Science.gov

Sample records for activated macrophages aams

  1. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M.; Ruckerl, Dominik; Jenkins, Stephen; Ward, Lauren N.; Kurtz, Zachary D.; Wiens, Kirsten E.; Tang, Mei San; Basu-Roy, Upal; Mansukhani, Alka; Allen, Judith E.

    2014-01-01

    Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2. Monocyte-derived AAMs were also CX3CR1-green fluorescent protein (GFP)high and expressed CD206, whereas tissue-derived AAMs were CX3CR1-GFP and CD206 negative. Monocyte-derived AAMs had high levels of aldehyde dehydrogenase activity and promoted the differentiation of FoxP3+ cells from naïve CD4+ cells via production of retinoic acid. In contrast, tissue-derived AAMs expressed high levels of uncoupling protein 1. Hence monocyte-derived AAM have properties associated with immune regulation, and the different physiological properties associated with AAM function may depend on the distinct lineage of these cells. PMID:24695852

  2. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages

    PubMed Central

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; den Hartigh, Andreas B.; Nguyen, Kim; Roux, Christelle M.; Silva, Teane M. A.; Atluri, Vidya L.; Kerrinnes, Tobias; Keestra, A. Marijke; Monack, Denise M.; Luciw, Paul A.; Eigenheer, Richard A.; Bäumler, Andreas J.; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    SUMMARY Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAM), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAM. Glucose uptake was crucial for increased replication of B. abortus in AAM, and chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAM and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAM and targeting this pathway may aid in eradicating chronic infection. PMID:23954155

  3. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages.

    PubMed

    Xavier, Mariana N; Winter, Maria G; Spees, Alanna M; den Hartigh, Andreas B; Nguyen, Kim; Roux, Christelle M; Silva, Teane M A; Atluri, Vidya L; Kerrinnes, Tobias; Keestra, A Marijke; Monack, Denise M; Luciw, Paul A; Eigenheer, Richard A; Bäumler, Andreas J; Santos, Renato L; Tsolis, Renée M

    2013-08-14

    Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection. PMID:23954155

  4. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    PubMed

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  5. Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages.

    PubMed

    Yao, Yongfang; Shi, Qian; Chen, Bing; Wang, Qingsong; Li, Xinda; Li, Long; Huang, Yahong; Ji, Jianguo; Shen, Pingping

    2016-08-12

    Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy. PMID:27325699

  6. Enhanced allergic responsiveness after early childhood infection with respiratory viruses: Are long-lived alternatively activated macrophages the missing link?

    PubMed

    Keegan, Achsah D; Shirey, Kari Ann; Bagdure, Dayanand; Blanco, Jorge; Viscardi, Rose M; Vogel, Stefanie N

    2016-07-01

    Early childhood infection with respiratory viruses, including human rhinovirus, respiratory syncytial virus (RSV) and influenza, is associated with an increased risk of allergic asthma and severe exacerbation of ongoing disease. Despite the long recognition of this relationship, the mechanism linking viral infection and later susceptibility to allergic lung inflammation is still poorly understood. We discuss the literature and provide new evidence demonstrating that these viruses induce the alternative activation of macrophages. Alternatively activated macrophages (AAM) induced by RSV or influenza infection persisted in the lungs of mice up to 90 days after initial viral infection. Several studies suggest that AAM contribute to allergic inflammatory responses, although their mechanism of action is unclear. In this commentary, we propose that virus-induced AAM provide a link between viral infection and enhanced responses to inhaled allergens. PMID:27178560

  7. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  8. 200 North Aggregate Area source AAMS report

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

  9. [Molecular mechanisms regulating the activity of macrophages].

    PubMed

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  10. 76 FR 21035 - Colfor Manufacturing, Inc., an AAM Company, Minerva, OH; Colfor Manufacturing, Inc., an AAM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Employment and Training Administration Colfor Manufacturing, Inc., an AAM Company, Minerva, OH; Colfor Manufacturing, Inc., an AAM Company, Salem, OH; Amended Certification Regarding Eligibility To Apply for Worker... Assistance on March 17, 2010, applicable to workers of Colfor Manufacturing, Inc., Minerva, Ohio. The...

  11. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  12. The Many Alternative Faces of Macrophage Activation

    PubMed Central

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  13. E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo

    PubMed Central

    Van den Bossche, Jan; Laoui, Damya; Naessens, Thomas; Smits, Hermelijn H.; Hokke, Cornelis H.; Stijlemans, Benoît; Grooten, Johan; De Baetselier, Patrick; Van Ginderachter, Jo A.

    2015-01-01

    IL-4/IL-13-induced alternatively activated macrophages (M(IL-4/IL-13), AAMs or M2) are known to express E-cadherin, enabling them to engage in heterotypic cellular interactions and IL-4-driven macrophage fusion in vitro. Here we show that E-cadherin overexpression in Raw 264.7 macrophages inhibits their inflammatory response to LPS stimulation, as demonstrated by a reduced secretion of inflammatory mediators like interleukin (IL)-6, tumor necrosis factor (TNF) and nitric oxide (NO). To study the function of E-cadherin in M(IL-4/IL-13) macrophages in vivo, we generated macrophage-specific E-cadherin-deficient C57BL/6 mice. Using this new tool, we analyzed immunological parameters during two typical AAM-associated Th2-driven diseases and assessed Th2-associated granuloma formation. Although E-cadherin is strongly induced in AAMs during Taenia crassiceps helminth infections and allergic airway inflammation, its deletion in macrophages does not affect the course of both Th2 cytokine-driven diseases. Moreover, macrophage E-cadherin expression is largely redundant for granuloma formation around Schistosoma mansoni ova. Overall, we conclude that E-cadherin is a valuable AAM marker which suppresses the inflammatory response when overexpressed. Yet E-cadherin deletion in macrophages does not affect M(LPS+IFNγ) and M(IL-4) polarization in vitro, nor in vivo macrophage function, at least in the conditions tested. PMID:26226941

  14. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis.

    PubMed

    Nelson, Shakira M; Shay, Ashley E; James, Jamaal L; Carlson, Bradley A; Urban, Joseph F; Prabhu, K Sandeep

    2016-02-01

    The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trsp(fl/fl)Cre(WT) mice that express selenoproteins driven by tRNA(Sec) (Trsp), whereas N. brasiliensis-infected Trsp(fl/fl)Cre(LysM) selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ(12)-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses. PMID:26644468

  15. The interaction of human macrophage subsets with silicone as a biomaterial.

    PubMed

    Vijaya Bhaskar, Thanga Bhuvanesh; Ma, Nan; Lendlein, Andreas; Roch, Toralf

    2015-01-01

    Silicones are widely used as biomaterials for medical devices such as extracorporeal equipments. However, there is often conflicting evidence about their supposed cell- and histocompatibility. Macrophages could mediate silicone-induced adverse responses such as foreign body reaction and fibrous encapsulation. The polarization behaviour of macrophages could determine the clinical outcome after implantation of biomaterials. Induction of classically activated macrophages (CAM) may induce and support uncontrolled inflammatory responses and undesired material degradation. In contrast, polarization into alternatively activated macrophages (AAM) is assumed to support healing processes and implant integration.This study compared the interaction of non-polarized macrophages (M0), CAM, and AAM with commercially available tissue culture polystyrene (TCP) and a medical grade silicone-based biomaterial, regarding the secretion of inflammatory mediators such as cytokines and chemokines. Firstly, by using the Limulus amoebocyte lysate (LAL) test the silicone films were shown to be free of soluble endotoxins, which is the prerequisite to investigate their interaction with primary immune cells. Primary human monocyte-derived macrophages (M0) were polarized into CAM and AAM by addition of suitable differentiation factors. These macrophage subsets were incubated on the materials for 24 hours and their viability and cytokine secretion was assessed. In comparison to TCP, cell adhesion was lower on silicone after 24 hours for all three macrophage subsets. However, compared to TCP, silicone induced higher levels of certain inflammatory and chemotactic cytokines in M0, CAM, and AAM macrophage subsets.Conclusively, it was shown that silicone has the ability to induce a pro-inflammatory state to different magnitudes dependent on the macrophage subsets. This priming of the macrophage phenotype by silicone could explain the incidence of severe foreign body complications observed in vivo. PMID

  16. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization.

    PubMed

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-10-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-GuC)rin) activates disabled naC/ve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-N1), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1N2), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-N2) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

  17. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    PubMed

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  18. MMP-10 Regulates Collagenolytic Activity of Alternatively Activated Resident Macrophages

    PubMed Central

    Rohani, Maryam G.; McMahan, Ryan S.; Razumova, Maria V.; Hertz, Angie L.; Cieslewicz, Maryelise; Pun, Suzie H.; Regnier, Michael; Wang, Ying; Birkland, Timothy P.; Parks, William C.

    2015-01-01

    MMP-10 is expressed by macrophages and epithelium in response to injury, but its functions in wound repair are unknown. We observed increased collagen deposition and skin stiffness in Mmp10−/− wounds with no difference in collagen expression or re-epithelialization. Increased collagen deposition in Mmp10−/− wounds was accompanied by less collagenolytic activity and reduced expression of specific metallocollagenases, particularly MMP-8 and MMP-13, where MMP-13 was the key collagenase. Ablation and adoptive transfer approaches and cell-based models demonstrated that the MMP-10-dependent collagenolytic activity was a product of alternatively activated (M2) resident macrophages. These data demonstrate a critical role for macrophage MMP-10 in controlling the tissue remodeling activity of macrophages and moderating scar formation during wound repair. PMID:25927164

  19. Vocal Fold Fibroblasts Immunoregulate Activated Macrophage Phenotype

    PubMed Central

    King, Suzanne N.; Chen, Fei; Jetté, Marie E.; Thibeault, Susan L.

    2012-01-01

    Recent evidence suggests that fibroblasts play a critical role in regulating inflammation during wound healing because they express several inflammatory mediators in response to bacteria. The objective of this study was to analyze the effects of lipopolysaccaride (LPS) on the immunomodulatory properties of vocal fold fibroblasts (VFF) derived from polyps, scar and normal tissue co-cultured with macrophages, to provide insight into their interactions during the inflammatory process. Fibroblasts were co-cultured with CD14+ monocytes and after 7 days, wells were treated with LPS for 24 and 72 hours. Culture supernatants were collected and concentrations of TNF-α, IL-6, IL-8, IL-10, IL-12, IL-1β, and MCP-1 were quantified by ELISA. Normal VFF and CD14+ monocultures were used as controls. Twenty-four hours after LPS activation, macrophages co-cultured with polyp VFF had significantly increased expression of TNF-α, IL-1β, IL-12, and IL-10 compared to controls (p<0.0001). In contrast, macrophages co-cultured with scar VFF had significantly lower expression of TNF-α, IL-1β and IL-12 with significantly higher IL-10 compared to control (p<0.0001). After 72 hours, macrophages co-cultured with polyp VFF increased expression of TNF-α, IL-1β, IL-10, IL-6, IL-8, MCP-1 and TGF-β (p<0.01) and macrophages co-cultured with scar VFF significantly decreased their expression of IL-1β and IL-12 compared to control (p<0.0001). Scar VFF at both time points produced significantly lower levels of IL-8, MCP-1, IL-6 and TGF-β compared to controls (p<0.05). Based on our findings, VFF and macrophages secrete several inflammatory mediators that modify their diverse functions. Polyp and scar VFF may play a role in regulating abnormal inflammatory responses, which could result in excessive ECM deposition that disrupts the function of the vocal folds. PMID:23123198

  20. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  1. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  2. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  3. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    SciTech Connect

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  4. Modulation of macrophage activation and programming in immunity.

    PubMed

    Liu, Guangwei; Yang, Hui

    2013-03-01

    Macrophages are central mediators of the immune, contributing both to the initiation and the resolution of inflammation. The concept of macrophage activation and program has stimulated interest in its definition, and functional significance in homeostasis and diseases. It has been known that macrophages could be differently activated and programmed into different functional subtypes in response to different types of antigen stumuli or different kinds of cytokines present in the microenvironment and could thus profoundly influence immune responses, but little is known about the state and exact regulatory mechanism of macrophage activation and program from cell or molecular signaling level in immunity. In this review, we summarize the recent finding regarding the regulatory mechanism of macrophage activation and program toward M1 and M2, especially on M2 macrophages.

  5. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    PubMed Central

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging. PMID:24729833

  6. AKT mediated glycolytic shift regulates autophagy in classically activated macrophages.

    PubMed

    Matta, Sumit Kumar; Kumar, Dhiraj

    2015-09-01

    Autophagy is considered as an innate defense mechanism primarily due to its role in the targeting of intracellular pathogens for lysosomal degradation. Here we report inhibition of autophagy as an adaptive response in classically activated macrophages that helps achieve high cellular ROS production and cell death-another hallmark of innate mechanisms. We show prolonged classical activation of Raw 264.7 macrophages by treating them with IFN-γ and LPS inhibited autophagy. The inhibition of autophagy was dependent on nitric oxide (NO) production which activated the AKT-mTOR signaling, the known negative regulators of autophagy. Autophagy inhibition in these cells was accompanied with a shift to aerobic glycolysis along with a decline in the mitochondrial membrane potential (MOMP). The decline in MOMP coupled with autophagy inhibition led to increased mitochondrial content and considerably elevated cellular ROS, eventually causing cell death. Next, using specific siRNA mediated knockdowns we show AKT was responsible for the glycolytic shift and autophagy inhibition in activated macrophages. Surprisingly, AKT knockdown in activated macrophages also rescued them from cell death. Finally we show that AKT mediated autophagy inhibition in the activated macrophages correlated with the depletion of glucose from the extracellular medium, and glucose supplementation not only rescued autophagy levels and reversed other phenotypes of activated macrophages, but also inhibited cell death. Thus we report here a novel link between AKT mediated glycolytic metabolism and autophagy in the activated macrophages, and provide a possible mechanism for sustained macrophage activation in vivo.

  7. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    PubMed

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity.

  8. Collagenase Production by Endotoxin-Activated Macrophages

    PubMed Central

    Wahl, Larry M.; Wahl, Sharon M.; Mergenhagen, Stephan E.; Martin, George R.

    1974-01-01

    Peritoneal exudate macrophages, when exposed to bacterial lipopolysaccharide in culture, were found to produce collagenase (EC 3.4.24.3). This enzyme was not detected in extracts of the macrophages or in media from nonstimulated macrophage cultures. Lipidcontaining fractions of the lipopolysaccharide, including a glycolipid from the rough mutant of Salmonella minnesota (R595) and lipid A, were potent stimulators of collagenase production. The lipid-free polysaccharide fraction had no effect. Cycloheximide prevented the production of collagenase by endotoxin-treated macrophages, suggesting that it was newly synthesized. Images PMID:4372628

  9. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  10. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    PubMed

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  11. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation.

    PubMed

    Wang, Guodong; Zhu, Lei; Yu, Bo; Chen, Ke; Liu, Bo; Liu, Jun; Qin, Guozheng; Liu, Chunyan; Liu, Huixia; Chen, Kaoshan

    2016-09-20

    In this study, we evaluated the immunomodulatory activity of an exopolysaccharide (EPS) derived from Trichoderma pseudokoningii and investigated the molecular mechanism of EPS-mediated activation of macrophages. Results revealed that EPS could significantly induce the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β and enhance phagocytic activity in RAW 264.7 cells. Immunofluorescence staining indicated that EPS promoted the nuclear translocation of nuclear factor (NF)-κB p65 subunit. Western blot analysis showed that EPS increased the expression of inducible nitric oxide synthase (iNOS) protein, the degradation of IκB-α and the phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, pretreatment of RAW 264.7 cells with specific inhibitors of NF-κB and MAPKs significantly attenuated EPS-induced TNF-α and IL-1β production. EPS also induced the inhibition of cytokine secretion by special antibodies against Toll-like receptor-4 (TLR4) and Dectin-1. These data suggest that EPS from Trichoderma pseudokoningii activates RAW 264.7 cells through NF-κB and MAPKs signaling pathways via TLR4 and Dectin-1. PMID:27261736

  12. Human macrophage polarization in vitro: maturation and activation methods compared.

    PubMed

    Vogel, Daphne Y S; Glim, Judith E; Stavenuiter, Andrea W D; Breur, Marjolein; Heijnen, Priscilla; Amor, Sandra; Dijkstra, Christine D; Beelen, Robert H J

    2014-09-01

    Macrophages form a heterogeneous cell population displaying multiple functions, and can be polarized into pro- (M1) or anti-inflammatory (M2) macrophages, by environmental factors. Their activation status reflects a beneficial or detrimental role in various diseases. Currently several in vitro maturation and activation protocols are used to induce an M1 or M2 phenotype. Here, the impact of different maturation factors (NHS, M-CSF, or GM-CSF) and activation methods (IFN-γ/LPS, IL-4, dexamethason, IL-10) on the macrophage phenotype was determined. Regarding macrophage morphology, pro-inflammatory (M1) activation stimulated cell elongation, and anti-inflammatory (M2) activation induced a circular appearance. Activation with pro-inflammatory mediators led to increased CD40 and CD64 expression, whereas activation with anti-inflammatory factors resulted in increased levels of MR and CD163. Production of pro-inflammatory cytokines was induced by activation with IFN-γ/LPS, and TGF-β production was enhanced by the maturation factors M-CSF and GM-CSF. Our data demonstrate that macrophage marker expression and cytokine production in vitro is highly dependent on both maturation and activation methods. In vivo macrophage activation is far more complex, since a plethora of stimuli are present. Hence, defining the macrophage activation status ex vivo on a limited number of markers could be indecisive. From this study we conclude that maturation with M-CSF or GM-CSF induces a moderate anti- or pro-inflammatory state respectively, compared to maturation with NHS. CD40 and CD64 are the most distinctive makers for human M1 and CD163 and MR for M2 macrophage activation and therefore can be helpful in determining the activation status of human macrophages ex vivo.

  13. EGFR regulates macrophage activation and function in bacterial infection.

    PubMed

    Hardbower, Dana M; Singh, Kshipra; Asim, Mohammad; Verriere, Thomas G; Olivares-Villagómez, Danyvid; Barry, Daniel P; Allaman, Margaret M; Washington, M Kay; Peek, Richard M; Piazuelo, M Blanca; Wilson, Keith T

    2016-09-01

    EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.

  14. EGFR regulates macrophage activation and function in bacterial infection.

    PubMed

    Hardbower, Dana M; Singh, Kshipra; Asim, Mohammad; Verriere, Thomas G; Olivares-Villagómez, Danyvid; Barry, Daniel P; Allaman, Margaret M; Washington, M Kay; Peek, Richard M; Piazuelo, M Blanca; Wilson, Keith T

    2016-09-01

    EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis. PMID:27482886

  15. Alternative activation modifies macrophage resistance to Mycobacterium bovis.

    PubMed

    Castillo-Velázquez, Uziel; Aranday-Cortés, Elihú; Gutiérrez-Pabello, José A

    2011-07-01

    The aim of this study was to evaluate the influence of macrophage alternative activation in the intracellular pathogen natural disease resistance phenotype of the host. Macrophage monolayers from resistant (R) (3) or susceptible (S) (3) cattle donors were treated with 10 ng/ml of bovine recombinant IL-4 (rbIL-4), and infected with virulent and avirulent Mycobacterium bovis (MOI 10:1). Bactericidal assays were performed to assess the bacterial phagocytic index and intracellular survival. Total RNA was reverse transcribed and used to analyze the relative changes in gene expression of IL-10, IL-12, IL-18 IL-1β, TNF-α, MCP-1, MCP-2, IL-6, MIP-1, MIP-3, iNOS, ARGII and SLAM by real time PCR. Cell supernatants were collected and nitric oxide and arginase production was assessed. Apoptosis induction was measured by TUNEL. IL-4 treatment increased the phagocytic index in both R and S macrophages; however intracellular survival was augmented mainly in S macrophages. Alternative activation decreased gene expression of pro-inflammatory cytokines, nitric oxide production and DNA fragmentation mainly in R macrophages. On the other hand, arginase production was not different between R and S macrophages. Alternative activation modifies the macrophage response against M. bovis. IL-4 treatment minimized the functional differences that exist between R and S macrophages.

  16. The macrophage response to bacteria. Modulation of macrophage functional activity by peptidoglycan from Moraxella (Branhamella) catarrhalis.

    PubMed Central

    Keller, R; Gustafson, J E; Keist, R

    1992-01-01

    Moraxella (Branhamella) catarrhalis organisms have been shown to be particularly efficient in inducing in a pure population of bone marrow-derived mononuclear phagocytes secretory and cellular activities. In the present study, the ability of peptidoglycan from this Gram-negative organism to trigger a macrophage response was compared with that elicited by peptidoglycan from Staphylococcus aureus and Bacillus subtilis. The results show that the three peptidoglycans were similarly active in triggering the secretion of tumour necrosis factor and tumouricidal activity but differed considerably in their ability to induce the generation of nitrite in macrophages; in this respect, peptidoglycan from M. catarrhalis was particularly potent. The impressive capacity of M. catarrhalis peptidoglycan to induce in low concentration the secretion of tumour necrosis factor and nitrite and tumouricidal activity may, in addition to its lipopolysaccharide, contribute to the extraordinary potential of this organism to trigger the functional activities of macrophages. PMID:1516255

  17. Maternal immune activation leads to activated inflammatory macrophages in offspring

    PubMed Central

    Onore, Charity E.; Schwartzer, Jared J.; Careaga, Milo; Bennan, Robert F.; Ashwood, Paul

    2015-01-01

    Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20 mg/kg polyinosinic–polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10 weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24 h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p < 0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p = 0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p < 0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting

  18. Mycobacterium tuberculosis- induced neutrophil extracellular traps activate human macrophages.

    PubMed

    Braian, Clara; Hogea, Valentin; Stendahl, Olle

    2013-01-01

    Neutrophils activated by Mycobacterium tuberculosis (Mtb) form neutrophil extracellular traps (NETs), containing DNA and several biologically active cytosolic and granular proteins. These NETs may assist in the innate immune defense against different pathogens. We investigated whether the NET-forming neutrophils mediate an activating signal to macrophages during the early multicellular inflammatory reaction and granuloma formation. Mtb-induced NETs were found to be reactive oxygen species dependent and phagocytosis dependent. A neutrophil elastase inhibitor also delayed NET formation. However, NET formation occurred independently of Mtb-induced apoptosis. We observed close interactions between macrophages and Mtb-activated neutrophils, where macrophages bound and phagocytosed NETs. Significant secretion of the cytokines interleukin (IL)-6, tumor necrosis factor-α, IL-1β and IL-10 were detected from macrophages cocultured with NETs from Mtb-activated but not phorbol myristate acetate-activated neutrophils. NETs binding heat shock protein 72 (Hsp72) or recombinant Hsp72 were able to trigger cytokine release from macrophages. Only Mtb-induced NETs contained Hsp72, suggesting that these NETs can transfer this danger signal to adjacent macrophages. We propose that Hsp72 sequestered in NETs plays an important role in the interaction between neutrophils and macrophages during the early innate immune phase of an Mtb infection. The immunomodulatory role of NETs and proteins derived from them may influence not only chronic inflammation during tuberculosis but also immune regulation and autoimmunity.

  19. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  20. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  1. Toxoplasma gondii Chitinase Induces Macrophage Activation

    PubMed Central

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection. PMID:26659253

  2. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    PubMed Central

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  3. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    PubMed

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation.

  4. Update on the role of alternatively activated macrophages in asthma

    PubMed Central

    Jiang, Zhilong; Zhu, Lei

    2016-01-01

    Lung macrophages link innate and adaptive immune responses during allergic airway inflammatory responses. Alveolar macrophages (AMs) and interstitial macrophages are two different phenotypes that differentially exert immunological function under physiological and pathological conditions. Exposure to pathogen induces polarization of AM cells into classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells). M1 cells dominantly express proinflammatory cytokines such as TNF-α and IL-1 β and induce lung inflammation and tissue damage. M2 cells are further divided into M2a and M2c subsets. M2a cells dominantly produce allergic cytokines IL-4 and IL-13, but M2c cells dominantly produce anti-inflammatory cytokine IL-10. M2a and M2c cells are differently involved in initiation, inflammation resolution, and tissue remodeling in the different stages of asthma. Microenvironment dynamically influences polarization of AM cells. Cytokines, chemokines, and immune-regulatory cells interplay and affect the balance between the polarization of M1 and M2 cells, subsequently influencing disease progression. Thus, modulation of AM phenotypes through molecular intervention has therapeutic potential in the treatment of asthma and other allergic inflammatory diseases. This review updated recent advances in polarization and functional specialization of these macrophage subtypes with emphasis on modulation of polarization of M2 cells in asthma of human subjects and animal models. PMID:27350756

  5. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages

    PubMed Central

    Ball, Michael S.; Shipman, Emilie P.; Kim, Hyunjung; Liby, Karen T.; Pioli, Patricia A.

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  6. Active autophagy but not lipophagy in macrophages with defective lipolysis

    PubMed Central

    Schlager, Stefanie; Chandak, Prakash G.; Korbelius, Melanie; Gottschalk, Benjamin; Leopold, Christina; Obrowsky, Sascha; Rainer, Silvia; Doddapattar, Prakash; Aflaki, Elma; Wegscheider, Martin; Sachdev, Vinay; Graier, Wolfgang F.; Kolb, Dagmar; Radovic, Branislav; Kratky, Dagmar

    2015-01-01

    During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase. Adipose triglyceride lipase (ATGL) is the major enzyme catalyzing the initial step of lipolysis by hydrolyzing triglycerides (TGs) in cytosolic LDs. Consequently, most organs and cells, including macrophages, lacking ATGL accumulate TGs, resulting in reduced intracellular free fatty acid concentrations. Macrophages deficient in hormone-sensitive lipase (H0) lack TG accumulation albeit reduced in vitro TG hydrolase activity. We hypothesized that autophagy is activated in lipase-deficient macrophages to counteract their energy deficit. We therefore generated mice lacking both ATGL and HSL (A0H0). Macrophages from A0H0 mice showed 73% reduced neutral TG hydrolase activity, resulting in TG-rich LD accumulation. Increased expression of cathepsin B, accumulation of LC3-II, reduced expression of p62 and increased DQ-BSA dequenching suggest intact autophagy and functional lysosomes in A0H0 macrophages. Markedly decreased acid TG hydrolase activity and lipid flux independent of bafilomycin A1 treatment, however, argue against effective lysosomal degradation of LDs in A0H0 macrophages. We conclude that autophagy of proteins and cell organelles but not of LDs is active as a compensatory mechanism to circumvent and balance the reduced availability of energy substrates in A0H0 macrophages. PMID:26143381

  7. Incomplete Deletion of IL-4Rα by LysMCre Reveals Distinct Subsets of M2 Macrophages Controlling Inflammation and Fibrosis in Chronic Schistosomiasis

    PubMed Central

    Vannella, Kevin M.; Barron, Luke; Borthwick, Lee A.; Kindrachuk, Kristen N.; Narasimhan, Prakash Babu; Hart, Kevin M.; Thompson, Robert W.; White, Sandra; Cheever, Allen W.; Ramalingam, Thirumalai R.; Wynn, Thomas A.

    2014-01-01

    Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαflox/deltaLysMCre mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80hiCD11bhi macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysMCre-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2loIL-4Rα+ macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM) population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2hiIL-4Rα+ macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis. PMID:25211233

  8. p47 GTPases Regulate Toxoplasma gondii Survival in Activated Macrophages

    PubMed Central

    Butcher, Barbara A.; Greene, Robert I.; Henry, Stanley C.; Annecharico, Kimberly L.; Weinberg, J. Brice; Denkers, Eric Y.; Sher, Alan; Taylor, Gregory A.

    2005-01-01

    The cytokine gamma interferon (IFN-γ) is critical for resistance to Toxoplasma gondii. IFN-γ strongly activates macrophages and nonphagocytic host cells to limit intracellular growth of T. gondii; however, the cellular factors that are required for this effect are largely unknown. We have shown previously that IGTP and LRG-47, members of the IFN-γ-regulated family of p47 GTPases, are required for resistance to acute T. gondii infections in vivo. In contrast, IRG-47, another member of this family, is not required. In the present work, we addressed whether these GTPases are required for IFN-γ-induced suppression of T. gondii growth in macrophages in vitro. Bone marrow macrophages that lacked IGTP or LRG-47 displayed greatly attenuated IFN-γ-induced inhibition of T. gondii growth, while macrophages that lacked IRG-47 displayed normal inhibition. Thus, the ability of the p47 GTPases to limit acute infection in vivo correlated with their ability to suppress intracellular growth in macrophages in vitro. Using confocal microscopy and sucrose density fractionation, we demonstrated that IGTP largely colocalizes with endoplasmic reticulum markers, while LRG-47 was mainly restricted to the Golgi. Although both IGTP and LRG-47 localized to vacuoles containing latex beads, neither protein localized to vacuoles containing live T. gondii. These results suggest that IGTP and LRG-47 are able to regulate host resistance to acute T. gondii infections through their ability to inhibit parasite growth within the macrophage. PMID:15908352

  9. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis

    PubMed Central

    Nguyen, Khoa D.; Qiu, Yifu; Cui, Xiaojin; Goh, Y.P. Sharon; Mwangi, Julia; David, Tovo; Mukundan, Lata; Brombacher, Frank; Locksley, Richard M.; Chawla, Ajay

    2011-01-01

    All homeotherms utilize thermogenesis to maintain core body temperature, ensuring that cellular functions and physiologic processes can ensue in cold environments1-3. In the prevailing model, when the hypothalamus senses cold temperatures, it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue (BAT) and white adipose tissue (WAT)4,5. Acting via the β3-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes6, whereas it stimulates the expression of thermogenic genes, such as PPARγ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1), and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes7-9. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report an unexpected requirement for the interleukin 4 (IL4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Cold exposure rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in BAT and lipolysis in WAT. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL4 increased thermogenic gene expression, fatty acid mobilization, and energy expenditure, all in a macrophage-dependent manner. We have thus discovered a surprising role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold. PMID:22101429

  10. An inducible transgene reports activation of macrophages in live zebrafish larvae.

    PubMed

    Sanderson, Leslie E; Chien, An-Tzu; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Hall, Christopher J

    2015-11-01

    Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models.

  11. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  12. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-08-06

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated).

  13. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-01-01

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated). PMID:26287131

  14. Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections

    PubMed Central

    Faz-López, Berenice

    2016-01-01

    The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths.

  15. Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections.

    PubMed

    Faz-López, Berenice; Morales-Montor, Jorge; Terrazas, Luis I

    2016-01-01

    The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths. PMID:27648452

  16. Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections

    PubMed Central

    Faz-López, Berenice

    2016-01-01

    The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths. PMID:27648452

  17. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  18. Visualisation of nitric oxide generated by activated murine macrophages.

    PubMed

    Leone, A M; Furst, V W; Foxwell, N A; Cellek, S; Moncada, S

    1996-04-01

    We have visualised the release and approximate diffusion profile of nitric oxide (NO) from activated murine macrophages using a high transmission microscope coupled to a high sensitivity photon counting camera. The images generated by NO were cell-associated and spread over an area of approximately 175 micrometers from the activated macrophage. The signals obtained were dependent on the presence of exogenous L-arginine in the medium and followed a time course similar to that previously described for the generation of NO by the inducible form of NO synthase. The light signal was attenuated by the inhibitor of NO synthase, N omega-nitro-L-arginine methyl ester. Studies using superoxide-deficient macrophages further confirmed that the signals detected were generated by NO rather than reactive oxygen intermediates. PMID:8660339

  19. Activation of murine macrophages and lymphocytes by Ureaplasma diversum.

    PubMed Central

    Chelmonska-Soyta, A; Miller, R B; Ruhnke, L; Rosendal, S

    1994-01-01

    Ureaplasma diversum is a pathogen in the bovine reproductive tract. The objective of the research was to study interactions with macrophages and lymphocytes which might elucidate aspects of pathogenetic mechanisms of this organism. We studied the activation of murine macrophages of C3H/HeN (LPS-responder) and C3H/HeJ (LPS-low-responder) genotype for TNF-alpha, IL-6, IL-1 and nitric oxide production and blastogenic response of C3H/HeJ splenocytes after Ureaplasma diversum stimulation. Live and heat-killed U. diversum induced TNF-alpha, IL-6 and IL-1 in peritoneal macrophage cultures of both C3H/HeN and C3H/HeJ mice in a dose dependent manner. Interferon-gamma modulated the cytokine production, by increasing the production of TNF-alpha, IL-6 and nitric oxide, but IL-1 secretion was only enhanced in C3H/HeJ macrophages stimulated by live ureaplasmas. Supernatant of U. diversum sonicate was mitogenic for murine spleen lymphocytes. The blastogenic response was dose dependent, and stimulation with both U. diversum and Concanavalin A seemed to have an additive effect. These results suggest that U. diversum, similar to other mycoplasmas, activates murine macrophages and lymphoid cells. The studies should be repeated with bovine cells in order to elucidate pathogenetic aspects of inflammation in cattle caused by U. diversum. PMID:7889459

  20. Fine-tuning of macrophage activation using synthetic rocaglate derivatives

    PubMed Central

    Bhattacharya, Bidisha; Chatterjee, Sujoy; Devine, William G.; Kobzik, Lester; Beeler, Aaron B.; Porco, John A.; Kramnik, Igor

    2016-01-01

    Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource. PMID:27086720

  1. Inability of tumour cells to elicit the respiratory burst in cytotoxic, activated macrophages.

    PubMed Central

    Bryant, S M; Hill, H R

    1982-01-01

    Activated macrophages from Corynebacterium parvum-treated mice are cytotoxic to non-antibody-coated tumour cells and have an augmented respiratory burst potential when compared to resident macrophages. We have investigated the possible involvement of the respiratory burst as an effector mechanism in this type of tumour killing. Scavengers of toxic metabolites of oxygen such as catalase, superoxide dismutase, 2,3-dihydroxybenzoate, ethanol, and cytochrome c did not inhibit macrophage cytotoxicity in this system. To investigate whether or not neoplastic cells stimulate the macrophage respiratory burst, we exposed activated macrophages to viable tumour cells and monitored macrophage superoxide anion production, chemiluminescence, and hexose monophosphate shunt activity. None of these indicators of the macrophage respiratory burst was stimulated by the tumour cells towards which the macrophages were cytotoxic. The data suggest that the macrophages burst is not utilized as an effector mechanism in the non-antibody-mediated macrophage tumour cytotoxicity reaction. PMID:6277777

  2. Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization

    PubMed Central

    Zhang, Yi; Yang, Peng; Cui, Ran; Zhang, Manna; Li, Hong; Qian, Chunhua; Sheng, Chunjun; Qu, Shen; Bu, Le

    2015-01-01

    Obesity is now recognized as a low-grade, chronic inflammatory disease that is linked to a myriad of disorders including cardiovascular diseases, type 2 diabetes, and liver diseases. Recently it is found that eosinophils accelerate alternative activation macrophage (AAM) polarization by secreting Th2 type cytokines such as interleukin-4 and interleukin-13, thereby reducing metainflammation in adipose tissue. In this review, we focused on the role of eosinophils in regulating metabolic homeostasis and obesity. PMID:26688684

  3. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation

    PubMed Central

    Xu, Jun; Chi, Feng; Guo, Tongsheng; Punj, Vasu; Lee, W.N. Paul; French, Samuel W.; Tsukamoto, Hidekazu

    2015-01-01

    Metabolic reprogramming is implicated in macrophage activation, but the underlying mechanisms are poorly understood. Here, we demonstrate that the NOTCH1 pathway dictates activation of M1 phenotypes in isolated mouse hepatic macrophages (HMacs) and in a murine macrophage cell line by coupling transcriptional upregulation of M1 genes with metabolic upregulation of mitochondrial oxidative phosphorylation and ROS (mtROS) to augment induction of M1 genes. Enhanced mitochondrial glucose oxidation was achieved by increased recruitment of the NOTCH1 intracellular domain (NICD1) to nuclear and mitochondrial genes that encode respiratory chain components and by NOTCH-dependent induction of pyruvate dehydrogenase phosphatase 1 (Pdp1) expression, pyruvate dehydrogenase activity, and glucose flux to the TCA cycle. As such, inhibition of the NOTCH pathway or Pdp1 knockdown abrogated glucose oxidation, mtROS, and M1 gene expression. Conditional NOTCH1 deficiency in the myeloid lineage attenuated HMac M1 activation and inflammation in a murine model of alcoholic steatohepatitis and markedly reduced lethality following endotoxin-mediated fulminant hepatitis in mice. In vivo monocyte tracking further demonstrated the requirement of NOTCH1 for the migration of blood monocytes into the liver and subsequent M1 differentiation. Together, these results reveal that NOTCH1 promotes reprogramming of mitochondrial metabolism for M1 macrophage activation. PMID:25798621

  4. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  5. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    ERIC Educational Resources Information Center

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  6. Proteomic analysis of macrophage activated with salmonella lipopolysaccharide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play pivotal role in immunity. They are activated by many pathogen derived molecules such as lipopolysaccharides (LPS) which trigger the production of various proteins and peptides that drive and resolve inflammation. There are numerous studies on the effect of LPS at the genome level bu...

  7. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    PubMed

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation.

  8. Macrophage activation and human immunodeficiency virus infection: HIV replication directs macrophages towards a pro-inflammatory phenotype while previous activation modulates macrophage susceptibility to infection and viral production.

    PubMed

    Porcheray, Fabrice; Samah, Boubekeur; Léone, Cathie; Dereuddre-Bosquet, Nathalie; Gras, Gabriel

    2006-05-25

    Macrophages are pivotal for the regulation of immune and inflammatory responses, but whether their role in HIV infection is protective or deleterious remains unclear. In this study, we investigated the effect of pro- and anti-inflammatory stimuli on macrophage sensitivity to two different aspects of HIV infection: their susceptibility to infection stricto sensu, which we measured by endpoint titration method, and their ability to support virus spread, which we measured by using an RT activity assay in infection kinetics. We show a partially protective role for pro-inflammatory agents as well as for IL-4. We also illustrate that various different stimuli display differential effects on macrophage susceptibility to HIV and on virus replication that occurs thereafter. On the other hand, HIV replication strongly repressed CD206 and CD163 expression, thus clearly orientating macrophages towards a pro-inflammatory phenotype, but independently of TNF. Taken together, our results emphasize that HIV infection of macrophages sets up inflammation at the cell level but through unexpected mechanisms. This may limit target susceptibility and participate in virus clearance but may also result in tissue damage.

  9. Crosstalk between circadian rhythmicity, mitochondrial dynamics and macrophage bactericidal activity

    PubMed Central

    Oliva-Ramírez, Jacqueline; Moreno-Altamirano, María Maximina B; Pineda-Olvera, Benjamín; Cauich-Sánchez, Patricia; Sánchez-García, F Javier

    2014-01-01

    Biological functions show rhythmic fluctuations with 24-hr periodicity regulated by circadian proteins encoded by the so-called ‘clock’ genes. The absence or deregulation of circadian proteins in mice leads to metabolic disorders and in vitro models have shown that the synthesis of pro-inflammatory cytokines by macrophages follows a circadian rhythm so showing a link between circadian rhythmicity, metabolism and immunity. Recent evidence reveals that mitochondrial shape, position and size, collectively referred to as mitochondrial dynamics, are related to both cell metabolism and immune function. However, studies addressing the simultaneous crosstalk between circadian rhythm, mitochondrial dynamics and cell immune function are scarce. Here, by using an in vitro model of synchronized murine peritoneal macrophages, we present evidence that the mitochondrial dynamics and the mitochondrial membrane potential (Δψm) follow a circadian rhythmic pattern. In addition, it is shown that the fusion of mitochondria along with high Δψm, indicative of high mitochondrial activity, precede the highest phagocytic and bactericidal activity of macrophages on Salmonella typhimurium. Taken together, our results suggest a timely coordination between circadian rhythmicity, mitochondrial dynamics, and the bactericidal capacity of macrophages. PMID:24903615

  10. Macrophages as effector cells of protective immunity in murine schistosomiasis: macrophage activation in mice vaccinated with radiation-attenuated cercariae.

    PubMed Central

    James, S L; Natovitz, P C; Farrar, W L; Leonard, E J

    1984-01-01

    Cell-mediated immune responses contributing to macrophage activation were compared in mice that demonstrated partial resistance to challenge Schistosoma mansoni infection as a result of vaccination with radiation-attenuated cercariae or of ongoing low-grade primary infection. Vaccinated mice developed significant delayed hypersensitivity reactions to soluble schistosome antigens in vivo. Splenocytes from vaccinated animals responded to in vitro culture with various specific antigens (soluble adult worm extract, living or disrupted schistosomula) by proliferation and production of macrophage-activating lymphokines as did lymphocytes from S. mansoni-infected animals. Macrophage-activating factors produced by spleen cells from vaccinated mice upon specific antigen stimulation eluted as a single peak on Sephadex G-100 with a molecular weight of approximately 50,000 and contained gamma interferon activity. Moreover, peritoneal macrophages with larvicidal and tumoricidal activity were recovered from vaccinated mice after intraperitoneal challenge with soluble schistosome antigens, a procedure also observed to elicit activated macrophages in S. mansoni-infected animals. These observations demonstrate that vaccination with irradiated cercariae stimulates many of the same cellular responses observed after primary S. mansoni infection, and suggest that lymphokine-activated macrophages may participate in the effector mechanism of vaccine-induced and concomitant immunity to challenge schistosome infection. This is the first demonstration of a potential immune effector mechanism in the irradiated vaccine model. PMID:6609885

  11. Magnetometric measurements of macrophage activity in the liver after administration of different perfluorochemicals.

    PubMed

    Koester, M B; Lutz, J

    1994-01-01

    The activity of liver macrophages was evaluated using a magnetometric method after administration of different perfluorochemicals. Following treatment with perfluoroctylbromide a significant shorter time period of diminished macrophage activity was found compared with a mixture of perfluorodecalin and perfluorotripropylamine. Results obtained with the magnetometric method on liver macrophages were more sensitive compared with those of colloidal carbon clearance of total body RES.

  12. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages

    PubMed Central

    Smalley, Claire; Bechelli, Jeremy; Rockx-Brouwer, Dedeke; Saito, Tais; Azar, Sasha R.; Ismail, Nahed; Walker, David H.; Fang, Rong

    2016-01-01

    Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8–12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved. PMID:27362650

  13. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention.

  14. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis.

  15. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  16. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed

    James, S L; Glaven, J A

    1987-12-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  17. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed Central

    James, S L; Glaven, J A

    1987-01-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  18. Automated detection of pain from facial expressions: a rule-based approach using AAM

    NASA Astrophysics Data System (ADS)

    Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.

    2012-02-01

    In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.

  19. Lectin coated MgO nanoparticle: its toxicity, antileishmanial activity, and macrophage activation.

    PubMed

    Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; Allaveisie, Azra; Masoudi, Alireza; Daliri, Karim; Sedighi, Najme; Ranjbari, Javad

    2014-10-01

    The purpose of this research was to evaluate toxicity of uncoated magnesium oxide nanoparticles (MgO NPs), MgO NPs coated with Peanut agglutinin (PNA) lectin, and PNA alone on the promastigotes of Leishmania major (L. major) and macrophages of BALB/c mice. On the other hand, antileishmanial property of uncoated MgO NPs, lectin coated MgO NPs, and PNA lectin alone was evaluated, and also macrophage activation was investigated after treatment with these materials by measurement of nitrite, H2O2, and some interleukins. This study showed that PNA lectin and lectin coated MgO NPs had approximately no toxicity on L. major and macrophages, but some toxic effects were observed for uncoated MgO NPs, especially at concentration of 500 µg/mL. Interestingly, lectin coated MgO NPs had the highest antileishmanial activity and macrophage activation, compared with uncoated MgO NPs and PNA lectin.

  20. New insights into the multidimensional concept of macrophage ontogeny, activation and function.

    PubMed

    Ginhoux, Florent; Schultze, Joachim L; Murray, Peter J; Ochando, Jordi; Biswas, Subhra K

    2016-01-01

    Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution.

  1. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury

    PubMed Central

    Huynh, Larry; Marlier, Arnaud; Lee, Yashang; Moeckel, Gilbert W.; Cantley, Lloyd G.

    2015-01-01

    After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4–stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury. PMID:25388222

  2. Macrophage Activation Redirects Yersinia-Infected Host Cell Death from Apoptosis to Caspase-1-Dependent Pyroptosis

    PubMed Central

    Bergsbaken, Tessa; Cookson, Brad T

    2007-01-01

    Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ− Yersinia pseudotuberculosis (Yptb). YopJ− Yptb-induced macrophage death was dependent on caspase-1 activation, resulting in rapid permeability to small molecules, followed by membrane breakdown and DNA damage, and accompanied by cleavage and release of proinflammatory interleukin-18. Induction of caspase-1-dependent death, or pyroptosis, required the bacterial type III translocon but none of its known translocated proteins. Wild-type Yptb infection also triggered pyroptosis: YopJ-dependent activation of proapoptotic caspase-3 was significantly delayed in activated macrophages and resulted in caspase-1-dependent pyroptosis. The transition to susceptibility was not limited to LPS activation; it was also seen in macrophages activated with other Toll-like receptor (TLR) ligands and intact nonviable bacteria. Yptb infection triggered macrophage activation and activation of caspase-1 in vivo. Y. pestis infection of activated macrophages also stimulated caspase-1 activation. These results indicate that host signaling triggered by TLR and other activating ligands during the course of Yersinia infection redirects both the mechanism of host cell death and the downstream consequences of death by shifting from noninflammatory apoptosis to inflammatory pyroptosis. PMID:17983266

  3. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    PubMed Central

    Souza, Nadhia H. C.; Ferrari, Raquel A. M.; Silva, Daniela F. T.; Nunes, Fabio D.; Bussadori, Sandra K.; Fernandes, Kristianne P. S.

    2014-01-01

    BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. PMID:25076002

  4. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  5. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages.

    PubMed

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno

    2015-12-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines.

  6. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages

    PubMed Central

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H.; Enciso-Moreno, Jose A.; Hancock, Robert E. W.

    2015-01-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  7. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation

    PubMed Central

    2014-01-01

    Background In neuroinflammatory diseases, macrophages can play a dual role in the process of tissue damage, depending on their activation status (M1 / M2). M1 macrophages are considered to exert damaging effects to neurons, whereas M2 macrophages are reported to aid regeneration and repair of neurons. Their migration within the central nervous system may be of critical importance in the final outcome of neurodegeneration in neuroinflammatory diseases e.g. multiple sclerosis (MS). To provide insight into this process, we examined the migratory capacity of human monocyte-derived M1 and M2 polarised macrophages towards chemoattractants, relevant for neuroinflammatory diseases like MS. Methods Primary cultures of human monocyte-derived macrophages were exposed to interferon gamma and lipopolysaccharide (LPS) to evoke proinflammatory (M1) activation or IL-4 to evoke anti-inflammatory (M2) activation. In a TAXIScan assay, migration of M0, M1 and M2 towards chemoattractants was measured and quantified. Furthermore the adhesion capacity and the expression levels of integrins as well as chemokine receptors of M0, M1 and M2 were assessed. Alterations in cell morphology were analysed using fluorescent labelling of the cytoskeleton. Results Significant differences were observed between M1 and M2 macrophages in the migration towards chemoattractants. We show that M2 macrophages migrated over longer distances towards CCL2, CCL5, CXCL10, CXCL12 and C1q compared to non-activated (M0) and M1 macrophages. No differences were observed in the adhesion of M0, M1 and M2 macrophages to multiple matrix components, nor in the expression of integrins and chemokine receptors. Significant changes were observed in the cytoskeleton organization upon stimulation with CCL2, M0, M1 and M2 macrophages adopt a spherical morphology and the cytoskeleton is rapidly rearranged. M0 and M2 macrophages are able to form filopodia, whereas M1 macrophages only adapt a spherical morphology. Conclusions

  8. Some biochemical and functional characteristics of macrophages activated by Tetrahymena pyriformis.

    PubMed

    Makioka, A; Kobayashi, A

    1984-01-01

    Phagocytosis, enzyme activities and capacity to release hydrogen peroxide (H2O2) and superoxide anion (O2-) of peritoneal macrophages from mice inoculated with Tetrahymena pyriformis, a free-living ciliate, were examined in comparison with resident and BCG-activated macrophages. Fc receptor-mediated phagocytosis of sheep erythrocytes was markedly increased in Tetrahymena-activated macrophages to the same level as that seen in BCG-activated ones. Tetrahymena-activated macrophages showed an increased level of acid phosphatase (lysosomal enzyme) and a reduced level of alkaline phosphodiesterase I (plasma membrane ectoenzyme) as compared with resident macrophages. Similar changes in the activities of the two enzymes were also observed in BCG-activated macrophages. Both Tetrahymena- and BCG-activated macrophages exhibited more enhanced capacity to release H2O2 and O2- than resident macrophages when stimulated with phorbol myristate acetate. In the macrophages from mice inoculated with varying doses of Tetrahymena, a significant correlation was observed between the increased capacity of H2O2 and O2- release as observed in the present study, and the enhanced toxoplasmacidal activity as observed in a previous study, in a dose-dependent fashion.

  9. Macrophage Activation Syndrome-Associated Markers in Severe Dengue

    PubMed Central

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  10. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    SciTech Connect

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  11. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages. PMID:8176226

  12. STAT1 Signaling within Macrophages Is Required for Antifungal Activity against Cryptococcus neoformans

    PubMed Central

    Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Olszewski, Michal A.; Mueller, Mathias

    2015-01-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO. PMID:26351277

  13. Activation of peritoneal macrophages to cytoxicity against B16 melanoma cells by Serratia marcescens polyribosome fractions

    SciTech Connect

    Hoover, S.K.

    1985-01-01

    Serratia marcescens polyribosomes (SMPR) have been shown to elicit an anti-tumor response in vivo. The in-vitro effects of SMPR on macrophages as the nonspecific mediators of the anti-tumor response have not previously been examined. The first objective of this research project is to corroborate and analyze the in-vivo results by the development and application of an in-vitro cytotoxicity assay. The second objective is to examine the effect of SMPR upon previously unstimulated peritoneal macrophages as representing the mechanism of cytotoxicity. The third objective is to identify the minimal effective component of SMPR responsible for an effect on macrophages. Results revealed that SMPR preparations exert a number of effects upon macrophages. Morphologic changes included increased spreading and increased perinuclear vacuolization. Macrophages were shown to be metabolically activate by two lines of evidence. SMPR-treated macrophages exhibited increased cellular metabolism by the increased uptake of /sup 3/H-thymidine and by the increased levels of secreted leucine aminopeptidase as compared to control macrophages. Results also showed that SMPR activates macrophages to cytotoxicity against syngeneic tumor target cells. Buoyant-density fractions were isolated and assayed for macrophage activating ability. Results showed 50S ribosomal subunits to be the smallest fraction effective for macrophage activation. Both the RNA and protein were necessary for complete effectiveness.

  14. Interaction of human leukocytes and Entamoeba histolytica. Killing of virulent amebae by the activated macrophage.

    PubMed Central

    Salata, R A; Pearson, R D; Ravdin, J I

    1985-01-01

    Capable effector mechanisms in the human immune response against the cytolytic, protozoan parasite Entamoeba histolytica have not been described. To identify a competent human effector cell, we studied the in vitro interactions of normal human polymorphonuclear neutrophils, peripheral blood mononuclear cells (PBMC), monocytes (MC), and MC-derived macrophages with virulent axenic amebae (strain HMI-IMSS). Amebae killed neutrophils, PBMC, MC, and MC-derived macrophages (P less than 0.001), without loss of parasite viability. The addition of heat-inactivated immune serum did not enable leukocytes to kill amebae, nor did it protect these host cells from amebae. MC-derived macrophages, activated with lymphokine elicited by the mitogens conconavalin A, phytohemagglutinin, or an amebic soluble protein preparation (strain HK9), killed 55% of amebae by 3 h in a trypan blue exclusion assay (P less than 0.001); during this time, 40% of the activated macrophages died. Lysis of amebae was confirmed using 111Indium oxine radiolabeled parasites and was antibody independent. Macrophage death appeared to be due to the deleterious effect of lysed amebae rather than the contact-dependent effector mechanisms of E. histolytica. Adherence between activated macrophages and amebae was greater than that between other leukocytes and amebae (P less than 0.001). Microscopic observations, kinetic analysis of the killing of amebae by activated macrophages, and suspension of amebae with adherent activated macrophages in a 10% dextran solution indicated that contact by activated macrophages was necessary to initiate the killing of amebae. Catalase but not superoxide dismutase inhibited the amebicidal capacity of activated macrophages (P less than 0.001). However, activated macrophages from an individual with chronic granulomatous disease were able to kill amebae, but not as effectively as normal cells (P less than 0.01). In summary, activated MC-derived macrophages killed virulent E. histolytica

  15. Interaction of human leukocytes and Entamoeba histolytica. Killing of virulent amebae by the activated macrophage.

    PubMed

    Salata, R A; Pearson, R D; Ravdin, J I

    1985-08-01

    Capable effector mechanisms in the human immune response against the cytolytic, protozoan parasite Entamoeba histolytica have not been described. To identify a competent human effector cell, we studied the in vitro interactions of normal human polymorphonuclear neutrophils, peripheral blood mononuclear cells (PBMC), monocytes (MC), and MC-derived macrophages with virulent axenic amebae (strain HMI-IMSS). Amebae killed neutrophils, PBMC, MC, and MC-derived macrophages (P less than 0.001), without loss of parasite viability. The addition of heat-inactivated immune serum did not enable leukocytes to kill amebae, nor did it protect these host cells from amebae. MC-derived macrophages, activated with lymphokine elicited by the mitogens conconavalin A, phytohemagglutinin, or an amebic soluble protein preparation (strain HK9), killed 55% of amebae by 3 h in a trypan blue exclusion assay (P less than 0.001); during this time, 40% of the activated macrophages died. Lysis of amebae was confirmed using 111Indium oxine radiolabeled parasites and was antibody independent. Macrophage death appeared to be due to the deleterious effect of lysed amebae rather than the contact-dependent effector mechanisms of E. histolytica. Adherence between activated macrophages and amebae was greater than that between other leukocytes and amebae (P less than 0.001). Microscopic observations, kinetic analysis of the killing of amebae by activated macrophages, and suspension of amebae with adherent activated macrophages in a 10% dextran solution indicated that contact by activated macrophages was necessary to initiate the killing of amebae. Catalase but not superoxide dismutase inhibited the amebicidal capacity of activated macrophages (P less than 0.001). However, activated macrophages from an individual with chronic granulomatous disease were able to kill amebae, but not as effectively as normal cells (P less than 0.01). In summary, activated MC-derived macrophages killed virulent E. histolytica

  16. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects.

  17. Low-power laser irradiation enhance macrophage phagocytic capacity through Src activation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with organic functions. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages, the regulation mechanism of phagocytosis was also discussed. Our results indicated that Low-power laser irradiation can enhance the phagocytosis of macrophage through activation of Src.

  18. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling

    PubMed Central

    Fleming, Bryan D.; Chandrasekaran, Prabha; Dillon, Laura A. L.; Dalby, Elizabeth; Suresh, Rahul; Sarkar, Arup; El-Sayed, Najib M.; Mosser, David M.

    2015-01-01

    Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1β, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4. PMID:26048978

  19. Macrophage-oriented cytotoxic activity of novel triterpene saponins extracted from roots of Securidaca inappendiculata.

    PubMed

    Yui, S; Ubukata, K; Hodono, K; Kitahara, M; Mimaki, Y; Kuroda, M; Sashida, Y; Yamazaki, M

    2001-10-01

    It is recognized that macrophages in peripheral tissues often proliferate under pathological conditions such as tumors, inflammation and atherosclerosis. Because the growth state of macrophages is believed to be a factor regulating the pathological process of the diseases, substances that regulate macrophage growth or survival may be useful for disease control. In this paper, we identified the activity inhibiting macrophage growth in a hot water extract of roots of Securidaca inappendiculata. The extract markedly inhibited macrophage colony-stimulating factor (M-CSF/CSF-1)-induced growth of macrophages, whereas it exerted a less potent effect on growth of Concanavalin A (Con A)-stimulated thymocytes or M-CSF-stimulated bone marrow cells. The inhibition of macrophage growth was caused by a cytotoxic effect rather than a cytostatic effect. Cell death was due to the induction of apoptosis, as judged by staining with terminal deoxynucleotidyl transferase-mediated d-UTP nick end labelling (TUNEL). The cytotoxic activity seemed to be specific to peripheral macrophages; it showed a weak effect on the growth and survival of tumor cell lines including a macrophage-like cell line, J-774.1. Moreover, the saponin fraction induced apoptotic cell death of macrophages only when they were stimulated by M-CSF; it did not affect the viability of macrophages cultured without M-CSF or with granulocyte/macrophage-CSF. We determined the structures of the two active triterpene saponin compounds in the fraction, named securioside A and securioside B having a 3,4-dimethoxycinnamic group which is essential for the cell death-inducing activity. They are believed to be the primary compounds of new drugs for the treatment of pathological states in which macrophage proliferation occurs. PMID:11606030

  20. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution

    PubMed Central

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  1. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed Central

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-01-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497

  2. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.

    PubMed

    Drapier, J C; Hirling, H; Wietzerbin, J; Kaldy, P; Kühn, L C

    1993-09-01

    Biosynthesis of nitric oxide (NO) from L-arginine modulates activity of iron-dependent enzymes, including mitochondrial acontiase, an [Fe-S] protein. We examined the effect of NO on the activity of iron regulatory factor (IRF), a cytoplasmic protein which modulates both ferritin mRNA translation and transferrin receptor mRNA stability by binding to specific mRNA sequences called iron responsive elements (IREs). Murine macrophages were activated with interferon-gamma and lipopolysaccharide to induce NO synthase activity and cultured in the presence or absence of NG-substituted analogues of L-arginine which served as selective inhibitors of NO synthesis. Measurement of the nitrite concentration in the culture medium was taken as an index of NO production. Mitochondria-free cytosols were then prepared and aconitase activity as well as IRE binding activity and induction of IRE binding activity were correlated and depended on NO synthesis after IFN-gamma and/or LPS stimulation. Authentic NO gas as well as the NO-generating compound 3-morpholinosydnonimine (SIN-1) also conversely modulated aconitase and IRE binding activities of purified recombinant IRF. These results provide evidence that endogenously produced NO may modulate the post-transcriptional regulation of genes involved in iron homeostasis and support the hypothesis that the [Fe-S] cluster of IRF mediates iron-dependent regulation. PMID:7504626

  3. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  4. A transient reversal of miRNA-mediated repression controls macrophage activation.

    PubMed

    Mazumder, Anup; Bose, Mainak; Chakraborty, Abhijit; Chakrabarti, Saikat; Bhattacharyya, Suvendra N

    2013-11-01

    In mammalian macrophages, the expression of a number of cytokines is regulated by miRNAs. Upon macrophage activation, proinflammatory cytokine mRNAs are translated, although the expression of miRNAs targeting these mRNAs remains largely unaltered. We show that there is a transient reversal of miRNA-mediated repression during the early phase of the inflammatory response in macrophages, which leads to the protection of cytokine mRNAs from miRNA-mediated repression. This derepression occurs through Ago2 phosphorylation, which results in its impaired binding to miRNAs and to the corresponding target mRNAs. Macrophages expressing a mutant, non-phosphorylatable AGO2--which remains bound to miRNAs during macrophage activation--have a weakened inflammatory response and fail to prevent parasite invasion. These findings highlight the relevance of the transient relief of miRNA repression for macrophage function.

  5. Bactericidal Activity of Human Macrophages: Analysis of Factors Influencing the Killing of Listeria monocytogenes

    PubMed Central

    Cline, Martin J.

    1970-01-01

    A technique is described for the measurement of listericidal activity of human macrophages grown from blood monocytes. Phagocytosis of Listeria monocytogenes was inhibited by a glycolytic poison (NaF) but was unaffected by anaerobic conditions, cyanide, or 2,4-dinitrophenol (DNP). Killing by macrophages was slower than that by neutrophils, and Listeria phagocytized by macrophages began to synthesize deoxyribonucleic acid within 3 hr of the time of ingestion. Differentiated macrophages ingested and killed more organisms per cell than newly isolated monocytes. Maximal killing of Listeria required oxygen but was unaffected by cyanide or DNP. Macrophages isolated from patients with chronic intracellular infection (leprosy, tuberculosis, fungal diseases) and from patients with active Hodgkin's disease were more bactericidal than macrophages from normal subjects. Images PMID:16557814

  6. Liver X receptor activation stimulates iron export in human alternative macrophages

    PubMed Central

    Bories, Gael; Colin, Sophie; Vanhoutte, Jonathan; Derudas, Bruno; Copin, Corinne; Fanchon, Melanie; Daoudi, Mehdi; Belloy, Loic; Haulon, Stephan; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2013-01-01

    Rationale In atherosclerotic plaques, iron preferentially accumulates in macrophages where it can exert pro-oxidant activities. Objective The objective of this study is, first, to better characterize the iron distribution and metabolism in macrophage sub-populations in human atherosclerotic plaques and, second, to determine whether iron homeostasis is under the control of nuclear receptors, such as the Liver X Receptors (LXR). Methods and Results Here we report that iron depots accumulate in human atherosclerotic plaque areas enriched in CD68 and Mannose Receptor (MR) positive (CD68+MR+) alternative M2 macrophages. In vitro IL-4 polarization of human monocytes into M2 macrophages also resulted in a gene expression profile and phenotype favouring iron accumulation. However, upon iron exposure, M2 macrophages acquire a phenotype favouring iron release, through a strong increase in ferroportin expression, illustrated by a more avid oxidation of extra-cellular LDL by iron-loaded M2 macrophages. In line, in human atherosclerotic plaques, CD68+MR+ macrophages accumulate oxidized lipids, which activate Liver X Receptors (LXRα and LXRβ), resulting in the induction of ABCA1, ABCG1 and ApoE expression. Moreover, in iron-loaded M2 macrophages, LXR activation induces nuclear factor erythroid 2-like 2 (NRF2) expression, hence increasing ferroportin expression, which, together with a decrease of hepcidin mRNA levels, promotes iron export. Conclusions These data identify a role for M2 macrophages in iron handling, a process which is regulated by LXR activation. PMID:24036496

  7. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  8. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  9. Critical illness induces alternative activation of M2 macrophages in adipose tissue

    PubMed Central

    2011-01-01

    Introduction We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. Methods We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Results Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Conclusions Unlike obesity, critical illness evokes adipose tissue

  10. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    PubMed

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP. PMID:26529190

  11. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    PubMed

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP.

  12. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment

    PubMed Central

    Ward, Rebecca; Sims, Andrew H.; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P.; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-01-01

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the “pro-tumourigenic” effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation. Macrophages promote “pro-tumourigenic” cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the “pro-tumourigenic” characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  13. SIRT1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages*

    PubMed Central

    Zhang, Ran; Chen, Hou-Zao; Liu, Jin-Jing; Jia, Yu-Yan; Zhang, Zhu-Qin; Yang, Rui-Feng; Zhang, Yuan; Xu, Jing; Wei, Yu-Sheng; Liu, De-Pei; Liang, Chih-Chuan

    2010-01-01

    SIRT1 (Sirtuin type 1), a mammalian orthologue of yeast SIR2 (silent information regulator 2), has been shown to mediate a variety of calorie restriction (CR)-induced physiological events, such as cell fate regulation via deacetylation of the substrate proteins. However, whether SIRT1 deacetylates activator protein-1 (AP-1) to influence its transcriptional activity and target gene expression is still unknown. Here we demonstrate that SIRT1 directly interacts with the basic leucine zipper domains of c-Fos and c-Jun, the major components of AP-1, by which SIRT1 suppressed the transcriptional activity of AP-1. This process requires the deacetylase activity of SIRT1. Notably, SIRT1 reduced the expression of COX-2, a typical AP-1 target gene, and decreased prostaglandin E2 (PGE2) production of peritoneal macrophages (pMΦs). pMΦs with SIRT1 overexpression displayed improved phagocytosis and tumoricidal functions, which are associated with depressed PGE2. Furthermore, SIRT1 protein level was up-regulated in CR mouse pMΦs, whereas elevated SIRT1 decreased COX-2 expression and improved PGE2-related macrophage functions that were reversed following inhibition of SIRT1 deacetylase activity. Thus, our results indicate that SIRT1 may be a mediator of CR-induced macrophage regulation, and its deacetylase activity contributes to the inhibition of AP-1 transcriptional activity and COX-2 expression leading to amelioration of macrophage function. PMID:20042607

  14. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    PubMed Central

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  15. Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis.

    PubMed

    Weber, Christine; Telerman, Stephanie B; Reimer, Andreas S; Sequeira, Ines; Liakath-Ali, Kifayathullah; Arwert, Esther N; Watt, Fiona M

    2016-02-15

    Macrophages are essential for the progression and maintenance of many cancers, but their role during the earliest stages of tumor formation is unclear. To test this, we used a previously described transgenic mouse model of wound-induced skin tumorigenesis, in which expression of constitutively active MEK1 in differentiating epidermal cells results in chronic inflammation (InvEE mice). Upon wounding, the number of epidermal and dermal monocytes and macrophages increased in wild-type and InvEE skin, but the increase was greater, more rapid, and more sustained in InvEE skin. Macrophage ablation reduced tumor incidence. Furthermore, bioluminescent imaging in live mice to monitor macrophage flux at wound sites revealed that macrophage accumulation was predictive of tumor formation; wounds with the greatest number of macrophages at day 5 went on to develop tumors. Gene expression profiling of flow-sorted monocytes, macrophages, and T cells from InvEE and wild-type skin showed that as wound healing progressed, InvEE macrophages altered their phenotype. Throughout wound healing and after wound closure, InvEE macrophages demonstrated sustained upregulation of several markers implicated in alternative macrophage activation including arginase-1 (ARG1) and mannose receptor (CD206). Notably, inhibition of ARG1 activity significantly reduced tumor formation and epidermal proliferation in vivo, whereas addition of L-arginase to cultured keratinocytes stimulated proliferation. We conclude that macrophages play a key role in early, inflammation-mediated skin tumorigenesis, with mechanistic evidence suggesting that ARG1 secretion drives tumor development by stimulating epidermal cell proliferation. These findings highlight the importance of cancer immunotherapies aiming to polarize tumor-associated macrophages toward an antitumor phenotype. PMID:26754935

  16. Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages.

    PubMed

    Puppo, Maura; Bosco, Maria Carla; Federico, Maurizio; Pastorino, Sandra; Varesio, Luigi

    2007-02-01

    Hypoxia, a local decrease in oxygen tension, occurring in many pathological processes, modifies macrophage (Mphi) gene expression and function. Here, we provide the first evidence that hypoxia inhibits transgene expression driven by the Moloney murine leukemia virus-long terminal repeats (MoMLV-LTR) in IFN-gamma-activated Mphi. Hypoxia silenced the expression of several MoMLV-LTR-driven genes, including v-myc, enhanced green fluorescence protein, and env, and was effective in different mouse Mphi cell lines and on distinct MoMLV backbone-based viruses. Down-regulation of MoMLV mRNA occurred at the transcriptional level and was associated with decreased retrovirus production, as determined by titration experiments, suggesting that hypoxia may control MoMLV retroviral spread through the suppression of LTR activity. In contrast, genes driven by the CMV or the SV40 promoter were up-regulated or unchanged by hypoxia, indicating a selective inhibitory activity on the MoMLV promoter. It is interesting that hypoxia was ineffective in suppressing MoMLV-LTR-controlled gene expression in T or fibroblast cell lines, suggesting a Mphi lineage-selective action. Finally, we found that MoMLV-mediated gene expression in Mphi was also inhibited by picolinic acid, a tryptophan catabolite with hypoxia-like activity and Mphi-activating properties, suggesting a pathophysiological role of this molecule in viral resistance and its possible use as an antiviral agent.

  17. Macrophage activation of allogeneic lymphocyte proliferation in the guinea pig mixed leukocyte culture.

    PubMed

    Greineder, D K; Rosenthal, A S

    1975-05-01

    The role of the macrophage in the guinea pig mixed leukocyte culture was investigated. Macrophages obtained from oil-induced peritoneal exudates, peritoneal wash-out cells, spleen, and alveolar washings were found to be effective stimulators of allogeneic lymph node and splenic lymphocyte DNA synthesis. The stimulatory properties of macrophages proved radioresistant but viability dependent. Unfractionated lymph node cells or adherence column purified lymph node lymphocytes and thymocytes were only minimally active as stimulators, even in the presence of macrophages syngeneic to the responder lymphocytes. Allogeneic fibroblasts, polymorphonuclear leukocytes, L2C leukemia cells, and xenogeneic (murine) macrophages failed to simulate. These data provide evidence that the macrophage is the predominant stimulator of the mixed leukocyte culture in the guinea pig.

  18. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  19. Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

    PubMed Central

    Go, Ahreum; Ryu, Yun-Kyoung; Lee, Jae-Wook; Moon, Eun-Yi

    2013-01-01

    Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents. PMID:24404340

  20. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    PubMed

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  1. Association of mitogen-activated protein kinases with microtubules in mouse macrophages

    PubMed Central

    1996-01-01

    Taxol, a microtubule-binding diterpene, mimics many effects of lipopolysaccharide (LPS) on mouse macrophages. The LPS-mimetic effects of taxol appear to be under the same genetic control as responses to LPS itself. Thus we have postulated a role for microtubule-associated proteins (MAP) in the response of macrophages to LPS. Stimulation of macrophages by LPS quickly induces the activation of mitogen-activated protein kinases (MAPK). MAPK are generally considered cytosolic enzymes. Herein we report that much of the LPS-activatable pool of MAPK in primary mouse peritoneal macrophages is microtubule associated. By immunofluorescence, MAPK were localized to colchicine- and nocodazole- disruptible filaments. From both mouse brain and RAW 264.7 macrophages, MAPK could be coisolated with polymerized tubulin. Fractionation of primary macrophages into cytosol-, microfilament-, microtubule-, and intermediated filament-rich extracts revealed that approximately 10% of MAPK but none of MAPK kinase (MEK1A and MEK2) was microtubule bound. Exposure of macrophages to LPS did not change the proportion of MAPK bound to microtubules, but preferentially activated the microtubule- associated pool. These findings confirm the prediction that LPS activates a kinase bound to microtubules. Together with LPS-mimetic actions of taxol and the shared genetic control of responses to LPS and taxol, these results support the hypothesis that a major LPS-signaling pathway in mouse macrophages may involve activation of one or more microtubule-associated kinases. PMID:8666946

  2. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy.

    PubMed

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  3. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy

    PubMed Central

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  4. Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage.

    PubMed

    Zhang, Heng; Zhai, Zhenhua; Zhou, Hongyu; Li, Yao; Li, Xiaojie; Lin, Yuhan; Li, Weihong; Shi, Yueping; Zhou, Ming-Sheng

    2015-01-01

    Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatment with oxLDL significantly increased the mRNA expression of proinflammatory cytokines tumor necrosis factor α (TNFα, 160%) and interleukin (IL) 1β (13 fold) accompanied by upregulation of toll-like receptor 4 (TLR4, 165%) and the ratio of phospho-IκBα/IκBα in THP1 macrophage. Puerarin dose-dependently prevented an increase in oxLDL-induced proinflammatory gene expression with downregulation of TLR4 and the ratio of phospho-IκBα/IκBα. Furthermore, puerarin prevented oxLDL-mediated lipid deposition and foam cell formation associated with downregulation of scavenger receptor CD36. Flow cytometry analysis showed that puerarin reduced the number of early apoptotic cells of macrophages induced by oxLDL. Our results show that puerarin has anti-inflammatory and antiatherogenic effects in vitro; the underlying mechanisms may involve the inhibition of TLR4/NFκB pathway and downregulation of CD36 expression. The results from the present study provide scientific evidence and may expand our armamentarium to use puerarin for prevention and treatment of cardiovascular and atherosclerotic diseases. PMID:26576421

  5. Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules.

    PubMed Central

    Fortier, A H; Polsinelli, T; Green, S J; Nacy, C A

    1992-01-01

    Francisella tularensis live vaccine strain (LVS) was grown in culture with nonadherent resident, starch-elicited, or Proteose Peptone-elicited peritoneal cells. Numbers of bacteria increased 4 logs over the input inoculum in 48 to 72 h. Growth rates were faster in inflammatory cells than in resident cells: generation times for the bacterium were 3 h in inflammatory cells and 6 h in resident macrophages. LVS-infected macrophage cultures treated with lymphokines did not support growth of the bacterium, although lymphokines alone had no inhibitory effects on replication of LVS in culture medium devoid of cells. Removal of gamma interferon (IFN-gamma) by immunoaffinity precipitation rendered lymphokines ineffective for induction of macrophage anti-LVS activity, and recombinant IFN-gamma stimulated both resident and inflammatory macrophage populations to inhibit LVS growth in vitro. Inflammatory macrophages were more sensitive to effects of IFN-gamma: half-maximal activity was achieved at 5 U/ml for inflammatory macrophages and 20 U/ml for resident macrophages. IFN-gamma-induced anti-LVS activity correlated with the production of nitrite (NO2-), an oxidative end product of L-arginine-derived nitric oxide (NO). Anti-LVS activity and nitrite production were both completely inhibited by the addition of either the L-arginine analog NG-monomethyl-L-arginine or anti-tumor necrosis factor antibodies to activated macrophage cultures. Thus, macrophages can be activated by IFN-gamma to suppress the growth of F. tularensis by generation of toxic levels of NO, and inflammatory macrophages are substantially more sensitive to activation activities of IFN-gamma for this effector reaction than are more differentiated resident cells. PMID:1541555

  6. Human macrophage activation. Modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, gamma and alpha interferons, and dexamethasone.

    PubMed Central

    Mokoena, T; Gordon, S

    1985-01-01

    We describe a sensitive assay to measure immune activation of human macrophages in cell culture. Freshly isolated blood monocytes from normal subjects lack the ability to endocytose and degrade mannosyl-terminated glycoconjugates via specific receptors, but acquired this activity after cultivation in autologous serum for approximately 3 d. Addition of specific antigen, purified protein derivative, or T cell mitogens to mononuclear cells prevented the appearance of macrophage mannosyl receptor activity and lymphokine, gamma-, and alpha-interferons selectively down-regulated receptor activity in monocyte-macrophage targets. The effects of antigen challenge and gamma-interferon on mannosyl receptors can be prevented by 10(-8) M dexamethasone. Dexamethasone also inhibited release of another macrophage activation marker, plasminogen activator, which was increased by both gamma- and alpha-interferons. These studies show that activation of human macrophages is regulated by opposing actions of lymphokines and glucocorticoids. PMID:2579101

  7. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  8. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  9. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology.

    PubMed

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  10. Mechanistic study of macrophage activation by LPS stimulation using fluorescence imaging techinques

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Lipopolysaccharide (LPS), a structural component of the outer membrane of gram negative bacteria, has been suggested that stimulates macrophages secrete a wide variety of inflammatory mediators, such as nitric oxide (NO). However, the cellular mechanisms of NO generation in macrophage by LPS stimulation are not well known. In this study, LPS stimulated NO generation in macrophage was determined by measuring fluorescence changes with a NO specific probe DAF-FM DA. Using the fluorescence resonance energy transfer (FRET) techniques, we found an increase of protein kinase C (PKC) activation was dynamically monitored in macrophages treated with LPS. Nuclear factor kappa B (NF-κB) translocated from the cytoplasm to the nucleus in macrophage was measured by confocal laser scanning microscopy. Moreover, the PKC inhibitor GÖ6983 inhibited LPS-stimulated NF-κB activation and NO production. These results indicated that LPS stimulated NF-κB mediated NO production by activating PKC.

  11. Mechanistic study of macrophage activation by LPS stimulation using fluorescence imaging techinques

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Lipopolysaccharide (LPS), a structural component of the outer membrane of gram negative bacteria, has been suggested that stimulates macrophages secrete a wide variety of inflammatory mediators, such as nitric oxide (NO). However, the cellular mechanisms of NO generation in macrophage by LPS stimulation are not well known. In this study, LPS stimulated NO generation in macrophage was determined by measuring fluorescence changes with a NO specific probe DAF-FM DA. Using the fluorescence resonance energy transfer (FRET) techniques, we found an increase of protein kinase C (PKC) activation was dynamically monitored in macrophages treated with LPS. Nuclear factor kappa B (NF-κB) translocated from the cytoplasm to the nucleus in macrophage was measured by confocal laser scanning microscopy. Moreover, the PKC inhibitor GÖ6983 inhibited LPS-stimulated NF-κB activation and NO production. These results indicated that LPS stimulated NF-κB mediated NO production by activating PKC.

  12. Macrophage activation and its role in repair and pathology after spinal cord injury.

    PubMed

    Gensel, John C; Zhang, Bei

    2015-09-01

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.

  13. High salt reduces the activation of IL-4– and IL-13–stimulated macrophages

    PubMed Central

    Binger, Katrina J.; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A.; Lang, Florian; Voehringer, David; Wright, Mark D.; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N.

    2015-01-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt–induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis. PMID:26485286

  14. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    PubMed

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.

  15. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    PubMed

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  16. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    SciTech Connect

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  17. Morphine Modulates Interleukin-4- or Breast Cancer Cell-induced Pro-metastatic Activation of Macrophages.

    PubMed

    Khabbazi, Samira; Goumon, Yannick; Parat, Marie-Odile

    2015-01-01

    Interactions between cancer cells and stromal cells in the tumour microenvironment play a key role in the control of invasiveness, metastasis and angiogenesis. Macrophages display a range of activation states in specific pathological contexts and alternatively activated (M2) macrophages can promote tumour aggressiveness. Opioids are able to modulate tumour growth and metastasis. We tested whether morphine modulates the activation of macrophages induced by (i) interleukin-4 (IL-4), the prototypical M2 polarization-inducing cytokine, or (ii) coculture with breast cancer cells. We showed that IL-4 causes increased MMP-9 production and expression of the alternative activation markers arginase-1 and MRC-1. Morphine prevented IL-4-induced increase in MMP-9 in a naloxone- and methylnaltrexone-reversible fashion. Morphine also prevented IL-4-elicited alternative activation of RAW264.7 macrophages. Expression of MMP-9 and arginase-1 were increased when RAW264.7 were subjected to paracrine activation by 4T1 cells, and this effect was prevented by morphine via an opioid receptor-mediated mechanism. Morphine further decreased 4T1 breast cancer cell invasion elicited by co-culture with RAW264.7. Reduction of MMP-9 expression and alternative activation of macrophages by morphine was confirmed using mouse bone marrow-derived macrophages. Taken together, our results indicate that morphine may modulate tumour aggressiveness by regulating macrophage protease production and M2 polarization within the tumour microenvironment.

  18. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro.

    PubMed

    McLaren, D J; James, S L

    1985-05-01

    Immunologically activated murine macrophages have been shown elsewhere to kill skin stage schistosomula of Schistosoma mansoni in vitro, in a manner analogous to the extracellular killing of tumour cell targets. In this study, the kinetics of the interaction between activated macrophages and larval targets and the resultant ultrastructural changes in parasite morphology that culminated in death have been analysed in detail. Unlike granulocyte-mediated schistosomular killing, macrophage-mediated cytotoxicity did not appear to be directed against the surface tissues of the parasite. Macrophages adhered only transiently following initiation of the cultures, yet changes in the subtegumental mitochondria and muscle cells of the larva were detected within the first hour of incubation. Progressive internal disorganisation followed rapidly, but the tegument and tegumental outer membrane remained intact, to form a 'shell' that maintained the general shape of the parasite. Such changes were recognised irrespective of whether the effector cell population comprised peritoneal macrophages activated by lymphokine treatment in vitro, or by infection with Mycobacterium bovis (strain BCG), or S. mansoni in vivo. That macrophages rather than contaminating granulocytes or lymphocytes, had mediated the observed damage was demonstrated by the use of a lymphokine treated macrophage cell line, IC-21. The observation that macrophage cytotoxicity is directed against internal organelles rather than the tegumental outer membrane of this multicellular target, may help to elucidate the general mechanism of extracellular killing by these cells. PMID:3892433

  19. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation.

    PubMed

    Zhao, Chenghai; Bu, Xianmin; Wang, Wei; Ma, Tingxian; Ma, Haiying

    2014-01-01

    Aberrant macrophage infiltration and activation has been implicated in gastric inflammation and carcinogenesis. Overexpression of Wnt5a and downregulation of SFRP5, a Wnt5a antagonist, were both observed in gastric cancers recently. This study attempted to explore whether Wnt5a/SFRP5 axis was involved in macrophage chemotaxis and activation. It was found that both Wnt5a transfection and recombinant Wnt5a (rWnt5a) treatment upregulated CCL2 expression in macrophages, involving JNK and NFκB signals. Conditioned medium from Wnt5a-treated macrophages promoted macrophage chemotaxis mainly dependent on CCL2. SFRP5 from gastric epithelial cells (GECs) inhibited Wnt5a-induced CCL2 expression and macrophage chemotaxis. In addition, Wnt5a treatment stimulated macrophages to produce inflammatory cytokines and COX-2/PGE2, which was also suppressed by SFRP5 from GECs. These results demonstrate that Wnt5a induces macrophage chemotaxis and activation, which can be blocked by GEC-derived SFRP5, suggesting that Wnt5a overproduction and SFRP5 deficiency in gastric mucosa may together play an important role in gastric inflammation and carcinogenesis.

  20. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  1. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages.

    PubMed

    Previtera, Michelle L; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  2. Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion

    PubMed Central

    Abd-Elrahman, Ihab; Kosuge, Hisanori; Wises Sadan, Tommy; Ben-Nun, Yael; Meir, Karen; Rubinstein, Chen; Bogyo, Matthew; McConnell, Michael V.

    2016-01-01

    Background and Purpose Cardiovascular disease is the leading cause of death worldwide, mainly due to an increasing prevalence of atherosclerosis characterized by inflammatory plaques. Plaques with high levels of macrophage infiltration are considered “vulnerable” while those that do not have significant inflammation are considered stable; cathepsin protease activity is highly elevated in macrophages of vulnerable plaques and contributes to plaque instability. Establishing novel tools for non-invasive molecular imaging of macrophages in plaques could aid in preclinical studies and evaluation of therapeutics. Furthermore, compounds that reduce the macrophage content within plaques should ultimately impact care for this disease. Methods We have applied quenched fluorescent cathepsin activity-based probes (ABPs) to a murine atherosclerosis model and evaluated their use for in vivo imaging using fluorescent molecular tomography (FMT), as well as ex vivo fluorescence imaging and fluorescent microscopy. Additionally, freshly dissected human carotid plaques were treated with our potent cathepsin inhibitor and macrophage apoptosis was evaluated by fluorescent microscopy. Results We demonstrate that our ABPs accurately detect murine atherosclerotic plaques non-invasively, identifying cathepsin activity within plaque macrophages. In addition, our cathepsin inhibitor selectively induced cell apoptosis of 55%±10% of the macrophage within excised human atherosclerotic plaques. Conclusions Cathepsin ABPs present a rapid diagnostic tool for macrophage detection in atherosclerotic plaque. Our inhibitor confirms cathepsin-targeting as a promising approach to treat atherosclerotic plaque inflammation. PMID:27532109

  3. Assimilation Experiments using Geodetic Observations to Diagnose AAM in a Chemistry-Climate Model

    NASA Astrophysics Data System (ADS)

    Neef, Lisa; Matthes, Katja

    2010-05-01

    Variation of the global angular momentum of the atmosphere (AAM) results from fluctuations in the mass-distribution and large-scale wind patterns of the atmosphere. It has moreoever been known for some time that global-scale natural modes of variability (such as ENSO) have clear footprints in the AAM history. Due to exchange of angular momentum between the atmosphere and the solid earth, fluctuations in AAM are reflected in observations of the Earth Rotation Parameters(ERPs). ERPs therefore provide an observational constraint for global climate models, via the simulated AAM. We are planning to assimilate ERPs into the chemistry-climate model ECHAM5/MESSy, to not only improve the agreement with observations but also to better diagnose model deficiencies. As a step toward developing such an assimilation system, we present a comparison between modeled AAM, and the AAM implied by ERP observations. We also illustrate and discuss the problem of extracting information about individual components of a model state from observations of a global integral quantity. This is done via data assimilation experiments in a highly simplified (Lorenz) dynamical system.

  4. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages.

    PubMed Central

    Jorens, P. G.; van Overveld, F. J.; Bult, H.; Vermeire, P. A.; Herman, A. G.

    1992-01-01

    1. The synthesis of nitrite and citrulline from L-arginine by immune-stimulated rat alveolar macrophages and the modulation of this synthesis were studied. 2,4-Diamino-6-hydroxypyrimidine (DAHP), 6R-5,6,7,8-tetrahydro-L-biopterin (BH4) and L-sepiapterin were potent inhibitors of the recombinant interferon-gamma induced production of nitrogen oxides in intact cultured cells with I50 values for BH4 and L-sepiapterin of approximately 10 microM. They were equally effective in inhibiting the induced production of citrulline. This inhibitory effect was concentration-dependent for all three modulators investigated. 2. The inhibitory effects were not dependent on incubation times of either 24 or 48 h, on the immune-stimulus used (lipopolysaccharide, interferon-gamma), or whether these stimuli were added during or after the induction period. 3. Pterin-6-carboxylic acid (PCA), which cannot be converted into BH4, and methotrexate (MTX), which inhibits dihydrofolatereductase but not de novo biosynthesis of BH4, did not change the production of nitrite. 4. The data indicate that DAHP, an inhibitor of the de novo biosynthesis of the co-factor BH4, blocks the nitric oxide synthase activity in intact cells. Since the pterins BH4 and L-sepiapterin blocked the L-arginine dependent production of nitrite and citrulline, the activity of nitric oxide synthase in phagocytic cells may be regulated by metabolic endproducts of the de novo biosynthesis of BH4. PMID:1281717

  5. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages

    PubMed Central

    Daniel, Bence; Hah, Nasun; Horvath, Attila; Czimmerer, Zsolt; Poliska, Szilard; Gyuris, Tibor; Keirsse, Jiri; Gysemans, Conny; Van Ginderachter, Jo A.; Balint, Balint L.; Evans, Ronald M.; Barta, Endre; Nagy, Laszlo

    2014-01-01

    RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program. PMID:25030696

  6. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  7. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  8. Platelet activating factor raises intracellular calcium ion concentration in macrophages

    PubMed Central

    1986-01-01

    Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in

  9. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.

  10. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis.

    PubMed

    Kahnert, Antje; Seiler, Peter; Stein, Maik; Bandermann, Silke; Hahnke, Karin; Mollenkopf, Hans; Kaufmann, Stefan H E

    2006-03-01

    A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis. PMID:16479545

  11. Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa.

    PubMed

    Del Porto, Paola; Cifani, Noemi; Guarnieri, Simone; Di Domenico, Enea Gino; Mariggiò, Maria A; Spadaro, Francesca; Guglietta, Silvia; Anile, Marco; Venuta, Federico; Quattrucci, Serena; Ascenzioni, Fiorentina

    2011-01-01

    Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF) patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in microbicidal functions of macrophages is emerging. Tissue macrophages differentiate in situ from infiltrating monocytes, additionally, mature macrophages from different tissues, although having a number of common activities, exhibit variation in some molecular and cellular functions. In order to highlight possible intrinsic macrophage defects due to CFTR dysfunction, we have focused our attention on in vitro differentiated macrophages from human peripheral blood monocytes. Here we report on the contribution of CFTR in the bactericidal activity against Pseudomonas aeruginosa of monocyte derived human macrophages. At first, by real time PCR, immunofluorescence and patch clamp recordings we demonstrated that CFTR is expressed and is mainly localized to surface plasma membranes of human monocyte derived macrophages (MDM) where it acts as a cAMP-dependent chloride channel. Next, we evaluated the bactericidal activity of P. aeruginosa infected macrophages from healthy donors and CF patients by antibiotic protection assays. Our results demonstrate that control and CF macrophages do not differ in the phagocytic activity when infected with P. aeruginosa. Rather, although a reduction of intracellular live bacteria was detected in both non-CF and CF cells, the percentage of surviving bacteria was significantly higher in CF cells. These findings further support the role of CFTR in the fundamental functions of innate immune cells including eradication of bacterial infections by macrophages.

  12. Glucocorticoid-induced impairment of macrophage antimicrobial activity: mechanisms and dependence on the state of activation.

    PubMed

    Schaffner, A; Schaffner, T

    1987-01-01

    Experimental observations indicate that tissue macrophages deployed in great numbers at critical anatomic sites such as the liver, spleen, and lung are major targets for glucocorticoids compromising natural resistance of the host. Therapeutic concentrations of glucocorticoids appear to prevent destruction of microorganisms ingested by macrophages without interfering with phagocytosis, phagolysosomal fusion, and/or secretion of reactive oxygen intermediates. These findings indicate that at the cellular level the glucocorticoid target should be sought for in the nonoxidative armature of the phagocyte and that nonoxidative killing systems of resident tissue macrophages play an important role in natural resistance to opportunistic pathogens. Glucocorticoids do not prevent lymphokine-induced activation of oxidative killing systems. Thus, lymphokines such as interferon-gamma can restore the microbicidal activity of macrophages functionally impaired by glucocorticoids. Counterbalance of the suppressive effect of glucocorticoids by lymphokines might only be possible, however, for pathogens susceptible to oxidative killing and not for microorganisms that are more resistant to reactive oxygen intermediates such as Aspergillus spores and Nocardia, opportunists that appear to be particularly associated with hypercortisolism.

  13. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk[S

    PubMed Central

    Fullerton, Morgan D.; Ford, Rebecca J.; McGregor, Chelsea P.; LeBlond, Nicholas D.; Snider, Shayne A.; Stypa, Stephanie A.; Day, Emily A.; Lhoták, Šárka; Schertzer, Jonathan D.; Austin, Richard C.; Kemp, Bruce E.; Steinberg, Gregory R.

    2015-01-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1−/−) mice. Macrophages from Ampk β1−/− mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1−/− macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1−/− macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  14. Murine Macrophages Secrete Interferon γ upon Combined Stimulation with Interleukin (IL)-12 and IL-18: A Novel Pathway of Autocrine Macrophage Activation

    PubMed Central

    Munder, Markus; Mallo, Moisés; Eichmann, Klaus; Modolell, Manuel

    1998-01-01

    Interferon (IFN)-γ, a key immunoregulatory cytokine, has been thought to be produced solely by activated T cells and natural killer cells. In this study, we show that murine bone marrow– derived macrophages (BMMΦ) secrete large amounts of IFN-γ upon appropriate stimulation. Although interleukin (IL)-12 and IL-18 alone induce low levels of IFN-γ mRNA transcripts, the combined stimulation of BMMΦ with both cytokines leads to the efficient production of IFN-γ protein. The macrophage-derived IFN-γ is biologically active as shown by induction of inducible nitric oxide synthase as well as upregulation of CD40 in macrophages. Our findings uncover a novel pathway of autocrine macrophage activation by demonstrating that the macrophage is not only a key cell type responding to IFN-γ but also a potent IFN-γ–producing cell. PMID:9625771

  15. Effect of dietary linseed oil on tumoricidal activity and eicosanoid production in murine macrophages.

    PubMed

    Hubbard, N E; Chapkin, R S; Erickson, K L

    1994-09-01

    Diets that contain high levels of n-3 fatty acids from fish oil have been shown to significantly effect macrophage cytolytic capacity, tumor necrosis factor alpha production and eicosanoid production. The present study was undertaken to determine whether n-3 fatty acids from vegetable origin [linseed oil (LIN)] would have the same effects on murine macrophage tumoricidal capacity and eicosanoid production as would fish oil. Mice were fed for three weeks diets that contained 10% (wt/wt) of either LIN, which is high in linolenic acid (18:3n-3), menhaden fish oil (MFO), which is high in eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids, or safflower oil (SAF), which is high in linoleic acid (18:2n-6). In vivo- or in vitro-activated macrophages were assessed for select functions. As expected, macrophages from mice fed LIN and MFO produced significantly lower levels of both prostaglandins and leukotriene C4 when compared with macrophages from mice fed SAF. In addition, LIN and MFO macrophages were able to synthesize leuko-triene C5, which could not be produced by macrophages from mice fed SAF. The effects of LIN, however, were not as pronounced as those of MFO. With respect to specific functions, macrophages from mice fed LIN did not have altered cytolytic capacity when compared with macrophages from mice fed SAF and activated in vitro with either lipopolysaccharide (LPS) alone for 24 h or with LPS plus interferon gamma (IFN gamma) for 5 h. Diet did not significantly alter tumoricidal capacity of macrophages activated completely in vivo either.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Human cytomegalovirus and Epstein–Barr virus inhibit oral bacteria-induced macrophage activation and phagocytosis

    PubMed Central

    Lin, Y.-L.; Li, M.

    2016-01-01

    Introduction Periodontal disease is an inflammatory condition caused by periodontal microorganisms. Viruses such as human cytomegalovirus (HCMV) and Epstein–Barr virus (EBV) are associated with certain types of periodontal disease, but their roles in promoting the disease are unclear. Because both viruses infect human macrophages, cells which play key roles in the clearance of pathogenic bacteria, it is likely that the viruses alter the functional capacity of macrophages by inhibiting their defense mechanisms against invading pathogens. Methods Macrophages preinfected with HCMV or EBV were evaluated following stimulation by selected oral bacteria. Bacteria-induced macrophage activation was assayed by measuring the levels of tumor necrosis factor-α (TNF-α) produced in the media, and phagocytic activity was analysed by a phagocytosis assay with fluorescein isothiocyanate-labeled bacteria. The virus-infected macrophages were also subjected to semi-quantitative polymerase chain reaction to measure the expression of toll-like receptor 9, which is involved in the activation of phagocytosis-related pathways. Results Both HCMV and EBV significantly diminished the TNF-α production typically induced by oral bacteria, inhibited the phagocytic activity of macrophages, and downregulated the expression of toll-like receptor 9. Conclusion Infection by HCMV or EBV inhibits the functional ability of macrophages to respond to bacterial challenge, thereby suggesting their pathogenic role in the development of periodontal disease. PMID:19416455

  17. Macrophage activation: role of toll-like receptors, nitric oxide, and nuclear factor kappa B.

    PubMed

    Billack, Blase

    2006-10-15

    Macrophages play an important role in host-defense and inflammation. In response to an immune challenge, macrophages become activated and produce proinflammatory mediators that contribute to nonspecific immunity. The mediators released by activated macrophages include: superoxide anion; reactive nitrogen intermediates, such as nitric oxide and peroxynitrite; bioactive lipids; and cytokines. Although essential to the immune response, overproduction of certain macrophage-derived mediators during an immune challenge or inflammatory response can result in tissue injury and cellular death. The present report is focused on understanding some of the molecular mechanisms used by macrophages to produce reactive nitrogen intermediates in response to immunostimulatory agents such as heat shock protein 60 and bacterial lipopolysaccharide. The role of Toll-like receptors and transcription factors such as nuclear factor kappa B (NFkappaB) in the innate immune response is also described. A basic understanding of the underlying molecular mechanisms responsible for macrophage activation should serve as a foundation for novel drug development aimed at modulating macrophage activity.

  18. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  19. C/EBPβ-Thr217 Phosphorylation Stimulates Macrophage Inflammasome Activation and Liver Injury

    PubMed Central

    Buck, Martina; Solis-Herruzo, Jose; Chojkier, Mario

    2016-01-01

    Amplification of liver injury is mediated by macrophages but the signaling by which the macrophage inflammasome enhances liver injury is not completely understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) is a critical signaling molecule for macrophages because expression of a dominant inhibitor of C/EBPβ DNA-binding sites or a targeted deletion of C/EBPβ results in impaired macrophage differentiation. We reported that expression of the phosphorylation-mutant C/EBPβ-Glu217, which mimics phosphorylated C/EBPβ-Thr217, was sufficient to confer macrophage survival to Anthrax lethal toxin. Here, using primary hepatocytes, primary liver macrophages, dominant positive and negative transgenic mice of the C/EBPβ-Thr217 phosphoacceptor, macrophage ablation, and an inhibitory peptide of C/EBPβ-Thr217 phosphorylation, we determined that this phosphorylation is essential for the activation of the inflammasome in liver macrophages and for the hepatocyte apoptosis induced by hepatotoxins that results in liver injury. Similar findings were observed in the livers of patients with acute injury induced by Toxic Oil Syndrome. PMID:27067260

  20. C/EBPβ-Thr217 Phosphorylation Stimulates Macrophage Inflammasome Activation and Liver Injury.

    PubMed

    Buck, Martina; Solis-Herruzo, Jose; Chojkier, Mario

    2016-01-01

    Amplification of liver injury is mediated by macrophages but the signaling by which the macrophage inflammasome enhances liver injury is not completely understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) is a critical signaling molecule for macrophages because expression of a dominant inhibitor of C/EBPβ DNA-binding sites or a targeted deletion of C/EBPβ results in impaired macrophage differentiation. We reported that expression of the phosphorylation-mutant C/EBPβ-Glu217, which mimics phosphorylated C/EBPβ-Thr217, was sufficient to confer macrophage survival to Anthrax lethal toxin. Here, using primary hepatocytes, primary liver macrophages, dominant positive and negative transgenic mice of the C/EBPβ-Thr217 phosphoacceptor, macrophage ablation, and an inhibitory peptide of C/EBPβ-Thr217 phosphorylation, we determined that this phosphorylation is essential for the activation of the inflammasome in liver macrophages and for the hepatocyte apoptosis induced by hepatotoxins that results in liver injury. Similar findings were observed in the livers of patients with acute injury induced by Toxic Oil Syndrome. PMID:27067260

  1. Gallium arsenide modulates proteolytic cathepsin activities and antigen processing by macrophages.

    PubMed

    Lewis, T A; Hartmann, C B; McCoy, K L

    1998-09-01

    Gallium arsenide (GaAs) is a semiconductor utilized in the electronics industry. Chemical exposure of animals causes a local inflammatory reaction, but systemic immunosuppression. Mice were administered i.p. 200 mg/kg GaAs crystals or latex beads, or vehicle. Five days after exposure, splenic macrophages were defective, whereas thioglycolate-elicited peritoneal macrophages (PEC) were more efficient in processing the Ag, pigeon cytochrome c, than vehicle control macrophages. Various aspects of the MHC class II Ag-processing pathway were examined. Both macrophage populations normally presented a peptide fragment to the CD4+ T cells. Surface MHC class II expression on the PEC was up-regulated, but splenic cells had normal MHC class II expression. PEC had elevated levels of glutathione and cysteine, major physiologic reducing thiols. However, the cysteine content of splenic macrophages was diminished. Proteolytic activities of aspartyl cathepsin D, and thiol cathepsins B and L were decreased significantly in splenic macrophages. On the other hand, thiol cathepsin activities were increased selectively in PEC. Latex bead-exposed PEC were not more potent APC, and their thiol cathepsin activities were unchanged, indicating that phagocytosis and nonspecific irritation were not responsible. The phenotype of PEC directly exposed to GaAs mirrored cytokine-activated macrophages, in contrast to splenic macrophages from a distant site. Therefore, GaAs exposure differentially modulated cathepsin activities in splenic macrophages and PEC, which correlated with their Ag-processing efficiency. Perhaps such distinct alterations may contribute to the local inflammation and systemic immunotoxicity caused by chemical exposure.

  2. Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation

    PubMed Central

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J.; Zuckerbraun, Brian S.; Flavell, Richard; Soares, Miguel P.; Otterbein, Leo E.

    2014-01-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1β cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes. PMID:25295542

  3. Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis

    PubMed Central

    Liu, Jian; Copland, David A.; Theodoropoulou, Sofia; Chiu, Hsi An Amy; Barba, Miriam Durazo; Mak, Ka Wang; Mack, Matthias; Nicholson, Lindsay B.; Dick, Andrew D.

    2016-01-01

    Age-related decreases in autophagy contribute to the progression of age-related macular degeneration (AMD). We have now studied the interaction between autophagy impaired in retinal pigment epithelium (RPE) and the responses of macrophages. We find that dying RPE cells can activate the macrophage inflammasome and promote angiogenesis. In vitro, inhibiting rotenone-induced autophagy in RPE cells elicits caspase-3 mediated cell death. Co-culture of damaged RPE with macrophages leads to the secretion of IL-1β, IL-6 and nitrite oxide. Exogenous IL-6 protects the dysfunctional RPE but IL-1β causes enhanced cell death. Furthermore, IL-1β toxicity is more pronounced in dysfunctional RPE cells showing reduced IRAK3 gene expression. Co-culture of macrophages with damaged RPE also elicits elevated levels of pro-angiogenic proteins that promote ex vivo choroidal vessel sprouting. In vivo, impaired autophagy in the eye promotes photoreceptor and RPE degeneration and recruitment of inflammasome-activated macrophages. The degenerative tissue environment drives an enhanced pro-angiogenic response, demonstrated by increased size of laser-induced choroidal neovascularization (CNV) lesions. The contribution of macrophages was confirmed by depletion of CCR2+ monocytes, which attenuates CNV in the presence of RPE degeneration. Our results suggest that the interplay between perturbed RPE homeostasis and activated macrophages influences key features of AMD development. PMID:26847702

  4. Cryopreserved Interleukin-4–Treated Macrophages Attenuate Murine Colitis in an Integrin β7–Dependent Manner

    PubMed Central

    Leung, Gabriella; Petri, Björn; Reyes, José Luis; Wang, Arthur; Iannuzzi, Jordan; McKay, Derek M

    2015-01-01

    The adoptive transfer of alternatively activated macrophages (AAMs) has proven to attenuate inflammation in multiple mouse models of colitis; however, the effect of cryopreservation on AAMs, the ability of previously frozen AAMs to block dinitrobenzene sulfonic acid (DNBS) (Th1) and oxazolone (Th2) colitis and their migration postinjection remains unknown. Here we have found that while cryopreservation reduced mRNA expression of canonical markers of interleukin (IL)-4–treated macrophages [M(IL-4)], this step did not translate to reduced protein or activity, and the cells retained their capacity to drive the suppression of colitis. The anticolitic effect of M(IL-4) adoptive transfer required neither T or B cell nor peritoneal macrophages in the recipient. After injection into the peritoneal cavity, M(IL-4)s migrated to the spleen, mesenteric lymph nodes and colon of DNBS-treated mice. The chemokines CCL2, CCL4 and CX3CL1 were expressed in the colon during the course of DNBS-induced colitis. The expression of integrin β7 on transferred M(IL-4)s was required for their anticolitic effect, whereas the presence of the chemokine receptors CCR2 and CX3CR1 were dispensable in this model. Collectively, the data show that M(IL-4)s can be cryopreserved M(IL-4)s and subsequently used to suppress colitis in an integrin β7-dependent manner, and we suggest that these proof-of-concept studies may lead to new cellular therapies for human inflammatory bowel disease. PMID:26701314

  5. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction

    PubMed Central

    Troidl, C; Möllmann, H; Nef, H; Masseli, F; Voss, S; Szardien, S; Willmer, M; Rolf, A; Rixe, J; Troidl, K; Kostin, S; Hamm, C; Elsässer, A

    2009-01-01

    An important goal in cardiology is to minimize myocardial necrosis and to support a discrete but resilient scar formation after myocardial infarction (MI). Macrophages are a type of cells that influence cardiac remodelling during MI. Therefore, the goal of the present study was to investigate their transcriptional profile and to identify the type of activation during scar tissue formation. Ligature of the left anterior descending coronary artery was performed in mice. Macrophages were isolated from infarcted tissue using magnetic cell sorting after 5 days. The total RNA of macrophages was subjected to microarray analysis and compared with RNA from MI and LV-control. mRNA abundance of relevant targets was validated by quantitative real-time PCR 2, 5 and 10 days after MI (qRT-PCR). Immunohistochemistry was performed to localize activation type-specific proteins. The genome scan revealed 68 targets predominantly expressed by macrophages after MI. Among these targets, an increased mRNA abundance of genes, involved in both the classically (tumour necrosis factor α, interleukin 6, interleukin 1β) and the alternatively (arginase 1 and 2, mannose receptor C type 1, chitinase 3-like 3) activated phenotype of macrophages, was found 5 days after MI. This observation was confirmed by qRT-PCR. Using immunohistochemistry, we confirmed that tumour necrosis factor α, representing the classical activation, is strongly transcribed early after ligature (2 days). It was decreased after 5 and 10 days. Five days after MI, we found a fundamental change towards alternative activation of macrophages with up-regulation of arginase 1. Our results demonstrate that macrophages are differentially activated during different phases of scar tissue formation after MI. During the early inflammatory phase, macrophages are predominantly classically activated, whereas their phenotype changes during the important transition from inflammation to scar tissue formation into an alternatively activated

  6. Macrophage activation syndrome in a newborn infant born to a mother with autoimmune disease.

    PubMed

    Park, J H; Kim, S H; Kim, H J; Lee, S J; Jeong, D C; Kim, S Y

    2015-02-01

    Macrophage activation syndrome (MAS) is a complication of rheumatic disorders characterized by cytopenia, multiple organ dysfunction and coagulopathy associated with an inappropriate activation of macrophage. In neonatal lupus erythematosus, MAS is rare but fatal, requiring early diagnosis and treatment for optimal outcome. We report a case of MAS in a neonate born to a mother with autoimmune disease, improved by treatment with steroid, intravenous immunoglobulin and cyclosporine.

  7. Lysophosphatidylcholine perpetuates macrophage polarization toward classically activated phenotype in inflammation.

    PubMed

    Qin, Xiaofei; Qiu, Chunguang; Zhao, Luosha

    2014-01-01

    Pro-inflammatory macrophages are involved in vascular inflammation and serve as the major effector cells in the pathophysiology of atherosclerosis. Phosphatidylcholine (PC) is a major phospholipid moiety affixed to oxidized low-density lipoprotein (oxLDL) and thought to play important roles in the development of atherosclerosis. In this study we described that a bioactive lipid derivative, lysophosphatidylcholine (lysoPC), generated from hydrolysis of the PC moiety of oxidized LDL, promoted and stabilized a strong M1 phenotype in macrophage polarization. Another derivative, 9-hydroxyoctadecadienoic acid (9-HODE), did not show the similar biological function. Blockade of G protein coupled receptor, G2A, which mediates the signal transduction of lysoPC, diminished the effects of lysoPC on the macrophage polarization toward M1 phenotype. The results provide insights into the new mechanism on how oxidized LDL participates in tissue inflammation in atherosclerosis. PMID:24841857

  8. Enhancing effect of oxygen radical scavengers on murine macrophage anticryptococcal activity through production of nitric oxide

    PubMed Central

    TOHYAMA, M.; KAWAKAMI, K.; FUTENMA, M.; SAITO, A.

    1996-01-01

    We examined the roles of reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI) in interferon-gamma (IFN-γ)-induced cryptococcostatic activity of murine peritoneal macrophages using NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of RNI synthesis, and superoxide dismutase (SOD) and catalase, oxygen radical scavengers. IFN-γ-activated macrophages produced nitric oxide (NO) in a dose-dependent manner, as measured by increased nitrite concentration in the culture supernatant. IFN-γ also enhanced the suppressive effect on cryptococcal growth in a similar dose-dependent manner. The induction of killing activity and NO production by an optimal dose of IFN-γ (100 U/ml) was virtually suppressed by 500 μM L-NMMA. These results confirmed the importance of the RNI-mediated effector mechanism in anticryptococcal activity of macrophages. SOD and catalase significantly enhanced the cryptococcostatic activity of macrophages induced by a suboptimal dose of IFN-γ (20 U/ml). The augmenting effect of these reagents was mediated by NO, since they potentiated the production of NO by macrophages and their effects were totally blocked by L-NMMA. Our results indicate that the IFN-γ-induced anticryptococcal activity of macrophages is dependent mostly on RNI, and suggest that the ROI system down-regulates the effector mechanism for cryptococcostasis by suppressing the RNI system. PMID:8608643

  9. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages

    PubMed Central

    Ehlting, Christian; Thomas, Maria; Zanger, Ulrich M.; Sawodny, Oliver; Häussinger, Dieter; Bode, Johannes G.

    2016-01-01

    Macrophages are cells with remarkable plasticity. They integrate signals from their microenvironment leading to context-dependent polarization into classically (M1) or alternatively (M2) activated macrophages, representing two extremes of a broad spectrum of divergent phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals towards injured tissue but, depending on the eliciting damage, may also be responsible for the generation and aggravation of tissue injury. Although incompletely understood, there is emerging evidence that macrophage polarization is critical for these antagonistic roles. To identify activation-specific expression patterns of chemokines and cytokines that may confer these distinct effects a systems biology approach was applied. A comprehensive literature-based Boolean model was developed to describe the M1 (LPS-activated) and M2 (IL-4/13-activated) polarization types. The model was validated using high-throughput transcript expression data from murine bone marrow derived macrophages. By dynamic modeling of gene expression, the chronology of pathway activation and autocrine signaling was estimated. Our results provide a deepened understanding of the physiological balance leading to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1 or Akt2 that may be important for directing macrophage polarization. PMID:27464342

  10. Enhanced resistance against Listeria monocytogenes at an early phase of primary infection in pregnant mice: activation of macrophages during pregnancy.

    PubMed Central

    Watanabe, Y; Mitsuyama, M; Sano, M; Nakano, H; Nomoto, K

    1986-01-01

    We investigated the pregnancy-induced changes in macrophage activity which are important in the expression of host defense against infections. Several macrophage functions were examined by using Listeria monocytogenes. In pregnant mice, prolonged survival and enhanced in vivo elimination of bacteria were observed in the early phase of primary infection. Functions of peritoneal macrophages, including in vitro phagocytosis intracellular killing, glucose consumption, generation of superoxide anion, and intracellular beta-glucuronidase activity were shown to be enhanced in pregnant mice. These findings indicate that pregnancy enhances macrophage functions qualitatively. Possible mechanisms for this enhancement and the significance of macrophage activation for pregnant hosts are discussed. PMID:3011673

  11. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization.

    PubMed

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W; Qi, Y-F; Han, J-H; Lin, X; Du, J

    2014-08-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies.

  12. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages.

    PubMed

    Dai, Ming; Wang, Xu; Li, Jie-Liang; Zhou, Yu; Sang, Ming; Liu, Jin-Biao; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.

  13. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  14. Statin Attenuates Experimental Anti-Glomerular Basement Membrane Glomerulonephritis Together with the Augmentation of Alternatively Activated Macrophages

    PubMed Central

    Fujita, Emiko; Shimizu, Akira; Masuda, Yukinari; Kuwahara, Naomi; Arai, Takashi; Nagasaka, Shinya; Aki, Kaoru; Mii, Akiko; Natori, Yasuhiro; Iino, Yasuhiko; Katayama, Yasuo; Fukuda, Yuh

    2010-01-01

    Macrophages are heterogeneous and include classically activated M1 and alternatively activated M2 macrophages, characterized by pro- and anti-inflammatory functions, respectively. Macrophages that express heme oxygenase-1 also exhibit anti-inflammatory effects. We assessed the anti-inflammatory effects of statin in experimental anti-glomerular basement membrane glomerulonephritis and in vitro, focusing on the macrophage heterogeneity. Rats were induced anti-glomerular basement membrane glomerulonephritis and treated with atorvastatin (20 mg/kg/day) or vehicle (control). Control rats showed infiltration of macrophages in the glomeruli at day 3 and developed crescentic glomerulonephritis by day 7, together with increased mRNA levels of the M1 macrophage-associated cytokines, interferon-γ, tumor necrosis factor-α, and interleukin-12. In contrast, statin reduced the level of proteinuria, reduced infiltration of macrophages in glomeruli with suppression of monocyte chemotactic protein-1 expression, and inhibited the formation of necrotizing and crescentic lesions. The number of glomerular ED3-positive macrophages decreased with down-regulation of M1 macrophage-associated cytokines. Furthermore, statin augmented ED2-positive M2 macrophages with up-regulation of the M2 macrophage-associated chemokines and cytokines, chemokine (C-C motif) Iigand-17 and interleukin-10. Statin also increased the glomerular interleukin-10-expressing heme oxygenase-1-positive macrophages. Statin inhibited macrophage development, and suppressed ED3-positive macrophages, but augmented ED2-positive macrophages in M2-associated cytokine environment in vitro. We conclude that the anti-inflammatory effects of statin in glomerulonephritis are mediated through inhibition of macrophage infiltration as well as augmentation of anti-inflammatory macrophages. PMID:20696778

  15. Augmentation of macrophage growth-stimulating activity of lipids by their peroxidation

    SciTech Connect

    Yui, S.; Yamazaki, M. )

    1990-02-15

    Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.

  16. Schistosoma mansoni Hemozoin Modulates Alternative Activation of Macrophages via Specific Suppression of Retnla Expression and Secretion

    PubMed Central

    Truscott, Martha; Evans, D. Andrew; Gunn, Matt

    2013-01-01

    The trematode Schistosoma mansoni is one of the etiological agents of schistosomiasis, a key neglected tropical disease responsible for an estimated annual loss of 70 million disability-adjusted life years. Hematophagy represents the primary nutrient acquisition pathway of this parasite, but digestion of hemoglobin also liberates toxic heme. Schistosomes detoxify heme via crystallization into hemozoin, which is subsequently regurgitated into the host's circulation. Here we demonstrate that during experimental schistosomiasis, hemozoin accumulating in the mouse liver is taken up by phagocytes at a time coincident with the development of the egg-induced T-helper 2 (Th2) granulomatous immune response. Furthermore, the uptake of hemozoin also coincides with the hepatic expression of markers of alternative macrophage activation. Alternatively activated macrophages are a key effector cell population associated with protection against schistosomiasis, making hemozoin well placed to play an important immunomodulatory role in this disease. To systematically explore this hypothesis, S. mansoni hemozoin was purified and added to in vitro bone marrow-derived macrophage cultures concurrently exposed to cytokines chosen to reflect the shifting state of macrophage activation in vivo. Macrophages undergoing interleukin-4 (IL-4)-induced alternative activation in the presence of hemozoin developed a phenotype specifically lacking in Retnla, a characteristic alternatively activated macrophage product associated with regulation of Th2 inflammatory responses. As such, in addition to its important detoxification role during hematophagy, we propose that schistosome hemozoin also provides a potent immunomodulatory function in the coevolved network of host-parasite relationships during schistosomiasis. PMID:23090958

  17. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible.

    PubMed

    Drapier, J C; Hibbs, J B

    1986-09-01

    Previous studies show that cytotoxic activated macrophages cause inhibition of DNA synthesis, inhibition of mitochondrial respiration, and loss of intracellular iron from tumor cells. Here we examine aconitase, a citric acid cycle enzyme with a catalytically active iron-sulfur cluster, to determine if iron-sulfur clusters are targets for activated macrophage-induced iron removal. Results show that aconitase activity declines dramatically in target cells after 4 h of co-cultivation with activated macrophages. Aconitase inhibition occurs simultaneously with arrest of DNA synthesis, another early activated macrophage-induced metabolic change in target cells. Dithionite partially prevents activated macrophage induced aconitase inhibition. Furthermore, incubation of injured target cells in medium supplemented with ferrous ion plus a reducing agent causes near-complete reconstitution of aconitase activity. The results show that removal of a labile iron atom from the [4Fe-4S] cluster, by a cytotoxic activated macrophage-mediated mechanism, is causally related to aconitase inhibition. PMID:3745439

  18. The macrophage chemotactic activity of Edwardsiella tarda extracellular products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemoattractant capabilities of Edwardsiella tarda extracellular products (ECP) were investigated from two isolates, the virulent FL6-60 parent and less virulent RET-04 mutant. Chemotaxis and chemokinesis were assayed in vitro using blind well chambers with peritoneal macrophages obtained from ...

  19. Effect of macrophage classical (M1) activation on implant-adherent macrophage interactions with Staphylococcus epidermidis: A murine in vitro model system.

    PubMed

    Park, Kyung R; Bryers, James D

    2012-08-01

    A model in vitro system was developed for eliciting classical (M1) activation of surface-adherent murine macrophages, which was then used to study the interaction of the M1 macrophages with Staphylococcus epidermidis. Glass substrata were first covalently grafted with a mixture of methoxy- and biotin-terminated silanated polyethylene glycol. Interferon (IFN)-γ and/or lipopolysaccharide (LPS), ligands known to induce the highly microbicidal M1 activation state in macrophages, were biotinylated and immobilized by way of a streptavidin intermediate to the biotin-PEG base substratum. Assessment of mouse bone marrow-derived macrophage (BMDM) interleukin (IL)-12(p40) and nitric oxide response to the fabricated surfaces confirmed that the model system achieved activation of adherent macrophage: IFN-γ-presenting surfaces primed cells for M1 activation, LPS-presenting surfaces elicited innate activation, and surface presenting a combination of IFN-γ and LPS induced M1 activation. The phagocytic and microbicidal capacity of activated, surface-adherent BMDM was evaluated using S. epidermidis, a bacterial species prevalent in implant-associated infections. Results indicate that M1 activation of implant-adherent macrophages trends towards diminishing their phagocytic capacity, but enhances their microbicidal capacity for S. epidermidis.

  20. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  1. Critical Role of Methylglyoxal and AGE in Mycobacteria-Induced Macrophage Apoptosis and Activation

    PubMed Central

    Rachman, Helmy; Kim, Nayoung; Ulrichs, Timo; Baumann, Sven; Pradl, Lydia; Eddine, Ali Nasser; Bild, Matthias; Rother, Marion; Kuban, Ralf-Jürgen; Lee, Jong Seok; Hurwitz, Robert; Brinkmann, Volker; Kosmiadi, George A.; Kaufmann, Stefan H.E.

    2006-01-01

    Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-α as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG), a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE) during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB) patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles. PMID:17183656

  2. Role of activation in alveolar macrophage-mediated suppression of the plaque-forming cell response.

    PubMed Central

    Mbawuike, I N; Herscowitz, H B

    1988-01-01

    Alveolar macrophages (AM) are highly suppressive of the in vitro plaque-forming cell (PFC) response of spleen cells obtained from mice primed with sheep erythrocytes. Comparison of macrophage populations obtained from disparate anatomical sites revealed that although in both cases there was a cell-concentration-dependent suppression of the PFC response, resident AM or AM activated as a result of intravenous injection of Mycobacterium bovis BCG were equally suppressive at the doses examined. Although there was a similar dose-dependent suppression with peritoneal macrophages, BCG-activated cells were more suppressive of the PFC response than were resident cells. In contrast, splenic macrophages at comparable concentrations were not at all suppressive. Resident AM exhibited significantly lower levels of 5'-nucleotidase activity than did resident peritoneal macrophages. Macrophage-mediated suppression of the in vitro PFC response could not be attributed to the release of toxic oxygen metabolites (H2O2, O2- ,and .OH) or prostaglandins, since the addition of catalase, superoxide dismutase, 2-mercaptoethanol, or indomethacin did not completely reverse suppression. These results suggest that the lung microenvironment may maintain AM in an activated state which contributes to their potential immunoregulatory functions. PMID:2830191

  3. ROS-Responsive Activatable Photosensitizing Agent for Imaging and Photodynamic Therapy of Activated Macrophages

    PubMed Central

    Kim, Hyunjin; Kim, Youngmi; Kim, In-Hoo; Kim, Kyungtae; Choi, Yongdoo

    2014-01-01

    The optical properties of macrophage-targeted theranostic nanoparticles (MacTNP) prepared from a Chlorin e6 (Ce6)-hyaluronic acid (HA) conjugate can be activated by reactive oxygen species (ROS) in macrophage cells. MacTNP are nonfluorescent and nonphototoxic in their native state. However, when treated with ROS, especially peroxynitrite, they become highly fluorescent and phototoxic. In vitro cell studies show that MacTNP emit near-infrared (NIR) fluorescence inside activated macrophages. The NIR fluorescence is quenched in the extracellular environment. MacTNP are nontoxic in macrophages up to a Ce6 concentration of 10 μM in the absence of light. However, MacTNP become phototoxic upon illumination in a light dose-dependent manner. In particular, significantly higher phototoxic effect is observed in the activated macrophage cells compared to human dermal fibroblasts and non-activated macrophages. The ROS-responsive MacTNP, with their high target-to-background ratio, may have a significant potential in selective NIR fluorescence imaging and in subsequent photodynamic therapy of atherosclerosis with minimum side effects. PMID:24396511

  4. Hydroxysafflor yellow A attenuates ischemia/reperfusion-induced liver injury by suppressing macrophage activation

    PubMed Central

    Jiang, Shujun; Shi, Zhen; Li, Changyong; Ma, Chunlei; Bai, Xianyong; Wang, Chaoyun

    2014-01-01

    Hydroxysafflor yellow A (HSYA), a major constituent in the hydrophilic fraction of the safflower plant, can retard the progress of hepatic fibrosis. However, the anti-inflammatory properties and the underlying mechanisms of HSYA on I/R-induced acute liver injury are unknown. Inhibiting macrophage activation is a potential strategy to treat liver ischemia/reperfusion (I/R) injury. In this study, we investigated the therapeutic effect of HSYA on liver I/R injury and the direct effect of HSYA on macrophage activation following inflammatory conditions. The therapeutic effects of HSYA on I/R injury were tested in vivo using a mouse model of segmental (70%) hepatic ischemia. The mechanisms of HSYA were examined in vitro by evaluating migration and the cytokine expression profile of the macrophage cell line RAW264.7 exposed to acute hypoxia and reoxygenation (H/R). Results showed that mice pretreated with HSYA had reduced serum transaminase levels, attenuated inflammation and necrosis, reduced expression of inflammatory cytokines, and less macrophage recruitment following segmental hepatic ischemia. In vitro HSYA pretreated RAW264.7 macrophages displayed reduced migratory response and produced less inflammatory cytokines. In addition, HSYA pretreatment down-regulated the expression of matrix matalloproteinase-9 and reactive oxygen species, and inhibited NF-κB activation and P38 phosphorylation in RAW264.7 cells. Thus, these data suggest that HSYA can reduce I/R-induced acute liver injury by directly attenuating macrophage activation under inflammatory conditions. PMID:24966974

  5. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  6. E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation.

    PubMed

    Gomes, Rodrigo Saar; de Carvalho, Luana Cristina Faria; de Souza Vasconcellos, Raphael; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2015-04-01

    Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease. PMID:25554487

  7. Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus.

    PubMed

    Zhu, Shanshan; Tai, Chao; Petkau, Terri L; Zhang, Si; Liao, Chengyong; Dong, Zhifang; Wen, Wendy; Chang, Qing; Tian Wang, Yu; MacVicar, Brian A; Leavitt, Blair R; Jia, William; Cynader, Max S

    2013-09-12

    Progranulin (PGRN) haploinsufficiency accounts for up to 10% of frontotemporal lobe dementia. PGRN has also been implicated in neuroinflammation in acute and chronic neurological disorders. Here we report that both protein and mRNA levels of cortical and hippocampal PGRN are significantly enhanced following pilocarpine-induced status epilepticus. We also identify intense PGRN immunoreactivity that colocalizes with CD11b in seizure-induced animals, suggesting that PGRN elevation occurs primarily in activated microglia and macrophages. To test the role of PGRN in activation of microglia/macrophages, we apply recombinant PGRN protein directly into the hippocampal formation, and observe no change in the number of CD11b(+) microglia/macrophages in the dentate gyrus. However, with pilocarpine-induced status epilepticus, PGRN application significantly increases the number of CD11b(+) microglia/macrophages in the dentate gyrus, without affecting the extent of hilar cell death. In addition, the number of CD11b(+) microglia/macrophages induced by status epilepticus is not significantly different between PGRN knockout mice and wildtype. Our findings suggest that status epilepticus induces PGRN expression, and that PGRN potentiates but is not required for seizure-induced microglia/macrophage activation.

  8. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis

    PubMed Central

    Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald

    2016-01-01

    Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes.

  9. Importance of Endosomal Cathelicidin Degradation To Enhance DNA-Induced Chicken Macrophage Activation.

    PubMed

    Coorens, Maarten; van Dijk, Albert; Bikker, Floris; Veldhuizen, Edwin J A; Haagsman, Henk P

    2015-10-15

    Cathelicidins are essential in the protection against invading pathogens through both their direct antimicrobial activity and their immunomodulatory functions. Although cathelicidins are known to modulate activation by several TLR ligands, little is known about their influence on DNA-induced macrophage activation. In this study, we explored the effects of cathelicidins on DNA-induced activation of chicken macrophages and elucidated the intracellular processes underlying these effects. Our results show that chicken cathelicidin (CATH)-2 strongly enhances DNA-induced activation of both chicken and mammalian macrophages because of enhanced endocytosis of DNA-CATH-2 complexes. After endocytosis, DNA is liberated from the complex because of proteolytic breakdown of CATH-2, after which TLR21 is activated. This leads to increased cytokine expression and NO production. Through the interaction with DNA, CATH-2 can play an important role in modulating the immune response at sites of infection. These observations underline the importance of cathelicidins in sensing bacterial products and regulating immune responses.

  10. Development of ostrich thrombocytes and monocyte-derived macrophages in culture and the control of Toxoplasma gondii reproduction after macrophage activation.

    PubMed

    Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A

    2016-01-01

    Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production. PMID:26794839

  11. Differential effects of osteopontin on the cytotoxic activity of macrophages from young and old mice.

    PubMed Central

    Rollo, E E; Denhardt, D T

    1996-01-01

    Osteopontin (OPN) is a secreted phosphoprotein found in body fluids (e.g. plasma, urine, milk) and in mineralized tissues. Its expression is increased in many transformed cells and in normal cells exposed to various cytokines. When stimulated with the inflammatory mediators lipopolysaccharide and interferon-gamma, mouse macrophages secrete nitric oxide (NO) as a cytotoxic agent effective against microbial invaders and tumour cells. This report documents (1) that thioglycollate-elicited peritoneal macrophages, activated with the inflammatory mediators, produced less NO and exhibited reduced cytotoxicity towards target cells when they were obtained from old animals than when they were obtained from young animals; and (2) that OPN was able to inhibit both the induced NO synthesis and cytotoxicity, but more effectively in macrophages from the young animals than those from the old animals. This may be due to the observed higher level of OPN expression in macrophages from old animals. Images Figure 1 Figure 2 PMID:8881770

  12. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  13. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  14. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    PubMed

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  15. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  16. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  17. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  18. TLR4-mediated activation of mouse macrophages by Korean mistletoe lectin-C (KML-C).

    PubMed

    Park, Hong-Jai; Hong, Ju-ho; Kwon, Hyung-Joon; Kim, Youngchan; Lee, Kwan-Hee; Kim, Jong-Bae; Song, Seong K

    2010-06-01

    Korean mistletoe lectin (KML-C) is an adjuvant that activates systemic and mucosal immune cells to release cytokines including TNF-alpha, which induces immunity against viruses and cancer cells. Although the immunomodulatory activity of KML-C has been well established, the underlying mechanism of action of KML-C has yet to be explored. When mouse peritoneal macrophages were treated with KML-C, both transcription and translation of TLR4 were upregulated. KML-C-induced TLR4 downstream events were similar to those activated by LPS: the upregulation of interleukin-1 receptor-associated kinase-1 (IRAK1); resulting in macrophage activation and TNF-alpha production. When TLR4 was blocked using a TLR4-specific neutralizing antibody, TNF-alpha production from the macrophages was significantly inhibited. Moreover, TLR4-deficient mouse macrophages treated with KML-C also secreted greatly reduced level of TNF-alpha secretion. Finally, TLR4 molecules were co-precipitated with KML-C, to which agarose beads were conjugated, indicating that those molecules are associated. These data indicate that KML-C activates mouse macrophages to secrete TNF-alpha by interacting with the TLR4 molecule and activating its signaling pathways.

  19. Slamf8 is a negative regulator of Nox2 activity in macrophages

    PubMed Central

    Wang, Guoxing; Abadía-Molina, Ana C; Berger, Scott B; Romero, Xavier; O'Keeffe, Michael; Rojas-Barros, Domingo I.; Aleman, Marta; Liao, Gongxian; Maganto-García, Elena; Fresno, Manuel; Wang, Ninghai; Detre, Cynthia; Terhorst, Cox

    2012-01-01

    Slamf8 (CD353) is a cell surface receptor that is expressed upon activation of macrophages by interferon-gamma or bacteria. Here we report that a very high Nox2 activity enzyme was found in Slamf8−/− macrophages in response to E.coli or S.aureus, but also to phorbol myristate acetate. The elevated Nox2 activity in Slamf8−/− macrophages was also demonstrated in E.coli or S.aureus phagosomes by using a pH indicator system, and was further confirmed by a reduction of the enzyme activity after transfection of the receptor into Slamf8-deficient primary macrophages or RAW 264.7 cells. Upon exposure to bacteria and/or phorbol myristate acetate, PKC activity in Slamf8−/− macrophages is increased. This results in an enhanced phosphorylation of p40phox, one key component of the Nox2 enzyme complex, which in turn leads to greater Nox2 activity. Taken together, the data show that upon response to inflammation-associated stimuli the inducible receptor Slamf8 negatively regulates inflammatory responses. PMID:22593622

  20. L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages.

    PubMed

    Keller, R; Geiges, M; Keist, R

    1990-03-01

    The capacities of lymphokines and of various microbes to induce in a pure population of bone marrow-derived mononuclear phagocytes tumoricidal activity and/or the production of L-arginine-dependent reactive nitrogen intermediates, measured by the release of nitrite, were comparatively assessed. These parameters were found to be closely correlated in a variety of experimental situations, i.e., enhanced by a surplus of L-arginine and abrogated by N-monomethyl-L-arginine, a selective inhibitor of L-arginine-dependent effector mechanisms. In other macrophage/tumor cell combinations, such correlation was less obvious or not at all detectable, suggesting that, in these models, L-arginine-dependent reactive nitrogen intermediates are not or not alone responsible for the mediation of tumoricidal activity by activated macrophages. Collectively, the present findings suggest that the mechanism of tumor cell killing by activated macrophages may differ, depending on the tumor cell type and the pathway of macrophage activation. Among the various effector mechanisms considered to be involved in tumor cell killing by activated macrophages, L-arginine-dependent reactive nitrogen intermediates appear to hold a major role.

  1. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response.

    PubMed

    Cohen, Heather B; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M

    2015-10-15

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  2. Localization and activity of various lysosomal proteases in Leishmania amazonensis-infected macrophages.

    PubMed Central

    Prina, E; Antoine, J C; Wiederanders, B; Kirschke, H

    1990-01-01

    In mammalian hosts, Leishmania amastigotes are obligatory intracellular parasites of macrophages and multiply within parasitophorous vacuoles of phagolysosomal origin. To understand how they escape the harmful strategies developed by macrophages to kill ingested microorganisms, it is important to obtain information on the functional state of parasitophorous vacuole. For this purpose, we studied the intracellular distribution and activity of host lysosomal proteases in rat bone marrow-derived macrophages infected with Leishmania amazonensis amastigotes. Localization of cathepsins B, H, L, and D was investigated by using specific immunoglobulins. In uninfected macrophages, these enzymes were located in perinuclear granules (most of them were probably secondary lysosomes) which, after infection, disappeared progressively. In infected macrophages, cathepsins were detected mainly in the parasitophorous vacuoles, suggesting that the missing secondary lysosomes had fused with these organelles. Biochemical assays of various proteases (cathepsins B, H, and D and dipeptidyl peptidases I and II) showed that infection was accompanied by a progressive increase of all activities tested, except that of dipeptidyl peptidase II, which remained constant. No more than 1 to 10% of these activities could be attributed to amastigotes. These data indicate that (i) Leishmania infection is followed by an increased synthesis and/or a reduced catabolism of host lysosomal proteases, and (ii) amastigotes grow in a compartment rich in apparently fully active proteases. Unexpectedly, it was found that infected and uninfected macrophages degraded endocytosed proteins similarly. The lack of correlation in infected macrophages between increase of protease activities and catabolism of exogenous proteins could be linked to the huge increase in volume of the lysosomal compartment. Images PMID:2187806

  3. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  4. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  5. Effect of age on proteasomal activity of T cells and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell function is impaired with aging. Proteasome activity in T cells is important for T cell activation and its activity in macrophages is required for processing antigens in order to be presented via class I major histocompatibility complex to CD8+ T cells. Since studies have demonstrated that pr...

  6. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  7. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

    PubMed

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.

  8. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB

    PubMed Central

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization. PMID:26664149

  9. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.

    PubMed

    Spencer, Michael; Yao-Borengasser, Aiwei; Unal, Resat; Rasouli, Neda; Gurley, Catherine M; Zhu, Beibei; Peterson, Charlotte A; Kern, Philip A

    2010-12-01

    Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.

  10. Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity.

    PubMed

    James, S L; Glaven, J; Goldenberg, S; Meltzer, M S; Pearce, E

    1990-01-01

    Lymphokine-activated macrophages are cytotoxic for larvae of the helminth parasite Schistosoma mansoni. That soluble secreted factors may mediate this cytotoxicity was suggested by the observation that culture supernatant fluids from stimulated macrophages also exhibited larvacidal activity. These fluids contain the monokine tumour necrosis factor (TNF). Several observations indicated that TNF is directly toxic to schistosome larvae. Cytotoxic sera taken from BCG- or S. mansoni-immunized mice after endotoxin challenge killed schistosomula in vitro, and upon gel filtration the larvacidal factor(s) in the sera co-eluted with the tumoricidal activity defined as TNF. Recombinant-derived TNF exhibited direct toxicity to schistosomula at high concentrations, or at lower concentrations in the presence of IFN gamma. The larvacidal activity of macrophage supernatant fluids was abrogated by addition of either anti-TNF antisera or Zn+2, which has been shown to inhibit TNF-induced damage of tumour cells. Anti-TNF and Zn+2 likewise suppressed schistosomulum killing by lymphokine-activated peritoneal macrophages or the IC-21 macrophage line, indicating that TNF also plays a role in the effector mechanism of larval killing by whole cells. PMID:2314921

  11. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages.

    PubMed

    Zhao, Ting; Feng, Yun; Li, Jing; Mao, Riwen; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Chen, Yao; Yang, Liuqing; Wu, Xiangyang

    2014-04-01

    Schisandra chinensis (Turcz.) Baill has been used in traditional Chinese medicine for centuries. Previous studies have shown that Schisandra polysaccharide (SCPP11) has robust antitumor activity in vivo. In this study, the immunomodulatory activity and mechanisms of action of SCPP11 were investigated further to reveal its mechanism of action against tumors. Results showed that SCPP11 increased the thymus and spleen indices, pinocytic activity of peritoneal macrophages, and hemolysin formation in CTX-induced immunosuppressed mice. Moreover, SCPP11 significantly increased immunoglobulin levels, cytokines levels in vivo and induced RAW264.7 cells to secrete cytokines in vitro. RAW264.7 cells pretreated with SCPP11 significantly inhibited the proliferation of HepG-2 cells. In addition, SCPP11 promoted both the expression of iNOS protein and of iNOS and TNF-α mRNA. TLR-4 is a possible receptor for SCPP11-mediated macrophage activation. Therefore, the data suggest that SCPP11 exerted its antitumor activity by improving immune system functions through TLR-4-mediated up-regulation of NO and TNF-α.

  12. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages

    PubMed Central

    Saavedra, Nicolás; Cuevas, Alejandro; Cavalcante, Marcela F.; Dörr, Felipe A.; Saavedra, Kathleen; Zambrano, Tomás; Abdalla, Dulcineia S. P.; Salazar, Luis A.

    2016-01-01

    Polyphenols from diverse sources have shown anti-inflammatory activity. In the context of atherosclerosis, macrophages play important roles including matrix metalloproteinases synthesis involved in degradation of matrix extracellular components affecting the atherosclerotic plaque stability. We prepared a propolis extract and pinocembrin in ethanol solution. Propolis extract was chemically characterized using LC-MS. The effect of treatments on gene expression and proteolytic activity was measured in vitro using murine macrophages activated with LPS. Cellular toxicity associated with both treatments and the vehicle was determined using MTT and apoptosis/necrosis detection assays. MMP-9 gene expression and proteolytic activity were measured using qPCR and zymography, respectively. Thirty-two compounds were identified in the propolis extract, including pinocembrin among its major components. Treatment with either ethanolic extract of propolis or pinocembrin inhibits MMP-9 gene expression in a dose-dependent manner. Similarly, an inhibitory effect was observed in proteolytic activity. However, the effect showed by ethanolic extract of propolis was higher than the effect of pinocembrin, suggesting that MMP-9 inhibition results from a joint contribution between the components of the extract. These data suggest a potential role of polyphenols from Chilean propolis in the control of extracellular matrix degradation in atherosclerotic plaques. PMID:27119082

  13. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  14. LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages.

    PubMed

    Stephan, Alexander; Batinica, Marina; Steiger, Julia; Hartmann, Pia; Zaucke, Frank; Bloch, Wilhelm; Fabri, Mario

    2016-08-01

    As part of the innate host response neutrophils release neutrophil extracellular traps (NETs), protein:DNA complexes that contain a number of antimicrobial peptides (AMPs), such as cathelicidin. Human cathelicidin in its active form, LL37, has potent antimicrobial activity against bacteria. However, whether LL37 derived from NETs contributes to antimicrobial activity against intracellular pathogens remains unclear. Here, we report that NETs induced by mycobacteria contain cathelicidin. Human macrophages internalized NET-bound cathelicidin, which is transported to lysosomal compartments. Furthermore, using a model of in vitro-generated LL37:DNA complexes we found that LL37 derived from such complexes attacks mycobacteria in macrophage phagolysosomes resulting in antimicrobial activity. Taken together, our results suggest a mechanism by which LL37 in complex with DNA contributes to host defence against intracellular bacteria in human macrophages.

  15. Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages

    PubMed Central

    Choi, Soo-Ho; Yin, Huiyong; Ravandi, Amir; Armando, Aaron; Dumlao, Darren; Kim, Jungsu; Almazan, Felicidad; Taylor, Angela M.; McNamara, Coleen A.; Tsimikas, Sotirios; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. PMID:24376657

  16. Expression of intercellular adhesion molecule-1 on macrophages in vitro as a marker of activation.

    PubMed

    Bernatchez, S F; Atkinson, M R; Parks, P J

    1997-10-01

    Macrophage activation is a major component of wound healing. It also determines the extent of inflammatory reactions and the response of the body to implanted materials. We have previously shown, using an in vitro model, that the extent of spreading of macrophages on different materials is a marker of activation, and that a soluble inducer has a dose-response effect on the secretion of cytokines in the culture medium. This work investigates the expression of three different cell surface markers [macrophages MAC-1, MAC-3 and intercellular adhesion molecule-1 (ICAM-1)] on macrophages in vitro using confocal microscopy and shows that ICAM-1 is also a marker of macrophage activation in this model. We observed increased amounts of ICAM-1 on activated macrophages compared to unactivated macrophages, whereas MAC-1 and MAC-3 were either expressed constitutively or demonstrated no quantitative change in expression after activation under the same experimental conditions. We also tested the expression of ICAM-1 with various concentrations of soluble inducers (lipopolysaccharide, 0.001, 0.01, 0.1, 1 and 10 micrograms ml-1. S-27609, 0.1, 0.25, 0.5, 1, 2 and 3 micrograms ml-1 and on a sheet of polylactic acid alone or in combination with soluble inducers. All doses of soluble inducers induced the expression of ICAM-1 on cells grown in glass chamber slides. The induction was not dose related but seemed to work rather in an on-off manner. There was no effect of material on ICAM-1 expression on the cell surface when no soluble inducer was added. This was similar to cytokine secretion, which was not induced by our material alone. When either lipopolysaccharide or S-27609 was used in combination with the material, there was an increase in the average measured intensity of ICAM-1. In this in vitro model, ICAM-1 staining as measured by confocal microscopy is a marker for macrophage activation. Our results suggest that the extent of macrophage activation as measured by ICAM-1 and by

  17. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  18. In vivo manipulation (depletion versus activation) of testicular macrophages: central and local effects.

    PubMed

    Gaytan, F; Bellido, C; Morales, C; García, M; van Rooijen, N; Aguilar, E

    1996-07-01

    Testicular macrophages are a relevant cell type for the regulation of Leydig cell steroidogenesis. The availability of liposome technology allows in vivo manipulation of macrophages in order to analyze their role in the regulation of the hypothalamic-pituitary-testicular axis. In this study, adult (70 days of age) and prepubertal (22 days of age) rats were injected intratesticularly with liposomes containing either dichloromethylene diphosphonate (C12MDP) to deplete testicular macrophages or muramyl tripeptide (MTP-PE) to activate them. Control rats were injected with the corresponding volumes of 0.9% NaCl. Animals were killed 10 days after treatment. Adult rats injected bilaterally or unilaterally with C12MDP liposomes showed increased serum LH and testosterone concentrations, as well as increased testosterone concentrations in the testicular interstitial fluid. In unilaterally injected rats, testosterone concentrations in the interstitial fluid were higher in the macrophage-containing testes than in the contralateral, macrophage-depleted testes. Adult rats treated bilaterally with MTP-PE liposomes showed increased numbers of testicular macrophages, whereas the number of Leydig cells was unchanged. Serum LH concentrations were decreased, but no changes were found in testosterone concentrations. Prepubertal rats treated bilaterally with C12MDP liposomes showed decreased numbers of Leydig cells. However, serum LH and testosterone concentrations were increased. Otherwise, prepubertal rats treated bilaterally with MTP-PE liposomes showed increased numbers of macrophages and Leydig cells, as well as increased serum testosterone concentrations. These data suggest that testicular macrophage-derived factors act at two different levels in the pituitary-testicular axis: first, at a central level by inhibiting LH secretion, and secondly, at a local level by stimulating Leydig cell steroidogenesis.

  19. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    PubMed

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages.

  20. Critical Role of Regulator G-Protein Signaling 10 (RGS10) in Modulating Macrophage M1/M2 Activation

    PubMed Central

    Lee, Jae-Kyung; Chung, Jaegwon; Kannarkat, George T.; Tansey, Malú G.

    2013-01-01

    Regulator of G protein signaling 10 (RGS10), a GTPase accelerating protein (GAP) for G alpha subunits, is a negative regulator of NF-κB in microglia. Here, we investigated the role of RGS10 in macrophages, a closely related myeloid-derived cell type. Features of classical versus alternative activation were assessed in Rgs10-/- peritoneal and bone marrow-derived macrophages upon LPS or IL-4 treatments, respectively. Our results showed that Rgs10-/- macrophages produced higher levels of pro-inflammatory cytokines including TNF, IL-1β and IL-12p70 in response to LPS treatment and exerted higher cytotoxicity on dopaminergic MN9D neuroblastoma cells. We also found that Rgs10-/- macrophages displayed a blunted M2 phenotype upon IL-4 priming. Specifically, Rgs10-/- macrophages displayed lower YM1 and Fizz1 mRNA levels as measured by QPCR compared to wild type macrophages upon IL-4 treatment and this response was not attributable to differences in IL-4 receptor expression. Importantly, phagocytic activities of Rgs10-/- macrophages were blunted in response to IL-4 priming and/or LPS treatments. However, there was no difference in chemotaxis between Rgs10-/- and WT macrophages. Our data indicate that Rgs10-/- macrophages displayed dysregulated M1 responses along with blunted M2 alternative activation responses, suggesting that RGS10 plays an important role in determining macrophage activation responses. PMID:24278459

  1. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling

    PubMed Central

    Zhao, Yutong; Zhao, Jing; Donahoe, Michael P.; Barge, Suchitra; Horne, William T.; Kolls, Jay K.; McVerry, Bryan J.; Birukova, Anastasiya; Tighe, Robert M.; Foster, W. Michael; Hollingsworth, John; Ray, Anuradha; Mallampalli, Rama; Ray, Prabir; Lee, Janet S.

    2016-01-01

    Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages. PMID:27434537

  2. Cathepsin L maturation and activity is impaired in macrophages harboring M. avium and M. tuberculosis.

    PubMed

    Nepal, Rajeev M; Mampe, Stephanie; Shaffer, Brian; Erickson, Ann H; Bryant, Paula

    2006-06-01

    Mycobacterium tuberculosis-infected macrophages demonstrate diminished capacity to present antigens via class II MHC molecules. Since successful class II MHC-restricted antigen presentation relies on the actions of endocytic proteases, we asked whether the activities of cathepsins (Cat) B, S and L-three major lysosomal cysteine proteases-are modulated in macrophages infected with pathogenic Mycobacterium spp. Infection of murine bone marrow-derived macrophages with either Mycobacterium avium or M. tuberculosis had no obvious effect on Cat B or Cat S activity. In contrast, the activity of Cat L was altered in infected cells. Specifically, whereas the 24-kDa two-chain mature form of active Cat L predominated in uninfected cells, we observed an increase in the steady-state activity of the precursor single-chain (30 kDa) and 25-kDa two-chain forms of the enzyme in cells infected with either M. avium or M. tuberculosis. Pulse-chase analyses revealed that maturation of nascent, single-chain Cat L into the 25-kDa two-chain form was impaired in infected macrophages, and that maturation into the 24-kDa two-chain form did not occur. Consistent with these data, M. avium infection inhibited the IFNgamma-induced secretion of active two-chain Cat L by macrophages. Viable bacilli were not required to disrupt Cat L maturation, suggesting that a constitutively expressed mycobacterial component was responsible. The absence of the major active form of lysosomal Cat L in M. avium- and M. tuberculosis-infected macrophages may influence the types of T cell epitopes generated in these antigen-presenting cells, and/or the rate of class II MHC peptide loading. PMID:16636015

  3. INTERLEUKIN-4- AND INTERLEUKIN-13-MEDIATED ALTERNATIVELY ACTIVATED MACROPHAGES: ROLES IN HOMEOSTASIS AND DISEASE

    PubMed Central

    Van Dyken, Steven J.; Locksley, Richard M.

    2013-01-01

    The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair. PMID:23298208

  4. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  5. [Effect of low-frequency ultrasound on the chemotactic and phagocytic activity of peritoneal macrophages in rats].

    PubMed

    Kochemasova, Z N; Davydova, N V; Matveeva, E A; Dratvin, S A; Lobashevskiĭ, A L

    1983-12-01

    The influence of low-frequency ultrasound on the chemotactic, ingestive and digestive activity of peritoneal macrophages in rats was studied. The intraoperative treatment of the peritoneum with ultrasound enhanced chemotactic activity 3.3-fold in comparison with that in the control animals. The digestive function of peritoneal macrophages considerably increased, the stimulation of their ingestive capacity also occurred. The activation of the phagocytic function of macrophages was observed within 7 days after a single sonar treatment. The authors believe that the stimulation of the macrophage system is probably one of the mechanisms of the sanative action of ultrasound which is used at present in purulent surgery.

  6. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface.

    PubMed

    Neacsu, Patricia; Mazare, Anca; Cimpean, Anisoara; Park, Jung; Costache, Marieta; Schmuki, Patrik; Demetrescu, Ioana

    2014-10-01

    Macrophages play a pivotal role in the hosts response to biomaterials being considered as an essential cell type during both optimal tissue-implant integration and pathologic process of implant failure. Hence, understanding of their cellular activity on biomaterials is important for improving evaluation and design of biomaterials for biomedical applications. In the present study, we have comparatively investigated the interactions of titania nanotubes (78 nm diameter) and commercial pure Ti with RAW 264.7 macrophages in both standard and pro-inflammatory (stimulation with lipopolysaccharide, LPS) culture conditions. In vitro tests showed that TiO2 nanotubes exhibited significantly decreased inflammatory activity of macrophages with respect to cytokine and chemokine gene expression/protein secretion, induction of foreign body giant cells (FBGCs) and nitric oxide (NO) release thereby mitigating the inflammatory response induced by LPS as compared to flat Ti surface. Therefore, our results suggest a novel role of TiO2 nanotubes in modulating macrophage response in biomaterial-associated bacterial infections. Overall, the current study provides new insight into how TiO2 nanotubes can be involved in macrophage activation and supports the great promise of such surface modifications for biomedical applications.

  7. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  8. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  9. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages

    PubMed Central

    Namatame, Ichiji; Tomoda, Hiroshi; Ishibashi, Shun; Ōmura, Satoshi

    2004-01-01

    Beauveriolides I and III, isolated from the culture broth of fungal Beauveria sp. FO-6979, showed potent inhibitory activity of lipid droplet accumulation in primary mouse peritoneal macrophages. The cellular molecular target of this inhibitory activity was studied in macrophages. Beauveriolides I and III strongly inhibited the cholesteryl ester (CE) synthesis with IC50 values of 0.78 and 0.41 μM, respectively, without showing significant effects on the triacylglycerol and phospholipid synthesis. Furthermore, lysosomal cholesterol metabolism to CE in macrophages was inhibited by the compounds, indicating that the inhibition site lies within steps between cholesterol departure from the lysosome and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the membrane fractions prepared from mouse macrophages was studied, resulting in a dose-dependent inhibition by beauveriolides I and III with IC50 values of 6.0 and 5.5 μM, respectively. Thus, we showed that the beauveriolides inhibit macrophage ACAT activity specifically, resulting in blockage of the CE synthesis, leading to a reduction of lipid droplets in macrophages. ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2. Moreover, beauveriolides I and III exert antiatherogenic activity in both low-density lipoprotein receptor- and apolipoprotein E-knockout mice without any side effects such as diarrhea or cytotoxicity to adrenal tissues as observed for many synthetic ACAT inhibitors. Beauveriolides I and III are the first microbial cyclodepsipeptides having an in vivo antiatherosclerotic effect and show promise as potential lead compounds for antiatherosclerotic agents. PMID:14718664

  10. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects

    PubMed Central

    Jia, Xiao-hua; Feng, Guo-wei; Wang, Zhong-liang; Du, Yang; Shen, Chen; Hui, Hui; Peng, Dong; Li, Zong-jin; Kong, De-ling; Tian, Jie

    2016-01-01

    Cancer development and progression is linked to tumor-associated macrophages (TAMs). Distinct TAMs subsets perform either protective or pathogenic effects in cancer. A protective role in carcinogenesis has been described for M1 macrophages, which activate antitumor mechanisms. By comparison, TAMs isolated from solid and metastatic tumors have a suppressive M2-like phenotype, which could support multiple aspects of tumor progression. Currently, it has not been clearly understood how macrophages in tumor-associated stroma could be hijacked to support tumor growth. Mesenchymal stem cells (MSCs) actively interact with components of the innate immune system and display both anti-inflammatory and pro-inflammatory effects. Here, we tested whether MSCs could favor the tumor to escape from immunologic surveillance in the presence of M1 macrophages. We found that MSCs educated by M1 condition medium (cMSCs) possessed a greatly enhanced ability in promoting tumor growth in vivo. Examination of cytokines/chemokines showed that the cMSCs acquired a regulatory profile, which expressed high levels of iNOS and MCP1. Consistent with an elevated MCP1 expression in cMSCs, the tumor-promoting effect of the cMSCs depended on MCP1 mediated macrophage recruitment to tumor sites. Furthermore, IL-6 secreted by the cMSCs could polarize infiltrated TAMs into M2-like macrophages. Therefore, when macrophages changed into M1 pro-inflammation type in tumor microenvironment, the MSCs would act as poor sensors and switchers to accelerate tumor growth. PMID:26988913

  11. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    SciTech Connect

    Sunil, Vasanthi R.; Patel-Vayas, Kinal; Shen, Jianliang; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  12. Tissue factor activity. A marker of alveolar macrophage maturation in rabbits. Effects of granulomatous pneumonitis.

    PubMed Central

    Rothberger, H; McGee, M P; Lee, T K

    1984-01-01

    Experiments were carried out to examine relationships between alveolar macrophage maturity and amounts of tissue factor (Clotting Factor III) in these cells under physiologic conditions and during immunologically induced pneumonitis. Using discontinuous density gradient centrifugation, alveolar macrophages from healthy rabbits were rapidly isolated into five subpopulations at different stages of maturation, as demonstrated by morphologic and morphometric evaluation. Very large amounts of tissue factor activity were found in fully mature cells that were purified in the lowest density subpopulation and assayed without preliminary in vitro stimulation or culture. In the remaining four subpopulations of increasing density, amounts of tissue factor were found to progressively diminish in direct correlation with declines of cell maturity. These differences at mean levels were as great as 35-fold. In addition, blood monocytes had less than 1/219 and less than 1/6 of the activity of the fully mature and the least mature subpopulations, respectively. After 16 h culture of the five isolated subpopulations in the absence of lymphokines or of significant numbers of lymphocytes, tissue factor activity increased in inverse correlation with the preincubation stage of cell maturity (2,387 and 109% in the least mature and most mature subpopulations, respectively). These increases required protein synthesis and were accompanied by morphologic and morphometric changes which indicated cellular maturation during the period of tissue factor activity generation in vitro, thus further demonstrating relationships between macrophage maturity and tissue factor content. In additional experiments, direct correlations between cell maturity and tissue factor activity content were also found in activated alveolar macrophage populations from rabbits with Bacillus Calmette Guering (BCG)-induced granulomatous pneumonitis. However, as compared with controls, the BCG populations had increased total

  13. Signaling events during macrophage activation with Betula pendula roth pectic polysaccharides.

    PubMed

    Ligacheva, A A; Danilets, M G; Trofimova, E S; Belsky, Y P; Belska, N V; Zyuz'kov, G N; Zhdanov, V V; Ivanova, A N; Guriev, A M; Belousov, M V; Yusubov, M S; Dygai, A M

    2014-02-01

    We studied the effect of two pectic polysaccharides PS-B1-AG and PS-B2-RG that were contained in total polysaccharides extracted from Betula pendula leaves on NO production by mouse macrophages and the contribution of signaling molecules to macrophage activation by the test substances. Unlike the total sample, pectins produced a NO-stimulating effect on macrophages. The effect of PS-B2-RG (10 μg/ml) did not differ from the effect of LPS, while PS-B1-AG produced this effect only in a concentration of 20 μg/ml, which was probably due to differences in the chemical structure of the test substances. The studied pectin polysaccharides activated transcription factor NF-κB, kinases p38 and PI3, and cAMP as a negative regulator. These results indicate that Betula pendula polysaccharides are promising substances for creation of immunomodulating drugs.

  14. Vessel-associated myogenic precursors control macrophage activation and clearance of apoptotic cells.

    PubMed

    Bosurgi, L; Brunelli, S; Rigamonti, E; Monno, A; Manfredi, A A; Rovere-Querini, P

    2015-01-01

    Swift and regulated clearance of apoptotic cells prevents the accumulation of cell remnants in injured tissues and contributes to the shift of macrophages towards alternatively activated reparatory cells that sustain wound healing. Environmental signals, most of which are unknown, in turn control the efficiency of the clearance of apoptotic cells and as such determine whether tissues eventually heal. In this study we show that vessel-associated stem cells (mesoangioblasts) specifically modulate the expression of genes involved in the clearance of apoptotic cells and in macrophage alternative activation, including those of scavenger receptors and of molecules that bridge dying cells and phagocytes. Mesoangioblasts, but not immortalized myoblasts or neural precursor cells, enhance CD163 membrane expression in vitro as assessed by flow cytometry, indicating that the effect is specific. Mesoangioblasts transplanted in acutely or chronically injured skeletal muscles determine the expansion of the population of CD163(+) infiltrating macrophages and increase the extent of CD163 expression. Conversely, macrophages challenged with mesoangioblasts engulf significantly better apoptotic cells in vitro. Collectively, the data reveal a feed-forward loop between macrophages and vessel-associated stem cells, which has implications for the skeletal muscle homeostatic response to sterile injury and for diseases in which homeostasis is jeopardized, including muscle dystrophies and inflammatory myopathies. PMID:24749786

  15. Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3.

    PubMed

    Liu, Yianzhu; Minze, Laurie J; Mumma, Lindsay; Li, Xian C; Ghobrial, Rafik M; Kloc, Malgorzata

    2016-02-15

    The macrophages have different subtypes with different functions in immune response and disease. It has been generally accepted that M1 macrophages are responsible for stimulation of immune system and inflammation while M2 macrophages play a role in tissue repair. Irrespective of the type, macrophage functions depend on actin cytoskeleton, which is under the control of small GTPase RhoA pathway and its downstream effector ROCK1. We generated RhoA-deleted macrophages and compared the effect of RhoA deletion on M0, M1 and M2 macrophage phenotype. Our studies showed that, unexpectedly, the RhoA deletion did not eliminate macrophage ROCK1 expression and increased ROCK1 activity. The RhoA deletion effect on macrophage phenotype, structure and polarity was different for each subtype. Moreover, our study indicates that the up-regulation of ROCK1 activity in RhoA-deleted macrophages and macrophage phenotype/polarity are dependent on non-apoptotic Caspase-3 and are sensitive to Caspase-3 inhibition. These novel findings will revise/complement our understanding of RhoA pathway regulation of cell structure and polarity. PMID:26875770

  16. Dimethyl sulfoxide modulates NF-kappa B and cytokine activation in lipopolysaccharide-treated murine macrophages.

    PubMed Central

    Kelly, K A; Hill, M R; Youkhana, K; Wanker, F; Gimble, J M

    1994-01-01

    Antioxidants are protective against septic shock in animal models. Recently, free radical scavengers have been found to inhibit the activation of the NF-kappa B protein in a number of cell lines. This transcriptional regulatory protein binds to the promoters of the proinflammatory cytokines tumor necrosis factor, interleukin-6, and the macrophage inflammatory proteins. The current work examined lipopolysaccharide-induced NF-kappa B activation in the J774 macrophage-like cell line and primary peritoneal macrophages from lipopolysaccharide-responsive (C3HeB/Fej) and -nonresponsive (C3H/HeJ) murine strains. The DNA-binding activity of the NF-kappa B protein directly correlated with mRNA expression for the genes encoding the proinflammatory cytokines and the free radical scavenging enzyme, superoxide dismutase. Both the p50 and p65 NF-kappa B subunits were detected on gel supershift assays. Minimal NF-kappa B activity was observed following exposure of C3H/HeJ macrophages to lipopolysaccharide. The antioxidant dimethyl sulfoxide decreased the level of NF-kappa B activation in the J774 cells. This correlated with decreased expression of cytokine mRNAs and tumor necrosis factor bioactivity. These results suggest that modulation of NF-kappa B activation may provide a mechanism through which antioxidants protect against endotoxemia in murine models. Images PMID:8039880

  17. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  18. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro. PMID:2099903

  19. Regulation of macrophage-mediated larvicidal activity in Echinococcus granulosus and Mesocestoides corti (Cestoda) infection in mice.

    PubMed

    Jenkins, P; Dixon, J B; Rakha, N K; Carter, S D

    1990-04-01

    Killing of metacestodes by normal or post-infection macrophages and the regulation of this activity by cytokines were studied in vitro. The protoscolecidal activity of normal macrophages against Echinococcus granulosus was inhibited by a product of naive T-enriched lymphocytes co-cultured with protoscoleces (PSC). By contrast, supernates from co-cultures of Mesocestoides corti tetrathyridia (MCT) and T-enriched or B-enriched normal lymphocytes increased killing of MCT by normal macrophages. Larvicidal activity (against both PSC and MCT) was enhanced by high concentrations of macrophage-activating factors produced by Con A-stimulated rat lymphocytes (Con A-LK), but was reduced by low concentrations of these factors. Activation by synergism between Con A-LK and recombinant interferon-gamma(r. IFN-gamma) was demonstrated in macrophage-mediated killing of MCT at high effector to target ratio. Cytokine-activation of normal or post-MCT infection macrophages was compared. Macrophages from both 8 and 20 week post-infection mice were refractory to lymphokines from lymphocyte-MCT cultures and displayed greatly reduced killing of MCT. Macrophage activation by Con A-LK and r.IFN-gamma was also impaired, implying a general defect in the ability of these post-infection macrophages to respond to macrophage activating signals. The data indicate that two different mechanisms may exist by which metacestodes regulate potentially larvicidal effector mechanisms. E. granulosus can elicit the production of lymphokines suppressive for PSC killing, whereas M. corti appears directly to induce a refractory state in effector macrophages.

  20. The Role of Macrophage Derived Urokinase Plasminogen Activator in Myocardial Infarct Repair

    PubMed Central

    Minami, Elina; Castellani, Chiara; Malchodi, Laura; Deem, Jennifer; Bertko, Kate; Meznarich, Jessica; Dishmon, Monja; Murry, Charles E.; Stempien-Otero, April

    2011-01-01

    Cardiac plasmin activity is increased following myocardial ischemia. To test the hypothesis that macrophage-derived uPA is a key mediator of repair following myocardial infarction we performed myocardial infarction on mice with macrophage specific over-expression of uPA (SR-uPA mice). SR-uPA+/0 mice and wild-type littermates were sacrificed at 5 days or 4 weeks after infarction and cardiac content of macrophages, collagen, and myofibroblasts was quantified. Cardiac function and dimensions were assessed by echocardiography at baseline and at 4 weeks post-infarction. At 4 weeks after myocardial infarction, macrophage counts were increased in SR-uPA+/0 mice in the infarct (13.1 vs. 4.9 %, P < 0.001) and distant uninfarcted regions (5.9 vs. 2.4%, P < 0.001). Infarct scar was thicker in SR-uPA+/0 mice (0.54 ± 0.03mm vs. 0.45 ± 0.03mm, P <0.05) and infarct cardiac collagen content was increased (72.4 ± 3.3% vs. 63.0 ± 3.6%, P < 0.06). Functionally, these changes resulted in mildly improved fractional shortening in SR-uPA+/o mice compared to controls (24.6 ±1.68 vs. 19.8 ± 1.3% P = 0.03). At 5 days after infarction there was increased collagen content in the scar without increases in macrophages or myofibroblasts. To understand the mechanisms by which macrophage derived uPA increases collagen, cardiac fibroblasts were treated with macrophage conditioned medium or plasmin and expression of ColIα1 measured by qPCR. Conditioned media from SR-uPA+/o or plasmin-treated nontransgenic macrophages but not plasmin alone increased collagen expression in isolated cardiac fibroblasts. We hypothesize that plasmin generation in the heart in response to injury may induce activation of macrophages to a profibrotic phenotype to allow rapid formation of collagenous scar. PMID:20380835

  1. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages.

    PubMed Central

    Sherry, B; Yarlett, N; Strupp, A; Cerami, A

    1992-01-01

    We have isolated an 18-kDa peptide (designated sp18, for 18-kDa secreted protein) from the conditioned medium of lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Purified sp18 had in vivo inflammatory activity and in vitro chemotactic activity for human peripheral blood polymorphonuclear leukocytes and monocytes. Surprisingly, N-terminal sequencing and tryptic mapping studies revealed that sp18 and cyclophilin, an intracellular protein that binds the immunosuppressive drug cyclosporin A, are highly homologous. The in vitro chemotactic activity of sp18 on monocytes was blocked by cyclosporin A but not by cyclosporin H, a structural analog of cyclosporin A that does not bind cyclophilin. Like purified porcine cyclophilin, mouse sp18 exhibited peptidyl-prolyl cis-trans isomerase activity. Medium conditioned by lipopolysaccharide-stimulated resident peritoneal exudate macrophages isolated from C57BL/6 mice contained substantially higher levels of sp18/cyclophilin than medium conditioned by nonstimulated macrophages. The observation that sp18/cyclophilin exhibits proinflammatory activity and is secreted by macrophages in response to endotoxin suggests that this protein may function as a cytokine, and invites the hypothesis that the immunosuppressive action of cyclosporin A results in part from interaction with an extracellular form of cyclophilin released as a mediator of immune and inflammatory functions. Images PMID:1565646

  2. The synergistic interaction between the calcineurin B subunit and IFN-γ enhances macrophage antitumor activity

    PubMed Central

    Su, Z; Yang, R; Zhang, W; Xu, L; Zhong, Y; Yin, Y; Cen, J; DeWitt, J P; Wei, Q

    2015-01-01

    Macrophages are involved in tumor growth and progression. They infiltrate into tumors and cause inflammation, which creates a microenvironment favoring tumor growth and metastasis. However, certain stimuli may induce macrophages to act as tumor terminators. Here we report that the calcineurin B subunit (CnB) synergizes with IFN-γ to make macrophages highly cytotoxic to cancer cells. Furthermore, CnB and IFN-γ act synergistically to polarize mouse tumor-associated macrophages, as well as human monocyte-derived macrophages to an M1-like phenotype. This synergy is mediated by the crosstalk between CnB-engaged integrin αM-p38 MAPK signaling and IFN-γ-initiated p38/PKC-δ/Jak2 signaling. Interestingly, the signal transducer and activator of transcription 1 (STAT1) is a key factor that orchestrates the synergy of CnB and IFN-γ, and the phosphorylation status at Ser727 and Tyr701 of STAT1 is directly regulated by CnB and IFN-γ. PMID:25950470

  3. Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin

    PubMed Central

    Kortmann, Jens; Brubaker, Sky W.

    2015-01-01

    Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1β secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648

  4. Escherichia coli and Candida albicans Induced Macrophage Extracellular Trap-Like Structures with Limited Microbicidal Activity

    PubMed Central

    Liao, Chengshui; Liu, Xiaolei; Du, Jing; Shi, Haining; Wang, Xuelin; Bai, Xue; Peng, Peng; Yu, Lu; Wang, Feng; Zhao, Ying; Liu, Mingyuan

    2014-01-01

    The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them. PMID:24587206

  5. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.

    PubMed

    Jessop, Forrest; Hamilton, Raymond F; Rhoderick, Joseph F; Shaw, Pamela K; Holian, Andrij

    2016-10-15

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.

  6. Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin.

    PubMed

    Kortmann, Jens; Brubaker, Sky W; Monack, Denise M

    2015-08-01

    Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1β secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648

  7. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.

    PubMed

    Jessop, Forrest; Hamilton, Raymond F; Rhoderick, Joseph F; Shaw, Pamela K; Holian, Andrij

    2016-10-15

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. PMID:27594529

  8. Serum factors, cell membrane CD14, and beta2 integrins are not required for activation of bovine macrophages by lipopolysaccharide.

    PubMed Central

    Jungi, T W; Sager, H; Adler, H; Brcic, M; Pfister, H

    1997-01-01

    The role of serum factors such as lipopolysaccharide (LPS)-binding protein (LBP) and of macrophage-expressed CD14 and beta2 integrins in the activation of bovine macrophages by LPS was investigated. Macrophage activation was determined by measuring tumor necrosis factor production, NO generation, and upregulation of procoagulant activity by LPS (Escherichia coli O55:B5) at concentrations of 100 pg/ml to 100 ng/ml. The 50% effective dose for LPS was 1 order of magnitude higher than that for activating human macrophages. Macrophages were activated by LPS in the presence of serum or in the presence of albumin demonstrated to be free of LBP. The capacity to react to LPS in the absence of LBP was not due to the acquisition of LBP during a previous culture in serum. It was then established which CD14-specific antibodies block LPS binding to monocytes. Among the CD14-specific antibodies recognizing bovine mononuclear phagocytes (60bca, 3C10, My4, CAM36, VPM65, CMRF31, and TUK4), the first four blocked the binding of LPS-fluorescein isothiocyanate to bovine monocytes at low concentrations. Anti-CD14 antibodies did not block LPS-mediated activation of bovine bone marrow-derived macrophages, monocyte-derived macrophages, and alveolar macrophages. This was observed in experiments in which anti-CD14 concentrations exceeded the 50% inhibitory dose by >30-fold (3C10 and My4) or >300-fold (60bca), as defined in the binding assay described above. Monocyte-derived macrophages from an animal deficient in beta2 integrins and control macrophages were activated by similar concentrations of LPS, suggesting that beta2 integrins are not important bovine LPS receptors. Thus, in bovine macrophages, LPS recognition pathways which are independent of exogenous LBP, of membrane-expressed CD14, and of beta2 integrins may exist. PMID:9284122

  9. Regulation of inflammation-primed activation of macrophages by two serum factors, vitamin D3-binding protein and albumin.

    PubMed Central

    Yamamoto, N; Kumashiro, R; Yamamoto, M; Willett, N P; Lindsay, D D

    1993-01-01

    A very small amount (0.0005 to 0.001%) of an ammonium sulfate [50% saturated (NH4)2SO4]-precipitable protein fraction of alpha 2-globulin efficiently supported inflammation-primed activation of macrophages. This fraction contains vitamin D3-binding protein essential for macrophage activation. Comparative macrophage activation studies with fetal calf serum, alpha 2-globulin fraction, 50% (NH4)2SO4 precipitate, and purified bovine vitamin D3-binding protein revealed that fetal calf serum and alpha 2-globulin fraction appear to contain an inhibitor for macrophage activation while ammonium sulfate precipitate contains no inhibitor. This inhibitor was found to be serum albumin. When bovine serum albumin (25 micrograms/ml) was added to a medium supplemented with 0.0005 to 0.05% (NH4)2SO4 precipitate or 1 to 10 ng of vitamin D3-binding protein per ml, activation of macrophages was inhibited. PMID:8225612

  10. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  11. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease

    PubMed Central

    Peda, Jacqueline D.; Salah, Sally M.; Wallace, Darren P.; Fields, Patrick E.; Grantham, Connor J.; Fields, Timothy A.

    2016-01-01

    ABSTRACT Polycystic kidney disease (PKD) is characterized by slow expansion of fluid-filled cysts derived from tubules within the kidney. Cystic expansion results in injury to surrounding parenchyma and leads to inflammation, scarring and ultimately loss of renal function. Macrophages are a key element in this process, promoting cyst epithelial cell proliferation, cyst expansion and disease progression. Previously, we have shown that the microenvironment established by cystic epithelial cells can ‘program’ macrophages, inducing M2-like macrophage polarization that is characterized by expression of markers that include Arg1 and Il10. Here, we functionally characterize these macrophages, demonstrating that their differentiation enhances their ability to promote cyst cell proliferation. This observation indicates a model of reciprocal pathological interactions between cysts and the innate immune system: cyst epithelial cells promote macrophage polarization to a phenotype that, in turn, is especially efficient in promoting cyst cell proliferation and cyst growth. To better understand the genesis of this macrophage phenotype, we examined the role of IL-10, a regulatory cytokine shown to be important for macrophage-stimulated tissue repair in other settings. Herein, we show that the acquisition of the pathological macrophage phenotype requires IL-10 secretion by the macrophages. Further, we demonstrate a requirement for IL-10-dependent autocrine activation of the STAT3 pathway. These data suggest that the IL-10 pathway in macrophages plays an essential role in the pathological relationship between cysts and the innate immune system in PKD, and thus could be a potential therapeutic target. PMID:27491076

  12. Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors.

    PubMed

    Lee, Yun-Hee; Thacker, Robert I; Hall, Brian Eric; Kong, Raymond; Granneman, James G

    2014-01-01

    Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.

  13. Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1β Production and Activation through CD47

    PubMed Central

    Stein, Erica V.; Miller, Thomas W.; Ivins-O’Keefe, Kelly; Kaur, Sukhbir; Roberts, David D.

    2016-01-01

    Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1β by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1β mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1β in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1β pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia. PMID:26813769

  14. ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON?

    EPA Science Inventory

    ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON? UP Kodavanti1, MCJ Schladweiler1, S Becker2, DL Costa1, P Mayer3, A Ziesenis3, WG Kreyling3, 1ETD, 2HSDivision, NHEERL, USEPA, Research Triangle Park, NC, USA, and 3GSF, Inhalation Biology...

  15. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    SciTech Connect

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  16. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway

    PubMed Central

    Renzi, Anastasia; De Stefanis, Cristiano; Stronati, Laura; Franchitto, Antonio; Alisi, Anna; Onori, Paolo; De Vito, Rita; Alpini, Gianfranco; Gaudio, Eugenio

    2016-01-01

    Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production. PMID:27310371

  17. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    PubMed

    Cousins, Scott W; Espinosa-Heidmann, Diego G; Miller, Daniel M; Pereira-Simon, Simone; Hernandez, Eleut P; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication. PMID:22570607

  18. Macrophage Activation Associated with Chronic Murine Cytomegalovirus Infection Results in More Severe Experimental Choroidal Neovascularization

    PubMed Central

    Cousins, Scott W.; Espinosa-Heidmann, Diego G.; Miller, Daniel M.; Pereira-Simon, Simone; Hernandez, Eleut P.; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D.

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication. PMID:22570607

  19. Triple trouble--macrophage activation syndrome in a case of severe leptospirosis and scrub typhus co-infection.

    PubMed

    Diwan, A G; Shewale, Rahul; Iyer, Shivakumar; Nisal, Amit; Agrawa, Prakhar

    2014-01-01

    Macrophage activation syndrome is a potentially life threatening phenomenon characterised by aggressive proliferation of macrophages and T lymphocytes leading to haemophagocytosis of other blood cells and multi organ failure. Here we present a very unusual combination of leptospirosis and scrub typhus infection leading to macrophage activation syndrome. Scrub typhus associated with macrophage activation syndrome has rarely been reported in India. A 40 year old female presented with high grade fever, seizures, bodyache, arthralgia and severe breathlessness. Investigations revealed persistent thrombocytopenia, impaired liver function tests, renal dysfunction, leptospiral IgM ELISA positive and a positive Weil Felix test. There was evidence of haemophagocytosis in bone marrow. Macrophage activation syndrome if left untreated has been associated with rapidly fatal outcome and early treatment can help us save that one precious thing..called life..! PMID:25327097

  20. Mac-1 Regulates IL-13 Activity in Macrophages by Directly Interacting with IL-13Rα1.

    PubMed

    Cao, Chunzhang; Zhao, Juanjuan; Doughty, Emily K; Migliorini, Mary; Strickland, Dudley K; Kann, Maricel G; Zhang, Li

    2015-08-28

    Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1(-/-) macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1(-/-)LDLR(-/-) mice develop significantly more foam cells than control LDLR(-/-) mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.

  1. Resistance of LPS-activated bone marrow derived macrophages to apoptosis mediated by dexamethasone

    PubMed Central

    Haim, Yasmin Ohana; Unger, Naamit Deshet; Souroujon, Miriam C.; Mittelman, Moshe; Neumann, Drorit

    2014-01-01

    Glucocorticoids (GC) display pleiotropic effects on the immune system. Macrophages are a major target for GC action. Here we show that dexamethasone (DEX), a synthetic GC, decreased viability of naïve bone marrow-derived macrophages (BMDM), involving an apoptotic mechanism. Administration of DEX together with lipopolysaccharide (LPS) protected BMDM against DEX-mediated cell death, suggesting that activated BMDM respond to DEX differently than naïve BMDM. An insight to the molecular basis of LPS actions was provided by a 7 fold increase in mRNA levels of glucocorticoid receptor beta (GRβ), a GR dominant-negative splice variant which inhibits GRα's transcriptional activity. LPS did not inhibit all DEX-mediated effects on BMDM; DEX significantly reduced the percentage of BMDM expressing high levels of the cell surface markers F4/80 and CD11b and led to a decrease in macrophage inflammatory protein 1 alpha (MIP1-α) mRNA and protein levels. These two DEX-mediated effects were not prevented by LPS. Our finding that LPS did not reduce the DEX-induced elevation of glucocorticoid-induced leucine zipper (GILZ), a mediator of GCs anti-inflammatory actions, may provide an underlying mechanism. These findings enable a better understanding of clinical states, such as sepsis, in which macrophages are activated by endotoxins and treatment by GCs is considered. PMID:24608810

  2. Modulation of macrophage activities in proliferation, lysosome, and phagosome by the nonspecific immunostimulator, mica.

    PubMed

    Jung, Myunghwan; Shin, Min-Kyoung; Jung, Yeon-Kwon; Yoo, Han Sang

    2015-01-01

    It was reported that the aluminosilicate material mica activated macrophages and showed its immunostimulating effects. However, the mechanisms by which it exerts these effects are unclear. To address this, we evaluated the effects of mica fine particles (MFP, 804.1 ± 0.02 nm) on the murine macrophage cell line, RAW 264.7. Specifically, RAW 264.7 cells were treated with 100 and 500 μg/mL MFP and their proliferative response was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Changes in global gene expression upon MFP treatment for 12 and 48 h were also determined using microarrays. Following the MFP treatment, RAW 264.7 cells showed a low level of proliferation compared to nontreated cells (p < 0.01). There was a change in an expression level of 1,128 genes after 48 h treatment. Specifically, genes associated with the cell cycle, DNA replication, and pyrimidine and purine metabolisms, were down-regulated in cells treated with MFP, which resulted in reduction of cell proliferation. MFP treatment also up-regulated genes associated with lysosome and phagosome function, which are both required for macrophage activities. We speculate that activation of macrophages by mica is in part derived from up-regulation of these pathways.

  3. Virulent Mycobacterium bovis Beijing Strain Activates the NLRP7 Inflammasome in THP-1 Macrophages

    PubMed Central

    Zhou, Yang; Shah, Syed Zahid Ali; Yang, Lifeng; Zhang, Zhongqiu; Zhou, Xiangmei; Zhao, Deming

    2016-01-01

    Mycobacterium bovis is the causative agent of tuberculosis in a wide range of mammals, including humans. Macrophages are the first line of host defense. They secrete proinflammatory cytokines, such as interleukin-1 beta (IL-1β), in response to mycobacterial infection, but the underlying mechanisms by which human macrophages are activated and release IL-1β following M. bovis infection are poorly understood. Here we show that the ‘nucleotide binding and oligomerization of domain-like receptor (NLR) family pyrin domain containing 7 protein’ (NLRP7) inflammasome is involved in IL-1β secretion and caspase-1 activation induced by M. bovis infection in THP-1 macrophages. NLRP7 inflammasome activation promotes the induction of pyroptosis as well as the expression of tumor necrosis factor alpha (TNF-α), Chemokine (C-C motif) ligand 3 (CCL3) and IL-1β mRNAs. Thus, the NLRP7 inflammasome contributes to IL-1β secretion and induction of pyroptosis in response to M. bovis infection in THP-1 macrophages. PMID:27043315

  4. Modulation of Macrophage Activities in Proliferation, Lysosome, and Phagosome by the Nonspecific Immunostimulator, Mica

    PubMed Central

    Jung, Myunghwan; Shin, Min-Kyoung; Jung, Yeon-Kwon; Yoo, Han Sang

    2015-01-01

    It was reported that the aluminosilicate material mica activated macrophages and showed its immunostimulating effects. However, the mechanisms by which it exerts these effects are unclear. To address this, we evaluated the effects of mica fine particles (MFP, 804.1 ± 0.02 nm) on the murine macrophage cell line, RAW 264.7. Specifically, RAW 264.7 cells were treated with 100 and 500 μg/mL MFP and their proliferative response was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Changes in global gene expression upon MFP treatment for 12 and 48 h were also determined using microarrays. Following the MFP treatment, RAW 264.7 cells showed a low level of proliferation compared to nontreated cells (p < 0.01). There was a change in an expression level of 1,128 genes after 48 h treatment. Specifically, genes associated with the cell cycle, DNA replication, and pyrimidine and purine metabolisms, were down-regulated in cells treated with MFP, which resulted in reduction of cell proliferation. MFP treatment also up-regulated genes associated with lysosome and phagosome function, which are both required for macrophage activities. We speculate that activation of macrophages by mica is in part derived from up-regulation of these pathways. PMID:25668030

  5. Opposite Cross-Talk by Oleate and Palmitate on Insulin Signaling in Hepatocytes through Macrophage Activation*

    PubMed Central

    Pardo, Virginia; González-Rodríguez, Águeda; Guijas, Carlos; Balsinde, Jesús; Valverde, Ángela M.

    2015-01-01

    Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4. PMID:25792746

  6. Alpha-D-galactosylation of surface fucoglycoconjugate(s) upon stimulation/activation of murine peritoneal macrophages.

    PubMed

    Petryniak, J

    1992-04-01

    Murine resident macrophages express, on their surface, carbohydrate epitopes which undergo changes during their stimulation/activation as monitored by binding of 125I labelled Evonymus europaea and Griffonia simplicifolia I-B4 lectins. Treatment of the stimulated macrophages with coffee bean alpha-galactosidase abolished binding of the GS I-B4 isolectin and changed the binding pattern of the Evonymus lectin. The affinity (Ka) of Evonymus lectin for alpha-galactosidase-treated macrophages decreased approximately 23-fold, from 1.25 x 10(8) M-1 to 5.5 x 10(6) M-1. Subsequent digestion of alpha-galactosidase-treated macrophages with alpha-L-fucosidase from Trichomonas foetus, further reduced binding of Evonymus lectin. Resident macrophages showed the same pattern of Evonymus lectin binding, with the same affinity, as alpha-galactosidase-treated, stimulated macrophages. These results, together with a consideration of the carbohydrate binding specificity of the Evonymus lectin which, in the absence of alpha-D-galactosyl groups, requires alpha-L-fucosyl groups for binding, indicate the presence, on resident macrophages, of glycoconjugates with terminal alpha-L-fucosyl residues. It is also concluded that during macrophage stimulation/activation alpha-D-galactosyl residues are added to this glycoconjugate and that they form part of the receptor for Evonymus lectin. The same glycoconjugate(s) is/are also expressed on the activated macrophage IC-21 cell line which exhibits the same characteristics as that of stimulated peritoneal macrophages, i.e., it contains alpha-D-galactosyl end groups and is resistant to the action of trypsin. Both lectins were also specifically bound to Corynaebacterium parvum activated macrophages. PMID:1344714

  7. Immunomodulation of RAW 264.7 murine macrophage functions and antioxidant activities of 11 plant extracts.

    PubMed

    Ghonime, Mohammed; Emara, Mohamed; Shawky, Riham; Soliman, Hesham; El-Domany, Ramadan; Abdelaziz, Ahmed

    2015-01-01

    A group of 11 medicinal plants, including Lavandula pubescens, Trigonella foenugricium, Salsola schweinforthi, Calligonum comosum, Silene succulenta, Silene villosa, Bogonvillea glabra, Cakile maritime, Gomphrene celesoids, Mirabilis jalaba, and Silene nocturna growing in Egypt, were extracted and examined for their immunomodulatory and antioxidant activities. RAW 264.7 cells were recruited to investigate the immunomodulatory effect through multiple parameters analysis. First, the proliferation index of macrophages cells was evaluated revealing that Trigonella foenugricium, Silene succulenta and Silene villosa have a significant cytotoxic effect on RAW cells. Interestingly, we observed enhancement of macrophages phagocytic function of by all extracts except Cakile maritime, Gomphrena celosioides and Silene nocturna. Afterwards, macrophages were challenged by incubation with LPS and the effect of various extracts on inflammatory responses was investigated; the generation of NO from activated macrophage was substantially suppressed by 7 extracts namely, Trigonella foenugricium, Calligonum comosum, Silene succulenta, Bougainvillea glabra, Mirabilis jalaba, Gomphrena celosioides and Silene nocturna. TNF-α was decreased by percentage range from 3.8 to 85.8% and Trigonella foenugricium extract showed the highest inhibition of TNF-α release. All extracts except Trigonella foenugricium, Salsola schweinforthi, Silene succulenta and Mirabilis jalaba significantly inhibited COX-2 production from stimulated macrophage. Moreover, evaluating the potential antioxidant activity of these extracts showed that Trigonella foenugricium, Salsola schweinforthi, Calligonum comosum, Bogonvillea glabra and Mirabilis jalaba exhibited some antioxidant activities. Taken together, our results suggest that some of these extracts may have a considerable antinflammatory and antioxidant effects and may be a potential therapeutic choice in the treatment of inflammatory diseases. PMID:25564700

  8. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation.

    PubMed

    Roney, Kelly E; O'Connor, Brian P; Wen, Haitao; Holl, Eda K; Guthrie, Elizabeth H; Davis, Beckley K; Jones, Stephen W; Jha, Sushmita; Sharek, Lisa; Garcia-Mata, Rafael; Bear, James E; Ting, Jenny P-Y

    2011-01-01

    Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/-) macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/-) macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.

  9. Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages

    PubMed Central

    Colonne, Punsiri M.; Winchell, Caylin G.; Graham, Joseph G.; Onyilagha, Frances I.; MacDonald, Laura J.; Doeppler, Heike R.; Storz, Peter; Kurten, Richard C.; Beare, Paul A.; Voth, Daniel E.

    2016-01-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human

  10. High Fc Density Particles Result in Binary Complement Activation but Tunable Macrophage Phagocytosis

    NASA Astrophysics Data System (ADS)

    Sulchek, Todd; Pacheco, Patricia; White, David

    2014-03-01

    Macrophage phagocytosis and complement system activation represent two key components of the immune system and both can be activated through the presentation of multiple Fc domains of IgG antibodies. We have created functionalized micro- and nanoparticles with various densities of Fc domains to understand the modulation of the immune system for eventual use as a novel immunomodulation platform. Phagocytosis assays were carried out by adding functionalized particles to macrophage cells and quantitatively determined using fluorescent microscopy and flow cytometry. Complement system activation by the functionalized particles in human serum was quantified with an enzyme immunoassay. Our phagocytosis assay revealed a strong dependence on particle size and Fc density. For small particles, as the Fc density increased, the number of particles phagocytosed also increased. Large particles were phagocytosed at significantly lower levels and showed no dependency on Fc density. Complement was successfully activated at levels comparable to positive controls for small particles at high Fc densities. However at low Fc densities, there is a significant decrease in complement activation. This result suggests a binary response for complement system activation with a threshold density for successful activation. Therefore, varying the Fc density on micro/nanoparticles resulted in a tunable response in macrophage phagocytosis while a more binary response for complement activation.

  11. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  12. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life. PMID:26611075

  13. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life.

  14. Macrophage-like tumor cells as tools to study chemoattractive activity.

    PubMed

    Terheggen, P; Van Loveren, H; Den Otter, W

    1985-12-01

    Macrophage-like tumor cells can be obtained in large quantities as rather homogeneous populations, making these cells useful for chemotaxis assays. Therefore, macrophage-like cells J774A, WEHI-3, P388D1, IC-21, and NCTC 1469, all of murine origin, and U937 of human origin, were tested for chemotactic activity to a number of chemoattractive agents, such as casein, an N-formyl tetrapeptide (N-formyl-L-norleucyl-L-leucyl-L-phenylalanyl-L-tyrosine), and culture supernatants of murine SL2 lymphoma cells. J774A and WEHI-3 macrophage-like cells of murine (BALB/c) origin expressed the strongest chemotactic activity to casein and N-formyl tetrapeptide, respectively. The results show that: very standardized chemotaxis assays can be performed using these cell lines; these assays require appropriate cell line-stimulus combinations; there are substantial differences among cell lines as to sensitivity to various chemoattractive substances; macrophage cell lines and functional mutants may be helpful for the study of receptors for chemotaxins and the study of transducer signals for chemotaxis. PMID:3864910

  15. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  16. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity.

    PubMed

    Kan, Xiao-Hong; Gao, Hai-Qing; Ma, Zhi-Yong; Liu, Lin; Ling, Ming-Ying; Wang, Yuan-Yuan

    2016-02-01

    Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK.

  17. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    PubMed Central

    de Torre-Minguela, Carlos; Barberà-Cremades, Maria; Gómez, Ana I.; Martín-Sánchez, Fátima; Pelegrín, Pablo

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R. PMID:26935289

  18. Molecular cloning and function characterization of a new macrophage-activating protein from Tremella fuciformis.

    PubMed

    Hung, Chih-Liang; Chang, An-Ju; Kuo, Xhao-Kai; Sheu, Fuu

    2014-02-19

    Silver ear mushroom ( Tremella fuciformis ) is an edible fungus with health benefits. In this study, we purified a new T. fuciformis protein (TFP) and demonstrated its ability to activate primary murine macrophages. The isolation procedure involved ammonium sulfate fractionation and ion exchange chromatography. TFP naturally formed a 24 kDa homodimeric protein and did not contain glycan residues. The TFP gene was cloned using the rapid amplification of cDNA ends method, and the cDNA sequence of TFP was composed of 408 nucleotides with a 336 nucleotide open reading frame encoding a 112 amino acid protein. TFP was capable of stimulating TNF-α, IL-1β, IL-1ra, and IL-12 production in addition to CD86/MHC class II expression, mRNA expression of M1-type chemokines, and nuclear NF-κB accumulation in murine peritoneal macrophage cells. Furthermore, TFP failed to stimulate TLR4-neutralized and TLR4-knockout macrophages, suggesting that TLR4 is a required receptor for TFP signaling on macrophages. Taken together, these results indicate that TFP may be an important bioactive compound from T. fuciformis that induces M1-polarized activation through a TLR4-dependent NF-κB signaling pathway. PMID:24400969

  19. Activation of macrophages stimulated by the bengkoang fiber extract through toll-like receptor 4.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Putra, Agus Budiawan Naro; Sugahara, Takuya

    2014-07-25

    Bengkoang (Pachyrhizus erosus (L.) Urban) is an edible root tuber containing fairly large amounts of carbohydrates and crude fibers. Our previous studies showed that the bengkoang fiber extract (BFE) stimulates activation of macrophages, leading to induction of phagocytotic activity and cytokine production. In the present study we investigated the mechanism underlying activation of murine macrophages by BFE. BFE increased production of TNF-α, IL-6, and nitric oxide by J774.1 cells. In addition BFE also facilitated the gene expression levels of inducible nitric oxide synthase. We examined the effect of a TLR4 inhibitor on cytokine production to investigate the membrane receptor of macrophage activation by BFE. Treatment of J774.1 cells with the TLR4 inhibitor significantly inhibited production of IL-6 and TNF-α, suggesting that TLR4 is the target membrane receptor for BFE. The main signal molecules located downstream of TLR4 such as JNK, p38, ERK, and NF-κB were activated by BFE treatment. The immunostimulatory effect of BFE was cancelled by the pectinase treatment, suggesting that the active ingredient in BFE is pectin-like molecules. Overall results suggested that BFE activates J774.1 cells via the MAPK and NF-κB signaling pathways. PMID:24770453

  20. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.

    PubMed

    Page, Carly; Goicochea, Lindsay; Matthews, Krystal; Zhang, Yong; Klover, Peter; Holtzman, Michael J; Hennighausen, Lothar; Frieman, Matthew

    2012-12-01

    Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1(-/-) mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6(-/-) double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA

  1. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    PubMed

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  2. Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration.

    PubMed

    Kang, Min-Kyung; Li, Jing; Kim, Jung-Lye; Gong, Ju-Hyun; Kwak, Su-Nam; Park, Jung Han Yoon; Lee, Jae-Yong; Lim, Soon Sung; Kang, Young-Hee

    2012-10-01

    Diabetic nephropathy (DN) is one of the major diabetic complications and the leading cause of end-stage renal disease. In early DN, renal injury and macrophage accumulation take place in the pathological environment of glomerular vessels adjacent to renal mesangial cells expressing proinflammatory mediators. Purple corn utilized as a daily food is rich in anthocyanins exerting disease-preventive activities as a functional food. This study elucidated whether anthocyanin-rich purple corn extract (PCA) could suppress monocyte activation and macrophage infiltration. In the in vitro study, human endothelial cells and THP-1 monocytes were cultured in conditioned media of human mesangial cells exposed to 33 mM glucose (HG-HRMC). PCA decreased the HG-HRMC-conditioned, media-induced expression of endothelial vascular cell adhesion molecule-1, E-selectin, and monocyte integrins-β1 and -β2 through blocking the mesangial Tyk2 pathway. In the in vivo animal study, db/db mice were treated with 10 mg/kg PCA daily for 8 wk. PCA attenuated CXCR2 induction and the activation of Tyk2 and STAT1/3 in db/db mice. Periodic acid-Schiff staining showed that PCA alleviated mesangial expansion-elicited renal injury in diabetic kidneys. In glomeruli, PCA attenuated the induction of intracellular cell adhesion molecule-1 and CD11b. PCA diminished monocyte chemoattractant protein-1 expression and macrophage inflammatory protein 2 transcription in the diabetic kidney, inhibiting the induction of the macrophage markers CD68 and F4/80. These results demonstrate that PCA antagonized the infiltration and accumulation of macrophages in diabetic kidneys through disturbing the mesangial IL-8-Tyk-STAT signaling pathway. Therefore, PCA may be a potential renoprotective agent treating diabetes-associated glomerulosclerosis.

  3. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  4. Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice

    PubMed Central

    Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J.; Pinkerton, Kent E.; Koth, Laura L.

    2010-01-01

    Background Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. Objectives The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. Results We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean ± sd; 224,511 ± 52,330 vs 166,152 ± 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p=0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p<0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 ± 12 vs. 43 ± 22 pg/ml, p=0.03; and TNFα, 138 ± 43 vs 88 ± 78 pg/ml, p=0.04 at 3 months). Conclusions These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  5. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    PubMed

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation. PMID:12062184

  6. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity

    PubMed Central

    Semba, Hiroaki; Takeda, Norihiko; Isagawa, Takayuki; Sugiura, Yuki; Honda, Kurara; Wake, Masaki; Miyazawa, Hidenobu; Yamaguchi, Yoshifumi; Miura, Masayuki; Jenkins, Dana M. R.; Choi, Hyunsung; Kim, Jung-whan; Asagiri, Masataka; Cowburn, Andrew S.; Abe, Hajime; Soma, Katsura; Koyama, Katsuhiro; Katoh, Manami; Sayama, Keimon; Goda, Nobuhito; Johnson, Randall S.; Manabe, Ichiro; Nagai, Ryozo; Komuro, Issei

    2016-01-01

    In severely hypoxic condition, HIF-1α-mediated induction of Pdk1 was found to regulate glucose oxidation by preventing the entry of pyruvate into the tricarboxylic cycle. Monocyte-derived macrophages, however, encounter a gradual decrease in oxygen availability during its migration process in inflammatory areas. Here we show that HIF-1α-PDK1-mediated metabolic changes occur in mild hypoxia, where mitochondrial cytochrome c oxidase activity is unimpaired, suggesting a mode of glycolytic reprogramming. In primary macrophages, PKM2, a glycolytic enzyme responsible for glycolytic ATP synthesis localizes in filopodia and lammelipodia, where ATP is rapidly consumed during actin remodelling processes. Remarkably, inhibition of glycolytic reprogramming with dichloroacetate significantly impairs macrophage migration in vitro and in vivo. Furthermore, inhibition of the macrophage HIF-1α-PDK1 axis suppresses systemic inflammation, suggesting a potential therapeutic approach for regulating inflammatory processes. Our findings thus demonstrate that adaptive responses in glucose metabolism contribute to macrophage migratory activity. PMID:27189088

  7. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages.

    PubMed

    Tam, Jenny M; Mansour, Michael K; Khan, Nida S; Seward, Michael; Puranam, Sravanthi; Tanne, Antoine; Sokolovska, Anna; Becker, Christine E; Acharya, Mridu; Baird, Michelle A; Choi, Augustine M K; Davidson, Michael W; Segal, Brahm H; Lacy-Hulbert, Adam; Stuart, Lynda M; Xavier, Ramnik J; Vyas, Jatin M

    2014-12-01

    Autophagy has been postulated to play role in mammalian host defense against fungal pathogens, although the molecular details remain unclear. Here, we show that primary macrophages deficient in the autophagic factor LC3 demonstrate diminished fungicidal activity but increased cytokine production in response to Candida albicans stimulation. LC3 recruitment to fungal phagosomes requires activation of the fungal pattern receptor dectin-1. LC3 recruitment to the phagosome also requires Syk signaling but is independent of all activity by Toll-like receptors and does not require the presence of the adaptor protein Card9. We further demonstrate that reactive oxygen species generation by NADPH oxidase is required for LC3 recruitment to the fungal phagosome. These observations directly link LC3 to the inflammatory pathway against C. albicans in macrophages. PMID:24842831

  8. Assessment of phagocytic activity of cultured macrophages using fluorescence microscopy and flow cytometry.

    PubMed

    Sharma, Lokesh; Wu, Wenjun; Dholakiya, Sanjay L; Gorasiya, Samir; Wu, Jiao; Sitapara, Ravikumar; Patel, Vivek; Wang, Mao; Zur, Michelle; Reddy, Shloka; Siegelaub, Nathan; Bamba, Katrina; Barile, Frank A; Mantell, Lin L

    2014-01-01

    Phagocytosis is the process by which phagocytes, including macrophages, neutrophils and monocytes, engulf and kill invading pathogens, remove foreign particles, and clear cell debris. Phagocytes and their ability to phagocytose are an important part of the innate immune system and are critical for homeostasis of the host. Impairment in phagocytosis has been associated with numerous diseases and disorders. Different cytokines have been shown to affect the phagocytic process. Cytokines including TNFα, IL-1β, GM-CSF, and TGF-β1 were found to promote phagocytosis, whereas high mobility group box-1 (HMGB1) inhibited the phagocytic function of macrophages. Here, we describe two commonly used methods to assess the phagocytic function of cultured macrophages, which can easily be applied to other phagocytes. Each method is based on the extent of engulfment of FITC-labeled latex minibeads by macrophages under different conditions. Phagocytic activity can be assessed either by counting individual cells using a fluorescence microscope or measuring fluorescence intensity using a flow cytometer. PMID:24908301

  9. Assessment of phagocytic activity of cultured macrophages using fluorescence microscopy and flow cytometry.

    PubMed

    Sharma, Lokesh; Wu, Wenjun; Dholakiya, Sanjay L; Gorasiya, Samir; Wu, Jiao; Sitapara, Ravikumar; Patel, Vivek; Wang, Mao; Zur, Michelle; Reddy, Shloka; Siegelaub, Nathan; Bamba, Katrina; Barile, Frank A; Mantell, Lin L

    2014-01-01

    Phagocytosis is the process by which phagocytes, including macrophages, neutrophils and monocytes, engulf and kill invading pathogens, remove foreign particles, and clear cell debris. Phagocytes and their ability to phagocytose are an important part of the innate immune system and are critical for homeostasis of the host. Impairment in phagocytosis has been associated with numerous diseases and disorders. Different cytokines have been shown to affect the phagocytic process. Cytokines including TNFα, IL-1β, GM-CSF, and TGF-β1 were found to promote phagocytosis, whereas high mobility group box-1 (HMGB1) inhibited the phagocytic function of macrophages. Here, we describe two commonly used methods to assess the phagocytic function of cultured macrophages, which can easily be applied to other phagocytes. Each method is based on the extent of engulfment of FITC-labeled latex minibeads by macrophages under different conditions. Phagocytic activity can be assessed either by counting individual cells using a fluorescence microscope or measuring fluorescence intensity using a flow cytometer.

  10. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    PubMed Central

    Bordbar, Aarash; Mo, Monica L; Nakayasu, Ernesto S; Schrimpe-Rutledge, Alexandra C; Kim, Young-Mo; Metz, Thomas O; Jones, Marcus B; Frank, Bryan C; Smith, Richard D; Peterson, Scott N; Hyduke, Daniel R; Adkins, Joshua N; Palsson, Bernhard O

    2012-01-01

    Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors. PMID:22735334

  11. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation.

    PubMed

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation. PMID:24695324

  12. Krüppel Like Factor 4 Promoter Undergoes Active Demethylation during Monocyte/Macrophage Differentiation

    PubMed Central

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R.; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation. PMID:24695324

  13. Activation of Epidermal Growth Factor Receptor in Macrophages Mediates Feedback Inhibition of M2 Polarization and Gastrointestinal Tumor Cell Growth.

    PubMed

    Zhao, Gang; Liu, Liping; Peek, Richard M; Hao, Xishan; Polk, D Brent; Li, Hui; Yan, Fang

    2016-09-23

    EGF receptor (EGFR) in tumor cells serves as a tumor promoter. However, information about EGFR activation in macrophages in regulating M2 polarization and tumor development is limited. This study aimed to investigate the effects of EGFR activation in macrophages on M2 polarization and development of gastrointestinal tumors. IL-4, a cytokine to elicit M2 polarization, stimulated release of an EGFR ligand, HB-EGF, and transactivation and down-regulation of EGFR in Raw 264.7 cells and peritoneal macrophages from WT mice. Knockdown of HB-EGF in macrophages inhibited EGFR transactivation by IL-4. IL-4-stimulated STAT6 activation, Arg1 and YM1 gene expression, and HB-EGF production were further enhanced by inhibition of EGFR activity in Raw 264.7 cells using an EGFR kinase inhibitor and in peritoneal macrophages from Egfr(wa5) mice with kinase inactive EGFR and by knockdown of EGFR in peritoneal macrophages from Egfr(fl/fl) LysM-Cre mice with myeloid cell-specific EGFR deletion. Chitin induced a higher level of M2 polarization in peritoneal macrophages in Egfr(fl/fl) LysM-Cre mice than that in Egfr(fl/fl) mice. Accordingly, IL-4-conditioned medium stimulated growth and epithelial-to-mesenchymal transition in gastric epithelial and colonic tumor cells, which were suppressed by that from Raw 264.7 cells with HB-EGF knockdown but promoted by that from Egfr(wa5) and Egfr(fl/fl) LysM-Cre peritoneal macrophages. Clinical assessment revealed that the number of macrophages with EGFR expression became less, indicating decreased inhibitory effects on M2 polarization, in late stage of human gastric cancers. Thus, IL-4-stimulated HB-EGF-dependent transactivation of EGFR in macrophages may mediate inhibitory feedback for M2 polarization and HB-EGF production, thereby inhibiting gastrointestinal tumor growth.

  14. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  15. Effects of Nanosized Lithium Carbonate Particles on the Functional Activity of Macrophages During Development of Hepatocarcinoma 29.

    PubMed

    Konenkov, V I; Borodin, Yu I; Makarova, O P; Bgatova, N P; Rachkovskaya, L N

    2015-08-01

    The functional activity of macrophages in response to injection of nanosized lithium carbonate particles after initiation of hepatocarcinoma 29 in male CBA mice was evaluated by the production of NO, arginase activity, and absorption of zymosan granules. In intact animals, NO production by peritoneal macrophages increased by 4 times and arginase activity 3.1 times in response to a single injection of nanosized particles into the hip muscle. The level of NO production by macrophages remained high after 4 and 5 injections, while arginase activity returned to normal. The level of phagocytic peritoneal macrophages increased by 1.4 times after 5 injections of the particles. The level of NO production by macrophages gradually increased in animals with hepatocarcinoma developing in the hip muscle: by 1.6 times on day 3, 3.2 times on day 7, and by 2.6 times on day 13 in comparison with the corresponding parameters in intact animals. The increase of NO production by peritoneal macrophages after tumor process initiation was not paralleled by changes in arginase activity and absorption of zymosan granules. The results indicated that injection of nanosized lithium carbonate particles after inoculation of hepatocarcinoma 29 cells in the right hip muscle tissue was inessential for the function of peritoneal macrophages by the studied parameters. PMID:26388569

  16. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ.

    PubMed

    Lilo, Sarit; Zheng, Ying; Bliska, James B

    2008-09-01

    Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1beta (IL-1beta) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1beta was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1beta following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1beta were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.

  17. Caspase-1 Activation in Macrophages Infected with Yersinia pestis KIM Requires the Type III Secretion System Effector YopJ▿

    PubMed Central

    Lilo, Sarit; Zheng, Ying; Bliska, James B.

    2008-01-01

    Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1β (IL-1β) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1β was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1β following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1β were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages. PMID:18559430

  18. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  19. Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages.

    PubMed

    Uda, Sabrina; Spolitu, Stefano; Angius, Fabrizio; Collu, Maria; Accossu, Simonetta; Banni, Sebastiano; Murru, Elisabetta; Sanna, Francesca; Batetta, Barbara

    2013-11-01

    Infections share with atherosclerosis similar lipid alterations, with accumulation of cholesteryl esters (CEs) in activated macrophages and concomitant decrease of cholesterol-HDL (C-HDL). Yet the precise role of HDL during microbial infection has not been fully elucidated. Activation of P388D1 by lipopolysaccharide (LPS) triggered an increase of CEs and neutral lipid contents, along with a remarkable enhancement in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-HDL uptake. Similar results were found in human monocyte-derived macrophages and monocytes cocultured with phytohemagglutinin-activated lymphocytes. Inhibition of cholesterol esterification with Sandoz-58035 resulted in 80% suppression of CE biosynthesis in P388D1. However, only a 35% decrease of CE content, together with increased scavenger receptor class B member 1 (SR-B1) protein expression, was found after 72 h and thereafter up to 16 passages of continuous ACAT suppression. Chronic inhibition blunted the effect of LPS treatment on cholesterol metabolism, increased the ratio of free cholesterol/CE content and enhanced interleukin 6 secretion. These results imply that, besides de novo biosynthesis and acquisition by LDL, HDL contributes probably through SR-B1 to the increased CE content in macrophages, partly explaining the low levels of C-HDL during their activation. Our data suggest that in those conditions where more CEs are required, HDL rather than removing, may supply CEs to the cells. PMID:23956443

  20. Distinct signal transduction pathways for activation of rabbit alveolar macrophages in vitro by cotton bract tannin.

    PubMed

    Prévost, M C; Soulat, J M; Comminges, C; Maury, E; Aslane, R; Cohen-Jonathan, E; Cariven, C; Lauque, D; Chap, H

    1996-05-01

    These experiments were designed to study signal transduction pathways in alveolar macrophages stimulated by condensed tannin or zymosan. Condensed tannins, present in cotton mill dust, alter the host-defense function of alveolar macrophages and may contribute to the pathogenesis of byssinosis. We tried to determine the early steps in signal transduction mechanisms of cell activation by tannin. With the quantification of 51Cr release, we determined that tannin was cytotoxic for the cells after 30 min activation with 130 micrograms for 2 x 10(6) cells. 51Cr release was similar for control cells and zymosan- or 30 micrograms tannin-activated cells. Using the luciferine luciferase reaction, we showed that tannin markedly depleted ATP cell content. In inositol-labeled cells, tannin increased inositolphosphate release in a dose-dependent manner. In lysoPAF-labeled cells, tannin induced synthesis of phosphatidic acid and diglycerides. In the presence of ethanol, the level of tannin-induced phosphatidic acid was slightly reduced, and phosphatidylethanol was synthesized. No phosphatidylethanol was found in alveolar macrophages stimulated by zymosan in the presence of ethanol. GF 109203X, a specific inhibitor of protein kinase C decreased only tannin-induced phosphatidylethanol synthesis. In conclusion, tannin (at 30 or 130 micrograms/ml) activated an inositol phospholipase C in alveolar membranes. Phosphatidylcholine phospholipases C and D were found only at the higher concentration of tannin.

  1. Mechanism for macrophage activation against Corynebacterium parvum--participation of T cells and its lymphokines.

    PubMed

    Mori, H; Mihara, M; Uesugi, Y; Nagai, H; Koda, A

    1994-01-01

    It is well known that Corynebacterium parvum activates macrophages to produce tumor necrosis factor (TNF). It is suspected that the activation of macrophages by C. parvum requires T-cell participation. The purpose of this study was to confirm that T cells participate in the activation of macrophages by C. parvum. TNF production in vitro from the spleen cells of BALB/c(-)+/+ mice was abrogated completely by the pre-treatment of spleen cells with anti-Ia antiserum and complement, indicating that Ia+ cells are the source of TNF. TNF production was not elicited at all in BALB/c-nu/nu mice. However, there was an increase in the number of Ia+ cells as well as an increase in the weight of spleen and liver. Supernatant from a culture of spleen cells stimulated with phytohemagglutinin-P (a PHA-induced lymphokine) made it possible for BALB/c-nu/nu mice to produce TNF, associated with an induction of Lyt-1+ cells and Lyt-2+ cells. However, treatment with the lymphokine did not augment the increases of Ia+ cells or liver and spleen weights. These results suggest that increasing the number of Ia+ cells is not sufficient to bring about TNF production; Ia+ cells must also be stimulated by T cells or T-cell lymphokines in order to produce TNF. These results suggest that T cells play an essential role in the activation of Ia+ cells against C. parvum. PMID:7723692

  2. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation.

    PubMed

    Yang, Linlin; Carrillo, Marykate; Wu, Yuchieh M; DiAngelo, Susan L; Silveyra, Patricia; Umstead, Todd M; Halstead, E Scott; Davies, Michael L; Hu, Sanmei; Floros, Joanna; McCormack, Francis X; Christensen, Neil D; Chroneos, Zissis C

    2015-01-01

    The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages. PMID:25965346

  3. Macrophage activation syndrome induced by A/H1N1 influenza in cystic fibrosis.

    PubMed

    Casciaro, Rosaria; Cresta, Federico; Favilli, Federica; Naselli, Aldo; De Alessandri, Alessandra; Minicucci, Laura

    2014-02-01

    Bacterial respiratory infections have an important impact on the development and progression of pulmonary disease in cystic fibrosis (CF). Viral infections are possible triggers of acute deterioration in the clinical status of CF patients. Macrophage activation syndrome (MAS) is a life-threatening complication of rheumatic disease characterized by pancytopenia, hepatitis, hyperferritinemia, coagulopathy, and neurologic symptoms. This syndrome is thought to be caused by the activation and uncontrolled proliferation of T lymphocytes and well-differentiated macrophages, leading to widespread hemophagocytosis and cytokine overproduction. Here, we report the case of a boy affected by CF who developed MAS triggered by pandemic H1N1 influenza; good clinical response was obtained through high dose prednisone treatment. PMID:23401277

  4. Fibrinogen drives dystrophic muscle fibrosis via a TGFβ/alternative macrophage activation pathway

    PubMed Central

    Vidal, Berta; Serrano, Antonio L.; Tjwa, Marc; Suelves, Mònica; Ardite, Esther; De Mori, Roberta; Baeza-Raja, Bernat; Martínez de Lagrán, María; Lafuste, Peggy; Ruiz-Bonilla, Vanessa; Jardí, Mercè; Gherardi, Romain; Christov, Christo; Dierssen, Mara; Carmeliet, Peter; Degen, Jay L.; Dewerchin, Mieke; Muñoz-Cánoves, Pura

    2008-01-01

    In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen–Mac-1 receptor binding, through induction of IL-1β, drives the synthesis of transforming growth factor-β (TGFβ) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFβ further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its αvβ3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy. PMID:18593877

  5. [Plasmapheresis for macrophage activation syndrome and multiorgan failure as first presentation of juvenile dermatomyositis].

    PubMed

    Bustos B, R; Carrasco A, C; Toledo R, C

    2012-07-01

    The use of extracorporeal techniques for the treatment of paediatric diseases has expanded dramatically in the past decade. Plasmapheresis, a technique for exchanging plasma components with albumin or plasma, has been used in some rheumatologic conditions. We report the clinical course of a 7 years old boy with clinical and biological features of macrophage activation syndrome and multiorgan failure, at the time of presentation of severe juvenile dermatomyositis, and non responsive to corticosteroids, cyclosporine and immunoglobulin. After 4 days in the paediatric intensive care unit, plasmapheresis was used as rescue therapy. Repeated therapeutic plasmapheresis was effective for improving the multiorgan failure and laboratory abnormalities. The patient was discharged on the 21st hospital day with good functional condition. Plasmapheresis should be considered as rescue treatment in patients with life threatening macrophage activation syndrome and systemic onset of juvenile dermatomyositis. PMID:22342516

  6. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    SciTech Connect

    Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  7. Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury.

    PubMed

    Papa, Simonetta; Rossi, Filippo; Ferrari, Raffaele; Mariani, Alessandro; De Paola, Massimiliano; Caron, Ilaria; Fiordaliso, Fabio; Bisighini, Cinzia; Sammali, Eliana; Colombo, Claudio; Gobbi, Marco; Canovi, Mara; Lucchetti, Jacopo; Peviani, Marco; Morbidelli, Massimo; Forloni, Gianluigi; Perale, Giuseppe; Moscatelli, Davide; Veglianese, Pietro

    2013-11-26

    Much evidence shows that acute and chronic inflammation in spinal cord injury (SCI), characterized by immune cell infiltration and release of inflammatory mediators, is implicated in development of the secondary injury phase that occurs after spinal cord trauma and in the worsening of damage. Activation of microglia/macrophages and the associated inflammatory response appears to be a self-propelling mechanism that leads to progressive neurodegeneration and development of persisting pain state. Recent advances in polymer science have provided a huge amount of innovations leading to increased interest for polymeric nanoparticles (NPs) as drug delivery tools to treat SCI. In this study, we tested and evaluated in vitro and in vivo a new drug delivery nanocarrier: minocycline loaded in NPs composed by a polymer based on poly-ε-caprolactone and polyethylene glycol. These NPs are able to selectively target and modulate, specifically, the activated proinflammatory microglia/macrophages in subacute progression of the secondary injury in SCI mouse model. After minocycline-NPs treatment, we demonstrate a reduced activation and proliferation of microglia/macrophages around the lesion site and a reduction of cells with round shape phagocytic-like phenotype in favor of a more arborized resting-like phenotype with low CD68 staining. Treatment here proposed limits, up to 15 days tested, the proinflammatory stimulus associated with microglia/macrophage activation. This was demonstrated by reduced expression of proinflammatory cytokine IL-6 and persistent reduced expression of CD68 in traumatized site. The nanocarrier drug delivery tool developed here shows potential advantages over the conventionally administered anti-inflammatory therapy, maximizing therapeutic efficiency and reducing side effects.

  8. Immune Activity of BCG Infected Mouse Macrophages Treated with a Novel Recombinant Mouse Lactoferrin.

    PubMed

    O'Shea, Kelly M; Hwang, Shen-An; Actor, Jeffrey K

    2015-01-01

    Lactoferrin has been investigated for its adjuvant action to boost the BCG vaccine. Previous studies demonstrated that lactoferrin (LF) enhanced efficacy of the Bacillus Calmette-Guérin (BCG) vaccine to protect mice against the virulent Erdman Mycobacterium tuberculosis challenge. The studies here investigate the hypothesis that a novel CHO-derived recombinant mouse LF can modify cytokine production and antigen presentation molecules on macrophages. The mouse LF (rmLF) was examined for effects on bone marrow derived macrophage (BMM) activities when cultured with BCG. Comparisons were made to CHO-derived recombinant human LF (rhLF). Inflammatory cytokine responses were investigated, as were antigen presentation and associated co-stimulatory molecules. Cytokine responses were subsequently measured when these cells were co-cultured with naïve or BCG sensitized CD4+ lymphocytes. While overall responses were similar between mouse, human, and bovine forms, the homologous rmLF treated infected BMMs showed unique activation patterns of cytokine production. These results indicate that species-specific LF can have different effects on mouse macrophages exposed to BCG, thus potentially affecting adjuvant activity when used in models of vaccination in mice.

  9. Role of complement activation and antibody in the interaction between Mycobacterium tuberculosis and human macrophages.

    PubMed

    Manivannan, S; Rao, Narayan V; Ramanathan, V D

    2012-08-01

    Mycobacterium tuberculosis-specific antibodies possess immunomodulatory effects during tuberculosis infection. Prior sensitization to environmental mycobacteria is known to suppress immune responses against BCG and M. tuberculosis. Mycobacteria-induced antibodies can influence events such as complement activation and phagocytosis during infectious process. In the present study role of anti-M. tuberculosis IgG (anti-M. tb IgG) antibody during interaction between M. tuberculosis and human macrophages mediated through complement has been examined in vitro. Anti-M. tb IgG antibody significantly enhanced complement activation by M. tuberculosis. Phagocytosis of M. tuberculosis by macrophages increased significantly in the presence of complement and/or antibody. Moreover, antibody enhanced phagocytosis in the presence of complement. Addition of antibody alone or in combination with complement also augmented intracellular viability of bacilli within macrophages. Results of this study showed that anti-mycobacterial antibody enhances complement activation and anti-M. tb IgG antibody probably modulates effects of complement during early stages of tuberculosis infection.

  10. Activation of autophagy in macrophages by pro-resolving lipid mediators.

    PubMed

    Prieto, Patricia; Rosales-Mendoza, César Eduardo; Terrón, Verónica; Toledano, Víctor; Cuadrado, Antonio; López-Collazo, Eduardo; Bannenberg, Gerard; Martín-Sanz, Paloma; Fernández-Velasco, María; Boscá, Lisardo

    2015-01-01

    The resolution of inflammation is an active process driven by specialized pro-resolving lipid mediators, such as 15-epi-LXA4 and resolvin D1 (RvD1), that promote tissue regeneration. Macrophages regulate the innate immune response being key players during the resolution phase to avoid chronic inflammatory pathologies. Their half-life is tightly regulated to accomplish its phagocytic function, allowing the complete cleaning of the affected area. The balance between apoptosis and autophagy appears to be essential to control the survival of these immune cells within the inflammatory context. In the present work, we demonstrate that 15-epi-LXA4 and RvD1 at nanomolar concentrations promote autophagy in murine and human macrophages. Both compounds induced the MAP1LC3-I to MAP1LC3-II processing and the degradation of SQSTM1 as well as the formation of MAP1LC3(+) autophagosomes, a typical signature of autophagy. Furthermore, 15-epi-LXA4 and RvD1 treatment favored the fusion of the autophagosomes with lysosomes, allowing the final processing of the autophagic vesicles. This autophagic response involves the activation of MAPK1 and NFE2L2 pathways, but by an MTOR-independent mechanism. Moreover, these pro-resolving lipids improved the phagocytic activity of macrophages via NFE2L2. Therefore, 15-epi-LXA4 and RvD1 improved both survival and functionality of macrophages, which likely supports the recovery of tissue homeostasis and avoiding chronic inflammatory diseases.

  11. Activation of autophagy in macrophages by pro-resolving lipid mediators

    PubMed Central

    Prieto, Patricia; Rosales-Mendoza, César Eduardo; Terrón, Verónica; Toledano, Víctor; Cuadrado, Antonio; López-Collazo, Eduardo; Bannenberg, Gerard; Martín-Sanz, Paloma; Fernández-Velasco, María; Boscá, Lisardo

    2015-01-01

    The resolution of inflammation is an active process driven by specialized pro-resolving lipid mediators, such as 15-epi-LXA4 and resolvin D1 (RvD1), that promote tissue regeneration. Macrophages regulate the innate immune response being key players during the resolution phase to avoid chronic inflammatory pathologies. Their half-life is tightly regulated to accomplish its phagocytic function, allowing the complete cleaning of the affected area. The balance between apoptosis and autophagy appears to be essential to control the survival of these immune cells within the inflammatory context. In the present work, we demonstrate that 15-epi-LXA4 and RvD1 at nanomolar concentrations promote autophagy in murine and human macrophages. Both compounds induced the MAP1LC3-I to MAP1LC3-II processing and the degradation of SQSTM1 as well as the formation of MAP1LC3+ autophagosomes, a typical signature of autophagy. Furthermore, 15-epi-LXA4 and RvD1 treatment favored the fusion of the autophagosomes with lysosomes, allowing the final processing of the autophagic vesicles. This autophagic response involves the activation of MAPK1 and NFE2L2 pathways, but by an MTOR-independent mechanism. Moreover, these pro-resolving lipids improved the phagocytic activity of macrophages via NFE2L2. Therefore, 15-epi-LXA4 and RvD1 improved both survival and functionality of macrophages, which likely supports the recovery of tissue homeostasis and avoiding chronic inflammatory diseases. PMID:26506892

  12. Genome-Wide Analysis of Antiviral Signature Genes in Porcine Macrophages at Different Activation Statuses

    PubMed Central

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R. R.; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  13. Nitric oxide production by chicken macrophages activated by Acemannan, a complex carbohydrate extracted from Aloe vera.

    PubMed

    Karaca, K; Sharma, J M; Nordgren, R

    1995-03-01

    Cultures of normal chicken spleen cells and HD11 line cells produce nitric oxide (NO) in response to Acemannan, a complex carbohydrate derived from the Aloe vera plant. Neither cell type produced detectable amounts of NO in response to similar concentrations of yeast mannan, another complex carbohydrate. Nitric oxide production was dose dependent and inhibitable by the nitric oxide synthase inhibitor NG-methyl-L-arginine. In addition, the production of NO was inhibited by preincubation of ACM with concanavalin A in a dose-dependent manner. These results suggest that ACM-induced NO synthesis may be mediated through macrophage mannose receptors, and macrophage activation may be accountable for some of the immunomodulatory effects of ACM in chickens.

  14. The influence of bacterial exotoxins and endotoxins on the phagocytic activity of human macrophages in culture.

    PubMed

    D'Onofrio, C; Paradisi, F

    1983-01-01

    The effect of bacterial exotoxins and endotoxins on phagocytosis was tested on human macrophages in monolayer cultures by determining the rate of zymosan particle ingestion at different toxin concentrations and incubation times. The exotoxins tested were staphylococcal alpha-toxin and diphtheria-toxin. The endotoxins used were lipopolysaccharides from Salmonella typhi, Salmonella typhimurium, Shigella flexneri and Serratia marcescens. Phagocytosis was significantly impaired after prolonged incubation with diphtheria toxin whereas alpha-toxin was ineffective. Endotoxin-treated macrophages showed a wide range of phagocytic activity. Enhancement of phagocytosis was observed with a low concentration of endotoxin (1 microgram/ml) from S. typhi, S. typhimurium and S. flexneri. Higher concentrations (2.5 and 5 micrograms/ml) depressed phagocytosis to varying extents, except for S. typhi lipopolysaccharide, which did not induce a significant decrease in phagocytosis in comparison to the controls.

  15. Estrogen Represses Hepatocellular Carcinoma (HCC) Growth via Inhibiting Alternative Activation of Tumor-associated Macrophages (TAMs)*

    PubMed Central

    Yang, Weiwei; Lu, Yan; Xu, Yichen; Xu, Lizhi; Zheng, Wei; Wu, Yuanyuan; Li, Long; Shen, Pingping

    2012-01-01

    Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC. PMID:22908233

  16. Quantitative Proteomics Reveals the Induction of Mitophagy in Tumor Necrosis Factor-α-activated (TNFα) Macrophages*

    PubMed Central

    Bell, Christina; English, Luc; Boulais, Jonathan; Chemali, Magali; Caron-Lizotte, Olivier; Desjardins, Michel; Thibault, Pierre

    2013-01-01

    Macrophages play an important role in innate and adaptive immunity as professional phagocytes capable of internalizing and degrading pathogens to derive antigens for presentation to T cells. They also produce pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) that mediate local and systemic responses and direct the development of adaptive immunity. The present work describes the use of label-free quantitative proteomics to profile the dynamic changes of proteins from resting and TNF-α-activated mouse macrophages. These analyses revealed that TNF-α activation of macrophages led to the down-regulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the down-regulation of mitochondria proteins occurred through mitophagy and was specific to TNF-α, as other cytokines such as IL-1β and IFN-γ had no effect on mitochondria degradation. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-α enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules. These findings highlight an unsuspected role of TNF-α in mitophagy and expanded our understanding of the mechanisms responsible for MHC presentation of self-antigens. PMID:23674617

  17. Effect of Estragole on Leukocyte Behavior and Phagocytic Activity of Macrophages

    PubMed Central

    Wiirzler, Luiz Alexandre Marques; Silva-Filho, Saulo Euclides; Kummer, Raquel; Pedroso, Raissa Bocchi; Spironello, Ricardo Alexandre; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2014-01-01

    Estragole, a chemical constituent of the essential oils of many aromatic plants, is used as flavoring in beverage and food industries. In vivo and in vitro experimental assays have shown that EST has sedative, anticonvulsant, antioxidant, antimicrobial, and anesthetic activity. In this work, we evaluate the effect of EST on leukocyte behavior and phagocytic activity of macrophages. In the peritonitis model, EST (500 and 750 mg/kg) decreased the infiltration of peritoneal exudate leukocytes. In vitro chemotaxis assay showed that EST (3, 10, 30, and 60 μg/mL) inhibited neutrophil migration toward fMLP. In the in vivo microcirculation assay, EST at doses of 250, 500, and 750 mg/kg significantly reduced the number of rolling and adherent leukocytes and at doses of 250 and 500 mg/kg decreased number of leukocyte migrated to perivascular tissue. The results showed that EST (3, 10, and 30 μg/mL) was able to stimulate the macrophages phagocytosis but only at concentration of 10 μg/mL promoted an increase in nitric oxide (NO) production. In conclusion, this study showed that EST had potential anti-inflammatory effects, likely by inhibiting leukocyte migration and by stimulating macrophages phagocytosis. PMID:25152763

  18. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  19. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    PubMed

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process.

  20. Macrophage Bactericidal Activities against Staphylococcus aureus Are Enhanced In Vivo by Selenium Supplementation in a Dose-Dependent Manner

    PubMed Central

    Aribi, Mourad; Meziane, Warda; Habi, Salim; Boulatika, Yasser

    2015-01-01

    Background Dietary selenium is of fundamental importance to maintain optimal immune function and enhance immunity during infection. To this end, we examined the effect of selenium on macrophage bactericidal activities against Staphylococcus aureus. Methods Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured with S. aureus and different concentrations of selenium. Results Infected and selenium-supplemented animals have significantly decreased levels of serum nitric oxide (NO) production when compared with infected but non-selenium-supplemented animals at day 7 post-infection (p < 0.05). A low dose of 5 ng/mL selenium induced a significant decrease in macrophage NO production, but significant increase in hydrogen peroxide (H2O2) levels (respectively, p = 0.009, p < 0.001). The NO production and H2O2 levels were significantly increased with increasing concentrations of selenium; the optimal macrophage activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced a significant decrease in the bacterial arginase activity but a significant increase in the macrophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of bacterial growth (p < 0.0001) and a significant increase in macrophage phagocytic activity, NO production/arginase balance and S. aureus killing (for all comparisons, p < 0.001). Conclusions Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and bacterial killing suggesting that inadequate doses may cause a loss of macrophage bactericidal activities and that selenium supplementation could enhance the in vivo control of immune response to S. aureus. PMID:26340099

  1. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity.

    PubMed

    Baer, Caroline; Squadrito, Mario Leonardo; Laoui, Damya; Thompson, Danielle; Hansen, Sarah K; Kiialainen, Anna; Hoves, Sabine; Ries, Carola H; Ooi, Chia-Huey; De Palma, Michele

    2016-07-01

    Tumour-associated macrophages (TAMs) largely express an alternatively activated (or M2) phenotype, which entails immunosuppressive and tumour-promoting capabilities. Reprogramming TAMs towards a classically activated (M1) phenotype may thwart tumour-associated immunosuppression and unleash anti-tumour immunity. Here we show that conditional deletion of the microRNA (miRNA)-processing enzyme DICER in macrophages prompts M1-like TAM programming, characterized by hyperactive IFN-γ/STAT1 signalling. This rewiring abated the immunosuppressive capacity of TAMs and fostered the recruitment of activated cytotoxic T lymphocytes (CTLs) to the tumours. CTL-derived IFN-γ exacerbated M1 polarization of Dicer1-deficient TAMs and inhibited tumour growth. Remarkably, DICER deficiency in TAMs negated the anti-tumoral effects of macrophage depletion by anti-CSF1R antibodies, and enabled complete tumour eradication by PD1 checkpoint blockade or CD40 agonistic antibodies. Finally, genetic rescue of Let-7 miRNA activity in Dicer1-deficient TAMs partly restored their M2-like phenotype and decreased tumour-infiltrating CTLs. These findings suggest that DICER/Let-7 activity opposes IFN-γ-induced, immunostimulatory M1-like TAM activation, with potential therapeutic implications. PMID:27295554

  2. Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway

    PubMed Central

    Menon, Prashanthi; Podolsky, Irina; Feig, Jonathan E.; Aderem, Alan; Fisher, Edward A.; Gold, Elizabeth S.

    2014-01-01

    We report the first systems biology investigation of regulators controlling arterial plaque macrophage transcriptional changes in response to lipid lowering in vivo in two distinct mouse models of atherosclerosis regression. Transcriptome measurements from plaque macrophages from the Reversa mouse were integrated with measurements from an aortic transplant-based mouse model of plaque regression. Functional relevance of the genes detected as differentially expressed in plaque macrophages in response to lipid lowering in vivo was assessed through analysis of gene functional annotations, overlap with in vitro foam cell studies, and overlap of associated eQTLs with human atherosclerosis/CAD risk SNPs. To identify transcription factors that control plaque macrophage responses to lipid lowering in vivo, we used an integrative strategy – leveraging macrophage epigenomic measurements – to detect enrichment of transcription factor binding sites upstream of genes that are differentially expressed in plaque macrophages during regression. The integrated analysis uncovered eight transcription factor binding site elements that were statistically overrepresented within the 5′ regulatory regions of genes that were upregulated in plaque macrophages in the Reversa model under maximal regression conditions and within the 5′ regulatory regions of genes that were upregulated in the aortic transplant model during regression. Of these, the TCF/LEF binding site was present in promoters of upregulated genes related to cell motility, suggesting that the canonical Wnt signaling pathway may be activated in plaque macrophages during regression. We validated this network-based prediction by demonstrating that β-catenin expression is higher in regressing (vs. control group) plaques in both regression models, and we further demonstrated that stimulation of canonical Wnt signaling increases macrophage migration in vitro. These results suggest involvement of canonical Wnt signaling in

  3. Pioglitazone Suppresses CXCR7 Expression To Inhibit Human Macrophage Chemotaxis through Peroxisome Proliferator-Activated Receptor γ.

    PubMed

    Zhao, Duo; Zhu, Zhicheng; Li, Dan; Xu, Rihao; Wang, Tiance; Liu, Kexiang

    2015-11-17

    Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Pioglitazone, the widely used thiazolidinedione, is shown to be efficient in the prevention of cardiovascular complications of T2DM. In this study, we report that pioglitazone inhibits CXCR7 expression and thus blocks chemotaxis in differentiated macrophage without perturbing cell viability or macrophage differentiation. In addition, pioglitazone-mediated CXCR7 suppression and chemotaxis inhibition occur via activating peroxisome proliferator-activated receptor γ (PPARγ) but not PPARα in differentiated macrophage. More importantly, pioglitazone therapy-induced PPARγ activation suppresses CXCR7 expression in human carotid atherosclerotic lesions. Collectively, our data demonstrate that pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through PPARγ.

  4. Effects of cigarette smoke on Toll-like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages.

    PubMed

    Metcalfe, H J; Lea, S; Hughes, D; Khalaf, R; Abbott-Banner, K; Singh, D

    2014-06-01

    Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal innate immune response. We have investigated the changes in the innate immune response of COPD alveolar macrophages exposed to both cigarette smoke and Toll-like receptor (TLR) stimulation. COPD and control alveolar macrophages were exposed to cigarette smoke extract (CSE) followed by TLR-2, -4 and -5 ligands [Pam3CSK4, lipopolysaccharide (LPS) and phase I flagellin (FliC), respectively] or non-typeable Haemophilus influenzae (NTHi). CSE exposure suppressed TLR-induced tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and regulated on activation, normal T cell expressed and secreted (RANTES) production in both COPD and control alveolar macrophages, but had no effect on interleukin 8 (CXCL8) production. Similarly, CSE suppressed NTHi-induced TNF-α but not NTHi-induced CXCL8 production in COPD alveolar macrophages. Gene expression analysis showed that CSE suppressed LPS-induced TNF-α transcription but not CXCL8 transcription in COPD alveolar macrophages. The dampening effect of CSE on LPS-induced cytokine production was associated with a reduction in p38, extracellular signal regulated kinase (ERK) and p65 activation. In conclusion, CSE caused a reduced innate immune response in COPD alveolar macrophages, with the exception of persistent CXCL8 production. This could be a mechanism by which alveolar macrophages promote neutrophil chemotaxis under conditions of oxidative stress and bacterial exposure.

  5. Phagocytosis-induced 51Cr release from activated macrophages and blood mononuclears. Effect of colchicine and antioxidants

    SciTech Connect

    McGee, M.P.; Hale, A.H.

    1981-09-01

    The chromium-release test was adapted to the measurement of the cellular injury induced when activated macrophages phagocytose particulates. Macrophages obtained from rabbit lungs undergoing BCG-induced chronic inflammation released more chromium when incubated in the presence of phagocytosable particles than when incubated under resting conditions. Blood mononuclear cells, 40-60% monocytes, procured from the same BCG-injected animals, were less susceptible to phagocytosis-induced injury than the macrophages obtained from the lungs. The amount of chromium released by the activated macrophages was proportional to the number of particles present during incubation. In the presence of catalase, the amounts of chromium released by phagocytosing and resting macrophages were similar; in the presence of superoxide dismutase and cytochrome c, the amount of chromium released by phagocytosing macrophages was 13-35% less than the amount of chromium released by macrophages incubated without the antioxidants. In addition, colchicine, an inhibitor of degranulation also exerted partial inhibition of the chromium release. These results suggest that oxygen radicals and lysosomal contents contribute to the cellular injury that results from phagocytosis.

  6. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-γ and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS+IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions.

  7. Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages.

    PubMed

    Finethy, Ryan; Jorgensen, Ine; Haldar, Arun K; de Zoete, Marcel R; Strowig, Till; Flavell, Richard A; Yamamoto, Masahiro; Nagarajan, Uma M; Miao, Edward A; Coers, Jörn

    2015-12-01

    Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1β (IL-1β) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1β transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections.

  8. Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages

    PubMed Central

    Finethy, Ryan; Jorgensen, Ine; Haldar, Arun K.; de Zoete, Marcel R.; Strowig, Till; Flavell, Richard A.; Yamamoto, Masahiro; Nagarajan, Uma M.; Miao, Edward A.

    2015-01-01

    Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1β (IL-1β) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1β transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections. PMID:26416908

  9. IL-16 activates the SAPK signaling pathway in CD4+ macrophages.

    PubMed

    Krautwald, S

    1998-06-15

    IL-16 has been reported as a modulator of T cell activation and was shown to function as chemoattractant factor. The chemotactic activity of IL-16 depends on the expression of CD4 on the surface of target cells, but the intracellular signaling pathways are only now being deciphered. This report describes IL-16 as an additional activator of the stress-activated protein kinase (SAPK) pathway in CD4+ macrophages. Treatment of these cells with recombinant expressed IL-16 leads to the phosphorylation of SEK-1, resulting in activation of the SAPKs p46 and p54. IL-16 stimulation also leads to the phosphorylation of c-Jun and p38 MAPK (mitogen-activated protein kinase), without inducing MAPK-family members ERK-1 and ERK-2. Interestingly, the IL-16-mediated activation of SAPKs and p38 MAPK in macrophages alone induces no detectable apoptotic cell death. These observations suggest specific regulatory functions of IL-16 distinct from the proinflammatory cytokines TNF-alpha and IL-1beta. PMID:9637499

  10. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    PubMed Central

    Ohta, Takashi; Ido, Atsushi; Kusano, Kie; Miura, Chiemi; Miura, Takeshi

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon β (IFNβ) and promoted the activation of nuclear factor kappa B (NF-κB) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal. PMID:25490773

  11. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  12. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  13. Expression of inducible nitric oxide synthase by stimulated macrophages correlates with their antihistoplasma activity.

    PubMed Central

    Lane, T E; Otero, G C; Wu-Hsieh, B A; Howard, D H

    1994-01-01

    The antihistoplasma activity of recombinant murine gamma interferon (rMuIFN-gamma)-treated macrophages of the RAW 264.7 cell line depends on the generation of nitric oxide (NO.) from L-arginine. Macrophages of the P388D1 cell line treated with rMuIFN-gamma do not produce NO. or inhibit the intracellular growth of Histoplasma capsulatum. NO. is generated by the inducible enzyme nitric oxide synthase (iNOS) formed by stimulated macrophages. Northern (RNA) blot analysis of RAW 264.7 cells revealed the expression of iNOS mRNA after exposure to rMuIFN-gamma. In contrast, rMuIFN-gamma-treated P388D1 cells did not produce detectable levels of iNOS. These data suggest that the failure of P388D1 cells to generate NO. and to restrict the intracellular growth of H. capsulatum is due to a lack of expression of iNOS following treatment with rMuIFN-gamma. Images PMID:7510670

  14. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation

    PubMed Central

    DiAngelo, Susan L.; Silveyra, Patricia; Umstead, Todd M.; Halstead, E. Scott; Davies, Michael L.; Hu, Sanmei; Floros, Joanna; McCormack, Francis X.; Christensen, Neil D.; Chroneos, Zissis C.

    2015-01-01

    The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages’ inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages. PMID:25965346

  15. Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    PubMed Central

    Bewley, Martin A.; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M.; Read, Robert C.; Mitchell, Timothy J.; Whyte, Moira K. B.

    2014-01-01

    ABSTRACT Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. PMID:25293758

  16. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK)*

    PubMed Central

    Chan, Kenny L.; Pillon, Nicolas J.; Sivaloganathan, Darshan M.; Costford, Sheila R.; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-01-01

    A rise in tissue-embedded macrophages displaying “M1-like” proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues. PMID:25987561

  17. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    PubMed

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-01

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  18. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity

    PubMed Central

    Toyonaga, Takahiko; Nakase, Hiroshi; Ueno, Satoru; Matsuura, Minoru; Yoshino, Takuya; Honzawa, Yusuke; Itou, Ayako; Namba, Kazuyoshi; Minami, Naoki; Yamada, Satoshi; Koshikawa, Yorimitsu; Uede, Toshimitsu; Chiba, Tsutomu; Okazaki, Kazuichi

    2015-01-01

    Background Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear. Aims To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice. Methods We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay. Results OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml. Conclusions OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity. PMID:26274807

  19. Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events

    PubMed Central

    1995-01-01

    Lipopolysaccharide (LPS), a highly conserved component of the outer membrane of gram-negative bacteria, stimulates macrophages to release various cytokine and eicosanoid mediators of the immune response. The mechanism by which LPS stimulates these cells is poorly characterized. One of the most rapid LPS-stimulated events is the phosphorylation and activation of the p42 and p44 isoforms of mitogen-activated protein (MAP) kinase. We wished to examine the role of MAP kinase in LPS- induced signaling in murine macrophages by activating MAP kinase independently of LPS. An expression vector encoding a Raf-1:estrogen receptor (ER) chimeric protein was transfected into the murine macrophage cell line RAW 264.7. Activation of this chimeric protein (delta Raf-1:ER) by estradiol resulted in rapid and prolonged activation of MAP kinase, as expected from previous results implicating Raf-1 as an upstream activator of this signaling cascade. LPS stimulation induced accumulation of MAP kinase phosphatase 1 messenger RNA, whereas delta Raf-1:ER activation did not, perhaps accounting for the more prolonged activation of MAP kinase seen in response to delta Raf-1:ER activation. Similarly, activation of DNA binding by the transcription factor, nuclear factor (NF) kappa B, as assessed by electrophoretic mobility shift assay, occurred in response to LPS stimulation but not in response to delta Raf-1:ER activation or phorbol myristate acetate (PMA) stimulation. Using an enzyme-linked immunosorbent assay for murine tumor necrosis factor alpha (TNF-alpha), we found that LPS and PMA stimulation and delta Raf-1:ER activation induced secretion of TNF-alpha, although the amount of TNF-alpha secreted in response to delta Raf-1:ER activation and PMA stimulation was approximately 20-fold less than that secreted in response to LPS. Correspondingly, accumulation of TNF-alpha messenger RNA was weakly induced by delta Raf-1:ER activation or PMA stimulation, whereas strong induction was noted in

  20. Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events.

    PubMed

    Hambleton, J; McMahon, M; DeFranco, A L

    1995-07-01

    Lipopolysaccharide (LPS), a highly conserved component of the outer membrane of gram-negative bacteria, stimulates macrophages to release various cytokine and eicosanoid mediators of the immune response. The mechanism by which LPS stimulates these cells is poorly characterized. One of the most rapid LPS-stimulated events is the phosphorylation and activation of the p42 and p44 isoforms of mitogen-activated protein (MAP) kinase. We wished to examine the role of MAP kinase in LPS-induced signaling in murine macrophages by activating MAP kinase independently of LPS. An expression vector encoding a Raf-1:estrogen receptor (ER) chimeric protein was transfected into the murine macrophage cell line RAW 264.7. Activation of this chimeric protein (delta Raf-1:ER) by estradiol resulted in rapid and prolonged activation of MAP kinase, as expected from previous results implicating Raf-1 as an upstream activator of this signaling cascade. LPS stimulation induced accumulation of MAP kinase phosphatase 1 messenger RNA, whereas delta Raf-1:ER activation did not, perhaps accounting for the more prolonged activation of MAP kinase seen in response to delta Raf-1:ER activation. Similarly, activation of DNA binding by the transcription factor, nuclear factor (NF) kappa B, as assessed by electrophoretic mobility shift assay, occurred in response to LPS stimulation but not in response to delta Raf-1:ER activation or phorbol myristate acetate (PMA) stimulation. Using an enzyme-linked immunosorbent assay for murine tumor necrosis factor alpha (TNF-alpha), we found that LPS and PMA stimulation and delta Raf-1:ER activation induced secretion of TNF-alpha, although the amount of TNF-alpha secreted in response to delta Raf-1:ER activation and PMA stimulation was approximately 20-fold less than that secreted in response to LPS. Correspondingly, accumulation of TNF-alpha messenger RNA was weakly induced by delta Raf-1:ER activation or PMA stimulation, whereas strong induction was noted in

  1. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  2. Chitosan-induced phospholipase A2 activation and arachidonic acid mobilization in P388D1 macrophages.

    PubMed

    Bianco, I D; Balsinde, J; Beltramo, D M; Castagna, L F; Landa, C A; Dennis, E A

    2000-01-28

    We have found that chitosan, a polysaccharide present in fungal cell walls, is able to activate macrophages for enhanced mobilization of arachidonic acid in a dose- and time-dependent manner. Studies aimed at identifying the intracellular effector(s) implicated in chitosan-induced arachidonate release revealed the involvement of the cytosolic Group IV phospholipase A2 (PLA2), as judged by the inhibitory effect of methyl arachidonoyl fluorophosphonate but not of bromoenol lactone. Interestingly, priming of the macrophages with lipopolysaccharide renders the cells more sensitive to a subsequent stimulation with chitosan, and this enhancement is totally blocked by the secretory PLA2 inhibitor 3-(3-acetamide)-1-benzyl-2-ethylindolyl-5-oxy-propanesulfonic acid (LY311727). Collectively, the results of this work establish chitosan as a novel macrophage-activating factor that elicits AA mobilization in P388D1 macrophages by a mechanism involving the participation of two distinct phospholipases A2. PMID:10682846

  3. The predominance of alternatively activated macrophages following challenge with cell wall peptide-polysaccharide after prior infection with Sporothrix schenckii.

    PubMed

    Alegranci, Pamela; de Abreu Ribeiro, Livia Carolina; Ferreira, Lucas Souza; Negrini, Thais de Cássia; Maia, Danielle Cardoso Geraldo; Tansini, Aline; Gonçalves, Amanda Costa; Placeres, Marisa Campos Polesi; Carlos, Iracilda Zeppone

    2013-08-01

    Sporotrichosis is a subcutaneous mycosis that is caused by the dimorphic fungus Sporothrix schenckii. This disease generally occurs within the skin and subcutaneous tissues, causing lesions that can spread through adjacent lymphatic vessels and sometimes leading to systemic diseases in immunocompromised patients. Macrophages are crucial for proper immune responses against a variety of pathogens. Furthermore, macrophages can play different roles in response to different microorganisms and forms of activation, and they can be divided into "classic" or "alternatively" activated populations, as also known as M1 and M2 macrophages. M1 cells can lead to tissue injury and contribute to pathogenesis, whereas M2 cells promote angiogenesis, tissue remodeling, and repair. The aim of this study was to investigate the roles of M1 and M2 macrophages in a sporotrichosis model. Toward this end, we performed phenotyping of peritoneal exudate cells and evaluated the concomitant production of several immunomediators, including IL-12, IL-10, TGF-β, nitric oxide, and arginase-I activity, which were stimulated ex vivo with cell wall peptide-polysaccharide. Our results showed the predominance of the M2 macrophage population, indicated by peaks of arginase-I activity as well as IL-10 and TGF-β production during the 6th and 8th weeks after infection. These results were consistent with cellular phenotyping that revealed increases in CD206-positive cells over this period. This is the first report of the participation of M2 macrophages in sporotrichosis infections.

  4. Mycobacterium tuberculosis Rv2882c Protein Induces Activation of Macrophages through TLR4 and Exhibits Vaccine Potential

    PubMed Central

    Back, Yong Woo; Park, Hye-Soo; Bae, Hyun Shik; Choi, Chul Hee; Kim, Hwa-Jung

    2016-01-01

    Macrophages constitute the first line of defense against Mycobacterium tuberculosis and are critical in linking innate and adaptive immunity. Therefore, the identification and characterization of mycobacterial proteins that modulate macrophage function are essential for understanding tuberculosis pathogenesis. In this study, we identified the novel macrophage-activating protein, Rv2882c, from M. tuberculosis culture filtrate proteins. Recombinant Rv2882c protein activated macrophages to secrete pro-inflammatory cytokines and express co-stimulatory and major histocompatibility complex molecules via Toll-like receptor 4, myeloid differentiation primary response protein 88, and Toll/IL-1 receptor-domain-containing adaptor inducing IFN-beta. Mitogen-activated protein kinases and NF-κB signaling pathways were involved in Rv2882c-induced macrophage activation. Further, Rv2882c-treated macrophages induced expansion of the effector/memory T cell population and Th1 immune responses. In addition, boosting Bacillus Calmette-Guerin vaccination with Rv2882c improved protective efficacy against M. tuberculosis in our model system. These results suggest that Rv2882c is an antigen that could be used for tuberculosis vaccine development. PMID:27711141

  5. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  6. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway.

  7. Loss of MCP-1 alters macrophage polarization and reduces NFκB activation in the foreign body response

    PubMed Central

    Moore, Laura Beth; Sawyer, Andrew J.; Charokopos, Antonios; Skokos, Eleni A.; Kyriakides, Themis R.

    2014-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of macrophage polarization in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or PDMS disks in the peritoneal cavity of WT and MCP-1 KO mice. We analyzed classical (M1) and alternative (M2) gene expression via Q-PCR, immunohistochemistry, and ELISA in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of TNF, which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  8. Action of ubenimex on aminopeptidase activities in spleen cells and peritoneal macrophages from mice.

    PubMed

    Kuramochi, H; Motegi, A; Iwabuchi, M; Takahashi, K; Horinishi, H; Umezawa, H

    1987-11-01

    The action of ubenimex on aminopeptidase (APase) activity was studied in intact spleen cells and peritoneal macrophages from mice. Ubenimex strongly inhibited hydrolyzing activities against arginine-beta-naphtylamide (Arg-NA), Lys-NA and Pro-NA in both cells. Inhibition of hydrolysis of Leu-NA, Met-NA and Ala-NA was relatively small or not observed. When both cells were incubated in HANKS' solution, hydrolyzing activities against Arg-NA, Lys-NA and Pro-NA were released to the medium, while Leu-NA and Met-NA-hydrolyzing activities were mostly bound. In addition, the Leu-NA-hydrolyzing activity in the spleen cells was kinetically studied. The Arg-NA and Leu-NA-hydrolyzing activities in four fractions prepared from the homogenate of spleen cells were also studied kinetically. From these studies it was suggested that ubenimex inhibits aminopeptidase B and a Pro-NA-hydrolyzing enzyme more effectively than Leu-APase in intact spleen cells and peritoneal macrophages from mice.

  9. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages.

    PubMed

    Kim, Min-Ji; Bae, Soo Han; Ryu, Jae-Chan; Kwon, Younghee; Oh, Ji-Hwan; Kwon, Jeongho; Moon, Jong-Seok; Kim, Kyubo; Miyawaki, Atsushi; Lee, Min Goo; Shin, Jaekyoon; Kim, Young Sam; Kim, Chang-Hoon; Ryter, Stefan W; Choi, Augustine M K; Rhee, Sue Goo; Ryu, Ji-Hwan; Yoon, Joo-Heon

    2016-08-01

    Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces "mitochondrial priming" by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis. PMID:27337507

  10. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.

    PubMed Central

    Keller, R; Fischer, W; Keist, R; Bassetti, S

    1992-01-01

    Lipoteichoic acids (LTAs) from various bacterial species, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Listeria monocytogenes, were examined for the ability to induce secretory and cellular responses in a pure population of bone marrow-derived mononuclear phagocytes. Some of the highly purified LTAs, in particular LTAs from Bacillus subtilis, S. pyogenes, E. faecalis, and Enterococcus hirae, were able to affect each of the macrophage parameters measured, i.e., reductive capacity, secretion of tumor necrosis factor and nitrite, and tumoricidal activity. As after stimulation with whole organisms or other bacterial products, secretion of tumor necrosis factor induced by these LTAs reached its maximum within the first few hours of the interaction, while secretion of nitrite and tumoricidal activity required 24 to 36 h for full expression. Other purified LTAs, i.e., LTAs from Streptococcus sanguis, S. pneumoniae, and L. monocytogenes, as well as lipomannan from Micrococcus luteus affected only some of these parameters, while native LTA from S. aureus was inactive. There was no obvious correlation between biological activity and chain length, kind of glycosyl substituents, glycolipid structures, or fatty acid composition of LTAs. Deacylation of LTAs resulted in a complete loss of activity, and deacylated LTAs did not impair the activity of their acylated counterparts, suggesting that acyl chains may be essential for binding of LTA to the cell surface. The results demonstrate that some LTA species are potent inducers of macrophage secretory and cellular activities. PMID:1500175

  11. Plasminogen activator inhibitor-1 regulates infiltration of macrophages into melanoma via phosphorylation of FAK-Tyr⁹²⁵.

    PubMed

    Thapa, Bikash; Koo, Bon-Hun; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-08-01

    Tumor-infiltrating macrophages are potential candidates for cancer immunotherapy. However, the detailed molecular mechanism underlying macrophage infiltration into tumors is poorly understood. Based on our previous finding that plasminogen activator inhibitor-1 (PAI-1) enhances vitronectin-dependent migration of macrophages, we investigated the potential role of PAI-1 in macrophage invasion into melanoma. Experimental evidence obtained from spheroid confrontation assay clearly showed that PAI-1 overexpression significantly enhanced the invasion of RAW 264.7 cells into B16F10 melanoma. We further demonstrated that PAI-1 induces phosphorylation of focal adhesion kinase (FAK) at Tyr(925), which, in turn, mediated the invasion of macrophages into the melanoma. This work further illustrates that low-density lipoprotein receptor related-protein 1 (LRP1) is essential for PAI-1-mediated FAK phosphorylation and macrophage invasion into melanoma. In conclusion, our study demonstrates a novel role of PAI-1 in macrophage invasion into melanoma and provides insights into the underlying molecular mechanism.

  12. Neither Classical nor Alternative Macrophage Activation Is Required for Pneumocystis Clearance during Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Zhang, Zhuo-Qian; Wang, Jing; Hoy, Zachary; Keegan, Achsah; Bhagwat, Samir; Gigliotti, Francis

    2015-01-01

    Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4+ T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2−/− mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2−/− mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR−/− nor RAG/IL-4Rα−/− mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR−/− mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα−/− mice. RAG/IFN-γR−/− mice had elevated numbers of lung CD4+ T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8+ T suppressor cells. Impaired lung CD8+ T cell responses in RAG/IFN-γR−/− mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8+ T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of Pc

  13. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows.

    PubMed

    Denis, Michel; Parlane, Natalie A; Lacy-Hulbert, S Jane; Summers, Emma L; Buddle, Bryce M; Wedlock, D Neil

    2006-11-15

    to exert significant bactericidal activity against S. uberis. There were no significant differences in the bactericidal activity of milk macrophages obtained from lactating cows with low somatic cell counts (SCC; < 10(5) ml(-1)) compared with those with a mildly elevated SCC (> 10(5) ml(-1)) (P > 0.05). In contrast, mammary gland secretion macrophages isolated from the same cows in the mid-dry period killed a significant proportion of phagocytosed S. uberis (50-65% of ingested S. uberis killed, P < 0.01) although cytokine production in response to in vitro bacterial infection was low. We conclude that the bactericidal activity of mammary gland secretion macrophages against a virulent strain of S. uberis is low during the lactation period. In addition, our data indicate that S. uberis is not a strong inducer of NO and TNF-alpha in macrophages from the milk or mammary gland secretions of cows during the drying off period. Finally, IFN-gamma does not activate milk macrophages or macrophages from cows during the lactating period or mammary gland secretions during the drying off period.

  14. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  15. Type II Activation of Macrophages and Microglia by Immune Complexes Enhances Th17 Biasing in an IL-6-Independent Manner

    PubMed Central

    Stone, Sarrabeth; La Flamme, Anne Camille

    2016-01-01

    Macrophages can be activated into several distinct activation states. One of these states, type II activation, has a regulatory phenotype characterized by decreased IL-12 and increased IL-10, and has been shown to bias naïve CD4+ T cells to a Th2 response. Microglia, the resident macrophage-like cells in the central nervous system (CNS), are important contributors to neuroinflammation and, thus, we investigated if type II activated microglia could bias CD4+ T cell responses in a similar manner as type II activated macrophages. Using immune complex ligation in the presence of LPS to induce type II activation, we found that both type II macrophages and type II microglia biased CD4+ T cell responses in vitro to express increased levels of IL-17A and CD124. The enhanced IL-17A production occurred independently of IL-6, and IL-10 and IL-12, which were key regulators of IFN-γ production, but were not involved in the increased IL-17A. Finally, we found that another type II-activating compound, glatiramer acetate, did not bias CD4+ T cells to produce enhanced IL-17A. Taken together, this study demonstrates that microglia can be type II activated and, similarly to type II macrophages, can bias CD4+ T cell responses; however, depending on the type II stimulus, the effect on CD4+ T cell subset differentiation may vary. PMID:27732670

  16. Eplerenone mimics features of the alternative activation in macrophages obtained from patients with heart failure and healthy volunteers.

    PubMed

    Łabuzek, Krzysztof; Liber, Sebastian; Bułdak, Łukasz; Krupej-Kędzierska, Joanna; Machnik, Grzegorz; Bobrzyk, Magdalena; Okopień, Bogusław

    2014-03-01

    Alternative activation of macrophages plays protective role in cardiac remodelling in heart failure and the activity of mineralocorticoid receptor may determine the phenotype of these cells. We examined the influence of eplerenone, aldosterone, and IL-4 on descriptors of alternative activation in blood monocytes collected from 19 patients with heart-failure and 20 healthy volunteers. “Heart failure” macrophages in comparison with “healthy” macrophages had increased mineralocorticoid activity, NO and reactive oxygen species production, expression of iNOS mRNA and protein, but decreased expression of arginase I and mannose receptor proteins, and activity of MnSOD and CuZnSOD. Aldosterone increased mineralocorticoid activity, NO and reactive oxygen species production, iNOS mRNA and protein expression, MnSOD and CuZnSOD activity. Eplerenone attenuated the effects of aldosterone on all but MnSOD and CuZnSOD variables. Eplerenone alone increased the production of NO, MnSOD and CuZnSOD activity, arginase I gene and protein expression, and mannose receptor gene and protein expression, but decreased mineralocorticoid activity only in “heart failure” macrophages. The latter suggests altered function of mineralocorticoid receptor in heart failure. Increased mineralocorticoid activity accounts for increased NO production, iNOS gene and protein expression but does not explain the increased basal reactive oxygen species production and decreased markers of alternative activation in “heart failure” macrophages. In the lack of change in basal mineralocorticoid activity, eplerenone increases markers of alternative activation in a mineralocorticoid receptor-independent manner. Because of changes in iNOS and NO variable, eplerenone induced qualitatively different activation of macrophages from that obtained with IL-4.

  17. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  18. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death

    PubMed Central

    Kataoka, K; Matsumoto, H; Kaneko, H; Notomi, S; Takeuchi, K; Sweigard, J H; Atik, A; Murakami, Y; Connor, K M; Terasaki, H; Miller, J W; Vavvas, D G

    2015-01-01

    Detachment of photoreceptors from the retinal pigment epithelium is seen in various retinal disorders, resulting in photoreceptor death and subsequent vision loss. Cell death results in the release of endogenous molecules that activate molecular platforms containing caspase-1, termed inflammasomes. Inflammasome activation in retinal diseases has been reported in some cases to be protective and in others to be detrimental, causing neuronal cell death. Moreover, the cellular source of inflammasomes in retinal disorders is not clear. Here, we demonstrate that patients with photoreceptor injury by retinal detachment (RD) have increased levels of cleaved IL-1β, an end product of inflammasome activation. In an animal model of RD, photoreceptor cell death led to activation of endogenous inflammasomes, and this activation was diminished by Rip3 deletion. The major source of Il1b expression was found to be infiltrating macrophages in the subretinal space, rather than dying photoreceptors. Inflammasome inhibition attenuated photoreceptor death after RD. Our data implicate the infiltrating macrophages as a source of damaging inflammasomes after photoreceptor detachment in a RIP3-dependent manner and suggest a novel therapeutic target for treatment of retinal diseases. PMID:25906154

  19. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    PubMed

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.

  20. Oxidized Low-Density Lipoprotein Contributes to Atherogenesis via Co-activation of Macrophages and Mast Cells

    PubMed Central

    Chen, Chong; Khismatullin, Damir B.

    2015-01-01

    Oxidized low-density lipoprotein (OxLDL) is a risk factor for atherosclerosis, due to its role in endothelial dysfunction and foam cell formation. Tissue-resident cells such as macrophages and mast cells release inflammatory mediators upon activation that in turn cause endothelial activation and monocyte adhesion. Two of these mediators are tumor necrosis factor (TNF)-α, produced by macrophages, and histamine, produced by mast cells. Static and microfluidic flow experiments were conducted to determine the number of adherent monocytes on vascular endothelium activated by supernatants of oxLDL-treated macrophages and mast cells or directly by oxLDL. The expression of adhesion molecules on activated endothelial cells and the concentration of TNF-α and histamine in the supernatants were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. A low dose of oxLDL (8 μg/ml), below the threshold for the clinical presentation of coronary artery disease, was sufficient to activate both macrophages and mast cells and synergistically increase monocyte-endothelium adhesion via released TNF-α and histamine. The direct exposure of endothelial cells to a much higher dose of oxLDL (80 μg/ml) had less effect on monocyte adhesion than the indirect activation via oxLDL-treated macrophages and mast cells. The results of this work indicate that the co-activation of macrophages and mast cells by oxLDL is an important mechanism for the endothelial dysfunction and atherogenesis. The observed synergistic effect suggests that both macrophages and mast cells play a significant role in early stages of atherosclerosis. Allergic patients with a lipid-rich diet may be at high risk for cardiovascular events due to high concentration of low-density lipoprotein and histamine in arterial vessel walls. PMID:25811595

  1. CpGB DNA activates dermal macrophages and specifically recruits inflammatory monocytes into the skin.

    PubMed

    Mathes, Allison L; Rice, Lisa; Affandi, Alsya J; DiMarzio, Michael; Rifkin, Ian R; Stifano, Giuseppina; Christmann, Romy B; Lafyatis, Robert

    2015-02-01

    Toll-like receptor 9 (TLR9) drives innate immune responses after recognition of foreign or endogenous DNA containing unmethylated CpG motifs. DNA-mediated TLR9 activation is highly implicated in the pathogenesis of several autoimmune skin diseases, yet its contribution to the inflammation seen in these diseases remains unclear. In this study, TLR9 ligand, CpGB DNA, was administered to mice via a subcutaneous osmotic pump with treatment lasting 1 or 4 weeks. Gene expression and immunofluorescence analyses were used to determine chemokine expression and cell recruitment in the skin surrounding the pump outlet. CpGB DNA skin treatment dramatically induced a marked influx of CD11b+ F4/80+ macrophages, increasing over 4 weeks of treatment, and induction of IFNγ and TNFα expression. Chemokines, CCL2, CCL4, CCL5, CXCL9 and CXCL10, were highly induced in CpGB DNA-treated skin, although abrogation of these signalling pathways individually did not alter macrophage accumulation. Flow cytometry analysis showed that TLR9 activation in the skin increased circulating CD11b+ CD115+ Ly6C(hi) inflammatory monocytes following 1 week of CpGB DNA treatment. Additionally, skin-resident CD11b+ cells were found to initially take up subcutaneous CpGB DNA and propagate the subsequent immune response. Using diphtheria toxin-induced monocyte depletion mouse model, gene expression analysis demonstrated that CD11b+ cells are responsible for the CpGB DNA-induced cytokine and chemokine response. Overall, these data demonstrate that chronic TLR9 activation induces a specific inflammatory response, ultimately leading to a striking and selective accumulation of macrophages in the skin. PMID:25425469

  2. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  3. Staphylococcal exotoxins stimulate nitric oxide-dependent murine macrophage tumoricidal activity.

    PubMed Central

    Fast, D J; Shannon, B J; Herriott, M J; Kennedy, M J; Rummage, J A; Leu, R W

    1991-01-01

    The staphylococcal exotoxins toxic shock syndrome toxin 1 (TSST-1) and enterotoxin B were tested for their ability to stimulate murine peritoneal macrophages (PM) for tumoricidal activity. Both toxins were found to stimulate oil-elicited, gamma interferon-primed PM monolayers to kill nonadherent P815 tumor targets. The mechanism of killing of toxin-stimulated tumoricidal activity involved the production of nitric oxide, as nitrite could be demonstrated in culture fluids, and NG-monomethyl-L-arginine, an inhibitor of nitric oxide production, abrogated toxin-stimulated tumoricidal activity. TSST-1 stimulated the secretion of tumor necrosis factor by PM monolayers in the presence and absence of gamma interferon. The mechanism of toxin-stimulated tumoricidal activity was also determined to be independent of the production of reactive oxygen intermediates in that TSST-1 failed to stimulate H2O2 production by PM. These results demonstrate that the staphylococcal exotoxins are capable of stimulating macrophage production of nitric oxide for tumor cytotoxicity and suggest that the nitric oxide thus produced may subsequently play a role in the pathogenesis of the diseases caused by these toxins. PMID:1908828

  4. Ursolic Acid Activates Intracellular Killing Effect of Macrophages During Mycobacterium tuberculosis Infection.

    PubMed

    Podder, Biswajit; Jang, Woong Sik; Nam, Kung-Woo; Lee, Byung-Eui; Song, Ho-Yeon

    2015-05-01

    Tuberculosis is one of the most threatening infectious diseases to public health all over the world, for which Mycobacterium tuberculosis (MTB) is the etiological agent of pathogenesis. Ursolic acid (UA) has immunomodulatory function and exhibits antimycobacterial activity. However, the intracellular killing effect of UA has yet to be elucidated. The aim of this study was to evaluate the intracellular killing effect of UA during mycobacterial infection. The intracellular killing activity of UA was evaluated in the macrophage cell line THP-1 by the MGIT 960 system as well as by CFU count. The production of reactive oxygen species (ROS) and the level of nitric oxide (NO) were measured using DCF-DA and Griess reagent, respectively. Phagocytosis was observed by a fluorescence-based staining method, and the colony forming units were enumerated on 7H11 agar medium following infection. In addition, MRP8 mRNA expression was measured by qRT-PCR. UA significantly decreased the number of intracellular Mycobacterium through generation of ROS and NO. In addition, it profoundly activated the phagocytosis process of THP-1 cells during MTB-infection. Furthermore, our data demonstrated that UA activated the phagocytosis process in human monocyte cells through MRP8 induction. These data suggest that UA firmly contributes to the intracellular killing effect of macrophages during mycobacterial infection.

  5. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages.

    PubMed

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-09-30

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.

  6. Mediation of macrophage cytolytic and phagocytic activities by antibodies of different classes and class-specific Fc-receptors.

    PubMed

    Walker, W S

    1977-08-01

    The classes of antibodies that mediate the phagocytosis and cytolysis of 51Cr-labeled chicken erythrocytes by IC-21 macrophages, an established line of mouse peritoneal macrophages, were identified. The phagocytic activity of IC-21 macrophages, as determined by a functional inhibition assay with mouse myeloma proteins, depended mainly on IgM and IgG2a antibodies and to a lesser extent on IgG2b antibodies. Extracellular cytolysis of target cells was mediated solely by IgG2b antibodies. These results correlate with the previously documented specificities of discrete Fc-receptors for IgG2a and IgG2b immunoglobulins on IC-21 cells. Thus, phagocytosis and cytolysis appear to be mediated by antibodies of different classes operating through separate and distinct sites on the surface of IC-21 macrophages. PMID:886183

  7. Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages.

    PubMed

    Castells, Magali; Thibault, Benoît; Mery, Eliane; Golzio, Muriel; Pasquet, Marlene; Hennebelle, Isabelle; Bourin, Philippe; Mirshahi, Massoud; Delord, Jean Pierre; Querleu, Denis; Couderc, Bettina

    2012-12-29

    Within the microenvironment, Carcinoma-associated mesenchymal stem cells (Hospicells) are able to influence ovarian tumor development via, among others, the facilitation of angiogenesis in the tumor site allowing an accelerated tumor growth. We demonstrate the presence of a chemotactism between endothelial cells and Hospicells, and a cell line specific increased secretion of pro-angiogenic cytokines such as IL-6, IL-8 and VEGF from ovarian adenocarcinoma cells. Hospicells are also able to attract and activate macrophages to a M2 phenotype and allow them to secrete a huge quantity of pro-angiogenic cytokines, favorable to tumor progression of all the associated ovarian adenocarcinoma cells tested.

  8. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  9. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  10. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    SciTech Connect

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming; Ning, Qin

    2010-05-28

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

  11. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages.

    PubMed

    Kim, Jin; Park, Chang-Shin; Lim, Yunsook; Kim, Hyun-Sook

    2009-04-01

    Natural products are increasingly recognized as potential targets for drug discovery and development. We previously reported that Paeonia japonica, Houttuynia cordata, and Aster scaber enhanced macrophage activation both in vitro and in vivo. In the present study we investigated the immunomodulating effects of these plants on lipopolysacharide (LPS)-stimulated macrophages. An aqueous extract of each plant was administered to female BALB/c mice every other day for 4 weeks. Peritoneal macrophages were then collected and incubated to examine the immunoreactivity of macrophages against LPS at different time points. The expression levels of inducible nitric oxide (NO) synthetase (iNOS), cyclooxygenase (COX)-2, and inhibitory factor kappaB alpha (IkappaBalpha) proteins and the production of NO metabolite (nitrite), prostaglandin (PG) E(2), and the pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were determined in the activated macrophages treated with extracts from each plant individually or combined. High levels of pro-inflammatory cytokines were produced by A. scaber-, P. japonica-, and H. cordata-treated macrophages following 24 hours of LPS stimulation. P. japonica, H. cordata, and A. scaber treatment also induced the production of nitrate by LPS-treated macrophages. Induction of iNOS mRNA and protein was also different in each group. PGE(2) secretion was up-regulated by all extract-treated macrophages at early time points; however, no significant differences were observed between the groups by 8 hours post-LPS stimulation. Treatment with A. scaber extract resulted in the highest levels of IkappaBalpha degradation. Our findings illustrate that the natural plant products P. japonica, H. cordata, and A. scaber may enhance immune function by modulating ex vivo pro-inflammatory cytokine and NO production as well as the expression of iNOS and COX-2.

  12. Suppression of fibroblast proliferation by activated macrophages: involvement of H2O2 and a non-prostaglandin E product of the cyclooxygenase pathway.

    PubMed

    Metzger, Z; Hoffeld, J T; Oppenheim, J J

    1986-07-01

    Macrophages are considered promoters of fibroblast proliferation; however, suppression by activated macrophages may outweigh this effect. Activated murine peritoneal macrophages obtained by in vivo exposure to C. parvum or by in vitro LPS-activation of thioglycollate-induced macrophages, were tested for their effect on normal syngeneic dermal fibroblasts. C. parvum-activated macrophages, but not resident peritoneal macrophages suppressed fibroblast proliferation. Similarly, macrophages activated in vitro by LPS, but not those unexposed to LPS, suppressed fibroblast proliferation. Catalase partially protected fibroblasts from suppression by either activated macrophage population, suggesting involvement of H2O2 in the suppression. The effect of cyclooxygenase inhibitors on the suppression was also tested. Indomethacin, acetylsalicyclic acid, or eicosatetraynoic acid, all partially protected the fibroblasts from macrophage-mediated suppression. Prostaglandins E2, E1, and F2 alpha, added exogenously at concentrations as high as 10(-6) M, failed to suppress the proliferation of the fibroblasts. These findings suggest that a non-prostaglandin product of the cyclooxygenase pathway is involved in macrophage-mediated suppression of fibroblast proliferation.

  13. Differential Inhibition of Macrophage Activation by Lymphocytic Choriomeningitis Virus and Pichinde Virus Is Mediated by the Z Protein N-Terminal Domain

    PubMed Central

    Xing, Junji; Chai, Zheng; Ly, Hinh

    2015-01-01

    Several arenavirus pathogens, such as Lassa and Junin viruses, inhibit macrophage activation, the molecular mechanism of which is unclear. We show that lymphocytic choriomeningitis virus (LCMV) can also inhibit macrophage activation, in contrast to Pichinde and Tacaribe viruses, which are not known to naturally cause human diseases. Using a recombinant Pichinde virus system, we show that the LCMV Z N-terminal domain (NTD) mediates the inhibition of macrophage activation and immune functions. PMID:26423945

  14. Monosodium urate activates Src/Pyk2/PI3 kinase and cathepsin dependent unconventional protein secretion from human primary macrophages.

    PubMed

    Välimäki, Elina; Miettinen, Juho J; Lietzén, Niina; Matikainen, Sampsa; Nyman, Tuula A

    2013-03-01

    Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1β and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of

  15. Post-transcriptional control of NLRP3 inflammasome activation in colonic macrophages

    PubMed Central

    Filardy, Alessandra A.; He, Jianping; Bennink, Jack; Yewdell, Jonathan; Kelsall, Brian L.

    2016-01-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes yet produce regulatory cytokines. Activity of the NLRP3 inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation due to a remarkable level of post-transcriptional control of NLRP3 and proIL-1β protein expression, which was also seen for TNF-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein, but not mRNA levels in resident cMPs implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic post-transcriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation; findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  16. Human Macrophage SCN5A Activates an Innate Immune Signaling Pathway for Antiviral Host Defense*

    PubMed Central

    Jones, Alexis; Kainz, Danielle; Khan, Faatima; Lee, Cara; Carrithers, Michael D.

    2014-01-01

    Pattern recognition receptors contain a binding domain for pathogen-associated molecular patterns coupled to a signaling domain that regulates transcription of host immune response genes. Here, a novel mechanism that links pathogen recognition to channel activation and downstream signaling is proposed. We demonstrate that an intracellular sodium channel variant, human macrophage SCN5A, initiates signaling and transcription through a calcium-dependent isoform of adenylate cyclase, ADCY8, and the transcription factor, ATF2. Pharmacological stimulation with a channel agonist or treatment with cytoplasmic poly(I:C), a mimic of viral dsRNA, activates this pathway to regulate expression of SP100-related genes and interferon β. Electrophysiological analysis reveals that the SCN5A variant mediates nonselective outward currents and a small, but detectable, inward current. Intracellular poly(I:C) markedly augments an inward voltage-sensitive sodium current and inhibits the outward nonselective current. These results suggest human macrophage SCN5A initiates signaling in an innate immune pathway relevant to antiviral host defense. It is postulated that SCN5A is a novel pathogen sensor and that this pathway represents a channel activation-dependent mechanism of transcriptional regulation. PMID:25368329

  17. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization.

    PubMed

    Andrews, Karen L; Sampson, Amanda K; Irvine, Jennifer C; Shihata, Waled A; Michell, Danielle L; Lumsden, Natalie G; Lim, Chloe; Huet, Olivier; Drummond, Grant R; Kemp-Harper, Barbara K; Chin-Dusting, Jaye P F

    2016-09-01

    Nitroxyl anion (HNO) donors are currently being assessed for their therapeutic utility in several cardiovascular disorders including heart failure. Here, we examine their effect on factors that precede atherosclerosis including endothelial cell and monocyte activation, leucocyte adhesion to the endothelium and macrophage polarization. Similar to the NO donor glyceryl trinitrate (GTN), the HNO donors Angeli's salt (AS) and isopropylamine NONOate (IPA/NO) decreased leucocyte adhesion to activated human umbilical vein endothelial cells (HUVECs) and mouse isolated aorta. This reduction in adhesion was accompanied by a reduction in intercellular adhesion molecule-1 (ICAM-1) and the cytokines monocyte chemoattractant protein 1 (MCP-1) and interleukin 6 (IL-6) which was inhibitor of nuclear factor κB (NFκB) α (IκBα)- and subsequently NFκB-dependent. Intriguingly, the effects of AS on leucocyte adhesion, like those on vasodilation, were found to not be susceptible to pharmacological tolerance, unlike those observed with GTN. As well, HNO reduces monocyte activation and promotes polarization of M2 macrophages. Taken together, our data demonstrate that HNO donors can reduce factors that are associated with and which precede atherosclerosis and may thus be useful therapeutically. Furthermore, since the effects of the HNO donors were not subject to tolerance, this confers an additional advantage over NO donors. PMID:27231254

  18. Enhanced antitumoral efficacy by intratumoral perfusion of activated macrophages associated with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Vasiliu, Virgil V.; Laky, Dezideriu; Ionescu, Paul; Dima, Stefan V.

    1996-01-01

    Experiments were performed on five batches of Wistar inbred rats with Walker-256 carcinosarcoma receiving photodynamic therapy (PDT), rMuIFN-gamma activated macrophages (AM(Phi) ) or associated therapy (PDT-AM(Phi) -A; PDT-AM(Phi) -B); the control batch (HBSS) consisted of animals with untreated Walker-256 tumors. The results were as follows: the sole treatment (PDT, AM(Phi) ) gave survival rates between 57.2 and 57.7% and cure rates ranging from 23.1 to 34.3%. The 'combined' therapy in multiple doses increased significantly (87.9%) the survival rate of tumor bearing rats as well as the rate of complete tumor regression (72.7%). Cell-mediated immunity test values in batches III and IV exposed to multiple doses of PDT-AM(Phi) showed higher values as compared to the values noticed in batches I - II and the control batch V, performed at 12 and 21 days post-treatment. Summing up, these results demonstrate that 'combined' photodynamic treatment and biotherapy with interferon activated macrophages stimulate cell-mediated antitumoral activity, increase survival rates and reduce incidence of Walker-256 carcinosarcoma in rat model.

  19. The transcription factor GFI1 negatively regulates NLRP3 inflammasome activation in macrophages.

    PubMed

    Zhu, Liuluan; Meng, Qingcai; Liang, Shuntao; Ma, Yaluan; Li, Rui; Li, Guoli; Zeng, Hui

    2014-11-28

    Interleukin-1β (IL-1β) secretion downstream of Toll-like receptor (TLR) activation is tightly controlled at the transcriptional and post-translational levels. NLRP3 inflammasome is involved in the maturation of pro-IL-1β, with NLRP3 expression identified as the limiting factor for inflammasome activation. Previously, we had demonstrated that the zinc-finger protein GFI1 inhibits pro-IL-1β transcription. Here, we show that GFI1 inhibits NLRP3 inflammasome activation and IL-1β secretion in macrophages. GFI1 suppressed Nlrp3 transcription via two mechanisms: (1) by binding to the Gli-responsive element 1 (GRE1) in the Nlrp3 promoter; and (2) by antagonizing the nuclear factor-κB (NF-κB) transcriptional activity. Thus, GFI1 negatively regulates TLR-mediated IL-1β production at both transcriptional and post-translational levels.

  20. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3

    NASA Astrophysics Data System (ADS)

    Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang

    2016-09-01

    An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.

  1. Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype.

    PubMed

    Liu, Min; Luo, Fengling; Ding, Chuanlin; Albeituni, Sabrin; Hu, Xiaoling; Ma, Yunfeng; Cai, Yihua; McNally, Lacey; Sanders, Mary Ann; Jain, Dharamvir; Kloecker, Goetz; Bousamra, Michael; Zhang, Huang-ge; Higashi, Richard M; Lane, Andrew N; Fan, Teresa W-M; Yan, Jun

    2015-11-15

    Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate that particulate yeast-derived β-glucan, a natural polysaccharide compound, converts polarized alternatively activated macrophages or immunosuppressive TAM into a classically activated phenotype with potent immunostimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, Krebs cycle, and glutamine utilization. In addition, particulate β-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced spleen tyrosine kinase-Card9-Erk pathway. Further in vivo studies show that oral particulate β-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate β-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared with those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate β-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed light on the action mode of β-glucan treatment in cancer.

  2. Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation.

    PubMed

    Khan, Junaid; Sharma, Praveen K; Mukhopadhaya, Arunika

    2015-11-01

    Polarization of the monocytes and macrophages toward the M1 and M2 states is important for hosts' defense against the pathogens. Moreover, it plays a crucial role to resolve the overwhelming inflammatory responses that can be harmful to the host. Polarization of macrophages/monocytes can be induced by pathogen-associated molecular patterns (PAMPs). PAMP-mediated monocyte/macrophage polarization is important during the infection, as pathogen can suppress host immune system by altering the polarization status of the macrophages/monocytes. OmpU, an outer membrane porin protein of Vibrio cholerae, possesses the ability to induce pro-inflammatory responses in monocytes/macrophages. It is also able to down-regulate the LPS-mediated activation of the monocytes/macrophages. Such observation leads us to believe that OmpU may induce a state that can be called as M1/M2-intermediate state. In the present study, we evaluated a set of M1 and M2 markers in RAW 264.7 murine macrophage cell line, and THP-1 human monocytic cell line, in response to the purified OmpU protein. We observed that OmpU, as a PAMP, induced M1-polarization by activating the Toll-like receptor (TLR) signaling pathway. OmpU induced formation of TLR1/TLR2-heterodimers. OmpU-mediated TLR-activation led to the MyD88 recruitment to the TLR1/TLR2 complex. MyD88, in turn, recruited IRAK1. Ultimately, OmpU-mediated signaling led to the activation and subsequent nuclear translocation of the NFκB p65 subunit. We also observed that blocking of the TLR1, TLR2, IRAK1, and NFκB affected OmpU-mediated production of M1-associated pro-inflammatory cytokines such as TNFα and IL-6.

  3. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  4. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor.

    PubMed Central

    Stacey, K J; Fowles, L F; Colman, M S; Ostrowski, M C; Hume, D A

    1995-01-01

    The mouse urokinase-type plasminogen activator (uPA) gene was used as a model macrophage colony-stimulating factor 1 (CSF-1)-inducible gene to investigate CSF-1 signalling pathways. Nuclear run-on analysis showed that induction of uPA mRNA by CSF-1 and phorbol myristate acetate (PMA) was at the transcriptional level in bone marrow-derived macrophages. CSF-1 and PMA synergized strongly in the induction of uPA mRNA, showing that at least some components of CSF-1 action are mediated independently of protein kinase C. Promoter targets of CSF-1 signalling were investigated with NIH 3T3 cells expressing the human CSF-1 receptor (c-fms). uPA mRNA was induced in these cells by treatment with CSF-1, and a PEA3/AP-1 element at -2.4 kb in the uPA promoter was involved in this response. Ets transcription factors can act through PEA3 sequences, and the involvement of Ets factors in the induction of uPA was confirmed by use of a dominant negative Ets-2 factor. Expression of the DNA binding domain of Ets-2 fused to the lacZ gene product prevented CSF-1-mediated induction of uPA mRNA in NIH 3T3 cells expressing the CSF-1 receptor. Examination of ets-2 mRNA expression in macrophages showed that it was also induced synergistically by CSF-1 and PMA. In the macrophage cell line RAW264, the uPA PEA3/AP-1 element mediated a response to both PMA and cotransfected Ets-2. uPA promoter constructs were induced 60- to 130-fold by Ets-2 expression, and the recombinant Ets-2 DNA binding domain was able to bind to the uPA PEA3/AP-1 element. This work is consistent with a proposed pathway for CSF-1 signalling involving sequential activation of fms, ras, and Ets factors. PMID:7760840

  5. HIV-1 Nef Impairs Key Functional Activities in Human Macrophages through CD36 Downregulation

    PubMed Central

    Olivetta, Eleonora; Tirelli, Valentina; Chiozzini, Chiara; Scazzocchio, Beatrice; Romano, Ignazio; Arenaccio, Claudia; Sanchez, Massimo

    2014-01-01

    Monocytes and macrophages utilize the class A and B scavenger receptors to recognize and perform phagocytosis of invading microbes before a pathogen-specific immune response is generated. HIV-1 Nef protein affects the innate immune system impairing oxidative burst response and phagocytic capacity of macrophages. Our data show that exogenous recombinant myristoylated Nef protein induces a marked CD36 downregulation in monocytes from Peripheral Blood Mononuclear Cells, in Monocyte-Derived Macrophages (MDMs) differentiated by cytokines and in MDMs contained in a mixed culture obtained expanding PBMCs under Human Erythroid Massive Amplification condition. Under the latter culture condition we identify three main populations after 6 days of expansion: lymphocytes (37.8±14.7%), erythroblasts (46.7±6.1%) and MDMs (15.7±7.5%). The Nef addition to the cell culture significantly downregulates CD36 expression in MDMs, but not in erythroid cells. Furthermore, CD36 inhibition is highly specific since it does not modify the expression levels of other MDM markers such as CD14, CD11c, CD86, CD68, CD206, Toll-like Receptor 2 and Toll-like Receptor 4. Similar results were obtained in MDMs infected with VSV-G pseudotyped HIV-1-expressing Nef. The reduced CD36 membrane expression is associated with decrease of correspondent CD36 mRNA transcript. Furthermore, Nef-induced CD36 downregulation is linked to both impaired scavenger activity with reduced capability to take up oxidized lipoproteins and to significant decreased phagocytosis of fluorescent beads and GFP-expressing Salmonella tiphymurium. In addition we observed that Nef induces TNF-α release in MDMs. Although these data suggest a possible involvement of TNF-α in mediating Nef activity, our results exclude a possible relationship between Nef-induced TNF-α release and Nef-mediated CD36 downregulation. The present work shows that HIV-1 Nef protein may have a role in the strategies elaborated by HIV-1 to alter pathogen

  6. Macrophage activation syndrome as the initial manifestation of severe juvenile onset systemic lupus erythematosus. Favorable response to cyclophosphamide.

    PubMed

    Torres Jiménez, Alfonso; Solís Vallejo, Eunice; Zeferino Cruz, Maritza; Céspedes Cruz, Adriana; Sánchez Jara, Berenice

    2014-01-01

    The macrophage activation syndrome is a rare but potentially fatal complication of patients with autoimmune rheumatic diseases. This is a clinicopathological entity characterized by activation of histiocytes with prominent hemophagocytosis in the bone marrow and other reticuloendothelial systems. In patients with lupus it may mimic an exacerbation of the disease or infection. We report the case of a 7-year-old girl in whom the diagnosis of lupus erythematosus and macrophage activation syndrome was simultaneously made with response to the use of cyclophosphamide.

  7. Nrf2 regulates PU.1 expression and activity in the alveolar macrophage.

    PubMed

    Staitieh, Bashar S; Fan, Xian; Neveu, Wendy; Guidot, David M

    2015-05-15

    Alveolar macrophage (AM) immune function depends on the activation of the transcription factor PU.1 by granulocyte macrophage colony-stimulating factor. We have determined that chronic alcohol ingestion dampens PU.1 signaling via an unknown zinc-dependent mechanism; specifically, although PU.1 is not known to be a zinc-dependent transcription factor, zinc treatment reversed alcohol-mediated dampening of PU.1 signaling. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a zinc-dependent basic leucine zipper protein essential for antioxidant defenses, is also impaired by chronic alcohol ingestion and enhanced by zinc treatment. We hypothesized that the response of PU.1 to zinc treatment may result from the action of Nrf2 on PU.1. We first performed Nrf2/PU.1 protein coimmunoprecipitation on a rat AM cell line (NR8383) and found no evidence of protein-protein interactions. We then found evidence of increased Nrf2 binding to the PU.1 promoter region by chromatin immunoprecipitation. We next activated Nrf2 using either sulforaphane or an overexpression vector and inhibited Nrf2 with silencing RNA to determine whether Nrf2 could actively regulate PU.1. Nrf2 activation increased protein expression of both factors as well as gene expression of their respective downstream effectors, NAD(P)H dehydrogenase[quinone] 1 (NQO1) and cluster of differentiation antigen-14 (CD14). In contrast, Nrf2 silencing decreased the expression of both proteins, as well as gene expression of their effectors. Activating and inhibiting Nrf2 in primary rat AMs resulted in similar effects. Taken together, these findings suggest that Nrf2 regulates the expression and activity of PU.1 and that antioxidant response and immune activation are coordinately regulated within the AM.

  8. Infectious bursal disease virus infection induces macrophage activation via p38 MAPK and NF-kappaB pathways.

    PubMed

    Khatri, Mahesh; Sharma, Jagdev M

    2006-06-01

    In the present study, we show that infection with infectious bursal disease virus (IBDV) causes activation of macrophages, the key cells involved in inflammatory and immune-regulatory functions. Exposure of cultured spleen macrophages (SM) from SPF chickens to IBDV resulted in the production of nitric oxide (NO). In addition, there was upregulation of mRNA expression of inducible nitric oxide synthase (iNOS), IL-8 and cyclooxygenase-2 (COX-2). The signal transduction pathways involved in macrophage activation were examined. The role of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) was tested by using specific pharmacological inhibitors. Addition of p38 MAPK inhibitor, SB-203580 and NF-kappaB inhibitor Bay 11-7082, suppressed IBDV-induced NO production and mRNA expression of iNOS, IL-8 and COX-2. The results suggest that IBDV uses cellular signal transduction machinery, in particular the p38 MAPK and NF-kappaB pathways, to elicit macrophage activation. The increased production of NO, IL-8 and COX-2 by macrophages may contribute to bursa inflammatory responses commonly seen during the acute IBDV infection.

  9. Macrophages activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression

    PubMed Central

    Blich, Miry; Golan, Amnon; Arvatz, Gil; Sebbag, Anat; Shafat, Itay; Sabo, Edmond; Cohen-Kaplan, Victoria; Petcherski, Sirouch; Avniel-Polak, Shani; Eitan, Amnon; Hammerman, Haim; Aronson, Doron; Axelman, Elena; Ilan, Neta; Nussbaum, Gabriel; Vlodavsky, Israel

    2012-01-01

    Objective Factors and mechanisms that activate macrophages in atherosclerotic plaques are incompletely understood. We examined the capacity of heparanase to activate macrophages. Results/Methods Highly purified heparanase was added to mouse peritoneal macrophages (MPM) and macrophage-like J774 cells and the levels of TNFα, MMP-9, IL-1, and MCP-1 were evaluated by ELISA. Gene expression was determined by RT-PCR. Cells collected from Toll like receptor (TLR)-2 and -4 knockout mice (KO) were evaluated similarly. Heparanase levels in the plasma of patients with acute myocardial infarction (MI), stable angina (SA), and healthy subjects were determined by ELISA. Immunohistochemistry was applied to detect the expression of heparanase in control specimens and specimens of patients with SA or acute MI. Addition or over expression of heparanase variants resulted in marked increase in TNFα, MMP-9, IL-1 and MCP-1 levels. MPM harvested from TLR-2 or TLR-4 knockout mice were not activated by heparanase. Plasma heparanase level was higher in patients with acute MI, compared to patients with SA and healthy subjects. Pathologic coronary specimens obtained from vulnerable plaques showed increased heparanase staining compared to specimens of stable plaque and controls. Conclusion Heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression towards vulnerability. PMID:23162016

  10. Macrophage activation syndrome in a patient with systemic onset of the juvenile idiopathic arthritis

    PubMed Central

    Aggarwal, Hari K.; Rao, Avinash; Mittal, Anshul; Jain, Promil

    2016-01-01

    Systemic onset juvenile idiopathic arthritis (sJIA) is defined as arthritis affecting one or more joint usually in the juvenile age group (< 16 years of age) with or preceded by fever of at least 2 weeks duration that is documented to be daily (“quotidian”) for at least 3 days which may be associated with evanescent (non-fixed) erythematous rash or generalized lymph node enlargement or hepatomegaly/splenomegaly/both or serositis. Macrophage activation syndrome (MAS) is a life-threatening complication of sJIA marked by sudden onset of non-remitting high fever, profound depression in all three blood cell lines (i.e. leukopenia, anemia, and thrombocytopenia), hepatosplenomegaly, lymphadenopathy, and elevated serum liver enzyme levels. In children with systemic juvenile idiopathic arthritis, the clinical picture may mimic sepsis or an exacerbation of the underlying disease. We report a case of a 16-year-old female patient presenting with high grade fever with joint pains and generalized weakness which proved to be systemic onset juvenile idiopathic arthritis with macrophage activation syndrome after ruling out all other differential diagnoses and responded well to intravenous steroids. PMID:27407277

  11. Macrophage activation syndrome in a patient with systemic onset of the juvenile idiopathic arthritis.

    PubMed

    Jain, Deepak; Aggarwal, Hari K; Rao, Avinash; Mittal, Anshul; Jain, Promil

    2016-01-01

    Systemic onset juvenile idiopathic arthritis (sJIA) is defined as arthritis affecting one or more joint usually in the juvenile age group (< 16 years of age) with or preceded by fever of at least 2 weeks duration that is documented to be daily ("quotidian") for at least 3 days which may be associated with evanescent (non-fixed) erythematous rash or generalized lymph node enlargement or hepatomegaly/splenomegaly/both or serositis. Macrophage activation syndrome (MAS) is a life-threatening complication of sJIA marked by sudden onset of non-remitting high fever, profound depression in all three blood cell lines (i.e. leukopenia, anemia, and thrombocytopenia), hepatosplenomegaly, lymphadenopathy, and elevated serum liver enzyme levels. In children with systemic juvenile idiopathic arthritis, the clinical picture may mimic sepsis or an exacerbation of the underlying disease. We report a case of a 16-year-old female patient presenting with high grade fever with joint pains and generalized weakness which proved to be systemic onset juvenile idiopathic arthritis with macrophage activation syndrome after ruling out all other differential diagnoses and responded well to intravenous steroids.

  12. In vivo macrophage activation in chickens with Acemannan, a complex carbohydrate extracted from Aloe vera.

    PubMed

    Djeraba, A; Quere, P

    2000-05-01

    Acemannan (ACM 1), a beta-(1,4) -acetylated mannan isolated from Aloe vera, can be used as an effective adjuvant in vaccination against some avian viral diseases. Our results demonstrate a quick and lasting in vivo priming effect of ACM 1 on macrophage response after intramuscular inoculation in chickens (500 microg per 2-month-old bird). In response to IFN-gamma in vitro, monocytes from ACM 1-treated chickens exhibited a strong enhancement of NO production from 3 to 9 days p.i., but a weaker effect on MHC II cell surface antigen expression on day 3 p.i. A stimulating effect of ACM 1 treatment was also observed on spontaneous and inducible NO production for splenocytes only on day 3 p.i. By that time, splenocytes exhibited a strong higher capacity to proliferate in response to the T cell-mitogen PHA. At the same time, the in vivo capacity to produce NO, measured by the (NO(-)(2)+NO(-)(3)) serum level after intravenous LPS injection, increased greatly from 3 to 9 days p.i. In conclusion, ACM 1 was able efficiently and durably to increase the activation capacity of macrophages from the systemic immune compartment (in particular from the blood and spleen after an intramuscular injection) in chickens, especially for NO production. These findings provide a better understanding of the adjuvant activity of ACM 1 for viral and tumoral diseases.

  13. An update on renal involvement in hemophagocytic syndrome (macrophage activation syndrome)

    PubMed Central

    Esmaili, Haydarali; Mostafidi, Elmira; Mehramuz, Bahareh; Ardalan, Mohammadreza; Mohajel-Shoja, Mohammadali

    2016-01-01

    Context: Hemophagocytic syndrome (HPS) is mainly characterized by massive infiltration of bone marrow by activated macrophages and often presents with pancytopenia. Thrombotic microangiopathy (TMA) is also present with thrombocytopenia and renal involvement. Both conditions could coexist with each other and complicate the condition. Evidence Acquisition: Directory of Open Access Journals (DOAJ), EMBASE, Google Scholar, PubMed, EBSCO, and Web of Science with keywords relevant to; Hemophagocytic syndrome, macrophage activation syndrome, interferon-gamma and thrombotic microangiopathy, have been searched. Results: Viral infection, rheumatologic disease and malignancies are the main underlying causes for secondary HPS. calcineurin inhibitors and viral infections are also the main underlying causes of TMA in transplant recipients. In this review, we discussed a 39-year-old male who presented with pancytopenia and renal allograft dysfunction. With the diagnosis of HPS induced TMA his renal condition and pancytopenia improved after receiving intravenous immunoglobulin (IVIG) and plasmapheresis therapy. Conclusions: HPS is an increasingly recognized disorder in the realm of different medical specialties. Renal involvement complicates the clinical picture of the disease, and this condition even is more complex in renal transplant recipients. We should consider the possibility of HPS in any renal transplant recipient with pancytopenia and allograft dysfunction. The combination of HPS with TMA future increases the complexity of the situation. PMID:27047804

  14. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells.

    PubMed

    Bellora, Francesca; Castriconi, Roberta; Dondero, Alessandra; Pessino, Anna; Nencioni, Alessio; Liggieri, Giovanni; Moretta, Lorenzo; Mantovani, Alberto; Moretta, Alessandro; Bottino, Cristina

    2014-06-01

    We analyzed the functional outcome of the interaction between tumor-associated macrophages (TAMs) and natural killer (NK) cells. TAMs from ascites of ovarian cancer patients displayed an alternatively activated functional phenotype (M2) characterized by a remarkably high frequency and surface density of membrane-bound IL-18. Upon TLR engagement, TAMs acquired a classically activated functional phenotype (M1), released immunostimulatory cytokines (IL-12, soluble IL-18), and efficiently triggered the cytolytic activity of NK cells. TAMs also induced the release of IFN-γ from NK cells, which however was significantly lower compared with that induced by in vitro-polarized M2 cells. Most tumor-associated NK cells displayed a CD56(bright) , CD16(neg) or CD56(bright) , CD16(dim) phenotype, and very poor cytolytic activities, despite an increased expression of the activation marker CD69. They also showed downregulation of DNAM-1, 2B4, and NTB-A activating receptors, and an altered chemokine receptor repertoire. Importantly however, when appropriately stimulated, NK cells from the patients, including those cells isolated from ascites, efficiently killed autologous TAMs that expressed low, "nonprotective" levels of HLA class I molecules. Overall, our data show the existence of a complex tumor microenvironment in which poorly cytolytic/immature NK cells deal with immunosuppressive tumor-educated macrophages.

  15. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    SciTech Connect

    Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  16. Evaluation of macrophage activation syndrome associated with systemic juvenile idiopathic arthritis: single center experience over a one-year period

    PubMed Central

    Barut, Kenan; Yücel, Gözde; Sinoplu, Ada Bulut; Şahin, Sezgin; Adroviç, Amra; Kasapçopur, Özgür

    2015-01-01

    Aim: This study aimed to evaluate the demographic, clinical, laboratory properties of patients with macrophage activation syndrome and treatment outcomes. Material and Methods: The data of the patients who were diagnosed with macrophage activation syndrome secondary to systemic juvenile idiopathic arthritis between June 2013–May 2014 were evaluated by screening patient records. Results: Ten patients with macrophage activation syndrome were followed up in one year. The mean age at the time of diagnosis was found to be 7.6±4.5 years. The most common clinical finding at presentation (80%) was increased body temperature. Hepatosplenomegaly was found in half of the patients. The most common hematological finding (90%) was anemia. The mean erythrocyte sedimentation rate was found to be 71.8±36.2 mm/h, whereas it was measured to be lower (31.2±25.2 mm/h) at the time of the diagnosis of macrophage activation syndrome. Increased ferritin level was found in all of our patients (the mean ferritin level was found to be 23 957±15 525 ng/mL). Hypertriglyceridemia was found in nine patients (90%). The mean triglyceride level was found to be 397±332 mg/dL. Systemic steroid treatment was administered to all patients. Cyclosporine A was given to eight patients (80%), canakinumab was given to four patients (40%) and anakinra was given to five patients (50%). Plasmapheresis was performed in two patients. Improvement was found in all patients except for one patient. The patient in whom no improvement was observed showed a chronic course. Conclusions: The diagnosis of macrophage activation syndrome should be considered in presence of sudden disturbance in general condition, resistant high fever and systemic inflammation findings in children with active rheumatic disease. Complete recovery can be provided with early and efficient treatment in macrophage activation syndrome which develops secondary to systemic juvenil idiopathic arthritis. PMID:26884689

  17. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  18. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  19. Involvement of a membrane potassium channel in heparan sulphate-induced activation of macrophages.

    PubMed

    Ren, Jian-Dong; Fan, Li; Tian, Fu-Zhou; Fan, Kai-Hua; Yu, Bo-Tao; Jin, Wei-Hua; Tan, Yong-Hong; Cheng, Long

    2014-03-01

    Increasing evidence has demonstrated that Toll-like receptor 4 (TLR4) -mediated systemic inflammatory response syndrome accompanied by multiple organ failure, is one of the most common causes of death in patients with severe acute pancreatitis. Recent reports have revealed that heparan sulphate (HS) proteoglycan, a component of extracellular matrices, potentiates the activation of intracellular pro-inflammatory responses via TLR4, contributing to the aggravation of acute pancreatitis. However, little is known about the participants in the HS/TLR4-mediated inflammatory cascades. Our previous work provided a clue that a membrane potassium channel (MaxiK) is responsible for HS-induced production of inflammatory cytokines. Therefore, in this report we attempted to reveal the roles of MaxiK in the activation of macrophages stimulated by HS. Our results showed that incubation of RAW264.7 cells with HS up-regulated MaxiK and TLR4 expression levels. HS could also activate MaxiK channels to promote the efflux of potassium ions from cells, as measured by the elevated activity of caspase-1, whereas this was significantly abolished by treatment with paxilline, a specific blocker of the MaxiK channel. Moreover, it was found that paxilline substantially inhibited HS-induced activation of several different transcription factors in macrophages, including nuclear factor-κB, p38 and interferon regulatory factor-3, followed by decreased production of tumour necrosis factor-α and interferon-β. Taken together, our investigation provides evidence that the HS/TLR4-mediated intracellular inflammatory cascade depends on the activation of MaxiK, which may offer an important opportunity for a new approach in therapeutic strategies of severe acute pancreatitis.

  20. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization.

    PubMed

    Feng, Xiujing; Weng, Dan; Zhou, Feifei; Owen, Young D; Qin, Haohan; Zhao, Jingfa; WenYu; Huang, Yahong; Chen, Jiajia; Fu, Haijian; Yang, Nanfei; Chen, Dianhua; Li, Jianxin; Tan, Renxiang; Shen, Pingping

    2016-07-01

    PPARγ has emerged as a master regulator of macrophage polarization and is the molecular target of the thiazolidinedione drugs. Here we show that apigenin binds and activates PPARγ by acting as a modulator. Activation of PPARγ by apigenin blocks p65 translocation into nuclei through inhibition of p65/PPARγ complex translocation into nuclei, thereby decreasing NF-κB activation and favoringM2 macrophage polarization. In HFD and ob/ob mice, apigenin significantly reverses M1 macrophage into M2 and reduces the infiltration of inflammatory cells in liver and adipose tissues, as well as decreases the levels of pro-inflammatory cytokines, thereby alleviating inflammation. Strikingly, apigenin reduces liver and muscular steatosis, decreases the levels of ALT, AST, TC and TG, improving glucose resistance obviously. Unlike rosiglitazone, apigenin does not cause significant weight gain, osteoporosis et al. Our findings identify apigenin as a modulator of PPARγ and a potential lead compound for treatment of metabolic disorders. PMID:27374313

  1. Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice.

    PubMed

    Kang, Xia; Hou, Along; Wang, Rui; Liu, Da; Xiang, Wei; Xie, Qingyun; Zhang, Bo; Gan, Lixia; Zheng, Wei; Miao, Hongming

    2016-07-01

    Transcription factor 4 (TCF-4) was recently identified as a candidate gene for the cause of type 2 diabetes, although the mechanisms have not been fully elucidated. In the present study, we demonstrated that the TCF-4 transgene in macrophages aggravated high-fat diet (HFD)-induced insulin resistance and chronic inflammation, characterized by the elevation of proinflammatory cytokines in the blood, liver and white adipose tissue, as well as a proinflammatory profile of immune cells in visceral fats in mice. Mechanistically, TCF-4 functioned as a co-activator of p65 to amplify the saturated free fatty acid (FFA)-stimulated promoter activity, mRNA transcription and secretion of proinflammatory cytokines in primary macrophages. Blockage of p65 with a specific interfering RNA or inhibitor could prevent TCF-4-enhanced expression of proinflammatory cytokines in FFA/lipopolysaccharide-treated primary macrophages. The p65 inhibitor could abolish macrophage TCF-4 transgene-aggravated systemic inflammation, glucose intolerance and insulin resistance in HFD-treated mice. In addition, we demonstrated that the mRNA expression of TCF-4 in the peripheral blood monocytes from humans was positively correlated to the levels of interleukin (IL)-1β, tumour necrosis factor α, IL-6 and fasting plasma glucose. In summary, we identified TCF-4 as a co-activator of p65 in the potentiation of proinflammatory cytokine production in macrophages and aggravation of HFD-induced chronic inflammation and insulin resistance in mice. PMID:27129186

  2. Francisella tularensis live vaccine strain folate metabolism and pseudouridine synthase gene mutants modulate macrophage caspase-1 activation.

    PubMed

    Ulland, Tyler K; Janowski, Ann M; Buchan, Blake W; Faron, Matthew; Cassel, Suzanne L; Jones, Bradley D; Sutterwala, Fayyaz S

    2013-01-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1β (IL-1β) and IL-18, which play a crucial role in innate immune responses to F. tularensis. We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as being important for F. tularensis live vaccine strain (LVS) virulence. Infection of mice in vivo with a F. tularensis LVS FTL_0724 mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. The FTL_0724 mutant also induced increased inflammasome-dependent IL-1β and IL-18 secretion and cytotoxicity in macrophages in vitro. In contrast, infection of macrophages with a F. tularensis LVS rluD pseudouridine synthase (FTL_0699) mutant resulted in diminished IL-1β and IL-18 secretion from macrophages in vitro compared to infection of macrophages with wild-type LVS. In addition, the FTL_0699 mutant was not attenuated in vivo. These findings further illustrate that F. tularensis LVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogen in vivo.

  3. Francisella tularensis Live Vaccine Strain Folate Metabolism and Pseudouridine Synthase Gene Mutants Modulate Macrophage Caspase-1 Activation

    PubMed Central

    Ulland, Tyler K.; Janowski, Ann M.; Buchan, Blake W.; Faron, Matthew; Cassel, Suzanne L.; Jones, Bradley D.

    2013-01-01

    Francisella tularensis is a Gram-negative bacterium and the causative agent of the disease tularemia. Escape of F. tularensis from the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1β (IL-1β) and IL-18, which play a crucial role in innate immune responses to F. tularensis. We have identified the 5-formyltetrahydrofolate cycloligase gene (FTL_0724) as being important for F. tularensis live vaccine strain (LVS) virulence. Infection of mice in vivo with a F. tularensis LVS FTL_0724 mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. The FTL_0724 mutant also induced increased inflammasome-dependent IL-1β and IL-18 secretion and cytotoxicity in macrophages in vitro. In contrast, infection of macrophages with a F. tularensis LVS rluD pseudouridine synthase (FTL_0699) mutant resulted in diminished IL-1β and IL-18 secretion from macrophages in vitro compared to infection of macrophages with wild-type LVS. In addition, the FTL_0699 mutant was not attenuated in vivo. These findings further illustrate that F. tularensis LVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogen in vivo. PMID:23115038

  4. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    SciTech Connect

    Pi Jingbo Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-02-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage.

  5. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages.

    PubMed

    Wang, Jenny W; Woodward, David F; Martos, Jose L; Cornell, Clive L; Carling, Robert W; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing

  6. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro

    PubMed Central

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity. PMID:25565813

  7. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.

    PubMed

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity.

  8. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway.

    PubMed

    Ying, Hangjie; Kang, Yanhua; Zhang, Hang; Zhao, Dongjiu; Xia, Jingyan; Lu, Zhe; Wang, Huanhuan; Xu, Feng; Shi, Liyun

    2015-02-01

    A polarized macrophage response is presumed to have a pivotal role in a variety of immunological pathophysiology. However, the molecular mechanism underlying macrophage functional shaping remains largely unknown. In this study, we reveal a pivotal role of miR-127 in macrophage development and thereby the pathogenesis of inflammation and lung injury. In particular, miR-127 was demonstrated to be prominently induced upon TLR engagement and repressed by the M2-prone cytokines. Enforced expression of miR-127 in macrophages resulted in significantly increased production of proinflammatory cytokines, whereas deletion of miR-127 impaired M1 gene expression and led to a M2-biased response. Accordingly, intratracheal administration of miR-127 resulted in an exaggerated pulmonary inflammation and injury. Conversely, antagonizing of miR-127 suppressed production of the proinflammatory cytokines and rendered the mice more refractory to the inflammation-associated pathology. Mechanistically, miR-127 demonstrated to target B cell lymphoma 6 (Bcl6) and remarkably downregulated its expression and subsequently dual specificity phosphatase 1 (Dusp1), which in turn enhanced the activation of JNK kinase and hence the development of proinflammatory macrophages. Thereby, reconstitution with the expression of Bcl6 or Dusp1 or inhibition of JNK activity impaired miR-127-mediated skewing of M1 proinflammatory macrophages, whereas interference of Bcl6 or Dusp1 expression abrogated the anti-inflammatory property of anti-miR-127. Together, these data establish miR-127 as a molecular switch during macrophage development and as a potential target for treatment of inflammatory diseases.

  9. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARɣ and LXRα pathways

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Baron, Morgane; Bouhlel, Mohamed Amine; Vanhoutte, Jonathan; Copin, Corinne; Sebti, Yasmine; Derudas, Bruno; Mayi, Thérèse; Bories, Gael; Tailleux, Anne; Haulon, Stéphane; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart

    2011-01-01

    Rationale A crucial step in atherogenesis is the infiltration of the sub-endothelial space of large arteries by monocytes where they differentiate into macrophages and transform into lipid-loaded foam cells. Macrophages are heterogeneous cells which adapt their response to environmental cytokines. Th1 cytokines promote monocyte differentiation into M1 macrophages, while Th2 cytokines trigger an “alternative” M2 phenotype. Objective We previously reported the presence of CD68+MR+ M2 macrophages in human atherosclerotic plaques. However, the function of these plaque CD68+MR+ macrophages is still unknown. Methods and Results Histological analysis revealed that CD68+MR+ locate far from the lipid core of the plaque and contain smaller lipid droplets compared to CD68+MR− macrophages. IL-4 polarized CD68+MR+ display a reduced capacity to handle and efflux cellular cholesterol due to low expression levels of the nuclear receptor Liver X Receptor (LXR)α and its target genes, ABCA1 and ApoE, caused by the high 15-lipoxygenase activity in CD68+MR+ macrophages. By contrast, CD68+MR+ highly express opsonins and receptors involved in phagocytosis resulting in high phagocytic activity. In M2 macrophages, Peroxisome Proliferator-Activated receptor (PPAR)γ activation enhances the phagocytic, but not the cholesterol trafficking pathways. Conclusions These data identify a distinct macrophage sub-population with a low susceptibility to become foam cells, but high phagocytic activity due to different regulatory activities of the PPARγ-LXRα pathways. PMID:21350215

  10. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation

    PubMed Central

    Ito, S; Tanaka, Y; Oshino, R; Okado, S; Hori, M; Isobe, K-I

    2016-01-01

    Growth arrest and DNA damage inducible protein 34 (GADD34) is induced by various cellular stresses, such as DNA damage, endoplasmic reticulum stress, and amino-acid deprivation. Although the major roles of GADD34 are regulating ER stress responses and apoptosis, a recent study suggested that GADD34 is linked to innate immune responses. In this report, we investigated the roles of GADD34 in inflammatory responses against bacterial infection. To explore the effects of GADD34 on systemic inflammation in vivo, we employed a lipopolysaccharide (LPS)-induced murine sepsis model and assessed the lethality, serum cytokine levels, and tissue injury in the presence or absence of GADD34. We found that GADD34 deficiency increased the lethality and serum cytokine levels in LPS-induced sepsis. Moreover, GADD34 deficiency enhanced tissue destruction, cell death, and pro-inflammatory cytokine expression in LPS-induced acute liver injury. Pro-inflammatory cytokine production after LPS stimulation is regulated by the Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. In vitro experiments revealed that GADD34 suppressed pro-inflammatory cytokine production by macrophages through dephosphorylation of IKKβ. In conclusion, GADD34 attenuates LPS-induced sepsis and acute tissue injury through suppressing macrophage activation. Targeting this anti-inflammatory role of GADD34 may be a promising area for the development of therapeutic agents to regulate inflammatory disorders. PMID:27171261

  11. The glycosylation and characterization of the candidate Gc macrophage activating factor.

    PubMed

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter

    2010-04-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood. PMID:20079467

  12. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells

    SciTech Connect

    Kim, Yong Chan; Song, Seok Bean; Lee, Mi Hee; Kang, Kwang Il; Lee, Hayyoung; Paik, Sang-Gi; Kim, Kyoon Eon; Kim, Young Sang . E-mail: young@cnu.ac.kr

    2006-01-20

    Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy.

  13. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages

    PubMed Central

    Rosati, Alessandra; Basile, Anna; D'Auria, Raffaella; d'Avenia, Morena; De Marco, Margot; Falco, Antonia; Festa, Michelina; Guerriero, Luana; Iorio, Vittoria; Parente, Roberto; Pascale, Maria; Marzullo, Liberato; Franco, Renato; Arra, Claudio; Barbieri, Antonio; Rea, Domenica; Menichini, Giulio; Hahne, Michael; Bijlsma, Maarten; Barcaroli, Daniela; Sala, Gianluca; di Mola, Fabio Francesco; di Sebastiano, Pierluigi; Todoric, Jelena; Antonucci, Laura; Corvest, Vincent; Jawhari, Anass; Firpo, Matthew A; Tuveson, David A; Capunzo, Mario; Karin, Michael; De Laurenzi, Vincenzo; Turco, Maria Caterina

    2015-01-01

    The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential. PMID:26522614

  14. The response of peritoneal macrophages after implantation of several ceramics as measured by the change of ectoenzyme activity.

    PubMed

    Otto, B; Ogilvie, A

    1998-06-01

    The bioactive calcium phosphate ceramics with various calcium: phosphorus ratios: Ca/P = 1.67 (hydroxyapatite, HA), Ca/P = 1.6 and Ca/P = 1.5 (tricalcium phosphate, beta-TCP), the bioinert aluminium oxide ceramic (Al2O3) and the toxic calcium oxide ceramic (CaO) have been investigated with respect to their ability to activate peritoneal macrophages of NMRI-mice and with respect to their influence on the extracellular nucleotide degradation of these macrophages. Two weeks after the intraperitoneal injection of a suspension of ceramic particles in an isotone salt solution (phosphate-buffered saline = PBS), we observed that the peritoneal macrophages were only slightly activated into the responsive state, independent of the type of ceramic. 5'Nucleotidase (5'N) ectoenzyme hydrolyses adenosine monophosphate (AMP) and a decrease of its activity is a general biochemical marker of activated macrophages. This ectoenzyme activity was slightly reduced after ceramic implantation. The lacking rise of the extracellular diadenosine tetraphosphate (Ap4A)-catabolism by the macrophage ectoenzyme alkaline phosphodiesterase I (APD) demonstrated that the peritoneal macrophages did not completely reach the responsive state. After the implantation of calcium phosphate ceramics the extracellular adenosine triphosphate (ATP)-reduction was slightly diminished. After the implantation of tricalcium phosphate ceramic about 30% more peritoneal exsudate cells (PEC) were obtained from the peritoneal cavity than after injections of pure PBS (used as non-inflammatory control). Similar to the phenomena following the injection of thioglycollate (Tg, inflammation producing control agent) a slightly but not significantly increased proportion of pseudopodia-building cells was observed after the implantation of the ceramic with Ca/P = 1.6.

  15. Intermittent hypoxia induces murine macrophage foam cell formation by IKK-β-dependent NF-κB pathway activation.

    PubMed

    Imamura, Toshihiro; Poulsen, Orit; Haddad, Gabriel G

    2016-09-01

    Obstructive sleep apnea (OSA) is a common sleep disorder characterized by intermittent hypoxia (IH). Clinical studies have previously shown that OSA is an independent risk factor for atherosclerosis. Atherogenicity in OSA patients has been assumed to be associated with the NF-κB pathways. Although foam cells are considered to be a hallmark of atherosclerosis, how IH as in OSA affects their development has not been fully understood. Therefore, we hypothesized that IH induces macrophage foam cell formation through NF-κB pathway activation. To test this hypothesis, peritoneal macrophages collected from myeloid-restricted IKK-β-deleted mice were incubated with native LDL and exposed to either IH or normoxia. After exposure, NF-κB pathway activity and intracellular cholesterol were measured. In control macrophages, IH significantly increased NF-κB pathway activity by 93% compared with normoxia (P < 0.05). However, such response to IH was diminished by IKK-β deletion (increased by +31% compared with normoxia; P = 0.64), suggesting that IKK-β is critical for IH-induced NF-κB pathway activation. Likewise, in control macrophages, total cholesterol was increased in IH compared with normoxia (65.7 ± 3.8 μg/mg cellular protein and 53.2 ± 1.2, respectively; P < 0.05). However, this IH-induced foam cell formation was disappeared when IKK-β was deleted (52.2 ± 1.2 μg/mg cellular protein for IH and 46.3 ± 1.7 for normoxia; P = 0.55). This IH-mediated effect still existed in macrophages without LDL receptor. Taken together, our findings show that IH activates the IKK-β-dependent NF-κB pathway and that this, in turn, induces foam cell formation in murine macrophages.

  16. Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pande, Ashvin N.; Kohler, Rainer; Aikawa, Elena; Weissleder, Ralph; Jaffer, Farouc

    2006-03-01

    Molecular and cellular mechanisms of atherogenesis and its treatment are largely being unraveled by in vitro techniques. We describe methodology to directly image macrophage cell activity in vivo in a murine model of atherosclerosis using laser scanning fluorescence microscopy (LSFM) and a macrophage-targeted, near-infrared fluorescent (NIRF) magnetofluorescent nanoparticle (MFNP). Atherosclerotic apolipoprotein E deficient (apoE -/-) mice (n=10) are injected with MFNP or 0.9% saline, and wild-type mice (n=4) are injected with MFNP as additional controls. After 24 h, common carotid arteries are surgically exposed and prepared for LSFM. Multichannel LSFM of MFNP-enhanced carotid atheroma (5×5-µm in-plane resolution) shows a strong focal NIRF signal, with a plaque target-to-background ratio of 3.9+/-1.8. Minimal NIRF signal is observed in control mice. Spectrally resolved indocyanine green (ICG) fluorescence angiograms confirm the intravascular location of atheroma. On ex vivo fluorescence reflectance imaging, greater NIRF plaque signal is seen in apoE -/- MFNP mice compared to controls (p<0.01). The NIRF signal correlates well with immunostained macrophages, both by stained surface area (r=0.77) and macrophage number (r=0.86). The validated experimental methodology thus establishes a platform for investigating macrophage activity in atherosclerosis in vivo, and has implications for the detection of clinical vulnerable plaques.

  17. East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure

    PubMed Central

    Schneider, David A.; Frevert, Charles W.; Nelson, Danielle D.; Morrison, W. Ivan; Knowles, Donald P.

    2016-01-01

    Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis. PMID:27195791

  18. East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure.

    PubMed

    Fry, Lindsay M; Schneider, David A; Frevert, Charles W; Nelson, Danielle D; Morrison, W Ivan; Knowles, Donald P

    2016-01-01

    Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis. PMID:27195791

  19. Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages ▿ §

    PubMed Central

    Lefterova, Martina I.; Steger, David J.; Zhuo, David; Qatanani, Mohammed; Mullican, Shannon E.; Tuteja, Geetu; Manduchi, Elisabetta; Grant, Gregory R.; Lazar, Mitchell A.

    2010-01-01

    The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation. PMID:20176806

  20. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat.

    PubMed

    Hanlon, Lauren A; Huh, Jimmy W; Raghupathi, Ramesh

    2016-03-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  1. Proteinase Activated Receptor 1 Mediated Fibrosis in a Mouse Model of Liver Injury: A Role for Bone Marrow Derived Macrophages

    PubMed Central

    Kallis, Yiannis N.; Scotton, Christopher J.; MacKinnon, Alison C.; Goldin, Robert D.; Wright, Nicholas A.; Iredale, John P.; Chambers, Rachel C.; Forbes, Stuart J.

    2014-01-01

    Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment. PMID:24475094

  2. The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ.

    PubMed

    Appelberg, Rui; Moreira, Diana; Barreira-Silva, Palmira; Borges, Margarida; Silva, Letícia; Dinis-Oliveira, Ricardo Jorge; Resende, Mariana; Correia-Neves, Margarida; Jordan, Michael B; Ferreira, Nuno C; Abrunhosa, Antero J; Silvestre, Ricardo

    2015-08-01

    Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-γ (IFN-γ). Mycobacterium avium-infected mice lacking IFN-γ signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-γ signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-γ reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-γ displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-γ is responsible for the Warburg effect observed in organs infected with M. avium.

  3. Armillaridin, a Honey Medicinal Mushroom, Armillaria mellea (Higher Basidiomycetes) Component, Inhibits Differentiation and Activation of Human Macrophages.

    PubMed

    Liu, Tsang-Pai; Chen, Chien-Chih; Shiao, Pei-Yu; Shieh, Hui-Ru; Chen, Yu-Yawn; Chen, Yu-Jen

    2015-01-01

    Armillaridin (AM) is an aromatic ester compound isolated from honey medicinal mushroom, Armillaria mellea, which has anti-cancer potential. This study was designed to examine the effects of AM on differentiation and activation macrophages, the major ontogeny of innate immunity. Macrophages were derived from CD14+ monocytes which were sorted from human peripheral blood mononuclear cells. Cell viability was assessed by trypan blue exclusion test. Cells were stained with Liu's dye for observation of morphology. Expression of surface antigens was examined by flow cytometric analysis. Phagocytosis and generation of reactive oxygen species (ROS), as functional assays, were evaluated by counting engulfed yeasts and DCFH-DA reaction. The viability of macrophages was not significantly reduced by AM. AM at nontoxic concentrations markedly increased cytoplasmic vacuoles. The expression of surface CD14, CD16, CD36, and HLA-DR was suppressed. The phagocytosis function, but not ROS production, of macrophages was inhibited by AM. Armillaridin could inhibit the differentiation and activation of human macrophages. It may have potential to be developed as a biological response modifier for inflammatory diseases.

  4. STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation.

    PubMed

    Yan, Dongyao; Wang, Hao-Wei; Bowman, Robert L; Joyce, Johanna A

    2016-09-13

    Tumor-associated macrophages play critical roles during tumor progression by promoting angiogenesis, cancer cell proliferation, invasion, and metastasis. Cysteine cathepsin proteases, produced by macrophages and cancer cells, modulate these processes, but it remains unclear how these typically lysosomal enzymes are regulated and secreted within the tumor microenvironment. Here, we identify a STAT3 and STAT6 synergy that potently upregulates cathepsin secretion by macrophages via engagement of an unfolded protein response (UPR) pathway. Whole-genome expression analyses revealed that the TH2 cytokine interleukin (IL)-4 synergizes with IL-6 or IL-10 to activate UPR via STAT6 and STAT3. Pharmacological inhibition of the UPR sensor IRE1α blocks cathepsin secretion and blunts macrophage-mediated cancer cell invasion. Similarly, genetic deletion of STAT3 and STAT6 signaling components impairs tumor development and invasion in vivo. Together, these findings demonstrate that cytokine-activated STAT3 and STAT6 cooperate in macrophages to promote a secretory phenotype that enhances tumor progression in a cathepsin-dependent manner. PMID:27626662

  5. SjE16.7 activates macrophages and promotes Schistosoma japonicum egg-induced granuloma development.

    PubMed

    Fang, Yan; Wu, Chenyun; Chen, Qing; Wu, Jianhua; Yang, Yang; Guo, Xiaokui; Chen, Guangjie; Wang, Zhaojun

    2015-09-01

    SjE16.7 is an egg-specific protein from Schistosoma japonicum that recruits neutrophils and initiates an inflammatory granuloma response in host tissue. However, since macrophages are known to be important regulators of egg granuloma formation we investigated the effect of SjE16.7 on this cell type. Here we report that SjE16.7 is a potent macrophage activator, inducing macrophage chemotaxis and stimulating cytokine production. Treatment of murine primary macrophages with SjE16.7 resulted in upregulation of both pro- and anti-inflammatory cytokines (IL-10, IL-12, IL-6 and TNF-α), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, SjE16.7 treatment increased MHC Class II expression on the surface of macrophages. Importantly, in vivo blockade of SjE16.7 significantly reduced egg-induced pathology, as a result of decreased leucocyte infiltration and reduced granuloma size. Our results suggest that SjE16.7 is an important pathogenic factor and a potential treatment target for this disease.

  6. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years. PMID:19031451

  7. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  8. The Inhibition of Macrophage Foam Cell Formation by 9-Cis β-Carotene Is Driven by BCMO1 Activity

    PubMed Central

    Zolberg Relevy, Noa; Bechor, Sapir; Harari, Ayelet; Ben-Amotz, Ami; Kamari, Yehuda; Harats, Dror; Shaish, Aviv

    2015-01-01

    Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins