacter infection of BALB/c mice. In this study, we have addressed the role of antigenic stimulation in the pathogenesis of the lymphoma by experimental infection with Helicobacter felis, followed by antibiotic eradication therapy and subsequent re-infection. Antimicrobial therapy was successful in 75% of mice and led to complete histological but not “molecular” tumor remission. Although lympho-epithelial lesions disappeared and most gastric lymphoid aggregates resolved, transcriptional profiling revealed the long-term mucosal persistence of residual B cells. Experimental re-introduction of Helicobacter led to very rapid recurrence of the lymphomas, which differed from the original lesions by higher proliferative indices and more aggressive behavior. Immunophenotyping of tumor cells revealed massive infiltration of lesions by CD4+ T cells, which express CD28, CD69, and interleukin-4 but not interferon-γ, suggesting that tumor B-cell proliferation was driven by Th 2-polarized, immunocompetent, and activated T cells. Tumors were also densely colonized by follicular dendritic cells, whose numbers were closely associated with and predictive of treatment outcome. PMID:16127158

  20. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells

    PubMed Central

    Sanos, Stephanie L; Vonarbourg, Cedric; Mortha, Arthur; Diefenbach, Andreas

    2011-01-01

    It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR+ RORγt+ cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets. PMID:21391996

  1. Cancer Immunosurveillance by Tissue-resident Innate Lymphoid Cells and Innate-like T Cells

    PubMed Central

    Dadi, Saïda; Chhangawala, Sagar; Whitlock, Benjamin M.; Franklin, Ruth A.; Luo, Chong T.; Oh, Soyoung A.; Toure, Ahmed; Pritykin, Yuri; Huse, Morgan; Leslie, Christina S.; Li, Ming O.

    2016-01-01

    Summary Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remain obscure. Here we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, TCRαβ and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a and CD103, these cells share a gene expression signature distinct from those of conventional NK cells, T cells and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15, but not Nfil3, deficiency results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type 1-like innate lymphoid cells and type 1 innate-like T cells. PMID:26806130

  2. IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury

    PubMed Central

    Huang, Qingsong; Niu, Zhiguo; Tan, Jing; Yang, Jun; Liu, Yun; Ma, Haijun; Lee, Vincent W.S.; Sun, Shuming; Song, Xiangfeng; Guo, Minghao; Wang, Yiping

    2015-01-01

    IL-25 is an important immune regulator that can promote Th2 immune response-dependent immunity, inflammation, and tissue repair in asthma, intestinal infection, and autoimmune diseases. In this study, we examined the effects of IL-25 in renal ischemic/reperfusion injury (IRI). Treating IRI mice with IL-25 significantly improved renal function and reduced renal injury. Furthermore, IL-25 treatment increased the levels of IL-4, IL-5, and IL-13 in serum and kidney and promoted induction of alternatively activated (M2) macrophages in kidney. Notably, IL-25 treatment also increased the frequency of type 2 innate lymphoid cells (ILC2s) and multipotent progenitor type 2 (MPPtype2) cells in kidney. IL-25–responsive ILC2 and MPPtype2 cells produced greater amounts of Th2 cytokines that associated with the induction of M2 macrophages and suppression of classically activated (M1) macrophages in vitro. Finally, adoptive transfer of ILC2s or MPPtype2 cells not only reduced renal functional and histologic injury in IRI mice but also induced M2 macrophages in kidney. In conclusion, our data identify a mechanism whereby IL-25-elicited ILC2 and MPPtype2 cells regulate macrophage phenotype in kidney and prevent renal IRI. PMID:25556172

  3. Cellular cooperation in lymphocyte activation. III. B-cell helper effect in the enhancement of T-cell response.

    PubMed

    Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K

    1979-01-01

    T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.

  4. Flow cytometric analysis of immunoglobulin heavy chain expression in B-cell lymphoma and reactive lymphoid hyperplasia

    PubMed Central

    Grier, David D; Al-Quran, Samer Z; Cardona, Diana M; Li, Ying; Braylan, Raul C

    2012-01-01

    The diagnosis of B-cell lymphoma (BCL) is often dependent on the detection of clonal immunoglobulin (Ig) light chain expression. In some BCLs, the determination of clonality based on Ig light chain restriction may be difficult. The aim of our study was to assess the utility of flow cytometric analysis of surface Ig heavy chain (HC) expression in lymphoid tissues in distinguishing lymphoid hyperplasias from BCLs, and also differentiating various BCL subtypes. HC expression on B-cells varied among different types of hyperplasias. In follicular hyperplasia, IgM and IgD expression was high in mantle cells while germinal center cells showed poor HC expression. In other hyperplasias, B cell compartments were blurred but generally showed high IgD and IgM expression. Compared to hyperplasias, BCLs varied in IgM expression. Small lymphocytic lymphomas had lower IgM expression than mantle cell lymphomas. Of importance, IgD expression was significantly lower in BCLs than in hyperplasias, a finding that can be useful in differentiating lymphoma from reactive processes. PMID:22400070

  5. Control of pathogens and microbiota by innate lymphoid cells.

    PubMed

    Cording, Sascha; Medvedovic, Jasna; Lecuyer, Emelyne; Aychek, Tegest; Eberl, Gérard

    2018-05-28

    Innate lymphoid cells (ILCs) are the innate counterpart of T cells. Upon infection or injury, ILCs react promptly to direct the developing immune response to the one most adapted to the threat facing the organism. Therefore, ILCs play an important role early in resistance to infection, but also to maintain homeostasis with the symbiotic microbiota following perturbations induced by diet and pathogens. Such roles of ILCs have been best characterized in the intestine and lung, mucosal sites that are exposed to the environment and are therefore colonized with diverse but specific types of microbes. Understanding the dialogue between pathogens, microbiota and ILCs may lead to new strategies to re-inforce immunity for prevention, vaccination and therapy. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors

    PubMed Central

    Becker, Amy M.; Michael, Drew G.; Satpathy, Ansuman T.; Sciammas, Roger; Singh, Harinder

    2012-01-01

    While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8−/− BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8−/− common myeloid progenitors and, unexpectedly, Irf8−/− ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. PMID:22238324

  7. Molecular and Functional Characterization of Lymphoid Progenitor Subsets Reveals a Bipartite Architecture of Human Lymphopoiesis.

    PubMed

    Alhaj Hussen, Kutaiba; Vu Manh, Thien-Phong; Guimiot, Fabien; Nelson, Elisabeth; Chabaane, Emna; Delord, Marc; Barbier, Maxime; Berthault, Claire; Dulphy, Nicolas; Alberdi, Antonio José; Burlen-Defranoux, Odile; Socié, Gerard; Bories, Jean Christophe; Larghero, Jerôme; Vanneaux, Valérie; Verhoeyen, Els; Wirth, Thierry; Dalod, Marc; Gluckman, Jean Claude; Cumano, Ana; Canque, Bruno

    2017-10-17

    The classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127 - and CD127 + early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127 - and CD127 + ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127 - ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127 + ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    PubMed Central

    Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony

    2016-01-01

    Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334

  9. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases.

    PubMed

    Shen, Yue; Li, Jing; Wang, Si-Qi; Jiang, Wei

    2018-05-14

    Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.

  10. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases

    PubMed Central

    Shen, Yue; Li, Jing; Wang, Si-Qi; Jiang, Wei

    2018-01-01

    Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets. PMID:29760540

  11. Studies on delayed systemic effects of ultraviolet B radiation on the induction of contact hypersensitivity, 3. Dendritic cells from secondary lymphoid organs are deficient in interleukin-12 production and capacity to promote activation and differentiation of T helper type 1 cells.

    PubMed

    Kitazawa, T; Streilein, J W

    2000-02-01

    Ultraviolet-B radiation (UVR) of mouse skin promotes both local and systemic immune aberrations that are thought to be important in the pathogenesis of cutaneous malignancies. Acute, low-dose UVR regimens inhibit the induction of contact hypersensitivity (CH) in genetically susceptible mice by TNF-alpha-dependent mechanisms. In addition, these regimens also promote the development of tolerance when hapten is applied to the UVR-exposed site at the completion of the radiation treatment protocol. A third immune abnormality is also observed in mice exposed to acute, low-dose UVR. This abnormality, which develops within 48-72 hr of the completion of the UVR regimen, has been described among antigen-presenting cells within secondary lymphoid organs, including lymph nodes that do not drain the site of irradiation. Dendritic cells (DCs) from lymph nodes and spleens of mice exposed to UVR lack the capacity to induce CH if they are derivatized with hapten and injected intracutaneously into naive mice. The DC defect is related to the production of and systemic dissemination of interleukin-10 (IL-10) by keratinocytes within the epidermis of the UVR-exposed skin. We have now examined the nature of the functional aberration that exists among DCs within the secondary lymphoid organs of UVR-exposed mice by examining the capacity of DCs to express co-stimulatory molecules, and their ability to activate ovalbumin (OVA) -specific DO11.10 T-cell receptor transgenic T cells in vitro. Our results indicate that DCs from UVR-exposed mice produced insufficient amounts of IL-12. When pulsed with OVA, these cells were capable of inducing proliferation among DO11.10 T cells in vitro, but the responding cells produced neither IFN-gamma nor IL-10 and IL-4. A similar antigen-presenting cell defect was generated in mice treated with a subcutaneous injection of IL-10. We conclude that acute, low-dose UVR creates an IL-10-dependent functional deficit in DCs in secondary lymphoid organs, and that

  12. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    PubMed Central

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  13. Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma.

    PubMed

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 "immune franchise." Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.

  14. Innate lymphoid cells in the initiation, regulation and resolution of inflammation

    PubMed Central

    Sonnenberg, Gregory F.; Artis, David

    2016-01-01

    A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198

  15. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Qin, Shanshan; Zhang, Hai; Liu, Beibei; Qin, Jiamin; Wang, Xiaoxue; Zhang, Ruijie; Liu, Chunxiao; Dong, Xiaoqing; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2018-01-01

    B cell activating factor from the TNF family (BAFF) stimulates B-cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)-stimulated B-cell proliferation/survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF-promoted B cell proliferation/survival is also related to blocking hsBAFF-stimulated phosphorylation of Akt, S6K1, and 4E-BP1, as well as expression of survivin in normal and B-lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin's suppression of hsBAFF-induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression, and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr-Akt) or constitutively active S6K1 (S6K1-ca), or downregulation of 4E-BP1 conferred resistance to rapamycin's attenuation of hsBAFF-induced survivin expression and B-cell proliferation/viability, whereas overexpression of dominant negative Akt (dn-Akt) or constitutively hypophosphorylated 4E-BP1 (4EBP1-5A), or downregulation of S6K1, or co-treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF-induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF-evoked aggressive B-cell malignancies and autoimmune diseases. © 2017 Wiley Periodicals, Inc.

  16. Structural normalization of the lymphoid tissue in asymptomatic HIV-infected patients after 48 weeks of potent antiretroviral therapy.

    PubMed

    Macías, J; Japón, M A; Leal, M; Sáez, C; Pineda, J A; Segura, D I; Ortega, J; Lissen, E

    2001-12-07

    The hallmark of HIV infection is the involution and destruction of lymphoid tissue. However, very little information exists on the effect of highly active antiretroviral therapy (HAART) on lymphoid tissue structure. To evaluate the effect of a HAART regimen after 48 weeks on the architecture and cell regeneration of tonsil lymphoid tissue in HIV-infected patients with CD4 T cell counts > or = 500/microl. From June 1997 to February 1998 all asymptomatic HIV-infected patients with CD4 T cell counts > or = 500/microl seen at our unit were offered quadruple antiretroviral therapy. Tonsil biopsies were obtained at baseline and at 48 weeks. Tonsil tissue sections were examined to evaluate structural and immunohistochemical changes by two blinded and independent pathologists. Cell numbers were counted for selected markers in T-dependent zones. Eleven patients were evaluable, six were excluded because of insufficient or inadequate sampling in at least one of the biopsies. Cellular depletion, plasma cell accumulation and prominent vessels were observed in all cases; three excluded patients with evaluable baseline biopsies showed similar tissue lesions. Follow-up biopsies demonstrated some degree of improvement in all patients. Germinal centres appeared in seven cases that were not seen at baseline. CD4 cell counts increased and CD8 cell counts decreased significantly in lymphoid tissue. An increase in CD45RA+ cells was observed; however, the proportion of CD45+Ki67+ cells did not differ between baseline and 48 weeks. This study shows an unexpected range of moderate to severe lymphoid tissue lesions in mildly immunosuppressed HIV-infected patients, which was partly restored after 48 weeks of HAART.

  17. Selective programming of CCR10+ innate lymphoid cells in skin-draining lymph nodes for cutaneous homeostatic regulation

    PubMed Central

    Yang, Jie; Hu, Shaomin; Zhao, Luming; Kaplan, Daniel H.; Perdew, Gary H.; Xiong, Na

    2016-01-01

    Innate lymphoid cells (ILCs) are preferentially localized into barrier tissues where they function in tissue protection but can also contribute to inflammatory diseases. The mechanisms regulating the establishment of ILCs in barrier tissues are poorly understood. Here we show that under steady-state conditions ILCs in skin-draining lymph nodes (sLNs) were continuously activated to acquire regulatory properties and high expression of the chemokine receptor CCR10 for localization into the skin. CCR10+ ILCs promoted the homeostasis of skin-resident T cells and reciprocally, their establishment in the skin required T cell-regulated homeostatic environments. Foxn1-expressing CD207+ dendritic cells were required for the proper generation of CCR10+ ILCs. These observations reveal mechanisms underlying the specific programming and priming of skin-homing CCR10+ ILCs in the sLNs. PMID:26523865

  18. Development of venetoclax for therapy of lymphoid malignancies.

    PubMed

    Zhu, Huayuan; Almasan, Alexandru

    2017-01-01

    B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications.

  19. Development of venetoclax for therapy of lymphoid malignancies

    PubMed Central

    Zhu, Huayuan; Almasan, Alexandru

    2017-01-01

    B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications. PMID:28331288

  20. Immunological changes in peripheral blood and in lymphoid tissue after treatment of HIV-infected subjects with highly active anti-retroviral therapy (HAART) or HAART + IL-2

    PubMed Central

    Zanussi, S; Simonelli, C; Bortolin, M T; D'Andrea, M; Crepaldi, C; Vaccher, E; Nasti, G; Politi, D; Barzan, L; Tirelli, U; De Paoli, P

    1999-01-01

    This study presents the immunophenotypic and functional analysis of lymphocyte subsets obtained from peripheral blood and lymphoid tissue from HIV+ individuals treated with highly active anti-retroviral therapy (HAART) alone or in combination with 6 million units international (MUI) s.c. IL-2. Before treatment, the HIV+ patients had reduced CD4 and increased CD8 values in the peripheral blood and lymphoid tissue and impaired cytokine production by peripheral blood mononuclear cells (PBMC). After 24 weeks of treatment, all the HIV+ patients demonstrated increased CD4 values in peripheral blood and lymphoid tissue. The use of IL-2 did not promote an additional CD4 expansion compared with HAART alone; increased ‘naive’ and CD26+ CD4 cells and reduced CD8 cells were found in the peripheral blood and lymphoid tissue of the IL-2-treated, but not of the HAART-treated patients. Both types of treatment induced a significant reduction of the CD8/CD38+ cells. While HAART alone had negligible effects on cytokine production by PBMC, the combined use of HAART + IL-2 was unable to increase the endogenous production of IL-2, but caused an increase of IL-4, IL-13 and interferon-gamma (IFN-γ) and a reduction of monocyte chemoattractant protein-1 (MCP-1) production. These data suggest that, although in this schedule IL-2 has minimal efficacy on CD4 recovery when compared with HAART alone, it produces an increase of ‘naive’ and CD26+CD4 cells and a partial restoration of cytokine production. These data may be used to better define clinical trials aiming to improve the IL-2-dependent immunological reconstitution of HIV-infected subjects. PMID:10361239

  1. Mechanisms of NF-κB deregulation in lymphoid malignancies.

    PubMed

    Krappmann, Daniel; Vincendeau, Michelle

    2016-08-01

    Deregulations promoting constitutive activation of canonical and non-canonical NF-κB signaling are a common feature of many lymphoid malignancies. Due to their cellular origin and the pivotal role of NF-κB for the normal function of B lymphocytes, B-cell malignancies are particularly prone to genetic aberrations that affect the pathway. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications or activating mutations. Negative regulators of NF-κB have tumor suppressor functions and are frequently inactivated either by genomic deletions or point mutations. Whereas some aberrations are found in a variety of different lymphoid malignancies, some oncogenic alterations are very restricted to distinct lymphoma subsets, reflecting the clonal and cellular origin of specific lymphoma entities. NF-κB activation in many lymphoma cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations. A number of drugs that target the NF-κB pathway are in preclinical or clinical development, revealing that there will be new options for therapies in the future. Since each lymphoma entity utilizes distinct mechanisms to activate NF-κB, a major challenge is to elucidate the exact pathological processes in order to faithfully predict clinical responses to the different therapeutic approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion.

    PubMed

    Oliphant, Christopher J; Hwang, You Yi; Walker, Jennifer A; Salimi, Maryam; Wong, See Heng; Brewer, James M; Englezakis, Alexandros; Barlow, Jillian L; Hams, Emily; Scanlon, Seth T; Ogg, Graham S; Fallon, Padraic G; McKenzie, Andrew N J

    2014-08-21

    Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. MHCII-Mediated Dialog between Group 2 Innate Lymphoid Cells and CD4+ T Cells Potentiates Type 2 Immunity and Promotes Parasitic Helminth Expulsion

    PubMed Central

    Oliphant, Christopher J.; Hwang, You Yi; Walker, Jennifer A.; Salimi, Maryam; Wong, See Heng; Brewer, James M.; Englezakis, Alexandros; Barlow, Jillian L.; Hams, Emily; Scanlon, Seth T.; Ogg, Graham S.; Fallon, Padraic G.; McKenzie, Andrew N.J.

    2014-01-01

    Summary Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. PMID:25088770

  4. Tertiary lymphoid structures in cancer and beyond.

    PubMed

    Dieu-Nosjean, Marie-Caroline; Goc, Jérémy; Giraldo, Nicolas A; Sautès-Fridman, Catherine; Fridman, Wolf Herman

    2014-11-01

    Tertiary lymphoid structures (TLS) are ectopic lymphoid formations found in inflamed, infected, or tumoral tissues. They exhibit all the characteristics of structures in the lymph nodes (LN) associated with the generation of an adaptive immune response, including a T cell zone with mature dendritic cells (DC), a germinal center with follicular dendritic cells (FDC) and proliferating B cells, and high endothelial venules (HEV). In this review, we discuss evidence for the roles of TLS in chronic infection, autoimmunity, and cancer, and address the question of whether TLS present beneficial or deleterious effects in these contexts. We examine the relationship between TLS in tumors and patient prognosis, and discuss the potential role of TLS in building and/or maintaining local immune responses and how this understanding may guide therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Functional Defects in Type 3 Innate Lymphoid Cells and Classical Monocytes in a Patient with Hyper-IgE Syndrome.

    PubMed

    Chang, Yuna; Kang, Sung-Yoon; Kim, Jihyun; Kang, Hye-Ryun; Kim, Hye Young

    2017-10-01

    Hyper-IgE syndrome (HIES) is a very rare primary immune deficiency characterized by elevated serum IgE levels, recurrent bacterial infections, chronic dermatitis, and connective tissue abnormalities. Autosomal dominant (AD) HIES involves a mutation in signal transducer and activator of transcription 3 (STAT3) that leads to an impaired T H 17 response. STAT3 signaling is also involved in the function of RORγt + type 3 innate lymphoid cells (ILC3s) and RORγt + T H 17 cells. The aim of this study was to investigate the role of innate immune cells such as innate lymphoid cells (ILCs), granulocytes, and monocytes in a patient with HIES. Peripheral blood mononuclear cells (PBMCs) from a patient with HIES and three age-matched healthy controls were obtained for the analysis of the innate and adaptive immune cells. The frequencies of ILCs in PBMCs were lower in the patient with HIES than in the controls. Moreover, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A produced by ILC3s in PBMCs were lower in the patient with HIES than the controls. Compared with the controls, classical monocytes (CD14 + CD16 low ), which have a high antimicrobial capability, were also lower in the patient with HIES, while non-classical monocytes (CD14 low CD16 + ) as well as intermediate monocytes (CD14 + CD16 intermediate ) were higher. Taken together, these results indicate that the impaired immune defense against pathogenic microbes in the patient with HIES might be partially explained by functional defects in ILC3s and inflammatory monocytes.

  6. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors

    PubMed Central

    Hu, Desheng; Mohanta, Sarajo K.; Yin, Changjun; Peng, Li; Ma, Zhe; Srikakulapu, Prasad; Grassia, Gianluca; MacRitchie, Neil; Dever, Gary; Gordon, Peter; Burton, Francis L.; Ialenti, Armando; Sabir, Suleman R.; McInnes, Iain B.; Brewer, James M.; Garside, Paul; Weber, Christian; Lehmann, Thomas; Teupser, Daniel; Habenicht, Livia; Beer, Michael; Grabner, Rolf; Maffia, Pasquale; Weih, Falk; Habenicht, Andreas J.R.

    2015-01-01

    Summary Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs. PMID:26084025

  7. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System.

    PubMed

    Withers, David R; Hepworth, Matthew R

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of "exogenous" signals, such as dietary metabolites and commensal microbes, and "endogenous" host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a "communications hub" in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell-cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.

  8. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function

    PubMed Central

    Ager, Ann

    2017-01-01

    The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer’s patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and

  9. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning

    PubMed Central

    Bhattacharya, Deepta; Rossi, Derrick J.; Bryder, David; Weissman, Irving L.

    2006-01-01

    In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that ∼0.1–1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4+ T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4+ T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation. PMID:16380511

  10. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    PubMed

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  11. Lymphoid Follicle Cells in Chronic Obstructive Pulmonary Disease Overexpress the Chemokine Receptor CXCR3

    PubMed Central

    Kelsen, Steven G.; Aksoy, Mark O.; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, XiuXia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-01-01

    Rationale: The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. Objectives: We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. Methods: CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1–4) by immunohistochemistry. Measurements and Main Results: CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3–4 (P < 0.01 for GOLD 3–4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV1 (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. Conclusions: These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells. PMID:19218194

  12. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  13. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  14. HSF1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress

    PubMed Central

    Gandhapudi, Siva K.; Murapa, Patience; Threlkeld, Zachary D.; Ward, Martin; Sarge, Kevin D.; Snow, Charles; Woodward, Jerold G.

    2013-01-01

    Heat Shock Transcription Factor 1 (HSF1) is a major transcriptional regulator of the heat shock response in eukaryotic cells. HSF1 is also evoked in response to a variety of cellular stressors including elevated temperatures, oxidative stress, and other proteotoxic stressors. Previously, we demonstrated that HSF1 is activated in naive T cells at fever range temperatures (39.5°C) and is critical for in vitro T cell proliferation at fever temperatures. In this study, we demonstrated thatmurine HSF1 became activated to the DNA-binding form and trans-activated a large number of genes in lymphoid cells strictly as a consequence of receptor activation in the absence of apparent cellular stress. Microarray analysis comparing HSF1+/+ and HSF1−/− gene expression in T cells activated at 37°C revealed a diverse set of 323 genes significantly regulated by HSF1 in non-stressed T cells. In vivo proliferation studies revealed a significant impairment of HSF1−/− T cell expansion under conditions mimicking a robust immune response (staphylococcal enterotoxin B induced T cell activation). This proliferation defect due to loss of HSF1 is observed even under non-febrile temperatures. HSF1−/− T cells activated at fever temperatures show a dramatic reduction in cyclin E and cyclin A proteins during the cell cycle, although the transcription of these genes was not affected. Finally, B cell, and hematopoietic stem cell proliferation from HSF1−/− mice, but not HSF1+/+ mice were also attenuated under stressful conditions, indicating that HSF1 is critical for the cell cycle progression of lymphoid cells activated under stressful conditions. PMID:24043900

  15. ‘Trained immunity’: consequences for lymphoid malignancies

    PubMed Central

    Stevens, Wendy B.C.; Netea, Mihai G.; Kater, Arnon P.; van der Velden, Walter J.F.M.

    2016-01-01

    In hematological malignancies complex interactions exist between the immune system, microorganisms and malignant cells. On one hand, microorganisms can induce cancer, as illustrated by specific infection-induced lymphoproliferative diseases such as Helicobacter pylori-associated gastric mucosa-associated lymphoid tissue lymphoma. On the other hand, malignant cells create an immunosuppressive environment for their own benefit, but this also results in an increased risk of infections. Disrupted innate immunity contributes to the neoplastic transformation of blood cells by several mechanisms, including the uncontrolled clearance of microbial and autoantigens resulting in chronic immune stimulation and proliferation, chronic inflammation, and defective immune surveillance and anti-cancer immunity. Restoring dysfunction or enhancing responsiveness of the innate immune system might therefore represent a new angle for the prevention and treatment of hematological malignancies, in particular lymphoid malignancies and associated infections. Recently, it has been shown that cells of the innate immune system, such as monocytes/macrophages and natural killer cells, harbor features of immunological memory and display enhanced functionality long-term after stimulation with certain microorganisms and vaccines. These functional changes rely on epigenetic reprogramming and have been termed ‘trained immunity’. In this review the concept of ‘trained immunity’ is discussed in the setting of lymphoid malignancies. Amelioration of infectious complications and hematological disease progression can be envisioned to result from the induction of trained immunity, but future studies are required to prove this exciting new hypothesis. PMID:27903713

  16. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    PubMed

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  17. Intestinal nodular lymphoid hyperplasia and extraintestinal lymphoma--a rare association.

    PubMed

    Monsanto, P; Lérias, C; Almeida, N; Lopes, S; Cabral, J E; Figueiredo, P; Silva, M; Julião, M; Gouveia, H; Sofia, C

    2012-06-01

    Nodular lymphoid hyperplasia of the gastrointestinal tract is characterized by the presence of innumerable small discrete nodules involving a variable segment of the gastrointestinal tract. The association between nodular lymphoid hyperplasia and other benign and malignant diseases has been clearly described, with an increased risk of gastrointestinal tumours, namely gastrointestinal lymphoma. However, the association with extraintestinal lymphoma seems extremely rare. The authors present a clinical case of a patient with nodular lymphoid hyperplasia of the small and large intestine that subsequently developed an extraintestinal lymphoma (diffuse large B-cell lymphoma).

  18. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies.

    PubMed

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A; Hackett, Perry B; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E; Cooper, Laurence J N

    2012-05-01

    Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.

  19. CD3-CD4+ lymphoid variant of hypereosinophilic syndrome: nodal and extranodal histopathological and immunophenotypic features of a peripheral indolent clonal T-cell lymphoproliferative disorder.

    PubMed

    Lefèvre, Guillaume; Copin, Marie-Christine; Roumier, Christophe; Aubert, Hélène; Avenel-Audran, Martine; Grardel, Nathalie; Poulain, Stéphanie; Staumont-Sallé, Delphine; Seneschal, Julien; Salles, Gilles; Ghomari, Kamel; Terriou, Louis; Leclech, Christian; Morati-Hafsaoui, Chafika; Morschhauser, Franck; Lambotte, Olivier; Ackerman, Félix; Trauet, Jacques; Geffroy, Sandrine; Dumezy, Florent; Capron, Monique; Roche-Lestienne, Catherine; Taieb, Alain; Hatron, Pierre-Yves; Dubucquoi, Sylvain; Hachulla, Eric; Prin, Lionel; Labalette, Myriam; Launay, David; Preudhomme, Claude; Kahn, Jean-Emmanuel

    2015-08-01

    The CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome is characterized by hypereosinophilia and clonal circulating CD3(-)CD4(+) T cells. Peripheral T-cell lymphoma has been described during this disease course, and we observed in our cohort of 23 patients 2 cases of angio-immunoblastic T-cell lymphoma. We focus here on histopathological (n=12 patients) and immunophenotypic (n=15) characteristics of CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome. Atypical CD4(+) T cells lymphoid infiltrates were found in 10 of 12 CD3(-)CD4(+) L-HES patients, in lymph nodes (n=4 of 4 patients), in skin (n=9 of 9) and other extra-nodal tissues (gut, lacrymal gland, synovium). Lymph nodes displayed infiltrates limited to the interfollicular areas or even an effacement of nodal architecture, associated with proliferation of arborizing high endothelial venules and increased follicular dendritic cell meshwork. Analysis of 2 fresh skin samples confirmed the presence of CD3(-)CD4(+) T cells. Clonal T cells were detected in at least one tissue in 8 patients, including lymph nodes (n=4 of 4): the same clonal T cells were detected in blood and in at least one biopsy, with a maximum delay of 23 years between samples. In the majority of cases, circulating CD3(-)CD4(+) T cells were CD2(hi) (n=9 of 14), CD5(hi) (n=12 of 14), and CD7(-)(n=4 of 14) or CD7(low) (n=10 of 14). Angio-immunoblastic T-cell lymphoma can also present with CD3(-)CD4(+) T cells; despite other common histopathological and immunophenotypic features, CD10 expression and follicular helper T-cell markers were not detected in lymphoid variant of hypereosinophilic syndrome patients, except in both patients who developed angio-immunoblastic T-cell lymphoma, and only at T-cell lymphoma diagnosis. Taken together, persistence of tissular clonal T cells and histopathological features define CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome as a peripheral indolent clonal T-cell lymphoproliferative

  20. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    PubMed Central

    Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.

    2017-01-01

    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought

  1. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells.

    PubMed

    Hardman, Clare S; Chen, Yi-Ling; Salimi, Maryam; Jarrett, Rachael; Johnson, David; Järvinen, Valtteri J; Owens, Raymond J; Repapi, Emmanouela; Cousins, David J; Barlow, Jillian L; McKenzie, Andrew N J; Ogg, Graham

    2017-12-22

    Group 2 innate lymphoid cells (ILC2) are effectors of barrier immunity, with roles in infection, wound healing, and allergy. A proportion of ILC2 express MHCII (major histocompatibility complex II) and are capable of presenting peptide antigens to T cells and amplifying the subsequent adaptive immune response. Recent studies have highlighted the importance of CD1a-reactive T cells in allergy and infection, activated by the presentation of endogenous neolipid antigens and bacterial components. Using a human skin challenge model, we unexpectedly show that human skin-derived ILC2 can express CD1a and are capable of presenting endogenous antigens to T cells. CD1a expression is up-regulated by TSLP (thymic stromal lymphopoietin) at levels observed in the skin of patients with atopic dermatitis, and the response is dependent on PLA2G4A. Furthermore, this pathway is used to sense Staphylococcus aureus by promoting Toll-like receptor-dependent CD1a-reactive T cell responses to endogenous ligands. These findings define a previously unrecognized role for ILC2 in lipid surveillance and identify shared pathways of CD1a- and PLA2G4A-dependent ILC2 inflammation amenable to therapeutic intervention. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Viral-associated lymphoid proliferations☆

    PubMed Central

    Pittaluga, Stefania

    2013-01-01

    The histological spectrum of viral-associated lymphoid proliferations is quite broad, ranging from reactive lymphadenitis to atypical proliferations mimicking classical Hodgkin lymphoma or non-Hodgkin lymphoma. Virally associated reactive lesions can appear quite alarming on histological examination, because of direct (cytopathic) and indirect viral-induced changes eliciting a polymorphic cellular host response. In addition, the atypical lymphoid proliferation may show aberrant phenotypic features as well as restricted/clonal gene immunoglobulin or T-cell receptor rearrangements, further complicating the interpretation. In order to achieve an accurate diagnosis, it is important to be aware of the clinical history, including family history and ethnic background, clinical presentation, symptoms, and extent of the disease. Among the clinical data, particular emphasis should be placed on serology and viral load studies, and the use of immunosuppressive drugs. The clinical course and outcome vary greatly, from an indolent, self-limited to aggressive clinical course, blurring at times the distinction between neoplastic and reactive proliferations. It is now recognized that immunosenescence also plays a significant role in the development of these viral-associated lymphoid proliferations, and new entities have been described in recent years. In this review we discuss mostly Epstein–Barr virus-associated viral proliferations that may be confused with lymphomas, which the practicing pathologist may encounter. PMID:23537914

  3. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors

    PubMed Central

    Chen, Ya-Xiong; Friedman, Ann; Yang, Yuqing; Tubbs, Anthony T.; Shestova, Olga; Pear, Warren S.

    2009-01-01

    Men1 is a tumor suppressor gene mutated in endocrine neoplasms. Besides its endocrine role, the Men1 gene product menin interacts with the mixed lineage leukemia (MLL) protein, a histone H3 lysine 4 methyltransferase. Although menin and MLL fusion proteins cooperate to activate Homeobox (Hox) gene expression during transformation, little is known about the normal hematopoietic functions of menin. Here, we studied hematopoiesis after Men1 ablation. Menin loss modestly impaired blood neutrophil, lymphocyte, and platelet counts. Without hematopoietic stress, multilineage and myelo-erythroid bone marrow progenitor numbers were preserved, while B lymphoid progenitors were decreased. In contrast, competitive transplantation revealed a marked functional defect of long-term hematopoietic stem cells (HSC) in the absence of menin, despite normal initial homing of progenitors to the bone marrow. HoxA9 gene expression was only modestly decreased in menin-deficient HSCs. These observations reveal a novel and essential role for menin in HSC homeostasis that was most apparent during situations of hematopoietic recovery, suggesting that menin regulates molecular pathways that are essential during the adaptive HSC response to stress. PMID:19228930

  4. Theileria parva: effects of irradiation on a culture of parasitized bovine lymphoid cells. [Gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, A.D.; Brown, C.G.D.; Stagg, D.A.

    1975-01-01

    Aliquots of a culture of Theileria parva-infected bovine lymphoid cells were irradiated at 0, 300, 600, 900, and 1200 rads. The short-term effects of irradiation were evaluated on examination of Giemsa-stained smears and on autoradiography of cells labeled with (/sup 3/H)thymidine. Irradiation inhibited cell division but parasite division did not appear to be inhibited and macroschizont nuclear particles increased in number, frequently to several hundred per schizont. There was no evidence of an increased percentage switch from macro- to microschizont. Apparently viable cells were still present in all cultures 4 days after irradiation.

  5. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System

    PubMed Central

    Withers, David R.; Hepworth, Matthew R.

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases. PMID:29085366

  6. Anti-microbial Functions of Group 3 Innate Lymphoid Cells in Gut-Associated Lymphoid Tissues Are Regulated by G-Protein-Coupled Receptor 183.

    PubMed

    Chu, Coco; Moriyama, Saya; Li, Zhi; Zhou, Lei; Flamar, Anne-Laure; Klose, Christoph S N; Moeller, Jesper B; Putzel, Gregory G; Withers, David R; Sonnenberg, Gregory F; Artis, David

    2018-06-26

    The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Discovery of a Novel Series of Inhibitors of Lymphoid Tyrosine Phosphatase with Activity in Human T Cells†

    PubMed Central

    Stanford, Stephanie M.; Krishnamurthy, Divya; Falk, Matthew D.; Messina, Rossella; Debnath, Bikash; Li, Sheng; Liu, Tong; Kazemi, Roza; Dahl, Russell; He, Yantao; Yu, Xiao; Chan, Andrew C.; Zhang, Zhong-Yin; Barrios, Amy M.; Woods, Virgil L.; Neamati, Nouri; Bottini, Nunzio

    2011-01-01

    The lymphoid tyrosine phosphatase LYP, encoded by the PTPN22 gene, is a critical regulator of signaling in T cells and recently emerged as a candidate target for therapy of autoimmune diseases. Here, by library screening, we identified a series of noncompetitive inhibitors of LYP that showed activity in primary T cells. Kinetic analysis confirmed that binding of the compounds to the phosphatase is nonmutually exclusive with respect to a known bidentate competitive inhibitor. The mechanism of action of the lead inhibitor compound 4e was studied by a combination of hydrogen/deuterium-exchange mass spectrometry and molecular modeling. The results suggest that the inhibitor interacts critically with a hydrophobic patch located outside the active site of the phosphatase. Targeting of secondary allosteric sites is viewed as a promising yet unexplored approach to develop pharmacological inhibitors of protein tyrosine phosphatases. Our novel scaffold could be a starting point to attempt development of “nonactive site” anti-LYP pharmacological agents. PMID:21341673

  8. BCA-1 is highly expressed in Helicobacter pylori–induced mucosa-associated lymphoid tissue and gastric lymphoma

    PubMed Central

    Mazzucchelli, Luca; Blaser, Andrea; Kappeler, Andreas; Schärli, Patrik; Laissue, Jean A.; Baggiolini, Marco; Uguccioni, Mariagrazia

    1999-01-01

    Infection with Helicobacter pylori (Hp) induces the formation of lymphoid tissue in the stomach and the occasional development of primary gastric B-cell lymphomas. We have studied the expression of 2 chemokines that attract B lymphocytes, BCA-1 and SLC, in gastric tissue samples obtained from patients with chronic gastritis induced by Hp infection or nonsteroidal anti-inflammatory drugs, as well as from patients with Hp-associated low-grade and high-grade gastric lymphomas. High-level expression of BCA-1 and its receptor, CXCR5, was observed in all mucosal lymphoid aggregates and in the mantle zone of all secondary lymphoid follicles in Hp-induced gastric mucosa-associated lymphoid tissue (MALT). Follicular dendritic cells and B lymphocytes are possible sources of BCA-1, which is not expressed by T lymphocytes, macrophages, or CD1a+ dendritic cells. Strong expression of BCA-1 and CXCR5 was also detected in the transformed B cells of gastric MALT lymphomas. By contrast, SLC was confined almost exclusively to endothelial cells in and outside the lymphoid tissue. Only scant, occasional SLC expression was observed in the marginal zone of MALT follicles. Our findings indicate that BCA-1, which functions as a homing chemokine in normal lymphoid tissue, is induced in chronic Hp gastritis and is involved in the formation of lymphoid follicles and gastric lymphomas of the MALT type. J. Clin. Invest. 104:R49–R54 (1999). PMID:10562310

  9. Replication ability of three highly protective Marek's disease vaccines: implications in lymphoid organ atrophy and protection.

    PubMed

    Gimeno, Isabel M; Witter, Richard L; Cortes, Aneg L; Reed, Willie M

    2011-12-01

    The present work is a chronological study of the pathogenesis of three attenuated serotype 1 Marek's disease (MD) virus strains (RM1, CVI988 and 648A80) that provide high protection against MD but have been attenuated by different procedures and induce different degrees of lymphoid organ atrophy. All studied strains replicated in the lymphoid organs (bursa,x thymus and spleen) and a peak of replication was detected at 6 days post inoculation (d.p.i.). Differences, however, were observed among vaccine strains. RM1 strain replicates more in all lymphoid organs compared with CVI988 and 648A80 strains. In addition, replication of RM1 in the thymus did not decrease after 6 d.p.i. but continued at high levels at 14 d.p.i. and until the thymus was completely destroyed. Lung infection occurred very early after infection with all of the three vaccines and the level of replication was similar to that found in the lymphoid organs. Infected cells were very large and appeared scattered in the lung parenchyma and in the parabronchial lining. The study of the target cells for the early infection in cell suspensions of blood and spleen showed that both non-adherent cell populations (enriched in lymphoid cells) and adherent cells (enriched in monocytes/macrophages) supported MD virus infection. Infection in adherent cells was especially high at very early stages of the infection (3 to 6 d.p.i.). Atrophy of lymphoid organs is a major drawback in the production of highly protective vaccines against MD. A better understanding of the mechanisms associated with lymphoid organ atrophy will aid in overcoming this problem.

  10. ANTIGEN-INDUCED CHANGES IN LYMPHOID CELL HISTONES

    PubMed Central

    Black, Maurice M.; Ansley, Hudson R.

    1967-01-01

    In this study we have examined the solubility of deoxyribonucleoprotein (DNP) isolated from control and antigen-affected thymocytes. 2-M sodium chloride extracts containing the DNP of rat thymus glands were serially diluted. A comparison was made of the effect of dilution on fiber formation in the control and test series. Fiber formation is usually complete for the control material at a salt concentration between 0.63 and 0.57 M. The test material shows some fiber formation within this range. However, a significant portion of the DNP is precipitated at dilutions of 0.54–0.48 M. Ammoniacal silver (A-S) stains the control fibers a characteristic yellowish color. With the test material, those fibers formed within the control range tended to be stained yellowish brown by A-S, whereas those formed only after greater dilution stained blackish. These data, coupled with our previous observations on altered A-S staining, clearly demonstrate an antigen-induced physical and/or chemical alteration of the histone or histone-DNA complex of lymphoid cell chromatin. PMID:4168881

  11. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs.

    PubMed

    Moyron-Quiroz, Juan E; Rangel-Moreno, Javier; Hartson, Louise; Kusser, Kim; Tighe, Michael P; Klonowski, Kimberly D; Lefrançois, Leo; Cauley, Linda S; Harmsen, Allen G; Lund, Frances E; Randall, Troy D

    2006-10-01

    Secondary lymphoid organs (SLOs) promote primary immune responses by recruiting naive lymphocytes and activated APCs. However, their role in the persistence or responsiveness of memory lymphocytes is unclear. We tested whether memory cells were maintained and could respond to challenge in the absence of SLOs. We found that influenza-specific CD8 cells in the lung acquired a memory phenotype, underwent homeostatic proliferation, recirculated through nonlymphoid tissues, and responded to and cleared a challenge infection in the complete absence of SLOs. Similarly, influenza-specific virus-neutralizing antibody was generated and maintained in the absence of SLOs. Inducible bronchus-associated lymphoid tissue (iBALT) was also formed in the lungs of previously infected mice and may provide a niche for the maintenance of memory cells at the local level. These data show that SLOs are dispensable for the maintenance of immunologic memory and directly demonstrate the utility of local tissues, such as iBALT, in secondary immune responses.

  12. Lymphoid organs function as major reservoirs for human immunodeficiency virus.

    PubMed Central

    Pantaleo, G; Graziosi, C; Butini, L; Pizzo, P A; Schnittman, S M; Kotler, D P; Fauci, A S

    1991-01-01

    The total number of human immunodeficiency virus type 1 (HIV-1)-infected circulating CD4+ T lymphocytes is considered to be a reflection of the HIV burden at any given time during the course of HIV infection. However, the low frequency of HIV-infected circulating CD4+ T lymphocytes and the low level or absence of plasma viremia in the early stages of infection do not correlate with the progressive immune dysfunction characteristic of HIV infection. In this study, we have determined whether HIV-infected circulating CD4+ T lymphocytes are a correct reflection of the total pool of HIV-infected CD4+ T cells (i.e., HIV burden). To this end, HIV burden has been comparatively analyzed in peripheral blood and lymphoid tissues (lymph nodes, adenoids, and tonsils) from the same patients. The presence of HIV-1 DNA in mononuclear cells isolated simultaneously from peripheral blood and lymphoid tissues of the same patients was determined by polymerase chain reaction amplification. We found that the frequency of HIV-1-infected cells in unfractionated or sorted CD4+ cell populations isolated from lymphoid tissues was significantly higher (0.5-1 log10 unit) than the frequency in peripheral blood. Comparable results were obtained in five HIV seropositive patients in the early stages of disease and in one patient with AIDS. These results demonstrate that a heavy viral load does reside in the lymphoid organs, indicating that they may function as major reservoirs for HIV. In addition, the finding of a heavy viral load in the lymphoid organs of patients in the early stages of disease may explain the progressive depletion of CD4+ T lymphocytes and the immune dysfunction associated with the early stages of HIV infection. Images PMID:1682922

  13. Type 2 innate lymphoid cells-new members of the "type 2 franchise" that mediate allergic airway inflammation.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2012-05-01

    Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L. B.; Fitzgerald, W.; Glushakova, S.; Hatfill, S.; Amichay, N.; Baibakov, B.; Zimmerberg, J.

    1997-01-01

    The pathogenesis of HIV infection involves a complex interplay between both the infected and noninfected cells of human lymphoid tissue, the release of free viral particles, the de novo infection of cells, and the recirculatory trafficking of peripheral blood lymphocytes. To develop an in vitro model for studying these various aspects of HIV pathogenesis we have utilized blocks of surgically excised human tonsils and a rotating wall vessel (RWV) cell culture system. Here we show that (1) fragments of the surgically excised human lymphoid tissue remain viable and retain their gross cytoarchitecture for at least 3 weeks when cultured in the RWV system; (2) such lymphoid tissue gradually shows a loss of both T and B cells to the surrounding growth medium; however, this cellular migration is reversible as demonstrated by repopulation of the tissue by labeled cells from the growth medium; (3) this cellular migration may be partially or completely inhibited by embedding the blocks of lymphoid tissue in either a collagen or agarose gel matrix; these embedded tissue blocks retain most of the basic elements of a normal lymphoid cytoarchitecture; and (4) both embedded and nonembedded RWV-cultured blocks of human lymphoid tissue are capable of productive infection by HIV-1 of at least three various strains of different tropism and phenotype, as shown by an increase in both p24 antigen levels and free virus in the culture medium, and by the demonstration of HIV-1 RNA-positive cells inside the tissue identified by in situ hybridization. It is therefore reasonable to suggest that gel-embedded and nonembedded blocks of human lymphoid tissue, cocultured with a suspension of tonsillar lymphocytes in an RWV culture system, constitute a useful model for simulating normal lymphocyte recirculatory traffic and provide a new tool for testing the various aspects of HIV pathogenesis.

  15. Molecular cytogenetic analysis of feline leukemia virus insertions in cat lymphoid tumor cells.

    PubMed

    Fujino, Yasuhito; Satoh, Hitoshi; Ohno, Koichi; Tsujimoto, Hajime

    2010-02-01

    This study was conducted to map the acquired proviral insertions in the chromosomal genome of feline lymphoid tumors induced by feline leukemia virus (FeLV). Chromosome specimens of the lymphoid tumor-derived cell lines and normal cat lymphocytes were subjected to fluorescence in situ hybridization and tyramide signal amplification, using an exogenous FeLV-A genome as a probe. Specific hybridization signals were detected only on the metaphase chromosomes of the tumor cells. Poisson's distribution-based statistics indicated that 6 chromosomal loci in each cell line showed FeLV integration. In the examination of metaphase chromosomes of FL-74, FT-1 and KO-1 cells, significant signals were detected on B2p15-p14, B2q11, D1p14, E1p14-p13, E1q12 and F2q16; A2p23-p22, B2p15-p14, B4p15-p14, D4q23-q24, E1p14-p13 and E2p13-p12; and A2p22, A3q22, B1p13, B1q13, D1p13 and D3p15-p14, respectively. Consistently, Southern blot hybridization using an FeLV LTR-U3 probe specific for exogenous FeLV revealed the presence of at least 6 copies of exogenous FeLV proviruses at different integration sites in each cell line. These results indicate that there may be common FeLV integration sites at least in A2p22 and B2p15-p14. The cytogenetic analysis used in this study can promptly screen FeLV insertions and provide tags for identifying the novel common integration site. 2009 Elsevier B.V. All rights reserved.

  16. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    PubMed

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. CD3−CD4+ lymphoid variant of hypereosinophilic syndrome: nodal and extranodal histopathological and immunophenotypic features of a peripheral indolent clonal T-cell lymphoproliferative disorder

    PubMed Central

    Lefèvre, Guillaume; Copin, Marie-Christine; Roumier, Christophe; Aubert, Hélène; Avenel-Audran, Martine; Grardel, Nathalie; Poulain, Stéphanie; Staumont-Sallé, Delphine; Seneschal, Julien; Salles, Gilles; Ghomari, Kamel; Terriou, Louis; Leclech, Christian; Morati-Hafsaoui, Chafika; Morschhauser, Franck; Lambotte, Olivier; Ackerman, Félix; Trauet, Jacques; Geffroy, Sandrine; Dumezy, Florent; Capron, Monique; Roche-Lestienne, Catherine; Taieb, Alain; Hatron, Pierre-Yves; Dubucquoi, Sylvain; Hachulla, Eric; Prin, Lionel; Labalette, Myriam; Launay, David; Preudhomme, Claude; Kahn, Jean-Emmanuel

    2015-01-01

    The CD3−CD4+ lymphoid variant of hypereosinophilic syndrome is characterized by hypereosinophilia and clonal circulating CD3−CD4+ T cells. Peripheral T-cell lymphoma has been described during this disease course, and we observed in our cohort of 23 patients 2 cases of angio-immunoblastic T-cell lymphoma. We focus here on histopathological (n=12 patients) and immunophenotypic (n=15) characteristics of CD3−CD4+ lymphoid variant of hypereosinophilic syndrome. Atypical CD4+ T cells lymphoid infiltrates were found in 10 of 12 CD3−CD4+ L-HES patients, in lymph nodes (n=4 of 4 patients), in skin (n=9 of 9) and other extra-nodal tissues (gut, lacrymal gland, synovium). Lymph nodes displayed infiltrates limited to the interfollicular areas or even an effacement of nodal architecture, associated with proliferation of arborizing high endothelial venules and increased follicular dendritic cell meshwork. Analysis of 2 fresh skin samples confirmed the presence of CD3−CD4+ T cells. Clonal T cells were detected in at least one tissue in 8 patients, including lymph nodes (n=4 of 4): the same clonal T cells were detected in blood and in at least one biopsy, with a maximum delay of 23 years between samples. In the majority of cases, circulating CD3−CD4+ T cells were CD2hi (n=9 of 14), CD5hi (n=12 of 14), and CD7−(n=4 of 14) or CD7low (n=10 of 14). Angio-immunoblastic T-cell lymphoma can also present with CD3−CD4+ T cells; despite other common histopathological and immunophenotypic features, CD10 expression and follicular helper T-cell markers were not detected in lymphoid variant of hypereosinophilic syndrome patients, except in both patients who developed angio-immunoblastic T-cell lymphoma, and only at T-cell lymphoma diagnosis. Taken together, persistence of tissular clonal T cells and histopathological features define CD3−CD4+ lymphoid variant of hypereosinophilic syndrome as a peripheral indolent clonal T-cell lymphoproliferative disorder, which should not be

  18. Clinical and immunologic effects of fractionated total lymphoid irradiation in refractory rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trentham, D.E.; Belli, J.A.; Anderson, R.J.

    Ten patients with refractory rheumatoid arthritis were given 3000 rad of fractionated total lymphoid irradiation in an uncontrolled therapeutic trial. Total lymphoid irradiation was associated with objective evidence of considerable clinical improvement in eight patients and with reduced blood lymphocyte counts in all 10. On completion of irradiation, there was an abrogation of lymphocyte reactivity in vitro in the patients with clinical responses, but abnormal antibody activities characteristic of rheumatoid arthritis and normal components of humoral immunity were not suppressed. Partial recrudescence of arthritis occurred shortly after a year after the completion of irradiation and was paralleled by a restitutionmore » of lymphocyte concentrations and responsiveness to mitogens to levels similar to those observed before irradiation. These data provide further evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis and demonstrate that total lymphoid irradiation can induce temporary relief, but they do not ascertain whether the natural history of this disease was altered.« less

  19. Clinical and immunologic effects of fractionated total lymphoid irradiation in refractory rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trentham, D.E.; Belli, J.A.Anderson, R.J.; Buckley, J.A.

    Ten patients with refractory rheumatoid arthritis were given 3000 rad of fractionated total lymphoid irradiation in an uncontrolled therapeutic trial. Total lymphoid irradiation was associated with objective evidence of considerable clinical improvement in eight patients and with reduced blood lymphocyte counts in all 10. On completion of irradiation, there was an abrogation of lymphocyte reactivity in vitro in the patients with clinical responses, but abnormal antibody activities characteristic of rheumatoid arthritis and normal components of humoral immunity were not suppressed. Partial recrudescence of arthritis occurred shortly before a year after the completion of irradiation and was paralleled by a restitutionmore » of lymphocyte concentrations and responsiveness to mitogens to levels similar to those observed before irradiation. These data provide further evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis and demonstrate that total lymphoid irradiation can induce temporary relief, but they do not ascertain whether the natural history of this disease was altered.« less

  20. Gastric marginal zone lymphoma of mucosa-associated lymphoid tissue and signet ring cell carcinoma, synchronous collision tumour of the stomach: a case report.

    PubMed

    George, Smiley Annie; Junaid, T A

    2014-01-01

    To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. © 2013 S. Karger AG, Basel.

  1. Gastric Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue and Signet Ring Cell Carcinoma, Synchronous Collision Tumour of the Stomach: A Case Report

    PubMed Central

    George, Smiley Annie; Junaid, T.A.

    2014-01-01

    Objective To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. Clinical Presentation and Intervention A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. Conclusion This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. PMID:24247357

  2. Leukaemia Evoked with 7,8,12-Trimethylbenz(a)Anthracene in Rat. III. Changes in Lymphoid Tissues

    PubMed Central

    Bird, C. C.; Mainzer, K.

    1972-01-01

    Profound changes in the level of certain dehydrogenase enzymes were observed in lymphoid tissues of rats involved by erythroblastic stem cell leukaemia. In lymphoid tissues free of leukaemic involvement, activity of malate dehydrogenase (MDH) always exceeded that of lactate dehydrogenase (LDH). In those which contained substantial infiltrates of leukaemic cells, activity of LDH was increased while MDH activity was reduced. In leukaemic spleen significant changes were observed in the molecular forms of LDH; the proportion of LDH-5 (muscle-type LDH) was greatly increased while the other molecular forms were reduced. The spleen of rats with leukaemia exhibited a marked increase in the normal level of aerobic and anaerobic glycolysis but the rate of respiration was unchanged. The terminal stages of stem cell leukaemia in the rat are characterized by wide-spread leukaemic infiltration of liver and other tissues. Lymph node involvement, however, was found to be selective. Coeliac lymph nodes greatly exceeded other lymph node groups in their incidence of leukaemic involvement. It is considered that the selective nature of lymph node involvement in stem cell leukaemia derives from topographical considerations. PMID:5085676

  3. Dynamics of CCR5 Expression by CD4+ T Cells in Lymphoid Tissues during Simian Immunodeficiency Virus Infection

    PubMed Central

    Veazey, Ronald S.; Mansfield, Keith G.; Tham, Irene C.; Carville, Angela C.; Shvetz, Daniel E.; Forand, Amy E.; Lackner, Andrew A.

    2000-01-01

    Early viral replication and profound CD4+ T-cell depletion occur preferentially in intestinal tissues of macaques infected with simian immunodeficiency virus (SIV). Here we show that a much higher percentage of CD4+ T cells in the intestine express CCR5 compared with those found in the peripheral blood, spleen, or lymph nodes. In addition, the selectivity and extent of the CD4+ T-cell loss in SIV infection may depend upon these cells coexpressing CCR5 and having a “memory” phenotype (CD45RA−). Following intravenous infection with SIVmac251, memory CD4+ CCR5+ T cells were selectively eliminated within 14 days in all major lymphoid tissues (intestine, spleen, and lymph nodes). However, the effect on CD4+ T-cell numbers was most profound in the intestine, where cells of this phenotype predominate. The CD4+ T cells that remain after 14 days of infection lacked CCR5 and/or were naive (CD45RA+). Furthermore, when animals in the terminal stages of SIV infection (with AIDS) were examined, virtually no CCR5-expressing CD4+ T cells were found in lymphoid tissues, and all of the remaining CD4+ T cells were naive and coexpressed CXCR4. These findings suggest that chemokine receptor usage determines which cells are targeted for SIV infection and elimination in vivo. PMID:11069995

  4. Spontaneous circulation of myeloid-lymphoid-initiating cells and SCID-repopulating cells in sickle cell crisis.

    PubMed

    Lamming, Christopher E D; Augustin, Lance; Blackstad, Mark; Lund, Troy C; Hebbel, Robert P; Verfaillie, Catherine M

    2003-03-01

    The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid-initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture-initiating cells, consistent with the notion that SRCs are more primitive than long-term culture-initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation.

  5. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. | Center for Cancer Research

    Cancer.gov

    The process by which self-reactive CD4+ T cells infiltrate the central nervous system (CNS) and trigger neuroinflammation is not fully understood. Lazarevic and colleagues show that NKp46+innate lymphoid cells dependent on the transcription factor T-bet are critical mediators in facilitating the entry of autoreactive CD4+ cells of the TH17 subset of helper T cells into the

  6. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production

    PubMed Central

    Zhu, Jinfang

    2015-01-01

    Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these “type 2 immune response-related” cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed. PMID:26044597

  7. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    PubMed Central

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  8. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    PubMed

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Differential responses of Mcl-1 in photosensitized epithelial vs lymphoid-derived human cancer cells.

    PubMed

    Xue, Liang-yan; Chiu, Song-mao; Oleinick, Nancy L

    2005-10-20

    The antiapoptotic Bcl-2-family proteins, Bcl-2 and Bcl-xL, are recognized phototargets of photodynamic therapy (PDT) with the mitochondrion-targeting phthalocyanine photosensitizer Pc 4. In the present study, we found that myeloid cell leukemia 1 (Mcl-1), another antiapoptotic member of the Bcl-2 family, was not photodamaged in Pc 4-PDT-treated human carcinoma cells MCF-7c3, MDA-MB468, DU145, and A431, although Mcl-1 turnover was observed after exposure of HeLa or MCF-7c3 cells to a supralethal dose of UVC. In contrast, when human lymphoma U937 and Jurkat cells were treated with Pc 4-PDT, staurosporine (STS) or UVC, Mcl-1 was cleaved to generate a 28-kDa fragment over a 2-4 h period. The cleavage of Mcl-1 was accompanied by the activation of caspases-3, -9, and -8. The broad-specificity caspase inhibitor z-VAD-fmk completely blocked Mcl-1 cleavage induced by PDT, STS or UVC, providing evidence for Mcl-1 as a substrate for caspases. Western blot analysis localized Mcl-1 to mitochondria, ER, and cytosol of both MCF-7c3 and U937 cells, suggesting that Mcl-1 protein, unlike Bcl-2 and Bcl-xL, is not a target for Pc 4-PDT, probably due to its localization to sites removed from those of Pc 4 binding. The 28-kDa cleaved fragment of Mcl-1, which has proapoptotic activity, was produced in PDT-treated lymphoid-derived cells, but not in cells of epithelial origin, suggesting that PDT-induced rapid and extensive apoptosis in lymphoma cells may result in part from the sensitivity of their Mcl-1 to caspase cleavage, removing an important negative control on apoptosis.

  10. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs.

    PubMed

    Yuan, Jin; Zhu, Mengjiao; Deng, Shaofeng; Fan, Shuangqi; Xu, Hailuan; Liao, Jiedan; Li, Peng; Zheng, Jingfang; Zhao, Mingqiu; Chen, Jinding

    2018-05-02

    Classical swine fever virus (CSFV) causes a highly lethal disease in pigs, which is characterized by immunosuppression. Leukopenia is known to be a possible mechanism of immunosuppression during CSFV infection. As a new and specialized form of cell death, pyroptosis is the key response of the innate immune system to pathogens, and is widely involved in the occurrence and development of infectious diseases. However, the relationship between CSFV and pyroptosis has not been explored. In this study, we investigated the occurrence of pyroptosis in pigs following CSFV infection. According to qRT-PCR assay results, the prevalence of this virus in peripheral lymphoid organs (tonsils, lymph nodes, and spleen) was much higher than that in other organs. Severe bleeding, necrosis, and a significant reduction in lymphocytes were found in the peripheral lymphoid organs of CSFV-infected pigs based on histological examination. In-depth studies showed that an increased ratio of deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells were present in the peripheral lymphoid organs of the CSFV-infected group according to immunohistochemistry. Meanwhile, the p10 subunit and activity of caspase-1, which is a regulator of pyroptosis, the N-terminal domain of gasdermin D, which is an executor of pyroptosis, and the cleavage and secretion of IL-1b, which is a product of pyroptosis were increased in the peripheral lymphoid organs of the CSFV-infected group. Together, these results demonstrated that pyroptosis is involved in CSFV-induced cell death in vivo, which provides a new understanding of the mechanism associated with lymphocyte depletion and immunosuppression in pigs infected with this virus. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Discordance in lymphoid tissue recovery following stem cell transplantation in rhesus macaques: an in vivo imaging study.

    PubMed

    Donahue, Robert E; Srinivasula, Sharat; Uchida, Naoya; Kim, Insook; St Claire, Alexis; Duralde, Gorka; DeGrange, Paula; St Claire, Marisa; Reba, Richard C; Bonifacino, Aylin C; Krouse, Allen E; Metzger, Mark E; Paik, Chang H; Lane, H Clifford; Tisdale, John F; Di Mascio, Michele

    2015-12-10

    Ionizing irradiation is used routinely to induce myeloablation and immunosuppression. However, it has not been possible to evaluate the extent of ablation without invasive biopsy. For lymphoid recovery, peripheral blood (PB) lymphocytes (PBLs) have been used for analysis, but they represent <2% of cells in lymphoid tissues (LTs). Using a combination of single-photon emission computed tomography imaging and a radiotracer ((99m)Tc-labeled rhesus immunoglobulin G1 anti-CD4R1 (Fab')2), we sequentially imaged CD4(+) cell recovery in rhesus macaques following total body irradiation (TBI) and reinfusion of vector-transduced, autologous CD34(+) cells. Our results present for the first time a sequential, real-time, noninvasive method to evaluate CD4(+) cell recovery. Importantly, despite myeloablation of circulating leukocytes following TBI, total depletion of CD4(+) lymphocytes in LTs such as the spleen is not achieved. The impact of TBI on LTs and PBLs is discordant, in which as few as 32.4% of CD4(+) cells were depleted from the spleen. In addition, despite full lymphocyte recovery in the spleen and PB, lymph nodes have suboptimal recovery. This highlights concerns about residual disease, endogenous contributions to recovery, and residual LT damage following ionizing irradiation. Such methodologies also have direct application to immunosuppressive therapy and other immunosuppressive disorders, such as those associated with viral monitoring.

  12. Discordance in lymphoid tissue recovery following stem cell transplantation in rhesus macaques: an in vivo imaging study

    PubMed Central

    Srinivasula, Sharat; Uchida, Naoya; Kim, Insook; St. Claire, Alexis; Duralde, Gorka; DeGrange, Paula; St. Claire, Marisa; Reba, Richard C.; Bonifacino, Aylin C.; Krouse, Allen E.; Metzger, Mark E.; Paik, Chang H.; Lane, H. Clifford; Tisdale, John F.; Di Mascio, Michele

    2015-01-01

    Ionizing irradiation is used routinely to induce myeloablation and immunosuppression. However, it has not been possible to evaluate the extent of ablation without invasive biopsy. For lymphoid recovery, peripheral blood (PB) lymphocytes (PBLs) have been used for analysis, but they represent <2% of cells in lymphoid tissues (LTs). Using a combination of single-photon emission computed tomography imaging and a radiotracer (99mTc-labeled rhesus immunoglobulin G1 anti-CD4R1 (Fab′)2), we sequentially imaged CD4+ cell recovery in rhesus macaques following total body irradiation (TBI) and reinfusion of vector-transduced, autologous CD34+ cells. Our results present for the first time a sequential, real-time, noninvasive method to evaluate CD4+ cell recovery. Importantly, despite myeloablation of circulating leukocytes following TBI, total depletion of CD4+ lymphocytes in LTs such as the spleen is not achieved. The impact of TBI on LTs and PBLs is discordant, in which as few as 32.4% of CD4+ cells were depleted from the spleen. In addition, despite full lymphocyte recovery in the spleen and PB, lymph nodes have suboptimal recovery. This highlights concerns about residual disease, endogenous contributions to recovery, and residual LT damage following ionizing irradiation. Such methodologies also have direct application to immunosuppressive therapy and other immunosuppressive disorders, such as those associated with viral monitoring. PMID:26492933

  13. Morphology of mucosa-associated lymphoid tissue in odontocetes.

    PubMed

    Silva, Fernanda M O; Guimarães, Juliana P; Vergara-Parente, Jociery E; Carvalho, Vitor L; Carolina, Ana; Meirelles, O; Marmontel, Miriam; Oliveira, Bruno S S P; Santos, Silvanise M; Becegato, Estella Z; Evangelista, Janaina S A M; Miglino, Maria Angelica

    2016-09-01

    This study describes the mucosa-associated lymphoid tissue (MALT) in odontocetes from the Brazilian coast and freshwater systems. Seven species were evaluated and tissue samples were analyzed by light, scanning and transmission electron microscopy, and immunohistochemistry. Laryngeal tonsil was a palpable oval mass located in the larynx, composed of a lymphoepithelial complex. Dense collections of lymphocytes were found in the skin of male fetus and calf. Clusters of lymphoid tissue were found in the uterine cervix of a reproductively active juvenile female and along the pulmonary artery of an adult female. Lymphoid tissues associated with the gastrointestinal tract were characterized by diffusely arranged or organized lymphocytes. The anal tonsil was composed of an aggregate of lymphoid tissue occurring exclusively in the anal canal, being composed of squamous epithelium branches. MALT was present in different tissues and organic systems of cetaceans, providing constant protection against mucosal pathogens present in their environment. © 2016 Wiley Periodicals, Inc.

  14. Prevention and treatment of relapse after stem cell transplantation in lymphoid malignancies.

    PubMed

    Sureda, Anna; Dreger, Peter; Bishop, Michael R; Kroger, Nicolaus; Porter, David L

    2018-05-24

    Relapse is now the major cause of treatment failure after allogeneic HSCT (alloHSCT). Many novel strategies to address this critical issue are now being developed and tested. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg, Germany in November 2016, international experts presented and discussed recent developments in the field. Some approaches may be applicable to a wide range of patients after transplant, whereas some may be very disease-specific. We present a report from the session dedicated to issues related to prevention and treatment of relapse of lymphoid malignancies after alloHSCT. This session included detailed reviews as well as forward-looking commentaries that focused on Hodgkin lymphoma, chronic lymphocytic leukemia and mantle cell lymphoma, diffuse large cell and follicular lymphoma, and multiple myeloma.

  15. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma.

    PubMed

    van Rijt, Leonie; von Richthofen, Helen; van Ree, Ronald

    2016-07-01

    Allergic asthma is a chronic inflammatory disease of the lower airways that affects millions of people worldwide. Allergic asthma is a T helper 2 cell (Th2)-mediated disease, in which Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 are closely associated with the symptoms. IL-4 is needed by B cells to switch toward an IgE response, IL-5 recruits and activates eosinophils while IL-13 increases mucus production. The identification of type 2 innate lymphoid cells (ILC2), which are able to rapidly produce large amounts of IL-5 and IL-13 in response to epithelial derived cytokines, implicated a new key player besides Th2 cells. ILCs constitute a family of innate lymphocytes distinct from T and B cells. ILC2s are located in various epithelial compartments in mice and human, including the lung. The recent finding of increased numbers of ILC2s in the airways of severe asthma patients prompts further research to clarify their immunological function. Murine studies have shown that ILC2s are an early innate source of IL-5 and IL-13 after allergen exposure, which induce airway eosinophilic infiltration, mucus hyperproduction, and airway hyperresponsiveness but not allergen-specific IgE production. ILC2s contribute to the initiation as well as to the maintenance of the adaptive type 2 immune response. Here, we review the recent progress on our understanding of the role of ILC2s in the immunopathology of allergic asthma, in particular by studies using murine models which have elucidated fundamental mechanisms by which ILC2s act.

  16. Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells.

    PubMed

    Raykova, Ana; Carrega, Paolo; Lehmann, Frank M; Ivanek, Robert; Landtwing, Vanessa; Quast, Isaak; Lünemann, Jan D; Finke, Daniela; Ferlazzo, Guido; Chijioke, Obinna; Münz, Christian

    2017-12-26

    Type 3 innate lymphoid cells (ILC3s) fulfill protective functions at mucosal surfaces via cytokine production. Although their plasticity to become ILC1s, the innate counterparts of type 1 helper T cells, has been described previously, we report that they can differentiate into cytotoxic lymphocytes with many characteristics of early differentiated natural killer (NK) cells. This transition is promoted by the proinflammatory cytokines interleukin 12 (IL-12) and IL-15, and correlates with expression of the master transcription factor of cytotoxicity, eomesodermin (Eomes). As revealed by transcriptome analysis and flow cytometric profiling, differentiated ILC3s express CD94, NKG2A, NKG2C, CD56, and CD16 among other NK-cell receptors, and possess all components of the cytotoxic machinery. These characteristics allow them to recognize and kill leukemic cells with perforin and granzymes. Therefore, ILC3s can be harnessed for cytotoxic responses via differentiation under the influence of proinflammatory cytokines.

  17. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22

    PubMed Central

    Hughes, Tiffany; Becknell, Brian; McClory, Susan; Briercheck, Edward; Freud, Aharon G.; Zhang, Xiaoli; Mao, Hsiaoyin; Nuovo, Gerard; Yu, Jianhua

    2009-01-01

    Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56+NKp44+NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22− when resting, with a minor fraction of this population becoming IL-22+ when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a TH17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34−CD117+CD161+CD94−, largely lack expression of NKp44 and CD56, and do not produce IFN-γ or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F. PMID:19244159

  18. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines.

    PubMed

    Salimi, Maryam; Stöger, Linda; Liu, Wei; Go, Simei; Pavord, Ian; Klenerman, Paul; Ogg, Graham; Xue, Luzheng

    2017-10-01

    Group 2 innate lymphoid cells (ILC2s) are a potential innate source of type 2 cytokines in the pathogenesis of allergic conditions. Epithelial cytokines (IL-33, IL-25, and thymic stromal lymphopoietin [TSLP]) and mast cell mediators (prostaglandin D 2 [PGD 2 ]) are critical activators of ILC2s. Cysteinyl leukotrienes (cysLTs), including leukotriene (LT) C 4 , LTD 4 , and LTE 4 , are metabolites of arachidonic acid and mediate inflammatory responses. Their role in human ILC2s is still poorly understood. We sought to determine the role of cysLTs and their relationship with other ILC2 stimulators in the activation of human ILC2s. For ex vivo studies, fresh blood from patients with atopic dermatitis and healthy control subjects was analyzed with flow cytometry. For in vitro studies, ILC2s were isolated and cultured. The effects of cysLTs, PGD 2 , IL-33, IL-25, TSLP, and IL-2 alone or in combination on ILC2s were defined by using chemotaxis, apoptosis, ELISA, Luminex, quantitative RT-PCR, and flow cytometric assays. The effect of endogenous cysLTs was assessed by using human mast cell supernatants. Human ILC2s expressed the LT receptor CysLT 1 , levels of which were increased in atopic subjects. CysLTs, particularly LTE 4 , induced migration, reduced apoptosis, and promoted cytokine production in human ILC2s in vitro. LTE 4 enhanced the effect of PGD 2 , IL-25, IL-33, and TSLP, resulting in increased production of type 2 and other proinflammatory cytokines. The effect of LTE 4 was inhibited by montelukast, a CysLT 1 antagonist. Interestingly, addition of IL-2 to LTE 4 and epithelial cytokines significantly amplified ILC2 activation and upregulated expression of the receptors for IL-33 and IL-25. CysLTs, particularly LTE 4 , are important contributors to the triggering of human ILC2s in inflammatory responses, particularly when combined with other ILC2 activators. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer

    PubMed Central

    Katakai, Tomoya

    2012-01-01

    The architecture of secondary lymphoid organs (SLOs) is supported by several non-hematopoietic stromal cells. Currently it is established that two distinct stromal subsets, follicular dendritic cells and fibroblastic reticular cells, play crucial roles in the formation of tissue compartments within SLOs, i.e., the follicle and T zone, respectively. Although stromal cells in the anlagen are essential for SLO development, the relationship between these primordial cells and the subsets in adulthood remains poorly understood. In addition, the roles of stromal cells in the entry of antigens into the compartments through some tissue structures peculiar to SLOs remain unclear. A recently identified stromal subset, marginal reticular cells (MRCs), covers the margin of SLOs that are primarily located in the outer edge of follicles and construct a unique reticulum. MRCs are closely associated with specialized endothelial or epithelial structures for antigen transport. The similarities in marker expression profiles and successive localization during development suggest that MRCs directly descend from organizer stromal cells in the anlagen. Therefore, MRCs are thought to be a crucial stromal component for the organization and function of SLOs. PMID:22807928

  20. ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice.

    PubMed

    Paclik, Daniela; Stehle, Christina; Lahmann, Annette; Hutloff, Andreas; Romagnani, Chiara

    2015-10-01

    Group 2 innate lymphoid cells (ILC2s) are innate effectors playing an important role in the defense against helminthic infections and in the pathogenesis of allergic inflammation. Cytokines have been identified as the major stimuli driving ILC2 activation and expansion. Conversely, it is unclear whether costimulatory molecules contribute to regulation of ILC2 functions. ILC2s display high expression of inducible T-cell costimulator (ICOS), which belongs to the CD28 superfamily, and which has been shown to control late effector T-cell functions, and is of utmost importance for the humoral immune response. However, the biological function of ICOS expression on ILC2s is unknown. Here, we show that ICOS signaling in mice regulates ILC2 homeostasis independently of T cells and B cells, by promoting proliferation and accumulation of mature ILC2s in lung and intestine. In a model of IL-33-induced airway inflammation, ICOS controls ILC2 activation and eosinophil infiltration in the lung. Our data identify a role of ICOS in innate immunity and indicate that not only cytokines, but also costimulatory pathways such as those involving ICOS, can contribute to regulate the ILC2 pool. Thus, ICOS costimulation blockade, which is currently under clinical evaluation for inhibiting the humoral immune response, could also target innate inflammatory circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    PubMed

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  2. Suppression of OVA-alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory T- and B cell-independent, but is associated with reduced innate lymphoid cell activation.

    PubMed

    McSorley, Henry J; Blair, Natalie F; Robertson, Elaine; Maizels, Rick M

    2015-11-01

    The murine intestinal nematode Heligmosomoides polygyrus exerts multiple immunomodulatory effects in the host, including the suppression of allergic inflammation in mice sensitized to allergen presented with alum adjuvant. Similar suppression is attained by co-administration of H. polygyrus excretory/secretory products (HES) with the sensitizing dose of ovalbumin (OVA) in alum. We investigated the mechanism of suppression by HES in this model, and found it was maintained in MyD88xTRIF-deficient mice, implying no role for helminth- or host-derived TLR ligands, or IL-1 family cytokines that signal in a MyD88- or TRIF-dependent manner. We also found suppression was unchanged in µMT mice, which lack B2 B cells, and that suppression was not abrogated when regulatory T cells were depleted in Foxp3.LuciDTR-4 mice. However, reduced IL-5 production was seen in the first 12 h after injection of OVA-alum when HES was co-administered, associated with reduced activation of IL-5(+) and IL-13(+) group 2 innate lymphoid cells. Thus, the suppressive effects of HES on alum-mediated OVA sensitization are reflected in the very earliest innate response to allergen exposure in vivo. Copyright © 2015. Published by Elsevier Inc.

  3. Immunoblot analysis of cellular expression of Bcl-2 family proteins, Bcl-2, Bax, Bcl-X and Mcl-1, in human peripheral blood and lymphoid tissues.

    PubMed

    Ohta, K; Iwai, K; Kasahara, Y; Taniguchi, N; Krajewski, S; Reed, J C; Miyawaki, T

    1995-11-01

    The ability of Bcl-2 to inhibit apoptotic cell death is well established. Several homologues of the bcl-2 gene, such as bax, bcl-x or mcl-1, have recently been identified. Like Bcl-2, both Bcl-XL and Mcl-1 appear to function as repressors of apoptotic cell death, whereas Bax facilitates it, indicating possible interactions among them in the control of cellular survival. To investigate the in vivo role of expression of bcl-2 gene family products, immunoblot analysis using corresponding specific antisera was performed for peripheral blood cells and some lymphoid tissues in humans. We demonstrated that all Bcl-2 family proteins were expressed at various levels in hematolymphoid cell subpopulations isolated from peripheral blood, tonsil, spleen and thymus. Lymphoid expression of Bcl-2 family proteins tended to increase following activation, but declined with time in culture. Loss of Bcl-2 in cultured lymphoid cells was especially marked. Sole expression of Bax, but not other members of the Bcl-2 family, was observed on neutrophils, seemingly reflecting their shortest life-span among blood leukocytes. The results support the notion that a balance of expression of Bcl-2 family proteins may regulate the life and death of hematolymphoid cells at different stages of cell differentiation and activation.

  4. Assessment of different protocols for the isolation and purification of gut associated lymphoid cells from the gilthead seabream (Sparus aurata L.)

    PubMed Central

    2007-01-01

    Teleost gut associated lymphoid tissue (GALT) consists of leucocyte populations located both intraepithelially and in the lamina propria with no structural organization. The present study aims to assess different protocols for the isolation of GALT cells from an important fish species in the Mediterranean aquaculture, the gilthead seabream. Mechanical, chemical and enzymatic treatments were assayed. Nylon wool columns and continuous density gradients were used for further separation of cell subpopulations. Light microscopy and flow cytometry showed that the highest density band (HD) consisted of a homogeneous lymphocytic population, whereas the intermediate density band (ID) corresponded to epithelial and secretory cells and some lymphocytes. Respiratory burst activity of total cell suspensions revealed very low numbers of potential phagocytic cells, reflecting results from light microscopy and reports in other teleost species. The present data set up the basis for future functional characterization of GALT in seabream. PMID:18213363

  5. [Cellular composition of lymphoid nodules in the trachea wall in rats with different resistance to emotional stress in a model of hemorrhagic stroke].

    PubMed

    Klyueva, L A

    2017-01-01

    To reveal regularities of changes in cellular composition of lymphoid nodules in the tracheal wall in male Wistar rats resistant and not resistant to emotional stress in a model of hemorrhagic stroke. Lymphoid formations of the tracheal wall (an area near the bifurcation of the organ) were investigated in 98 male Wistar rats using histological methods. Significant changes in the cellular composition of lymphoid nodules were found. The pattern of changes depends on the stress resistance of rats and the period of the experiment. The active cell destruction in lymphoid nodules was noted both in stress resistant and stress susceptible animals. The changes in the structure of lymphoid nodules found in the experimental hemorrhagic stroke suggest a decrease in the local immune resistance, which is most pronounced in rats not resistant to stress, that may contribute to the development of severe inflammatory complications of stroke such as pneumonia.

  6. Florid reactive lymphoid hyperplasia (lymphoma-like lesion) of cervix: A diagnostically challenging case and a brief review of literature.

    PubMed

    Pai, Trupti; Menon, Santosh; Deodhar, Kedar; Shet, Tanuja

    2015-01-01

    Large lymphoid proliferations are usually regarded as synonymous with lymphomas. However, lymphoma-like lesions. (LLLs) of the cervix are amongst the exception. We report a 46-year-old woman who complained of irregular menses and was found to have superficial erosion in cervix, which on biopsy showed clusters of large atypical appearing lymphoid cells admixed with smaller reactive lymphoid cells. On immunohistochemistry, these large cells were strongly positive for CD20 and CD30 and the background cells were reactive to CD3. Based on the superficial nature of infiltrate and absence of a mass-forming lesion, a diagnosis of LLL of cervix was made. Despite a benign diagnosis, a hysterectomy was done on patient's insistence and only a focus of lymphoid cells similar to biopsy was seen on the operated specimen. Patient is free of disease on follow-up.

  7. Evidence of IL-17 producing innate lymphoid cells in peripheral blood from patients with enteropathic spondyloarthritis.

    PubMed

    Triggianese, Paola; Conigliaro, Paola; Chimenti, Maria Sole; Biancone, Livia; Monteleone, Giovanni; Perricone, Roberto; Monteleone, Ivan

    2016-01-01

    Both the innate and the adaptive immune responses contribute to the onset of chronic inflammation in spondyloarthritis (SpA). The association between SpA and inflammatory bowel disease (IBD, enteropathic SpA-ESpA) has been largely established and suggests a shared pathophysiology. There is evidence that innate lymphoid cells (ILC) are involved in the pathogenesis of both SpA and IBD while no evidence has been reported to date on ESpA. We aimed to analyse for the first time the frequency and cytokine expression of ILC in peripheral blood from ESpA patients compared with both IBD and healthy subjects. Correlations between immunophenotyping and disease activity were also explored. ESpA patients (n=20) were prospectively enrolled. Healthy controls (HC, n=10) and IBD patients (n=10) served as control groups. Peripheral blood Interferon (IFN)-γ and interleukin (IL)-17 expressing T and non-T cells as well as ILC subsets (ILC-1: IFN- γ +; ILC-3: IL-17+; natural killer-NK) were characterised by flowcytometry. Correlations between IL-17+ cells and SpA disease activity were analysed. ESpA patients showed higher levels of ROR-γ expressing non T-cells with the respect to the controls. IL-17 producing non-T cells were higher than the HC and positively correlated with IFN-γ expressing cells levels as well as with SpA disease activity. ESpA showed higher levels of ILC-1 and ILC-3 than both IBD and HC. IFN-γ expressing NK cells were higher in ESpA than HC. Our preliminary findings indicate that peripheral blood of ESpA patients is enriched for IL-17 expressing ILC which distinguishes the blood compartment from both IBD and HC. The increased IL-17 production by ILC indicates a novel role for ILC in ESpA.

  8. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    PubMed

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells.

    PubMed

    Penny, Hugo A; Hodge, Suzanne H; Hepworth, Matthew R

    2018-05-08

    The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.

  10. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies

    PubMed Central

    Sionov, Ronit Vogt

    2013-01-01

    The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance. PMID:23431463

  11. Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.

    PubMed

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2017-01-01

    The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.

  12. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function.

    PubMed

    Noval Rivas, Magali; Burton, Oliver T; Oettgen, Hans C; Chatila, Talal

    2016-09-01

    Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. We sought to investigate the role of ILC2s in food allergy. Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. IL-18 associated with lung lymphoid aggregates drives IFNγ production in severe COPD.

    PubMed

    Briend, Emmanuel; Ferguson, G John; Mori, Michiko; Damera, Gautam; Stephenson, Katherine; Karp, Natasha A; Sethi, Sanjay; Ward, Christine K; Sleeman, Matthew A; Erjefält, Jonas S; Finch, Donna K

    2017-08-22

    Increased interferon gamma (IFNγ) release occurs in Chronic Obstructive Pulmonary Disease (COPD) lungs. IFNγ supports optimal viral clearance, but if dysregulated could increase lung tissue destruction. The present study investigates which mediators most closely correlate with IFNγ in sputum in stable and exacerbating disease, and seeks to shed light on the spatial requirements for innate production of IFNγ, as reported in mouse lymph nodes, to observe whether such microenvironmental cellular organisation is relevant to IFNγ production in COPD lung. We show tertiary follicle formation in severe disease alters the dominant mechanistic drivers of IFNγ production, because cells producing interleukin-18, a key regulator of IFNγ, are highly associated with such structures. Interleukin-1 family cytokines correlated with IFNγ in COPD sputum. We observed that the primary source of IL-18 in COPD lungs was myeloid cells within lymphoid aggregates and IL-18 was increased in severe disease. IL-18 released from infected epithelium or from activated myeloid cells, was more dominant in driving IFNγ when IL-18-producing and responder cells were in close proximity. Unlike tight regulation to control infection spread in lymphoid organs, this local interface between IL-18-expressing and responder cell is increasingly supported in lung as disease progresses, increasing its potential to increase tissue damage via IFNγ.

  14. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets.

    PubMed

    Gross, Catharina C; Schulte-Mecklenbeck, Andreas; Hanning, Uta; Posevitz-Fejfár, Anita; Korsukewitz, Catharina; Schwab, Nicholas; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa

    2017-06-01

    Distinct lesion topography in relapsing-remitting multiple sclerosis (RRMS) might be due to different antigen presentation and/or trafficking routes of immune cells into the central nervous system (CNS). To investigate whether distinct lesion patterns in multiple sclerosis (MS) might be associated with a predominance of distinct circulating T-helper cell subset as well as their innate counterparts. Flow cytometric analysis of lymphocytes derived from the peripheral blood of patients with exclusively cerebral (n = 20) or predominantly spinal (n = 12) disease manifestation. Patients with exclusively cerebral or preferential spinal lesion manifestation were associated with increased proportions of circulating granulocyte-macrophage colony-stimulating factor (GM-CSF) producing T H 1 cells or interleukin (IL)-17-producing T H 17 cells, respectively. In contrast, proportions of peripheral IL-17/IL-22-producing lymphoid tissue inducer (LTi), the innate counterpart of T H 17 cells, were enhanced in RRMS patients with exclusively cerebral lesion topography. Distinct T-helper and T-helper-like innate lymphoid cell (ILC) subsets are associated with different lesion topography in RRMS.

  15. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis

    PubMed Central

    Hams, Emily; Bermingham, Rachel; Fallon, Padraic G.

    2015-01-01

    Fibrosis is a characteristic pathological feature of an array of chronic diseases, where development of fibrosis in tissue can lead to marked alterations in the architecture of the affected organs. As a result of this process of sustained attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a poor long-term prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity involved in both the initiation and regulation of the fibrotic process. In this review, we will focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an examination of the potential interplay between ILC and macrophages and the adaptive immune system. PMID:26635811

  16. Bioengineering of Artificial Lymphoid Organs.

    PubMed

    Nosenko, M A; Drutskaya, M S; Moisenovich, M M; Nedospasov, S A

    2016-01-01

    This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed.

  17. Role of innate lymphoid cells in obesity and metabolic disease

    PubMed Central

    Saetang, Jirakrit; Sangkhathat, Surasak

    2018-01-01

    The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti-obese immune regulators by secreting anti-inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon-γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity-associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions. PMID:29138853

  18. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue.

    PubMed

    Buggert, Marcus; Nguyen, Son; Salgado-Montes de Oca, Gonzalo; Bengsch, Bertram; Darko, Samuel; Ransier, Amy; Roberts, Emily R; Del Alcazar, Daniel; Brody, Irene Bukh; Vella, Laura A; Beura, Lalit; Wijeyesinghe, Sathi; Herati, Ramin S; Del Rio Estrada, Perla M; Ablanedo-Terrazas, Yuria; Kuri-Cervantes, Leticia; Sada Japp, Alberto; Manne, Sasikanth; Vartanian, Shant; Huffman, Austin; Sandberg, Johan K; Gostick, Emma; Nadolski, Gregory; Silvestri, Guido; Canaday, David H; Price, David A; Petrovas, Constantinos; Su, Laura F; Vahedi, Golnaz; Dori, Yoav; Frank, Ian; Itkin, Maxim G; Wherry, E John; Deeks, Steven G; Naji, Ali; Reyes-Terán, Gustavo; Masopust, David; Douek, Daniel C; Betts, Michael R

    2018-06-01

    Current paradigms of CD8 + T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8 + T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (T RMs ). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8 + T cells in LTs also resemble T RMs Moreover, high frequencies of HIV-specific CD8 + T RMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific T RMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-T RMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8 + T cell responses resident within LTs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Immune checkpoint blockade: the role of PD-1-PD-L axis in lymphoid malignancies

    PubMed Central

    Ilcus, Cristina; Bagacean, Cristina; Tempescul, Adrian; Popescu, Cristian; Parvu, Andrada; Cenariu, Mihai; Bocsan, Corina; Zdrenghea, Mihnea

    2017-01-01

    The co-inhibitory receptor programmed cell death (PD)-1, expressed by immune effector cells, is credited with a protective role for normal tissue during immune responses, by limiting the extent of effector activation. Its presently known ligands, programmed death ligands (PD-Ls) 1 and 2, are expressed by a variety of cells including cancer cells, suggesting a role for these molecules as an immune evasion mechanism. Blocking of the PD-1-PD-L signaling axis has recently been shown to be effective and was clinically approved in relapsed/refractory tumors such as malignant melanoma and lung cancer, but also classical Hodgkin’s lymphoma. A plethora of trials exploring PD-1 blockade in cancer are ongoing. Here, we review the role of PD-1 signaling in lymphoid malignancies, and the latest results of trials investigating PD-1 or PD-L1 blocking agents in this group of diseases. Early phase studies proved very promising, leading to the clinical approval of a PD-1 blocking agent in Hodgkin’s lymphoma, and Phase III clinical studies are either planned or ongoing in most lymphoid malignancies. PMID:28496333

  20. Bioengineering of Artificial Lymphoid Organs

    PubMed Central

    Nosenko, M. A.; Drutskaya, M. S.; Moisenovich, M. M.; Nedospasov, S. A.

    2016-01-01

    This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed. PMID:27437136

  1. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells.

    PubMed

    Satoh-Takayama, Naoko; Serafini, Nicolas; Verrier, Thomas; Rekiki, Abdessalem; Renauld, Jean-Christophe; Frankel, Gad; Di Santo, James P

    2014-11-20

    Interleukin-22 (IL-22) plays a critical role in mucosal defense, although the molecular mechanisms that ensure IL-22 tissue distribution remain poorly understood. We show that the CXCL16-CXCR6 chemokine-chemokine receptor axis regulated group 3 innate lymphoid cell (ILC3) diversity and function. CXCL16 was constitutively expressed by CX3CR1(+) intestinal dendritic cells (DCs) and coexpressed with IL-23 after Citrobacter rodentium infection. Intestinal ILC3s expressed CXCR6 and its ablation generated a selective loss of the NKp46(+) ILC3 subset, a depletion of intestinal IL-22, and the inability to control C. rodentium infection. CD4(+) ILC3s were unaffected by CXCR6 deficiency and remained clustered within lymphoid follicles. In contrast, the lamina propria of Cxcr6(-/-) mice was devoid of ILC3s. The loss of ILC3-dependent IL-22 epithelial stimulation reduced antimicrobial peptide expression that explained the sensitivity of Cxcr6(-/-) mice to C. rodentium. Our results delineate a critical CXCL16-CXCR6 crosstalk that coordinates the intestinal topography of IL-22 secretion required for mucosal defense. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection.

    PubMed

    Zhang, Z Q; Notermans, D W; Sedgewick, G; Cavert, W; Wietgrefe, S; Zupancic, M; Gebhard, K; Henry, K; Boies, L; Chen, Z; Jenkins, M; Mills, R; McDade, H; Goodwin, C; Schuwirth, C M; Danner, S A; Haase, A T

    1998-02-03

    Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1.

  3. Monoclonal Antibody Therapy Before Stem Cell Transplant in Treating Patients With Relapsed or Refractory Lymphoid Malignancies

    ClinicalTrials.gov

    2017-10-10

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  4. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  5. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor

    PubMed Central

    Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, JH David; Bottaro, Andrea

    2011-01-01

    Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g. T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. PMID:21309085

  6. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor.

    PubMed

    Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, J H David; Bottaro, Andrea

    2011-06-01

    Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. Copyright © 2011 Wiley Periodicals, Inc.

  7. A Proinflammatory Role of Type 2 Innate Lymphoid Cells in Murine Immune-Mediated Hepatitis.

    PubMed

    Neumann, Katrin; Karimi, Khalil; Meiners, Jana; Voetlause, Ruth; Steinmann, Silja; Dammermann, Werner; Lüth, Stefan; Asghari, Farahnaz; Wegscheid, Claudia; Horst, Andrea K; Tiegs, Gisa

    2017-01-01

    Type 2 innate lymphoid cells (ILC2) mediate inflammatory immune responses in the context of diseases triggered by the alarmin IL-33. In recent years, IL-33 has been implicated in the pathogenesis of immune-mediated liver diseases. However, the immunoregulatory function of ILC2s in the inflamed liver remains elusive. Using the murine model of Con A-induced immune-mediated hepatitis, we showed that selective expansion of ILC2s in the liver was associated with highly elevated hepatic IL-33 expression, severe liver inflammation, and infiltration of eosinophils. CD4 + T cell-mediated tissue damage and subsequent IL-33 release were responsible for the activation of hepatic ILC2s that produced the type 2 cytokines IL-5 and IL-13 during liver inflammation. Interestingly, ILC2 depletion correlated with less severe hepatitis and reduced accumulation of eosinophils in the liver, whereas adoptive transfer of hepatic ILC2s aggravated liver inflammation and tissue damage. We further showed that, despite expansion of hepatic ILC2s, 3-d IL-33 treatment before Con A challenge potently suppressed development of immune-mediated hepatitis. We found that IL-33 not only activated hepatic ILC2s but also expanded CD4 + Foxp3 + regulatory T cells (Treg) expressing the IL-33 receptor ST2 in the liver. This Treg subset also accumulated in the liver during resolution of immune-mediated hepatitis. In summary, hepatic ILC2s are poised to respond to the release of IL-33 upon liver tissue damage through expression of type 2 cytokines thereby participating in the pathogenesis of immune-mediated hepatitis. Inflammatory activity of ILC2s might be regulated by IL-33-elicited ST2 + Tregs that also arise in immune-mediated hepatitis. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system.

    PubMed

    Knop, E; Knop, N

    2001-03-01

    Mucosa-associated lymphoid tissue (MALT) specifically protects mucosal surfaces. In a previous study of the human conjunctiva, evidence was also found for the presence of MALT in the lacrimal sac. The present study, therefore, aims to investigate its morphology and topographical distribution in the human lacrimal drainage system. Lacrimal drainage systems (n = 51) obtained from human cadavers were investigated by clearing flat wholemounts or by serial sections of tissue embedded in paraffin, OCT compound, or epoxy resin. These were further analyzed by histology, immunohistochemistry, and electron microscopy. All specimens showed the presence of lymphocytes and plasma cells as a diffuse lymphoid tissue in the lamina propria, together with intraepithelial lymphocytes and occasional high endothelial venules (HEV). It formed a narrow layer along the canaliculi that became thicker in the cavernous parts. The majority of lymphocytes were T cells, whereas B cells were interspersed individually or formed follicular centers. T cells were positive for CD8 and the human mucosa lymphocyte antigen (HML-1). Most plasma cells were positive for IgA and the overlying epithelium expressed its transporter molecule secretory component (SC). Basal mucous glands were present in the lacrimal canaliculi and in the other parts accompanied by alveolar and acinar glands, all producing IgA-rich secretions. Primary and secondary lymphoid follicles possessing HEV were present in about half of the specimens. The term lacrimal drainage-associated lymphoid tissue (LDALT) is proposed here to describe the lymphoid tissue that is regularly present and belongs to the common mucosal immune system and to the secretory immune system. It is suggested that it may form a functional unit together with the lacrimal gland and conjunctiva, connected by tear flow, lymphocyte recirculation, and probably the neural reflex arc, and play a major role in preserving ocular surface integrity.

  9. Septic Shock Alters Mitochondrial Respiration of Lymphoid Cell-Lines and Human Peripheral Blood Mononuclear Cells: The Role of Plasma.

    PubMed

    Clere-Jehl, Raphael; Helms, Julie; Kassem, Mohamad; Le Borgne, Pierrick; Delabranche, Xavier; Charles, Anne-Laure; Geny, Bernard; Meziani, Ferhat; Bilbault, Pascal

    2018-02-14

    In septic shock patients, post-septic immunosuppression state following the systemic inflammatory response syndrome is responsible for nosocomial infections, with subsequent increased mortality. The aim of the present study was to assess the underlying cellular mechanisms of the post-septic immunosuppression state, by investigating mitochondrial functions of peripheral blood mononuclear cells (PBMCs) from septic shock patients over 7 days. Eighteen patients admitted to a French intensive care unit for septic shock were included. At days 1 and 7, PBMCs were isolated by Ficoll density gradient centrifugation. Mitochondrial respiration of intact septic PBMCs was assessed versus control group PBMCs, by measuring O2 consumption in plasma, using high-resolution respirometry. Mitochondrial respiration was then compared between septic plasmas and control plasmas for control PBMCs, septic PBMCs and lymphoid cell-line (CEM). To investigate the role of plasma, we measured several plasma cytokines, among them HMGB1, by ELISA. Basal O2 consumption of septic shock PBMCs was of 8.27 ± 3.39 and 10.48 ± 3.99 pmol/s/10 cells at days 1 and 7 respectively, significantly higher than in control PBMCs (5.37 ± 1.46 pmol/s/10 cells, p < 0.05). Septic patient PBMCs showed a lower response to oligomycin, suggesting a reduced ATP-synthase activity, as well as an increased response to FCCP suggesting an increased mitochondrial respiratory capacity. At 6 hours, septic plasmas showed a decreased O2 consumption of CEM (4.73 ± 1.46 vs. 6.58 ± 1.53, p < 0.05) as well as in control group PBMCs (1.76 ± 0.36 vs. 2.70 ± 0.42, p < 0.05), and triggered a decreased ATP-synthase activity but an increased response to FCCP. These differences are not explained by different cell survival. High HMGB1 levels were significantly associated with reduced PBMCs mitochondrial respiration. Septic plasma impairs mitochondrial respiration in immune cells, with a

  10. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, L.A.; Kurman, C.C.; Fritz, M.E.

    1985-11-01

    With the use of an enzyme-linked immunoabsorbent assay to measure soluble human interleukin 2 receptors (IL 2R), certain human T cell leukemia virus I (HTLV I)-positive T cell lines were found to spontaneously release large quantities of IL 2R into culture supernatants. This was not found with HTLV I-negative and IL 2 independent T cell lines, and only one of seven B cell-derived lines examined produced small amounts of IL 2R. In addition to this constitutive production of soluble IL 2R by certain cell lines, normal human peripheral blood mononuclear cells (PBMC) could be induced to release soluble IL 2Rmore » by plant lectins, the murine monoclonal antibody OKT3, tetanus toxoid, and allogeneic cells. Such activated cells also expressed cellular IL 2R measurable in detergent solubilized cell extracts. The generation of cellular and supernatant IL 2R was: dependent on cellular activation, rapid, radioresistant (3000 rad), and inhibited by cycloheximide treatment. NaDodSO4-polyacrylamide gel electrophoresis analysis of soluble IL 2R demonstrated molecules of apparent Mr = 35,000 to 40,000, and 45,000 to 50,000, respectively, somewhat smaller than the mature surface receptor on these cells. The release of soluble IL 2R appears to be a characteristic marker of T lymphocyte activation and might serve an immunoregulatory function during both normal and abnormal cell growth and differentiation.« less

  11. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    PubMed

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  12. Involvement of dominant-negative spliced variants of the intermediate conductance Ca2+-activated K+ channel, K(Ca)3.1, in immune function of lymphoid cells.

    PubMed

    Ohya, Susumu; Niwa, Satomi; Yanagi, Ayano; Fukuyo, Yuka; Yamamura, Hisao; Imaizumi, Yuji

    2011-05-13

    The intermediate conductance Ca(2+)-activated K(+) channel (IK(Ca) channel) encoded by K(Ca)3.1 is responsible for the control of proliferation and differentiation in various types of cells. We identified novel spliced variants of K(Ca)3.1 (human (h) K(Ca)3.1b) from the human thymus, which were lacking the N-terminal domains of the original hK(Ca)3.1a as a result of alternative splicing events. hK(Ca)3.1b was significantly expressed in human lymphoid tissues. Western blot analysis showed that hK(Ca)3.1a proteins were mainly expressed in the plasma membrane fraction, whereas hK(Ca)3.1b was in the cytoplasmic fraction. We also identified a similar N terminus lacking K(Ca)3.1 variants from mice and rat lymphoid tissues (mK(Ca)3.1b and rK(Ca)3.1b). In the HEK293 heterologous expression system, the cellular distribution of cyan fluorescent protein-tagged hK(Ca)3.1a and/or YFP-tagged hK(Ca)3.1b isoforms showed that hK(Ca)3.1b suppressed the localization of hK(Ca)3.1a to the plasma membrane. In the Xenopus oocyte translation system, co-expression of hK(Ca)3.1b with hK(Ca)3.1a suppressed IK(Ca) channel activity of hK(Ca)3.1a in a dominant-negative manner. In addition, this study indicated that up-regulation of mK(Ca)3.1b in mouse thymocytes differentiated CD4(+)CD8(+) phenotype thymocytes into CD4(-)CD8(-) ones and suppressed concanavalin-A-stimulated thymocyte growth by down-regulation of mIL-2 transcripts. Anti-proliferative effects and down-regulation of mIL-2 transcripts were also observed in mK(Ca)3.1b-overexpressing mouse thymocytes. These suggest that the N-terminal domain of K(Ca)3.1 is critical for channel trafficking to the plasma membrane and that the fine-tuning of IK(Ca) channel activity modulated through alternative splicing events may be related to the control in physiological and pathophysiological conditions in T-lymphocytes.

  13. KML001 and doxercalciferol induce synergistic antileukemic effect in acute lymphoid leukemia cells.

    PubMed

    Liu, Yang; Shin, Dong-Yeop; Oh, Somi; Kim, Sujong; Koh, Youngil; Kim, Inho

    2017-07-01

    KML001 (NaAsO2, sodium metaarsenite, KOMINOX), a kind of arsenic compound, that has shown promising efficacy in non-Hodgkin's lymphoma (NHL) both in vitro and in vivo. In our study, the antileukemic effect of KML001 on acute lymphoid leukemia (ALL) and its mechanism of action were investigated. The results showed that KML001 inhibited cell proliferation in two types of ALL cell lines, CCRF-CEM and Molt-4. Exposure of ALL cells to KML001 induced apoptosis in a time-dependent manner. KML001 caused cell cycle arrest at G2/M phase instead of G0/G1 phase shown in other leukemia cells. In addition, we also tested the possibility of synergy of KML001 with doxercalciferol, a vitamin D2 derivative. Also, we found that a combination of KML001 with doxercalciferol showed a synergistic effect on ALL cell lines and this could be due to its different mechanism of action. Overall, our findings demonstrated KML001 could be a promising antileukemic agent especially when it is combined with doxercalciferol in ALL treatment.

  14. Molecular changes associated with heat-shock treatment in avian mononuclear and lymphoid lineage cells.

    PubMed

    Miller, L; Qureshi, M A

    1992-03-01

    The induction of heat-shock protein (HSP) synthesis in avian cells of the mononuclear phagocytic system (MPS) and lymphoid system (LS) lineage was investigated by exposure to in vitro heat-shock conditions. In addition, the kinetics of HSP90 mRNA expression was examined in chicken peritoneal macrophages (PM) as well as heat-shock-induced HSP synthesis in PM from chickens, turkeys, quail, and ducks. Each MPS and LS cell type expressed three major (23, 70, and 90 kDa) HSP following a 1-h heat shock at 45 C. However, a unique heat-induced 32-kDa protein (P32) was expressed only by cells of MPS lineage. The expression of HSP90 mRNA in chicken PM was temperature- and time-dependent. These findings imply that avian PM undergo molecular changes in response to elevated environmental temperatures and that the pattern of HSP expression appears to be distinct for cells of the MPS and LS lineages in chickens.

  15. Pro-Apoptotic Activity of New Honokiol/Triphenylmethane Analogues in B-Cell Lymphoid Malignancies.

    PubMed

    Mędra, Aleksandra; Witkowska, Magdalena; Majchrzak, Agata; Cebula-Obrzut, Barbara; Bonner, Michael Y; Robak, Tadeusz; Arbiser, Jack L; Smolewski, Piotr

    2016-07-30

    Honokiol and triphenylmethanes are small molecules with anti-tumor properties. Recently, we synthesized new honokiol analogues (HAs) that possess common features of both groups. We assessed the anti-tumor effectiveness of HAs in B-cell leukemia/lymphoma cells, namely in chronic lymphocytic leukemia (CLL) cells ex vivo and in pre-B-cell acute lymphoblastic leukemia (Nalm-6), Burkitt lymphoma (BL; Raji), diffuse large B-cell lymphoma (DLBCL; Toledo) and multiple myeloma (MM; RPMI 8226) cell lines. Four of these compounds appeared to be significantly active against the majority of cells examined, with no significant impact on healthy lymphocytes. These active HAs induced caspase-dependent apoptosis, causing significant deregulation of several apoptosis-regulating proteins. Overall, these compounds downregulated Bcl-2 and XIAP and upregulated Bax, Bak and survivin proteins. In conclusion, some of the HAs are potent tumor-selective inducers of apoptosis in ex vivo CLL and in BL, DLBCL and MM cells in vitro. Further preclinical studies of these agents are recommended.

  16. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    PubMed

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  17. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.

    PubMed

    Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.

  18. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    PubMed

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  19. BCG vaccination drives accumulation and effector function of innate lymphoid cells in murine lungs.

    PubMed

    Steigler, Pia; Daniels, Naomi J; McCulloch, Tim R; Ryder, Brin M; Sandford, Sarah K; Kirman, Joanna R

    2018-04-01

    The tuberculosis (TB) vaccine bacille Calmette-Guérin (BCG) prevents disseminated childhood TB; however, it fails to protect against the more prevalent pulmonary TB. Limited understanding of the immune response to Mycobacterium tuberculosis, the causative agent of TB, has hindered development of improved vaccines. Although memory CD4 T cells are considered the main mediators of protection against TB, recent studies suggest there are other key subsets that contribute to antimycobacterial immunity. To that end, innate cells may be involved in the protective response. In this study, we investigated the primary response of innate lymphoid cells (ILCs) to BCG exposure. Using a murine model, we showed that ILCs increased in number in the lungs and lymph nodes in response to BCG vaccination. Additionally, there was significant production of the antimycobacterial cytokine IFN-γ by ILCs. As ILCs are located at mucosal sites, it was investigated whether mucosal vaccination (intranasal) stimulated an enhanced response compared to the traditional vaccination approach (intradermal or subcutaneous). Indeed, in response to intranasal vaccination, the number of ILCs, and IFN-γ production in NK cells and ILC1s in the lungs and lymph nodes, were higher than that provoked through intradermal or subcutaneous vaccination. This work provides the first evidence that BCG vaccination activates ILCs, paving the way for future research to elucidate the protective potential of ILCs against mycobacterial infection. Additionally, the finding that lung ILCs respond rigorously to mucosal vaccination may have implications for the delivery of novel TB vaccines. © 2018 Australasian Society for Immunology Inc.

  20. Bystander CD4+ T lymphocytes survive in HIV-infected human lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Grivel, Jean-Charles; Biancotto, Angelique; Ito, Yoshinori; Lima, Rosangela G.; Margolis, Leonid B.

    2003-01-01

    HIV infection is associated with depletion of CD4(+) T cells. The mechanisms of this phenomenon remain to be understood. In particular, it remains controversial whether and to what extent uninfected ("bystander") CD4(+) T cells die in HIV-infected individuals. We address this question using a system of human lymphoid tissue ex vivo. Tissue blocks were inoculated with HIV-1. After productive infection was established, they were treated with the reverse transcriptase inhibitor nevirapine to protect from infection those CD4(+) T cells that had not yet been infected. These CD4(+) T cells residing in HIV-infected tissue are by definition bystanders. Our results demonstrate that after nevirapine application the number of bystander CD4(+) T cells is conserved. Thus, in the context of HIV-infected human lymphoid tissue, productive HIV infection kills infected cells but is not sufficient to cause the death of a significant number of uninfected CD4(+) T cells.

  1. Florid reactive lymphoid hyperplasia of terminal ileum.

    PubMed

    Kanakala, Venkatesh; Birch, Peter; Kasaraneni, Ramesh

    2010-01-01

    Florid lymphoid hyperplasia in the terminal ileum can present to surgeons as an acute abdominal pain. Only few cases were reported in the literature. Our case illustrates that a rare case of florid lymphoid hyperplasia can present to surgeons as acute appendicitis. During the operation the gross appearance may mimic Crohn's disease. A limited resection is sufficient to clinch the diagnosis of florid lymphoid hyperplasia / Crohn's disease. In florid lymphoid hyperplasia limited resection may be curative.

  2. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection

    PubMed Central

    Zhang, Zhi-Qiang; Notermans, Daan W.; Sedgewick, Gerald; Cavert, Winston; Wietgrefe, Stephen; Zupancic, Mary; Gebhard, Kristin; Henry, Keith; Boies, Lawrence; Chen, Zongming; Jenkins, Marc; Mills, Roger; McDade, Hugh; Goodwin, Carolyn; Schuwirth, Caspar M.; Danner, Sven A.; Haase, Ashley T.

    1998-01-01

    Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1. PMID:9448301

  3. Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues

    PubMed Central

    Rhee, Ki-Jong; Jasper, Paul J.; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L.

    2005-01-01

    Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express VHn allotype immunoglobulin (Ig)M. Within weeks, the number of VHn B cells decreases, whereas VHa allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from VHn to VHa B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the VHn to VHa repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of VHa B cells. By comparing amino acid sequences of VHn and VHa Ig, we identified a putative VH ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with VHa B cells results in their selective expansion. PMID:15623575

  4. Vancomycin pre-treatment impairs tissue healing in experimental colitis: Importance of innate lymphoid cells.

    PubMed

    Zhao, Di; Cai, Chenwen; Zheng, Qing; Jin, Shuang; Song, Dongjuan; Shen, Jun; Ran, Zhihua

    2017-01-29

    The interplay between luminal microbes and innate immunity during colonic epithelial repair has been well noted. At the same time, antibiotic has widely been used during flare-ups of ulcerative colitis. The possible effects of luminal microbiota disruption caused by antibiotics usage on epithelial repairing have been scarcely discussed. Innate lymphoid cells (ILCs) embedded in the lamina propria can be modulated by gut microbes, resulting in altered colonic IL-22/pSTAT3 levels, which is considered a prominent molecular axis in tissue repairing after epithelium damage. This study aimed to investigate whether antibiotics could interfere with ILCs-dependent tissue repair. Dextran sodium sulfate (DSS)-induced colitis was established in mice pre-treated with reagent of different antibiotic spectrum. Both morphological and molecular markers of tissue repair after DSS cessation were detected. ILCs population and function status were also recorded. Further attention was paid to the response of dendritic cells after antibiotics treatment, which were claimed to regulate colonic ILC3s in an IL-23 dependent way. Using of vancomycin resulted in delayed tissue repairing after experimental colitis. Both colonic IL-22/pSTAT3 axis and ILC3 population were found decreased in this situation. Vancomycin treatment diminished the upstream IL-23 and producer dendritic cell population. The reduced dendritic cell number may due to inadequate chemokines and colony-stimulating factors supply. Presence of vancomycin-sensitive microbiota is required for the maturation of ILC3-activating dendritic cells hence maintain the sufficient IL-22/pSTAT3 level in the colon during tissue healing. Manipulation of colonic microbiota may help achieve colonic mucosal healing post inflammation and injury. Copyright © 2016. Published by Elsevier Inc.

  5. Florid reactive lymphoid hyperplasia of terminal ileum

    PubMed Central

    Kanakala, Venkatesh; Birch, Peter; Kasaraneni, Ramesh

    2010-01-01

    Florid lymphoid hyperplasia in the terminal ileum can present to surgeons as an acute abdominal pain. Only few cases were reported in the literature. Our case illustrates that a rare case of florid lymphoid hyperplasia can present to surgeons as acute appendicitis. During the operation the gross appearance may mimic Crohn’s disease. A limited resection is sufficient to clinch the diagnosis of florid lymphoid hyperplasia / Crohn’s disease. In florid lymphoid hyperplasia limited resection may be curative. PMID:22242075

  6. Defective Hematopoietic Stem Cell and Lymphoid Progenitor Development in the Ts65Dn Mouse Model of Down Syndrome: Potential Role of Oxidative Stress

    PubMed Central

    Lorenzo, Laureanne Pilar E.; Chen, Haiyan; Shatynski, Kristen E.; Clark, Sarah; Yuan, Rong; Harrison, David E.; Yarowsky, Paul J.

    2011-01-01

    Abstract Aims Down Syndrome (DS), a genetic disease caused by a triplication of chromosome 21, is characterized by increased markers of oxidative stress. In addition to cognitive defects, patients with DS also display hematologic disorders and increased incidence of infections and leukemia. Using the Ts65Dn mouse model of DS, the goal of this study was to examine hematopoietic stem and lymphoid progenitor cell function in DS. Results Analysis of hematopoietic progenitor populations showed that Ts65Dn mice possessed fewer functional hematopoietic stem cells and a significantly decreased percentage of bone marrow lymphoid progenitors. Increased reactive oxygen species and markers of oxidative stress were detected in hematopoietic stem cell populations and were associated with a loss of quiescence. Bone marrow progenitor populations expressed diminished levels of the IL-7Rα chain, which was associated with decreased proliferation and increased apoptosis. Modulating oxidative stress in vitro suggested that oxidative stress selectively leads to decreased IL-7Rα expression, and inhibits the survival of IL-7Rα-expressing hematopoietic progenitors, potentially linking increased reactive oxygen species and immunopathology. Innovation The study results identify a link between oxidative stress and diminished IL-7Rα expression and function. Further, the data suggest that this decrease in IL-7Rα is associated with defective hematopoietic development in Down Syndrome. Conclusion The data suggest that hematopoietic stem and lymphoid progenitor cell defects underlie immune dysfunction in DS and that increased oxidative stress and reduced cytokine signaling may alter hematologic development in Ts65Dn mice. Antioxid. Redox Signal. 15, 2083–2094. PMID:21504363

  7. STUDIES ON TRANSMISSIBLE LYMPHOID LEUCEMIA OF MICE.

    PubMed

    Furth, J; Strumia, M

    1931-04-30

    Lymphoid leucemia of the mouse is readily transmitted by intravenous inoculations. The majority of the mice inoculated successfully develop leucemic, a smaller number of them, aleucemic lymphadenosis. The data presented favor the view that leucemic and aleucemic lymphadenosis are essentially the same condition. Leucemia produced by transmission is preceded by an aleucemic stage, in which the lymph nodes and the spleen are uniformly enlarged, and the white blood count and the percentage of lymphocytes are within the normal range but immature lymphocytes are numerous in the circulating blood. Young as well as old mice may develop leucemia if leucotic material enters their circulation. Studies of transmissible leucemia favor the view that leucemia of mammals is a neoplastic disease. The basic problem of leucemia would seem to be determination of the factors that bring about a malignant transformation of lymphoid cells.

  8. STUDIES ON TRANSMISSIBLE LYMPHOID LEUCEMIA OF MICE

    PubMed Central

    Furth, J.; Strumia, M.

    1931-01-01

    Lymphoid leucemia of the mouse is readily transmitted by intravenous inoculations. The majority of the mice inoculated successfully develop leucemic, a smaller number of them, aleucemic lymphadenosis. The data presented favor the view that leucemic and aleucemic lymphadenosis are essentially the same condition. Leucemia produced by transmission is preceded by an aleucemic stage, in which the lymph nodes and the spleen are uniformly enlarged, and the white blood count and the percentage of lymphocytes are within the normal range but immature lymphocytes are numerous in the circulating blood. Young as well as old mice may develop leucemia if leucotic material enters their circulation. Studies of transmissible leucemia favor the view that leucemia of mammals is a neoplastic disease. The basic problem of leucemia would seem to be determination of the factors that bring about a malignant transformation of lymphoid cells. PMID:19869876

  9. Development of IL-22-producing NK lineage cells from umbilical cord blood hematopoietic stem cells in the absence of secondary lymphoid tissue.

    PubMed

    Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R; Miller, Jeffery S; Verneris, Michael R

    2011-04-14

    Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)-producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56(+)CD117(high)CD94(-) phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22-producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials.

  10. Vaginal Immunization to Elicit Primary T-Cell Activation and Dissemination

    PubMed Central

    Pettini, Elena; Prota, Gennaro; Ciabattini, Annalisa; Boianelli, Alessandro; Fiorino, Fabio; Pozzi, Gianni; Vicino, Antonio; Medaglini, Donata

    2013-01-01

    Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs. PMID:24349003

  11. Migration of antigen-presenting B cells from peripheral to mucosal lymphoid tissues may induce intestinal antigen-specific IgA following parenteral immunization.

    PubMed

    Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A

    1999-09-15

    Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.

  12. Virus replication cycle of white spot syndrome virus in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei.

    PubMed

    Li, Wenfeng; Desmarets, Lowiese M B; De Gryse, Gaëtan M A; Theuns, Sebastiaan; Van Tuan, Vo; Van Thuong, Khuong; Bossier, Peter; Nauwynck, Hans J

    2015-09-01

    The replication cycle of white spot syndrome virus (WSSV) was investigated in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei. The secondary cells formed a confluent monolayer at 24 h post-reseeding, and this monolayer could be maintained for 10 days with a viability of 90 %. Binding of WSSV to cells reached a maximum (73 ± 3 % of cells and 4.84 ± 0.2 virus particles per virus-binding cell) at 120 min at 4 °C. WSSV entered cells by endocytosis. The co-localization of WSSV and early endosomes was observed starting from 30 min post-inoculation (p.i.). Double indirect immunofluorescence staining showed that all cell-bound WSSV particles entered these cells in the period between 0 and 60 min p.i. and that the uncoating of WSSV occurred in the same period. After 1 h inoculation at 27 °C, the WSSV nucleocapsid protein VP664 and envelope protein VP28 started to be synthesized in the cytoplasm from 1 and 3 h p.i., and were transported into nuclei from 3 and 6 h p.i., respectively. The percentage of cells that were VP664- and VP28-positive in their nuclei peaked (50 ± 4 %) at 12 h p.i. Quantitative PCR showed that WSSV DNA started to be synthesized from 6 h p.i. In vivo titration of the supernatants showed that the progeny WSSV were released from 12 h p.i. and peaked at 18 h p.i. In conclusion, the secondary cell cultures from the lymphoid organ were proven to be ideal for examination of the replication cycle of WSSV.

  13. Innate Lymphoid Cells in Intestinal Inflammation

    PubMed Central

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  14. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets

    PubMed Central

    2017-01-01

    CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089

  15. Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models

    PubMed Central

    Robinet, Marieke; Villeret, Bérengère; Maillard, Solène; Cron, Mélanie A.; Berrih-Aknin, Sonia; Le Panse, Rozen

    2017-01-01

    Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. MG symptoms are characterized by muscle weaknesses. The thymus of MG patients is very often abnormal and possesses all the characteristics of tertiary lymphoid organs such as neoangiogenesis processes, overexpression of inflammatory cytokines and chemokines, and infiltration of B lymphocytes leading to ectopic germinal center (GC) development. We previously demonstrated that injections of mice with polyinosinic–polycytidylic acid [Poly(I:C)], a synthetic double-stranded RNA mimicking viral infection, induce thymic changes and trigger MG symptoms. Upon Poly(I:C) injections, we observed increased thymic expressions of α-AChR, interferon-β and chemokines such as CXCL13 and CCL21 leading to B-cell recruitment. However, these changes were only transient. In order to develop an experimental MG model associated with thymic GCs, we used Poly(I:C) in the classical experimental autoimmune MG model induced by immunizations with purified AChR emulsified in complete Freund’s adjuvant. We observed that Poly(I:C) strongly favored the development of MG as almost all mice displayed MG symptoms. Nevertheless, we did not observe any ectopic GC development. We next challenged mice with Poly(I:C) together with other toll-like receptor (TLR) agonists known to be involved in GC development and that are overexpressed in MG thymuses. Imiquimod and CpG oligodeoxynucleotides that activate TLR7 and TLR9, respectively, did not induce thymic changes. In contrast, lipopolysaccharide that activates TLR4 potentiated Poly(I:C) effects and induced a significant expression of CXCL13 mRNA in the thymus associated with a higher recruitment of B cells that induced over time thymic B-lymphoid structures. Altogether, these data suggest that tertiary lymphoid genesis in MG thymus could result from a combined activation of TLR signaling pathways. PMID

  16. Association of T-Zone Reticular Networks and Conduits with Ectopic Lymphoid Tissues in Mice and Humans

    PubMed Central

    Link, Alexander; Hardie, Debbie L.; Favre, Stéphanie; Britschgi, Mirjam R.; Adams, David H.; Sixt, Michael; Cyster, Jason G.; Buckley, Christopher D.; Luther, Sanjiv A.

    2011-01-01

    Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node–like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin+ T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell–rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter–CXCL13–transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell–rich zone. PMID:21435450

  17. Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer.

    PubMed

    Bergmann, Hanna; Roth, Susanne; Pechloff, Konstanze; Kiss, Elina A; Kuhn, Sabine; Heikenwälder, Mathias; Diefenbach, Andreas; Greten, Florian R; Ruland, Jürgen

    2017-08-01

    Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell-specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL-1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis-associated cancer (CAC) model. Card9 -/- mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL-1β generation and defective IL-1β controlled IL-22 production from group 3 innate lymphoid cells. Consistent with the key role of immune-derived IL-22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9 -/- mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9-controlled, ILC3-mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9-mediated innate immunity in inflammation-associated carcinogenesis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues.

    PubMed

    Rhee, Ki-Jong; Jasper, Paul J; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L

    2005-01-03

    Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express V(H)n allotype immunoglobulin (Ig)M. Within weeks, the number of V(H)n B cells decreases, whereas V(H)a allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from V(H)n to V(H)a B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the V(H)n to V(H)a repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of V(H)a B cells. By comparing amino acid sequences of V(H)n and V(H)a Ig, we identified a putative V(H) ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with V(H)a B cells results in their selective expansion.

  19. Isolation and analysis of group 2 innate lymphoid cells in mice.

    PubMed

    Moro, Kazuyo; Ealey, Kafi N; Kabata, Hiroki; Koyasu, Shigeo

    2015-05-01

    Recent studies have identified distinct subsets of innate lymphocytes, collectively called innate lymphoid cells (ILCs), which lack antigen receptor expression but produce various effector cytokines. Group 2 ILCs (ILC2s) respond to epithelial cell-derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), produce large amounts of type 2 cytokines, and have a key role in anti-helminth innate immunity and in the pathophysiology of allergic inflammation. The reported phenotypic characteristics of mouse ILC2s vary, depending on the tissue source and preparation method. This protocol describes improved methods for tissue-specific isolation and analysis of mouse ILC2s of high purity and yield from fat tissue, lung, bronchoalveolar lavage fluid (BALF) and small intestine. These improved methods are the result of our thorough investigation of enzymes used for tissue digestion, methods for the elimination of undesired cells, and a combination of antibodies for the detection and isolation of ILC2s. In addition, this new protocol now enables the isolation of ILC2s of high yield, even from inflamed tissues. Depending on the tissue being analyzed, it takes ∼2-4 h for isolation and flow cytometric analysis of ILC2s from the various tissues of a single mouse and ∼4-8 h to sort purified ILC2s from pooled tissues of multiple mice.

  20. Innate lymphoid cells in asthma: Will they take your breath away?

    PubMed Central

    Kim, Hye Young; Umetsu, Dale. T.; Dekruyff, Rosemarie H.

    2016-01-01

    Asthma is a complex and heterogeneous disease that is characterized by airway hyperreactivity (AHR) and airway inflammation. Although asthma was long thought to be driven by allergen-reactive Th2 cells, it has recently become clear that the pathogenesis of asthma is more complicated and associated with multiple pathways and cell types. A very exciting recent development was the discovery of innate lymphoid cells (ILCs) as key players in the pathogenesis of asthma. ILCs do not express antigen receptors but react promptly to “danger signals” from inflamed tissue and produce an array of cytokines that direct the ensuing immune response. The roles of ILCs may differ in distinct asthma phenotypes. ILC2s may be critical for initiation of adaptive immune responses in inhaled allergen-driven AHR, but may also function independently of adaptive immunity, mediating influenza-induced AHR. ILC2s also contribute to resolution of lung inflammation through their production of amphiregulin. Obesity-induced asthma, is associated with expansion of IL-17A-producing ILC3s in the lungs. Furthermore, ILCs may also contribute to steroid-resistant asthma. Although the precise roles of ILCs in different types of asthma are still under investigation, it is clear that inhibition of ILC function represents a potential target that could provide novel treatments for asthma. PMID:26891006

  1. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    PubMed

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  2. Development of IL-22–producing NK lineage cells from umbilical cord blood hematopoietic stem cells in the absence of secondary lymphoid tissue

    PubMed Central

    Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R.; Miller, Jeffery S.

    2011-01-01

    Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)–producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56+CD117highCD94− phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22–producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials. PMID:21310921

  3. Identification of Cytological Features Distinguishing Mucosa-Associated Lymphoid Tissue Lymphoma from Reactive Lymphoid Proliferation Using Thyroid Liquid-Based Cytology

    PubMed Central

    Suzuki, Ayana; Hirokawa, Mitsuyoshi; Ito, Aki; Takada, Nami; Higuchi, Miyoko; Hayashi, Toshitetsu; Kuma, Seiji; Miyauchi, Akira

    2018-01-01

    Objective To identify cytological differences between mucosa-associated lymphoid tissue lymphoma (MALT-L) and nonneoplastic lymphocytes using thyroid liquid-based cytology (LBC). Study Design We observed LBC and conventional specimens from 35 MALT-L cases, 3 diffuse large B-cell cell lymphoma (DLBCL) cases, and 44 prominent nonneoplastic lymphocytic infiltration cases. Results In MALT-L cases, the incidence of lymphoglandular bodies in the LBC specimens was lower than that in the conventional specimens (p < 0.001). Moreover, the nuclear sizes in LBC specimens were larger than those in conventional specimens. In 62.9% of the MALT-L and all DLBCL specimens, large nuclei were present in > 10% of the lymphoid cells in LBC specimens. Two cases with prominent nonneoplastic lymphocytic infiltration also exhibited these findings. In LBC specimens, swollen naked nuclei with less punctate chromatin patterns and thin nuclear margins were observed in 92.1% of lymphoma and 20.5% of prominent nonneoplastic lymphocytic infiltration. Elongated nuclei were significantly more apparent in thyroid lymphoma than in prominent nonneoplastic lymphocytic infiltration (p < 0.001), with a significantly higher incidence in LBC specimens than in conventional specimens (p < 0.001). Conclusions Lymphoglandular bodies are not reliable markers for lymphoma diagnosis using LBC specimens. Large, swollen naked, and elongated nuclei are useful in distinguishing thyroid lymphoma from nonneoplastic lymphocytes in LBC specimens. PMID:29597203

  4. B cells in tertiary lymphoid structures are associated with favorable prognosis in gastric cancer.

    PubMed

    Sakimura, Chie; Tanaka, Hiroaki; Okuno, Takahiro; Hiramatsu, Soichiro; Muguruma, Kazuya; Hirakawa, Kosei; Wanibuchi, Hideki; Ohira, Masaichi

    2017-07-01

    The role of tumor-infiltrating B cells in the tumor microenvironment is still unclear. Recent studies have reported that B cells and tertiary lymphoid structures (TLSs) that contain B cell follicles correlate with the favorable prognosis of cancer patients. The aim of this study was to investigate the association between tumor-infiltrating B cells and clinicopathological features in gastric cancer. Tumor blocks were obtained from 226 patients with stage Ib to stage IV gastric cancer. The density of CD20 + B cells within the tumor and in the invasive margin area was assessed using immunohistochemistry. We also evaluated CD3 + T cells, CD21 + follicular dendritic cells, Bcl6 + germinal center B cells, and PNAd + high endothelial venules to show the presence of TLSs. Tumor-infiltrating B cells were mostly organized as clusters that were surrounded by CD3 + T cells. The B cell area contained follicular dendritic cells and some clusters contained Bcl6 + B cells. High endothelial venules were present around follicles. We identified these follicles as TLSs. A high number of CD20 + B cells were associated with significantly better overall survival, and multivariate analysis also showed that CD20 high was one of the independent predictors of prognosis. In addition, there was a significant correlation between CD20 + B cell and CD8 + T cell infiltration. B cells mostly infiltrated tumors as TLSs and were associated with better prognosis in patients with gastric cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease

    PubMed Central

    Stojanovic, Ana; Correia, Margareta P.; Cerwenka, Adelheid

    2018-01-01

    Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases. PMID:29740438

  6. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity.

    PubMed

    Woll, Petter S; Martin, Colin H; Miller, Jeffrey S; Kaufman, Dan S

    2005-10-15

    Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.

  7. Regulation of IgE-Mediated Food Allergy by IL-9 Producing Mucosal Mast Cells and Type 2 Innate Lymphoid Cells.

    PubMed

    Lee, Jee-Boong

    2016-08-01

    Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.

  8. Expression of lymphocyte antigenic determinants in developing gut-associated lymphoid tissue of the sea bass Dicentrarchus labrax (L.).

    PubMed

    Picchietti, S; Terribili, F R; Mastrolia, L; Scapigliati, G; Abelli, L

    1997-12-01

    The monoclonal antibodies DLT15 and DLIg3, which recognize antigenic determinants expressed by T cells and Ig-bearing cells, respectively, allowed the development of gut-associated lymphoid tissue of the teleost fish Dicentrarchus labrax (L.) to be studied. DLT15-immunoreactive cells were first detected in the epithelium of the stomach and intestine at day 30 post-hatching of fish maintained at 16 degrees C. At that age, positive cells were found only in the thymus. Between day 44 and day 81 post-hatching, DLT15-immunoreactive cells became numerous, both in and under the gut epithelium. A gradient in the number of lymphocytes was present, concentrating them towards the anus. Until day 81 post-hatching, DLIg3-immunoreactive cells were not found in the gut, although they were present in the kidney, spleen and thymus earlier. Infrequent Ig-bearing cells were found in the gut mucosa of -year-old sea bass. This study showed that the gut-associated lymphoid tissue developed earlier than other lymphoid compartments. It also provided evidence of the predominance of T cells in the gut immune system of the sea bass.

  9. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas

    PubMed Central

    Pereira, Marta-Isabel; Medeiros, José Augusto

    2014-01-01

    Mucosa-associated lymphoid tissue (MALT) lymphoma is an indolent extranodal marginal zone B-cell lymphoma, originating in acquired MALT that is induced in mucosal barriers as part of a normal adaptive immune response to a chronic immunoinflammatory stimulus, most notably chronic infection by Helicobacter pylori (H. pylori). This antigenic stimulation initially leads to lymphoid hyperplasia; the acquisition of additional genetic aberrations culminates in the activation of intracellular survival pathways, with disease progression due to proliferation and resistance to apoptosis, and the emergence of a malignant clone. There are descriptions of MALT lymphomas affecting practically every organ and system, with a marked geographic variability partially attributable to the epidemiology of the underlying risk factors; nevertheless, the digestive system (and predominantly the stomach) is the most frequently involved location, reflecting the gastrointestinal tract’s unique characteristics of contact with foreign antigens, high mucosal permeability, large extension and intrinsic lymphoid system. While early-stage gastric MALT lymphoma can frequently regress after the therapeutic reversal of the chronic immune stimulus through antibiotic eradication of H. pylori infection, the presence of immortalizing genetic abnormalities, of advanced disease or of eradication-refractoriness requires a more aggressive approach which is, presently, not consensual. The fact that MALT lymphomas are rare neoplasms, with a worldwide incidence of 1-1.5 cases per 105 population, per year, limits the ease of accrual of representative series of patients for robust clinical trials that could sustain informed evidence-based therapeutic decisions to optimize the quality of patient care. PMID:24574742

  10. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.

    PubMed

    Moriyama, Saya; Brestoff, Jonathan R; Flamar, Anne-Laure; Moeller, Jesper B; Klose, Christoph S N; Rankin, Lucille C; Yudanin, Naomi A; Monticelli, Laurel A; Putzel, Gregory Garbès; Rodewald, Hans-Reimer; Artis, David

    2018-03-02

    The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β 2 -adrenergic receptor (β 2 AR) and colocalize with adrenergic neurons in the intestine. β 2 AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β 2 AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β 2 AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. IL-17 producing innate lymphoid cells 3 (ILC3) but not Th17 cells might be the potential danger factor for preeclampsia and other pregnancy associated diseases.

    PubMed

    Barnie, Prince A; Lin, Xin; Liu, Yueqin; Xu, Huaxi; Su, Zhaoliang

    2015-01-01

    In pregnancy, the immunologic system plays an important role that ensures normal pregnancy development and can as well promote the development of complications. Pregnancy success appears to rely on a discrete balance between the Th cytokines, which are involved in fetal growth and development. Preeclampsia and gestational diabetes are known complications associated with pregnancy. However, the source of the increased IL-17 cytokine in preeclampsia and other pregnancy associated diseases still remains unclear amidst numerous inconsistencies. The recent identification of innate lymphoid cells (ILC) has raised more doubts about the sources of most of the Th associated cytokines. We investigated the source of peripheral IL-17 levels in preeclamptic, gestational diabetics and chronic diabetics compared to healthy pregnancy subjects. To evaluate the source of the increased IL-17 cytokine among preeclampsia, chronic diabetic and gestational diabetic patients we investigated the proportion of Th17 cell populations in peripheral blood mononuclear cells using flow cytometry as well as analyzing levels of IFN-γ, IL-17, IL-1β and HMGB1. This study found that the Th17 cell populations in peripheral blood of preeclamptic, gestational nor chronic diabetes during pregnancy did not correlate with the increased IL-17. We report that the increased IL-17 levels observed in patients with preeclampsia, gestational diabetes and chronic diabetes are associated with innate lymphoid cells 3 (ILC3) and may pose threats to the fetus if disregulated.

  12. Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma.

    PubMed

    Chen, Ruchong; Smith, Steven G; Salter, Brittany; El-Gammal, Amani; Oliveria, John Paul; Obminski, Caitlin; Watson, Rick; O'Byrne, Paul M; Gauvreau, Gail M; Sehmi, Roma

    2017-09-15

    Group 2 innate lymphoid cells (ILC2), a major source of type 2 cytokines, initiate eosinophilic inflammatory responses in murine models of asthma. To investigate the role of ILC2 in allergen-induced airway eosinophilic responses in subjects with atopy and asthma. Using a diluent-controlled allergen challenge crossover study, where all subjects (n = 10) developed allergen-induced early and late responses, airway eosinophilia, and increased methacholine airway responsiveness, bone marrow, blood, and sputum samples were collected before and after inhalation challenge. ILC2 (lin - FcεRI - CD45 + CD127 + ST2 + ) and CD4 + T lymphocytes were enumerated by flow cytometry, as well as intracellular IL-5 and IL-13 expression. Steroid sensitivity of ILC2 and CD4 + T cells was investigated in vitro. A significant increase in total, IL-5 + , IL-13 + , and CRTH2 + ILC2 was found in sputum, 24 hours after allergen, coincident with a significant decrease in blood ILC2. Total, IL-5 + , and IL-13 + , but not CRTH2 + , CD4 + T cells significantly increased at 24 and 48 hours after allergen in sputum. In blood and bone marrow, only CD4 + cells demonstrated increased activation after allergen. Airway eosinophilia correlated with IL-5 + ILC2 at all time points and allergen-induced changes in IL-5 + CD4 + cells at 48 hours after allergen. Dexamethasone significantly attenuated IL-2- and IL-33-stimulated IL-5 and IL-13 production by both cell types. Innate and adaptive immune cells are increased in the airways associated with allergic asthmatic responses. Total and type 2 cytokine-positive ILC2 are increased only within the airways, whereas CD4 + T lymphocytes demonstrated local and systemic increases. Steroid sensitivity of both cells may explain effectiveness of this therapy in those with mild asthma.

  13. Identification and characterization of B cell precursors in rat lymphoid tissues. I. Adoptive transfer assays for precursors of TI-1, TI-2, and TD antigen-reactive B cells.

    PubMed

    Whalen, B J; Goldschneider, I

    1993-10-01

    Quantitative adoptive transfer assays were developed to detect the precursors of TI-1, TI-2, and TD antigen-reactive B cells in rat lymphoid tissues. Studies on the immune responses in normal and athymic nude rats validate the use of TNP-lipopolysaccharide as a TI-1 antigen, TNP-Ficoll as a TI-2 antigen, and SRBC as a TD antigen in rats. The precursors to these immunologically competent B cells are detected, following transfer into irradiated histocompatible recipients, by their ability to generate expanded populations of antigen-reactive B cells capable of mounting antibody responses (splenic IgM plaque-forming cells) to these antigens. Maximal numbers of antigen-reactive B cells emerge in antigenically naive rats after an interval of 7-12 days following transfer of donor lymphoid cells and decline rapidly thereafter. The delayed responses in adoptive recipients reconstituted with spleen cells are proportional to the numbers of spleen cells transferred and are shown to be primarily donor derived using histocompatible Ig kappa chain alloantigen disparate rat strain combinations. The precursors of TI-1, TI-2, and TD antigen-reactive B cells are present in both donor spleen and bone marrow. However, precursor cells to TI-1 and TD antigens are largely absent from donor lymph node cells, whereas precursors to the TI-2 antigen are as prevalent in donor lymph node as in donor spleen. These results support the hypothesis that newly formed virginal B cells represent transient populations of precursor cells that undergo further proliferation and differentiation in the spleen before acquiring immunological competence. The results also suggest that the precursors of TI-2 antigen-reactive B cells differ developmentally from those of TI-1 and TD antigen-reactive B cells, and that the antigen-reactive progeny of these precursors require additional stimulation in order to join the pool of long-lived peripheral B cells.

  14. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    PubMed

    Cavagnero, Kellen; Doherty, Taylor A

    2017-08-01

    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.

  15. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor.

    PubMed

    Sathe, Priyanka; Metcalf, Donald; Vremec, David; Naik, Shalin H; Langdon, Wallace Y; Huntington, Nicholas D; Wu, Li; Shortman, Ken

    2014-07-17

    The relationship between dendritic cells (DCs) and macrophages is often debated. Here we ask whether steady-state, lymphoid-tissue-resident conventional DCs (cDCs), plasmacytoid DCs (pDCs), and macrophages share a common macrophage-DC-restricted precursor (MDP). Using new clonal culture assays combined with adoptive transfer, we found that MDP fractions isolated by previous strategies are dominated by precursors of macrophages and monocytes, include some multipotent precursors of other hematopoietic lineages, but contain few precursors of resident cDCs and pDCs and no detectable common precursors restricted to these DC types and macrophages. Overall we find no evidence for a common restricted MDP leading to both macrophages and FL-dependent, resident cDCs and pDCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Long-term sequelae of autologous bone marrow or peripheral stem cell transplantation for lymphoid malignancies.

    PubMed

    Vose, J M; Kennedy, B C; Bierman, P J; Kessinger, A; Armitage, J O

    1992-02-01

    The study was made to evaluate the long-term physical and psychosocial changes after high-dose therapy and autologous bone marrow or peripheral stem transplantation for recurrent lymphoid malignancies. Patients who had undergone high dose therapy and autologous bone marrow or peripheral stem cell transplantation for recurrent lymphoid malignancies at least 1 year previously were contacted by phone interview regarding their status after the transplant. The patients' comments were confirmed by checking medical records when possible. Fifty patients who had undergone transplantation at the University of Nebraska Medical Center at least 1 year before the interview were available for interview and willing to answer questions. After transplant, many patients noticed temporary changes in their appearance, which usually returned to normal within 1 year. Few patients reported remarkable cardiovascular, gastrointestinal, or pulmonary changes after transplantation. However, up to one-third of the patients reported changes in sexual function or desire. The most common infectious problem after transplant was Herpes zoster, which occurred in 25% of the patients. Overall, the patients had a positive outlook after high-dose therapy and transplantation, with most being able to return to work and enjoy a normal life style. Ninety-six percent of the patients stated that they would be willing to undergo high-dose therapy and transplantation again under the same circumstances.

  17. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium.

    PubMed

    Humby, Frances; Bombardieri, Michele; Manzo, Antonio; Kelly, Stephen; Blades, Mark C; Kirkham, Bruce; Spencer, Jo; Pitzalis, Costantino

    2009-01-13

    Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium. Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were

  18. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation.

    PubMed

    Kwong, Brandon; Rua, Rejane; Gao, Yuanyuan; Flickinger, John; Wang, Yan; Kruhlak, Michael J; Zhu, Jinfang; Vivier, Eric; McGavern, Dorian B; Lazarevic, Vanja

    2017-10-01

    The transcription factor T-bet has been associated with increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role of T-bet-dependent NKp46 + innate lymphoid cells (ILCs) in the initiation of CD4 + T H 17-mediated neuroinflammation. Loss of T-bet specifically in NKp46 + ILCs profoundly impaired the ability of myelin-reactive T H 17 cells to invade central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46 + ILCs localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of proinflammatory cytokines, chemokines and matrix metalloproteinases, which together facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46 + ILCs in the development of CNS autoimmune disease.

  19. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging

    PubMed Central

    Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina

    2016-01-01

    Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways. PMID:26951333

  20. Total lymphoid irradiation in refractory systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Chetrit, E.; Gross, D.J.; Braverman, A.

    1986-07-01

    In two patients with systemic lupus erythematosus, conventional therapy was considered to have failed because of persistent disease activity and unacceptable side effects. Both were treated with total lymphoid irradiation without clinical benefit, despite adequate immunosuppression as documented by markedly reduced numbers of circulating T lymphocytes and T-lymphocyte-dependent proliferative responses in vitro. The first patient developed herpes zoster, gram-negative septicemia, neurologic symptoms, and deterioration of lupus nephritis. The second patient developed massive bronchopneumonia, necrotic cutaneous lesions, and progressive nephritis and died 2 weeks after completion of radiotherapy. These observations, although limited to two patients, indicate that total lymphoid irradiation inmore » patients with severe systemic lupus erythematosus should be regarded as strictly experimental.« less

  1. Group 2 innate lymphoid cells promote beiging of adipose and limit obesity

    PubMed Central

    Brestoff, Jonathan R.; Kim, Brian S.; Saenz, Steven A.; Stine, Rachel R.; Monticelli, Laurel A.; Sonnenberg, Gregory F.; Thome, Joseph J.; Farber, Donna L.; Lutfy, Kabirullah; Seale, Patrick; Artis, David

    2015-01-01

    Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity1,2. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity3,4 and eosinophil and alternatively-activated macrophage responses5, and were recently identified in murine white adipose tissue (WAT)5 where they may act to limit the development of obesity6. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here, we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)+ beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure7–9. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signaling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging. PMID:25533952

  2. Group-2 innate lymphoid cells mediate ozone induced airway inflammation and hyperresponsiveness in mice

    PubMed Central

    Yang, Qi; Ge, Moyar Q.; Kokalari, Blerina; Redai, Imre G.; Wang, Xinxin; Kemeny, David M.; Bhandoola, Avinash; Haczku, Angela

    2015-01-01

    Background Patients with asthma are highly susceptible to air pollution and in particular, to the effects of ozone (O3) inhalation, but the underlying mechanisms remain unclear. Objective Using mouse models of O3-induced airway inflammation and hyperresponsiveness (AHR), we sought to investigate the role of the recently discovered group 2 innate lymphoid cells (ILC2). Methods C57BL/6 and Balb/c mice were exposed to Aspergillus fumigatus and/or O3 (2ppm, 2h). ILC2 were isolated by FACS sorting and studied for IL-5 and IL-13 mRNA expression. ILC2 were depleted with anti-Thy1.2 mAb and replaced by intratracheal transfer of ex vivo expanded Thy1.1 ILC2. Cytokines (ELISA, qPCR), inflammatory cell profile and AHR (FlexiVent) were assessed in the mice. Results In addition to neutrophil influx, O3 inhalation elicited the appearance of eosinophils and IL-5 in the airways of Balb/c but not C57BL/6 mice. Although O3 induced expression of IL-33, a known activator of ILC2 in the lung was similar between these strains, isolated pulmonary ILC2 from O3 exposed Balb/c mice had significantly greater IL-5 and IL-13 mRNA expression than those of C57BL/6 mice. This suggested that an altered ILC2 function in Balb/c mice may mediate the increased O3 responsiveness. Indeed, anti-Thy1.2 treatment abolished, whereas ILC2 add-back dramatically enhanced O3-induced AHR. Conclusions O3-induced activation of pulmonary ILC2 was necessary and sufficient to mediate asthma-like changes in Balb/c mice. This previously unrecognized role of ILC2 may help explain the heightened susceptibility of human asthmatic airways to O3 exposure. PMID:26282284

  3. Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation.

    PubMed

    Cephus, Jacqueline-Yvonne; Stier, Matthew T; Fuseini, Hubaida; Yung, Jeffrey A; Toki, Shinji; Bloodworth, Melissa H; Zhou, Weisong; Goleniewska, Kasia; Zhang, Jian; Garon, Sarah L; Hamilton, Robert G; Poloshukin, Vasiliy V; Boyd, Kelli L; Peebles, R Stokes; Newcomb, Dawn C

    2017-11-28

    Sex hormones regulate many autoimmune and inflammatory diseases, including asthma. As adults, asthma prevalence is 2-fold greater in women compared to men. The number of group 2 innate lymphoid cells (ILC2) is increased in patients with asthma, and we investigate how testosterone attenuates ILC2 function. In patients with moderate to severe asthma, we determine that women have an increased number of circulating ILC2 compared to men. ILC2 from adult female mice have increased IL-2-mediated ILC2 proliferation versus ILC2 from adult male mice, as well as pre-pubescent females and males. Further, 5α-dihydrotestosterone, a hormone downstream of testosterone, decreases lung ILC2 numbers and IL-5 and IL-13 expression from ILC2. In vivo, testosterone attenuated Alternaria-extract-induced IL-5+ and IL-13+ ILC2 numbers and lung eosinophils by intrinsically decreasing lung ILC2 numbers, as well as by decreasing expression of IL-33 and thymic stromal lymphopoietin (TSLP), ILC2-stimulating cytokines. Collectively, these findings provide a foundational understanding of sexual dimorphism in ILC2 function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Modulation of transferrin receptor mRNA by transferrin-gallium in human myeloid HL60 and lymphoid CCRF-CEM leukaemic cells.

    PubMed Central

    Ul-Haq, R; Chitambar, C R

    1993-01-01

    Gallium binds to the iron transport protein transferrin (Tf), is incorporated into cells through transferrin receptors (TfR) and inhibits iron-dependent DNA synthesis. Since cellular TfR expression is tightly regulated by the availability of iron, we investigated the effects of transferrin-gallium (Tf-Ga) on TfR mRNA levels in myeloid HL60 and lymphoid CCRF-CEM cells. In HL60 cells, Tf-Ga increased TfR mRNA levels in a dose-dependent fashion. This increase in TfR mRNA was blocked by Tf-Fe and by cycloheximide. Analysis of the rate of mRNA decay in the presence of actinomycin D revealed that the half-life of TfR mRNA was increased in HL60 cells incubated with Tf-Ga. The rate of transcription of TfR mRNA was not increased by Tf-Ga. In contrast with HL60 cells, CCRF-CEM cells displayed a decrease in the level of TfR mRNA after incubation with Tf-Ga. Tf-Ga inhibited iron uptake in both HL60 and CCRF-CEM cells but increased the level of TfR mRNA only in HL60 cells, suggesting that the Tf-Ga induction of TfR mRNA was not solely due to inhibition of cellular iron uptake. At growth-inhibitory concentrations, Tf-Ga increased the TfR mRNA level in HL60 cells but decreased it in CCRF-CEM cells. Our studies suggest that in HL60 cells, gallium regulates TfR expression at the post-transcriptional level by mechanisms which require de novo protein synthesis and involve interaction with iron. The divergent effects of Tf-Ga on TfR mRNA in myeloid HL60 and lymphoid CCRF-CEM cells suggest that differences exist in the regulation of TfR expression between these two cell types. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8379943

  5. Expansion of CD25+ Innate Lymphoid Cells Reduces Atherosclerosis

    PubMed Central

    Engelbertsen, Daniel; Foks, Amanda C.; Alberts-Grill, Noah; Kuperwaser, Felicia; Chen, Tao; Lederer, James A.; Jarolim, Petr; Grabie, Nir; Lichtman, Andrew H.

    2015-01-01

    Objective Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that promote tissue homeostasis and protect against pathogens. ILCs produce cytokines also produced by T lymphocytes that have been shown to affect atherosclerosis, but the influence of ILCs on atherosclerosis has not been explored. Approach and Results We demonstrate that CD25+ ILCs that produce type 2 cytokines (ILC2s) are present in the aorta of atherosclerotic immunodeficient ldlr−/−rag1−/− mice. To investigate the role of ILCs in atherosclerosis, ldlr−/−rag1−/− mice were concurrently fed an atherogenic diet and treated with either ILC-depleting anti-CD90.2 antibodies or with IL-2/anti-IL-2 complexes that expand CD25+ ILCs. Lesion development was not affected by anti-CD90.2 treatment, but was reduced in IL-2/anti-IL-2 -treated mice. These IL-2 treated mice had reduced VLDL cholesterol and increased triglycerides compared to controls and reduced apolipoprotein B100 gene expression in the liver. IL-2/anti-IL-2 treatment caused expansion of ILC2s in aorta and other tissues, elevated levels of IL-5, systemic eosinophila and hepatic eosinophilic inflammation. Blockade of IL-5 reversed the IL-2-complex-induced eosinophilia but did not change lesion size. Conclusions This study demonstrates that expansion of CD25-expressing ILCs by IL-2/anti-IL-2 complexes leads to a reduction in VLDL cholesterol and atherosclerosis. Global depletion of ILCs by anti-CD90.2 did not significantly affect lesion size indicating that different ILC subsets may have divergent effects on atherosclerosis. PMID:26494229

  6. Critical role of dendritic cells in T cell retention in the interfollicular region of Peyer's patches.

    PubMed

    Obata, Takashi; Shibata, Naoko; Goto, Yoshiyuki; Ishikawa, Izumi; Sato, Shintaro; Kunisawa, Jun; Kiyono, Hiroshi

    2013-07-15

    Peyer's patches (PPs) simultaneously initiate active and quiescent immune responses in the gut. The immunological function is achieved by the rigid regulation of cell distribution and trafficking, but how the cell distribution is maintained remains to be elucidated. In this study, we show that binding of stromal cell-derived lymphoid chemokines to conventional dendritic cells (cDCs) is essential for the retention of naive CD4(+) T cells in the interfollicular region (IFR) of PPs. Transitory depletion of CD11c(high) cDCs in mice rapidly impaired the IFR structure in the PPs without affecting B cell follicles or germinal centers, lymphoid chemokine production from stromal cells, or the immigration of naive T cells into the IFRs of PPs. The cDC-orchestrated retention of naive T cells was mediated by heparinase-sensitive molecules that were expressed on cDCs and bound the lymphoid chemokine CCL21 produced from stromal cells. These data collectively reveal that interactions among cDCs, stromal cells, and naive T cells are necessary for the formation of IFRs in the PPs.

  7. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation

    PubMed Central

    Kwong, Brandon; Rua, Rejane; Gao, Yuanyuan; Flickinger, John; Wang, Yan; Kruhlak, Michael J.; Zhu, Jinfang; Vivier, Eric; McGavern, Dorian B.; Lazarevic, Vanja

    2017-01-01

    The transcription factor T-bet has been linked to increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role for T-bet-dependent NKp46+ innate lymphoid cells (ILCs) in the initiation of CD4+ TH17-mediated neuroinflammation. Loss of T-bet specifically in NKp46+ ILCs profoundly impaired the ability of myelin-reactive TH17 cells to invade the central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46+ ILCs were localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of pro-inflammatory cytokines, chemokines and matrix metalloproteinases, which in a concerted fashion facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46+ ILCs in the development of CNS autoimmune disease. PMID:28805812

  8. Visualizing the Rapid and Dynamic Elimination of Allogeneic T Cells in Secondary Lymphoid Organs.

    PubMed

    Kanda, Yasuhiro; Takeuchi, Arata; Ozawa, Madoka; Kurosawa, Yoichi; Kawamura, Toshihiko; Bogdanova, Dana; Iioka, Hidekazu; Kondo, Eisaku; Kitazawa, Yusuke; Ueta, Hisashi; Matsuno, Kenjiro; Kinashi, Tatsuo; Katakai, Tomoya

    2018-06-20

    Allogeneic organ transplants are rejected by the recipient immune system within several days or weeks. However, the rejection process of allogeneic T (allo-T) cells is poorly understood. In this study, using fluorescence-based monitoring and two-photon live imaging in mouse adoptive transfer system, we visualized the fate of allo-T cells in the in vivo environment and showed rapid elimination in secondary lymphoid organs (SLOs). Although i.v. transferred allo-T cells efficiently entered host SLOs, including lymph nodes and the spleen, ∼70% of the cells had disappeared within 24 h. At early time points, allo-T cells robustly migrated in the T cell area, whereas after 8 h, the numbers of arrested cells and cell fragments were dramatically elevated. Apoptotic breakdown of allo-T cells released a large amount of cell debris, which was efficiently phagocytosed and cleared by CD8 + dendritic cells. Rapid elimination of allo-T cells was also observed in nu/nu recipients. Depletion of NK cells abrogated allo-T cell reduction only in a specific combination of donor and recipient genetic backgrounds. In addition, F 1 hybrid transfer experiments showed that allo-T cell killing was independent of the missing-self signature typically recognized by NK cells. These suggest the presence of a unique and previously uncharacterized modality of allorecognition by the host immune system. Taken together, our findings reveal an extremely efficient and dynamic process of allogeneic lymphocyte elimination in SLOs, which could not be recapitulated in vitro and is distinct from the rejection of solid organ and bone marrow transplants. Copyright © 2018 by The American Association of Immunologists, Inc.

  9. 3'-Azido-2',3'-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells.

    PubMed

    Gröschel, Bettina; Kaufmann, Andreas; Höver, Gerold; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Noordhuis, Paul; Loves, Willem J P; Peters, Godefridus J; Cinatl, Jindrich

    2002-07-15

    Continuous cultivation of T-lymphoid H9 cells in the presence of 3'-azido-2',3'-dideoxythymidine (AZT) resulted in a cell variant cross-resistant to both thymidine and deoxycytidine analogs. Cytotoxic effects of AZT, 2',3'-didehydro-3'-deoxythymidine as well as different deoxycytidine analogs such as 2',3'-dideoxycytidine, 2',2'-difluoro-2'-deoxycytidine (dFdC) and 1-ss-D-arabinofuranosylcytosine (Ara-C) were strongly reduced in H9 cells continuously exposed to AZT when compared to parental cells (>8.3-, >6.6-, >9.1-, 5 x 10(4)-, 5 x 10(3)-fold, respectively). Moreover, anti-HIV-1 effects of AZT, d4T, ddC and 2',3'-dideoxy-3'-thiacytidine (3TC) were significantly diminished (>222-, >25-, >400-, >200-fold, respectively) in AZT-resistant H9 cells. Study of cellular mechanisms responsible for cross-resistance to pyrimidine analogs in AZT-resistant H9 cells revealed decreased mRNA levels of thymidine kinase 1 (TK1) and lack of deoxycytidine kinase (dCK) mRNA expression. The loss of dCK gene expression was confirmed by western blot analysis of dCK protein as well as dCK enzyme activity assay. Moreover, enzyme activity of TK1 and TK2 was reduced in AZT-resistant cells. In order to determine whether lack of dCK affected the formation of the active triphosphate of the deoxycytidine analog dFdC, dFdCTP accumulation and retention was measured in H9 parental and AZT-resistant cells after exposure to 1 and 10 microM dFdC. Parental H9 cells accumulated about 30 and 100 pmol dFdCTP/10(6) cells after 4hr, whereas in AZT-resistant cells no dFdCTP accumulation was detected. These results demonstrate that continuous treatment of H9 cells in the presence of AZT selected for a thymidine analog resistant cell variant with cross-resistance to deoxycytidine analogs, due to deficiency in TK1, TK2, and dCK.

  10. Superficially located enlarged lymphoid follicles characterise nodular gastritis.

    PubMed

    Okamura, Takuma; Sakai, Yasuhiro; Hoshino, Hitomi; Iwaya, Yugo; Tanaka, Eiji; Kobayashi, Motohiro

    2015-01-01

    Nodular gastritis is a form of chronic Helicobacter pylori gastritis affecting the gastric antrum and characterised endoscopically by the presence of small nodular lesions resembling gooseflesh. It is generally accepted that hyperplasia of lymphoid follicles histologically characterises nodular gastritis; however, quantitative analysis in support of this hypothesis has not been reported. Our goal was to determine whether nodular gastritis is characterised by lymphoid follicle hyperplasia.The number, size, and location of lymphoid follicles in nodular gastritis were determined and those properties compared to samples of atrophic gastritis. The percentages of high endothelial venule (HEV)-like vessels were also evaluated.The number of lymphoid follicles was comparable between nodular and atrophic gastritis; however, follicle size in nodular gastritis was significantly greater than that seen in atrophic gastritis. Moreover, lymphoid follicles in nodular gastritis were positioned more superficially than were those in atrophic gastritis. The percentage of MECA-79 HEV-like vessels was greater in areas with gooseflesh-like lesions in nodular versus atrophic gastritis.Superficially located hyperplastic lymphoid follicles characterise nodular gastritis, and these follicles correspond to gooseflesh-like nodular lesions observed endoscopically. These observations suggest that MECA-79 HEV-like vessels could play at least a partial role in the pathogenesis of nodular gastritis.

  11. Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung.

    PubMed

    Cheng, Hang; Jin, Chengyan; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao

    2017-12-01

    The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immune-surveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.

  12. Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells.

    PubMed

    Nash, A A; Quartey-Papafio, R; Wildy, P

    1980-08-01

    The functional characteristics of lymphoid cells were investigated during acute and latent infection of mice with herpes simplex virus (HSV). Cytotoxic T cells were found in the draining lymph node (DLN) 4 days p.i. and had reached maximum activity between 6 and 9 days. After the 12th day and during the period of latent infection (> 20 days) no cytotoxic cell activity was observed. Cytotoxic activity could only be detected when the lymphoid cells had been cultured for a period of 3 days. In general, the cell killing was specific for syngeneic infected target cells, although some killing of uninfected targets was observed. In contrast to the cytotoxic response, DLN cells responding to HSV in a proliferation assay were detected towards the end of the acute phase and at lease up to 9 months thereafter. The significance of these observations for the pathogenesis of HSV is discussed.

  13. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene

    PubMed Central

    Bassig, Bryan A.; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P.; Yin, Songnian; Rappaport, Stephen M.; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H.Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E.Beane; Blair, Aaron; Hayes, Richard B.; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing

    2016-01-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. PMID:27207665

  14. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene.

    PubMed

    Bassig, Bryan A; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P; Yin, Songnian; Rappaport, Stephen M; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E Beane; Blair, Aaron; Hayes, Richard B; Huang, Hanlin; Smith, Martyn T; Rothman, Nathaniel; Lan, Qing

    2016-07-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. Published by Oxford University Press 2016.

  15. Precocious development of lectin (Ulex europaeus agglutinin I) receptors in dome epithelium of gut-associated lymphoid tissues.

    PubMed

    Roy, M J

    1987-06-01

    Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.

  16. Accessory cells in physiological lymphoid tissue from the intestine: an immunohistochemical study.

    PubMed

    Sarsfield, P; Rinne, A; Jones, D B; Johnson, P; Wright, D H

    1996-03-01

    We report a study of the organization of accessory cell populations, in normal mucosal lymphoid tissue from small intestine (8 cases), large intestine (6) and appendix (9) using a panel of monoclonal antibodies and polyclonal antisera in paraffin-embedded tissue. Two populations were identified in dome areas, one positive for acid cysteine proteinase inhibitor and HLA class II (WR18) only and the second positive for S-100 protein, CD68, and WR18 and negative for acid cysteine proteinase inhibitor and factor XIIIa. Superficial colonic mucosal and small intestinal villous tip macrophages stained positively with CD68 and WR18 only, while deeper cryptal and submucosal populations exhibited additional positivity for factor XIIIa, but both populations were negative for acid cysteine proteinase inhibitor and S-100 protein. Germinal centre macrophages were positive for CD68, WR18 and acid cysteine proteinase inhibitor and negative for factor XIIIa, and S-100 protein. T zone dendritic cells included a population which stained positively for S-100 protien, WR18 and were negative for factor XIIIa, CD68 and acid cysteine proteinase inhibitor, an immunophenotype typical of interdigitating dendritic reticulum cells. This distribution of phenotypically identifiable accessory cell subpopulations was apparent at all three sites examined. We suggest that the specialized subpopulations of dendritic cells staining for S-100 protein and for acid cysteine proteinase inhibitor which are restricted to the dome areas, may have a potential role in the transfer of antigen across the epithelium to the germinal centres, while factor XIIIa appears to identify a tissue macrophage population with a potential role in stromal modulation distant from direct antigen challenge.

  17. Inhibitory effects of physalin B and physalin F on various human leukemia cells in vitro.

    PubMed

    Chiang, H C; Jaw, S M; Chen, P M

    1992-01-01

    Physalins B and F were isolated and characterized from the ethanolic extract of the whole plant of Physalis angulata L. (Solanaceae). Both physalin B and physalin F inhibited the growth of several human leukemia cells: K562 (erythroleukemia), APM1840 (acute T lymphoid leukemia), HL-60 (acute promyelocytic leukemia), KG-1 (acute myeloid leukemia), CTV1 (acute monocytic leukemia) and B cell (acute B lymphoid leukemia). Physalin F showed a stronger activity against these leukemia cells than physalin B, especially against acute myeloid leukemia (KG-1) and acute B lymphoid leukemia (B cell). From the structural features, the active site seems to be the functional epoxy group for physalin F and the double bond for physalin B located at carbon 5 and 6; the former is much more active than the latter as regards anti-leukemic effects.

  18. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2015-12-01

    cells (HSCs) are multipotent cells that differentiate into myeloid, lymphoid and erythroid lineages, and have short-term or long-term regenerative...All rights reserved Nature Reviews | Rheumatology a b MPP CMP CLP Lymphoid cells NK cellB cell T cell Megakaryocyte and erythrocytes Macrophage and...into other cell types. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MPP, multipotent progenitor; NK cell , natural killer cell . R E

  19. Reverse transcriptase activity and particles of retroviral density in cultured canine lymphosarcoma supernatants.

    PubMed Central

    Tomley, F. M.; Armstrong, S. J.; Mahy, B. W.; Owen, L. N.

    1983-01-01

    Lymphoid tissue from 43 cases of canine lymphosarcoma and from 40 clinically normal dogs have been examined for markers of retrovirus infection. From 69-76% of culture supernatants from lymphosarcomas were shown to contain particles of retroviral density and to possess poly rC-oligo dG templated polymerase (reverse transcriptase) activity compared with 17-24% of culture supernatants from normal canine lymphoid cells. In 6 culture supernatants from cases of lymphosarcoma, high molecular weight 60-70S RNA was detected and shown to be found in association with this particulate reverse transcriptase activity. No such RNA was detected in 6 culture supernatants from normal canine lymphoid cells. PMID:6186265

  20. Serious Infections in Patients Receiving Ibrutinib for Treatment of Lymphoid Malignancies.

    PubMed

    Varughese, Tilly; Taur, Ying; Cohen, Nina; Palomba, M Lia; Seo, Susan K; Hohl, Tobias M; Redelman-Sidi, Gil

    2018-03-02

    Ibrutinib is a Bruton's tyrosine kinase inhibitor that is used for the treatment of lymphoid malignancies, including chronic lymphocytic leukemia (CLL), Waldenström's macroglobulinemia and mantle cell lymphoma (MCL). Several case series have described opportunistic infections among ibrutinib recipients, but the full extent of these infections is unknown. We sought to determine the spectrum of serious infections associated with ibrutinib treatment. We reviewed the electronic medical records of patients with lymphoid malignancies at Memorial Sloan Kettering Cancer Center who received ibrutinib during a five-year period from January 1, 2012 to December 31, 2016. Serious infections were identified by review of the relevant microbiology, clinical laboratory, and radiology data. Risk factors for infection were determined by univariate and multivariate analyses. 378 patients with lymphoid malignancies who received ibrutinib were analyzed. The most common underlying malignancies were CLL and MCL. 84% of patients received ibrutinib as monotherapy. Serious infection developed in 43 patients (11.4%), primarily during the first year of ibrutinib treatment. Of these, 23 (53.5%) developed invasive bacterial infections, and 16 (37.2%) developed invasive fungal infections (IFI). The majority of those who developed IFI on ibrutinib therapy (62.5%) lacked classical clinical risk factors for fungal infection (i.e., neutropenia, lymphopenia, and receipt of corticosteroids). Infection resulted in death in six of the 43 patients (14%). Patients with lymphoid malignancies receiving ibrutinib treatment are at risk for serious infections, including IFI.

  1. [Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system].

    PubMed

    Knop, E; Knop, N

    2003-11-01

    Components of the mucosal immune system (MALT) have been identified in the conjunctiva (as CALT) and the lacrimal drainage system (as LDALT). Their structural and functional relation with the established immune protection by the lacrimal gland is unclear. Macroscopically normal and complete tissues of the conjunctiva, lacrimal drainage system and lacrimal gland from human body donors were investigated by analysis of translucent whole mounts, and using histology, immunohistology as well as scanning and transmission electron microscopy. A typical diffuse lymphoid tissue, composed of effector cells of the immune system (T-lymphocytes and IgA producing plasma cells) under an epithelium that contains the IgA transporter SC, is not isolated in the conjunctiva and lacrimal drainage system. It is anatomically continuous from the lacrimal gland along its excretory ducts into the conjunctiva and from there via the lacrimal canaliculi into the lacrimal drainage system. Lymphoid follicles occur in a majority (about 60%) and with bilateral symmetry. The topography of CALT corresponds to the position of the cornea in the closed eye. These results show that the MALT of the lacrimal gland, conjunctiva and lacrimal drainage system constitute an anatomical and functional unit for immune protection of the ocular surface. Therefore it should be integrated as an "eye-associated lymphoid tissue" (EALT) into the MALT system of the body. EALT can detect ocular surface antigens by the lymphoid follicles and can supply other organs and the ocular surface including the lacrimal gland with specific effector cells via the regulated recirculation of lymphoid cells.

  2. Isolated lymphoid follicles are not IgA inductive sites for recombinant Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashizume, Tomomi; Momoi, Fumiki; Kurita-Ochiai, Tomoko

    2007-08-24

    In this study, we investigated whether isolated lymphoid follicles (ILF) play a role in the regulation of intestinal IgA antibody (Ab) responses. The transfer of wild type (WT) bone marrow (BM) to lymphotoxin-{alpha}-deficient (LT{alpha}{sup -/-}) mice resulted in the formation of mature ILF containing T cells, B cells, and FDC clusters in the absence of mesenteric lymph nodes and Peyer's patches. Although the ILF restored total IgA Abs in the intestine, antigen (Ag)-specific IgA responses were not induced after oral immunization with recombinant Salmonella expressing fragment C of tetanus toxin. Moreover, Ag-specific cell proliferation was not detected in the ILF.more » Interestingly, no IgA anti-LPS Abs were detected in the fecal extracts of LT{alpha}{sup -/-} mice reconstituted with WT BM. On the basis of these findings, ILF can be presumed to play a role in the production of IgA Abs, but lymphoid nodules are not inductive sites for the regulation of Ag-specific intestinal IgA responses to recombinant Salmonella.« less

  3. Epithelial control of gut-associated lymphoid tissue formation through p38α-dependent restraint of NF-κB signaling

    PubMed Central

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2015-01-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. Here we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a non-cell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. PMID:26792803

  4. Gastric mucosal-associated lymphoid tissue lymphoma.

    PubMed

    Fischbach, Wolfgang

    2013-06-01

    Gastric marginal zone B-cell lymphoma of mucosal-associated lymphoid tissue (MALT) is the predominant entity within the primary gastrointestinal lymphomas. Helicobacter pylori represents the decisive pathogenetic factor for gastric MALT lymphoma. The goal of treating gastric MALT lymphoma should be complete cure. The first choice of treatment is H pylori eradication. Patients with histologically persistent residual lymphoma after successful H pylori eradication and normalization of endoscopic findings should be managed by a watch-and-wait strategy. Patients who do not respond to H pylori eradication should be referred for radiation or chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.

    PubMed Central

    Giannasca, P J; Boden, J A; Monath, T P

    1997-01-01

    The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal

  6. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells

    PubMed Central

    Klein Wolterink, Roel G. J.; Serafini, Nicolas; van Nimwegen, Menno; Vosshenrich, Christian A. J.; de Bruijn, Marjolein J. W.; Fonseca Pereira, Diogo; Veiga Fernandes, Henrique; Hendriks, Rudi W.; Di Santo, James P.

    2013-01-01

    Group 2 innate lymphoid cells (ILC2s; also called nuocytes, innate helper cells, or natural helper cells) provide protective immunity during helminth infection and play an important role in influenza-induced and allergic airway hyperreactivity. Whereas the transcription factor GATA binding protein 3 (Gata3) is important for the production of IL-5 and -13 by ILC2s in response to IL-33 or -25 stimulation, it is not known whether Gata3 is required for ILC2 development from hematopoietic stem cells. Here, we show that chimeric mice generated with Gata3-deficient fetal liver hematopoietic stem cells fail to develop systemically dispersed ILC2s. In these chimeric mice, in vivo administration of IL-33 or -25 fails to expand ILC2 numbers or to induce characteristic ILC2-dependent IL-5 or -13 production. Moreover, cell-intrinsic Gata3 expression is required for ILC2 development in vitro and in vivo. Using mutant and transgenic mice in which Gata3 gene copy number is altered, we show that ILC2 generation from common lymphoid progenitors, as well as ILC2 homeostasis and cytokine production, is regulated by Gata3 expression levels in a dose-dependent fashion. Collectively, these results identify Gata3 as a critical early regulator of ILC2 development, thereby extending the paradigm of Gata3-dependent control of type 2 immunity to include both innate and adaptive lymphocytes. PMID:23733962

  7. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  8. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer's patches.

    PubMed

    Kim, Sae-Hae; Cho, Byeol-Hee; Kiyono, Hiroshi; Jang, Yong-Suk

    2017-06-21

    The regional specialization of intestinal immune cells is affected by the longitudinal heterogeneity of environmental factors. Although the distribution of group 3 innate lymphoid cells (ILC3s) is well characterized in the lamina propria, it is poorly defined in Peyer's patches (PPs) along the intestine. Given that PP ILC3s are closely associated with mucosal immune regulation, it is important to characterize the regulatory mechanism of ILC3s. Here, we found that terminal ileal PPs of specific pathogen-free (SPF) mice have fewer NKp46 + ILC3s than jejunal PPs, while there was no difference in NKp46 + ILC3 numbers between terminal ileal and jejunal PPs in antibiotics (ABX)-treated mice. We also found that butyrate levels in the terminal ileal PPs of SPF mice were higher than those in the jejunal PPs of SPF mice and terminal ileal PPs of ABX-treated mice. The reduced number of NKp46 + ILC3s in terminal ileal PPs resulted in a decrease in Csf2 expression and, in turn, resulted in reduced regulatory T cells and enhanced antigen-specific T-cell proliferation. Thus, we suggest that NKp46 + ILC3s are negatively regulated by microbiota-derived butyrate in terminal ileal PPs and the reduced ILC3 frequency is closely associated with antigen-specific immune induction in terminal ileal PPs.

  9. Incidence of lymphoid neoplasms by subtype among six Asian ethnic groups in the United States, 1996-2004.

    PubMed

    Carreon, J Daniel; Morton, Lindsay M; Devesa, Susan S; Clarke, Christina A; Gomez, Scarlett L; Glaser, Sally L; Sakoda, Lori C; Linet, Martha S; Wang, Sophia S

    2008-12-01

    To establish baseline data for lymphoid neoplasm incidence by subtype for six Asian-American ethnic groups. Incident rates were estimated by age and sex for six Asian ethnic groups--Asian Indian/Pakistani, Chinese, Filipino, Japanese, Korean, Vietnamese--in five United States cancer registry areas during 1996-2004. For comparison, rates for non-Hispanic Whites were also estimated. During 1996-2004, Filipinos had the highest (24.0) and Koreans had the lowest incidence (12.7) of total lymphoid neoplasms. By subtype, Vietnamese and Filipinos had the highest incidence for diffuse large B-cell lymphoma (DLBCL) (8.0 and 7.2); Japanese had the highest incidence of follicular lymphoma (2.3). Although a general male predominance of lymphoid neoplasms was observed, this pattern varied by lymphoid neoplasm subtype. Whites generally had higher rates than all Asian ethnic groups for all lymphoid neoplasms and most lymphoma subtypes, although the magnitude of the difference varied by both ethnicity and lymphoma subtype. The observed variations in incidence patterns among Asian ethnic groups in the United States suggest that it may be fruitful to pursue studies that compare Asian populations for postulated environmental and genetic risk factors.

  10. Use of total lymphoid irradiation (TLI) in studies of the T cell dependence of autoantibody production in rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanay, A.; Strober, S.; Logue, G.L.

    1984-02-01

    The effect of total lymphoid irradiation (TLI) on T cell-dependent and -independent humoral immune responses was studied in patients with intractable rheumatoid arthritis (RA). The serum levels of several autoantibodies and of antibodies to diphtheria (DT) and tetanus (TT) toxoids and to pneumococcal polysaccharide (PPS; 12 antigenic types) were studied before and after TLI. In addition, the patients were given a booster injection of DT and TT and a single injection of pneumococcal vaccine after radiotherapy. Antibody levels to DT and TT decreased about twofold after TLI and did not rise significantly after a booster injection. However, there was nomore » reduction in antibody levels to PPS after TLI, and a significant rise in titers was observed after a single vaccination. The serum levels of rheumatoid factor (RF), anti-nuclear antibody (ANA), and granulocyte associated IgG rose slightly after TLI. Thus, the autoantibodies and antibodies to polysaccharides appear to be relatively independent of helper T cell function, which is markedly reduced after TLI. On the other hand, antibodies to protein antigens such as DT and TT appear to be more closely dependent upon T helper function in man, as has been reported in rodents. The findings suggest that T cell-independent autoantibody responses alone do not maintain the joint disease activity in RA, because improvement in joint disease after TLI has been reported.« less

  11. CCR7 guides migration of mesenchymal stem cell to secondary lymphoid organs: a novel approach to separate GvHD from GvL effect.

    PubMed

    Li, Hong; Jiang, YanMing; Jiang, XiaoXia; Guo, XiMin; Ning, HongMei; Li, YuHang; Liao, Li; Yao, HuiYu; Wang, XiaoYan; Liu, YuanLin; Zhang, Yi; Chen, Hu; Mao, Ning

    2014-07-01

    Inefficient homing of systemically infused mesenchymal stem cells (MSCs) limits the efficacy of existing MSC-based clinical graft-versus-host disease (GvHD) therapies. Secondary lymphoid organs (SLOs) are the major niches for generating immune responses or tolerance. MSCs home to a wide range of organs, but rarely to SLOs after intravenous infusion. Thus, we hypothesized that targeted migration of MSCs into SLOs may significantly improve their immunomodulatory effect. Here, chemokine receptor 7 (CCR7) gene, encoding a receptor that specifically guides migration of immune cells into SLOs, was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (MSCs/CCR7). We found that infusion of MSCs/CCR7 potently prolonged the survival of GvHD mouse model. The infused MSCs/CCR7 migrate to SLOs, relocate in proximity with T lymphocytes, therefore, potently inhibited their proliferation, activation, and cytotoxicity. Natural killer (NK) cells contribute to the early control of leukemia relapse. Although MSCs/CCR7 inhibited NK cell activity in vitro coculture, they did not impact on the proportion and cytotoxic capacities of NK cells in the peripheral blood of GvHD mice. In an EL4 leukemia cell loaded GvHD model, MSCs/CCR7 infusion preserved the graft-versus-leukemia (GvL) effect. In conclusion, this study demonstrates that CCR7 guides migration of MSCs to SLOs and thus highly intensify their in vivo immunomodulatory effect while preserving the GvL activity. This exciting therapeutic strategy may improve the clinical efficacy of MSC based therapy for immune diseases. © 2014 AlphaMed Press.

  12. The morphological changes in lymphoid organs and peripheral blood indicators in rats after peroral administration of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bucharskaya, A. B.; Pakhomy, S. S.; Zlobina, O. V.; Maslyakova, G. N.; Matveeva, O. V.; Bugaeva, I. O.; Navolokin, N. A.; Khlebtsov, B. N.; Bogatyrev, V. A.; Khlebtsov, N. G.; Tuchin, V. V.

    2016-03-01

    The wide application of nanotechnologies in medicine requires the careful study of various aspects of their potential safety. The effects of prolonged peroral administration of gold nanoparticles on morphological changes in lymphoid organs and indicators of peripheral blood of laboratory animals were investigated in experiment. The gold nanospheres functionalized with thiolated polyethylene glycol sizes 2, 15 and 50 nm were administered orally for 15 days to outbred white rats at a dosage of 190 μg/kg of animal body weight. The standard histological and hematological staining were used for morphological study of lymphoid organs and bone marrow smears. The size-dependent decrease of the number of neutrophils and lymphocytes was noted in the study of peripheral blood, especially pronounced after administration of gold nanoparticles with size of 50 nm. The stimulation of myelocytic germ of hematopoiesis was recorded at morphological study of the bone marrow. The signs of strengthening of the processes of differentiation and maturation of cellular elements were found in lymph nodes, which were showed as the increasing number of immunoblasts and large lymphocytes. The quantitative changes of cellular component morphology of lymphoid organs due to activation of migration, proliferation and differentiation of immune cells indicate the presence of immunostimulation effect of gold nanoparticles.

  13. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    PubMed

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    PubMed

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  15. CD8+ T-cell immunosurveillance constrains lymphoid pre-metastatic myeloid cell accumulation

    PubMed Central

    Li, Wenzhao; Deng, Jiehui; Herrmann, Andreas; Priceman, Saul J.; Liang, Wei; Shen, Shudan; Pal, Sumanta K.; Hoon, Dave S.B.; Yu, Hua

    2014-01-01

    Increasing evidence suggests that pre-metastatic niches, consisting mainly of myeloid cells, provide microenvironment critical for cancer cell recruitment and survival to facilitate metastasis. While CD8+ T cells exert immunosurveillance in primary human tumors, whether they can exert similar effects on myeloid cells in the pre-metastatic environment is unknown. Here, we show that CD8+ T cells are capable of constraining pre-metastatic myeloid cell accumulation by inducing myeloid cell apoptosis in C57BL/6 mice. Antigen-specific CD8+ T-cell cytotoxicity against myeloid cells in pre-metastatic lymph nodes is compromised by Stat3. We demonstrate here that Stat3 ablation in myeloid cells leads to CD8+ T-cell activation and increased levels of IFN-γ and granzyme B in the pre-metastatic environment. Furthermore, Stat3 negatively regulates soluble antigen cross-presentation by myeloid cells to CD8+ T cells in the pre-metastatic niche. Importantly, in tumor-free lymph nodes of melanoma patients, infiltration of activated CD8+ T cells inversely correlates with STAT3 activity, which is associated with a decrease in number of myeloid cells. Our study suggested a novel role for CD8+ T cells in constraining myeloid cell activity through direct killing in the pre-metastatic environment, and the therapeutic potential by targeting Stat3 in myeloid cells to improve CD8+ T-cell immunosurveillance against metastasis. PMID:25310972

  16. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9+ and IL-13+ type 2 innate lymphoid cell subpopulations.

    PubMed

    Verma, Mukesh; Liu, Sucai; Michalec, Lidia; Sripada, Anand; Gorska, Magdalena M; Alam, Rafeul

    2017-11-10

    IL-33 plays an important role in the development of experimental asthma. We sought to study the role of the IL-33 receptor suppressor of tumorigenicity 2 (ST2) in the persistence of asthma in a mouse model. We studied allergen-induced experimental asthma in ST2 knockout (KO) and wild-type control mice. We measured airway hyperresponsiveness by using flexiVent; inflammatory indices by using ELISA, histology, and real-time PCR; and type 2 innate lymphoid cells (ILC2s) in lung single-cell preparations by using flow cytometry. Airway hyperresponsiveness was increased in allergen-treated ST2 KO mice and comparable with that in allergen-treated wild-type control mice. Peribronchial and perivascular inflammation and mucus production were largely similar in both groups. Persistence of experimental asthma in ST2 KO mice was associated with an increase in levels of thymic stromal lymphopoietin (TSLP), IL-9, and IL-13, but not IL-5, in bronchoalveolar lavage fluid. Expectedly, ST2 deletion caused a reduction in IL-13 + CD4 T cells, forkhead box P3-positive regulatory T cells, and IL-5 + ILC2s. Unexpectedly, ST2 deletion led to an overall increase in innate lymphoid cells (CD45 + lin - CD25 + cells) and IL-13 + ILC2s, emergence of a TSLP receptor-positive IL-9 + ILC2 population, and an increase in intraepithelial mast cell numbers in the lung. An anti-TSLP antibody abrogated airway hyperresponsiveness, inflammation, and mucus production in allergen-treated ST2 KO mice. It also caused a reduction in innate lymphoid cell, ILC2, and IL-9 + and IL-13 + ILC2 numbers in the lung. Genetic deletion of the IL-33 receptor paradoxically increases TSLP production, which stimulates the emergence of IL-9 + and IL-13 + ILC2s and mast cells and leads to development of chronic experimental asthma. An anti-TSLP antibody abrogates all pathologic features of asthma in this model. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. HMGB1 exacerbates experimental mouse colitis by enhancing innate lymphoid cells 3 inflammatory responses via promoted IL-23 production.

    PubMed

    Chen, Xiangyu; Li, Lingyun; Khan, Muhammad Noman; Shi, Lifeng; Wang, Zhongyan; Zheng, Fang; Gong, Feili; Fang, Min

    2016-11-01

    In inflammatory bowel diseases (IBD), high mobility group box 1 (HMGB1), as an endogenous inflammatory molecule, can promote inflammatory cytokines secretion by acting on TLR2/4 resulting in tissue damage. The underlying mechanisms remain unclear. Here we report a novel role of HMGB1 in controlling the maintenance and function of intestine-resident group-3 innate lymphoid cells (ILC3s) that are important innate effector cells implicated in mucosal homeostasis and IBD pathogenesis. We showed that mice treated with anti-HMGB1 Ab, or genetically deficient for TLR2 -/- or TLR4 -/- mice, displayed reduced intestinal inflammation. In these mice, the numbers of colonic ILC3s were significantly reduced, and the levels of IL-17 and IL-22 that can be secreted by ILC3s were also decreased in the colon tissues. Furthermore, HMGB1 promoted DCs via TLR2/4 signaling to produce IL-23, activating ILC3s to produce IL-17 and IL-22. Our data thus indicated that the HMGB1-TLR2/4-DCs-IL-23 cascade pathway enhances the functions of ILC3s to produce IL-17 and IL-22, and this signal way might play a vital role in the development of IBD.

  18. Venetoclax: A First-in-Class Oral BCL-2 Inhibitor for the Management of Lymphoid Malignancies.

    PubMed

    King, Amber C; Peterson, Tim J; Horvat, Troy Z; Rodriguez, Mabel; Tang, Laura A

    2017-05-01

    To review the pharmacology, efficacy, and safety of venetoclax for treatment of lymphoid malignancies. A literature search was performed of PubMed and MEDLINE databases (2005 to September 2016), abstracts from the American Society of Hematology and the American Society of Clinical Oncology, and ongoing studies from clinicaltrials.gov. Searches were performed utilizing the following key terms: venetoclax, ABT-199, GDC-199, obatoclax, GX15-070, BCL-2 inhibitor, navitoclax, ABT-263, and Venclexta. Studies of pharmacology, pharmacokinetics, pharmacodynamics, clinical efficacy, and safety of venetoclax in lymphoid malignancies were identified. Recently, treatment of B-cell lymphoproliferative disorders has shifted from conventional cytotoxic chemotherapy to novel small-molecule inhibitors. The advent of recently Food and Drug Administration-approved oral agents ibrutinib and idelalisib has shifted the paradigm of chronic lymphocytic leukemia (CLL) treatment; however, complete remission is uncommon, and the outcome for patients progressing on these treatments remains poor. Attention has been focused on a novel target, the B-cell lymphoma-2 protein (BCL-2), which serves an essential role in regulation of apoptosis. Venetoclax has demonstrated efficacy in multiple subtypes of lymphoid malignancies, including patients with relapsed/refractory CLL harboring deletion 17p, with an overall response rate of nearly 80%. Venetoclax is generally well tolerated, with the significant adverse effect being tumor lysis syndrome, for which there are formal management recommendations. Venetoclax has demonstrated promising results in relapsed/refractory lymphoid malignancies, with an acceptable adverse effect profile. As the role of BCL-2 inhibition in various malignancies becomes further elucidated, venetoclax may offer benefit to a myriad other patient populations.

  19. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine

    PubMed Central

    Luci, Carmelo; Bekri, Selma; Bihl, Franck; Pini, Jonathan; Bourdely, Pierre; Nouhen, Kelly; Malgogne, Angélique; Walzer, Thierry; Braud, Véronique M.; Anjuère, Fabienne

    2015-01-01

    Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses. PMID:26630176

  20. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    PubMed

    Paiola, Matthieu; Knigge, Thomas; Duflot, Aurélie; Pinto, Patricia I S; Farcy, Emilie; Monsinjon, Tiphaine

    2018-07-01

    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Morphological and functional development of the interbranchial lymphoid tissue (ILT) in Atlantic salmon (Salmo salar L).

    PubMed

    Dalum, Alf Seljenes; Griffiths, David James; Valen, Elin Christine; Amthor, Karoline Skaar; Austbø, Lars; Koppang, Erling Olaf; Press, Charles McLean; Kvellestad, Agnar

    2016-11-01

    The interbranchial lymphoid tissue (ILT) of Atlantic salmon originates from an embryological location that in higher vertebrates gives rise to both primary and secondary lymphoid tissues. Still much is unknown about the morphological and functional development of the ILT. In the present work a standardized method of organ volume determination was established to study its development in relation to its containing gill and the thymus. Based on morphological findings and gene transcription data, the ILT shows no signs of primary lymphoid function. In contrast to the thymus, an ILT-complex first became discernible after the yolk-sac period. After its appearance, the ILT-complex constitutes 3-7% of the total volume of the gill (excluding the gill arch) with the newly described distal ILT constituting a major part, and in adult fish it is approximately 13 times larger than the thymus. Confined regions of T-cell proliferation are present within the ILT. Communication with systemic circulation through the distal ILT is also highly plausible thus offering both internal and external recruitment of immune cells in the growing ILT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Both rejection and tolerance of allografts can occur in the absence of secondary lymphoid tissues

    PubMed Central

    Kant, Cavit D.; Akiyama, Yoshinobu; Tanaka, Katsunori; Shea, Susan; Yamada, Yohei; Connolly, Sarah E; Marino, Jose; Tocco, Georges; Benichou, Gilles

    2014-01-01

    In this study, we show that aly/aly mice, which are devoid of lymph nodes and Peyer’s patches, rejected acutely fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts were also rejected acutely by splenectomized aly/aly mice (aly/aly-spl−) devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8+ T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected in aly/aly-spl− mice. Actually, aly/aly-spl− mice having spontaneously accepted a heart allotransplant displayed donor-specific tolerance also accepted skin grafts from the same but not a third-party donor via a mechanism involving CD4+ regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs. PMID:25535285

  3. Nonselective inhibition of the epigenetic transcriptional regulator BET induces marked lymphoid and hematopoietic toxicity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong U., E-mail: lee.dong@gene.com

    Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are epigenetic transcriptional regulators required for efficient expression of growth promoting, cell cycle progression and antiapoptotic genes. Through their bromodomain, these proteins bind to acetylated lysine residues of histones and are recruited to transcriptionally active chromatin. Inhibition of the BET-histone interaction provides a tractable therapeutic strategy to treat diseases that may have epigenetic dysregulation. JQ1 is a small molecule that blocks BET interaction with histones. It has been shown to decrease proliferation of patient-derived multiple myeloma in vitro and to decrease tumor burden in vivo in xenograft mouse models.more » While targeting BET appears to be a viable and efficacious approach, the nonclinical safety profile of BET inhibition remains to be well-defined. We report that mice dosed with JQ1 at efficacious exposures demonstrate dose-dependent decreases in their lymphoid and immune cell compartments. At higher doses, JQ1 was not tolerated and due to induction of significant body weight loss led to early euthanasia. Flow cytometry analysis of lymphoid tissues showed a decrease in both B- and T-lymphocytes with a concomitant decrease in peripheral white blood cells that was confirmed by hematology. Further investigation with the inactive enantiomer of JQ1 showed that these in vivo effects were on-target mediated and not elicited through secondary pharmacology due to chemical structure.« less

  4. CD8 down-regulation and functional impairment of SIV-specific cytotoxic T lymphocytes in lymphoid and mucosal tissues during SIV infection.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2013-06-01

    Functional impairment of virus-specific T cells is a hallmark of HIV/SIV infection, but the underlying mechanisms of this dysfunction are not well understood. To address this, we simultaneously analyzed the expression and intensity of CD8 and inhibitory PD-1 on CTL in blood and lymphoid tissues in SIV-infected rhesus macaques. The intensity (mean channel fluorescence) of CD8 expression was transiently down-regulated in early SIV infection (10-14 dpi), despite an increase in CD8(+) T cell proliferation. In chronic infection, CD8 expression was maintained at low levels on CD8(+) T cells in all tissues. Interestingly, Gag-specific CTLs were clearly divided into CD8high- and CD8low-expressing populations in SIV-infected macaques, and CD8low Gag-specific cells increased with disease progression, especially in lymphoid tissues when compared with peripheral blood or in Gag-vaccinated controls. Moreover, the CD8low CTL population secreted lower levels of cytokines upon SIV antigen stimulation and exhibited lower proliferative capacity during infection compared with the CD8high CTL population. Meanwhile, intensity of PD-1 expression on Gag-specific CTL in chronic infection was significantly higher than in acute SIV infection, although the frequencies of PD-1+ Gag-specific cells were similar in acute and chronic stages. In summary, down-regulation of CD8 expression and higher expression of PD-1 on SIV-specific CTLs could coordinately attenuate SIV-specific CTL responses and their ability to recognize virus-infected target cells, especially in lymphoid tissues, resulting in failure to contain viremia, and continued persistence and replication of HIV in lymphoid tissue reservoirs.

  5. Forced expression of the Ikaros 6 isoform in human placental blood CD34(+) cells impairs their ability to differentiate toward the B-lymphoid lineage.

    PubMed

    Tonnelle, C; Bardin, F; Maroc, C; Imbert, A M; Campa, F; Dalloul, A; Schmitt, C; Chabannon, C

    2001-11-01

    Studies in mice suggest that the Ikaros (Ik) gene encodes several isoforms and is a critical regulator of hematolymphoid differentiation. Little is known on the role of Ikaros in human stem cell differentiation. Herein, the biological consequences of the forced expression of Ikaros 6 (Ik6) in human placental blood CD34(+) progenitors are evaluated. Ik6 is one of the isoforms produced from the Ikaros premessenger RNA by alternative splicing and is thought to behave as a dominant negative isoform of the gene product because it lacks the DNA binding domain present in transcriptionally active isoforms. The results demonstrate that human cord blood CD34(+) cells that express high levels of Ik6 as a result of retrovirally mediated gene transfer have a reduced capacity to produce lymphoid B cells in 2 independent assays: (1) in vitro reinitiation of human hematopoiesis during coculture with the MS-5 murine stromal cell line and (2) xenotransplantation in nonobese diabetic-severe combined immunodeficient mice. These results suggest that Ikaros plays an important role in stem cell commitment in humans and that the balance between the different isoforms is a key element of this regulatory system; they support the hypothesis that posttranscriptional events can participate in the control of human hematopoietic differentiation.

  6. Ordering human CD34+CD10−CD19+ pre/pro-B-cell and CD19− common lymphoid progenitor stages in two pro-B-cell development pathways

    PubMed Central

    Sanz, Eva; Muñoz-A., Norman; Monserrat, Jorge; Van-Den-Rym, Ana; Escoll, Pedro; Ranz, Ismael; Álvarez-Mon, Melchor; de-la-Hera, Antonio

    2010-01-01

    Studies here respond to two long-standing questions: Are human “pre/pro-B” CD34+CD10−CD19+ and “common lymphoid progenitor (CLP)/early-B” CD34+CD10+CD19− alternate precursors to “pro-B” CD34+CD19+CD10+ cells, and do the pro-B cells that arise from these progenitors belong to the same or distinct B-cell development pathways? Using flow cytometry, gene expression profiling, and Ig VH-D-JH sequencing, we monitor the initial 10 generations of development of sorted cord blood CD34highLineage− pluripotential progenitors growing in bone marrow S17 stroma cocultures. We show that (i) multipotent progenitors (CD34+CD45RA+CD10−CD19−) directly generate an initial wave of Pax5+TdT− “unilineage” pre/pro-B cells and a later wave of “multilineage” CLP/early-B cells and (ii) the cells generated in these successive stages act as precursors for distinct pro-B cells through two independent layered pathways. Studies by others have tracked the origin of B-lineage leukemias in elderly mice to the mouse B-1a pre/pro-B lineage, which lacks the TdT activity that diversifies the VH-D-JH Ig heavy chain joints found in the early-B or B-2 lineage. Here, we show a similar divergence in human B-cell development pathways between the Pax5+TdT− pre/pro-B differentiation pathway that gives rise to infant B-lineage leukemias and the early-B pathway. PMID:20231472

  7. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38α-Dependent Restraint of NF-κB Signaling.

    PubMed

    Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo

    2016-03-01

    The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. In this study, we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a noncell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are most likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Reactive lymphoid hyperplasia of the liver in a patient with multiple carcinomas: a case report and brief review.

    PubMed

    Sato, K; Ueda, Y; Yokoi, M; Hayashi, K; Kosaka, T; Katsuda, S

    2006-09-01

    A rare case of reactive lymphoid hyperplasia (RLH) of the liver in a 75-year-old woman admitted to hospital for surgical treatment of gastric, caecal and colon carcinomas is described here. Two nodular lesions in the left and right lobes of the liver were clinically diagnosed as metastatic tumours by computed tomography of the abdomen. A demarcating grey-white mass of size 1.4 cm was observed in a partially resected liver specimen. On examining the lesion microscopically, it was found to be composed of hyperplastic lymphoid follicles, lymphocytes, plasma cells, other inflammatory cells and interlaced hyalinised fibrous tissues. In the portal tracts around the lesion, chronic inflammatory cell infiltrates were seen, but no interface hepatitis or lymphoid follicle was observed. No evidence of monoclonality was observed by immunohistochemistry for B and T cell markers, in situ hybridisation for kappa and lambda light chains, and polymerase chain reaction analysis of immunoglobulin heavy chains or T cell receptor beta and gamma gene rearrangements. Bcl-2 immunoreactivity was not observed in the germinal centre. Epstein-Barr virus (EBV) antigen (latent membrane protein-1) and EBV-encoded small RNAs were not detected. A proliferation neither of myofibroblasts nor of cells positive for follicular dendritic cell markers was observed. RLH, formerly known as pseudolymphoma, has been reported of the liver in only 14 cases and is considered to be a differential diagnosis of small nodular lesions of the liver. That RLH has an inflammatory reactive nature, not a neoplastic disposition, and that EBV does not participate in the pathogenesis of RLH is supported by this case.

  9. [Disappearance of Philadelphia chromosomes after remission induction in lymphoid crisis of chronic myelogenous leukemia].

    PubMed

    Nagafuji, K; Iwakiri, R; Miyamoto, T; Okamura, H; Yokota, E; Matsumoto, I

    1992-09-01

    The authors report a rare case of chronic myelogenous leukemia (CML) in which the Ph1 clone disappeared after remission induction of lymphoid crisis. A 58-year-old man was admitted to our hospital because of fever in July 1988. The white cell count was elevated. Bone marrow aspirate showed hypercellularity with myeloid hyperplasia. In the chromosomal analysis, Ph1 chromosomes were detected in 100% of bone marrow cells analysed. Diagnosis of CML was made and treatment was initiated with recombinant interferon-alpha 2a. Hematological remission without cytogenetic improvement was achieved. In March 1990 he developed lymphoid crisis with proliferation of CD10-positive cells. The chromosomal analysis revealed additional abnormalities including, 45, X, -Y, t(9;22) (q34;q11), +1, -8. With vincristine 0.6 mgX4, pirarubicin 15 mgX4, dexamethasone 40 mgX4 therapy complete remission was obtained. In December 1990 the Ph1 positive clone completely disappeared judging from normal karyotypes in the chromosomal analysis and the disappearance of M-bcr gene rearrangement.

  10. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease.

    PubMed

    Dudakov, Jarrod A; Mertelsmann, Anna M; O'Connor, Margaret H; Jenq, Robert R; Velardi, Enrico; Young, Lauren F; Smith, Odette M; Boyd, Richard L; van den Brink, Marcel R M; Hanash, Alan M

    2017-08-17

    Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently related complications of allogeneic hematopoietic transplantation. Alloreactive donor T cells can damage thymic epithelium, thus limiting new T-cell development. Although the thymus has a remarkable capacity to regenerate after injury, endogenous thymic regeneration is impaired in GVHD. The mechanisms leading to this regenerative failure are largely unknown. Here we demonstrate in experimental mouse models that GVHD results in depletion of intrathymic group 3 innate lymphoid cells (ILC3s) necessary for thymic regeneration. Loss of thymic ILC3s resulted in deficiency of intrathymic interleukin-22 (IL-22) compared with transplant recipients without GVHD, thereby inhibiting IL-22-mediated protection of thymic epithelial cells (TECs) and impairing recovery of thymopoiesis. Conversely, abrogating IL-21 receptor signaling in donor T cells and inhibiting the elimination of thymic ILCs improved thymopoiesis in an IL-22-dependent fashion. We found that the thymopoietic impairment in GVHD associated with loss of ILCs could be improved by restoration of IL-22 signaling. Despite uninhibited alloreactivity, exogenous IL-22 administration posttransplant resulted in increased recovery of thymopoiesis and development of new thymus-derived peripheral T cells. Our study highlights the role of innate immune function in thymic regeneration and restoration of adaptive immunity posttransplant. Manipulation of the ILC-IL-22-TEC axis may be useful for augmenting immune reconstitution after clinical hematopoietic transplantation and other settings of T-cell deficiency. © 2017 by The American Society of Hematology.

  11. FAS ligand expression in inflammatory infiltrate lymphoid cells as a prognostic marker in oral squamous cell carcinoma.

    PubMed

    Peterle, G T; Santos, M; Mendes, S O; Carvalho-Neto, P B; Maia, L L; Stur, E; Agostini, L P; Silva, C V M; Trivilin, L O; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-09-22

    Currently, the most important prognostic factor in oral squamous cell carcinoma (OSCC) is the presence of regional lymph node metastases, which correlates with a 50% reduction in life expectancy. We have previously observed that expression of hypoxia genes in the tumor inflammatory infiltrate is statistically related to prognosis in OSCC. FAS and FASL expression levels in OSCC have previously been related to patient survival. The present study analyzed the relationship between FASL expression in the inflammatory infiltrate lymphoid cells and clinical variables, tumor histology, and prognosis of OSCC. Strong FASL expression was significantly associated with lymph node metastases (P = 0.035) and disease-specific death (P = 0.014), but multivariate analysis did not confirm FASL expression as an independent death risk factor (OR = 2.78, 95%CI = 0.81-9.55). Disease-free and disease-specific survival were significantly correlated with FASL expression (P = 0.016 and P = 0.005, respectively). Multivariate analysis revealed that strong FASL expression is an independent marker for earlier disease relapse and disease-specific death, with approximately 2.5-fold increased risk compared with weak expression (HR = 2.24, 95%CI = 1.08-4.65 and HR = 2.49, 95%CI = 1.04-5.99, respectively). Our results suggest a potential role for this expression profile as a tumor prognostic marker in OSCC patients.

  12. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines.

    PubMed

    Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto

    2002-07-01

    In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.

  13. Different T-bet expression patterns characterize particular reactive lymphoid tissue lesions.

    PubMed

    Jöhrens, K; Anagnostopoulos, I; Dürkop, H; Stein, H

    2006-03-01

    To investigate T-bet expression profiles in various lymphoid tissue diseases caused by intracellular pathogens and to compare them in disorders without an infective aetiology. Murine and in vitro experiments have shown that the expression/induction of T-bet, the master regulator of Th1 differentiation, can be achieved by obligate intracellular pathogens and high interferon (IFN)-gamma levels. Lymph node biopsies were analysed immunohistochemically employing single and double labelling for T-bet and CD20, CD4, CD8 and CD30 detection. In disorders associated with high IFN-gamma levels and intracellular pathogens (infectious mononucleosis, HIV-associated lymphadenopathy, cat-scratch disease, and toxoplasmic lymphadenitis), T-bet-expressing CD4 cells were accompanied by significant numbers of T-bet-positive CD8 and B cells. A similar profile was also found in histiocytic necrotizing (Kikuchi) lymphadenitis, a disease of unknown cause. In contrast, T-bet expression in disorders without an infective aetiology was observed in only a small portion of lymphocytes. Increased T-bet expression does not only identify intracellular infections in lymphoid tissue associated with high IFN-gamma levels, but also implies that, under these conditions, it becomes induced in B cells, which apparently support the Th1 response. T-bet expression in Kikuchi lymphadenitis underscores the hypothesis that it is caused by an intracellular microorganism.

  14. Histology and immunohistochemistry of the gut-associated lymphoid tissue of the eastern grey kangaroo, Macropus giganteus.

    PubMed

    Old, J M; Deane, E M

    2001-12-01

    Mesenteric lymph nodes and gut-associated lymphoid tissue (GALT) from juvenile eastern grey kangaroos were investigated. The mesenteric nodes had a similar structure to that described for eutherian mammals. They contained distinct regions of medulla and cortex, with prominent follicles and germinal centres. Gut associated lymphoid tissue consisted of areas of submucosal follicles. These varied from areas of densely packed lymphocytes with darkly staining, prominent coronas to areas with no defined follicles. The distribution of T cells in these tissues was documented by use of species-crossreactive antibodies to the surface markers CD3 and CD5; B cells were identified by antibodies to CD79b. Within the lymph nodes T cells were located mainly in the paracortex and cortex, with limited numbers observed in the follicles; B cells were located on the marginal zone of the follicles. In GALT, T cells were located in the peripheral regions of the germinal centres of secondary follicles, while B cells were abundant in primary follicles. These observations are consistent with those made in a range of other marsupials (metatherian) and eutherian mammals and are indicative of the capacity to respond to antigens entering via the mouth.

  15. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo.

    PubMed

    Kobayashi, Yuka; Watanabe, Takeshi

    2016-01-01

    We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging.

  16. TSLP elicits IL-33–independent innate lymphoid cell responses to promote skin inflammation

    PubMed Central

    Kim, Brian S.; Siracusa, Mark C.; Saenz, Steven A.; Noti, Mario; Monticelli, Laurel A.; Sonnenberg, Gregory F.; Hepworth, Matthew R.; Van Voorhees, Abby S.; Comeau, Michael R.

    2013-01-01

    Innate lymphoid cells (ILCs) are a recently identified family of heterogeneous immune cells that can be divided into three groups based on their differential developmental requirements and expression of effector cytokines. Among these, group 2 ILCs produce the type 2 cytokines IL-5 and IL-13 and promote type 2 inflammation in the lung and intestine. However, whether group 2 ILCs reside in the skin and contribute to skin inflammation has not been characterized. Here, we identify for the first time a population of skin-resident group 2 ILCs present in healthy human skin that are enriched in lesional human skin from atopic dermatitis (AD) patients. Group 2 ILCs were also found in normal murine skin and were critical for the development of inflammation in a murine model of AD-like disease. Remarkably, in contrast to group 2 ILC responses in the intestine and lung, which are critically regulated by IL-33 and IL-25, ILC responses in the skin and skin-draining lymph nodes were independent of these canonical cytokines but were critically dependent on thymic stromal lymphopoietin (TSLP). Collectively, these results demonstrate an essential role for IL-33– and IL-25–independent group 2 ILCs in promoting skin inflammation. PMID:23363980

  17. [Function and modulation of type Ⅱ innate lymphoid cells and their role in chronic upper airway inflammatory diseases].

    PubMed

    Liu, Y; Liu, Z

    2017-02-07

    Type Ⅱ innate lymphoid cells (ILC2) is a family of innate immune lymphocytes, which provide effective immune responses to cytokines. ILC2 are regulated by the nuclear transcription factor ROR alpha and GATA3, secreting cytokines IL-5 and IL-13, etc. Animal models have shown that ILC2 are involved in allergic diseases, such as asthma and atopic dermatitis, and also play a very important role in the metabolic balance. In addition, recent reports suggest that ILC2 not only play a role in the initial stages of the disease, but also can lead to chronic pathological changes in the disease, such as fibrosis, and may have an effect on acquired immunity. This paper mainly focus in the role and regulation of ILC2 cells, and review the research status of ILC2 in the field of chronic upper airway inflammatory diseases including allergic rhinitis and chronic rhinosinusitis.

  18. T-cell/histiocyte-rich large B-cell lymphoma of stomach.

    PubMed

    Barut, Figen; Kandemir, Nilufer Onak; Gun, Banu Dogan; Ozdamar, Sukru Oguz

    2016-07-01

    T-cell/histiocyte-rich large B-cell lymphoma is an unusually encountered lymphoid neoplasm of stomach with aggressive course, and is an uncommon morphologic variant of diffuse large B-cell lymphoma. An ulcerated mass, 7x5x1 cm in size was observed within the gastrectomy specimen of a 76-year-old female patient. In cross sections, besides mature lymphoid cells displaying T-cell phenotype, a neoplastic formation composed of large, pleomorphic atypical lymphoid cells with, prominent nucleoli, vesicular nuclei and abundant eosinophilic cytoplasm displaying B-cell phenotype were observed. Meanwhile, histiocyte-like mononuclear cells and Reed-Sternberg-like multinuclear cells expressing CD68 and Mac387 were also observed. The diagnosis of the case was T cell/histiocyte-rich large B-cell lymphoma. This rarely encountered neoplasm should be kept in mind in the differential diagnosis of primary gastric lymphomas.

  19. Biological Effects of c-Mer Receptor Tyrosine Kinase in Hematopoietic Cells Depend on the Grb2 Binding Site in the Receptor and Activation of NF-κB

    PubMed Central

    Georgescu, Maria-Magdalena; Kirsch, Kathrin H.; Shishido, Tomoyuki; Zong, Chen; Hanafusa, Hidesaburo

    1999-01-01

    The c-Mer receptor tyrosine kinase (RTK) is most closely related to chicken c-Eyk and belongs to the Axl RTK subfamily. Although not detected in normal lymphocytes, c-Mer is expressed in B- and T-cell leukemia cell lines, suggesting an association with lymphoid malignancies. To gain an understanding of the role of this receptor in lymphoid cells, we expressed in murine interleukin-3 (IL-3)-dependent Ba/F3 pro-B-lymphocyte cells a constitutively active receptor, CDMer, formed from the CD8 extracellular domain and the c-Mer intracellular domain. Cells transfected with a plasmid encoding the CDMer receptor became IL-3 independent. When tyrosine (Y)-to-phenylalanine (F) mutations were introduced into c-Mer, only the Y867 change significantly reduced the IL-3-independent cell proliferation. The Y867 residue in the CDMer receptor mediated the binding of Grb2, which recruited the p85 phosphatidylinositol 3-kinase (PI 3-kinase). Despite the difference in promotion of proliferation, both the CDMer and mutant F867 receptors activated Erk in transfected cells. On the other hand, we found that both transcriptional activation of NF-κB and activation of PI 3-kinase were significantly suppressed with the F867 mutant receptor, suggesting that the activation of antiapoptotic pathways is the major mechanism for the observed phenotypic difference. Consistent with this notion, apoptosis induced by IL-3 withdrawal was strongly prevented by CDMer but not by the F867 mutant receptor. PMID:9891051

  20. IL-7Rα and E47: independent pathways required for development of multipotent lymphoid progenitors

    PubMed Central

    Kee, Barbara L.; Bain, Gretchen; Murre, Cornelis

    2002-01-01

    Mice that lack the transcription factors encoded by the E2A gene or the receptor for interleukin 7 (IL-7R) have severe overlapping defects in lymphocyte development. Here, we show that E2A proteins are required for the survival of early T-lineage cells; however, they function through a pathway that is distinct from the survival pathway initiated by IL-7R signaling. While E2A proteins are required to suppress caspase 3 activation, ectopic expression of the anti-apoptotic protein Bcl-2 is not sufficient to overcome the lymphopoietic defects observed in the absence of E2A. Remarkably, mice that lack both IL-7Rα and E47 display a synergistic decrease in the number of T-cell, NK-cell and multipotent progenitors in the thymus, indicating that these distinct survival pathways converge to promote the development of multipotent lymphoid progenitors. PMID:11782430

  1. What do we know about the mechanisms of elimination of autoreactive T and B cells and what challenges remain.

    PubMed

    Strasser, Andreas; Puthalakath, Hamsa; O'Reilly, Lorraine A; Bouillet, Philippe

    2008-01-01

    Tolerance to self-antigens within the adaptive immune system is safeguarded, at least in part, through deletion of autoreactive T and B lymphocytes. This deletion can occur during the development of these cells in primary lymphoid organs, the thymus or bone marrow, respectively, or at the mature stage in peripheral lymphoid tissues. Deletion of autoreactive lymphocytes is achieved to a large extent through apoptotic cell death. This review describes current understanding of the mechanisms that mediate apoptosis of autoreactive lymphocytes during their development in primary lymphoid organs and during their activation in the periphery. In particular, we discuss the roles of the proapoptotic Bcl-2 family member Bim and the small family of Nur77-related transcriptional regulators in lymphocyte negative selection. Finally, we speculate on the processes that may lead to the activation of Bim when antigen receptors are activated on autoreactive T or B cells.

  2. Lymphoid papillary hyperplasia of the palatine tonsil: a Chinese case report

    PubMed Central

    Zhao, Ming; Yu, Jingjing; Li, Changshui

    2013-01-01

    Lymphoid papillary hyperplasia is a rare abnormality of the tonsils with a predilection for affecting young Asian girls. Herein, we report a 31-year-old Chinese woman presented as right lateral recurrent tonsillar hypertrophy with odynophagia and dysphagia over the past 5 years, worsening over a period of for half a year. Clinically, this lesion was similar to papillomatosis or lymphoid polyposis. However, histopathologic study showed a distinctive form of lymphoid hyperplasia with considerable distinct finger-like projections composed of many phyllodes which contained remarkable follicular lymphoid hyperplasia. This is the only Chinese case of lymphoid papillary hyperplasia of the palatine tonsils that has been reported in the most recent English literature so far. The importance of recognizing this disorder rests in the fact that in spite of the clinical features suggestive of both a benign and a malignant tumor, however, the process is a benign tumor-like proliferation, probably non-neoplastic, could easily be cured by tonsillectomy. PMID:24040465

  3. A case of primary mucosa-associated lymphoid tissue lymphoma of the vagina.

    PubMed

    Yoshinaga, Kousuke; Akahira, Jun-Ichi; Niikura, Hitoshi; Ito, Kiyoshi; Moriya, Takuya; Murakami, Takashi; Kameoka, Jun-Ichi; Ichinohasama, Ryo; Okamura, Kunihiro; Yaegashi, Nobuo

    2004-09-01

    We report the first case of primary mucosa-associated lymphoid tissue (MALT) lymphoma of the vagina, the diagnosis of which is supported by genetic and immunophenotypic studies. A 65-year-old, para 2 woman presented to our hospital in July 1997 with a history of prolonged vaginal discharge. Although cytologic examination suggested possible malignancy, a biopsy of the vaginal wall was diagnosed as chronic inflammation. In June 2000, she underwent gynecologic examination because of anuria. Excisional biopsy revealed subepithelial infiltration of atypical lymphoid cells that stained for CD20, CD79a, and BCL-2; stained weakly for IgM; and did not stain for CD3, CD5, CD7, CD10, CD56, CD23, and IgD, suggesting marginal zone B-cell lineage. Monoclonality was detected by Southern blot analysis, and this patient was finally diagnosed as having primary MALT lymphoma of the vagina. She received 3 cycles of chemotherapy (THP-COP) and concurrent radiation to the whole pelvis. The patient is alive and well 40 months after treatment. Because the vagina is one of the mucosa-associated tissues, MALT lymphoma, though rare, must be included in the differential diagnosis of the vaginal neoplasms.

  4. [Effects of prebiotics and probiotics on gastrointestinal tract lymphoid tissue in hiv infected patients].

    PubMed

    Feria, Manuel G; Taborda, Natalia A; Hernandez, Juan C; Rugeles, María T

    2017-02-01

    HIV infection induces alterations in almost all immune cell populations, mainly in CD4+ T cells, leading to the development of opportunistic infections. The gut-associated lymphoid tissue (GALT) constitutes the most important site for viral replication, because the main target cells, memory T-cells, reside in this tissue. It is currently known that alterations in GALT are critical during the course of the infection, as HIV-1 induces loss of tissue integrity and promotes translocation of microbial products from the intestinal lumen to the systemic circulation, leading to a persistent immune activation state and immune exhaustion. Although antiretroviral treatment decreases viral load and substantially improves the prognosis of the infection, the alterations in GALT remains, having a great impact on the ability to establish effective immune responses. This emphasizes the importance of developing new therapeutic alternatives that may promote structural and functional integrity of this tissue. In this regard, therapy with probiotics/prebiotics has beneficial effects in GALT, mainly in syndromes characterized by intestinal dysbiosis, including the HIV-1 infection. In these patients, the consumption of probiotics/prebiotics decreased microbial products in plasma and CD4+ T cell activation, increased CD4+ T cell frequency, in particular Th17, and improved the intestinal flora. In this review, the most important findings on the potential impact of the probiotics/prebiotics therapy are discussed.

  5. Expression of hpttg proto-oncogene in lymphoid neoplasias.

    PubMed

    Sáez, Carmen; Pereda, Teresa; Borrero, Juan J; Espina, Agueda; Romero, Francisco; Tortolero, María; Pintor-Toro, José A; Segura, Dolores I; Japón, Miguel A

    2002-11-21

    Pituitary tumor-transforming gene (pttg) is a distinct proto-oncogene which is expressed in certain normal tissues with high proliferation rate and in a variety of tumors. PTTG is the vertebrate analog of yeast securins Pds1 and Cut2 with a key role in the regulation of sister chromatid separation during mitosis. Impairment of PTTG regulated functions is expected to lead to chromosomal instability and aneuploidy. Human pttg (hpttg) is abundantly expressed in Jurkat T lymphoblastic lymphoma cells but not in normal peripheral blood leukocytes. To obtain additional data on the potential role of hpttg in lymphomagenesis we selected 150 cases of lymphoid tumors for the assessment of hpttg expression in tumor tissues. Immunohistochemical studies on formalin-fixed, paraffin-embedded tissues revealed hPTTG in 38.8% of B-cell lymphomas, 70.2% of T-cell lymphomas, and 73.1% of Hodgkin's lymphomas. Among B-cell lymphomas, the most frequently immunostained tumors were plasma cell tumors, diffuse large cell lymphomas, and follicle center cell lymphomas. In Hodgkin's disease, immunoreactivity was mainly noted in Reed-Sternberg cells. In conclusion, the frequent overexpression of hpttg in many histological subtypes of lymphoma suggests the involvement of this proto-oncogene in lymphomagenesis.

  6. An NKG2D-mediated human lymphoid stress-surveillance response with high inter-individual variation*

    PubMed Central

    Wallace, Graham; Antoun, Ayman; Vaughan, Robert; Stanford, Miles; Hayday, Adrian

    2014-01-01

    Microbes and viruses provoke immune responses because certain of their molecular determinants engage and activate dendritic cells (DC). However, evidence is growing for lymphocyte activation by tissue dysregulation. Thus, murine γδ T cells and NK cells can respond rapidly in vivo to Major Histocompatibility Complex (MHC) class I–related “stress-antigens” displayed by cells experiencing DNA damage and/or other physico-chemical stress. Such “lymphoid stress-surveillance” (LSS) can limit tumor formation, but may also promote immunopathology. MICA is a highly polymorphic human stress-antigen implicated in tumor-surveillance, inflammation, and transplant rejection. However, neither the generality of LSS in humans, nor a functional context for MICA polymorphism has been established. Here we show that MICA coding-sequence polymorphisms substantially affect RNA and protein expression. All donors tested showed LSS responses of γδ T and NK cells, but unexpectedly each was individually “tuned”. Hence, some responded optimally to high MICA expression, while others responded better to poorly-expressed MICA alleles, challenging the orthodoxy that higher stress-antigen levels promote greater responsiveness. The routine clinical monitoring of individual tuning should provide practical insight into individual variation in tumor immune-surveillance, transplant rejection and inflammation, and introduce new perspectives on immuno-evasion and immune-suppression in these scenarios. PMID:22133594

  7. Intestinal M cells

    PubMed Central

    Ohno, Hiroshi

    2016-01-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer’s patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions. PMID:26634447

  8. Cardiac allograft prolongation in mice treated with combined posttransplantation total-lymphoid irradiation and anti-L3T4 antibody therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trager, D.K.; Banks, B.A.; Rosenbaum, G.E.

    1989-04-01

    Neonatal cardiac allograft survival was examined in mice treated with anti-L3T4 antibody, posttransplantation total lymphoid irradiation (TLI) or a combination of both therapies. Independently, both posttransplantation TLI and short-course antibody treatment allowed minimal prolongation. However, synergistic prolongation in graft survival was observed with the combination (synergistic) therapy. Fluorescence-activated cell sorter analysis of peripheral blood lymphocytes from animals treated with combined anti-L3T4 and posttransplantation TLI additionally revealed ''synergy'' with respect to the degree of peripheral lymphocyte depletion.

  9. Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells.

    PubMed

    Zhang, Kangning; Xu, Xingyuan; Pasha, Muhammad Asghar; Siebel, Christian W; Costello, Angelica; Haczku, Angela; MacNamara, Katherine; Liang, Tingbo; Zhu, Jinfang; Bhandoola, Avinash; Maillard, Ivan; Yang, Qi

    2017-03-01

    The mechanisms underlying lymphocyte lineage stability and plasticity remain elusive. Recent work indicates that innate lymphoid cells (ILC) possess substantial plasticity. Whereas natural ILC2 (nILC2) produce type-2 cytokines, plastic inflammatory ILC2 (iILC2) can coproduce both type-2 cytokines and the ILC3-characteristic cytokine, IL-17. Mechanisms that elicit this lineage plasticity, and the importance in health and disease, remain unclear. In this study we show that iILC2 are potent inducers of airway inflammation in response to acute house dust mite challenge. We find that Notch signaling induces lineage plasticity of mature ILC2 and drives the conversion of nILC2 into iILC2. Acute blockade of Notch signaling abolished functional iILC2, but not nILC2, in vivo. Exposure of isolated nILC2 to Notch ligands induced Rorc expression and elicited dual IL-13/IL-17 production, converting nILC2 into iILC2. Together these results reveal a novel role for Notch signaling in eliciting ILC2 plasticity and driving the emergence of highly proinflammatory innate lymphocytes. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Noninfectious X4 but not R5 human immunodeficiency virus type 1 virions inhibit humoral immune responses in human lymphoid tissue ex vivo

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Wendy; Sylwester, Andrew W.; Grivel, Jean-Charles; Lifson, Jeffrey D.; Margolis, Leonid B.

    2004-01-01

    Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4(+) T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4(+) T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4(+) T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.

  11. The orphan nuclear receptor RORα and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn's disease.

    PubMed

    Lo, Bernard C; Gold, Matthew J; Hughes, Michael R; Antignano, Frann; Valdez, Yanet; Zaph, Colby; Harder, Kenneth W; McNagny, Kelly M

    2016-09-02

    Fibrosis is the result of dysregulated tissue regeneration and is characterized by excessive accumulation of matrix proteins that become detrimental to tissue function. In Crohn's disease, this manifests itself as recurrent gastrointestinal strictures for which there is no effective therapy beyond surgical intervention. Using a model of infection-induced chronic gut inflammation, we show that Rora -deficient mice are protected from fibrosis; infected intestinal tissues display diminished pathology, attenuated collagen deposition, and reduced fibroblast accumulation. Although Rora is best known for its role in group 2 innate lymphoid cell (ILC2) development, we find that Salmonella -induced fibrosis is independent of eosinophils, signal transducer and activator of transcription 6 signaling, and T helper 2 cytokine production, arguing that this process is largely ILC2-independent. Instead, we observe reduced levels of ILC3- and T cell-derived interleukin-17A (IL-17A) and IL-22 in infected gut tissues. Furthermore, using Rora sg/sg / Rag1 -/- bone marrow chimeric mice, we show that restoring ILC function is sufficient to reestablish IL-17A and IL-22 production and a profibrotic phenotype. Our results show that RORα (retinoic acid receptor-related orphan receptor α)-dependent ILC3 functions are pivotal in mediating gut fibrosis, and they offer an avenue for therapeutic intervention in Crohn's-like diseases. Copyright © 2016, American Association for the Advancement of Science.

  12. A PET Imaging Strategy to Visualize Activated T Cells in Acute Graft-versus-Host Disease Elicited by Allogenic Hematopoietic Cell Transplant.

    PubMed

    Ronald, John A; Kim, Byung-Su; Gowrishankar, Gayatri; Namavari, Mohammad; Alam, Israt S; D'Souza, Aloma; Nishikii, Hidekazu; Chuang, Hui-Yen; Ilovich, Ohad; Lin, Chih-Feng; Reeves, Robert; Shuhendler, Adam; Hoehne, Aileen; Chan, Carmel T; Baker, Jeanette; Yaghoubi, Shahriar S; VanBrocklin, Henry F; Hawkins, Randall; Franc, Benjamin L; Jivan, Salma; Slater, James B; Verdin, Emily F; Gao, Kenneth T; Benjamin, Jonathan; Negrin, Robert; Gambhir, Sanjiv Sam

    2017-06-01

    A major barrier to successful use of allogeneic hematopoietic cell transplantation is acute graft-versus-host disease (aGVHD), a devastating condition that arises when donor T cells attack host tissues. With current technologies, aGVHD diagnosis is typically made after end-organ injury and often requires invasive tests and tissue biopsies. This affects patient prognosis as treatments are dramatically less effective at late disease stages. Here, we show that a novel PET radiotracer, 2'-deoxy-2'-[18F]fluoro-9-β-D-arabinofuranosylguanine ([18F]F-AraG), targeted toward two salvage kinase pathways preferentially accumulates in activated primary T cells. [18F]F-AraG PET imaging of a murine aGVHD model enabled visualization of secondary lymphoid organs harboring activated donor T cells prior to clinical symptoms. Tracer biodistribution in healthy humans showed favorable kinetics. This new PET strategy has great potential for early aGVHD diagnosis, enabling timely treatments and improved patient outcomes. [18F]F-AraG may be useful for imaging activated T cells in various biomedical applications. Cancer Res; 77(11); 2893-902. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Acquisition of Pneumococci Specific Effector and Regulatory Cd4+ T Cells Localising within Human Upper Respiratory-Tract Mucosal Lymphoid Tissue

    PubMed Central

    Pido-Lopez, Jeffrey; Kwok, William W.; Mitchell, Timothy J.; Heyderman, Robert S.; Williams, Neil A.

    2011-01-01

    The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4+ T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4+ T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25hi T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4+ T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines. PMID:22144893

  14. In Situ Activation of Antigen-Specific CD8+ T Cells in the Presence of Antigen in Organotypic Brain Slices1

    PubMed Central

    Ling, Changying; Verbny, Yakov I.; Banks, Matthew I.; Sandor, Matyas; Fabry, Zsuzsanna

    2012-01-01

    The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8+ T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c+ cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c+ cells stimulate Ag-specific naive CD8+ T cells locally in the CNS and may contribute to immune responses in the brain. PMID:18523307

  15. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection.

    PubMed

    Kearley, Jennifer; Silver, Jonathan S; Sanden, Caroline; Liu, Zheng; Berlin, Aaron A; White, Natalie; Mori, Michiko; Pham, Tuyet-Hang; Ward, Christine K; Criner, Gerard J; Marchetti, Nathaniel; Mustelin, Tomas; Erjefalt, Jonas S; Kolbeck, Roland; Humbles, Alison A

    2015-03-17

    Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease and is presumed to be central to the altered responsiveness to recurrent infection in these patients. We examined the effects of smoke priming underlying the exacerbated response to viral infection in mice. Lack of interleukin-33 (IL-33) signaling conferred complete protection during exacerbation and prevented enhanced inflammation and exaggerated weight loss. Mechanistically, smoke was required to upregulate epithelial-derived IL-33 and simultaneously alter the distribution of the IL-33 receptor ST2. Specifically, smoke decreased ST2 expression on group 2 innate lymphoid cells (ILC2s) while elevating ST2 expression on macrophages and natural killer (NK) cells, thus altering IL-33 responsiveness within the lung. Consequently, upon infection and release, increased local IL-33 significantly amplified type I proinflammatory responses via synergistic modulation of macrophage and NK cell function. Therefore, in COPD, smoke alters the lung microenvironment to facilitate an alternative IL-33-dependent exaggerated proinflammatory response to infection, exacerbating disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Donor-Specific Antibodies Are Produced Locally in Ectopic Lymphoid Structures in Cardiac Allografts.

    PubMed

    Huibers, M M H; Gareau, A J; Beerthuijzen, J M T; Siera-de Koning, E; van Kuik, J; Kamburova, E G; Vink, A; de Jonge, N; Lee, T D G; Otten, H G; de Weger, R A

    2017-01-01

    Cardiac allograft vasculopathy (CAV) is a transplant pathology, limiting graft survival after heart transplantation. CAV arteries are surrounded by ectopic lymphoid structures (ELS) containing B cells and plasma cells. The aim of this study was to characterize the antigenic targets of antibodies produced in ELS. Coronary arteries and surrounding epicardial tissue from 56 transplant recipients were collected during autopsy. Immunofluorescence was used to identify antibody-producing plasma cells. Immunoglobulin levels in tissue lysates were measured by enzyme-linked immunosorbent assay and analyzed for donor-specific HLA antibodies by Luminex assay. Cytokine and receptor expression levels were quantified using quantitative polymerase chain reaction. Plasma cells in ELS were polyclonal and produced IgG and/or IgM antibodies. In epicardial tissue, IgG (p < 0.05) and IgM levels were higher in transplant patients with larger ELS than smaller ELS. In 4 of 21 (19%) patients with ELS, donor-specific HLA type II antibodies were detected locally. Cytokine and receptor expression (CXCR3, interferon γ and TGF-β) was higher in large ELS in the epicardial tissue than in other vessel wall layers, suggesting active recruitment and proliferation of T and B lymphocytes. ELS exhibited active plasma cells producing locally manufactured antibodies that, in some cases, were directed against the donor HLA, potentially mediating rejection with major consequences for the graft. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2014-07-01

    or non- lymphoid tissue (132). Their potential value as CAR-expressing effec- tor cells is considered below. Provision of costimulation to enhance CAR-T... lymphoid leukemia. N Engl J Med 2011;365:725–733. 42. Kalos M, et al. T cells with chimeric antigen receptors have potent antitumor effects and can...antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–1518. 45. Till BG, et al. Adoptive immunotherapy for indolent non

  18. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors

    PubMed Central

    Cheng, Hui; Ang, Heather Yin-Kuan; A. EL Farran, Chadi; Li, Pin; Fang, Hai Tong; Liu, Tong Ming; Kong, Say Li; Chin, Michael Lingzi; Ling, Wei Yin; Lim, Edwin Kok Hao; Li, Hu; Huber, Tara; Loh, Kyle M.; Loh, Yuin-Han; Lim, Bing

    2016-01-01

    Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. PMID:27869129

  19. Aberrant lymphoid antigen expression in acute myeloid leukemia in Saudi Arabia.

    PubMed

    El-Sissy, Azza H; El-Mashari, May A; Bassuni, Wafaa Y; El-Swaayed, Aziza F

    2006-09-01

    Immunophenotyping improves both accuracy and reproducibility of acute leukemia classification and is considered particularly useful for identifying aberrant lineage association of acute leukemia, biphenotypic and bilineal acute leukemia, as well as monitoring minimal residual disease. Some immunophenotypes correlate with cytogenetic abnormalities and prognosis. Is to determine aberrant lymphoid antigen expression in Saudi acute myeloid leukemia (AML), correlate them with FAB subtypes, evaluate early surface markers CD7 and CD56, and to investigate the role of cytoplasmic CD79a (a B cell marker that is assigned a high score of 2.0 in the WHO classification). Thirty four newly diagnosed AML cases were included in this study, 47% showed aberrant lymphoid antigen expression. CD9 was the most frequently expressed lymphoid antigen (29.4%) followed by CD7 & CD19 (11.8%), CD4 (8.8%) and CD22 (2.9%). CD9 was expressed in 3/6 (50%) of M3 cases, CD7 was expressed in 11.8% and was mostly confined to FAB M1 and M2 and associated with immature antigens CD34, HLA-DR and TdT. CD56 was expressed in 7/34 (20.6%) cases, three of these cases (42.9%) belonged to the monocytic group. CD56 was also detected in 2 cases with 11q23 rearrangement. CD56 was expressed in 2/7 (28.6%) M2 cases, and was associated with t (8;21) (q22;q22) together with CD19. Co-expression of CD56 and CD7 was detected in 2.9% of the cases. CD79a was expressed in one case together with CD19, diagnosed as acute biphenotypic leukemia, and was associated with t(8;21) (q22;q22). Minimal residual disease in AML is very difficult to trace, detection of aberrant expression of lymphoid antigens will make it easier. The high score given to CD79a by EGIL is questionable based on cytogenetic classification.

  20. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    PubMed Central

    Li, Dong; Guabiraba, Rodrigo; Besnard, Anne-Gaëlle; Komai-Koma, Mousa; Jabir, Majid S.; Zhang, Li; Graham, Gerard J.; Kurowska-Stolarska, Mariola; Liew, Foo Y.; McSharry, Charles; Xu, Damo

    2014-01-01

    Background The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis. Objectives We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis. Methods Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry. Results IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo. Conclusions IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner. PMID:24985397

  1. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice.

    PubMed

    Li, Dong; Guabiraba, Rodrigo; Besnard, Anne-Gaëlle; Komai-Koma, Mousa; Jabir, Majid S; Zhang, Li; Graham, Gerard J; Kurowska-Stolarska, Mariola; Liew, Foo Y; McSharry, Charles; Xu, Damo

    2014-12-01

    The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis. We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis. Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)(-/-) C57BL/6 mice treated with the recombinant mature form of IL-33 or anti-IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry. IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti-IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo. IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Mechanism of Telomerase Activation by v-Rel and Its Contribution to Transformation

    PubMed Central

    Hrdličková, Radmila; Nehyba, Jiří; Liss, Andrew S.; Bose, Henry R.

    2006-01-01

    Telomerase is activated during the transformation of lymphoid cells and fibroblasts by v-Rel, the oncogenic member of the Rel/NF-κB family of transcription factors. v-Rel-transformed cell lines have longer telomeres than untransformed chicken lymphoid cells and have high levels of telomerase activity. v-Rel-mediated activation of telomerase is achieved by multiple mechanisms. The expression of the gene encoding the catalytic subunit of telomerase (TERT) was directly upregulated by v-Rel. Moreover, the expression of v-Rel altered the ratio of alternatively spliced and full-length TERT transcripts in favor of the full-length forms. The activation of telomerase by v-Rel in lymphocytes was also accompanied by inactivation of nuclear inhibitors. The inhibition of telomerase activity in v-Rel-transformed cell lines led to apoptosis within 24 h. The expression of v-Rel in a macrophage cell line resulted in elevated levels of reactive oxygen species (ROS), increased telomerase activity, and increased sensitivity to telomerase inhibitors. In contrast, the ectopic expression of TERT decreased the extent of apoptosis induced by ROS. The activation of telomerase by v-Rel may, therefore, partially protect the transformed cells from apoptosis induced by ROS. PMID:16352553

  3. Pyrogen release in vitro by lymphoid tissues from patients with Hodgkin's disease.

    PubMed

    Bodel, P

    1974-01-01

    The mechanism of fever in patients with Hodgkin's disease was investigated by examining endogenous pyrogen production by blood, spleen, and lymph node cells incubated in vitro. Blood leucocytes from febrile or afebrile patients with Hodgkin's disease did not produce pyrogen spontaneously. Spleen cells, however, frequently released pyrogen during initial incubations, unlike spleen cells from patients with non-malignant diseases. Pyrogen production occurred from spleens without observed pathologic infiltrates of Hodgkin's disease. Lymph nodes involved with Hodgkin's disease produced pyrogen more frequently than did nodes involved with other diseases. Pyrogen production by tissue cells was prolonged, required protein synthesis, and in some cases was due to mononuclear cells; it did not correlate with fever in the patient. These studies demonstrate spontaneous production of endogenous pyrogen in vitro by lymphoid tissue cells from patients with Hodgkin's disease.

  4. NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis.

    PubMed

    Rodrigues, Paulo; Patel, Saroor A; Harewood, Louise; Olan, Ioana; Vojtasova, Erika; Syafruddin, Saiful E; Zaini, M Nazhif; Richardson, Emma K; Burge, Johanna; Warren, Anne Y; Stewart, Grant D; Saeb-Parsy, Kourosh; Samarajiwa, Shamith A; Vanharanta, Sakari

    2018-06-06

    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states. SIGNIFICANCE: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 1-16. ©2018 AACR. ©2018 American Association for Cancer Research.

  5. Delayed effects of rhG-CSF mobilization treatment and apheresis on circulating CD34+ and CD34+ Thy-1dim CD38- progenitor cells, and lymphoid subsets in normal stem cell donors for allogeneic transplantation.

    PubMed

    Körbling, M; Anderlini, P; Durett, A; Maadani, F; Bojko, P; Seong, D; Giralt, S; Khouri, I; Andersson, B; Mehra, R; vanBesien, K; Mirza, N; Przepiorka, D; Champlin, R

    1996-12-01

    Allogeneic transplantation of peripheral blood progenitor cells (PBPC) is emerging as a new stem cell transplant modality. Rather than undergoing general anesthesia for bone marrow harvest, normal blood stem cell donors are subjected to rhG-CSF mobilization treatment followed by single or multiple apheresis. Whereas the effects of cytokine treatment and apheresis on stem cell peripheralization and collection have been described, little is known about delayed effects of rhG-CSF treatment and apheresis on a normal hematopoietic system, and there are no long-term data that address safety issues. Ten normal, patient-related donors underwent a 3 or 4 day rhG-CSF (filgrastim) treatment (12 micrograms/kg/day) followed by single or tandem apheresis. We monitored peripheral blood (PB) cellularity including CD34+ and lymphoid subsets at baseline, during cytokine treatment, prior to apheresis, and at days 2, 4, 7, 30 and 100 post-apheresis. The PB progenitor cell concentration peak prior to apheresis was followed by a nadir by day 7 and normalized by day 30, with the exception of the most primitive CD34+ Thy-1dim CD38- progenitor subset that reached a nadir by day 30. Lymphoid subsets such as CD3, 4, 8, suppressor cells (CD3+ 4- 8- TCR+ alpha beta), and B cells (CD19+) showed a similar pattern with a nadir concentration by day 7, followed, except for B cells, by a rebound by day 30 and subnormal counts at day 100. The PB concentrations of hemoglobin and platelets dropped mainly due to the apheresis procedure itself, and normalized by day 30. With cytokine treatment, the PB alkaline phosphatase and lactate dehydrogenase concentrations increased 2.2- and 2.8-fold, respectively, over baseline, and returned to normal range by day 30. Based on the preliminary nature of this study, the clinical relevance of these findings is still unclear.

  6. Lymphoid disorders associated with HHV-8/KSHV infection: facts and contentions.

    PubMed

    Gaidano, G; Castaños-Velez, E; Biberfeld, P

    1999-04-01

    Following the demonstration in 1994, that Kaposi's sarcoma (KS) was associated with a novel virus (KSHV or HHV-8) belonging to the lymphotropic herpes family, this virus was also found in certain lymphoid neoplasias of immunodeficient (HIV+) and immune competent hosts. The association of HHV-8/KSHV infection is now well established with primary effusion lymphoma (PEL) or body cavity based lymphoma (BCBL) and multicentric Castleman's disease (MCD) of the plasma cell type. A possible pathogenic role of HHV-8/KSHV in other lymphoid tumours including primary central nervous system lymphoma (PCNSL) and multiple myeloma (MM) as well as some atypical lymphoproliferations and sarcoidosis has also been suggested, but this is at present a controversial matter, or not confirmed. Several HHV-8/KSHV genes, including potential oncogenes, genes homologous to various cellular genes and growth factors have been incriminated in the pathogenesis of KS and PEL/BCBL, but a common pathogenic mechanism for the clearly diverse proliferations represented by PEL, MCD and KS is at present not evident.

  7. Intestinal M cells.

    PubMed

    Ohno, Hiroshi

    2016-02-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. T-Cell Receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue

    PubMed Central

    David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.

    2016-01-01

    Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239

  9. Prions and lymphoid organs

    PubMed Central

    O’Connor, Tracy; Aguzzi, Adriano

    2013-01-01

    Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article. PMID:23357827

  10. Nodular lymphoid hyperplasia in the gastrointestinal tract in adult patients: A review.

    PubMed

    Albuquerque, Andreia

    2014-11-16

    Nodular lymphoid hyperplasia of the gastrointestinal tract is characterized by the presence of multiple small nodules, normally between between 2 and 10 mm in diameter, distributed along the small intestine (more often), stomach, large intestine, or rectum. The pathogenesis is largely unknown. It can occur in all age groups, but primarily in children and can affect adults with or without immunodeficiency. Some patients have an associated disease, namely, common variable immunodeficiency, selective IgA deficiency, Giardia infection, or, more rarely, human immunodeficiency virus infection, celiac disease, or Helicobacter pylori infection. Nodular lymphoid hyperplasia generally presents as an asymptomatic disease, but it may cause gastrointestinal symptoms like abdominal pain, chronic diarrhea, bleeding or intestinal obstruction. A diagnosis is made at endoscopy or contrast barium studies and should be confirmed by histology. Its histological characteristics include markedly hyperplasic, mitotically active germinal centers and well-defined lymphocyte mantles found in the lamina propria and/or in the superficial submucosa, distributed in a diffuse or focal form. Treatment is directed towards associated conditions because the disorder itself generally requires no intervention. Nodular lymphoid hyperplasia is a risk factor for both intestinal and, very rarely, extraintestinal lymphoma. Some authors recommend surveillance, however, the duration and intervals are undefined.

  11. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development

    PubMed Central

    Inlay, Matthew A.; Bhattacharya, Deepta; Sahoo, Debashis; Serwold, Thomas; Seita, Jun; Karsunky, Holger; Plevritis, Sylvia K.; Dill, David L.; Weissman, Irving L.

    2009-01-01

    Common lymphoid progenitors (CLPs) clonally produce both B- and T-cell lineages, but have little myeloid potential in vivo. However, some studies claim that the upstream lymphoid-primed multipotent progenitor (LMPP) is the thymic seeding population, and suggest that CLPs are primarily B-cell-restricted. To identify surface proteins that distinguish functional CLPs from B-cell progenitors, we used a new computational method of Mining Developmentally Regulated Genes (MiDReG). We identified Ly6d, which divides CLPs into two distinct populations: one that retains full in vivo lymphoid potential and produces more thymocytes at early timepoints than LMPP, and another that behaves essentially as a B-cell progenitor. PMID:19833765

  12. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells.

    PubMed

    Jovanovic, Ivan P; Pejnovic, Nada N; Radosavljevic, Gordana D; Pantic, Jelena M; Milovanovic, Marija Z; Arsenijevic, Nebojsa N; Lukic, Miodrag L

    2014-04-01

    The role of IL-33/ST2 pathway in antitumor immunity is unclear. Using 4T1 breast cancer model we demonstrate time-dependent increase of endogenous IL-33 at both the mRNA and protein levels in primary tumors and metastatic lungs during cancer progression. Administration of IL-33 accelerated tumor growth and development of lung and liver metastases, which was associated with increased intratumoral accumulation of CD11b(+) Gr-1(+) TGF-β1(+) myeloid-derived suppressor cells (MDSCs) that expressed IL-13α1R, IL-13-producing Lin(-) Sca-1(+) ST2(+) innate lymphoid cells (ILCs) and CD4(+) Foxp3(+) ST2(+) IL-10(+) Tregs compared to untreated mice. Higher incidence of monocytic vs. granulocytic MDSCs and plasmocytoid vs. conventional dendritic cells (DCs) was present in mammary tumors of IL-33-treated mice. Intratumoral NKp46(+) NKG2D(+) and NKp46(+) FasL(+) cells were markedly reduced after IL-33 treatment, while phosphate-buffered saline-treated ST2-deficient mice had increased frequencies of these tumoricidal natural killer (NK) cells compared to untreated wild-type mice. IL-33 promoted intratumoral cell proliferation and neovascularization, which was attenuated in the absence of ST2. Tumor-bearing mice given IL-33 had increased percentages of splenic MDSCs, Lin(-) Sca-1(+) ILCs, IL-10-expressing CD11c(+) DCs and alternatively activated M2 macrophages and higher circulating levels of IL-10 and IL-13. A significantly reduced NK cell, but not CD8(+) T-cell cytotoxicity in IL-33-treated mice was observed and the mammary tumor progression was not affected when CD8(+) T cells were in vivo depleted. We show a previously unrecognized role for IL-33 in promoting breast cancer progression through increased intratumoral accumulation of immunosuppressive cells and by diminishing innate antitumor immunity. Therefore, IL-33 may be considered as an important mediator in the regulation of breast cancer progression. © 2013 UICC.

  14. Caspase-3 Is Transiently Activated without Cell Death during Early Antigen Driven Expansion of CD8+ T Cells In Vivo

    PubMed Central

    McComb, Scott; Mulligan, Rebecca; Sad, Subash

    2010-01-01

    Background CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined. Methods and Findings We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase. Conclusions Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3. PMID:21203525

  15. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms.

    PubMed

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-07-01

    CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (alpha-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and alpha-GalCer in the treatment of mice engrafted with CD1d(+) lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence alpha-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and alpha-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d(+) masses. In addition, CD1d-restricted T-cell treatment plus alpha-GalCer eradicated small C1R-CD1d(+) nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and alpha-GalCer may represent a new immunotherapeutic tool for treatment of CD1d(+) hematologic malignancies.

  16. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines

    PubMed Central

    2013-01-01

    Background Generation of tolerogenic dendritic cells (TolDCs) for therapy is challenging due to its implications for the design of protocols suitable for clinical applications, which means not only using safe products, but also working at defining specific biomarkers for TolDCs identification, developing shorter DCs differentiation methods and obtaining TolDCs with a stable phenotype. We describe here, a short-term protocol for TolDCs generation, which are characterized in terms of phenotypic markers, cytokines secretion profile, CD4+ T cell-stimulatory ability and migratory capacity. Methods TolDCs from healthy donors were generated by modulation with dexamethasone plus monophosphoryl lipid A (MPLA-tDCs). We performed an analysis of MPLA-tDCs in terms of yield, viability, morphology, phenotypic markers, cytokines secretion profile, stability, allogeneic and antigen-specific CD4+ T-cell stimulatory ability and migration capacity. Results After a 5-day culture, MPLA-tDCs displayed reduced expression of costimulatory and maturation molecules together to an anti-inflammatory cytokines secretion profile, being able to maintain these tolerogenic features even after the engagement of CD40 by its cognate ligand. In addition, MPLA-tDCs exhibited reduced capabilities to stimulate allogeneic and antigen-specific CD4+ T cell proliferation, and induced an anti-inflammatory cytokine secretion pattern. Among potential tolerogenic markers studied, only TLR-2 was highly expressed in MPLA-tDCs when compared to mature and immature DCs. Remarkable, like mature DCs, MPLA-tDCs displayed a high CCR7 and CXCR4 expression, both chemokine receptors involved in migration to secondary lymphoid organs, and even more, in an in vitro assay they exhibited a high migration response towards CCL19 and CXCL12. Conclusion We describe a short-term protocol for TolDC generation, which confers them a stable phenotype and migratory capacity to lymphoid chemokines, essential features for TolDCs to be used

  17. Src Homology 2–containing 5-Inositol Phosphatase (SHIP) Suppresses an Early Stage of Lymphoid Cell Development through Elevated Interleukin-6 Production by Myeloid Cells in Bone Marrow

    PubMed Central

    Nakamura, Koji; Kouro, Taku; Kincade, Paul W.; Malykhin, Alexander; Maeda, Kazuhiko; Coggeshall, K. Mark

    2004-01-01

    The Src homology (SH)2–containing inositol 5-phosphatase (SHIP) negatively regulates a variety of immune responses through inhibitory immune receptors. In SHIP−/− animals, we found that the number of early lymphoid progenitors in the bone marrow was significantly reduced and accompanied by expansion of myeloid cells. We exploited an in vitro system using hematopoietic progenitors that reproduced the in vivo phenotype of SHIP−/− mice. Lineage-negative marrow (Lin−) cells isolated from wild-type mice failed to differentiate into B cells when cocultured with those of SHIP−/− mice. Furthermore, culture supernatants of SHIP−/− Lin− cells suppressed the B lineage expansion of wild-type lineage-negative cells, suggesting the presence of a suppressive cytokine. SHIP−/− Lin− cells contained more IL-6 transcripts than wild-type Lin− cells, and neutralizing anti–IL-6 antibody rescued the B lineage expansion suppressed by the supernatants of SHIP−/− Lin− cells. Finally, we found that addition of recombinant IL-6 to cultures of wild-type Lin− bone marrow cells reproduced the phenotype of SHIP−/− bone marrow cultures: suppression of B cell development and expansion of myeloid cells. The results identify IL-6 as an important regulatory cytokine that can suppress B lineage differentiation and drive excessive myeloid development in bone marrow. PMID:14718513

  18. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.

    PubMed

    Bowen, David G; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W; Bertolino, Patrick

    2004-09-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.

  19. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma.

    PubMed

    Garzon-Muvdi, Tomas; Theodros, Debebe; Luksik, Andrew S; Maxwell, Russell; Kim, Eileen; Jackson, Christopher M; Belcaid, Zineb; Ganguly, Sudipto; Tyler, Betty; Brem, Henry; Pardoll, Drew M; Lim, Michael

    2018-04-17

    The glioblastoma (GBM) immune microenvironment is highly suppressive as it targets and hinders multiple components of the immune system. Checkpoint blockade (CB) is being evaluated for GBM patients. However, biomarker analyses suggest that CB monotherapy may be effective only in a small fraction of GBM patients. We hypothesized that activation of antigen presentation would increase the therapeutic response to PD-1 blockade. We show that activating DCs through TLR3 agonists enhances the anti-tumor immune response to CB and increases survival in GBM. Mice treated with TLR3 agonist poly(I:C) and anti-PD-1 demonstrated increased DC activation and increased T cell proliferation in tumor draining lymph nodes. We show that DCs are necessary for the improved anti-tumor immune response. This study suggests that augmenting antigen presentation is an effective multimodal immunotherapy strategy that intensifies anti-tumor responses in GBM. Specifically, these data represent an expanded role for TLR3 agonists as adjuvants to CB. Using a preclinical model of GBM, we tested the efficacy of combinatorial immunotherapy with anti-PD-1 and TLR3 agonist, poly(I:C). Characterization of the immune response in tumor infiltrating immune cells and in secondary lymphoid organs was performed. Additionally, dendritic cell (DC) depletion experiments were performed.

  20. Casein kinase 2 (CK2) increases survivin expression via enhanced β-catenin–T cell factor/lymphoid enhancer binding factor-dependent transcription

    PubMed Central

    Tapia, J. C.; Torres, V. A.; Rodriguez, D. A.; Leyton, L.; Quest, A. F. G.

    2006-01-01

    Increased expression of casein kinase 2 (CK2) is associated with hyperproliferation and suppression of apoptosis in cancer. Mutations in the tumor suppressor APC (adenomatous polyposis coli) are frequent in colon cancer and often augment β-catenin–T cell factor (Tcf)/lymphoid enhancer binding factor (Lef)-dependent transcription of genes such as c-myc and cyclin-D1. CK2 has also been implicated recently in the regulation of β-catenin stability. To identify mechanisms by which CK2 promotes survival, effects of the specific CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole were assessed. TBB and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole significantly decreased proliferation and increased apoptosis of HT29(US) colon cancer cells. RT-PCR and immunoblot analysis revealed that both inhibitors decreased survivin mRNA and protein levels in HT29(US) cells. Similar effects were observed with TBB in human DLD-1 and SW-480 colorectal cells as well as ZR-75 breast cancer cells and HEK-293T embryonic kidney cells. Expression of GFP–CK2α in HEK-293T cells resulted in β-catenin–Tcf/Lef-dependent up-regulation of survivin and increased resistance to anticancer drugs. Augmented β-catenin–Tcf/Lef-dependent transcription and resistance to apoptosis observed upon GFP–CK2α expression were abolished by TBB. Alternatively, HEK-293T cells expressing GFP–survivin were resistant to TBB-induced apoptosis. Finally, siRNA-mediated down-regulation of CK2α in HEK-293T cells coincided with reduced β-catenin and survivin levels. Taken together, these results suggest that CK2 kinase activity promotes survival by increasing survivin expression via β-catenin–Tcf/Lef-mediated transcription. Hence, selective CK2 inhibition or down-regulation in tumors may provide an attractive opportunity for the development of novel cancer therapies. PMID:17005722

  1. Distinct Tertiary Lymphoid Structure Associations and Their Prognostic Relevance in HER2 Positive and Negative Breast Cancers.

    PubMed

    Liu, Xia; Tsang, Julia Y S; Hlaing, Thazin; Hu, Jintao; Ni, Yun-Bi; Chan, Siu Ki; Cheung, Sai Yin; Tse, Gary M

    2017-11-01

    The presence of tumor infiltrating lymphocytes (TIL) is associated with favorable prognosis. Recent evidence suggested that not only their density, but also the spatial organization as tertiary lymphoid structures (TLS), play a key role in determining patient survival. In a cohort of 248 breast cancers, the clinicopathologic association and prognostic role of TLS was examined. Tertiary lymphoid structures were associated with higher tumor grade, apocrine phenotype, necrosis, extensive in situ component, lymphovascular invasion (LVI), and high TIL. For biomarkers, TLS were associated with hormone receptors negativity, HER2 positivity, and c-kit expression. Tertiary lymphoid structures were significantly related to better disease-free survival (DFS) in HER2 positive (HER2+) breast cancers (log-rank = 4.054), which was not dependent on high TIL status. The combined TLS and TIL status was an independent favorable factor associated with DFS in those cases. Interestingly, tumor cell infiltration into the TLS was found in 41.9% of TLS positive cases. It was associated with LVI in HER2 negative (HER2-) TLS positive (particularly estrogen receptor positive [ER+] HER2-) cases. In the ER+ HER2- cases, tumor cell infiltration into TLS was also associated with increased pathologic nodal stage (pN) stage and nodal involvement. Tertiary lymphoid structures showed a similar relationship with clinicopathologic features and biomarkers as TIL. The presence of TLS, irrespective of TIL level, could be an important favorable prognostic indicator in HER2+ breast cancer patients. Given the significance of TLS in promoting effective antitumor immunity, further understanding of its organization and induction may provide new opportunities to improve the current immunotherapy strategies. Despite recent interest on the clinical value of tumor infiltrating lymphocyte (TIL), little was known on the clinical significance on their spatial organization as tertiary lymphoid structures (TLS

  2. Reduced numbers of circulating group 2 innate lymphoid cells in patients with common variable immunodeficiency.

    PubMed

    Geier, Christoph B; Kraupp, Sophie; Bra, David; Eibl, Martha M; Farmer, Jocelyn R; Csomos, Krisztian; Walter, Jolan E; Wolf, Hermann M

    2017-11-01

    Recent studies identified an emerging role of group 2 and 3 innate lymphoid cells (ILCs) as key players in the generation of T-dependent and T-independent antibody production. In this retrospective case-control study, CD117 + ILCs (including the majority of ILC2 and ILC3) were reduced in patients with common variable immunodeficiency (CVID). The reduction in CD117 + ILCs was distinctive to CVID and could not be observed in patients with X-linked agammaglobulinemia. Patients with a more pronounced reduction in CD117 + ILC numbers showed significantly lower numbers of peripheral MZ-like B cells and an increased prevalence of chronic, non-infectious enteropathy. Subsequent phenotyping of ILC subsets in CVID revealed that the reduction in CD117 + ILC numbers is due to a reduction in ILC2 numbers. In vitro expansion of CVID ILC2 in response to IL-2, IL-7, IL-25 and IL-33 was impaired. Furthermore, upregulation of MHCII and IL-2RA in response to IL-2, IL-7, IL-25 and IL-33 was impaired in CVID ILC2. Thus, our results indicate a dysregulation of ILC subsets with a reduction in ILC2 numbers in CVID, however, further studies are needed to explore whether ILC abnormalities are a primary finding or secondary to disease complications encountered in CVID. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Naïve CD8 T cell activation by liver bone marrow-derived cells leads to a "neglected" IL-2low Bimhigh phenotype, poor CTL function and cell death.

    PubMed

    Holz, Lauren E; Benseler, Volker; Vo, Michelle; McGuffog, Claire; Van Rooijen, Nico; McCaughan, Geoffrey W; Bowen, David G; Bertolino, Patrick

    2012-10-01

    The occurrence of primary CD8 T cell activation within the liver, unique among the non-lymphoid organs, is now well accepted. However, the outcome of intrahepatic T cell activation remains controversial. We have previously reported that activation initiated by hepatocytes results in a tolerogenic phenotype characterized by low expression of CD25 and IL-2, poor cytotoxic T lymphocyte (CTL) function, and excessive expression of the pro-apoptotic protein Bim. To investigate whether this phenotype was due to activation in the absence of co-stimulation, we generated bone marrow (bm) radiation chimeras in which adoptively transferred naïve transgenic CD8 T cells were activated in the presence of co-stimulation by liver bm-derived cells. Despite expressing pro-inflammatory cytokines, high levels of CD25 and CD54, donor T cells activated by liver bm-derived cells did not produce detectable IL-2 and displayed poor CTL function, suggesting incomplete acquisition of effector function. Simultaneously, these cells expressed high levels of Bim and died by neglect. Transfer of Bim-deficient T cells resulted in increased T cell numbers. These results imply that expression of CD25 and CD54 is co-stimulation dependent and distinguishes T cell activated by hepatocytes and liver bm-derived cells. In contrast, low expression of IL-2, poor CTL function and excess Bim production represent a more universal phenotype defining T cells undergoing primary activation by both types of hepatic antigen presenting cells (APC). These results have important implications for transplantation, in which all liver antigen presenting cells contribute to activation of T cells specific for the allograft. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. NF-κB Signaling Pathway and its Potential as a Target for Therapy in Lymphoid Neoplasms

    PubMed Central

    Yu, Li; Li, Ling; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells. PMID:27773462

  5. Whodunit? The Contribution of Interleukin (IL)-17/IL-22-Producing γδ T Cells, αβ T Cells, and Innate Lymphoid Cells to the Pathogenesis of Spondyloarthritis

    PubMed Central

    Reinhardt, Annika; Prinz, Immo

    2018-01-01

    γδ T cells, αβ T cells, and innate lymphoid cells (ILCs) are capable of producing interleukin (IL)-17A, IL-17F, and IL-22. Among these three families of lymphocytes, it is emerging that γδ T cells are, at least in rodents, the main source of these key pro-inflammatory cytokines. γδ T cells were implicated in multiple inflammatory and autoimmune diseases, including psoriasis, experimental autoimmune encephalomyelitis and uveitis, colitis, and rheumatoid arthritis. Recent findings pointed toward a central role of γδ T cells in the pathogenesis of spondyloarthritis (SpA), a group of inflammatory rheumatic diseases affecting the axial skeleton. SpA primarily manifests as inflammation and new bone formation at the entheses, which are connecting tendons or ligaments with bone. In SpA patients, joint inflammation is frequently accompanied by extra-articular manifestations, such as inflammatory bowel disease or psoriasis. In humans, genome-wide association studies could link the IL-23/IL-17 cytokine axis to SpA. Accordingly, antibodies targeting IL-23/IL-17 for SpA treatment already showed promising results in clinical studies. However, the contribution of IL-17-producing γδ T cells to SpA pathogenesis is certainly not an open-and-shut case. Indeed, the cell types that are chiefly involved in local inflammation in human SpA still remain largely unclear. Some studies focusing on blood or synovium from SpA patients reported augmented IL-17-producing and IL-23 receptor-expressing γδ T cells, but other cell types might contribute as well. Here, we summarize the current understanding of how γδ T cells, αβ T cells, and ILCs contribute to the pathogenesis of human and experimental SpA. PMID:29922283

  6. GrpL, a Grb2-related Adaptor Protein, Interacts with SLP-76 to Regulate Nuclear Factor of Activated T Cell Activation

    PubMed Central

    Law, Che-Leung; Ewings, Maria K.; Chaudhary, Preet M.; Solow, Sasha A.; Yun, Theodore J.; Marshall, Aaron J.; Hood, Leroy; Clark, Edward A.

    1999-01-01

    Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain–containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL–SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells. PMID:10209041

  7. A novel lymphoid enhancer-binding factor 1-cytoglobin axis promotes extravasation of osteosarcoma cells into the lungs.

    PubMed

    Pongsuchart, Mongkol; Kuchimaru, Takahiro; Yonezawa, Sakiko; Tran, Diem Thi Phuong; Kha, Nguyen The; Hoang, Ngoc Thi Hong; Kadonosono, Tetsuya; Kizaka-Kondoh, Shinae

    2018-06-21

    Lung metastasis is a major cause of mortality in patients with osteosarcoma (OS). A better understanding of the molecular mechanism of OS lung metastasis may facilitate development of new therapeutic strategies to prevent the metastasis. We have established high- and low-metastatic sublines (LM8-H and LM8-L respectively) from Dunn OS cell line LM8 by using in vivo image-guided screening. Among the genes whose expression was significantly increased in LM8-H compared to LM8-L, the transcription factor lymphoid enhancer-binding factor 1 (LEF1) was identified as a factor that promotes LM8-H cell extravasation into the lungs. To identify downstream effectors of LEF1 that are involved in OS lung metastasis, 13 genes were selected based on the LM8 microarray data and genome-wide meta-analysis of a public database for OS patients. Among them, the cytoglobin (Cygb) gene was identified as a key effector in promoting OS extravasation into the lungs. CYGB overexpression increased the extravasation ability of LM8-L cells, whereas knocking out the Cygb gene in LM8-H cells reduced this ability. Our results uncovered a novel LEF1-CYGB axis in OS lung metastasis and may open a new avenue for developing therapeutic strategies to prevent OS lung metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+ T cells.

    PubMed

    Moalli, Federica; Ficht, Xenia; Germann, Philipp; Vladymyrov, Mykhailo; Stolp, Bettina; de Vries, Ingrid; Lyck, Ruth; Balmer, Jasmin; Fiocchi, Amleto; Kreutzfeldt, Mario; Merkler, Doron; Iannacone, Matteo; Ariga, Akitaka; Stoffel, Michael H; Sharpe, James; Bähler, Martin; Sixt, Michael; Diz-Muñoz, Alba; Stein, Jens V

    2018-06-06

    T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b -/- CD8 + T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b -/- CD8 + T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b -/- CD8 + T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8 + T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue-resident T cell populations. © 2018 Moalli et al.

  9. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies

    PubMed Central

    Clarisse, Dorien; Thommis, Jonathan; Van Wesemael, Karlien; Houtman, René; Ratman, Dariusz; Tavernier, Jan; Offner, Fritz; Beck, Ilse; De Bosscher, Karolien

    2017-01-01

    Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples. PMID:29312638

  10. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies.

    PubMed

    Clarisse, Dorien; Thommis, Jonathan; Van Wesemael, Karlien; Houtman, René; Ratman, Dariusz; Tavernier, Jan; Offner, Fritz; Beck, Ilse; De Bosscher, Karolien

    2017-12-12

    Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.

  11. IL-9-Producing Mast Cell Precursors and Food Allergy

    DTIC Science & Technology

    2016-10-01

    that Stat6-/- BM progenitors in sensitized wild type recipients that were competent in GFP- CD4+ST2+TH2 and ILC2s ( innate lymphoid cells ) generation, and...report demonstrated that type 2 innate lymphoid cells (ILC2s) lack cell lineage markers and have the potential to pro- duce IL-9 (Wilhelm et al., 2011...Fujii, H., and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells . Nature 463, 540–544

  12. Hybrid Antibody-Induced Topographical Redistribution of Surface Immunoglobulins, Alloantigens, and Concanavalin A Receptors on Mouse Lymphoid Cells

    PubMed Central

    Stackpole, Christopher W.; De Milio, Lawrence T.; Hämmerling, Ulrich; Jacobson, Janet B.; Lardis, Michael P.

    1974-01-01

    Redistribution of surface immunoglobulins, H-2b, Thy-1.2, and TL.1,2,3 alloantigens, and concanavalin A receptors on mouse lymphoid cells induced by hybrid rabbit F(ab′)2 antibody (anti-mouse immunoglobulin/anti-visual marker or anti-concanavalin A/anti-visual marker) was studied by immunofluorescence. When used directly to label surface immunoglobulin, and indirectly to label alloantigens and concanavalin A receptors, hybrid antibodies induced similar displacement of all surface components from a uniform distribution into “patches” and “caps” at 37°. One hybrid antibody preparation, antimouse immunoglobulin/anti-ferritin, contained negligible amounts of bivalent anti-mouse immunoglobulin antibody, and was therefore “monovalent” for the antimouse immunoglobulin specificity. This observation suggests that factors other than multivalent crosslinking are responsible for hybrid antibody-induced redistribution of cell-surface components. Cap formation induced by hybrid antibody was enhanced markedly by attachment of the visual marker, either ferritin or southern bean mosaic virus, at 37°. At -5°, hybrid antibody does not displace uniformly distributed H-2b alloantigen-alloantibody complexes, but patches of label develop when ferritin attaches to the hybrid antibody. These results explain the patchy distribution of cell-surface components, which is a temperature-independent characteristic of labeling with hybrid antibodies and visual markers for electron microscopy. Images PMID:4595577

  13. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms

    PubMed Central

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-01-01

    Background CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (α-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. Design and Methods We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and α-GalCer in the treatment of mice engrafted with CD1d+ lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. Results The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence α-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and α-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d+ masses. In addition, CD1d-restricted T-cell treatment plus α-GalCer eradicated small C1R-CD1d+ nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Conclusions Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and α-GalCer may represent a new immunotherapeutic tool for treatment of CD1d+ hematologic malignancies. PMID:19454494

  14. Activated but not resting T cells or thymocytes express colony-stimulating factor 1 mRNA without co-expressing c-fms mRNA.

    PubMed

    Cerdan, C; Courcoul, M; Razanajaona, D; Pierrès, A; Maroc, N; Lopez, M; Mannoni, P; Mawas, C; Olive, D; Birg, F

    1990-02-01

    Following the observation that, besides acute myeloid leukemia cells, acute lymphoid leukemia cells of either B or T phenotype could express the transcript for the colony-stimulating factor 1 (CSF-1), a growth factor known to be restricted to the monocytic-macrophage lineage, various sources of resting and/or activated T cells and thymocytes were screened for expression of this hemopoietic growth factor. We report here that the CSF-1 transcript was rapidly (7 h) induced in T cells by a variety of stimuli, but was not detectable in either resting T cells or thymocytes. In addition, secretion of CSF-1 was detectable in the supernatants of activated T cells by 72 h, with a peak around 92-120 h. In contrast to activated monocytes, the transcript of the c-fms proto-oncogene, the product of which is the receptor for CSF-1, was not detectable in either resting or activated T cells. This observation could be relevant to the intimate relationships between T cells and antigen-presenting cells during immune responses.

  15. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  16. Effect of total lymphoid irradiation on IgE antibody responses in rheumatoid arthritis and systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terr, A.I.; Moss, R.B.; Strober, S.

    1987-12-01

    Thirteen patients with rheumatoid arthritis and four patients with systemic lupus erythematosus and nephritis were treated with total lymphoid irradiation because of severe disease refractory to other forms of treatment. Serum samples before and after irradiation were tested for changes in total serum IgE and for changes in specific IgE antibodies to ryegrass pollen, dust mite, cat dander, and Alternaria. There were no statistically significant changes in total or specific IgE from lymphoid irradiation in these patients. The therapy caused a significant decrease in circulating total lymphocyte and Leu-3 (helper/inducer) T-lymphocyte counts. Therefore, reduction in circulating levels of helper/inducer Tmore » cells does not appear to influence preexisting levels of IgE antibodies.« less

  17. Malignant diseases of hematopoietic and lymphoid tissues in Chernobyl clean-up workers.

    PubMed

    Gluzman, Daniel; Imamura, Nobutaka; Sklyarenko, Lylia; Nadgornaya, Valentina; Zavelevich, Michael; Machilo, Vasily

    2005-01-01

    The question as to whether the incidence of leukemias and malignant lymphomas among the clean-up workers increased in 18 years after the catastrophe is still a point of much controversy. Precise diagnosis of the main forms of hematopoietic malignancies and comparison of these data with those in the general population will be helpful in estimating thr relative contribution of the radiation factor to the overall incidence of such pathologies. In all, 187 consecutive cases of malignant diseases of hematopoietic and lymphoid tissues in Chernobyl clean-up workers were analyzed in Ukrainian Reference Laboratory in 1996-2003. A total of 1942 consecutive patients of general population, mainly the residents of Kyiv city and district, diagnosed in References Laboratory at the same period comprised the group of comparison. The morphology and cytochemistry of bone marrow and peripheral blood cells were studied. Immunocytochemical techniques (PAP, APAAP, ABC) and the panel of monoclonal antibodies to differentiation antigens of leukocytes were employed for immunophenotyping leukemic cells. Various types of malignant disease of hematopoietic and lymphoid tissues were registered in Chernobyl clean-up workers under study including myelodysplastic syndromes (nine patients), acute lymphoblastic leukemia (eight) and acute myeloblastic leukemia (31), chromic myeloid leukemia (17), multiple myeloma (17) and other forms of chromic myeloproliferative and lymphoproliferative disease including B-cell chromic lymphocytic leukemia (49 patients). The verified diagnosis of tumors of hematopoietic malignancies according to modern classification (EGIL, WHO) could be the prerequisite for further analytical epidemiology study of leukemias that may be related to the Chernobyl accident.

  18. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS

    PubMed Central

    Shao, Jingwei; Kraft, John C; Li, Bowen; Yu, Jesse; Freeling, Jennifer; Koehn, Josefin; Ho, Rodney JY

    2016-01-01

    Although oral combination antiretroviral therapy effectively clears plasma HIV, patients on oral drugs exhibit much lower drug concentrations in lymph nodes than blood. This drug insufficiency is linked to residual HIV in cells of lymph nodes. While nanoformulations improve drug solubility, safety and delivery, most HIV nanoformulations are intended to extend plasma levels. A stable nanodrug combination that transports, delivers and accumulates in lymph nodes is needed to clear HIV in lymphoid tissues. This review discusses limitations of current oral combination antiretroviral therapy and advances in anti-HIV nanoformulations. A ‘systems approach’ has been proposed to overcome these limitations. This concept has been used to develop nanoformulations for overcoming drug insufficiency, extending cell and tissue exposure and clearing virus for treating HIV/AIDS. PMID:26892323

  19. The effects of prolonged oral administration of gold nanoparticles on the morphology of hematopoietic and lymphoid organs

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Pakhomy, Svetlana S.; Zlobina, Olga V.; Maslyakova, Galina N.; Navolokin, Nikita A.; Matveeva, Olga V.; Khlebtsov, Boris N.; Bogatyrev, Vladimir A.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2017-02-01

    Currently, the usage of gold nanoparticles as photosensitizers and immunomodulators for plasmonic photothermal therapy has attracted a great attention of researches and end-users. In our work, the influence of prolonged peroral administration of gold nanoparticles (GNPs) with different sizes on the morphological changes of hematopoietic and lymphoid organs was investigated. The 24 white outbred male rats weighing 180-220 g were randomly divided into groups and administered orally for 30 days the suspension of gold nanospheres with diameters of 2, 15 and 50 nm at a dosage of 190 μg/kg of animal body weight. To prevent GNPs aggregation in a tissue and enhance biocompatibility, they were functionalized with thiolated polyethylene glycol. The withdrawal of the animals from the experiment and sampling of spleen, lymph nodes and bone marrow tissues for morphological study were performed a day after the last administration. In the spleen the boundary between the red and white pulp was not clearly differ in all experimental groups, lymphoid follicles were significantly increased in size, containing bright germinative centers represented by large blast cells. The stimulation of lymphocyte and myelocytic series of hematopoiesis was recorded at morphological study of the bone marrow. The number of immunoblasts and large lymphocytes was increased in all structural zones of lymph nodes. The more pronounced changes were found in the group with administration of 15 nm nanoparticles. Thus, the morphological changes of cellular components of hematopoietic organs have size-dependent character and indicate the activation of the migration, proliferation and differentiation of immune cells after prolonged oral administration of GNPs.

  20. [Histopathological Study of the Relationship between Lymphoid Follicles and Different Endoscopic Types of Nodular Gastritis].

    PubMed

    Nagata, Takuo; Ishitake, Hisahito; Shimamoto, Fumio; Tamura, Tadamasa; Matsumura, Kazunori; Sumii, Masaharu; Nakai, Shirou

    2014-11-01

    Nodular gastritis is characterized histologically by hyperplasia and enlargement of lymphoid follicles in the lamina propria. With the objective of elucidating the relationship between different endoscopic types of nodular gastritis and lymphoid follicles, distributions of lymphoid follicles in the lamina propria were investigated in young gastric cancer patients with nodular gastritis. For the study, whole-mucosal step sectioning of each resected stomach was performed, the densities of lymphoid follicles of all specimens were measured microscopically, and the horizontal and depth distributions were calculated. For assessment in the horizontal direction, density distribution diagrams of lymphoid follicles were created. For assessment in the depth direction, the different endoscopic types of nodular gastritis were compared in the five different analysis sites. In the assessment of the horizontal distribution, no characteristic distribution tendencies were observed in either the granular type group or the scattered type group; however, it was found that areas with relatively high densities of lymphoid follicles generally coincided with the areas where nodular gastritis was observed endoscopically. These results suggested that hyperplasia and aggregation of lymphoid follicles in the lamina propria are involved at the sites where nodular gastritis is observed endoscopically. In the assessment of the depth distribution, lymphoid follicles tended to be more unevenly distributed in the upper lamina propria in the granular type group than in the scattered type at the three different analysis sites where nodular gastritis was observed endoscopically. These results suggested the possibility of a granular type characteristic.

  1. Identification of Regulatory T Cells in Tolerated Allografts

    PubMed Central

    Graca, Luis; Cobbold, Stephen P.; Waldmann, Herman

    2002-01-01

    Induction of transplantation tolerance with certain therapeutic nondepleting monoclonal antibodies can lead to a robust state of peripheral “dominant” tolerance. Regulatory CD4+ T cells, which mediate this form of “dominant” tolerance, can be isolated from spleens of tolerant animals. To determine whether there were any extra-lymphoid sites that might harbor regulatory T cells we sought their presence in tolerated skin allografts and in normal skin. When tolerated skin grafts are retransplanted onto T cell–depleted hosts, graft-infiltrating T cells exit the graft and recolonize the new host. These colonizing T cells can be shown to contain members with regulatory function, as they can prevent nontolerant lymphocytes from rejecting fresh skin allografts, without hindrance of rejection of third party skin. Our results suggest that T cell suppression of graft rejection is an active process that operates beyond secondary lymphoid tissue, and involves the persistent presence of regulatory T cells at the site of the tolerated transplant. PMID:12070291

  2. Clonality analysis of lymphoid proliferations using the BIOMED-2 clonality assays: a single institution experience

    PubMed Central

    Kokovic, Ira; Novakovic, Barbara Jezersek; Cerkovnik, Petra; Novakovic, Srdjan

    2014-01-01

    Background Clonality determination in patients with lymphoproliferative disorders can improve the final diagnosis. The aim of our study was to evaluate the applicative value of standardized BIOMED-2 gene clonality assay protocols for the analysis of clonality of lymphocytes in a group of different lymphoid proliferations. Materials and methods. With this purpose, 121 specimens from 91 patients with suspected lymphoproliferations submitted for routine diagnostics from January to December 2011 were retrospectively analyzed. According to the final diagnosis, our series comprised 32 cases of B-cell lymphomas, 38 cases of non-Hodgkin’s T-cell lymphomas and 51 cases of reactive lymphoid proliferations. Clonality testing was performed using the BIOMED-2 clonality assays. Results The determined sensitivity of the TCR assay was 91.9%, while the sensitivity of the IGH assay was 74.2%. The determined specificity of the IGH assay was 73.3% in the group of lymphomas and 87.2% in the group of reactive lesions. The determined specificity of the TCR assay was 62.5% in the group of lymphomas and 54.3% in the group of reactive lesions. Conclusions In the present study, we confirmed the utility of standardized BIOMED-2 clonality assays for the detection of clonality in a routine diagnostical setting of non-Hodgkin’s lymphomas. Reactions for the detection of the complete IGH rearrangements and reactions for the detection of the TCR rearrangements are a good choice for clonality testing of a wide range of lymphoid proliferations and specimen types while the reactions for the detection of incomplete IGH rearrangements have not shown any additional diagnostic value. PMID:24991205

  3. Different mechanisms of radiation-induced loss of heterozygosity in two human lymphoid cell lines from a single donor

    NASA Technical Reports Server (NTRS)

    Wiese, C.; Gauny, S. S.; Liu, W. C.; Cherbonnel-Lasserre, C. L.; Kronenberg, A.

    2001-01-01

    Allelic loss is an important mutational mechanism in human carcinogenesis. Loss of heterozygosity (LOH) at an autosomal locus is one outcome of the repair of DNA double-strand breaks (DSBs) and can occur by deletion or by mitotic recombination. We report that mitotic recombination between homologous chromosomes occurred in human lymphoid cells exposed to densely ionizing radiation. We used cells derived from the same donor that express either normal TP53 (TK6 cells) or homozygous mutant TP53 (WTK1 cells) to assess the influence of TP53 on radiation-induced mutagenesis. Expression of mutant TP53 (Met 237 Ile) was associated with a small increase in mutation frequencies at the hemizygous HPRT (hypoxanthine phosphoribosyl transferase) locus, but the mutation spectra were unaffected at this locus. In contrast, WTK1 cells (mutant TP53) were 30-fold more susceptible than TK6 cells (wild-type TP53) to radiation-induced mutagenesis at the TK1 (thymidine kinase) locus. Gene dosage analysis combined with microsatellite marker analysis showed that the increase in TK1 mutagenesis in WTK1 cells could be attributed, in part, to mitotic recombination. The microsatellite marker analysis over a 64-cM region on chromosome 17q indicated that the recombinational events could initiate at different positions between the TK1 locus and the centromere. Virtually all of the recombinational LOH events extended beyond the TK1 locus to the most telomeric marker. In general, longer LOH tracts were observed in mutants from WTK1 cells than in mutants from TK6 cells. Taken together, the results demonstrate that the incidence of radi-ation-induced mutations is dependent on the genetic background of the cell at risk, on the locus examined, and on the mechanisms for mutation available at the locus of interest.

  4. Gemcitabine Hydrochloride, Carboplatin, Dexamethasone, and Rituximab in Treating Patients With Previously Treated Lymphoid Malignancies

    ClinicalTrials.gov

    2017-05-28

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  5. Hypogammaglobulinemia associated with nodular lymphoid hyperplasia of the intestine and pernicious anaemia.

    PubMed

    Ouakaa-Kchaou, Asma; Trad, Dorra; Boussourra, Houda; Bibani, Norsaf; Elloumi, Héla; Kochlef, Asma; Gargouri, Dalila; Kharrat, Jamel

    2015-11-01

    Nodular lymphoid hyperplasia of the gastrointestinal tract, recurrent acute pulmonary infections and autoimmune disease are well-recognized complications of common variable immunodeficiency. We aimed to focus on clinical presentation and differential diagnosis of diffuse nodular lymphoid and hyperplasia of the gastrointestinal tract coexisting with hypogammaglobulinemia. We report the case of nodular lymphoid hyperplasia associated with pernicious anaemia in a young man with hypogammaglobulinemia and a long history of pulmonary infections. The considerable point was a mismatch primary clinical diagnosis of familial adenomatous polyposis, due to prominent polyplike endoscopic appearance of the lesions throughout the digestive tract.

  6. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor, and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2017-09-01

    Dec, 2016 "Integrating innate , adaptive, & survival signals to control B cell selection, homeostasis and tolerance" Pasteur Institute of Shanghai...secondary lymphoid tissues. Aging Dis. 2: 361–373. 8. Goenka, R., J. L. Scholz, M. S. Naradikian, and M. P. Cancro. 2014. Memory B cells form in aged...Scholz, and M. P. Cancro. 2011. A B- cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118: 1294–1304. 10. Rubtsov, A

  7. Purine Analog-Like Properties of Bendamustine Underlie Rapid Activation of DNA Damage Response and Synergistic Effects with Pyrimidine Analogues in Lymphoid Malignancies

    PubMed Central

    Hiraoka, Nobuya; Kikuchi, Jiro; Yamauchi, Takahiro; Koyama, Daisuke; Wada, Taeko; Uesawa, Mitsuyo; Akutsu, Miyuki; Mori, Shigehisa; Nakamura, Yuichi; Ueda, Takanori; Kano, Yasuhiko; Furukawa, Yusuke

    2014-01-01

    Bendamustine has shown considerable clinical activity against indolent lymphoid malignancies as a single agent or in combination with rituximab, but combination with additional anti-cancer drugs may be required for refractory and/or relapsed cases as well as other intractable tumors. In this study, we attempted to determine suitable anti-cancer drugs to be combined with bendamustine for the treatment of mantle cell lymphoma, diffuse large B-cell lymphoma, aggressive lymphomas and multiple myeloma, all of which are relatively resistant to this drug, and investigated the mechanisms underlying synergism. Isobologram analysis revealed that bendamustine had synergistic effects with alkylating agents (4-hydroperoxy-cyclophosphamide, chlorambucil and melphalan) and pyrimidine analogues (cytosine arabinoside, gemcitabine and decitabine) in HBL-2, B104, Namalwa and U266 cell lines, which represent the above entities respectively. In cell cycle analysis, bendamustine induced late S-phase arrest, which was enhanced by 4-hydroperoxy-cyclophosphamide, and potentiated early S-phase arrest by cytosine arabinoside (Ara-C), followed by a robust increase in the size of sub-G1 fractions. Bendamustine was able to elicit DNA damage response and subsequent apoptosis faster and with shorter exposure than other alkylating agents due to rapid intracellular incorporation via equilibrative nucleoside transporters (ENTs). Furthermore, bendamustine increased the expression of ENT1 at both mRNA and protein levels and enhanced the uptake of Ara-C and subsequent increase in Ara-C triphosphate (Ara-CTP) in HBL-2 cells to an extent comparable with the purine analog fludarabine. These purine analog-like properties of bendamustine may underlie favorable combinations with other alkylators and pyrimidine analogues. Our findings may provide a theoretical basis for the development of more effective bendamustine-based combination therapies. PMID:24626203

  8. Decreased human immunodeficiency virus type 1 plasma viremia during antiretroviral therapy reflects downregulation of viral replication in lymphoid tissue.

    PubMed Central

    Cohen, O J; Pantaleo, G; Holodniy, M; Schnittman, S; Niu, M; Graziosi, C; Pavlakis, G N; Lalezari, J; Bartlett, J A; Steigbigel, R T

    1995-01-01

    Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue. Images Fig. 1 Fig. 2 Fig. 3 PMID:7597072

  9. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration

    PubMed Central

    Estin, Miriam L.; Thompson, Scott B.; Traxinger, Brianna; Fisher, Marlie H.; Friedman, Rachel S.; Jacobelli, Jordan

    2017-01-01

    Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP–like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner. PMID:28320969

  10. Assessment of toxic potential of mycotoxin contaminated bread during in vitro human digestion on human B lymphoid cell line.

    PubMed

    Monaci, Linda; Garbetta, Antonella; Angelis, Elisabetta De; Visconti, Angelo; Minervini, Fiorenza

    2015-01-05

    Ingestion of food is considered a major route of exposure to many contaminants including mycotoxins. The amount of mycotoxin resisting to the digestion process and potentially absorbable by the systemic circulation is only a smaller part of that ingested. In vitro digestion models turn useful for evaluating mycotoxins bioaccessibility during the intestinal transit and can be intended as a valuable tool for the assessment of mycotoxin bioavailability in food. In this paper we describe a study aimed at investigating toxicity of in vitro gastro-duodenal digests of mycotoxin contaminated bread collected along the digestion time-course. Toxicity tests were carried out on a sensitive RPMI lymphoid B cell line chosen as the most suitable lineage to assess toxicity retained by gastro-duodenal digests. In parallel, a chemical quantification of T-2 and HT-2 toxins contaminating the bread digests was accomplished during the gastric and duodenal transit. The digestive fluids undergoing chemical and toxicological analysis were collected at the beginning and end of gastric phase, and after completion of the duodenal phase. Results proved that a correlation between HT-2 content and toxicity did exist although a more persistent toxic activity was displayed in the later stage of the duodenal phase. This persistent toxicity might be explained by the co-occurrence of unknown HT-2-related conjugates or metabolites formed during digestion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. RELATIONSHIP OF GERMINAL CENTERS IN LYMPHOID TISSUE TO IMMUNOLOGICAL MEMORY

    PubMed Central

    Wakefield, J. D.; Thorbecke, G. J.

    1968-01-01

    The fate, proliferation, and developmental potentialities of cell suspensions made from white pulp containing large germinal centers have been studied in the mouse by transfer of cells labeled with thymidine-3H to lethally irradiated, syngeneic recipients. Radioautographic analyses were made using both smears and sections of a variety of tissues. Thymidine-3H-labeling patterns of white pulp showed that, initially, labeling occurred in a majority of blast and "intermediate cells" but in very few or no small lymphocytes. After intravenous transfer, most of the labeled cells localized in the lymphoid tissues of spleen, lymph nodes, and Peyer's patches. Few cells migrated to the thymus, lung, liver, and intestinal mucosa. Both after intravenous and after intraperitoneal transfer there was a rapid increase in the incidence of labeled small lymphocytes and a decrease of labeled blasts and intermediate cells. This was accompanied by an increase in the grain count of the small lymphocytes and a progressive decrease in the grain counts of the blast cells. Exposure of nonlabeled donor cells to thymidine-3H at various time intervals after transfer indicated that dividing cells were present early after transfer but that their incidence progressively decreased. Between 24 and 48 hr, very little cell division was detectable. PMID:5662013

  12. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    PubMed

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  13. Treatment of intractable lupus nephritis with total lymphoid irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strober, S.; Field, E.; Hoppe, R.T.

    1985-04-01

    Ten patients with lupus nephritis and marked proteinuria (3.9 g or more/d) that did not respond adequately to treatment with prednisone alone or prednisone in combination with azathioprine were treated with total lymphoid irradiation in an uncontrolled feasibility study. Within 6 weeks after the start of total lymphoid irradiation, the serum albumin level rose in all patients in association with a reduction in the serum level of anti-DNA antibodies, an increase in the serum complement level, or both. Improvement in these variables persisted in eight patients followed for more than 1 year, with the stabilization or reduction of the serummore » creatinine level. Urinary leakage of albumin was substantially reduced in all patients. Side effects associated with radiotherapy included transient constitutional complaints in ten patients, transient blood element depressions in three, localized viral and bacterial infections in four, and ovarian failure in one. The results suggest that total lymphoid irradiation may provide an alternative to cytotoxic drugs in the treatment of lupus nephritis.« less

  14. Immune Checkpoint Molecules on Tumor-Infiltrating Lymphocytes and Their Association with Tertiary Lymphoid Structures in Human Breast Cancer

    PubMed Central

    Solinas, Cinzia; Garaud, Soizic; De Silva, Pushpamali; Boisson, Anaïs; Van den Eynden, Gert; de Wind, Alexandre; Risso, Paolo; Rodrigues Vitória, Joel; Richard, François; Migliori, Edoardo; Noël, Grégory; Duvillier, Hugues; Craciun, Ligia; Veys, Isabelle; Awada, Ahmad; Detours, Vincent; Larsimont, Denis; Piccart-Gebhart, Martine; Willard-Gallo, Karen

    2017-01-01

    There is an exponentially growing interest in targeting immune checkpoint molecules in breast cancer (BC), particularly in the triple-negative subtype where unmet treatment needs remain. This study was designed to analyze the expression, localization, and prognostic role of PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM3 in primary BC. Gene expression analysis using the METABRIC microarray dataset found that all six immune checkpoint molecules are highly expressed in basal-like and HER2-enriched compared to the other BC molecular subtypes. Flow cytometric analysis of fresh tissue homogenates from untreated primary tumors show that PD-1 is principally expressed on CD4+ or CD8+ T cells and CTLA-4 is expressed on CD4+ T cells. The global proportion of PD-L1+, PD-L2+, LAG3+, and TIM3+ tumor-infiltrating lymphocytes (TIL) was low and detectable in only a small number of tumors. Immunohistochemically staining fixed tissues from the same tumors was employed to score TIL and tertiary lymphoid structures (TLS). PD-L1+, PD-L2+, LAG3+, and TIM3+ cells were detected in some TLS in a pattern that resembles secondary lymphoid organs. This observation suggests that TLS are important sites of immune activation and regulation, particularly in tumors with extensive baseline immune infiltration. Significantly improved overall survival was correlated with PD-1 expression in the HER2-enriched and PD-L1 or CTLA-4 expression in basal-like BC. PD-1 and CTLA-4 proteins were most frequently detected on TIL, which supports the correlations observed between their gene expression and improved long-term outcome in basal-like and HER2-enriched BC. PD-L1 expression by tumor or immune cells is uncommon in BC. Overall, the data presented here distinguish PD-1 as a marker of T cell activity in both the T and B cell areas of BC associated TLS. We found that immune checkpoint molecule expression parallels the extent of TIL and TLS, although there is a noteworthy amount of heterogeneity between tumors even

  15. Involvement of dendritic cells in allograft rejection new implications of dendritic cell-endothelial cell interactions.

    PubMed

    Schlichting, C L; Schareck, W D; Kofler, S; Weis, M

    2007-04-01

    For almost half a century immunologists have tried to tear down the MHC barrier, which separates two unrelated individuals during transplantation. Latest experimental data suggest that a breakthrough in vitro is imminent. Dendritic cells (DCs), which activate naïve allo-reactive T-cells (TCs), play a central role in the establishment of allo-antigen-specific immunity. Allograft solid organ rejection is initiated at the foreign endothelial cell (EC) layer, which forms an immunogenic barrier for migrating DCs. Thus, DC/EC interactions might play a crucial role in antigen-specific allograft rejection. Organ rejection is mediated by host allo-reactive TCs, which are activated by donor DCs (direct activation) or host DCs (indirect activation). Direct allo-antigen presentation by regulatory dendritic cells (DCreg) can play an instructive role towards tolerance induction. Several groups established that, DCregs, if transplanted beforehand, enter host thymus, spleen, or bone marrow where they might eventually establish allo-antigen-specific tolerance. A fundamental aspect of DC function is migration throughout the entire organism. After solid organ transplantation, host DCs bind to ECs, invade allograft tissues, and finally transmigrate into lymphoid vessels and secondary lymphoid organs, where they present allo-antigens to naïve host TCs. Recent data suggest that in vitro manipulated DCregs may mediate allo-transplantation tolerance induction. However, the fundamental mechanisms on how such DCregs cause host TCs in the periphery towards tolerance remain unclear. One very promising experimental concept is the simultaneous manipulation of DC direct and indirect TC activation/suppression, towards donor antigen-specific allo-transplantation tolerance. The allo-antigen-specific long-term tolerance induction mediated by DCreg pre-transplantation (with simultaneous short-term immunosuppression) has become reproducible in the laboratory animal setting. Despite the shortcomings

  16. Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression

    PubMed Central

    Beer, Philip A.; Knapp, David J. H. F.; Miller, Paul H.; Kannan, Nagarajan; Sloma, Ivan; Heel, Kathy; Babovic, Sonja; Bulaeva, Elizabeth; Rabu, Gabrielle; Terry, Jefferson; Druker, Brian J.; Loriaux, Marc M.; Loeb, Keith R.; Radich, Jerald P.; Erber, Wendy N.

    2015-01-01

    Without effective therapy, chronic-phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis [BC]) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized, but biologically poorly characterized, accelerated phase (AP). Here, we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1–negative acute myeloid leukemia blasts, which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML, we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients’ CD34+ cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML, including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34+ CP-CML cells also led to activation of signal transducer and activator of transcription 5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients. PMID:25370416

  17. Endoscopic features of lymphoid follicles in Helicobacter pylori-associated chronic gastritis.

    PubMed

    Hayashi, Seishu; Imamura, Jun; Kimura, Kiminori; Saeki, Shunichi; Hishima, Tsunekazu

    2015-01-01

    Small, round, yellowish-white nodules (YWN) are frequently observed in Helicobacter pylori-associated gastritis. The aim of the present study was to investigate the clinical significance of these YWN. Participants comprised 211 patients with H. pylori-associated gastritis, ranging in age from 23 to 86 years. YWN were detected in 23% of participants, more frequently in women (33%) than in men (12%; P < 0.01). YWN were observed on the antral mucosa in 4.7% of cases, lesser curvature of the corpus mucosa in 20%, greater curvature of the corpus mucosa in 0.9%, and fundic mucosa in 12%. Most YWN located on the antral mucosa showed nodular type, and most YWN located on the corpus mucosa and fundic mucosa showed flat type. On magnifying endoscopy with narrow-band imaging, YWN appeared as round whitish lesions with radial or branching microvessels on the surface and hypovascular globe structures just beneath the surface of the mucosa. Targeted biopsies of YWN revealed lymphoid follicles with lymphocyte infiltration or intense inflammatory cell infiltration. The endoscopic finding of YWN could be observed at any site of the gastric mucosa in H. pylori-associated gastritis, and represented histological lymphoid follicles. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  18. Hypergravity-induced immunomodulation in a rodent model: lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Green, Lora M.; Miller, Glen M.; Nelson, Gregory A.

    2002-01-01

    The major goal of this study was to quantify changes in lymphoid organs and cells over time due to centrifugation-induced hypergravity. C57BL/6 mice were exposed to 1, 2 and 3 G and the following assays were performed on days 1, 4, 7, 10, and 21: spleen, thymus, lung, and liver masses; total leukocyte, lymphocyte, monocyte/macrophage, and granulocyte counts; level of splenocyte apoptosis; enumeration of CD3+ T, CD3+/CD4+ T helper, CD3+/CD8+ T cytotoxic, B220+ B, and NK1.1+ natural killer cells; and quantification of cells expressing CD25, CD69, and CD71 activation markers. The data show that increased gravity resulted in decreased body, spleen, thymus, and liver, but not lung, mass. Significant reductions were noted in all three major leukocyte populations (lymphocytes, granulocytes, monocyte/macrophages) [correction of macrphages] with increased gravity; persistent depletion was noted in blood but not spleen. Among the various lymphocyte populations, the CD3+/CD8+ T cells and B220+ B cells were the most affected and NK1.1+ NK cells the least affected. Overall, the changes were most evident during the first week, with a greater influence noted for cells in the spleen. A linear relationship was found between some of the measurements and the level of gravity, especially on day 4. These findings indicate that hypergravity profoundly alters leukocyte number and distribution in a mammalian model and that some aberrations persisted throughout the three weeks of the study. In certain cases, the detected changes were similar to those observed after whole-body irradiation. In future investigations we hope to combine hypergravity with low-dose rate irradiation and immune challenge.

  19. Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma: magnifying endoscopy findings.

    PubMed

    Law, T T; Tong, Daniel; Wong, Sam W H; Chan, S Y; Law, Simon

    2015-04-01

    Gastric mucosa-associated lymphoid tissue lymphoma is uncommon and most patients have an indolent clinical course. The clinical presentation and endoscopic findings can be subtle and diagnosis can be missed on white light endoscopy. Magnifying endoscopy may help identify the abnormal microstructural and microvascular patterns, and target biopsies can be performed. We describe herein the case of a 64-year-old woman with Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma diagnosed by screening magnification endoscopy. Helicobacter pylori-eradication therapy was given and she received biological therapy. She is in clinical remission after treatment. The use of magnification endoscopy in gastric mucosa-associated lymphoid tissue lymphoma and its management are reviewed.

  20. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    PubMed

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. © 2014 The Authors.