Sample records for activated macrophages m1

  1. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    PubMed

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  2. M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization.

    PubMed

    Kaplan, Marielle; Shur, Anna; Tendler, Yvgeny

    2018-04-23

    Arterial macrophages comprise a heterogeneous population: pro-inflammatory (M1) and anti-inflammatory (M2). Since C-reactive protein (CRP) is produced by macrophages in atherosclerotic lesions, understanding of CRP regulation in macrophages could be crucial to decipher inflammatory patterns in atherogenesis. We aimed to analyze CRP expression in M1/M2 macrophages and to question whether it involves NFκB signaling pathway. Furthermore, we questioned whether oxidative stress affect macrophage phenotype and modulate macrophage CRP expression. M1/M2 macrophage polarization was validated using THP-1 macrophages. CRP mRNA and protein expression were determined using real-time PCR and immunohistochemistry. Involvement of NFκB was determined by nuclear translocation of p50 subunit and the use of NFκB inhibitor. Involvement of oxidative stress in macrophage phenotypes induction was studied using oxidized-LDL (Ox-LDL) and antioxidants. M1 macrophages were characterized by elevated CRP mRNA expression (by 67%), CRP protein levels (by 108%), and upregulation of NFκB activation compared to control, but these features were not shared by M2 macrophages. Macrophages incubation with Ox-LDL led to a moderate M1 phenotype combined with a M2 phenotype, correlated with increased CRP mRNA expression. Antioxidants inhibited by up to 86% IL6 expression but did not significantly affect IL10 secretion. Antioxidants significantly inhibited CRP expression in M1 macrophages, but not in M2 macrophages. Elevated expression of CRP was characteristic of M1 macrophages rather than M2 through NFκB activation. Oxidative stress could be one of the endogenous triggers for macrophage activation to a mixed M1 and M2 phenotype, in association with increased expression of CRP.

  3. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    PubMed

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  4. Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2.

    PubMed

    Beirão, Breno C B; Raposo, Teresa; Pang, Lisa Y; Argyle, David J

    2015-07-15

    Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.

  5. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    PubMed

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  6. Akt, mTOR and NF-κB pathway activation in Treponema pallidum stimulates M1 macrophages.

    PubMed

    Lin, Li-Rong; Gao, Zheng-Xiang; Lin, Yong; Zhu, Xiao-Zhen; Liu, Wei; Liu, Dan; Gao, Kun; Tong, Man-Li; Zhang, Hui-Lin; Liu, Li-Li; Xiao, Yao; Niu, Jian-Jun; Liu, Fan; Yang, Tian-Ci

    2018-06-01

    The polarization of macrophages and the molecular mechanism involved during the early process of syphilis infection remain unknown. This study was conducted to explore the influence of Treponema pallidum (T. pallidum) treatment on macrophage polarization and the Akt-mTOR-NFκB signaling pathway mechanism involved in this process. M0 macrophages derived from the phorbol-12-myristate-13-acetate-induced human acute monocytic leukemia cell line THP-1 were cultured with T. pallidum. T. pallidum induced inflammatory cytokine (IL-1β and TNF-α) expression in a dose- and time-dependent manner. However IL-10 cytokine expression decreased at the mRNA and protein levels. Additionally, the expression of the M1 surface marker iNOS was up-regulated with incubation time, and the expression of the M2 surface marker CD206 was low (vs. PBS treated macrophages, P < 0.001) and did not fluctuate over 12 h. Further studies revealed that Akt-mTOR-NFκB pathway proteins, including p-Akt, p-mTOR, p-S6, p-p65, and p-IκBα, were significantly higher in the T. pallidum-treated macrophages than in the PBS-treated macrophages (P < 0.05). In addition, inflammatory cytokine expression was suppressed in T. pallidum-induced M1 macrophages pretreated with LY294002 (an Akt-specific inhibitor) or PDTC (an NF-κB inhibitor), while inflammatory cytokine levels increased in T. pallidum-induced M1 macrophages pretreated with rapamycin (an mTOR inhibitor). These findings revealed that T. pallidum promotes the macrophage transition to pro-inflammatory M1 macrophages in vitro. The present study also provides evidence that Akt, mTOR and NF-κB pathway activation in T. pallidum stimulates M1 macrophages. This study provides novel insights into the innate immune response to T. pallidum infection. Copyright © 2018. Published by Elsevier B.V.

  7. Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor–activated macrophages

    PubMed Central

    López-Pelaéz, Marta; Fumagalli, Stefano; Sanz, Carlos; Herrero, Clara; Guerra, Susana; Fernandez, Margarita; Alemany, Susana

    2012-01-01

    Cot/tpl2 is the only MAP3K that activates MKK1/2-Erk1/2 in Toll-like receptor–activated macrophages. Here we show that Cot/tpl2 regulates RSK, S6 ribosomal protein, and 4E-BP phosphorylation after stimulation of bone marrow–derived macrophages with lipopolysaccharide (LPS), poly I:C, or zymosan. The dissociation of the 4E-BP–eIF4E complex, a key event in the cap-dependent mRNA translation initiation, is dramatically reduced in LPS-stimulated Cot/tpl2-knockout (KO) macrophages versus LPS-stimulated wild-type (Wt) macrophages. Accordingly, after LPS activation, increased cap-dependent translation is observed in Wt macrophages but not in Cot/tpl2 KO macrophages. In agreement with these data, Cot/tpl2 increases the polysomal recruitment of the 5´ TOP eEF1α and eEF2 mRNAs, as well as of inflammatory mediator gene–encoding mRNAs, such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and KC in LPS-stimulated macrophages. In addition, Cot/tpl2 deficiency also reduces total TNFα, IL-6, and KC mRNA expression in LPS-stimulated macrophages, which is concomitant with a decrease in their mRNA half-lives. Macrophages require rapid fine control of translation to provide an accurate and not self-damaging response to host infection, and our data show that Cot/tpl2 controls inflammatory mediator gene–encoding mRNA translation in Toll-like receptor–activated macrophages. PMID:22675026

  8. Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages.

    PubMed

    López-Pelaéz, Marta; Fumagalli, Stefano; Sanz, Carlos; Herrero, Clara; Guerra, Susana; Fernandez, Margarita; Alemany, Susana

    2012-08-01

    Cot/tpl2 is the only MAP3K that activates MKK1/2-Erk1/2 in Toll-like receptor-activated macrophages. Here we show that Cot/tpl2 regulates RSK, S6 ribosomal protein, and 4E-BP phosphorylation after stimulation of bone marrow-derived macrophages with lipopolysaccharide (LPS), poly I:C, or zymosan. The dissociation of the 4E-BP-eIF4E complex, a key event in the cap-dependent mRNA translation initiation, is dramatically reduced in LPS-stimulated Cot/tpl2-knockout (KO) macrophages versus LPS-stimulated wild-type (Wt) macrophages. Accordingly, after LPS activation, increased cap-dependent translation is observed in Wt macrophages but not in Cot/tpl2 KO macrophages. In agreement with these data, Cot/tpl2 increases the polysomal recruitment of the 5´ TOP eEF1α and eEF2 mRNAs, as well as of inflammatory mediator gene-encoding mRNAs, such as tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and KC in LPS-stimulated macrophages. In addition, Cot/tpl2 deficiency also reduces total TNFα, IL-6, and KC mRNA expression in LPS-stimulated macrophages, which is concomitant with a decrease in their mRNA half-lives. Macrophages require rapid fine control of translation to provide an accurate and not self-damaging response to host infection, and our data show that Cot/tpl2 controls inflammatory mediator gene-encoding mRNA translation in Toll-like receptor-activated macrophages.

  9. Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection.

    PubMed

    Farias, L H S; Rodrigues, A P D; Coêlho, E C; Santos, M F; Sampaio, S C; Silva, E O

    2017-09-01

    American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage - Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL-1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.

  10. Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages.

    PubMed

    Ji, Jian; Hu, Sheng-Lan; Cui, Zhi-Wen; Li, Wei-Fen

    2013-05-01

    Depending on the microenvironment, macrophages can acquire distinct functional phenotypes, referred to as classically activated M1 and M2. M1 macrophages are considered potent effector cells that kill intracellular pathogens, and M2 macrophages promote the resolution of wound healing. In this study, we are interested to know whether probiotic Bacillus amyloliquefaciens (Ba) can induce macrophages polarization. Real-time fluorescence PCR analysis demonstrated that the expression of IL-1β, iNOS, TNF-α and IL-6 genes for M1 macrophages was significantly increased at 1.5 h after probiotic Ba treatment compared to the probiotic Ba-free treatment (P < 0.01), whereas the expression of M2 macrophage marker genes (Arg1, Fizz1, MR, Ym1) was decreased (P < 0.05). Furthermore, the phagocytic activity was dramatically increased in the Ba-treated BMDMs using a FITC-dextran endocytosis assay. Together, these findings indicated that probiotic Ba facilitated polarization of M1 macrophages and enhanced its phagocytic capacity. The results expanded our knowledge about probiotic function-involved macrophage polarization.

  11. Novel Markers to Delineate Murine M1 and M2 Macrophages

    PubMed Central

    Jablonski, Kyle A.; Amici, Stephanie A.; Webb, Lindsay M.; Ruiz-Rosado, Juan de Dios; Popovich, Phillip G.; Partida-Sanchez, Santiago; Guerau-de-Arellano, Mireia

    2015-01-01

    Classically (M1) and alternatively activated (M2) macrophages exhibit distinct phenotypes and functions. It has been difficult to dissect macrophage phenotypes in vivo, where a spectrum of macrophage phenotypes exists, and also in vitro, where low or non-selective M2 marker protein expression is observed. To provide a foundation for the complexity of in vivo macrophage phenotypes, we performed a comprehensive analysis of the transcriptional signature of murine M0, M1 and M2 macrophages and identified genes common or exclusive to either subset. We validated by real-time PCR an M1-exclusive pattern of expression for CD38, G-protein coupled receptor 18 (Gpr18) and Formyl peptide receptor 2 (Fpr2) whereas Early growth response protein 2 (Egr2) and c-Myc were M2-exclusive. We further confirmed these data by flow cytometry and show that M1 and M2 macrophages can be distinguished by their relative expression of CD38 and Egr2. Egr2 labeled more M2 macrophages (~70%) than the canonical M2 macrophage marker Arginase-1, which labels 24% of M2 macrophages. Conversely, CD38 labeled most (71%) in vitro M1 macrophages. In vivo, a similar CD38+ population greatly increased after LPS exposure. Overall, this work defines exclusive and common M1 and M2 signatures and provides novel and improved tools to distinguish M1 and M2 murine macrophages. PMID:26699615

  12. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway

    PubMed Central

    Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing

    2015-01-01

    Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation. PMID:26114112

  13. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    PubMed

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  14. The effect of mineral trioxide aggregate on phagocytic activity and production of reactive oxygen, nitrogen species and arginase activity by M1 and M2 macrophages.

    PubMed

    Rezende, T M B; Vieira, L Q; Cardoso, F P; Oliveira, R R; de Oliveira Mendes, S T; Jorge, M L R; Ribeiro Sobrinho, A P

    2007-08-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) on phagocytosis and the production of reactive oxygen intermediates (ROI) and nitrogen (NO) species and the arginase activity by M1 and M2 peritoneal macrophages. Cellular viability, adherence and phagocytosis of Saccharomyces boulardii were assayed in the presence of MTA. Macrophages were stimulated with zymosan for ROI assays and with Fusobacterium nucleatum and Peptostreptococcus anaerobius and IFN-gamma for NO production and arginase activity, when in contact with capillaries containing MTA. Data were analysed by T, anova, Kruskall-Wallis and Mann-Whitney tests. M2 macrophages displayed greater cellular viability in polypropylene tubes, greater ability to ingest yeast and smaller production of ROI and higher arginase activity when compared with M1 macrophages. Both macrophages, M1 and M2, presented similar cell adherence and NO production. The addition of bacterial preparations to macrophages interfered with NO and arginase productions. MTA did not interfere with any of the parameters measured. Phagocytosis and the ability of the two macrophage subtypes to eliminate microbes were not affected by MTA.

  15. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  16. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  17. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

    PubMed

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.

  18. β-Adrenergic-stimulated macrophages: Comprehensive localization in the M1-M2 spectrum.

    PubMed

    Lamkin, Donald M; Ho, Hsin-Yun; Ong, Tiffany H; Kawanishi, Carly K; Stoffers, Victoria L; Ahlawat, Nivedita; Ma, Jeffrey C Y; Arevalo, Jesusa M G; Cole, Steve W; Sloan, Erica K

    2016-10-01

    β-Adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1-M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one pre-defined category of the M1-M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1-M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1-M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1-M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury

    PubMed Central

    Kumar, Alok; Barrett, James P.; Alvarez-Croda, Dulce-Mariely; Stoica, Bogdan A.; Faden, Alan I.; Loane, David J.

    2016-01-01

    Following traumatic brain injury (TBI), activation of microglia and peripherally derived inflammatory macrophages occurs in association with tissue damage. This neuroinflammatory response may have beneficial or detrimental effects on neuronal survival, depending on the functional polarization of these cells along a continuum from M1-like to M2-like activation states. The mechanisms that regulate M1-like and M2-like activation after TBI are not well understood, but appear in part to reflect the redox state of the lesion microenvironment. NADPH oxidase (NOX2) is a critical enzyme system that generates reactive oxygen species in microglia/macrophages. After TBI, NOX2 is strongly up-regulated in M1-like, but not in M2-like polarized cells. Therefore, we hypothesized that NOX2 drives M1-like neuroinflammation and contributes to neurodegeneration and loss of neurological function after TBI. In the present studies we inhibited NOX2 activity using NOX2-knockout mice or the selective peptide inhibitor gp91ds-tat. We show that NOX2 is highly up-regulated in infiltrating macrophages after injury, and that NOX2 deficiency reduces markers of M1-like activation, limits tissue loss and neurodegeneration, and improves motor recovery after moderate-level control cortical injury (CCI). NOX2 deficiency also promotes M2-like activation after CCI, through increased IL-4Rα signaling in infiltrating macrophages, suggesting that NOX2 acts as a critical switch between M1- and M2-like activation states after TBI. Administration of gp91ds-tat to wild-type CCI mice starting at 24 hours post-injury reduces deficits in cognitive function and increased M2-like activation in the hippocampus. Collectively, our data indicate that increased NOX2 activity after TBI drives M1-like activation that contributes to inflammatory-mediated neurodegeneration, and that inhibiting this pathway provides neuroprotection, in part by altering M1-/M2-like balance towards the M2-like neuroinflammatory response. PMID

  20. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    PubMed

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages.

    PubMed

    Narayan, Nehal; Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter

    2017-01-01

    The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or 'M1' phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.

  2. β-adrenergic-stimulated macrophages: Comprehensive localization in the M1M2 spectrum

    PubMed Central

    Lamkin, Donald M.; Ho, Hsin-Yun; Ong, Tiffany H.; Kawanishi, Carly K.; Stoffers, Victoria L.; Ahlawat, Nivedita; Ma, Jeffrey C.Y.; Arevalo, Jesusa M. G.; Cole, Steve W.; Sloan, Erica K.

    2016-01-01

    β-adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one predefined category of the M1M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040

  3. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  4. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  5. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    PubMed

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype.

    PubMed

    Seif, Michelle; Philippi, Anja; Breinig, Frank; Kiemer, Alexandra K; Hoppstädter, Jessica

    2016-10-01

    Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

  7. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis.

    PubMed

    He, Xing; Tang, Rui; Sun, Yue; Wang, Yan-Ge; Zhen, Kui-Yang; Zhang, Dong-Mei; Pan, Wei-Qing

    2016-11-01

    Schistosomiasis is a chronic disease caused by the parasite of the Schistosoma genus and is characterized by egg-induced hepatic granulomas and fibrosis. Macrophages play a central role in schistosomiasis with several studies highlighting their differentiation into M2 cells involved in the survival of infected mice through limitation of immunopathology. However, little is known regarding the mechanisms of regulating macrophage differentiation. Here, we showed that the early stage of infection by Schistosoma japonicum induced expression of type 1T-helper-cell (Th1) cytokine, interferon-γ (IFN-γ), leading to increase in M1 cells. However, the presence of liver-trapped eggs induced the expression of Th2 cytokines including interleukin-4 (IL-4), IL-10, and IL-13 that upregulated the transcription of miR-146b by activating signal transducer and activator of transcription 3/6 (STAT3/6) that bind to the promoter of the pre-miR-146b gene. We found that the miR-146a/b was significantly upregulated in macrophages during the progression of hepatic schistosomiasis. The elevated miR-146a/b inhibited the IFN-γ-induced differentiation of macrophages to M1 cells through targeting STAT1. Our data indicate the protective roles of miR-146a/b in hepatic schistosomiasis through regulating the differentiation of macrophages into M2 cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype

    PubMed Central

    Liu, Min; Luo, Fengling; Ding, Chuanlin; Albeituni, Sabrin; Hu, Xiaoling; Ma, Yunfeng; Cai, Yihua; McNally, Lacey; Sanders, Mary Ann; Jain, Dharamvir; Kloecker, Goetz; Bousamra, Michael; Zhang, Huang-ge; Higashi, Richard M.; Lane, Andrew N.; Fan, Teresa W-M.; Yan, Jun

    2015-01-01

    Tumor-associated macrophages (TAM) with an M2-like phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. Here, we demonstrate that particulate yeast-derived β-glucan, a natural polysaccharide compound, converts polarized M2 macrophages or immunosuppressive TAM into an M1-like phenotype with potent immuno-stimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, krebs cycle and glutamine utilization. In addition, particulate β-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced Syk-Card9-Erk pathway. Further in vivo studies show that oral particulate β-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate β-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared to those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate β-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed the light on the action mode of β-glucan treatment in cancer. PMID:26453753

  9. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    PubMed

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80 + /CD11c + /CD206 - cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice.

    PubMed

    Dai, Xiaoying; Mao, Congzheng; Lan, Xiuwan; Chen, Huan; Li, Meihua; Bai, Jing; Deng, Jingmin; Liang, Qiuli; Zhang, Jianquan; Zhong, Xiaoning; Liang, Yi; Fan, Jiangtao; Luo, Honglin; He, Zhiyi

    2017-08-18

    Penicillium marneffei (P. marneffei) is a thermally dimorphic fungus pathogen that causes fatal infection. Alveolar macrophages are innate immune cells that have critical roles in protection against pulmonary fungal pathogens and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. The aim of this study was to investigate mouse alveolar macrophage polarization states during P. marneffei infection. We used enzyme-linked immunosorbent (ELISA) assays, quantitative real-time PCR (qRT-PCR), and Griess, arginase activity to evaluate the phenotypic markers of alveolar macrophages from BALB/C mice infected with P. marneffei. We then treated alveolar macrophages from infected mice with P. marneffei cytoplasmic yeast antigen (CYA) and investigated alveolar macrophage phenotypic markers in order to identify macrophage polarization in response to P. marneffei antigens. Our results showed: i) P. marneffei infection significantly enhanced the expression of classically activated macrophage (M1)-phenotypic markers (inducible nitric oxide synthase [iNOS] mRNA, nitric oxide [NO], interleukin-12 [IL-12], tumor necrosis factor-alpha [TNF-α]) and alternatively activated macrophage (M2a)-phenotypic markers (arginase1 [Arg1] mRNA, urea) during the second week post-infection. This significantly decreased during the fourth week post-infection. ii) During P. marneffei infection, CYA stimulation also significantly enhanced the expression of M1 and M2a-phenotypic markers, consistent with the results for P. marneffei infection and CYA stimulation preferentially induced M1 subtype. The data from the current study demonstrated that alveolar macrophage M1/M2a subtypes were present in host defense against acute P. marneffei infection and that CYA could mimic P. marneffei to induce a host immune response with enhanced M1 subtype. This could be useful for investigating the enhancement of host anti-P. marneffei immune responses and to

  11. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization1

    PubMed Central

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D.; Meisinger, Trevor M.; Casale, George P.; Baxter, B. Timothy

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix (ECM) degradation. Damage to elastin in the ECM results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Pro-inflammatory M1 macrophages initially are recruited to sites of injury but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. AAA tissue reveals a high M1/M2 ratio where pro-inflammatory cells and their associated markers dominate. In the present study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57Bl/6 mice, antibody-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and pro-inflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2 polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a pro-inflammatory environment in aortic tissue by inducing M1 polarization and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  12. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State

    PubMed Central

    Dugo, Laura; Belluomo, Maria Giovanna; Fanali, Chiara; Russo, Marina; Cacciola, Francesco

    2017-01-01

    Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages. PMID:28744339

  13. Resveratrol Prevents Tumor Growth and Metastasis by Inhibiting Lymphangiogenesis and M2 Macrophage Activation and Differentiation in Tumor-associated Macrophages.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2016-01-01

    Antitumor and antimetastatic effects of resveratrol on tumor-induced lymphangiogenesis through the regulation of M2 macrophages in tumor-associated macrophages currently remain unknown. Therefore, we herein examined the effects of resveratrol on M2 macrophage activation and differentiation, and those of resveratrol-treated condition medium (CM) in M2 macrophages on vascular endothelial cell growth factor (VEGF)-C-induced migration, invasion, and tube formation by human lymphatic endothelial cells (HLECs). Resveratrol (50 μM or 5-50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, whereas it promoted that of transforming growth factor-β1. Resveratrol (25 and 50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation process of M2 macrophages. Furthermore, resveratrol-treated CM of M2 macrophages inhibited VEGF-C-induced HLEC migration, invasion, and lymphangiogenesis. Resveratrol (25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung and also reduced the area of lymphatic endothelial cells in tumors (in vivo). These results suggest that the antitumor and antimetastatic effects of resveratrol were partly due to antilymphangiogenesis through the regulation of M2 macrophage activation and differentiation.

  14. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    PubMed

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  15. Iron Reduces M1 Macrophage Polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1.

    PubMed

    Gan, Zhen-Shun; Wang, Qian-Qian; Li, Jia-Hui; Wang, Xu-Liang; Wang, Yi-Zhen; Du, Hua-Hua

    2017-01-01

    Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN- γ . The molecular signature of M1 macrophages showed high levels of iron storage (ferritin), a low level of iron export (ferroportin), and changes of iron regulators (hepcidin and transferrin receptors), which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1 β , TNF- α , and iNOS produced by IFN- γ -polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization.

  16. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory ‘M1’ human macrophages

    PubMed Central

    Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter

    2017-01-01

    The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages. PMID:28968465

  17. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein.

    PubMed

    Chen, Yulei; Zhang, Siyuan; Wang, Qizhi; Zhang, Xiaobo

    2017-02-01

    The macrophage, one of the several key immune cell types, is believed to be involved in tumorigenesis. However, the mechanism of macrophages promoting tumor progression is largely unknown. The differentially secreted proteins of M1 and M2 macrophages were analyzed by mass spectrometry. We performed GST pull-down assay for the identification of cell-membrane receptors that interact with chitinase 3-like protein 1 (CHI3L1) protein. The mouse model was used to validate the function of CHI3L1 in cancer metastasis in vivo. Protein phosphorylation and gene expression were performed to study the signaling pathway activation of cancer cells after CHI3L1 treatment. M2 macrophage-secreted CHI3L1 promoted the metastasis of gastric and breast cancer cells in vitro and in vivo. The CHI3L1 protein functioned by interacting with interleukin-13 receptor α2 chain (IL-13Rα2) molecules on the plasma membranes of cancer cells. Activation of IL-13Rα2 by CHI3L1 triggered the activation of the mitogen-activated protein kinase signaling pathway, leading to the upregulated expression of matrix metalloproteinase genes, which promoted tumor metastasis. The results of this study indicated that the level of CHI3L1 protein in the sera of patients with gastric or breast cancer was significantly elevated compared with those of healthy donors. Our study revealed a novel aspect of macrophages with respect to cancer metastasis and showed that CHI3L1 could be a marker of metastatic gastric and breast cancer in patients.

  18. [Macrophage activation in atherosclerosis. Message 1: Activation of macrophages normally and in atherosclerotic lesions].

    PubMed

    Nikiforov, N G; Kornienko, V Y; Karagodin, V P; Orekhov, A N

    2015-01-01

    Macrophages play important role in initiation and progression of inflammation in atherosclerosis. Plaque macrophages were shown to exhibit a phenotypic range that is intermediate between two extremes, M1 (proinflammatory) and M2 (anti-inflammatory). Indeed, in atherosclerosis, macrophages demonstrate phenotypic plasticity to rapidly adjust to changing microenvironmental conditions. In plaque macrophages demonstrate different phenotypes, and besides macrophage phenotypes could be changed. Phenotypes M1, M2, M4, Mhem, HA-mac, M(Hb) u Mox are described in the article. Ability of macrophages change their phenotype also considered.

  19. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge.

    PubMed

    Spadaro, Olga; Camell, Christina D; Bosurgi, Lidia; Nguyen, Kim Y; Youm, Yun-Hee; Rothlin, Carla V; Dixit, Vishwa Deep

    2017-04-11

    In concert with their phagocytic activity, macrophages are thought to regulate the host immunometabolic responses primarily via their ability to produce specific cytokines and metabolites. Here, we show that IL-4-differentiated, M2-like macrophages secrete IGF1, a hormone previously thought to be exclusively produced from liver. Ablation of IGF1 receptors from myeloid cells reduced phagocytosis, increased macrophages in adipose tissue, elevated adiposity, lowered energy expenditure, and led to insulin resistance in mice fed a high-fat diet. The investigation of adipose macrophage phenotype in obese myeloid IGF1R knockout (MIKO) mice revealed a reduction in transcripts associated with M2-like macrophage activation. Furthermore, the MIKO mice infected with helminth Nippostrongylus brasiliensis displayed delayed resolution from infection with normal insulin sensitivity. Surprisingly, cold challenge did not trigger an overt M2-like state and failed to induce tyrosine hydroxylase expression in adipose tissue macrophages of control or MIKO mice. These results show that IGF1 signaling shapes the macrophage-activation phenotype. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile.

    PubMed

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  1. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    PubMed

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  2. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM.

    PubMed

    Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A; Koller, Antonius; Strowig, Till; Flavell, Richard A; Brodsky, Igor E; Bliska, James B

    2014-07-01

    YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert

  3. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts

    PubMed Central

    2013-01-01

    Background Macrophages and fibroblasts are two major players in tissue repair and fibrosis. Despite the relevance of macrophages and fibroblasts in tissue homeostasis, remarkably little is known whether macrophages are able to influence the properties of fibroblasts. Here we investigated the role of paracrine factors secreted by classically activated (M1) and alternatively activated (M2) human macrophages on human dermal fibroblasts (HDFs). Results HDFs stimulated with paracrine factors from M1 macrophages showed a 10 to > 100-fold increase in the expression of the inflammatory cytokines IL6, CCL2 and CCL7 and the matrix metalloproteinases MMP1 and MMP3. This indicates that factors produced by M1 macrophages induce a fibroblast phenotype with pro-inflammatory and extracellular matrix (ECM) degrading properties. HDFs stimulated with paracrine factors secreted by M2 macrophages displayed an increased proliferation rate. Interestingly, the M1-activated pro-inflammatory fibroblasts downregulated, after exposure to paracrine factors produced by M2 macrophages or non-conditioned media, the inflammatory markers as well as MMPs and upregulated their collagen production. Conclusions Paracrine factors of M1 or M2 polarized macrophages induced different phenotypes of HDFs and the HDF phenotypes can in turn be reversed, pointing to a high dynamic plasticity of fibroblasts in the different phases of tissue repair. PMID:23601247

  4. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype.

    PubMed

    He, Hua; Zhang, Suzhen; Tighe, Sean; Son, Ji; Tseng, Scheffer C G

    2013-09-06

    Despite the known anti-inflammatory effect of amniotic membrane, its action mechanism remains largely unknown. HC-HA complex (HC-HA) purified from human amniotic membrane consists of high molecular weight hyaluronic acid (HA) covalently linked to the heavy chain (HC) 1 of inter-α-trypsin inhibitor. In this study, we show that soluble HC-HA also contained pentraxin 3 and induced the apoptosis of both formyl-Met-Leu-Phe or LPS-activated neutrophils and LPS-activated macrophages while not affecting the resting cells. This enhanced apoptosis was caused by the inhibition of cell adhesion, spreading, and proliferation caused by HC-HA binding of LPS-activated macrophages and preventing adhesion to the plastic surface. Preferentially, soluble HC-HA promoted phagocytosis of apoptotic neutrophils in resting macrophages, whereas immobilized HC-HA promoted phagocytosis in LPS-activated macrophages. Upon concomitant LPS stimulation, immobilized HC-HA but not HA polarized macrophages toward the M2 phenotype by down-regulating IRF5 protein and preventing its nuclear localization and by down-regulating IL-12, TNF-α, and NO synthase 2. Additionally, IL-10, TGF-β1, peroxisome proliferator-activated receptor γ, LIGHT (TNF superfamily 14), and sphingosine kinase-1 were up-regulated, and such M2 polarization was dependent on TLR ligation. Collectively, these data suggest that HC-HA is a unique matrix component different from HA and uses multiple mechanisms to suppress M1 while promoting M2 phenotype. This anti-inflammatory action of HC-HA is highly desirable to promote wound healing in diseases heightened by unsuccessful transition from M1 to M2 phenotypes.

  5. Apoptosis inhibitor of macrophage depletion decreased M1 macrophage accumulation and the incidence of cardiac rupture after myocardial infarction in mice.

    PubMed

    Ishikawa, Shohei; Noma, Takahisa; Fu, Hai Ying; Matsuzaki, Takashi; Ishizawa, Makoto; Ishikawa, Kaori; Murakami, Kazushi; Nishimoto, Naoki; Nishiyama, Akira; Minamino, Tetsuo

    2017-01-01

    Cardiac rupture is an important cause of death in the acute phase after myocardial infarction (MI). Macrophages play a pivotal role in cardiac remodeling after MI. Apoptosis inhibitor of macrophage (AIM) is secreted specifically by macrophages and contributes to macrophage accumulation in inflamed tissue by maintaining survival and recruiting macrophages. In this study, we evaluated the role of AIM in macrophage accumulation in the infarcted myocardium and cardiac rupture after MI. Wild-type (WT) and AIM‒/‒ mice underwent permanent left coronary artery ligation and were followed-up for 7 days. Macrophage accumulation and phenotypes (M1 pro-inflammatory macrophage or M2 anti-inflammatory macrophage) were evaluated by immunohistological analysis and RT-PCR. Matrix metalloproteinase (MMP) activity levels were measured by gelatin zymography. The survival rate was significantly higher (81.1% vs. 48.2%, P<0.05), and the cardiac rupture rate was significantly lower in AIM‒/‒ mice than in WT mice (10.8% vs. 31.5%, P<0.05). The number of M1 macrophages and the expression levels of M1 markers (iNOS and IL-6) in the infarcted myocardium were significantly lower in AIM‒/‒ mice than in WT mice. In contrast, there was no difference in the number of M2 macrophages and the expression of M2 markers (Arg-1, CD206 and TGF-β1) between the two groups. The ratio of apoptotic macrophages in the total macrophages was significantly higher in AIM‒/‒ mice than in WT mice, although MCP-1 expression did not differ between the two groups. MMP-2 and 9 activity levels in the infarcted myocardium were significantly lower in AIM‒/‒ mice than in WT mice. These findings suggest that AIM depletion decreases the levels of M1 macrophages, which are a potent source of MMP-2 and 9, in the infarcted myocardium in the acute phase after MI by promoting macrophage apoptosis, and leads to a decrease in the incidence of cardiac rupture and improvements in survival rates.

  6. Apoptosis inhibitor of macrophage depletion decreased M1 macrophage accumulation and the incidence of cardiac rupture after myocardial infarction in mice

    PubMed Central

    Noma, Takahisa; Fu, Hai Ying; Matsuzaki, Takashi; Ishizawa, Makoto; Ishikawa, Kaori; Murakami, Kazushi; Nishimoto, Naoki; Nishiyama, Akira; Minamino, Tetsuo

    2017-01-01

    Background Cardiac rupture is an important cause of death in the acute phase after myocardial infarction (MI). Macrophages play a pivotal role in cardiac remodeling after MI. Apoptosis inhibitor of macrophage (AIM) is secreted specifically by macrophages and contributes to macrophage accumulation in inflamed tissue by maintaining survival and recruiting macrophages. In this study, we evaluated the role of AIM in macrophage accumulation in the infarcted myocardium and cardiac rupture after MI. Methods and results Wild-type (WT) and AIM‒/‒ mice underwent permanent left coronary artery ligation and were followed-up for 7 days. Macrophage accumulation and phenotypes (M1 pro-inflammatory macrophage or M2 anti-inflammatory macrophage) were evaluated by immunohistological analysis and RT-PCR. Matrix metalloproteinase (MMP) activity levels were measured by gelatin zymography. The survival rate was significantly higher (81.1% vs. 48.2%, P<0.05), and the cardiac rupture rate was significantly lower in AIM‒/‒ mice than in WT mice (10.8% vs. 31.5%, P<0.05). The number of M1 macrophages and the expression levels of M1 markers (iNOS and IL-6) in the infarcted myocardium were significantly lower in AIM‒/‒ mice than in WT mice. In contrast, there was no difference in the number of M2 macrophages and the expression of M2 markers (Arg-1, CD206 and TGF-β1) between the two groups. The ratio of apoptotic macrophages in the total macrophages was significantly higher in AIM‒/‒ mice than in WT mice, although MCP-1 expression did not differ between the two groups. MMP-2 and 9 activity levels in the infarcted myocardium were significantly lower in AIM‒/‒ mice than in WT mice. Conclusions These findings suggest that AIM depletion decreases the levels of M1 macrophages, which are a potent source of MMP-2 and 9, in the infarcted myocardium in the acute phase after MI by promoting macrophage apoptosis, and leads to a decrease in the incidence of cardiac rupture and

  7. Long Noncoding RNA Profiling from Fasciola Gigantica Excretory/Secretory Product-Induced M2 to M1 Macrophage Polarization.

    PubMed

    Luo, Honglin; Zhang, Yaoyao; Sheng, Zhaoan; Luo, Tao; Chen, Jie; Liu, Junjie; Wang, Huifeng; Chen, Miao; Shi, Yunliang; Li, Lequn

    2018-05-22

    Long noncoding RNAs (lncRNAs) are well known regulators of gene expression that play essential roles in macrophage activation and polarization. However, the role of lncRNA in Fasciola gigantica excretory/secretory products (ESP)-induced M2 polarization into M1 macrophages is unclear. Herein, we performed lncRNA profiling of lncRNAs and mRNAs during the ESP-induced macrophage polarization process. F. gigantica ESP was used to induce peritoneal cavity M2 macrophages in BALB/c mice (5-6 weeks old) in vivo, and these cells were subsequently isolated and stimulated with IFN-γ + LPS to induce M1 cells in vitro. LncRNA and mRNA profiling was performed via microarray at the end of both polarization stages. In total, 2,844 lncRNAs (1,579 upregulated and 1,265 downregulated) and 1,782 mRNAs (789 upregulated and 993 downregulated) were differentially expressed in M2 macrophages compared to M1 macrophages, and six lncRNAs were identified during polarization. We selected 34 differentially expressed lncRNAs and mRNAs to validate the results of microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, particularly peptidase activity and carbohydrate metabolism. Furthermore, coding and non-coding gene (CNC) and mRNA-related ceRNA network analyses were conducted to predict lncRNA expression trends and the potential target genes of these lncRNAs and mRNAs. Moreover, we determined that four lncRNAs and four mRNAs might participate in F. gigantica ESP-induced M2 polarization into M1 macrophages. This study illustrates the basic profiling of lncRNAs and mRNAs during F. gigantica ESP-induced M2 polarization into M1 macrophages and deepens our understanding of the mechanism underlying this process. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization.

    PubMed

    Lu, Hong; Wu, Lianfeng; Liu, Leping; Ruan, Qingqing; Zhang, Xing; Hong, Weilong; Wu, Shijia; Jin, Guihua; Bai, Yongheng

    2018-05-15

    Interstitial inflammation is the main pathological feature in kidneys following injury, and the polarization of macrophages is involved in the process of inflammatory injury. Previous studies have shown that quercetin has a renal anti-inflammatory activity, but the potential molecular mechanism remains unknown. In obstructive kidneys, administration of quercetin inhibited tubulointerstitial injury and reduced the synthesis and release of inflammatory factors. Further study revealed that quercetin inhibited the infiltration of CD68+ macrophages in renal interstitium. Moreover, the decrease in levels of iNOS and IL-12, as well as the proportion of F4/80+/CD11b+/CD86+ macrophages, indicated quercetin-mediated inhibition of M1 macrophage polarization in the injured kidneys. In cultured macrophages, lipopolysaccharide-induced inflammatory polarization was suppressed by quercetin treatment, resulting in the reduction of the release of inflammatory factors. Notably, quercetin-induced inhibitory effects on inflammatory macrophage polarization were associated with down-regulated activities of NF-κB p65 and IRF5, and thus led to the inactivation of upstream signaling TLR4/Myd88. Interestingly, quercetin also inhibited the polarization of F4/80+/CD11b+/CD206+ M2 macrophages, and reduced excessive accumulation of extracellular matrix and interstitial fibrosis by antagonizing the TGF-β1/Smad2/3 signaling. Thus, quercetin ameliorates kidney injury via modulating macrophage polarization, and may have therapeutic potential for patients with kidney injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. 4-Methoxylonchocarpin attenuates inflammation by inhibiting lipopolysaccharide binding to Toll-like receptor of macrophages and M1 macrophage polarization.

    PubMed

    Jang, Hyo-Min; Kang, Geum-Dan; Van Le, Thi Kim; Lim, Su-Min; Jang, Dae-Sik; Kim, Dong-Hyun

    2017-04-01

    The roots of Abrus precatorius (AP, Fabaceae) have traditionally been used in Vietnam and China for the treatment of inflammatory diseases such as stomatitis, asthma, bronchitis, and hepatitis. Therefore, in this study, we isolated 4-methoxylonchocarpin (ML), an anti-inflammatory compound present in AP, and studied its anti-inflammatory effects in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. In lipopolysaccharide (LPS)-stimulated macrophages, ML was found to inhibit nuclear factor (NF)-κB activation and tumor necrosis factor (TNF) and interleukin (IL)-6 expression by inhibiting LPS binding to Toll-like receptor 4 (TLR4) in vitro. Oral administration of ML in mice with TNBS-induced colitis suppressed colon shortening and colonic myeloperoxidase activity. ML treatment significantly inhibited the activation of nuclear factor (NF)-κB and phosphorylation of transforming growth factor β-activated kinase 1 in the colon. Treatment with ML also inhibited TNBS-induced expression of IL-1β, IL-17A, and TNF. While ML reduced the TNBS-induced expression of M1 macrophage markers such as arginase-2 and TNF, it was found to increase the expression of M2 macrophage markers such as arginase-1 and IL-10. In conclusion, oral administration of ML attenuated colitis in mice by inhibiting the binding of LPS to TLR4 on immune cells and increasing the polarization of M1 macrophages to M2 macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Canine macrophages can like human macrophages be in vitro activated toward the M2a subtype relevant in allergy.

    PubMed

    Herrmann, Ina; Gotovina, Jelena; Fazekas-Singer, Judit; Fischer, Michael B; Hufnagl, Karin; Bianchini, Rodolfo; Jensen-Jarolim, Erika

    2018-05-01

    The M2a subtype of macrophages plays an important role in human immunoglobulin E (IgE-mediated allergies) and other Th2 type immune reactions. In contrast, very little is known about these cells in the dog. Here we describe an in vitro method to activate canine histiocytic DH82 cells and primary canine monocyte-derived macrophages (MDMs) toward the M2a macrophages using human cytokines. For a side-by-side comparison, we compared the canine cells to human MDMs, and the human monocytic cell line U937 activated towards M1 and M2a cells on the cellular and molecular level. In analogy to activated human M2a cells, canine M2a, differentiated from both DH82 and MDMs, showed an increase in CD206 surface receptor expression compared to M1. Interestingly, canine M2a, but not M1 derived from MDM, upregulated the high-affinity IgE receptor (FcεRI). Transcription levels of M2a-associated genes (IL10, CCL22, TGFβ, CD163) showed a diverse pattern between the human and dog species, whereas M1 genes (IDO1, CXCL11, IL6, TNF-α) were similarly upregulated in canine and human M1 cells (cell lines and MDMs). We suggest that our novel in vitro method will be suitable in comparative allergology studies focussing on macrophages. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. M1 macrophage recruitment correlates with worse outcome in SHH Medulloblastomas.

    PubMed

    Lee, Chanhee; Lee, Joongyub; Choi, Seung Ah; Kim, Seung-Ki; Wang, Kyu-Chang; Park, Sung-Hye; Kim, Se Hoon; Lee, Ji Yeoun; Phi, Ji Hoon

    2018-05-08

    Recent progress in molecular analysis has advanced the understanding of medulloblastoma (MB) and is anticipated to facilitate management of the disease. MB is composed of 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Macrophages play a crucial role in the tumor microenvironment; however, the functional role of their activated phenotype (M1/M2) remains controversial. Herein, we investigate the correlation between tumor-associated macrophage (TAM) recruitment within the MB subgroups and prognosis. Molecular subgrouping was performed by a nanoString-based RNA assay on retrieved snap-frozen tissue samples. Immunohistochemistry (IHC) and immunofluorescence (IF) assays were performed on subgroup identified samples, and the number of polarized macrophages was quantified from IHC. Survival analyses were conducted on collected clinical data and quantified macrophage data. TAM (M1/M2) recruitment in SHH MB was significantly higher compared to that in other subgroups. A Kaplan-Meier survival curve and multivariate Cox regression demonstrated that high M1 expressers showed worse overall survival (OS) and progression-free survival (PFS) than low M1 expressers in SHH MB, with relative risk (RR) values of 11.918 and 6.022, respectively. M1 rather than M2 correlates more strongly with worse outcome in SHH medulloblastoma.

  12. Plasticity of Human THP-1 Cell Phagocytic Activity during Macrophagic Differentiation.

    PubMed

    Kurynina, A V; Erokhina, M V; Makarevich, O A; Sysoeva, V Yu; Lepekha, L N; Kuznetsov, S A; Onishchenko, G E

    2018-03-01

    Studies of the role of macrophages in phagocytosis are of great theoretical and practical importance for understanding how these cells are involved in the organism's defense response and in the development of various pathologies. Here we investigated phagocytic plasticity of THP-1 (acute monocytic human leukemia) cells at different stages (days 1, 3, and 7) of phorbol ester (PMA)-induced macrophage differentiation. Analysis of cytokine profiles showed that PMA at a concentration of 100 nM induced development of the proinflammatory macrophage population. The functional activity of macrophages was assessed on days 3 and 7 of differentiation using unlabeled latex beads and latex beads conjugated with ligands (gelatin, mannan, and IgG Fc fragment) that bind to the corresponding specific receptors. The general phagocytic activity increased significantly (1.5-2.0-fold) in the course of differentiation; phagocytosis occurred mostly through the Fc receptors, as shown previously for M1 macrophages. On day 7, the levels of phagocytosis of gelatin- and Fc-covered beads were high; however, the intensity of ingestion of mannan-conjugated beads via mannose receptors increased 2.5-3.0-fold as well, which indicated formation of cells with an alternative phenotype similar to that of M2 macrophages. Thus, the type and the plasticity of phagocytic activity at certain stages of macrophage differentiation can be associated with the formation of functionally mature morphological phenotype. This allows macrophages to exhibit their phagocytic potential in response to specific ligands. These data are of fundamental importance and can be used to develop therapeutic methods for correcting the M1/M2 macrophage ratio in an organism.

  13. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages

    PubMed Central

    Canton, Johnathan; Khezri, Rojyar; Glogauer, Michael; Grinstein, Sergio

    2014-01-01

    Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages—two extremes of the polarization spectrum—to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn2+-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively. PMID:25165138

  14. Bioinformatics approach to evaluate differential gene expression of M1/M2 macrophage phenotypes and antioxidant genes in atherosclerosis.

    PubMed

    da Rocha, Ricardo Fagundes; De Bastiani, Marco Antônio; Klamt, Fábio

    2014-11-01

    Atherosclerosis is a pro-inflammatory process intrinsically related to systemic redox impairments. Macrophages play a major role on disease development. The specific involvement of classically activated, M1 (pro-inflammatory), or the alternatively activated, M2 (anti-inflammatory), on plaque formation and disease progression are still not established. Thus, based on meta-data analysis of public micro-array datasets, we compared differential gene expression levels of the human antioxidant genes (HAG) and M1/M2 genes between early and advanced human atherosclerotic plaques, and among peripheric macrophages (with or without foam cells induction by oxidized low density lipoprotein, oxLDL) from healthy and atherosclerotic subjects. Two independent datasets, GSE28829 and GSE9874, were selected from gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) repository. Functional interactions were obtained with STRING (http://string-db.org/) and Medusa (http://coot.embl.de/medusa/). Statistical analysis was performed with ViaComplex(®) (http://lief.if.ufrgs.br/pub/biosoftwares/viacomplex/) and gene score enrichment analysis (http://www.broadinstitute.org/gsea/index.jsp). Bootstrap analysis demonstrated that the activity (expression) of HAG and M1 gene sets were significantly increased in advance compared to early atherosclerotic plaque. Increased expressions of HAG, M1, and M2 gene sets were found in peripheric macrophages from atherosclerotic subjects compared to peripheric macrophages from healthy subjects, while only M1 gene set was increased in foam cells from atherosclerotic subjects compared to foam cells from healthy subjects. However, M1 gene set was decreased in foam cells from healthy subjects compared to peripheric macrophages from healthy subjects, while no differences were found in foam cells from atherosclerotic subjects compared to peripheric macrophages from atherosclerotic subjects. Our data suggest that, different to cancer, in atherosclerosis there is

  15. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages.

    PubMed

    Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A

    1997-10-01

    Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.

  16. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum.

    PubMed

    Sun, Li-Xin; Lin, Zhi-Bin; Lu, Jie; Li, Wei-Dong; Niu, Yan-Dong; Sun, Yu; Hu, Chen-Yang; Zhang, Guo-Qiang; Duan, Xin-Suo

    2017-06-01

    Ganoderma lucidum (Fr.) Karst (Ganodermataceae) is a medicinal mushroom that has been extensively used in China for centuries to promote longevity and improve vigor without significant adverse effects. There is continuous interest in the bioactive properties of G. lucidum in view of its newly developed popularity in other regions besides Asia, such as Europe. Glycopeptide derived from G. lucidum (Gl-PS) is one of the main effective components isolated from this mushroom. The Gl-PS has been demonstrated pleiotropic with many bioactivities including immunomodulatory and antitumor effects. Macrophages are important cells involved in innate and adaptive immunity. Classically activated macrophages (M1) and alternatively activated macrophages (M2), with their different roles, display distinct cytokine profiles: M1 preferentially produces TNF-α, IL-6, and IL-12; conversely, M2 generates more IL-10 and arginase. Gl-PS might have the potential to promote macrophage M1 polarization by lipopolysaccharide (LPS). In this study, LPS was used to induce the M1 polarization. It was shown that the level of the TNF-α, IL-6, and IL-12 were increased and the IL-10 and arginase I were decreased in the polarized M1 macrophages after application of Gl-PS compared to the control. The results indicated the potential of Gl-PS to promote M1 polarization vs M2, with the health beneficial understanding of the bioactivities of Gl-PS.

  17. An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment1

    PubMed Central

    Kadam, Leena; Mial, Tara N.; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S.; Xu, Zhonghui; Tarca, Adi L.; Drewlo, Sascha; Gomez-Lopez, Nardhy

    2016-01-01

    Macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo an M1 polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. Herein, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) M2-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared to term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL12, but low levels of PPARγ, during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1M2 polarization in vitro; 6) incubation with rosiglitazone reduces the expression of TNF and IL12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with rosiglitazone reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic pro-inflammatory response in B6 mice and down-regulating mRNA and protein expression of NFκB, TNF, and IL10 in decidual and myometrial macrophages. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor, and that PPARγ activation via rosiglitazone can attenuate the macrophage-mediated pro-inflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth. PMID:26889045

  18. Irgm1 promotes M1 but not M2 macrophage polarization in atherosclerosis pathogenesis and development.

    PubMed

    Fang, Shaohong; Xu, Yanwen; Zhang, Yun; Tian, Jiangtian; Li, Ji; Li, Zhaoying; He, Zhongze; Chai, Ruikai; Liu, Fang; Zhang, Tongshuai; Yang, Shuang; Pei, Chunying; Liu, Xinxin; Lin, Peng; Xu, Hongwei; Yu, Bo; Li, Hulun; Sun, Bo

    2016-08-01

    Atherosclerosis is a chronic inflammatory vascular disease related to macrophages uptake of low-density lipoprotein and their subsequent transformation into foam cells. M1 (inflammatory)/M2 (anti-inflammatory) balance was suggested to impact disease progression. In this study, we investigated whether the immunity related GTPase (Irgm1) regulates macrophage polarization during atherosclerosis development. We used apolipoprotein E (ApoE) knockout and Irgm1 haplodeficient mice and induced atherosclerosis with high-cholesterol diet for the indicated months. Atherosclerotic arteries were collected from patients undergoing vascular surgery, to determine the lesional expression of Irgm1 and distribution of M1/M2 populations. Our results showed that IRGM/Irgm1 expression was increased in atherosclerotic artery samples (1.7-fold, p=0.0045) compared with non-atherosclerotic arteries, which was consistent with findings in the murine experimental atherosclerosis model (1.9-fold, p=0.0002). IRGM/Irgm1 expression was mostly found in lesional M1 macrophages. Haplodeficiency of Irgm1 in ApoE(-/-) mice resulted in reduced infiltrating M1 macrophages in atheroma (94%, p=0.0002) and delayed development of atherosclerotic plaques. In vitro experiments also confirmed that Irgm1 haplodeficiency reduced iNOS expression of polarized M1 macrophages (81%, p=0.0034), with negligible impact on the M2 phenotype. Moreover, we found that Irgm1 haplodeficiency in mice significantly reduced expression level of M1 function-related transcription factors, interferon regulatory factor (Irf) 5 and Irf8, but not Irf4, an M2-related transcription factor. This study shows that Irgm1/IRGM participates in the polarization of M1 macrophage and promotes development of atheroma in murine experimental atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Disruption of mTORC1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis

    PubMed Central

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I; Tall, Alan R.

    2014-01-01

    Rationale The mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma LDL levels. This suggests an anti-atherogenic effect possibly mediated by modulation of inflammatory responses in atherosclerotic plaques. Objective To assess the role of macrophage mTORC1 in atherogenesis. Methods and Results We transplanted bone marrow from mice in which a key mTORC1 adaptor, Raptor, was deleted in macrophages by Cre/loxP recombination (Mac-RapKO mice) into Ldlr-/- mice and then fed them the Western-type diet (WTD). Atherosclerotic lesions from Mac-RapKO mice showed decreased infiltration of macrophages, lesion size and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified LDL (mmLDL) resulted in increased levels of chemokine mRNAs and STAT3 phosphorylation; these effects were reduced in Mac-RapKO macrophages. While wild-type and Mac-RapKO macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-RapKO macrophages showed decreased STAT3 Ser727 phosphorylation in response to mmLDL treatment and decreased Ccl2 promoter binding of STAT3. Conclusions The results demonstrate cross-talk between nutritionally-induced mTORC1 signaling and mmLDL-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the CCL2 (MCP-1)promoter with pro-atherogenic consequences. PMID:24687132

  20. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    PubMed

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  1. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis.

    PubMed

    Liu, Yunxin; Liu, Xiang; Hua, Weiwei; Wei, Qingyan; Fang, Xianjun; Zhao, Zheng; Ge, Chun; Liu, Chao; Chen, Chen; Tao, Yifu; Zhu, Yubing

    2018-04-01

    Berberine has been reported to have protective effects in colitis treatment. However, the detailed mechanisms remain unclear. Herein, we demonstrated that berberine could protect against dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization. In the colitis mouse model, berberine ameliorated DSS-induced colon shortening and colon tissue injury. Moreover, berberine-treated mice showed significant reduction in the disease activity index (DAI), pro-inflammatory cytokines expression and macrophages infiltration compared with the DSS-treated mice. Notably, berberine significantly reduced the percentage of M1 macrophages. In vitro analysis also confirmed the inhibitory effects of berberine on macrophages M1 polarization in RAW267.4 cells. Further investigation showed that berberine promoted AKT1 expression in mRNA and protein level. Silence of AKT1 abolished the inhibitory effect of berberine on macrophages M1 polarization. The berberine-induced AKT1 expression promoted suppressers of cytokine signaling (SOCS1) activation, which inhibited nuclear factor-kappa B (NF-κB) phosphorylation. In addition, we also found that berberine activated AKT1/SOCS1 signaling pathway but inhibited p65 phosphorylation in macrophages in vivo. Therefore, we concluded that berberine played a regulatory role in macrophages M1 polarization in DSS-induced colitis via AKT1/SOCS1/NF-κB signaling pathway. This unexpected property of berberine may provide a potential explanation for its protective effects in colitis treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  3. Homocysteine elicits an M1 phenotype in murine macrophages through an EMMPRIN-mediated pathway.

    PubMed

    Winchester, Lee J; Veeranki, Sudhakar; Givvimani, Srikanth; Tyagi, Suresh C

    2015-07-01

    Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the "classically activated/destructive" (M1), and the "alternatively activated/constructive" (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 μmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.

  4. Antitumor and Antimetastatic Activity of Synthetic Hydroxystilbenes Through Inhibition of Lymphangiogenesis and M2 Macrophage Differentiation of Tumor-associated Macrophages.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho; Baba, Kimiye

    2016-01-01

    An increase in tumor-associated macrophages (TAMs) around the tumor microenvironment has been closely associated with a poor prognosis in patients with cancer, and M2 TAMs promote tumor growth and tumor metastasis by stimulating angiogenesis or lymphangiogenesis in tumors. We herein examined the effects of nine synthetic hydroxystilbenes on M2 macrophage activation and differentiation, and three selected dihydroxystilbenes on vascular endothelial cell growth factor (VEGF)-C-induced tube formation in human lymphatic endothelial cells (HLECs) (in vitro). We also investigated the antitumor and antimetastatic effects of three synthetic dihydroxystilbenes in LM8-bearing mice in vivo. The three selected synthetic stilbenes (at concentrations of 5, 10, 25, and 50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, but promoted that of transforming growth factor-β1. The three dihydroxystilbenes (at concentrations of 10-50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation of M2 macrophages. Furthermore, the 2,3- and 4,4'-dihydroxystilbene inhibited VEGF-C-induced lymphangiogenesis in HLECs. Both 2,3- and 4,4'-dihydroxystilbene (at 10 and 25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung in mice. These results suggested that the antitumor and antimetastatic effects of 2,3- and 4,4'-dihydroxystilbene were partly due to anti-lymphangiogenesis, and the regulation of M2 macrophage activation and differentiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of themore » proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  6. RIPK3/MLKL-Mediated Neuronal Necroptosis Modulates the M1/M2 Polarization of Microglia/Macrophages in the Ischemic Cortex

    PubMed Central

    Yang, Jiping; Zhao, Youyi; Zhang, Li; Fan, Hong; Qi, Chuchu; Zhang, Kun; Liu, Xinyu; Fei, Lin; Chen, Siwei; Wang, Mengmeng; Kuang, Fang; Wang, Yazhou; Wu, Shengxi

    2018-01-01

    Abstract Cell death and subsequent inflammation are 2 key pathological changes occurring in cerebral ischemia. Active microglia/macrophages play a double-edged role depending on the balance of their M1/M2 phenotypes. Necrosis is the predominant type of cell death following ischemia. However, how necrotic cells modulate the M1/M2 polarization of microglia/macrophages remains poorly investigated. Here, we reported that ischemia induces a rapid RIPK3/MLKL-mediated neuron-dominated necroptosis, a type of programmed necrosis. Ablating RIPK3 or MLKL could switch the activation of microglia/macrophages from M1 to the M2 type in the ischemic cortex. Conditioned medium of oxygen-glucose deprivation (OGD)-treated wild-type (WT) neurons induced M1 polarization, while that of RIPK3−/− neurons favored M2 polarization. OGD treatment induces proinflammatory IL-18 and TNFα in WT but not in RIPK3−/− neurons, which in turn upregulate anti-inflammatory IL-4 and IL-10. Furthermore, the expression of Myd88—a common downstream adaptor of toll-like receptors—is significantly upregulated in the microglia/macrophages of ischemic WT but not of RIPK3−/− or MLKL−/− cortices. Antagonizing the function of Myd88 could phenocopy the effects of RIPK3/MLKL-knockout on the polarization of microglia/macrophages and was neuroprotective. Our data revealed a novel role of necroptotic neurons in modulating the M1/M2 balance of microglia/macrophages in the ischemic cortex, possibly through Myd88 signaling. PMID:29746630

  7. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    PubMed

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats

    PubMed Central

    Martín-Fernández, Beatriz; Rubio-Navarro, Alfonso; Cortegano, Isabel; Ballesteros, Sandra; Alía, Mario; Cannata-Ortiz, Pablo; Olivares-Álvaro, Elena; Egido, Jesús; de Andrés, Belén; Gaspar, María Luisa; de las Heras, Natalia; Lahera, Vicente; Moreno, Juan Antonio

    2016-01-01

    We aimed to evaluate macrophages heterogeneity and structural, functional and inflammatory alterations in rat kidney by aldosterone + salt administration. The effects of treatment with spironolactone on above parameters were also analyzed. Male Wistar rats received aldosterone (1 mgkg-1d-1) + 1% NaCl for 3 weeks. Half of the animals were treated with spironolactone (200 mg kg-1d-1). Systolic and diastolic blood pressures were elevated (p<0.05) in aldosterone + salt–treated rats. Relative kidney weight, collagen content, fibronectin, macrophage infiltrate, CTGF, Col I, MMP2, TNF-α, CD68, Arg2, and SGK-1 were increased (p<0.05) in aldosterone + salt–treated rats, being reduced by spironolactone (p<0.05). Increased iNOS and IFN-γ mRNA gene expression (M1 macrophage markers) was observed in aldosterone + salt rats, whereas no significant differences were observed in IL-10 and gene ArgI mRNA expression or ED2 protein content (M2 macrophage markers). All the observed changes were blocked with spironolactone treatment. Macrophage depletion with liposomal clodronate reduced macrophage influx and inflammatory M1 markers (INF-γ or iNOS), whereas interstitial fibrosis was only partially reduced after this intervention, in aldosterone plus salt-treated rats. In conclusion, aldosterone + salt administration mediates inflammatory M1 macrophage phenotype and increased fibrosis throughout mineralocorticoid receptors activation. PMID:26730742

  9. USPIO-labeling in M1 and M2-polarized macrophages: An in vitro study using a clinical magnetic resonance scanner.

    PubMed

    Zini, Chiara; Venneri, Mary A; Miglietta, Selenia; Caruso, Damiano; Porta, Natale; Isidori, Andrea M; Fiore, Daniela; Gianfrilli, Daniele; Petrozza, Vincenzo; Laghi, Andrea

    2018-08-01

    Aim of the study was to evaluate USPIO labeling in different macrophage populations using a clinical 3.0T MR unit with optical and electron microscopy as the gold standard. Human monocytic cell line THP-1 cells were differentiated into macrophages. Afterwards, M0 macrophages were incubated with IL-4 and IL-13 in order to obtain M2 polarized macrophages or with IFN-gamma and LPS for classical macrophage activation (M1). These groups were incubated with USPIO-MR contrast agent (P904) for 36 hr; M0, M0 + P904, M1 +  P904, and M2 + P904 were analyzed in gel phantoms with a 3.0T MR scanner. m-RNA of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages. M2 + P904 showed a much higher T1 signal (p <  0.0001), a significantly lower (p < 0.0001) T2* signal, and significantly higher R* (p < 0.0001) compared to the other populations. Hystological analysis confirmed higher iron content in the M2-polarized population compared to both M1-polarized (p = 0.04) and M0-P904 (p = 0.003). Ultrastructure analysis demonstrated ubiquitous localization of P904 within the cellular compartments. Our results demonstrate that a selective USPIO-labeling of different macrophage populations can be detected in vitro using the 3.0T clinical scanner. © 2017 Wiley Periodicals, Inc.

  10. First case report of M1 macrophage polarization in an untreated symptomatic patient with toxoplasmosis.

    PubMed

    De Luca, Graziano; Di Lisio, Chiara; Lattanzio, Giuseppe; D'Antuono, Tommaso; Liberatore, Marcella; Aiello, Francesca Bianca

    2018-03-27

    In immunocompetent patients, acute toxoplasmosis is usually asymptomatic. We identified M1 macrophages in a case of symptomatic acute Toxoplasma gondii infection that resolved without treatment. M1 macrophages have been demonstrated in animal models of toxoplasmosis, but not in humans. A 63-year-old woman presented with laterocervical and axillary bilateral lymphadenopathy. Her anamnesis defined an episode of high fever and prolonged asthenia 4 months previously, which suggested an infectious disease. Following laboratory, radiological, and pathological analyses, she was diagnosed with toxoplasmosis. Immunohistochemical analyses were performed on lymph node sections. More than 50% of the macrophages in the lymph node microgranulomas were M1 macrophages, defined by CD68 + /p-Stat1 + staining, and the presence of T helper 1 lymphocytes indicated an immune response known to induce M1 macrophage polarization. Activated endothelial cells were found only in inflamed areas. No therapy was administered before or after diagnosis, and the lymphadenopathy resolved after a follow-up of 5 months. This is the first report to demonstrate the presence of M1 macrophages in human toxoplasmosis. Our findings contribute to the understanding of the pathogenesis of toxoplasmosis, and encourage further studies on the role of macrophage polarization in human toxoplasmosis.

  11. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment.

    PubMed

    Xu, Yi; Romero, Roberto; Miller, Derek; Kadam, Leena; Mial, Tara N; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S; Xu, Zhonghui; Tarca, Adi L; Drewlo, Sascha; Gomez-Lopez, Nardhy

    2016-03-15

    Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent

    PubMed Central

    Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.

    2017-01-01

    Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory

  13. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages

    PubMed Central

    2014-01-01

    Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL

  14. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages.

    PubMed

    Abumaree, M H; Al Jumah, M A; Kalionis, B; Jawdat, D; Al Khaldi, A; Abomaray, F M; Fatani, A S; Chamley, L W; Knawy, B A

    2013-10-01

    Mesenchymal stem cells (MSCs) have a therapeutic potential in tissue repair because of capacity for multipotent differentiation and their ability to modulate the immune response. In this study, we examined the ability of human placental MSCs (pMSCs) to modify the differentiation of human monocytes into macrophages and assessed the influence of pMSCs on important macrophage functions. We used GM-CSF to stimulate the differentiation of monocytes into the M1 macrophage pathway and then co-cultured these cells with pMSCs in the early stages of macrophage differentiation. We then evaluated the effect on differentiation by microscopic examination and by quantification of molecules important in the differentiation and immune functions of macrophages using flow cytometry and ELISA. The mechanism by which pMSCs could mediate their effects on macrophage differentiation was also studied. The co-culture of pMSCs with monocytes stimulated to follow the inflammatory M1 macrophage differentiation pathway resulted in a shift to anti-inflammatory M2-like macrophage differentiation. This transition was characterized by morphological of changes typical of M2 macrophages, and by changes in cell surface marker expression including CD14, CD36, CD163, CD204, CD206, B7-H4 and CD11b, which are distinctive of M2 macrophages. Co-culture with pMSCs reduced the expression of the costimulatory molecules (CD40, CD80 and CD86) and increased the expression of co-inhibitory molecules (CD273, CD274 and B7-H4) as well as the surface expression of major histocompatibility complex (MHC-II) molecules. Furthermore, the secretion of IL-10 was increased while the secretion of IL-1β, IL-12 (p70) and MIP-1α was decreased; a profile typical of M2 macrophages. Finally, pMSCs induced the phagocytic activity and the phagocytosis of apoptotic cells associated with M2- like macrophages; again a profile typical of M2 macrophages. We found that the immunoregulatory effect of pMSCs on macrophage differentiation was

  15. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers

    PubMed Central

    Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Mesquita-Ferrari, Raquel Agnelli; da Silva, Daniela de Fatima Teixeira; Rocha, Lilia Alves; Alves, Agnelo Neves; Sousa, Kaline de Brito; Bussadori, Sandra Kalil; Hamblin, Michael R.; Nunes, Fábio Daumas

    2015-01-01

    M1 profile macrophages exert a major influence on initial tissue repair process. Few days after the occurrence of injury, macrophages in the injured region exhibit a M2 profile, attenuate the effects of the M1 population, and stimulate the reconstruction of the damaged tissue. The different effects of macrophages in the healing process suggest that these cells could be the target of therapeutic interventions. Photobiomodulation has been used to accelerate tissue repair, but little is known regarding its effect on macrophages. In the present study, J774 macrophages were activated to simulate the M1 profile and irradiated with two different sets of laser parameters (780 nm, 70 mW, 2.6 J/cm2, 1.5 s and 660 nm, 15 mW, 7.5 J/cm2, 20 s). IL-6, TNF-α, iNOS and COX-2 gene and protein expression were analyzed by RT-qPCR and ELISA. Both lasers were able to reduce TNF-α and iNOS expression, and TNF-α and COX-2 production, although the parameters used for 780 nm laser provided an additional decrease. 660 nm laser parameters resulted in an up-regulation of IL-6 expression and production. These findings imply a distinct, time-dependent modulation by the two different sets of laser parameters, suggesting that the best modulation may involve more than one combination of parameters. PMID:26519828

  16. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    PubMed

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Nicotine can skew the characterization of the macrophage type-1 (M{Phi}1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the M{Phi}2 phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagita, Manabu; Kobayashi, Ryohei; Murakami, Shinya, E-mail: ipshinya@dent.osaka-u.ac.jp

    Macrophages (M{Phi}s) exhibit functional heterogeneity and plasticity in the local microenvironment. Recently, it was reported that M{Phi}s can be divided into proinflammatory M{Phi}s (M{Phi}1) and anti-inflammatory M{Phi}s (M{Phi}2) based on their polarized functional properties. Here, we report that nicotine, the major ingredient of cigarette smoke, can modulate the characteristics of M{Phi}1. Granulocyte-macrophage colony-stimulating factor-driven M{Phi}1 with nicotine (Ni-M{Phi}1) showed the phenotypic characteristics of M{Phi}2. Like M{Phi}2, Ni-M{Phi}1 exhibited antigen-uptake activities. Ni-M{Phi}1 suppressed IL-12, but maintained IL-10 and produced high amounts of MCP-1 upon lipopolysaccharide stimulation compared with M{Phi}1. Moreover, we observed strong proliferative responses of T cells to lipopolysaccharide-stimulated M{Phi}1,more » whereas Ni-M{Phi}1 reduced T cell proliferation and inhibited IFN-{gamma} production by T cells. These results suggest that nicotine can change the functional characteristics of M{Phi} and skew the M{Phi}1 phenotype to M{Phi}2. We propose that nicotine is a potent regulator that modulates immune responses in microenvironments.« less

  18. Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting toll-like receptor 2 activation.

    PubMed

    Madan-Lala, Ranjna; Peixoto, Katia Vitorello; Re, Fabio; Rengarajan, Jyothi

    2011-12-01

    Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression.

  19. M2 macrophages coexist with a Th1-driven profile in periapical cysts.

    PubMed

    Ribeiro, C M; de Carli, M L; Nonogaki, S; Nogueira, D A; Pereira, A A C; Sperandio, F F; Hanemann, J A C

    2018-02-01

    To evaluate the participation of both Th1 and Th2 responses in periapical cysts by assessing the presence of M2 macrophages, as well as acute IL-1 β, TNF-α and IL-6 cytokines. Twenty-four cases of periapical cysts were selected. Immuno-expressions of IL-1 β, IL-6, TNF-α and CD163 were analysed in the cystic capsules in both superficial and deeper regions. Data were analysed with paired Wilcoxon test and Spearman correlation coefficient (P ≤ 0.05). There was a higher expression of IL-1β, IL-6, TNF-α and M2 macrophages in the superficial region (P < 0.001) of cystic capsules. All acute cytokines had significant positive correlations amongst them regardless of the cystic capsule region. Regarding CD163, positive correlations occurred only with TNF-α (P = 0.007; r = 0.537) and IL-6 (P = 0.018; r = 0.478) in the superficial regions of the cystic capsule. M2 macrophages participated actively in the inflammatory response of periapical cysts and correlated with the expression of certain acute Th1-related cytokines. This illustrates the coexistence of an acute and chronic Th2-driven immune response in these lesions. Although M2 macrophages favour the healing process, their presence is not sufficient for periapical cyst regression, once an acute active response has occurred due to an infectious stimuli. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Immunomodulatory Molecule IRAK-M Balances Macrophage Polarization and Determines Macrophage Responses during Renal Fibrosis.

    PubMed

    Steiger, Stefanie; Kumar, Santhosh V; Honarpisheh, Mohsen; Lorenz, Georg; Günthner, Roman; Romoli, Simone; Gröbmayr, Regina; Susanti, Heni-Eka; Potempa, Jan; Koziel, Joanna; Lech, Maciej

    2017-08-15

    Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    PubMed Central

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  2. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment.

    PubMed

    Massie, Ashley; Boland, Erin; Kapás, Levente; Szentirmai, Éva

    2018-06-05

    The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.

  3. Macrophages from Behcet's Disease Patients Express Decreased Level of Aryl Hydrocarbon Receptor (AHR) mRNA.

    PubMed

    Palizgir, Mohammad Taghi; Akhtari, Maryam; Mahmoudi, Mahdi; Mostafaei, Shayan; Rezaeimanesh, Alireza; Akhlaghi, Massoomeh; Shahram, Farhad

    2017-10-01

    Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, connecting environmental stimulators with the immune system. M1 macrophages are a part of immune system that contribute to the inflammatory events in the pathogenesis of Behcet's disease (BD). The effect of AHR on the macrophages in BD patients is still unclear. In this study, we investigated the mRNA expression of AHR in the monocyte-derived and M1 macrophages in active BD patients in comparison to healthy controls. Isolated monocytes from 10 healthy controls and 10 active BD patients were differentiated to macrophages by macrophage-colony stimulating factor (M-CSF) for 7 days. Cells were then polarized to M1 macrophages by lipopolysaccharide (LPS) and interferon-γ (IFNγ) for 24h. Monocyte purity and macrophage markers expression were analyzed by flow cytometry. Analysis of AHR mRNA expression was performed by SYBR Green real-time PCR. Our results showed that AHR expression is significantly down-regulated in M1 macrophages compare to monocyte-derived macrophages. It was shown that both monocyte-derived macrophages and M1 macrophages from BD patients significantly express lower level of AHR mRNA compared to healthy individuals. Our results demonstrate an anti-inflammatory role for AHR in macrophages, which suggest that decreased AHR expression is associated with pro-inflammatory M1 macrophage and BD susceptibility.

  4. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis

    PubMed Central

    Park, So Youn; Lee, Sung Won; Lee, Sang Yeob; Hong, Ki Whan; Bae, Sun Sik; Kim, Koanhoi; Kim, Chi Dae

    2017-01-01

    Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA). Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK) α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL)-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1) and compound C (an inhibitor of AMPK). Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg)-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA. PMID:28966618

  5. Expression of phosphatidylserine-specific phospholipase A(1) mRNA in human THP-1-derived macrophages.

    PubMed

    Hosono, Hiroyuki; Homma, Masato; Ogasawara, Yoko; Makide, Kumiko; Aoki, Junken; Niwata, Hideaki; Watanabe, Machiko; Inoue, Keizo; Ohkohchi, Nobuhiro; Kohda, Yukinao

    2010-01-01

    The expression of phosphatidylserine-specific phospholipase A(1) (PS-PLA(1)) is most upregulated in the genes of peripheral blood cells from chronic rejection model rats bearing long-term surviving cardiac allografts. The expression profile of PS-PLA(1) in peripheral blood cells responsible for the immune response may indicate a possible biological marker for rejection episodes. In this study, PS-PLA(1) mRNA expression was examined in human THP-1-derived macrophages. The effects of several immunosuppressive agents on this expression were also examined in in vitro experiments. A real-time RT-PCR analysis revealed that PS-PLA(1) mRNA expression was found in human THP-1-derived macrophages. This expression was enhanced in the cells stimulated with lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 ligand. Other TLR ligands (TLR2, 3, 5, 7, and 9) did not show a significant induction of PS-PLA(1) mRNA. The time course of the mRNA expression profiles was different between PS-PLA(1) and tumor necrosis factor-α (TNF-α), which showed a maximal expression at 12 and 1 h after LPS stimulation, respectively. Among the observed immunosuppressive agents, corticosteroids, prednisolone, 6α-methylprednisolone, dexamethasone, and beclomethasone inhibited PS-PLA(1) expression with half-maximal inhibitory concentrations less than 3.0 nM, while methotrexate, cyclosporine A, tacrolimus, 6-mercaptopurine, and mycophenoic acid showed either a weak or moderate inhibition. These results suggest that the expression of PS-PLA(1) mRNA in THP-1-derived macrophages is activated via TLR4 and it is inhibited by corticosteroids, which are used at high dosages to suppress chronic allograft rejection.

  6. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice.

    PubMed

    Penas, Federico; Mirkin, Gerardo A; Vera, Marcela; Cevey, Ágata; González, Cintia D; Gómez, Marisa I; Sales, María Elena; Goren, Nora B

    2015-05-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1β and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-β. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization.

    PubMed

    Ye, Yibiao; Xu, Yunxiuxiu; Lai, Yu; He, Wenguang; Li, Yanshan; Wang, Ruomei; Luo, Xinxi; Chen, Rufu; Chen, Tao

    2018-03-01

    Macrophages have been shown to demonstrate a high level of plasticity, with the ability to undergo dynamic transition between M1 and M2 polarized phenotypes. We investigate long non-coding RNA (lncRNA) cox-2 in macrophage polarization and the regulatory mechanism functions in hepatocellular carcinoma (HCC). Lipopolysaccharide (LPS) was used to induce RAW264.7 macrophages into M1 type, and IL-4 was to induce RAW264.7 macrophages into M2 type. We selected mouse hepatic cell line Hepal-6 and hepatoma cell line HepG2 for co-incubation with M1 or M2 macrophages. Quantitative real-time PCR was used to detect the expressions of lncRNA cox-2 and mRNAs. ELISA was conducted for testing IL-12 and IL-10 expressions; Western blotting for epithelial mesenchymal transition related factors (E-cadherin and Vimentin). An MTT, colony formation assay, flow cytometry, transwell assay, and stretch test were conducted to test cell abilities. The M1 macrophages had higher lncRNA cox-2 expression than that in the non-polarized macrophages and M2 macrophages. The lncRNA cox-2 siRNA decreased the expression levels of IL-12, iNOS, and TNF-α in M1 macrophages, increased the expression levels of IL-10, Arg-1, and Fizz-1 in M2 macrophages (all P < 0.05). The lncRNA cox-2 siRNA reduces the ability of M1 macrophages to inhibit HCC cell proliferation, invasion, migration, EMT, angiogenesis and facilitate apoptosis while strengthening the ability of M2 macrophages to promote proliferation HCC cell growth and inhibit apoptosis. These findings indicate that lncRNA cox-2 inhibits HCC immune evasion and tumor growth by inhibiting the polarization of M2 macrophages. © 2017 Wiley Periodicals, Inc.

  8. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.

  9. M2 polarization enhances silica nanoparticle uptake by macrophages.

    PubMed

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  10. M2 polarization enhances silica nanoparticle uptake by macrophages

    PubMed Central

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  11. Vascular endothelial growth factor A amplification in colorectal cancer is associated with reduced M1 and M2 macrophages and diminished PD-1-expressing lymphocytes.

    PubMed

    Burmeister, Katharina; Quagliata, Luca; Andreozzi, Mariacarla; Eppenberger-Castori, Serenella; Matter, Matthias S; Perrina, Valeria; Grobholz, Rainer; Jochum, Wolfram; Horber, Daniel; Moosmann, Peter; Lehmann, Frank; Köberle, Dieter; Ng, Charlotte K Y; Piscuoglio, Salvatore; Tornillo, Luigi; Terracciano, Luigi M

    2017-01-01

    VEGFA is an angiogenic factor secreted by tumors, in particular those with VEGFA amplification, as well as by macrophages and lymphocytes in the tumor microenvironment. Here we sought to define the presence of M1/M2 macrophages, PD-1-positive lymphocytes and PD-L1 tumoral and stromal expression in colorectal cancers harboring VEGFA amplification or chromosome 6 polysomy. 38 CRCs of which 13 harbored VEGFA amplification, 6 with Chr6 polysomy and 19 with neutral VEGFA copy number were assessed by immunohistochemistry for CD68 (marker for M1/M2 macrophages), CD163 (M2 macrophages), programmed death 1(PD-1)- tumor infiltrating and stromal lymphocytes as well as tumoral and stromal PD-1 ligand (PD-L1) expression. CRCs with VEGFA amplification or Chr6 polysomy were associated with decreased M1/M2 macrophages, reduced PD-1-expressing lymphocyte infiltration, as well as reduced stromal expression of PD-L1 at the tumor front. Compared to intermediate-grade CRCs, high-grade CRCs were associated with increased M1/M2 macrophages and increased tumoral expression of PD-L1. Our results suggest that VEGFA amplification or Chr6 polysomy is associated with an altered tumor immune microenvironment.

  12. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    PubMed

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  13. M1 Macrophages Are Predominantly Recruited to the Major Pelvic Ganglion of the Rat Following Cavernous Nerve Injury.

    PubMed

    Matsui, Hotaka; Sopko, Nikolai A; Hannan, Johanna L; Reinhardt, Allison A; Kates, Max; Yoshida, Takahiro; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Weyne, Emmanuel; Albersen, Maarten; Bivalacqua, Trinity J

    2017-02-01

    Neurogenic erectile dysfunction is a common sequela of radical prostatectomy. The etiology involves injury to the autonomic cavernous nerves, which arise from the major pelvic ganglion (MPG), and subsequent neuroinflammation, which leads to recruitment of macrophages to the injury site. Currently, two macrophage phenotypes are known: neurotoxic M1 macrophages and neuroprotective M2 macrophages. To examine whether bilateral cavernous nerve injury (BCNI) in a rat model of erectile dysfunction would increase recruitment of neurotoxic M1 macrophages to the MPG. Male Sprague-Dawley rats underwent BCNI and the MPG was harvested at various time points after injury. The corpora cavernosa was used to evaluate tissue myographic responses to electrical field stimulation ex vivo. Quantitative real-time polymerase chain reaction was used to examine the gene expression of global macrophage markers, M1 macrophage markers, M2 macrophage markers, and cytokines and chemokines in the MPG. Mathematical calculation of the M1/M2 index was used to quantify macrophage changes temporally. Western blot of MPG tissues was used to evaluate the protein amount of M1 and M2 macrophage markers quantitatively. Immunohistochemistry staining of MPGs for CD68, CD86, and CD206 was used to characterize M1 and M2 macrophage infiltration. Corpora cavernosa responsiveness ex vivo; gene (quantitative real-time polymerase chain reaction) and protein (western blot) expressions of M1 and M2 markers, cytokines, and chemokines; and immunohistochemical localization of M1 and M2 macrophages. BCNI impaired the corporal parasympathetic-mediated relaxation response to electrical field stimulation and enhanced the contraction response to electrical field stimulation. Gene expression of proinflammatory (Il1b, Il16, Tnfa, Tgfb, Ccl2, Ccr2) and anti-inflammatory (Il10) cytokines was upregulated in the MPG 48 hours after injury. M1 markers (CD86, inducible nitric oxide synthase, interleukin-1β) and M2 markers (CD206

  14. Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner.

    PubMed

    Cuda, Carla M; Misharin, Alexander V; Khare, Sonal; Saber, Rana; Tsai, FuNien; Archer, Amy M; Homan, Philip J; Haines, G Kenneth; Hutcheson, Jack; Dorfleutner, Andrea; Budinger, G R Scott; Stehlik, Christian; Perlman, Harris

    2015-10-16

    Although caspase-8 is a well-established initiator of apoptosis and suppressor of necroptosis, recent evidence suggests that this enzyme maintains functions beyond its role in cell death. As cells of the innate immune system, and in particular macrophages, are now at the forefront of autoimmune disease pathogenesis, we examined the potential involvement of caspase-8 within this population. Cre (LysM) Casp8 (fl/fl) mice were bred via a cross between Casp8 (fl/fl) mice and Cre (LysM) mice, and RIPK3 (-/-) Cre (LysM) Casp8 (fl/fl) mice were generated to assess the contribution of receptor-interacting serine-threonine kinase (RIPK)3. Immunohistochemical and immunofluorescence analyses were used to examine renal damage. Flow cytometric analysis was employed to characterize splenocyte distribution and activation. Cre (LysM) Casp8 (fl/fl) mice were treated with either Toll-like receptor (TLR) agonists or oral antibiotics to assess their response to TLR activation or TLR agonist removal. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure cytokine/chemokine and immunoglobulin levels in serum and cytokine levels in cell culture studies. In vitro cell culture was used to assess macrophage response to cell death stimuli, TLR activation, and M1/M2 polarization. Data were compared using the Mann-Whitney U test. Loss of caspase-8 expression in macrophages promotes onset of a mild systemic inflammatory disease, which is preventable by the deletion of RIPK3. In vitro cell culture studies reveal that caspase-8-deficient macrophages are prone to a caspase-independent death in response to death receptor ligation; yet, caspase-8-deficient macrophages are not predisposed to unchecked survival, as analysis of mixed bone marrow chimeric mice demonstrates that caspase-8 deficiency does not confer preferential expansion of myeloid populations. Loss of caspase-8 in macrophages dictates the response to TLR activation, as injection of TLR ligands upregulates

  15. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. Published by Elsevier Ltd.

  16. Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage “Switch” Phenotype

    PubMed Central

    Malyshev, Igor; Malyshev, Yuri

    2015-01-01

    Macrophages play a key role in immunity. In this review, we consider the traditional notion of macrophage plasticity, data that do not fit into existing concepts, and a hypothesis for existence of a new switch macrophage phenotype. Depending on the microenvironment, macrophages can reprogram their phenotype toward the proinflammatory M1 phenotype or toward the anti-inflammatory M2 phenotype. Macrophage reprogramming involves well-coordinated changes in activities of signalling and posttranslational mechanisms. Macrophage reprogramming is provided by JNK-, PI3K/Akt-, Notch-, JAK/STAT-, TGF-β-, TLR/NF-κB-, and hypoxia-dependent pathways. Posttranscriptional regulation is based on micro-mRNA. We have hypothesized that, in addition to the M1 and M2 phenotypes, an M3 switch phenotype exists. This switch phenotype responds to proinflammatory stimuli with reprogramming towards the anti-inflammatory M2 phenotype or, contrarily, it responds to anti-inflammatory stimuli with reprogramming towards the proinflammatory M1 phenotype. We have found signs of such a switch phenotype in lung diseases. Understanding the mechanisms of macrophage reprogramming will assist in the selection of new therapeutic targets for correction of impaired immunity. PMID:26366410

  17. M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells

    PubMed Central

    Li, Hui; Dai, Lu; Frank, Jacqueline A.; Peng, Shaojun; Wang, Siying; Chen, Gang

    2017-01-01

    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages. PMID:28423485

  18. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    NASA Astrophysics Data System (ADS)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  19. Enhanced M1 Macrophage Polarization in Human Helicobacter pylori-Associated Atrophic Gastritis and in Vaccinated Mice

    PubMed Central

    Quiding-Järbrink, Marianne; Raghavan, Sukanya; Sundquist, Malin

    2010-01-01

    Background Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. Methodology/Principal Findings By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. Conclusions/Significance These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis. PMID:21124899

  20. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection

    PubMed Central

    Hardbower, Dana M.; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A.; Verriere, Thomas; Lewis, Nuruddeen D.; Chaturvedi, Rupesh; Piazuelo, M. Blanca; Wilson, Keith T.

    2016-01-01

    We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2−/− mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2−/− to Nos2−/− mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2−/− and Arg2−/−;Nos2−/− mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2−/− mice demonstrated enhanced M1 macrophage activation, Nos2−/− and Arg2−/−;Nos2−/− mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/ Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2−/−, but not Nos2−/− or Arg2−/−;Nos2−/− mice. Gastric tissues from infected Arg2−/− mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N1-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism. PMID:27074721

  1. Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ω-3 supplementation.

    PubMed

    Famenini, Sam; Rigali, Elizabeth A; Olivera-Perez, Henry M; Dang, Johnny; Chang, Michael To; Halder, Ramesh; Rao, Rammohan V; Pellegrini, Matteo; Porter, Verna; Bredesen, Dale; Fiala, Milan

    2017-01-01

    Monocyte/macrophages of patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) are defective in phagocytosis and degradation amyloid β 1-42 (Aβ 1-42 ), but are improved by ω-3 fatty acids (ω-3s). The hypothesis of this study was that active1-42 phagocytosis by macrophages prevents brain amyloidosis and thus maintains cognition. We studied the effects of self-supplementation with a drink with ω-3s, antioxidants, and resveratrol on Mini-Mental State Examination (MMSE) scores, macrophage M1M2 phenotype [the ratio of inflammatory cluster of differentiation (CD)54+CD80 and proresolution markers CD163+CD206], and Aβ 1-42 phagocytosis in patients initially diagnosed as having MCI or subjective cognitive impairment (SCI). At baseline, the median MMSE score in patients in both the apolipoprotein E (ApoE) ε3/ε3 and ApoE ε3/ε4 groups was 26.0 and macrophage1-42 phagocytosis was defective. The MMSE rate of change increased in the ApoE ε3/ε3 group a median 2.2 points per year (P = 0.015 compared to 0) but did not change in the ApoE ε3/ε4 group (P = 0.014 between groups). In the ApoE ε3/ε3 group, all patients remained cognitively stable or improved; in the ApoE ε3/ε4 group, 1 recovered from dementia, but 3 lapsed into dementia. The macrophage phenotype polarized in patients bearing ApoE ε3/ε3 to an intermediate (green zone) M1-M2 type at the rate of 0.226 U/yr, whereas in patients bearing ApoE ε3/ε4, polarization was negative (P = 0.08 between groups). The baseline M1M2 type in the extreme M1 (red zone) or M2 (white zone) was unfavorable for cognitive outcome. Aβ 1-42 phagocytosis increased in both ApoE groups (P = 0.03 in each groups). In vitro, the lipidic mediator resolvin D1 (RvD1) down regulated the M1 type in patients with ApoE ε3/ε3 but in some patients with ε3/ε4, paradoxically up-regulated the M1 type. Antioxidant/ω-3/resveratrol supplementation was associated with favorable immune and cognitive responses in Apo

  2. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    PubMed

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-02

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.

  3. CFTR-dependent defect in alternatively-activated macrophages in cystic fibrosis.

    PubMed

    Tarique, Abdullah A; Sly, Peter D; Holt, Patrick G; Bosco, Anthony; Ware, Robert S; Logan, Jayden; Bell, Scott C; Wainwright, Claire E; Fantino, Emmanuelle

    2017-07-01

    The role of the macrophages in cystic fibrosis (CF) lung disease has been poorly studied. We hypothesized that alternatively activated M2 macrophages are abnormal in CF lung disease. Blood samples were collected from adults (n=13) children (n=27) with CF on admission for acute pulmonary exacerbation and when clinically stable. Monocytes were differentiated into macrophages and polarized into classical (M1) and alternatively-activated (M2) phenotypes, function determined ex-vivo and compared with healthy controls. In the absence of functional cystic fibrosis trans-membrane conductance regulator (CFTR), either naturally in patients with CF or induced with CFTR inhibitors, monocyte-derived macrophages do not respond to IL-13/IL-4, fail to polarize into M2s associated with a post-transcriptional failure to produce and express IL-13Rα1 on the macrophage surface Polarization to the M1 phenotype was unaffected. CFTR-dependent imbalance of macrophage phenotypes and functions could contribute to the exaggerated inflammatory response seen in CF lung disease. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  4. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids

    PubMed Central

    Crow, J. Allen; Herring, Katye L.; Xie, Shuqi; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2009-01-01

    Summary Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC50=8.1 μM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (Kiapp=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (Kiapp=1.7 μM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which

  5. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis

    PubMed Central

    Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald

    2016-01-01

    Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes. PMID:27899821

  6. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis.

    PubMed

    Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald

    2016-09-22

    Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes.

  7. Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.

    PubMed

    Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun

    2017-08-01

    Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    PubMed

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  9. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

    PubMed

    Masola, Valentina; Zaza, Gianluigi; Bellin, Gloria; Dall'Olmo, Luigi; Granata, Simona; Vischini, Gisella; Secchi, Maria Francesca; Lupo, Antonio; Gambaro, Giovanni; Onisto, Maurizio

    2018-02-01

    Heparanase (HPSE) is part of the biologic network triggered by ischemia/reperfusion (I/R) injury, a complication of renal transplantation and acute kidney injury. During this period, the kidney or graft undergoes a process of macrophages recruitment and activation. HPSE may therefore control these biologic effects. We measured the ability of HPSE and its inhibitor, SST0001, to regulate macrophage polarization and the crosstalk between macrophages and HK-2 renal tubular cells during in vitro hypoxia/reoxygenation (H/R). Furthermore, we evaluated in vivo renal inflammation, macrophage polarization, and histologic changes in mice subjected to monolateral I/R and treated with SST0001 for 2 or 7 d. The in vitro experiments showed that HPSE sustained M1 macrophage polarization and modulated apoptosis, the release of damage associated molecular patterns in post-H/R tubular cells, the synthesis of proinflammatory cytokines, and the up-regulation of TLRs on both epithelial cells and macrophages. HPSE also regulated M1 polarization induced by H/R-injured tubular cells and the partial epithelial-mesenchymal transition of these epithelial cells by M1 macrophages. All these effects were prevented by inhibiting HPSE. Furthermore, the inhibition of HPSE in vivo reduced inflammation and M1 polarization in mice undergoing I/R injury, partially restored renal function and normal histology, and reduced apoptosis. These results show for the first time that HPSE regulates macrophage polarization as well as renal damage and repair after I/R. HPSE inhibitors could therefore provide a new pharmacologic approach to minimize acute kidney injury and to prevent the chronic profibrotic damages induced by I/R.-Masola, V., Zaza, G., Bellin, G., Dall'Olmo, L., Granata, S., Vischini, G., Secchi, M. F., Lupo, A., Gambaro, G., Onisto, M. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

  10. The Anti-Tumorigenic Mushroom Agaricus blazei Murill Enhances IL-1β Production and Activates the NLRP3 Inflammasome in Human Macrophages

    PubMed Central

    Huang, Tsung-Teng; Ojcius, David M.; Young, John D.; Wu, Yi-Hui; Ko, Yun-Fei; Wong, Tsui-Yin; Wu, Cheng-Yeu; Lu, Chia-Chen; Lai, Hsin-Chih

    2012-01-01

    Agaricus blazei Murill (AbM) has been reported to possess immune activity against tumors and infections through stimulation of mononuclear phagocytes. Recently, AbM extract was shown to induce the production of the pro-inflammatory cytokine, interleukin-1β (IL-1β), in human monocytes. IL-1β is a key pro-inflammatory cytokine produced by activated macrophages and monocytes and its secretion is strictly controlled by the inflammasome. The purpose of this study is to investigate the effect of AbM water extracts on the regulation of IL-1β production and activation of the NLRP3 inflammasome in human THP-1 macrophages. The NLRP3 inflammasome consists of an NLRP3 receptor, an adaptor protein called ASC, and the inflammatory protease, caspase-1. Typically, stimulation of immune cells with microbial products results in production of pro-IL-1β, but a second stress-related signal activates the inflammasome and caspase-1, leading to processing and secretion of IL-1β. Our results show that AbM enhances transcription of IL-1β and triggers NLRP3 inflammasome-mediated IL-1β secretion in human THP-1 macrophages. AbM-mediated IL-1β secretion was markedly reduced in macrophages deficient in NLRP3 and ASC, demonstrating that the NLRP3 inflammasome is essential for AbM-induced IL-1β secretion. In addition, caspase-1 was activated and involved in proteolytic cleavage and secretion of IL-1β in AbM-treated macrophages. AbM-mediated IL-1β secretion also decreased in cells treated with cathepsin B inhibitor, suggesting that AbM can induce the release of cathepsin B. Furthermore, our data show that AbM-induced inflammasome activation requires the release of ATP, binding of extracellular ATP to the purinergic receptor P2X7, the generation of reactive oxygen species, and efflux of potassium. Taken together, these findings reveal that AbM activates the NLRP3 inflammasome via multiple mechanisms, resulting in the secretion of IL-1β. PMID:22844468

  11. The anti-tumorigenic mushroom Agaricus blazei Murill enhances IL-1β production and activates the NLRP3 inflammasome in human macrophages.

    PubMed

    Huang, Tsung-Teng; Ojcius, David M; Young, John D; Wu, Yi-Hui; Ko, Yun-Fei; Wong, Tsui-Yin; Wu, Cheng-Yeu; Lu, Chia-Chen; Lai, Hsin-Chih

    2012-01-01

    Agaricus blazei Murill (AbM) has been reported to possess immune activity against tumors and infections through stimulation of mononuclear phagocytes. Recently, AbM extract was shown to induce the production of the pro-inflammatory cytokine, interleukin-1β (IL-1β), in human monocytes. IL-1β is a key pro-inflammatory cytokine produced by activated macrophages and monocytes and its secretion is strictly controlled by the inflammasome. The purpose of this study is to investigate the effect of AbM water extracts on the regulation of IL-1β production and activation of the NLRP3 inflammasome in human THP-1 macrophages. The NLRP3 inflammasome consists of an NLRP3 receptor, an adaptor protein called ASC, and the inflammatory protease, caspase-1. Typically, stimulation of immune cells with microbial products results in production of pro-IL-1β, but a second stress-related signal activates the inflammasome and caspase-1, leading to processing and secretion of IL-1β. Our results show that AbM enhances transcription of IL-1β and triggers NLRP3 inflammasome-mediated IL-1β secretion in human THP-1 macrophages. AbM-mediated IL-1β secretion was markedly reduced in macrophages deficient in NLRP3 and ASC, demonstrating that the NLRP3 inflammasome is essential for AbM-induced IL-1β secretion. In addition, caspase-1 was activated and involved in proteolytic cleavage and secretion of IL-1β in AbM-treated macrophages. AbM-mediated IL-1β secretion also decreased in cells treated with cathepsin B inhibitor, suggesting that AbM can induce the release of cathepsin B. Furthermore, our data show that AbM-induced inflammasome activation requires the release of ATP, binding of extracellular ATP to the purinergic receptor P2X(7), the generation of reactive oxygen species, and efflux of potassium. Taken together, these findings reveal that AbM activates the NLRP3 inflammasome via multiple mechanisms, resulting in the secretion of IL-1β.

  12. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis.

    PubMed

    Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto

    2017-08-21

    The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.

  13. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages.

    PubMed

    Xu, Xiaolong; Guo, Yuhong; Zhao, Jingxia; He, Shasha; Wang, Yan; Lin, Yan; Wang, Ning; Liu, Qingquan

    2017-09-01

    Current data have shown that punicalagin (PUN), an ellagitannin isolated from pomegranate, possesses anti-inflammatory and anti-oxidant properties; however, its direct targets have not yet been reported. This is the first report that PTP1B serves as a direct target of PUN, with IC 50 value of 1.04μM. Results from NPOI further showed that the K on and K off of PUN-PTP1B complex were 3.38e2M -1 s -1 and 4.13e-3s -1 , respectively. The active site Arg24 of PTP1B was identified as a key binding site of PUN by computation simulation and point mutation. Moreover, inhibition of PTP1B by PUN promoted an M2c-like macrophage polarization and enhanced anti-inflammatory cytokines expression, including IL-10 and M-CSF. Based on gene expression profile, we elucidated that PUN treatment significantly up-regulated 275 genes and down-regulated 1059 genes. M1-like macrophage marker genes, such as Tlr4, Irf1/2, Hmgb1, and Stat1 were down-regulated, while M2 marker genes, including Tmem171, Gpr35, Csf1, Il1rn, Cebpb, Fos, Vegfα, Slc11a1, and Bhlhe40 were up-regulated in PUN-treated macrophages. Hmox-1, a gene encoding HO-1 protein, was preferentially expressed with 16-fold change. Inhibition of HO-1 obviously restored PUN-induced M2 polarization and IL-10 secretion. In addition, phosphorylation of both Akt and STAT3 contributed to PUN-induced HO-1 expression. This study provided new insights into the mechanisms of PUN-mediated anti-inflammatory and anti-oxidant activities and provided new therapeutic strategies for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma.

    PubMed

    Fujiwara, Ken; Yatabe, Megumi; Tofrizal, Alimuddin; Jindatip, Depicha; Yashiro, Takashi; Nagai, Ryozo

    2017-05-01

    Macrophages are present throughout the anterior pituitary gland. However, the features and function of macrophages in the gland are poorly understood. Recent studies have indicated that there are two main macrophage classes: M1 (classically activated) and M2 (alternatively activated). In this study, we examine whether both M1 and M2 macrophages are present in the anterior pituitary gland of rats. Our findings indicate that macrophages that are positive for CD68 (a pan-macrophage marker) were localized near capillaries in rat anterior pituitary gland. These macrophages were positive for iNOS or mannose receptor (MR), which are markers of M1 and M2 macrophages, respectively. To determine the morphological characteristics of M2 macrophages under pathological conditions, diethylstilbestrol (DES)-treated rats were used as an animal model of prolactinoma. After 2 weeks of DES treatment, a number of MR-immunopositive cells were present in the gland. Immunoelectron microscopy revealed that MR-immunopositive M2 macrophages had many small vesicles and moderately large vacuoles in cytoplasm. Phagosomes were sometimes present in cytoplasm. Interestingly, M2 macrophages in prolactinoma tissues did not usually exhibit distinct changes or differences during the normal, hyperplasia and adenoma stages. This study is the first to confirm that both M1 and M2 macrophages are present in the anterior pituitary gland of rats. Moreover, the number of M2 macrophages was greatly increased in rats with DES-induced prolactinoma. Future studies should attempt to characterize the functional role of M2 macrophages in the gland.

  16. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp; Ohnou, Tetsuya; Godai, Kohei

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functionsmore » linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased

  17. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.

    PubMed

    Ball, Michael S; Shipman, Emilie P; Kim, Hyunjung; Liby, Karen T; Pioli, Patricia A

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer.

  18. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages

    PubMed Central

    Ball, Michael S.; Shipman, Emilie P.; Kim, Hyunjung; Liby, Karen T.; Pioli, Patricia A.

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  19. Macrophages Exhibit a Large Repertoire of Activation States via Multiple Mechanisms of Macrophage-activating Factors.

    PubMed

    Sumiya, Y U; Inoue, Takahiro; Ishikawa, Mami; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2016-07-01

    Macrophages are important components of human defense systems and consequently key to antitumor immunity. Human-serum macrophage activation factor (serum MAF) can activate macrophages, making it a promising reagent for anticancer therapy. We established four different macrophage subtypes through introduction of different culture conditions to THP-1- and U937-derived macrophages. We assessed phagocytic activity to understand subtype responses to typical macrophage activation factors (MAFs) and the activation mechanisms of serum MAF. All four macrophage subtypes differed in their response to all MAFs. Moreover, serum MAF had two different activation mechanisms: N-acetylgalactosamine (GalNAc)-dependent and GalNAc-independent. Macrophage activation states and mechanisms are heterogeneous. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed Central

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-01-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  1. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    PubMed Central

    Rocher, Crystal; Singla, Dinender K.

    2013-01-01

    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781

  2. Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization

    PubMed Central

    Zhang, Hanwen; Zhang, Wenbin; Sun, Xuan; Dang, Ruoyu; Zhou, Rongmei; Bai, Hui; Ben, Jingjing; Zhu, Xudong; Zhang, Yan; Yang, Qing; Xu, Yong; Chen, Qi

    2016-01-01

    Macrophages enhance glioma development and progression by shaping the tumor microenvironment. Class A1 scavenger receptor (SR-A1), a pattern recognition receptor primarily expressed in macrophages, is up-regulated in many human solid tumors. We found that SR-A1 expression in 136 human gliomas was positively correlated with tumor grade (P<0.01), but not prognosis or tumor recurrence. SR-A1-expressing macrophages originated primarily from circulating monocytes attracted to tumor tissue, and were almost twice as numerous as resident microglia in glioma tissues (P<0.001). The effects of SR-A1 on glioma proliferation and invasion were assessed in vivo using an SR-A1-deficient murine orthotopic glioma model. SR-A1 deletion promoted M2-like tumor-associated macrophage (TAM) polarization in mice by activating STAT3 and STAT6, which resulted in robust orthotopic glioma proliferation and angiogenesis. Finally, we found that HSP70 might be an endogenous ligand that activates SR-A1-dependent anti-tumorigenic pathways in gliomas, although its expression does not appear informative for diagnostic purposes. Our findings demonstrate a relationship between TAMs, SR-A1 expression and glioma growth and provide new insights into the pathogenic role of TAMs in glioma. PMID:27367025

  3. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization.

    PubMed

    Cucak, Helena; Grunnet, Lars Groth; Rosendahl, Alexander

    2014-01-01

    Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates. On a detailed level, the islet resident macrophages increased fourfold compared with nondiabetic littermates, whereas a pronounced recruitment (eightfold) of a novel subset of macrophages (CD68+F4/80-) was observed. The majority of the CD68+F4/80+ but only 40% of the CD68+F4/80- islet macrophages expressed CD11b. Both islet-derived macrophage subsets expressed moderate MHC-II, high galectin-3, and low CD80/CD86 levels, suggesting the cells to be macrophages rather than DCs. On a functional level, the vast majority of the macrophages in the diabetic islets was of the proinflammatory, M1-like phenotype. The systemic immunity in diabetic animals was characterized by a low-grade inflammation with elevated cytokine levels and increase of splenic cytokine, producing CD68+F4/80- macrophages. In late-stage diabetes, the cytokine signature changed toward a TGF-β-dominated profile, coinciding with a significant increase of galectin-3-positive macrophages in the spleen. In summary, our results show that proinflammatory M1-like galectin-3+ CD80/CD86(low) macrophages invade diabetic islets. Moreover, the innate immunity matures in a diabetes-dependent manner from an initial proinflammatory toward a profibrotic phenotype, supporting the concept that T2D is an inflammatory disease.

  4. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion

    PubMed Central

    Luo, Yi; Shao, Lijian; Chang, Jianhui; Feng, Wei; Liu, Y. Lucy; Cottler-Fox, Michele H.; Emanuel, Peter D.; Hauer-Jensen, Martin; Bernstein, Irwin D.; Liu, Lingbo; Chen, Xing; Zhou, Jianfeng; Murray, Peter J.

    2018-01-01

    Uncovering the cellular and molecular mechanisms by which hematopoietic stem cell (HSC) self-renewal is regulated can lead to the development of new strategies for promoting ex vivo HSC expansion. Here, we report the discovery that alternative (M2)-polarized macrophages (M2-MΦs) promote, but classical (M1)-polarized macrophages (M1-MΦs) inhibit, the self-renewal and expansion of HSCs from mouse bone marrow (BM) in vitro. The opposite effects of M1-MΦs and M2-MΦs on mouse BM HSCs were attributed to their differential expression of nitric oxide synthase 2 (NOS2) and arginase 1 (Arg1), because genetic knockout of Nos2 and Arg1 or inhibition of these enzymes with a specific inhibitor abrogated the differential effects of M1-MΦs and M2-MΦs. The opposite effects of M1-MΦs and M2-MΦs on HSCs from human umbilical cord blood (hUCB) were also observed when hUCB CD34+ cells were cocultured with M1-MΦs and M2-MΦs generated from hUCB CD34− cells. Importantly, coculture of hUCB CD34+ cells with human M2-MΦs for 8 days resulted in 28.7- and 6.6-fold increases in the number of CD34+ cells and long-term SCID mice–repopulating cells, respectively, compared with uncultured hUCB CD34+ cells. Our findings could lead to the development of new strategies to promote ex vivo hUCB HSC expansion to improve the clinical utility and outcome of hUCB HSC transplantation and may provide new insights into the pathogenesis of hematological dysfunctions associated with infection and inflammation that can lead to differential macrophage polarization. PMID:29666049

  5. The human tissue-biomaterial interface: a role for PPARγ-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype.

    PubMed

    Bullers, Samuel J; Baker, Simon C; Ingham, Eileen; Southgate, Jennifer

    2014-09-01

    In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implanted decellularized biomaterial were examined by establishing a novel ex vivo tissue culture model in which surgically excised human urinary tract tissue was combined with porcine acellular bladder matrix (PABM). Evaluation of the tissue-biomaterial interface showed a time-dependent infiltration of the biomaterial by CD68(+) CD80(-) macrophages. The migration of CD68(+) cells from the tissue to the interface was accompanied by maturation to a CD163(hi) phenotype, suggesting that factor(s) associated with the biomaterial or the wound edge was/were responsible for the active recruitment and polarization of local macrophages. Glucocorticoid receptor (GR) and peroxisome proliferator activated receptor gamma (PPARγ) signaling was investigated as candidate pathways for integrating inflammatory responses; both showed intense nuclear labeling in interface macrophages. GR and PPARγ activation polarized peripheral blood-derived macrophages from a default M1 (CD80(+)) toward an M2 (CD163(+)) phenotype, but PPARγ signaling predominated, as its antagonism blocked any GR-mediated effect. Seeding on PABM was effective at polarizing peripheral blood-derived macrophages from a default CD80(+) phenotype on glass to a CD80(-) phenotype, with intense nuclear localization of PPARγ. These results endorse in vivo observations that the infiltration of decellularized biological scaffolds, exemplified here by PABM, is pioneered by macrophages. Thus, it appears that natural factors present in PABM are involved in the active recruitment and polarization of macrophages to a CD163(+) phenotype, with

  6. Alternative activation modifies macrophage resistance to Mycobacterium bovis.

    PubMed

    Castillo-Velázquez, Uziel; Aranday-Cortés, Elihú; Gutiérrez-Pabello, José A

    2011-07-05

    The aim of this study was to evaluate the influence of macrophage alternative activation in the intracellular pathogen natural disease resistance phenotype of the host. Macrophage monolayers from resistant (R) (3) or susceptible (S) (3) cattle donors were treated with 10 ng/ml of bovine recombinant IL-4 (rbIL-4), and infected with virulent and avirulent Mycobacterium bovis (MOI 10:1). Bactericidal assays were performed to assess the bacterial phagocytic index and intracellular survival. Total RNA was reverse transcribed and used to analyze the relative changes in gene expression of IL-10, IL-12, IL-18 IL-1β, TNF-α, MCP-1, MCP-2, IL-6, MIP-1, MIP-3, iNOS, ARGII and SLAM by real time PCR. Cell supernatants were collected and nitric oxide and arginase production was assessed. Apoptosis induction was measured by TUNEL. IL-4 treatment increased the phagocytic index in both R and S macrophages; however intracellular survival was augmented mainly in S macrophages. Alternative activation decreased gene expression of pro-inflammatory cytokines, nitric oxide production and DNA fragmentation mainly in R macrophages. On the other hand, arginase production was not different between R and S macrophages. Alternative activation modifies the macrophage response against M. bovis. IL-4 treatment minimized the functional differences that exist between R and S macrophages. Copyright © 2011. Published by Elsevier B.V.

  7. Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan

    PubMed Central

    Chen, W; Wang, J; Jia, L; Liu, J; Tian, Y

    2016-01-01

    Programmed cell death-1 (PD-1) is a member of the CD28 superfamily that delivers negative signals on interaction with its 2 ligands, PD-L1 and PD-L2. We assessed the contribution of the PD-1 pathway to regulating the polarization of macrophages that promote inflammation induced by zymosan. We found that PD-1−/− mice developed robust peritonitis with more abundant infiltration of M1 macrophages, accompanied by higher levels of pro-inflammation factors, especially monocyte chemotactic protein-1 (MCP-1) compared with wild-type controls ex vivo and in vitro. Our results indicated that PD-1 deficiency promotes M1 rather than M2 polarization of macrophages by enhancing the expression of p-STAT1/p-NF-κB p65 and downregulating p-STAT6. We found that PD-1 engagement followed by zymosan stimulation might primarily attenuate the phosphorylation of tyrosine residue in PD-1 receptor/ligand and the recruitment of SHP-2 to PD-1 receptor/ligand, leading to the reduction of M1 type cytokine production. PMID:26913605

  8. Doxycycline Inhibits Polarization of Macrophages to the Proangiogenic M2-type and Subsequent Neovascularization*

    PubMed Central

    He, Lizhi; Marneros, Alexander G.

    2014-01-01

    Macrophages occur along a continuum of functional states between M1-type polarized macrophages with antiangiogenic and antitumor activity and M2-type polarized macrophages, which have been implicated to promote angiogenesis and tumor growth. Proangiogenic M2-type macrophages promote various pathologic conditions, including choroidal neovascularization in models of neovascular age-related macular degeneration, or certain cancers, such as glioblastoma multiforme. Thus, a potential novel therapeutic approach to target pathological angiogenesis in these conditions would be to inhibit the polarization of macrophages toward the proangiogenic M2-type. However, no pharmacological inhibitors of M2-type macrophage polarization have been identified yet. Here we performed an unbiased pharmacological and small chemical screen to identify drugs that inhibit proangiogenic M2-type macrophage polarization and block pathologic macrophage-driven neovascularization. We identified the well tolerated and commonly used antibiotic doxycycline as a potent inhibitor of M2-type polarization of macrophages. Doxycycline inhibited, in a dose-dependent manner, M2-type polarization of human and bone marrow-derived mouse macrophages without affecting cell viability. Furthermore, doxycycline inhibited M2-type macrophage polarization and subsequent neovascularization in vivo in a laser injury model of choroidal neovascularization. Thus, doxycycline could be used to enhance current antiangiogenic treatment approaches in various conditions that are promoted by proangiogenic M2-type macrophages, including neovascular age-related macular degeneration and certain cancers. PMID:24505138

  9. Regulation of immunophenotype modulation of monocytes-macrophages from M1 into M2 by prostate cancer cell-culture supernatant via transcription factor STAT3.

    PubMed

    Solís-Martínez, R; Cancino-Marentes, M; Hernández-Flores, G; Ortiz-Lazareno, P; Mandujano-Álvarez, G; Cruz-Gálvez, C; Sierra-Díaz, E; Rodríguez-Padilla, C; Jave-Suárez, L F; Aguilar-Lemarroy, A; Bravo-Cuellar, A

    2018-04-01

    Transcription factor STAT3 has a prominent innate immunity effect on cancer progression. We determined the regulation of STAT3 in the immunophenotype modulation of macrophages from M1 into M2 induced by the cell-culture supernatant of the Prostate-Cancer line PC3. Monocytes-macrophages from healthy donors were cultured in the supernatant of PC3 cells, membrane proteins, and intracytoplasmic and phosphorylated STAT3 were measured using flow cytometry, while cytokines and growth factors were studied using luminescence. Cytotoxicity and nitric oxide were evaluated via colorimetric assays. The supernatant of PC3 prostate-tumor cells effectively induced macrophages toward an M2 profile, and the expression of phosphorylated STAT3 in the monocytes-macrophages notably increased, and mainly related to IL-10. In the group of monocytes-macrophages treated with a STAT3 inhibitor, the macrophages were induced toward an M1 phenotype. In this study, we showed that the secretion profile of PC3 prostate-cancer cells induces a change in macrophage phenotype from M1 into M2, and that the phenomenon is related to phosphorylation of transcription factor STAT3 and IL-10. Copyright © 2018. Published by Elsevier B.V.

  10. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke.

    PubMed

    Xin, Hongqi; Chopp, Michael; Shen, Li Hong; Zhang, Rui Lan; Zhang, Li; Zhang, Zheng Gang; Li, Yi

    2013-05-10

    Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor β1 (TGFβ1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFβ1 after stroke, we therefore tested whether MSCs regulate TGFβ1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFβ1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFβ1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFβ1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFβ1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFβ1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes. Published by Elsevier Ireland Ltd.

  11. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  12. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    PubMed

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2015-01-05

    Tumor growth and metastasis are closely associated with the M2 macrophage activation of tumor-associated macrophages (TAMs) in the tumor microenvironment as well as the development of tumor cells. In this study, we examined the antiproliferative, antitumor, and antimetastatic effects of three dihydroxycoumarins (esculetin, fraxetin, and daphnetin) against osteosarcoma LM8 cells (in vitro) and a highly metastatic model in LM8-bearing mice (in vivo). Esculetin (20-100μM) inhibited the proliferation of LM8 cells, whereas fraxetin and daphnetin had no effect. Esculetin inhibited the expressions of cyclin D1, cyclin-dependent kinase (CDK) 4 and matrix metalloproteinase (MMP)-2, and production of both transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) in LM8 cells. Esculetin (3 or 10mg/kg) and fraxetin (10mg/kg) inhibited tumor growth and metastasis to the lung or liver, whereas daphnetin did not. These results suggested that the antitumor and antimetastatic actions of esculetin may be partly attributed to G1 arrest by the inhibition of cyclin D1 and CDK4 expression, while its antiangiogenic action may have been due to the inhibition of MMP-2 expression and TGF-β1 and VEGF productions at tumor sites. Esculetin (10-100μM) and fraxetin (50-100μM) inhibited the production of interleukin (IL)-10, monocyte chemoattractant protein (MCP)-1, and TGF-β1 during the differentiation of M2 macrophages by reducing the phosphorylation of Stat 3 without affecting its expression. These results also suggested that the antitumor and antimetastatic actions of esculetin or fraxetin may be due to the regulated activation of TAM by M2 macrophage differentiation in the tumor microenvironment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages

    PubMed Central

    Cathcart, Martha K.; Bhattacharjee, Ashish

    2015-01-01

    Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response. PMID:26052543

  15. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages.

    PubMed

    Cathcart, Martha K; Bhattacharjee, Ashish

    Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.

  16. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator.

    PubMed

    Carlson, Signe; Helterline, Deri; Asbe, Laura; Dupras, Sarah; Minami, Elina; Farris, Stephen; Stempien-Otero, April

    2017-07-01

    Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, P<0.007). There was significant up-regulation of cardiac mac Arg1 and YM1 with MI in both WT and uPA null mice (n=4-9 per genotype and condition). Treatment with plasmin increased expression of Arg1 and YM1 in cultured cardiac macs. Histologic analysis revealed increased density of activated fibroblasts and M2 macs in SR-uPA hearts post-infarction with associated increases in fibrosis. Cardiac macs isolated from human hearts with ischemic heart disease expressed increased levels of the M2 marker CD206 in comparison to blood-derived macs (4.9±1.3). Cardiac macs in mouse and human hearts adopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes

  17. Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability.

    PubMed

    Xu, Rende; Li, Chenguang; Wu, Yizhe; Shen, Li; Ma, Jianying; Qian, Juying; Ge, Junbo

    2017-02-01

    Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability. Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions. These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype. © 2016 American Heart Association, Inc.

  18. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    PubMed Central

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  19. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    PubMed

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  20. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice

    PubMed Central

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip

    2015-01-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  1. Genetically Modified Live Attenuated Leishmania donovani Parasites Induce Innate Immunity through Classical Activation of Macrophages That Direct the Th1 Response in Mice.

    PubMed

    Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L

    2015-10-01

    Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that

  2. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    PubMed

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-12-15

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages.

    PubMed

    Huang, Cheng; Liu, Xue-Jiao; QunZhou; Xie, Juan; Ma, Tao-Tao; Meng, Xiao-Ming; Li, Jun

    2016-03-01

    Macrophages are heterogeneous and plastic cells which are able to undergo dynamic transition between M1 and M2 polarized phenotypes in response to the microenvironment signals. However, the underlying molecular mechanisms of macrophage polarization are still obscure. In the current study, it was revealed that miR-146a might play a pivotal role in macrophage polarization. As our results indicated, miR-146a was highly expressed in M2 macrophages rather than M1 macrophages. Over-expression of miR-146a resulted in significantly decreased production of pro-inflammatory cytokines including iNOS and TNF-α in M1 macrophages, while increased production of M2 marker genes such as Arg1 and CD206 in M2 macrophages. In contrast, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. Mechanistically, it was revealed that miR-146a modulated macrophage polarization by targeting Notch1. Of note, PPARγ was responsible as another target for miR-146a-mediated macrophage polarization. Taken together, it was suggested that miR-146a might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds

    PubMed Central

    Osaka, Nao; Takahashi, Takumi; Murakami, Shiori; Matsuzawa, Atsushi; Noguchi, Takuya; Fujiwara, Takeshi; Aburatani, Hiroyuki; Moriyama, Keiji; Takeda, Kohsuke; Ichijo, Hidenori

    2007-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin. PMID:17389227

  5. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2.

    PubMed

    Xu, Ying; Yang, Enzhuo; Huang, Qi; Ni, Wenwen; Kong, Cong; Liu, Guoyuan; Li, Guanghua; Su, Haibo; Wang, Honghai

    2015-06-01

    Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are related proteins exclusive to Mycobacteria that play diverse roles in modulating critical innate immune pathways. In this study, we observed that the PPE57 protein is associated with the cell wall and is exposed on the cell surface. PPE57 enhances Mycobacterium spp. entering into macrophages and plays a role in macrophage phagocytosis. To explore the underlying mechanism, we demonstrated that PPE57 is able to recognise Toll-like receptor 2 (TLR2) and further induce macrophage activation by augmenting the expression of several cell surface molecules (CD40, CD80, CD86 and MHC class II) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40) within macrophages. These molecules are involved in the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signalling pathways. We demonstrated that PPE57 effectively polarises T cells to secrete interferon (IFN)-γ and IL-2 and to up-regulate CXCR3 expression in vivo and in vitro, suggesting that this protein may contribute to Th1 polarisation during the immune response. Moreover, recombinant Bacillus Calmette-Guérin (BCG) over-expressing PPE57 could provide better protective efficacy against Mycobacterium tuberculosis challenge compared with BCG. Taken together, our data provides several pieces of evidence that PPE57 may regulate innate and adaptive immunity by interacting with TLR2. These findings indicate that PPE57 protein is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis. PPE57 is located on the cell surface and enhances mycobacterium entry into macrophage. PPE57 interacts directly with TLR2 on macrophages. PPE57 plays a key role in the activation of macrophages in a TLR2-dependent manner. PPE57 induces a Th1 immune response via TLR2-mediated macrophage functions. Recombinant BCG over-expressing PPE57 could improve protective efficacy against M. tuberculosis.

  6. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis.

    PubMed

    Watson, Neva B; Schneider, Karin M; Massa, Paul T

    2015-03-15

    Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus

  7. DC-SIGN–expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma

    PubMed Central

    Amin, Rada; Mourcin, Frédéric; Uhel, Fabrice; Pangault, Céline; Ruminy, Philippe; Dupré, Loic; Guirriec, Marion; Marchand, Tony; Fest, Thierry; Lamy, Thierry

    2015-01-01

    Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM+ FL B cells activated a stronger BCR signaling network than IgG+ FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM+ FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN–dependent adhesion of highly mannosylated IgM+ FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN–expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets. PMID:26272216

  8. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    PubMed

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  10. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity

    PubMed Central

    1984-01-01

    Gamma-interferon (IFN-gamma) is the macrophage-activating factor (MAF) produced by normal murine splenic cells and the murine T cell hybridoma 24/G1 that induces nonspecific tumoricidal activity in macrophages. Incubation of 24/G1 supernatants diluted to 8.3 IRU IFN-gamma/ml with 6 X 10(6) elicited peritoneal macrophages or bone marrow-derived macrophages for 4 h at 37 degrees C, resulted in removal of 80% of the MAF activity from the lymphokine preparation. Loss of activity appeared to result from absorption and not consumption because (a) 40% of the activity was removed after exposure to macrophage for 30 min at 4 degrees C, (b) no reduction of MAF activity was detected when the 24/G1 supernatant was incubated with macrophage culture supernatants, and (c) macrophage-treated supernatants showed a selective loss of MAF activity but not interleukin 2 (IL-2) activity. Absorption was dependent on the input of either IFN-gamma or macrophages and was time dependent at 37 degrees C but not at 4 degrees C. With four rodent species tested, absorption of murine IFN-gamma displayed species specificity. However, cultured human peripheral blood monocytes and the human histiocytic lymphoma cell line U937 were able to absorb the murine lymphokine. Although the majority of murine cell lines tested absorbed 24/G1 MAF activity, two murine macrophage cell lines, P388D1 and J774, were identified which absorbed significantly reduced amounts of natural IFN- gamma. Purified murine recombinant IFN-gamma was absorbed by elicited macrophages but not by P388D1. Normal macrophages but not P388D1 bound fluoresceinated microspheres coated with recombinant IFN-gamma and binding was inhibited by pretreatment of the normal cells with 24/G1 supernatants. Scatchard plot analysis showed that 12,000 molecules of soluble 125I-recombinant IFN-gamma bound per bone marrow macrophage with a Ka of 0.9 X 10(8) M-1. Binding was quantitatively inhibitable by natural IFN-gamma but not by murine IFN alpha. IFN

  11. Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-inflammatory Microenvironment in the Lymph Node.

    PubMed

    Cheng, Lifang; Wang, Yuhua; Huang, Leaf

    2017-07-05

    Exosomes are small membrane-bound vesicular particles generated by most cells for intercellular communication and regulation. During biogenesis, specific lipids, RNAs, proteins, and carbohydrates are enriched and packaged into the vesicles so that the exosomal contents reflect not only the source but also the physiological conditions of the parental cells. These exosomes transport materials or signals to the target cells for diverse physiological purposes. Our study focused on the exosomes derived from M1-polarized, proinflammatory macrophages for the possibility of using M1 exosomes as an immunopotentiator for a cancer vaccine. The M1 exosomes displayed a tropism toward lymph nodes after subcutaneous injection, primarily taken up by the local macrophages and dendritic cells, and they induced the release of a pool of Th1 cytokines. We found that M1, but not M2, exosomes enhanced activity of lipid calcium phosphate (LCP) nanoparticle-encapsulated Trp2 vaccine, and they induced a stronger antigen-specific cytotoxic T cell response. The M1 exosomes proved to be a more potent immunopotentiator than CpG oligonucleotide when used with LCP nanoparticle vaccine in a melanoma growth inhibition study. Thus, our study indicated that exosomes derived from M1-polarized macrophages could be used as a vaccine adjuvant. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. A MicroRNA93-IRF9-IRG1-Itaconic Acid Pathway Modulates M2-like-Macrophage Polarization to Revascularize Ischemic Muscle

    PubMed Central

    Ganta, Vijay Chaitanya; Choi, Min Hyub; Kutateladze, Anna; Fox, Todd E.; Farber, Charles R.; Annex, Brian H.

    2017-01-01

    Background Currently no therapies exist for treating, and improving outcomes in patients with severe peripheral arterial disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and reduce tissue loss in genetic PAD models. However, the cell specific function, downstream mechanisms or signaling involved in miR93 mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1-activation/polarization state. In the current study, we identified a novel mechanism by which miR93 regulates macrophage-polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental-PAD. Methods In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation (HSS) conditions) and in vivo experiments in preclinical-PAD models (unilateral femoral artery ligation and resection)) were conducted to examine the role of miR93-interferon regulatory factor-9 (IRF9)-immune responsive gene-1 (IRG1)-itaconic acid pathway in macrophage-polarization, angiogenesis, arteriogenesis and perfusion recovery. Results In vivo, compared to wild type (WT) controls, miR106b-93-25 cluster deficient mice (miR106b-93-25−/−) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like-macrophages following experimental-PAD. Intra-muscular delivery of miR93 in miR106b-93-25−/− PAD mice increased angiogenesis, arteriogenesis, the extent of perfusion which correlated with more M2-like-macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like-polarization even under M1-like-polarizing conditions (HSS). Delivery of bone marrow derived macrophages from miR106b-93-25−/− to WT ischemic-muscle decreased angiogenesis, arteriogenesis and perfusion, while transfer of wild-type macrophages

  13. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    PubMed

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

    PubMed

    Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina

    2016-10-07

    During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the

  15. Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages

    PubMed Central

    Montana, Giovanna

    2016-01-01

    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187

  16. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms.

    PubMed

    Assunção, Leonardo Santos; Magalhães, Kelly G; Carneiro, Alan Brito; Molinaro, Raphael; Almeida, Patrícia E; Atella, Georgia C; Castro-Faria-Neto, Hugo C; Bozza, Patrícia T

    2017-02-01

    Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFβ and production of IL-10 and PGE 2 24h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mycobacterium tuberculosis Hip1 Dampens Macrophage Proinflammatory Responses by Limiting Toll-Like Receptor 2 Activation▿

    PubMed Central

    Madan-Lala, Ranjna; Peixoto, Katia Vitorello; Re, Fabio; Rengarajan, Jyothi

    2011-01-01

    Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression. PMID:21947769

  18. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  19. Blocking fatty acid-fueled mROS production within macrophages alleviates acute gouty inflammation.

    PubMed

    Hall, Christopher J; Sanderson, Leslie E; Lawrence, Lisa M; Pool, Bregina; van der Kroef, Maarten; Ashimbayeva, Elina; Britto, Denver; Harper, Jacquie L; Lieschke, Graham J; Astin, Jonathan W; Crosier, Kathryn E; Dalbeth, Nicola; Crosier, Philip S

    2018-05-01

    Gout is the most common inflammatory arthritis affecting men. Acute gouty inflammation is triggered by monosodium urate (MSU) crystal deposition in and around joints that activates macrophages into a proinflammatory state, resulting in neutrophil recruitment. A complete understanding of how MSU crystals activate macrophages in vivo has been difficult because of limitations of live imaging this process in traditional animal models. By live imaging the macrophage and neutrophil response to MSU crystals within an intact host (larval zebrafish), we reveal that macrophage activation requires mitochondrial ROS (mROS) generated through fatty acid oxidation. This mitochondrial source of ROS contributes to NF-κB-driven production of IL-1β and TNF-α, which promote neutrophil recruitment. We demonstrate the therapeutic utility of this discovery by showing that this mechanism is conserved in human macrophages and, via pharmacologic blockade, that it contributes to neutrophil recruitment in a mouse model of acute gouty inflammation. To our knowledge, this study is the first to uncover an immunometabolic mechanism of macrophage activation that operates during acute gouty inflammation. Targeting this pathway holds promise in the management of gout and, potentially, other macrophage-driven diseases.

  20. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    PubMed

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  1. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    PubMed

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.

  3. Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage.

    PubMed

    Yang, Jianjing; Ding, Saidan; Huang, Weilong; Hu, Jiangnan; Huang, Shengwei; Zhang, Yu; Zhuge, Qichuan

    2016-01-01

    Neuro-inflammation plays an important role in the recovery of brain injury after stroke. Microglia/macrophage is the major executor in the neuro-inflammation, which can be polarized into two distinct phenotypes: injurious/toxic classical activation (M1 phenotype) and protective alternative activation (M2 phenotype). Here, we investigated whether intracerebral administration of interleukin-4 (IL-4) at an early stage could affect the activation of microglia/macrophage and the corresponding outcome after intracerebral hemorrhage (ICH). The neuro-behavior was recorded between different groups in the rat ICH model. The M1 and M2 markers were then determined by qRT-PCR, western blotting, ELISA, and immunofluorescence, respectively. We observed aberrant activation of microglia/macrophage after ICH. After intracerebral injection of IL-4, M1 activation was greatly inhibited while M2 activation was enhanced, along with improving neurobehavioral recovery from deficits after ICH. Our study showed that early intracerebral injection of IL-4 potentially promotes neuro-functional recovery, probably through enhancing the alternative activation of microglia/macrophage.

  4. Requirement for STAT1 in LPS-induced gene expression in macrophages.

    PubMed

    Ohmori, Y; Hamilton, T A

    2001-04-01

    This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.

  5. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-γ and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS+IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNAmore » or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.« less

  7. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    PubMed Central

    Souza, Nadhia H. C.; Ferrari, Raquel A. M.; Silva, Daniela F. T.; Nunes, Fabio D.; Bussadori, Sandra K.; Fernandes, Kristianne P. S.

    2014-01-01

    BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. PMID:25076002

  8. Multimodality PET/MRI agents targeted to activated macrophages.

    PubMed

    Tu, Chuqiao; Ng, Thomas S C; Jacobs, Russell E; Louie, Angelique Y

    2014-02-01

    The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter (64)Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-(64)Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-(64)Cu-DOTA has an average iron oxide core size of 7-8 nm, an average hydrodynamic diameter of 62.7 nm, an r1 relaxivity of 16.8 mM(-1) s(-1), and an r 2 relaxivity of 83.9 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-(64)Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages.

  9. The Synthetic Melanocortin (CKPV)2 Exerts Anti-Fungal and Anti-Inflammatory Effects against Candida albicans Vaginitis via Inducing Macrophage M2 Polarization

    PubMed Central

    Jia, Zhi-rong; Li, Xian-jing; Wang, Zhuo; Li, Li; Li, Yong-wen; Liu, Gen-yan; Tong, Ming-Qing; Li, Xiao-yi; Zhang, Guo-hui; Dai, Xiang-rong; He, Ling; Li, Zhi-yu; Cao, Cong; Yang, Yong

    2013-01-01

    In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation. PMID:23457491

  10. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    PubMed

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  11. Emodin Bidirectionally Modulates Macrophage Polarization and Epigenetically Regulates Macrophage Memory.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Altomare, Diego; Hui, Yvonne; Fan, Daping

    2016-05-27

    Macrophages are pleiotropic cells capable of performing a broad spectrum of functions. Macrophage phenotypes are classified along a continuum between the extremes of proinflammatory M1 macrophages and anti-inflammatory M2 macrophages. The seemingly opposing functions of M1 and M2 macrophages must be tightly regulated for an effective and proper response to foreign molecules or damaged tissue. Excessive activation of either M1 or M2 macrophages contributes to the pathology of many diseases. Emodin is a Chinese herb-derived compound and has shown potential to inhibit inflammation in various settings. In this study, we tested the ability of emodin to modulate the macrophage response to both M1 and M2 stimuli. Primary mouse macrophages were stimulated with LPS/IFNγ or IL4 with or without emodin, and the effects of emodin on gene transcription, cell signaling pathways, and histone modifications were examined by a variety of approaches, including microarray, quantitative real-time PCR, Western blotting, chromatin immunoprecipitation, and functional assays. We found that emodin bidirectionally tunes the induction of LPS/IFNγ- and IL4-responsive genes through inhibiting NFκB/IRF5/STAT1 signaling and IRF4/STAT6 signaling, respectively. Thereby, emodin modulates macrophage phagocytosis, migration, and NO production. Furthermore, emodin inhibited the removal of H3K27 trimethylation (H3K27m3) marks and the addition of H3K27 acetylation (H3K27ac) marks on genes required for M1 or M2 polarization of macrophages. In conclusion, our data suggest that emodin is uniquely able to suppress the excessive response of macrophages to both M1 and M2 stimuli and therefore has the potential to restore macrophage homeostasis in various pathologies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Emodin Bidirectionally Modulates Macrophage Polarization and Epigenetically Regulates Macrophage Memory*

    PubMed Central

    Iwanowycz, Stephen; Wang, Junfeng; Altomare, Diego; Hui, Yvonne; Fan, Daping

    2016-01-01

    Macrophages are pleiotropic cells capable of performing a broad spectrum of functions. Macrophage phenotypes are classified along a continuum between the extremes of proinflammatory M1 macrophages and anti-inflammatory M2 macrophages. The seemingly opposing functions of M1 and M2 macrophages must be tightly regulated for an effective and proper response to foreign molecules or damaged tissue. Excessive activation of either M1 or M2 macrophages contributes to the pathology of many diseases. Emodin is a Chinese herb-derived compound and has shown potential to inhibit inflammation in various settings. In this study, we tested the ability of emodin to modulate the macrophage response to both M1 and M2 stimuli. Primary mouse macrophages were stimulated with LPS/IFNγ or IL4 with or without emodin, and the effects of emodin on gene transcription, cell signaling pathways, and histone modifications were examined by a variety of approaches, including microarray, quantitative real-time PCR, Western blotting, chromatin immunoprecipitation, and functional assays. We found that emodin bidirectionally tunes the induction of LPS/IFNγ- and IL4-responsive genes through inhibiting NFκB/IRF5/STAT1 signaling and IRF4/STAT6 signaling, respectively. Thereby, emodin modulates macrophage phagocytosis, migration, and NO production. Furthermore, emodin inhibited the removal of H3K27 trimethylation (H3K27m3) marks and the addition of H3K27 acetylation (H3K27ac) marks on genes required for M1 or M2 polarization of macrophages. In conclusion, our data suggest that emodin is uniquely able to suppress the excessive response of macrophages to both M1 and M2 stimuli and therefore has the potential to restore macrophage homeostasis in various pathologies. PMID:27008857

  13. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro.

    PubMed

    Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin

    2016-11-14

    To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro . A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro . The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.

  14. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro

    PubMed Central

    Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin

    2016-01-01

    AIM To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro. METHODS A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. RESULTS SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro. The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. CONCLUSION Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI. PMID:27895424

  15. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions.

    PubMed

    Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso

    2017-08-01

    M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive

  16. Oxygen tension limits nitric oxide synthesis by activated macrophages.

    PubMed Central

    McCormick, C C; Li, W P; Calero, M

    2000-01-01

    Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783

  17. Degalactosylated/Desialylated Bovine Colostrum Induces Macrophage Phagocytic Activity Independently of Inflammatory Cytokine Production.

    PubMed

    Uto, Yoshihiro; Kawai, Tomohito; Sasaki, Toshihide; Hamada, Ken; Yamada, Hisatsugu; Kuchiike, Daisuke; Kubo, Kentaro; Inui, Toshio; Mette, Martin; Tokunaga, Ken; Hayakawa, Akio; Go, Akiteru; Oosaki, Tomohiro

    2015-08-01

    Colostrum contains antibodies, such as immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM), and, therefore, has potent immunomodulating activity. In particular, IgA has an O-linked sugar chain similar to that in the group-specific component (Gc) protein, a precursor of the Gc protein-derived macrophage-activating factor (GcMAF). In the present study, we investigated the macrophage-activating effects of degalactosylated/desialylated bovine colostrum. We detected the positive band in degalactosylated/ desialylated bovine colostrum by western blotting using Helix pomatia agglutinin lectin. We also found that degalactosylated/ desialylated bovine colostrum could significantly enhance the phagocytic activity of mouse peritoneal macrophages in vitro and of intestinal macrophages in vivo. Besides, degalactosylated/desialylated bovine colostrum did not mediate the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Similar to the use of GcMAF, degalactosylated/desialylated bovine colostrum can be used as a potential macrophage activator for various immunotherapies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl{sub 4}-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl{sub 4}-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantlymore » decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis. - Highlights: • CCl{sub 4} treatment triggered a mixed M1/M2 macrophage phenotype in fibrosis. • Lower expression of PTEN in murine M2 macrophages in vivo and vitro. • PTEN modulates M2 macrophages activation via PI3K/Akt/STAT6 signaling. • Provide a new cellular target modulate macrophage mediated hepatic fibrosis.« less

  19. Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype.

    PubMed

    Syed, Mansoor A; Bhandari, Vineet

    2013-01-01

    Hyperoxia exposure to developing lungs-critical in the pathogenesis of bronchopulmonary dysplasia-may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39(-/-) mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39(-/-) mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  20. Ankylosing spondylitis M-CSF-derived macrophages are undergoing unfolded protein response (UPR) and express higher levels of interleukin-23.

    PubMed

    Rezaiemanesh, Alireza; Mahmoudi, Mahdi; Amirzargar, Ali Akbar; Vojdanian, Mahdi; Jamshidi, Ahmad Reza; Nicknam, Mohammad Hossein

    2017-09-01

    Interleukin (IL)-23/IL-17 pathway involves in the pathogenesis of ankylosing spondylitis (AS). The exact mechanism implicated in overexpression of IL-23 and activation of the IL-23/IL-17 axis is not clear. The aim of the study was to clarify whether macrophages of AS patients undergo unfolded protein response (UPR) and secret increased IL-23. Peripheral blood monocyte isolated from 10 HLA-B27 + patients and five HLA-B27 + normal subjects were differentiated to macrophages by macrophage-colony stimulating factor (M-CSF) for seven days. Flow cytometry was used to detect monocyte purity and expression of macrophage markers. Analysis of mRNA expression for HLA-B and B27, UPR-associated proteins (BiP, CHOP, MDG1, and XBP1) and IL-23 was performed by RT-qPCR. RT-qPCR data showed a significant overexpression of HLA-B27, UPR genes (BiP, CHOP, and XBP1), and IL-23 in M-CSF-derived macrophages from AS patients compared to healthy controls. Increased expression of MDG1 was not significant. Our data suggest that UPR activation occurs in M-CSF-derived macrophages of AS patients and is accompanied by overexpression of HLA-B27. UPR appears to be associated with overproduction of IL-23 in AS macrophages.

  1. Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1).

    PubMed

    Rosenblat, M; Elias, A; Volkova, N; Aviram, M

    2013-04-01

    In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells' lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells' free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.

  2. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    PubMed

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  3. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    PubMed

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

    PubMed

    Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R

    2017-01-24

    The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion

  5. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua.

    PubMed

    Wheeler, Karen C; Jena, Manoj K; Pradhan, Bhola S; Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S; Chen, Kang; Nayak, Nihar R

    2018-01-01

    It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition

  6. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua

    PubMed Central

    Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S.; Chen, Kang; Nayak, Nihar R.

    2018-01-01

    It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition

  7. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    PubMed

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production.

    PubMed

    Baseler, Walter A; Davies, Luke C; Quigley, Laura; Ridnour, Lisa A; Weiss, Jonathan M; Hussain, S Perwez; Wink, David A; McVicar, Daniel W

    2016-12-01

    Inflammatory maturation of M1 macrophages by proinflammatory stimuli such as toll like receptor ligands results in profound metabolic reprogramming resulting in commitment to aerobic glycolysis as evidenced by repression of mitochondrial oxidative phosphorylation (OXPHOS) and enhanced glucose utilization. In contrast, "alternatively activated" macrophages adopt a metabolic program dominated by fatty acid-fueled OXPHOS. Despite the known importance of these developmental stages on the qualitative aspects of an inflammatory response, relatively little is know regarding the regulation of these metabolic adjustments. Here we provide evidence that the immunosuppressive cytokine IL-10 defines a metabolic regulatory loop. Our data show for the first time that lipopolysaccharide (LPS)-induced glycolytic flux controls IL-10-production via regulation of mammalian target of rapamycin (mTOR) and that autocrine IL-10 in turn regulates macrophage nitric oxide (NO) production. Genetic and pharmacological manipulation of IL-10 and nitric oxide (NO) establish that metabolically regulated autocrine IL-10 controls glycolytic commitment by limiting NO-mediated suppression of OXPHOS. Together these data support a model where autocine IL-10 production is controlled by glycolytic flux in turn regulating glycolytic commitment by preserving OXPHOS via suppression of NO. We propose that this IL-10-driven metabolic rheostat maintains metabolic equilibrium during M1 macrophage differentiation and that perturbation of this regulatory loop, either directly by exogenous cellular sources of IL-10 or indirectly via limitations in glucose availability, skews the cellular metabolic program altering the balance between inflammatory and immunosuppressive phenotypes. Copyright © 2016. Published by Elsevier B.V.

  9. Attenuated expression of interferon-β and interferon-λ1 by human alternatively activated macrophages.

    PubMed

    El Fiky, Ashraf; Perreault, Roger; McGinnis, Gwendolyn J; Rabin, Ronald L

    2013-12-01

    Macrophages can be polarized into classically (CAM) or alternatively (AAM) activated macrophages with IFN-γ or IL-4, respectively. CAM are associated with type 1 immune responses and are implicated in autoimmunity; AAM are associated with type 2 responses and are implicated in allergic diseases. An impediment in investigating macrophage biology using primary human monocyte derived macrophages is the wide inter-donor heterogeneity and the limited quantity of cells that survive in vitro polarization. To overcome this impediment, we established a protocol to generate CAM and AAM cultures derived from the THP-1 human promonocytic cell line. In this report, we demonstrate that THP-CAM and -AAM express gene and protein markers that define their primary human monocyte derived counterparts, such as IL-1β, CXCL10, and CXCL11 for CAM, and MRC1, IL-4 and CCL22 for AAM. In addition, we demonstrate that STAT6 is selectively activated in THP-AAM which, upon LPS stimulation, have an attenuated or delayed expression of IFN-β, IFN-λ1, and IFN α/β pathway genes compared to their CAM counterparts. Taken together, these findings may help further investigate human diseases associated with the alternatively activated macrophage phenotype using this reproducible in vitro macrophage model. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated,

  11. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization.

    PubMed

    Halstead, E Scott; Umstead, Todd M; Davies, Michael L; Kawasawa, Yuka Imamura; Silveyra, Patricia; Howyrlak, Judie; Yang, Linlin; Guo, Weichao; Hu, Sanmei; Hewage, Eranda Kurundu; Chroneos, Zissis C

    2018-01-05

    Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.

  12. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    PubMed Central

    Syed, Mansoor A.

    2013-01-01

    Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39−/− mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury. PMID:24347826

  13. The effects of either resveratrol or exercise on macrophage infiltration and switching from M1 to M2 in high fat diet mice.

    PubMed

    Jeong, Jun Hyun; Lee, Young Ran; Park, Hee Geun; Lee, Wang Lok

    2015-06-01

    The aim of this study was to compare the effectiveness of either resveratrol supplementation or exercise training on macrophage infiltration and switching from M1 to M2 kupffer cells in high fat diet mice. C57BL/6 mice were separated into 5 groups: normal diet (ND; n = 6), high-fat diet (HD; n = 6), high-fat diet with resveratrol (HR; n = 6), high-fat diet with exercise (HE; n = 6) or high-fat diet with resveratrol and exercise (HRE; n = 6). Resveratrol supplementation mice were orally gavaged with resveratrol (25mg/kg of body weight) dissolved in 50% propylene glycol. Exercise mice ran on a treadmill at 12-20 m/min for 30-60 min/day, 5 times/week for 12 weeks. After 12 weeks of intervention, the liver was analyzed. F4/80 expression was evaluated by western blot while CD11c and CD163 mRNA expressions were evaluated by RT-PCR. The weights of the body and liver were significantly increased in the HD and HR group compared to the ND group (p < 0.01). However, the weights were most effectively reduced in the HE and HRE groups compared to the HD group (p < 0.05). The macrophage marker, F4/80 expression was significantly lower in the HE and HRE groups compared to the HD group (p < 0.05). mRNA expression of the M1 macrophage marker, CD11c, in the HD group was significantly increased compared to the ND group (p < 0.01). mRNA expression of the M2 macrophage specific marker, CD163, in the HE and HRE groups were significantly increased compared to the HD group (p < 0.05). The mRNA expressions of TLR4, ICAM-1 and VCAM-1, which induce pro-inflammatory cytokine production, were strongly decreased in the HR, HE, and HRE groups compared to the HD group. These results suggest that moderate exercise training inhibits macrophage infiltration and up regulation of CD163 expression. However, resveratrol supplementation is not enough to ameliorate obesity-induced macrophage infiltration and switching.

  14. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype.

    PubMed

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.

  15. Indoxyl Sulfate Promotes Macrophage IL-1β Production by Activating Aryl Hydrocarbon Receptor/NF-κ/MAPK Cascades, but the NLRP3 inflammasome Was Not Activated

    PubMed Central

    Wakamatsu, Takuya; Yamamoto, Suguru; Ito, Toru; Sato, Yoko; Matsuo, Koji; Takahashi, Yoshimitsu; Kaneko, Yoshikatsu; Goto, Shin; Kazama, Junichiro James; Gejyo, Fumitake; Narita, Ichiei

    2018-01-01

    In chronic kidney disease (CKD) patients, accumulation of uremic toxins is associated with cardiovascular risk and mortality. One of the hallmarks of kidney disease-related cardiovascular disease is intravascular macrophage inflammation, but the mechanism of the reaction with these toxins is not completely understood. Macrophages differentiated from THP-1 cells were exposed to indoxyl sulfate (IS), a representative uremic toxin, and changes in inflammatory cytokine production and intracellular signaling molecules including interleukin (IL)-1, aryl hydrocarbon receptor (AhR), nuclear factor (NF)-κ, and mitogen-activated protein kinase (MAPK) cascades as well as the NLRP3 inflammasome were quantified by real-time PCR, Western blot analysis, and enzyme-linked immunosorbent assay. IS induced macrophage pro-IL-1β mRNA expression, although mature IL-1 was only slightly increased. IS increased AhR and the AhR-related mRNA expression; this change was suppressed by administration of proteasome inhibitor. IS promoted phosphorylation of NF-κB p65 and MAPK enzymes; the reaction and IL-1 expression were inhibited by BAY11-7082, an inhibitor of NF-κB. In contrast, IS decreased NLRP3 and did not change ASC, pro-caspase 1, or caspase-1 activation. IS-inducing inflammation in macrophages results from accelerating AhR-NF-κB/MAPK cascades, but the NLRP3 inflammasome was not activated. These reactions may restrict mature IL-1β production, which may explain sustained chronic inflammation in CKD patients. PMID:29543732

  16. Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway.

    PubMed

    Lin, Dongjia; Gao, Yan; Zhao, Luodan; Chen, Yanhuo; An, Shaofeng; Peng, Zhixiang

    2018-04-15

    Enterococcus faecalis (E. faecalis) infection is considered an important etiological factor for the development of persistent apical periodontitis (PAP), but the exact mechanisms of autophagy between E. faecalis and immune cells remain unknown. In this study, we elucidated how E. faecalis lipoteichoic acid (LTA) is associated with macrophages autophagy. We found that E. faecalis LTA apparently activated macrophage autophagy with significant increase of autophagosomes and autophagy relative protein. Meanwhile, we noticed significantly decreasing expression of p-Akt and p-mTOR. However, these effect were absent in macrophages knockdown of Beclin1. In summary, these findings suggested E. faecalis LTA may increased macrophages autophagy via inhibiting PI3K/Akt/mTOR pathway and this process was Beclin1 dependent. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis.

    PubMed

    Shen, Pei; Li, Quan; Ma, Jilei; Tian, Maopeng; Hong, Fei; Zhai, Xinjie; Li, Jianrong; Huang, Hanju; Shi, Chunwei

    2017-08-23

    Intracellular bacterium, Mycobacterium tuberculosis (M. tb), infects specifically macrophages as host cells. IRAK-M, a member of IRAK family, is a negative regulator in TLR signaling and specifically expresses in monocytes and macrophages. The role of IRAK-M in intracellular growth of M. tb and macrophage polarization was explored, for deeply understanding the pathogenesis of M. tb, the significance of IRAK-M to innate immunity and pathogen-host interaction. IRAK-M expression was detected in M. tb infected macrophages and in human lung tissue of pulmonary tuberculosis with immunofluorescence staining, Western blot and immunohistochemistry. IRAK-M knock-down and over-expressing cell strains were constructed and intracellular survival of M. tb was investigated by acid-fast staining and colony forming units. Molecular markers of M1-type (pSTAT1 and iNOS) and M2-type (pSTAT6 and Arg-1) macrophages were detected using Western blot in IRAK-M knockdown U937 cells infected with M. tb H37Rv. U937 cells were stimulated with immunostimulant CpG7909 into M1 status and then infected with M. tb H37Rv. Expression of IRAK-M, IRAK-4 and iNOS was detected with immunofluorescence staining and Western blot, to evaluate the effect of IRAK-M to CpG directed M1-type polarization of macrophages during M. tb infection. Molecules related with macrophage's bactericidal ability such as Hif-1 and phosphorylated ERK1/2 were detected with immunohistochemistry and Western blot. IRAK-M increased in M. tb infected macrophage cells and also in human lung tissue of pulmonary tuberculosis. IRAK-M over-expression resulted in higher bacterial load, while IRAK-M interference resulted in lower bacterial load in M. tb infected cells. During M. tb infection, IRAK-M knockdown induced M1-type, while inhibited M2-type polarization of macrophage. M1-type polarization of U937 cells induced by CpG7909 was inhibited by M. tb infection, which was reversed by IRAK-M knockdown in U937 cells. IRAK-M affected Hif-1 and

  18. Macrophage activation by glycoprotein isolated from Dioscorea batatas

    PubMed Central

    Huong, Pham Thi Thu

    2011-01-01

    We demonstrate that glycoprotein isolated from Dioscorea batatas (GDB) activates macrophage function. Analysis of the infiltration of macrophages into peritoneal cavity showed GDB treatment significantly increased the recruitment of macrophages into the peritoneal cavity. In order to further confirm and investigate the mechanism of GDB on macrophage activation, we analyzed the effects of GDB on the cytokine expression including IL-1β, TNF-α, and IL-6 in mouse peritoneal macrophages. GDB increased the expression of IL-1β, TNF-α, and IL-6. Cytokine induction by GDB was further confirmed by RT-PCR and ELISA in mouse macrophage cell line, RAW264.7 cells. Treatment of RAW264.7 cells with GDB produced strong induction of NF-κB DNA binding and MAPK phosphorylation, markers for macrophage activation and important factors for cytokine gene expression. Collectively, this series of experiments indicates that GDB stimulates macrophage activation. PMID:24278568

  19. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile.

    PubMed

    Pinto, Alexander R; Paolicelli, Rosa; Salimova, Ekaterina; Gospocic, Janko; Slonimsky, Esfir; Bilbao-Cortes, Daniel; Godwin, James W; Rosenthal, Nadia A

    2012-01-01

    Cardiac tissue macrophages (cTMs) are a previously uncharacterised cell type that we have identified and characterise here as an abundant GFP(+) population within the adult Cx(3)cr1(GFP/+) knock-in mouse heart. They comprise the predominant myeloid cell population in the myocardium, and are found throughout myocardial interstitial spaces interacting directly with capillary endothelial cells and cardiomyocytes. Flow cytometry-based immunophenotyping shows that cTMs exhibit canonical macrophage markers. Gene expression analysis shows that cTMs (CD45(+)CD11b(+)GFP(+)) are distinct from mononuclear CD45(+)CD11b(+)GFP(+) cells sorted from the spleen and brain of adult Cx(3)cr1(GFP/+) mice. Gene expression profiling reveals that cTMs closely resemble alternatively-activated anti-inflammatory M2 macrophages, expressing a number of M2 markers, including Mrc1, CD163, and Lyve-1. While cTMs perform normal tissue macrophage homeostatic functions, they also exhibit a distinct phenotype, involving secretion of salutary factors (including IGF-1) and immune modulation. In summary, the characterisation of cTMs at the cellular and molecular level defines a potentially important role for these cells in cardiac homeostasis.

  20. Transcriptional activation of the lipoprotein lipase gene in macrophages by dexamethasone.

    PubMed

    Domin, W S; Chait, A; Deeb, S S

    1991-03-12

    The effect of dexamethasone on lipoprotein lipase (LPL) gene expression during macrophage differentiation was investigated by using the human monocytic leukemia cell line THP-1 and human monocyte-derived macrophages. Addition of dexamethasone to THP-1 cells increased steady-state levels of LPL mRNA and LPL mass accumulation in the medium during PMA-induced differentiation by 4-fold. Studies with human monocyte-derived macrophages showed a similar effect of dexamethasone on LPL expression. Peak LPL mRNA levels were achieved 24-h post-dexamethasone addition to THP-1 cells. Optimal stimulation of LPL mRNA occurred when dexamethasone was added 24 h after induction with PMA. Thereafter, there was rapid decline in responsiveness to dexamethasone. Induction of LPL mRNA in THP-1 cells was completely blocked by actinomycin D, suggesting that induction was transcription dependent. The stability of LPL mRNA was not influenced by dexamethasone. Treatment of THP-1 cells with PMA led to a 2-fold increase in specific binding of dexamethasone and a 4-fold increase in glucocorticoid receptor mRNA within 12 h. Thus, dexamethasone stimulates LPL gene expression during differentiation of human macrophages, a process that involves induction of glucocorticoid receptor synthesis and activation.

  1. Macrophage Polarization by Angiotensin II-type 1 Receptor Aggravates Renal Injury-acceleration of Atherosclerosis

    PubMed Central

    Yamamoto, Suguru; Yancey, Patricia G.; Zuo, Yiqin; Ma, Li-Jun; Kaseda, Ryohei; Fogo, Agnes B.; Ichikawa, Iekuni; Linton, MacRae F.; Fazio, Sergio; Kon, Valentina

    2011-01-01

    Background Angiotensin II (AII) is a major determinant of atherosclerosis. Although macrophages are the most abundant cells in atherosclerotic plaques and express AII type 1 receptor (AT1), the pathophysiologic role of macrophage AT1 in atherogenesis remains uncertain. We examined the contribution of macrophage AT1 to accelerated atherosclerosis in an AII-responsive setting induced by uninephrectomy (UNx). Methods and Results AT1−/− or AT1+/+ marrow from apolipoprotein E deficient (apoE−/−) mice was transplanted into recipient apoE−/− mice with subsequent UNx or sham operation: apoE−/−/AT1+/+→apoE−/− + Sham; apoE−/−/AT1+/+→apoE−/− + UNx; apoE−/−/AT1−/−→apoE−/− + Sham; apoE−/−/AT1−/−→apoE−/− + UNx. No differences in body weight, blood pressure, lipid profile, and serum creatinine were observed between the two UNx groups. ApoE−/−/AT1+/+→apoE−/− + UNx had significantly more atherosclerosis (16907 ± 21473 vs 116071 ± 8180 μm2, p<0.05). By contrast, loss of macrophage AT1 which reduced local AT1 expression, prevented any effect of UNx on atherosclerosis (77174 ± 9947 vs 75714 ± 11333 μm2, p=NS). Although UNx did not affect total macrophage content in the atheroma, lesions in apoE−/−/AT1−/−→apoE−/− + UNx had fewer classically activated macrophage phenotype (M1) and more alternatively activated phenotype (M2). Further, UNx did not affect plaque necrosis or apoptosis in apoE−/−/AT1−/−→apoE−/− whereas it significantly increased both (by 2- and 6-fold, respectively) in apoE−/−/AT1+/+→apoE−/− mice. Instead, apoE−/−/AT1−/−→apoE−/− had 5-fold-increase in macrophage-associated apoptotic bodies, indicating enhanced efferocytosis. In vitro studies confirmed blunted susceptibility to apoptosis, especially in M2 macrophages, and a more efficient phagocytic function of AT1−/− macrophages vs AT1+/+. Conclusions AT1 receptor of bone marrow

  2. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  3. NF-κB pathways are involved in M1 polarization of RAW 264.7 macrophage by polyporus polysaccharide in the tumor microenvironment

    PubMed Central

    Liu, Chun-Ping; Zhang, Xian; Tan, Qing-Long; Xu, Wen-Xing; Zhou, Chang-Yuan; Luo, Min; Li, Xiong; Zeng, Xing

    2017-01-01

    Bladder cancer is one of the most malignant tumors closely associated with macrophages. Polyporus polysaccharide (PPS) has shown excellent efficacy in treating bladder cancer with minimal side effects. However, the molecular mechanisms underlying the effects of PPS in inhibiting bladder cancer remain unclear. In this study, we used macrophages cultured alone or with T24 human bladder cancer cell culture supernatant as study models. We found that PPS enhanced the activities of IFN-γ-stimulated RAW 264.7 macrophages, as shown by the release of inducible nitric oxide synthase (INOS), secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6, phagocytosis activity, as well as expression of M1 phenotype indicators, such as CD40, CD284 and CD86. PPS acted upstream in activation cascade of nuclear factor (NF)-κB signaling pathways by interfering with IκB phosphorylation. In addition, PPS regulated NF-κB (P65) signaling by interfering with Toll-like receptor (TLR)-4, INOS and cyclooxygenase (COX)-2. Our results indicate that PPS activates macrophages through TLR4/NF-κB signaling pathways. PMID:29155869

  4. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo.

    PubMed

    Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie

    2015-12-05

    Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis. Although widely applied in clinical care, the mechanism through which TA exerts this effect remains unknown. In this animal study, we investigated the in vivo effects of TA injections on macrophage activation, osteophyte development and joint degeneration. Furthermore, in vitro macrophage differentiation experiments were conducted to further explain working mechanisms of TA effects found in vivo. Osteoarthritis was induced in rat knees using papain injections and a running protocol. Untreated and TA-treated animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes. Synovial macrophage activation was measured in vivo using folate receptor β (FRβ)-targeted single-photon emission computed tomography/computed tomography. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology. To further explain the outcomes of our in vivo study, TA on macrophages was also studied in vitro. These cultured macrophages were either M1- or M2-activated, and they were analyzed using fluorescence-activated cell sorting for CD163 and FRβ expression as well as for messenger RNA (mRNA) expression of interleukin (IL)-10. Our in vivo study showed that intra-articular injections with TA strongly enhanced FRβ(+) macrophage activation. Despite stimulated macrophage activation, osteophyte formation was fully prevented. There was no beneficial effect of TA against cartilage degradation or subchondral bone sclerosis. In vitro macrophage cultures showed that TA strongly induced monocyte differentiation towards CD163(+) and FRβ(+) macrophages. Furthermore

  5. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  6. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection.

    PubMed

    Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei

    2018-02-26

    Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.

  8. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    PubMed

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. M2 macrophages and inflammatory cells in oral lesions of chronic paracoccidioidomycosis.

    PubMed

    de Carli, Marina Lara; Miyazawa, Marta; Nonogaki, Suely; Shirata, Neuza Kasumi; Oliveira, Denise Tostes; Pereira, Alessandro Antônio Costa; Hanemann, João Adolfo Costa

    2016-02-01

    Paracoccidioidomycosis (PCM) is a systemic fungal infection caused by Paracoccidioides brasiliensis (Pb) and associated with deficient cellular immune response, which is modulated by inflammatory cells, mainly macrophages, and cytokines. Recently, the comprehension of the macrophage polarization mediated by Th1 and Th2 cytokines has contributed to elucidate the immune response that takes part in some diseases. Thus, the aim of this study was to assess the presence of Th1- and Th2-immune response and also Pb counting in oral lesions of chronic PCM. Forty-eight cases of chronic PCM oral lesions were included. All cases were classified as loose or dense granulomas. S100 protein, IL-1β, IL-6, TNF-α, CD163 and CD68 immunoexpressions, and Pb localization were evaluated. The fungi present in the tissue were quantified by anti-Pb antibody. Most patients were white men with mean age of 47 years old and showed higher incidence of multiple lesions. Loose granulomas were predominant and exhibited a great amount of M2 macrophages, which were visualized with anti-CD163 antibody. The expression for CD163 and CD68 was similar (P = 0.05), highlighting the predominance of M2 macrophages in PCM. IL-1β, IL-6, and TNF-α immunoexpression did not significantly change with CD163, CD68, and S100 protein. The number of fungi was significantly higher in cases with intense IL-1β immunoexpression (P = 0.003). M2-activated macrophages were the majority among inflammatory cells in chronic PCM, characterizing the action of a Th2-immune response. Nevertheless, Th1 cytokines were also found; mainly IL-1β, which was associated with fungi counting in oral lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of the Gc-derived macrophage-activating factor precursor (preGcMAF) on phagocytic activation of mouse peritoneal macrophages.

    PubMed

    Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi

    2011-07-01

    The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.

  11. Enhanced Macrophage M1 Polarization and Resistance to Apoptosis Enable Resistance to Plague.

    PubMed

    Pachulec, Emilia; Abdelwahed Bagga, Rym Ben; Chevallier, Lucie; O'Donnell, Hope; Guillas, Chloé; Jaubert, Jean; Montagutelli, Xavier; Carniel, Elisabeth; Demeure, Christian E

    2017-09-15

    Susceptibility to infection is in part genetically driven, and C57BL/6 mice resist various pathogens through the proinflammatory response of their M1 macrophages (MPs). However, they are susceptible to plague. It has been reported elsewhere that Mus spretus SEG mice resist plague and develop an immune response characterized by a strong recruitment of MPs. The responses of C57BL/6 and SEG MPs exposed to Yersinia pestis in vitro were examined. SEG MPs exhibit a stronger bactericidal activity with higher nitric oxide production, a more proinflammatory polarized cytokine response, and a higher resistance to Y. pestis-induced apoptosis. This response was not specific to Y. pestis and involved a reduced sensitivity to M2 polarization/signal transducer and activator of transcription 6 activation and inhibition of caspase 8. The enhanced M1 profile was inducible in C57BL/6 MPs in vitro, and when transferred to susceptible C57BL/6 mice, these MPs significantly increased survival of bubonic plague. MPs can develop an enhanced functional profile beyond the prototypic M1, characterized by an even more potent proinflammatory response coordinated with resistance to killing. This programming plays a key role in the plague-resistance phenotype and may be similarly significant in other highly lethal infections, suggesting that orienting the MP response may represent a new therapeutic approach. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Forkhead Box O1 Regulates Macrophage Polarization Following Staphylococcus aureus Infection: Experimental Murine Data and Review of the Literature.

    PubMed

    Wang, Yu-Chen; Ma, Hong-Di; Yin, Xue-Ying; Wang, Yin-Hu; Liu, Qing-Zhi; Yang, Jing-Bo; Shi, Qing-Hua; Sun, Baolin; Gershwin, M Eric; Lian, Zhe-Xiong

    2016-12-01

    The functions of macrophages that lead to effective host responses are critical for protection against Staphylococcus aureus. Deep tissue-invading S. aureus initially countered by macrophages trigger macrophage accumulation and induce inflammatory responses through surface receptors, especially toll-like receptor 2 (TLR2). Here, we found that macrophages formed sporadic aggregates in the liver during infection. Within those aggregates, macrophages co-localized with T cells and were indispensable for their infiltration. In addition, we have focused on the mechanisms underlying the polarization of macrophages in Forkhead box transcription factor O1 (FoxO1) conditional knockout Lys Cre/+ FoxO1 fl/fl mice following S. aureus infection and report herein that macrophage M1-M2 polarization via TLR2 is intrinsically regulated by FoxO1. Indeed, for effective FoxO1 activity, stimulation of TLR2 is essential. However, following S. aureus challenge, there was a decrease in macrophage FoxO1, with increased phosphorylation of FoxO1 because of TLR2-mediated activation of PI3K/Akt and c-Raf/MEK/ERK pathway. Following infection in Lys Cre/+ FoxO1 fl/fl mice, mice became more susceptible to S. aureus with reduced macrophage aggregation in the liver and attenuated Th1 and Th17 responses. FoxO1 abrogation reduced M1 pro-inflammatory responses triggered by S. aureus and enhanced M2 polarization in macrophages. In contrast, overexpression of FoxO1 in macrophages increased pro-inflammatory mediators and functional surface molecule expression. In conclusion, macrophage FoxO1 is critical to promote M1 polarization and maintain a competent T cell immune response against S. aureus infection in the liver. FoxO1 regulates macrophage M1-M2 polarization downstream of TLR2 dynamically through phosphorylation.

  13. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions

    PubMed Central

    MacCallum, Donna M.; Brown, Gordon D.

    2017-01-01

    ABSTRACT   The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468

  14. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhlel, Mohamed Amine; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expressionmore » of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.« less

  15. Activation of macrophage mediated host defense against Salmonella typhimurium by Morus alba L.

    PubMed Central

    Chang, BoYoon; Koo, BongSeong; Lee, HyeonCheol; Oh, Joa Sub; Kim, SungYeon

    2018-01-01

    Background The innate immune system plays a crucial role in the initiation and subsequent direction of adaptive immune responses, as well as in the removal of pathogens that have been targeted by an adaptive immune response. Objective Morus alba L. was reported to have immunostimulatory properties that might protect against infectious diseases. However, this possibility has not yet been explored. The present study investigated the protective and immune-enhancing ability of M. alba L. against infectious disease and the mechanisms involved. Design To investigate the immune-enhancing effects of M. alba L., we used a bacterial infection model. Results and discussions The lifespan of mice infected with a lethal dose of Salmonella typhimurium (1 × 107 colony forming units – CFU) was significantly extended when they were administered M. alba L. Furthermore, M. alba L. activated macrophages, monocytes, and neutrophils and induced Th1 cytokines (IL-12, IFN-γ, TNF-α) in mice infected with a sublethal dose (1 × 105 CFU) of S. typhimurium. M. alba L. significantly stimulated the uptake of bacteria into peritoneal macrophages as indicated by increased phagocytosis. Peritoneal macrophages derived from C3H/HeJ mice significantly inhibited M. alba L. induced NO production and TNF-α secretion compared with peritoneal macrophages derived from C3H/HeN mice. Conclusions These results suggest that the innate immune activity of M. alba L. against bacterial infection in mice occurs through activation of the TLR4 signaling pathway. PMID:29545736

  16. Activation of macrophage mediated host defense against Salmonella typhimurium by Morus alba L.

    PubMed

    Chang, BoYoon; Koo, BongSeong; Lee, HyeonCheol; Oh, Joa Sub; Kim, SungYeon

    2018-01-01

    The innate immune system plays a crucial role in the initiation and subsequent direction of adaptive immune responses, as well as in the removal of pathogens that have been targeted by an adaptive immune response. Morus alba L. was reported to have immunostimulatory properties that might protect against infectious diseases. However, this possibility has not yet been explored. The present study investigated the protective and immune-enhancing ability of M. alba L. against infectious disease and the mechanisms involved. To investigate the immune-enhancing effects of M. alba L., we used a bacterial infection model. The lifespan of mice infected with a lethal dose of Salmonella typhimurium (1 × 10 7 colony forming units - CFU) was significantly extended when they were administered M. alba L. Furthermore, M. alba L. activated macrophages, monocytes, and neutrophils and induced Th1 cytokines (IL-12, IFN-γ, TNF-α) in mice infected with a sublethal dose (1 × 10 5 CFU) of S. typhimurium . M. alba L. significantly stimulated the uptake of bacteria into peritoneal macrophages as indicated by increased phagocytosis. Peritoneal macrophages derived from C3H/HeJ mice significantly inhibited M. alba L. induced NO production and TNF-α secretion compared with peritoneal macrophages derived from C3H/HeN mice. These results suggest that the innate immune activity of M. alba L. against bacterial infection in mice occurs through activation of the TLR4 signaling pathway.

  17. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  18. circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination

    PubMed Central

    Zhou, Zewei; Jiang, Rong; Yang, Xiyue; Guo, Huifang; Fang, Shencun; Zhang, Yingming; Cheng, Yusi; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-01

    Rationale: Phagocytosis of silicon dioxide (SiO2) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstream molecular mechanisms and functional effects on cell apoptosis, proliferation and migration were investigated to elucidate the role of circRNAs in SiO2-induced inflammation in pulmonary macrophages. Methods: Primary cultures of alveolar macrophages from healthy donors and patients as well as the RAW264.7 macrophage cell line were used to explore the functions of circHECTD1 (HECT domain E3 ubiquitin protein ligase 1) in macrophage activation. Results: The results of the experiments indicated that 1) SiO2 concomitantly decreased circHECTD1 levels and increased HECTD1 protein expression; 2) circHECTD1 and HECTD1 were involved in SiO2-induced macrophage activation via ubiquitination; and 3) SiO2-activated macrophages promoted fibroblast proliferation and migration via the circHECTD1/HECTD1 pathway. Tissue samples from silicosis patients confirmed the upregulation of HECTD1. Conclusions: Our study elucidated a link between SiO2-induced macrophage activation and the circHECTD1/HECTD1 pathway, thereby providing new insight into the potential use of HECTD1 in the development of novel therapeutic strategies for treating silicosis. PMID:29290828

  19. circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination.

    PubMed

    Zhou, Zewei; Jiang, Rong; Yang, Xiyue; Guo, Huifang; Fang, Shencun; Zhang, Yingming; Cheng, Yusi; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-01

    Rationale: Phagocytosis of silicon dioxide (SiO 2 ) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstream molecular mechanisms and functional effects on cell apoptosis, proliferation and migration were investigated to elucidate the role of circRNAs in SiO 2 -induced inflammation in pulmonary macrophages. Methods: Primary cultures of alveolar macrophages from healthy donors and patients as well as the RAW264.7 macrophage cell line were used to explore the functions of circHECTD1 (HECT domain E3 ubiquitin protein ligase 1) in macrophage activation. Results: The results of the experiments indicated that 1) SiO 2 concomitantly decreased circHECTD1 levels and increased HECTD1 protein expression; 2) circHECTD1 and HECTD1 were involved in SiO 2 -induced macrophage activation via ubiquitination; and 3) SiO 2 -activated macrophages promoted fibroblast proliferation and migration via the circHECTD1/HECTD1 pathway. Tissue samples from silicosis patients confirmed the upregulation of HECTD1. Conclusions: Our study elucidated a link between SiO 2 -induced macrophage activation and the circHECTD1/HECTD1 pathway, thereby providing new insight into the potential use of HECTD1 in the development of novel therapeutic strategies for treating silicosis.

  20. Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and potentiates virus replication.

    PubMed

    Schwartzkopff, Franziska; Grimm, Tobias A; Lankford, Carla S R; Fields, Karen; Wang, Jiun; Brandt, Ernst; Clouse, Kathleen A

    2009-12-01

    Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.

  1. DUSP3 genetic deletion confers M2-like−macrophage-dependent tolerance to septic shock

    PubMed Central

    Singh, Pratibha; Dejager, Lien; Amand, Mathieu; Theatre, Emilie; Vandereyken, Maud; Zurashvilli, Tinatin; Singh, Maneesh; Mack, Matthias; Timmermans, Steven; Musumeci, Lucia; Dejardin, Emmanuel; Mustelin, Tomas; Van Ginderachter, Jo A.; Moutschen, Michel; Oury, Cécile; Libert, Claude; Rahmouni, Souad

    2015-01-01

    DUSP3 is a small dual-specificity protein phosphatase with an unknown physiological function. We report that DUSP3 is strongly expressed in human and mouse monocytes and macrophages and that its deficiency in mice promotes tolerance to lipopolysaccharide (LPS)-induced endotoxin shock and to polymicrobial septic shock following cecal ligation and puncture. By using adoptive transfer experiments, we demonstrate that resistance to endotoxin is macrophage-dependent and transferable and that this protection is associated with a striking increase of M2-like macrophages in DUSP3−/− mice in both the LPS and cecal ligation and puncture models. We show that the altered response of DUSP3−/− mice to sepsis is reflected in decreased TNF production and impaired ERK1/2 activation. Our results demonstrate that DUSP3 plays a key and non-redundant role as a regulator of innate immune responses by mechanisms involving the control of ERK1/2 activation, TNF secretion and macrophage polarization. PMID:25876765

  2. Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria.

    PubMed

    Kiemer, Alexandra K; Senaratne, Ryan H; Hoppstädter, Jessica; Diesel, Britta; Riley, Lee W; Tabeta, Koichi; Bauer, Stefan; Beutler, Bruce; Zuraw, Bruce L

    2009-01-01

    Alveolar macrophages are the first line of host defence against mycobacteria, but an insufficient host response allows survival of bacteria within macrophages. We aimed to investigate the role of Toll-like receptor 9 (TLR9) activation in macrophage defence against mycobacteria. Human in vitro differentiated macrophages as well as human and mouse alveolar macrophages showed TLR9 mRNA and protein expression. The cells were markedly activated by DNA isolated from attenuated mycobacterial strains (H37Ra and Mycobacterium bovis BCG) as assessed by measuring cytokine expression by real-time PCR, whereas synthetic phosphorothioate-modified oligonucleotides had a much lower potency to activate human macrophages. Intracellular replication of H37Ra was higher in macrophages isolated from TLR9-deficient mice than in macrophages from wild-type mice, whereas H37Rv showed equal survival in cells from wild-type or mutant mice. Increased bacterial survival in mouse macrophages was accompanied by altered cytokine production as determined by Luminex bead assays. In vivo infection experiments also showed differential cytokine production in TLR9-deficient mice compared to wild-type animals. Both human monocyte-derived macrophages as well as human alveolar macrophages showed reduced activation upon treatment with DNA isolated from bacteria from virulent (M. bovis and H37Rv) compared to attenuated mycobacteria. We suggest attenuated TLR9 activation contributes to the insufficient host response against virulent mycobacteria. Copyright 2008 S. Karger AG, Basel.

  3. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    PubMed

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  4. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    PubMed

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  5. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive

  6. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    PubMed

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  7. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    PubMed

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. The interaction of gamma delta T cells with activated macrophages is a property of the V gamma 1 subset.

    PubMed

    Dalton, Jane E; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2003-12-15

    Immunoregulation is an emerging paradigm of gammadelta T cell function. The mechanisms by which gammadelta T cells mediate this function, however, are not clear. Studies have identified a direct role for gammadelta T cells in resolving the host immune response to infection, by eliminating populations of activated macrophages. The aim of this study was to identify macrophage-reactive gammadelta T cells and establish the requirements/outcomes of macrophage-gammadelta T cell interactions during the immune response to the intracellular bacterium, Listeria monocytogenes (Lm). Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta(-/-) mice were incubated with splenocytes from naive and Lm-infected alphabeta/gammadelta T cell-deficient and wild-type mice, the ability to bind macrophages was shown to be restricted to gammadelta T cells and the GV5S1 (Vgamma1) subset of gammadelta T cells. Macrophage adherence resulted in a 4- to 10-fold enrichment of Vgamma1(+) T cells. Enrichment of Vgamma1 T cells was dependent upon the activation status of macrophages, but independent of the activation status of gammadelta T cells. Vgamma1 T cells were cytotoxic for activated macrophages with both the binding to and killing of macrophages being TCR dependent because anti-TCRgammadelta Abs inhibited both Vgamma1 binding and killing activities. These studies establish the identity of macrophage cytotoxic gammadelta T cells, the conditions under which this interaction occurs, and the outcome of this interaction. These findings are concordant with the involvement of Vgamma1 T cells in macrophage homeostasis during the resolution of pathogen-mediated immune responses.

  9. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits.

    PubMed

    Kim, Seon Beom; Chang, Bo Yoon; Jo, Yang Hee; Lee, Sang Hoon; Han, Sang-Bae; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2013-01-09

    The fruits of Morus alba have been traditionally used as a tonic to enhance immune responses. The macrophage activating constituents of Morus alba fruits were purified using various column chromatography techniques. The structures of isolated compounds were determined on the basis of spectroscopic data interpretation such as 1D and 2D NMR analysis. The macrophage activating activities of isolated compounds were evaluated by measuring the production of nitric oxide, TNF-α and IL-12 in RAW 264.7 cells. The phagocytic activity was also evaluated. Five pyrrole alkaloids, 5-(hydroxymethyl)-1H-pyrrole-2-carboxaldehyde (1), 2-formyl-1H-pyrrole-1-butanoic acid (2), 2-formyl-5-(hydroxymethyl)-1H-pyrrole-1-butanoic acid (3), 2-formyl-5-(methoxymethyl)-1H-pyrrole-1-butanoic acid (4) and Morrole A (5) were isolated from the fruits of Morus alba. Morrole A (5) is first reported in nature and other pyrrole alkaloids (1-4) are first reported from Morus species. Among the isolated compounds, compounds 3 and 4 significantly activated macrophage activity by the enhancement of nitric oxide, TNF-α and IL-12 production, and the stimulation of phagocytic activity in RAW 264.7 cells. Pyrrole alkaloids, including a new compound, were isolated from Morus alba fruits. These compounds activated macrophage activity in RAW 264.7 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. The response of macrophages to titanium particles is determined by macrophage polarization.

    PubMed

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Activated macrophage-like THP-1 cells modulate anulus fibrosus cell production of inflammatory mediators in response to cytokines.

    PubMed

    Kim, Joo Han; Studer, Rebecca K; Sowa, Gwendolyn A; Vo, Nam Viet; Kang, James D

    2008-10-01

    Anulus fibrosus (AF) cells obtained from patients undergoing surgery were cocultured with macrophage-like cells and production of inflammatory mediators was analyzed by quantitative assay. To investigate the role of macrophages in AF cell production of inflammatory mediators by cytokines stimulation. Discogenic pain caused by anular disruption is an important cause of low back pain and recent studies show the presence of macrophages in symptomatic discs but not in normal and aging discs. We hypothesize that macrophages play a major role in development of symptomatic disc. Human AF cells were cocultured with phorbol myristate acetate stimulated macrophage-like THP-1 cells. The conditioned medium from cells cultured alone or in coculture was assayed for cytokines by Enzyme-linked immunosorbent assay and nitric oxide (NO) by the Greiss method. Using the same outcome measures, comparisons of cell response to cytokines were made among macrophage-like cells, naïve AF cells, and macrophage exposed AF cells. RESULTS.: Tumor necrosis factor (TNF)-alpha, interleukin (IL)-8, IL-6, and NO (TNF-alpha: 1.45 +/- 0.29 ng/mL, IL-8: 97.02 +/- 7.94 ng/mL, IL-6: 33.40 +/- 3.55 ng/mL, NO: 8.42 +/- 0.78 micromol/L) were secreted in much greater amounts by cells maintained in coculture compared to macrophages (TNF-alpha: 0.78 +/- 0.12 ng/mL, IL-8: 58.04 +/- 4.44 ng/mL, IL-6: 0.14 +/- 0.03 ng/mL, NO: 0.30 +/- 0.08 micromol/L) or AF cells cultured alone. In addition, IL-6 secretion from AF cells in response to TNF-alpha was up-regulated by coculture, however, IL-6 secretion in response to IL-1 beta was downregulated in a dose-dependent manner. Coculture with macrophages also up-regulated AF cell secretion of IL-8 dose-dependently and downregulated NO to TNF-alpha or IL-1beta stimulation. We conclude that exposure to macrophages, as can be expected after anular injury, can result in enhanced response to local inflammation. Although changes were observed in all inflammatory mediators after

  12. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils

    PubMed Central

    Bae, Hong-Beom; Zmijewski, Jaroslaw W.; Deshane, Jessy S.; Tadie, Jean-Marc; Chaplin, David D.; Takashima, Seiji; Abraham, Edward

    2011-01-01

    Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46±7.8 or 85±26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21±1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.—Bae, H. -B., Zmijewski, J. W., Deshane, J. S., Tadie, J. -M., Chaplin, D. D., Takashima, S., Abraham, E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. PMID:21885655

  13. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    PubMed

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P < 0.05]. Human recombinant M-CSF promoted M2 polarization of macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P <0.05). M-CSF levels were associated with poorer overall survival and disease-free survival in NSCLC patients ( P <0.05). Conclusions: Tumor-derived M-CSF can induce CD14(+) CD163(+) M2 polarization of macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  14. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    PubMed

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Protein arginine methyltransferase 1 modulates innate immune responses through regulation of peroxisome proliferator-activated receptor γ-dependent macrophage differentiation.

    PubMed

    Tikhanovich, Irina; Zhao, Jie; Olson, Jody; Adams, Abby; Taylor, Ryan; Bridges, Brian; Marshall, Laurie; Roberts, Benjamin; Weinman, Steven A

    2017-04-28

    Arginine methylation is a common posttranslational modification that has been shown to regulate both gene expression and extranuclear signaling events. We recently reported defects in protein arginine methyltransferase 1 (PRMT1) activity and arginine methylation in the livers of cirrhosis patients with a history of recurrent infections. To examine the role of PRMT1 in innate immune responses in vivo , we created a cell type-specific knock-out mouse model. We showed that myeloid-specific PRMT1 knock-out mice demonstrate higher proinflammatory cytokine production and a lower survival rate after cecal ligation and puncture. We found that this defect is because of defective peroxisome proliferator-activated receptor γ (PPARγ)-dependent M2 macrophage differentiation. PPARγ is one of the key transcription factors regulating macrophage polarization toward a more anti-inflammatory and pro-resolving phenotype. We found that PRMT1 knock-out macrophages failed to up-regulate PPARγ expression in response to IL4 treatment resulting in 4-fold lower PPARγ expression in knock-out cells than in wild-type cells. Detailed study of the mechanism revealed that PRMT1 regulates PPARγ gene expression through histone H4R3me2a methylation at the PPARγ promoter. Supplementing with PPARγ agonists rosiglitazone and GW1929 was sufficient to restore M2 differentiation in vivo and in vitro and abrogated the difference in survival between wild-type and PRMT1 knock-out mice. Taken together these data suggest that PRMT1-dependent regulation of macrophage PPARγ expression contributes to the infection susceptibility in PRMT1 knock-out mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Classical and alternative macrophages have impaired function during acute and chronic HIV-1 infection.

    PubMed

    Galvão-Lima, Leonardo J; Espíndola, Milena S; Soares, Luana S; Zambuzi, Fabiana A; Cacemiro, Maira; Fontanari, Caroline; Bollela, Valdes R; Frantz, Fabiani G

    Three decades after HIV recognition and its association with AIDS development, many advances have emerged - especially related to prevention and treatment. Undoubtedly, the development of Highly Active Antiretroviral Therapy (HAART) dramatically changed the future of the syndrome that we know today. In the present study, we evaluate the impact of Highly Active Antiretroviral Therapy on macrophage function and its relevance to HIV pathogenesis. PBMCs were isolated from blood samples and monocytes (CD14+ cells) were purified. Monocyte-Derived Macrophages (MDMs) were activated on classical (M GM-CSF+IFN-γ ) or alternative (M IL-4+IL13 ) patterns using human recombinant cytokines for six days. After this period, Monocyte-Derived Macrophages were stimulated with TLR2/Dectin-1 or TLR4 agonists and we evaluated the influence of HIV-1 infection and Highly Active Antiretroviral Therapy on the release of cytokines/chemokines by macrophages. The data were obtained using Monocyte-Derived Macrophages derived from HIV naïve or from patients on regular Highly Active Antiretroviral Therapy. Classically Monocyte-Derived Macrophages obtained from HIV-1 infected patients on Highly Active Antiretroviral Therapy released higher levels of IL-6 and IL-12 even without PAMPs stimuli when compared to control group. On the other hand, alternative Monocyte-Derived Macrophages derived from HIV-1 infected patients on Highly Active Antiretroviral Therapy released lower levels of IL-6, IL-10, TNF-α, IP-10 and RANTES after LPS stimuli when compared to control group. Furthermore, healthy individuals have a complex network of cytokines/chemokines released by Monocyte-Derived Macrophages after PAMP stimuli, which was deeply affected in MDMs obtained from naïve HIV-1 infected patients and only partially restored in MDMs derived from HIV-1 infected patients even on regular Highly Active Antiretroviral Therapy. Our therapy protocols were not effective in restoring the functional alterations induced

  17. M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1.

    PubMed

    Rajaram, Murugesan V S; Arnett, Eusondia; Azad, Abul K; Guirado, Evelyn; Ni, Bin; Gerberick, Abigail D; He, Li-Zhen; Keler, Tibor; Thomas, Lawrence J; Lafuse, William P; Schlesinger, Larry S

    2017-10-03

    Despite its prominent role as a C-type lectin (CTL) pattern recognition receptor, mannose receptor (MR, CD206)-specific signaling molecules and pathways are unknown. The MR is highly expressed on human macrophages, regulating endocytosis, phagocytosis, and immune responses and mediating Mycobacterium tuberculosis (M.tb) phagocytosis by human macrophages, thereby limiting phagosome-lysosome (P-L) fusion. We identified human MR-associated proteins using phosphorylated and non-phosphorylated MR cytoplasmic tail peptides. We found that MR binds FcRγ-chain, which is required for MR plasma membrane localization and M.tb cell association. Additionally, we discovered that MR-mediated M.tb association triggers immediate MR tyrosine residue phosphorylation and Grb2 recruitment, activating the Rac/Pak/Cdc-42 signaling cascade important for M.tb uptake. MR activation subsequently recruits SHP-1 to the M.tb-containing phagosome, where its activity limits PI(3)P generation at the phagosome and M.tb P-L fusion and promotes M.tb growth. In sum, we identify human MR signaling pathways that temporally regulate phagocytosis and P-L fusion during M.tb infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. [DNA hydroxymethylase 10-11 translocation 2 (TET2) inhibits mouse macrophage activation and polarization].

    PubMed

    Li, Bingyi; Huo, Yi; Lin, Zhifeng; Wang, Tao

    2017-09-01

    Objective To study the role of DNA hydroxymethylase 10-11 translocation 2 (TET2) in macrophage activation and polarization. Methods RAW264.7 macrophages were cultured in vitro and stimulated with 100 ng/mL LPS for 0, 1, 2, 4, 6 hours. Real-time quantitative PCR was used to detect TET2 mRNA expression. TET2 expression was knocked down with siRNA and the knock-down efficiency was evaluated by real-time quantitative PCR and Western blotting. Following siRNA transfection for 48 hours, RAW264.7 cells were stimulated by LPS for 4 hours, and then real-time quantitative PCR and ELISA were performed to detect the expressions of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and IL-12. The M1 polarizing markers TNF-α, inducible nitric oxide synthase (iNOS) and IL-12, and M2 polarizing markers mannose receptor (MR), arginase 1 (Arg-1) and chitinase 3-like molecule 1 (Ym1) were tested after M1 or M2 induction by LPS/IFN-γ or IL-4. Results TET2 expression increased after LPS treatment in RAW264.7 cells and reached the peak at 2 hours later. The siRNA effectively reduced the expression of TET2. The expressions of IL-6, TNF-α and IL-12 mRNAs increased after TET2 knock-down and LPS stimulation. The expressions of M1 polarization markers and M2 markers were up-regulated by the corresponding stimulations after TET2 knock-down. Conclusion TET2 has the effect of inhibiting LPS-induced macrophage activation and plays an inhibitory role in macrophage M1 and M2 polarization.

  19. Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy

    PubMed Central

    Zhu, Yanji; Zhang, Ling; Lu, Qing; Gao, Yushuo; Cai, Yujuan; Sui, Ailing; Su, Ting; Shen, Xi; Xie, Bing

    2017-01-01

    The aim of the present study was to characterize the phenotypic shift, quantity and role changes in different subgroups of retinal macrophages in a mouse model of oxygen-induced retinopathy (OIR). The mRNA expression levels of macrophage M1 and M2 subgroup marker genes and polarization-associated genes were analyzed by RT-qPCR. The number of M1 and M2 macrophages in our mouse model of OIR was analyzed by flow cytometry at different time points during the progression of OIR. Immunofluorescence whole mount staining of the retinas of mice with OIR was performed at different time points to examine the influx of macrophages, as well as the morphological characteristics and roles of M1 and M2 macrophages. An increased number of macrophages was recruited during the progression of angiogenesis in the retinas of mice with OIR due to the pro-inflammatory microenvironment containing high levels of cell adhesion and leukocyte transendothelial migration molecules. RT-qPCR and flow cytometric analysis at different time points revealed a decline in the number of M1 cells from a significantly high level at post-natal day (P)13 to a relatively normal level at P21, as well as an increase in the number of M2 cells from P13 to P21 in the mice with OIR, implicating a shift of macrophage polarization towards the M2 subtype. Immunofluorescence staining suggested that the M1 cells interacted with endothelial tip cells at the vascular front, while M2 cells embraced the emerging vessels and bridged the neighboring vessel sprouts. Thus, our data indicate that macrophages play an active role in OIR by contributing to the different steps of neovascularization. Our findings indicate that tissue macrophages may be considered as a potential target for the anti-angiogenic therapy of ocular neovascularization disease. PMID:28627621

  20. Activation of Macrophages in vitro by Phospholipids from Brain of Katsuwonus pelamis (Skipjack Tuna).

    PubMed

    Lu, Hang; Zhang, Li; Zhao, Hui; Li, Jingjing; You, Hailin; Jiang, Lu; Hu, Jianen

    2018-03-01

    The biological activities of phospholipids (PLs) have attracted people's attention, especially marine phospholipids with omega-3 polyunsaturated fatty acids DHA and EPA. In this study, we investigated the immunity activation of macrophages in vitro by phospholipids from skipjack brain. The phospholipids were extracted with hexane and ethanol ultrasonication instead of the traditional method of methanol and chloroform. The content of phospholipids from Skipjack brain was 19.59 g/kg by the method (the ratio of hexane and ethanol 2:1, 40 min, 35°C, 1:9 of the ratio of material to solvent, ultrasonic power 300W, ultrasonic extraction 2 times). The RAW264.7 macrophages were stimulated by the phospholipids from the Skipjack, by which the volume, viability and phagocytosis of macrophages were increased. The concentration of NO and the activity of SOD of the cells were also enhanced. The gene expressions of IL-1β, IL-6, iNOS and TNF-α mRNA assayed by RT-PCR were up-regulated. Phospholipids from brain of Skipjack Tuna could activate macrophages immunity which displayed to induce pro-inflammatroy cytokines mRNA expression.

  1. CP and CP-PGN protect mice against MRSA infection by inducing M1 macrophages.

    PubMed

    Zhang, Yang; Li, Xiang-Xiang; Ma, Yuan; Xu, Jie; Zhao, Li-Na; Qian, Xue-Feng; Zhang, Xian-Feng; Shi, Jin-Fang; Han, Qing-Zhen

    2017-12-04

    Corynebacterium pyruviciproducens (C. pyruviciproducens, CP), as a newly discovered immunomodulator, has been confirmed to have a stronger immunoregulation than Propionibacterium acnes (P. acnes) of the traditional immune adjuvant, by previous experiments with model antigen ovalbumin and sheep red blood cells. Here, it was designed to assess its ability to resist methicillin-resistant Staphylococcus aureus (MRSA), since MRSA as a vital gram positive pathogen is characterized by high morbidity and mortality. In this report, it was indicated that C. pyruviciproducens and its peptidoglycan (CP-PGN) could help to be against bloodstream infection of MRSA with raised survival rate, decreased bacteria load and alleviated systemic inflammation, and these effects of CP-PGN were more pronounced. However, the whole CP was inclined to prevent localized abdominal infection of MRSA from progressing to a systemic infection. And they showed the potential as a therapeutic drug alone or combined with vancomycin. The diversity of capacity of activating macrophages induced by CP and CP-PGN may result in distinct resistance to MRSA in different infection models. Furthermore, both CP and CP-PGN induced M1 macrophages. In conclusion, CP and its PGN could act as promising immune agents to treat and prevent MRSA infection.

  2. Targeting RAW 264.7 macrophages (M1 type) with Withaferin-A decorated mannosylated liposomes induces repolarization via downregulation of NF-κB and controlled elevation of STAT-3.

    PubMed

    Neog, Manoj Kumar; Sultana, Farhath; Rasool, Mahaboobkhan

    2018-05-25

    In the present study, we intend to gain an insight into the mechanism of Withaferin-A (WA), a steroidal lactone with reference to repolarization of RAW 264.7 macrophages (M1 to M2 type). We found that successful internalization of WA via mannosylated liposomal delivery system (ML-WA) reduced the RAW 264.7 macrophage (M1) mediated pro-inflammatory cytokines (IL-1β, IL-6, IL-23, and TNF-α) through the attenuation of transcription factor NF-κB-p65 expression. Whereas, ML-WA treatment induced a controlled upregulation of p-STAT3, and ablated the key oxidative stress markers (NO, iNOS, and ROS) in M1 → M2 RAW 264.7 macrophage repolarization, which suggested the recalibration of M1 macrophage metabolic function. Further, the elevated expression of M2 macrophage associated CD163 over the M1 macrophage related CD86 concluded that ML-WA induces an anti-inflammatory response by repolarizing the M1 → M2 RAW 264.7 macrophage. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis.

    PubMed

    Shrivastava, Richa; Asif, Mohammad; Singh, Varsha; Dubey, Parul; Ahmad Malik, Showkat; Lone, Mehraj-U-Din; Tewari, Brij Nath; Baghel, Khemraj Singh; Pal, Subhashis; Nagar, Geet Kumar; Chattopadhyay, Naibedya; Bhadauria, Smrati

    2018-04-03

    Oncostatin M (OSM), an inflammatory cytokine belonging to the interleukin-6 (IL-6) superfamily, plays a vital role in multitude of physiological and pathological processes. Its role in breast tumor progression and metastasis to distant organs is well documented. Recent reports implicate OSM in macrophage M2 polarization, a key pro-tumoral phenomenon. M2 polarization of macrophages is believed to promote tumor progression by potentiating metastasis and angiogenesis. In the current study, we delineated the mechanism underlying OSM induced macrophage M2 polarization. The findings revealed that OSM skews macrophages towards an M2 polarized phenotype via mTOR signaling complex 2 (mTORC2). mTORC2 relays signals through two effector kinases i.e. PKC-α and Akt. Our results indicated that mTORC2 mediated M2 polarization of macrophages is not dependent on PKC-α and is primarily affected via Akt, particularly Akt1. In vivo studies conducted on 4T1/BALB/c mouse orthotropic model of breast cancer further corroborated these observations wherein i.v. reintroduction of mTORC2 abrogated monocytes into orthotropic mouse model resulted in diminished acquisition of M2 specific attributes by tumor associated macrophages. Metastasis to distant organs like lung, liver and bone was reduced as evident by decrease in formation of focal metastatic lesions in mTORC2 abrogated monocytes mice. Our study pinpoints key role of mTORC2-Akt1 axis in OSM induced macrophage polarization and suggests for possible usage of Oncostatin-M blockade and/or selective mTORC2 inhibition as a potential anti-cancer strategy particularly with reference to metastasis of breast cancer to distant organs such as lung, liver and bone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  5. Transcription factor specificity protein 1 modulates TGFβ1/Smad signaling to negatively regulate SIGIRR expression by human M1 macrophages stimulated with substance P.

    PubMed

    Yamaguchi, Rui; Sakamoto, Arisa; Yamaguchi, Reona; Haraguchi, Misa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2018-08-01

    The stimuli inducing expression of single immunoglobulin IL-1-related receptor (SIGIRR) and the relevant regulatory mechanisms are not well defined. Transforming growth factor β1 (TGFβ1) delays internalization of neurokinin-1 receptor (NK1R) and subsequently enhances cellular signaling. This study investigated the effect of TGFβ1 on SIGIRR protein production by human M1 macrophages in response to stimulation with substance P (SP). SP caused upregulation of SIGIRR expression in a concentration-dependent manner, whereas aprepitant (an NK1R inhibitor) blunted this response. Silencing p38γMAPK or TAK-1 partially attenuated the response to SP stimulation, while TGFβ1/2/3 siRNA dramatically diminished it. SP induced much greater SIGIRR protein production than either lipopolysaccharide (a TLR4 agonist) or resiquimod (a TLR7/8 agonist). Unexpectedly, silencing of transcription factor specificity protein 1 (Sp1) led to significant upregulation of SIGIRR expression after SP stimulation, while KLF2 siRNA only partially enhanced it and Fli-1 siRNA reduced it. SP also upregulated TGFβ1 expression, along with a corresponding increase of SIGIRR protein, whereas silencing TGFβ1/2/3 blunted these responses. Sp1 siRNA or mithramycin (a gene-selective Sp1 inhibitor) significantly enhanced the expression of TGFβ1 and SIGIRR by macrophages after SP stimulation. Importantly, this effect of Sp1 siRNA on TGFβ1 and SIGIRR was blunted by siRNA for Smad2, Smad3, or Smad4, but not by TAK-1 siRNA. Next, we investigated the influence of transcription factor cross-talk on SIGIRR expression in response to SP. Co-transfection of macrophages with Sp1 siRNA and C/EBPβ or TIF1β siRNA attenuated the upregulation of SIGIRR by SP, while a combination of Sp1 siRNA and Fli-1 siRNA dramatically diminished it. In conclusion, TGFβ1 may be an intermediary between SP/NK1R activation and SIGIRR expression in Sp1 siRNA-transfected macrophages. In addition, Sp1 modulates TGFβ1/Smad signaling and

  6. Suppressive effects of ketamine on macrophage functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Yi; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Chen, T.-L.

    2005-04-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 {mu}M ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 {mu}M, ketamine caused a release of lactate dehydrogenasemore » and cell death. Ketamine, at 10 and 100 {mu}M, did not affect the chemotactic activity of macrophages. Administration of 1000 {mu}M ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-{alpha}, IL-1{beta}, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 {mu}M) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity.« less

  7. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype.

    PubMed

    Christophi, George P; Panos, Michael; Hudson, Chad A; Christophi, Rebecca L; Gruber, Ross C; Mersich, Akos T; Blystone, Scott D; Jubelt, Burk; Massa, Paul T

    2009-07-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that

  8. Molecular Diversity of Macrophages in Allergic Reaction: Comparison between the Allergenic Modes; Th1- and -Th2-Derived Immune Conditions.

    PubMed

    Bagheri, Mozhdeh; Dong, Yupeng; Ono, Masao

    2015-06-01

    Activated macrophages have been classified into classical (M1) and alternative (M2) macrophages. We aimed to establish a method to yield enough number of macrophages to analyze their molecular, biological and immunological functions. We used drugs; adjuvant albumin from chicken egg whites--Imject Alum (OVA-Alum) and OVA Complete Freund Adjuvant (OVA-CFA), to induce macrophages to M2 and M1 respectively. We analyzed the phenotype of purified macrophages induced under these immune conditions, using flow cytometry (FACS) to detect cell-surface molecules and the enzyme-linked immunosorbent assay (ELISA) was used to detect cytokines. The cDNA microarray was employed to measure changes in expression level of cell surface protein between M1 and M2 macrophages. Phenotype analysis of purified macrophages, induced under these immune conditions, showed macrophages induced by OVA-Alum was almost M2 while the proportion of M1 macrophages induced by OVA-CFA was significantly higher. The results also showed higher expression level of macrophage galactose N- acetyl-galactosamine specific lectin-2 protein (MGL1/2-PE), a known M2 macrophage marker, on the surface of Alum-induced macrophages. On the basis of these preliminary data, ELISA results revealed that after macrophage stimulation with lipopolysaccharides (LPS), the level of interleukin (IL)-10 produced by Alum- induced macrophages was higher than the level of IL-10 produced by CFA-induced macrophages. In contrast, the level of tumor necrosis factor-alpha (TNF-α) produced by CFA-induced macrophages was higher than Alum-induced macrophages. The cDNA microarray confirmed previous results and suggest immunoglobulin-like type 2 receptor alpha (Pilra) as a new marker for M1, macrophage galactose N-acetylgalactosamine-specific lectin 2 (Mgl2) as M2 macrophages marker.

  9. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Neointimal Hyperplasia and Suppresses Macrophage Inflammation Through SGK1-AP1/NF-κB Pathways.

    PubMed

    Sun, Jian-Yong; Li, Chao; Shen, Zhu-Xia; Zhang, Wu-Chang; Ai, Tang-Jun; Du, Lin-Juan; Zhang, Yu-Yao; Yao, Gao-Feng; Liu, Yan; Sun, Shuyang; Naray-Fejes-Toth, Aniko; Fejes-Toth, Geza; Peng, Yong; Chen, Mao; Liu, Xiaojing; Tao, Jun; Zhou, Bin; Yu, Ying; Guo, Feifan; Du, Jie; Duan, Sheng-Zhong

    2016-05-01

    Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-β and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways.

  10. Macrophage biospecific extraction and HPLC-ESI-MSn analysis for screening immunological active components in Smilacis Glabrae Rhizoma.

    PubMed

    Zheng, Zhao-Guang; Duan, Ting-Ting; He, Bao; Tang, Dan; Jia, Xiao-Bin; Wang, Ru-Shang; Zhu, Jia-Xiao; Xu, You-Hua; Zhu, Quan; Feng, Liang

    2013-04-15

    A cell-permeable membrane, as typified by Transwell insert Permeable Supports, permit accurate repeatable invasion assays, has been developed as a tool for screening immunological active components in Smilacis Glabrae Rhizoma (SGR). In this research, components in the water extract of SGR (ESGR) might conjugate with the receptors or other targets on macrophages which invaded Transwell inserts, and then the eluate which contained components biospecific binding to macrophages was identified by HPLC-ESI-MS(n) analysis. Six compounds, which could interact with macrophages, were detected and identified. Among these compounds, taxifolin (2) and astilbin (4) were identified by comparing with the chromatography of standards, while the four others including 5-O-caffeoylshikimic acid (1), neoastilbin (3), neoisoastilbin (5) and isoastilbin (6), were elucidated by their structure clearage characterizations of tandem mass spectrometry. Then compound 1 was isolated and purified from SGR, along with 2 and 4, was applied to the macrophage migration and adhesion assay in HUVEC (Human Umbilical Vein Endothelial Cells) -macrophages co-incultured Transwell system for immunological activity assessment. The results showed that compounds 1, 2 and 4 with concentration of 5μM (H), 500nM (M) and 50nM (L) could remarkably inhibit the macrophage migration and adhesion (Vs AGEs (Advanced Glycation End Produces) group, 1-L, 2-H and 4-L groups: p<0.05; other groups: p<0.01). Moreover, 1 and 4 showed satisfactory dose-effect relationship. In conclusion, the application of macrophage biospecific extraction coupled with HPLC-ESI-MS(n) analysis is a rapid, simple and reliable method for screening immunological active components from Traditional Chinese Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Adipocyte-Macrophage Cross-Talk in Obesity.

    PubMed

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  12. Wound Administration of M2-Polarized Macrophages Does Not Improve Murine Cutaneous Healing Responses

    PubMed Central

    Jetten, Nadine; Roumans, Nadia; Gijbels, Marion J.; Romano, Andrea; Post, Mark J.; de Winther, Menno P. J.; van der Hulst, Rene R. W. J.; Xanthoulea, Sofia

    2014-01-01

    Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds. PMID:25068282

  13. Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection.

    PubMed

    Qi, Feifei; Bai, Song; Wang, Dandan; Xu, Lei; Hu, Haiyan; Zeng, Sheng; Chai, Ruonan; Liu, Beixing

    2017-07-01

    It has been reported that RSV infection can enhance IL-33 production in lung macrophages. However, little is known about specific signaling pathways for activation of macrophages during RSV infection. In the present study, by using real-time RT-PCR as well as western blot assay, it became clear that RSV infection can enhance not only the expression of mRNAs for MAPK molecules (including p38, JNK1/2, and ERK1/2), but also the levels of MAPK proteins in lung macrophages as well as RAW264.7 cells. Furthermore, infection with RSV resulted in an increased level of phosphorylated MAPK proteins in RAW264.7 cells, suggesting that MAPK signaling pathway may participate in the process of RSV-induced IL-33 secretion by macrophages. In fact, the elevated production of IL-33 in RAW264.7 was attenuated significantly by pretreatment of the cells with special MAPK inhibitor before RSV infection, further confirming the function of MAPKs pathway in RSV-induced IL-33 production in macrophages. In contrast, the expression of NF-κB mRNA as well as the production of NF-κB protein in lung macrophages and RAW264.7 cells was not enhanced markedly after RSV infection. Moreover, RSV infection failed to induce the phosphorylation of NF-κB in RAW264.7 cells, suggesting that NF-κB signaling pathway may be not involved in RSV-induced IL-33 production in macrophages. Conclusion, these results indicate that RSV-induced production of IL-33 in macrophages is dependent on the activation of MAPK signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  15. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found thatmore » quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.« less

  16. Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages

    NASA Astrophysics Data System (ADS)

    Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert

    1990-07-01

    The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.

  17. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  18. Human galectin-9 on the porcine cells affects the cytotoxic activity of M1-differentiated THP-1 cells through inducing a shift in M2-differentiated THP-1 cells.

    PubMed

    Jung, Sung Han; Hwang, Jeong Ho; Kim, Sang Eun; Kim, Young Kyu; Park, Hyo Chang; Lee, Hoon Taek

    2017-07-01

    In xenotransplantation, immune rejection by macrophages occurs rapidly and remains a major obstacle. Studies to control immune rejection in macrophages have been continuing to date. Recent studies have reported that human galectin-9 (hGal-9) can regulate the function of regulatory T cells (Treg), as well as cytotoxicity T cells (CTL) and natural killer cells (NK). Although the effect of hGal-9 on lymphocytes has been well studied, the relationship between hGal-9 and myeloid cells has been scarcely studied. To confirm the decreased cytotoxic activity effect by hGal-9 in M1-differentiated THP-1 cells, we established the hGal-9 expressing transgenic porcine cell line. hGal-9 siRNA was transfected to transgenic cells and recombinant hGal-9 (rhGal-9) was treated to co-culturing condition, and then, flow cytometry assay was conducted for analyzing the cytotoxic activity of M1-differentiated THP-1 cells. Related inflammatory cytokines (IL-1β, IL-10, TNF-α, IL-6, IL-12, IL-23, and TGF-β) and related enzymes (iNOS and Arginase 1) were analyzed by qPCR and Western blot assay. To identify the shift in M1/M2-differentiated THP-1 cells, expression levels of CCR7, CD163, iNOS, and Arginase 1 and population of M2 marker positive cells were analyzed. The expression levels of pro-inflammatory cytokines in M1-differentiated THP-1 cells co-cultured with hGal-9-expressing porcine kidney epithelial cells were decreased, but not in co-cultured THP-1 cells. However, the expression levels of anti-inflammatory cytokines were also increased in co-cultured M1-differentiated THP-1 cells. The cytotoxicity effect of M1-differentiated THP-1 cells on transgenic cells was decreased while the expression levels of anti-inflammatory cytokines and M2 macrophages-related molecules were increased. M2 differentiation program was turned on while M1 program was turned down by enhancing the phosphorylation levels of Akt and PI3K and the expression level of PPAR-γ. Due to these changes, differentiation

  19. Effect of low extracellular pH on NF-κB activation in macrophages.

    PubMed

    Gerry, A B; Leake, D S

    2014-04-01

    Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0-7.4 and inflammatory cytokine secretion and NF-κB activity were measured. A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. 6-Mercaptopurine reduces macrophage activation and gut epithelium proliferation through inhibition of GTPase Rac1.

    PubMed

    Marinković, Goran; Hamers, Anouk A J; de Vries, Carlie J M; de Waard, Vivian

    2014-09-01

    Inflammatory bowel disease is characterized by chronic intestinal inflammation. Azathioprine and its metabolite 6-mercaptopurine (6-MP) are effective immunosuppressive drugs that are widely used in patients with inflammatory bowel disease. However, established understanding of their immunosuppressive mechanism is limited. Azathioprine and 6-MP have been shown to affect small GTPase Rac1 in T cells and endothelial cells, whereas the effect on macrophages and gut epithelial cells is unknown. Macrophages (RAW cells) and gut epithelial cells (Caco-2 cells) were activated by cytokines and the effect on Rac1 signaling was assessed in the presence or absence of 6-MP. Rac1 is activated in macrophages and epithelial cells, and treatment with 6-MP resulted in Rac1 inhibition. In macrophages, interferon-γ induced downstream signaling through c-Jun-N-terminal Kinase (JNK) resulting in inducible nitric oxide synthase (iNOS) expression. iNOS expression was reduced by 6-MP in a Rac1-dependent manner. In epithelial cells, 6-MP efficiently inhibited tumor necrosis factor-α-induced expression of the chemokines CCL2 and interleukin-8, although only interleukin-8 expression was inhibited in a Rac1-dependent manner. In addition, activation of the transcription factor STAT3 was suppressed in a Rac1-dependent fashion by 6-MP, resulting in reduced proliferation of the epithelial cells due to diminished cyclin D1 expression. These data demonstrate that 6-MP affects macrophages and gut epithelial cells beneficially, in addition to T cells and endothelial cells. Furthermore, mechanistic insight is provided to support development of Rac1-specific inhibitors for clinical use in inflammatory bowel disease.

  1. Extracts of Crinum latifolium inhibit the cell viability of mouse lymphoma cell line EL4 and induce activation of anti-tumour activity of macrophages in vitro.

    PubMed

    Nguyen, Hoang-Yen T; Vo, Bach-Hue T; Nguyen, Lac-Thuy H; Bernad, Jose; Alaeddine, Mohamad; Coste, Agnes; Reybier, Karine; Pipy, Bernard; Nepveu, Françoise

    2013-08-26

    Crinum latifolium L. (CL) leaf extracts have been traditionally used in Vietnam and are now used all over the world for the treatment of prostate cancer. However, the precise cellular mechanisms of the action of CL extracts remain unclear. To examine the effects of CL samples on the anti-tumour activity of peritoneal murine macrophages. The properties of three extracts (aqueous, flavonoid, alkaloid), one fraction (alkaloid), and one pure compound (6-hydroxycrinamidine) obtained from CL, were studied (i) for redox capacities (DPPH and bleaching beta-carotene assays), (ii) on murine peritoneal macrophages (MTT assay) and on lymphoma EL4-luc2 cells (luciferine assay) for cytotoxicity, (iii) on macrophage polarization (production of ROS and gene expression by PCR), and (iv) on the tumoricidal functions of murine peritoneal macrophages (lymphoma cytotoxicity by co-culture with syngeneic macrophages). The total flavonoid extract with a high antioxidant activity (IC50=107.36 mg/L, DPPH assay) showed an inhibitory action on cancer cells. Alkaloid extracts inhibited the proliferation of lymphoma cells either by directly acting on tumour cells or by activating of the tumoricidal functions of syngeneic macrophages. The aqueous extract induced mRNA expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) indicating differentiation of macrophages into pro-inflammatory M1 polarized macrophages. The total flavonoid, alkaloid extracts and an alkaloid fraction induced the expression of the formyl peptide receptor (FPR) on the surface of the polarized macrophages that could lead to the activation of macrophages towards the M1 phenotype. Aqueous and flavonoid extracts enhanced NADPH quinine oxido-reductase 1 (NQO1) mRNA expression in polarized macrophages which could play an important role in cancer chemoprevention. All the samples studied were non-toxic to normal living cells and the pure alkaloid tested, 6-hydroxycrinamidine, was not

  2. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    PubMed

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Tang, Ming-Chi

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383more » alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκ

  4. Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide

    PubMed Central

    Ní Gabhann, Joan; Hams, Emily; Smith, Siobhán; Wynne, Claire; Byrne, Jennifer C.; Brennan, Kiva; Spence, Shaun; Kissenpfennig, Adrien; Johnston, James A.; Fallon, Padraic G.; Jefferies, Caroline A.

    2014-01-01

    Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk −\\−) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk−/− macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk−/− macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk−/− macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk −/− mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation. PMID:24465735

  5. M2 Macrophages Play Critical Roles in Progression of Inflammatory Liver Disease in Hepatitis C Virus Transgenic Mice.

    PubMed

    Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Kohara, Michinori

    2016-01-01

    Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b(+) F4/80(+) CD11c(-) CD206(+) (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following r

  6. M2 Macrophages Play Critical Roles in Progression of Inflammatory Liver Disease in Hepatitis C Virus Transgenic Mice

    PubMed Central

    Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu

    2015-01-01

    ABSTRACT Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b+ F4/80+ CD11c− CD206+ (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. IMPORTANCE HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism

  7. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus

    PubMed Central

    Stoermer, Kristina A.; Burrack, Adam; Oko, Lauren; Montgomery, Stephanie A.; Borst, Luke B.; Gill, Ronald G.; Morrison, Thomas E.

    2012-01-01

    Chikungunya virus (CHIKV) and Ross River virus (RRV) cause a debilitating, and often chronic, musculoskeletal inflammatory disease in humans. Macrophages constitute the major inflammatory infiltrates in musculoskeletal tissues during these infections. However, the precise macrophage effector functions that affect the pathogenesis of arthritogenic alphaviruses have not been defined. We hypothesized that the severe damage to musculoskeletal tissues observed in RRV or CHIKV-infected mice would promote a wound healing response characterized by M2-like macrophages. Indeed, we found that RRV and CHIKV-induced musculoskeletal inflammatory lesions, and macrophages present in these lesions, have a unique gene expression pattern characterized by high expression of arginase 1 and Ym1/Chi3l3 in the absence of FIZZ1/Relmα that is consistent with an M2-like activation phenotype. Strikingly, mice specifically deleted for Arg1 in neutrophils and macrophages had dramatically reduced viral loads and improved pathology in musculoskeletal tissues at late times post-RRV infection. These findings indicate that arthritogenic alphavirus infection drives a unique myeloid cell activation program in inflamed musculoskeletal tissues that inhibits virus clearance and impedes disease resolution in an Arg1-dependent manner. PMID:22972923

  8. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    PubMed Central

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  9. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP‐1‐derived macrophages

    PubMed Central

    Wang, Limei; Palme, Veronika; Rotter, Susanne; Schilcher, Nicole; Cukaj, Malsor; Wang, Dongdong; Ladurner, Angela; Heiss, Elke H.; Stangl, Herbert; Dirsch, Verena M.

    2016-01-01

    1 Scope Increased macrophage cholesterol efflux (ChE) is considered to have anti‐atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP‐1‐derived macrophages, and mechanisms underlying this effect are explored. 2 Methods and results Without affecting cell viability, piperine concentration‐dependently enhances ChE in THP‐1‐derived macrophages from 25 to 100 μM. The expression level of the key cholesterol transporter protein ATP‐binding cassette transporter A1 (ABCA1) is significantly upregulated by piperine, as revealed by western blot analyses. However, two other ChE‐mediating transporter proteins, ATP‐binding cassette transporter G1 (ABCG1) and scavenger receptor class B member 1 (SR‐B1), remain unaffected. Piperine exerts no influence on ABCA1 mRNA levels, but significantly inhibits the degradation of ABCA1, as evident by an increased half‐life of the protein in the presence of cycloheximide. Furthermore, it is found that piperine likely interferes with the calpain‐mediated ABCA1 degradation pathway and exhibits significant inhibition of calpain activity. 3 Conclusion Our findings suggest that piperine promotes ChE in THP‐1‐derived macrophages by upregulation of ABCA1, which might be mediated by inhibition of calpain activity. This novel bioactivity makes the dietary constituent piperine a good candidate to be further explored for therapeutic or preventive applications in the context of atherosclerosis. PMID:27862930

  10. CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages.

    PubMed

    Srisook, Klaokwan; Han, Shan-Shu; Choi, Hyung-Sim; Li, Mei-Hua; Ueda, Hideo; Kim, Chaekyun; Cha, Young-Nam

    2006-01-12

    Carbon monoxide (CO) arising from heme degradation, catalyzed particularly by the stress-inducible heme oxygenase-1 (HO-1), has recently been demonstrated to provide cytoprotection against cell death in macrophages stimulated with bacterial lipopolysaccharide (LPS). In the present study, we determined the effects of CO on the production of reactive oxygen species (ROS) and nitric oxide (NO) by the LPS-stimulated RAW 264.7 macrophages. In addition, effect of CO-exposure on the production of superoxide (O(2)(-)) in the phorbol myristate acetate (PMA)-stimulated PLB-985 neutrophils was determined. Production of ROS by the LPS-stimulated macrophages pretreated with 50microM [Ru(CO)(3)Cl(2)](2), a CO-releasing molecule (CORM-2), was abolished and the production of O(2)(-) by the PMA-stimulated neutrophils pretreated with the CORM-2 was decreased markedly. The CORM-2 (50microM) was not cytotoxic to both the unstimulated and LPS-stimulated macrophages when determined by employing mitochondrial reductase function test (MTT assay). In macrophages pretreated with increasing doses of CORM-2, both the LPS-derived upregulations of iNOS (NO production) and HO-1 expression (CO production) were suppressed in a dose-dependent manner. Alternatively, when the macrophages were treated with LPS and CO-donor together, the LPS-derived increase in NO production was decreased. Conversely, when the control and LPS-stimulated macrophages were treated with zinc protoporphyrin IX (ZnPP) to inhibit the HO activity blocking endogenous production of CO (basal and enhanced), macrophages died extensively. Interestingly, production of NO in the LPS-stimulated macrophages increased significantly following the ZnPP treatment. Addition of CORM-2 to the LPS-treated cells that were being treated additionally with ZnPP did not prevent the cell death. However, endogenous overproduction of CO by super-induction of HO-1 (obtained by pretreatment of macrophages with either buthionine sulfoximine or hemin

  11. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences.

    PubMed

    Martinez, Fernando O; Helming, Laura; Milde, Ronny; Varin, Audrey; Melgert, Barbro N; Draijer, Christina; Thomas, Benjamin; Fabbri, Marco; Crawshaw, Anjali; Ho, Ling Pei; Ten Hacken, Nick H; Cobos Jiménez, Viviana; Kootstra, Neeltje A; Hamann, Jörg; Greaves, David R; Locati, Massimo; Mantovani, Alberto; Gordon, Siamon

    2013-02-28

    The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4–activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues. Although mouse models are widely used for macrophage research, translation to the human can be problematic and the human macrophage system remains poorly described. In the present study, we analyzed and compared the transcriptome and proteome of human and murine macrophages under resting conditions (M0) and after IL-4 activation (M2). We provide a resource for tools enabling macrophage detection in human tissues by identifying a set of 87 macrophage-related genes. Furthermore, we extend current understanding of M2 activation in different species and identify Transglutaminase 2 as a conserved M2 marker that is highly expressed by human macrophages and monocytes in the prototypic Th2 pathology asthma.

  12. Macrophage recruitment, but not interleukin 1 beta activation, enhances noise-induced hearing damage.

    PubMed

    Mizushima, Yu; Fujimoto, Chisato; Kashio, Akinori; Kondo, Kenji; Yamasoba, Tatsuya

    2017-11-18

    It has been suggested that macrophages or inflammatory monocytes participate in the pathology of noise-induced hearing loss (NIHL), but it is unclear how extensively these cells contribute to the development of temporary and/or permanent NIHL. To address this question, we used clodronate liposomes to deplete macrophages and monocytes. After clodronate liposome injection, mice were exposed to 4-kHz octave band noise at 121 dB for 4 h. Compared to vehicle-injected controls, clodronate-treated mice exhibited significantly reduced permanent threshold shifts at 4 and 8 kHz and significantly smaller outer hair cell losses in the lower-apical cochlear turn. Following noise exposure, the stria vascularis had significantly more cells expressing the macrophage-specific protein F4/80, and this effect was significantly suppressed by clodronate treatment. These F4/80-positive cells expressed interleukin 1 beta (IL-1β), which noise exposure activated. However, IL-1β deficient mice did not exhibit significant resistance to intense noise when compared to wild-type mice. These findings suggest that macrophages that enter the cochlea after noise exposure are involved in NIHL, whereas IL-1β inhibition does not reverse this cochlear damage. Therefore, macrophages may be a promising therapeutic target in human sensorineural hearing losses such as NIHL. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  14. In vitro and in vivo effect of PD-1/PD-L1 blockade on microglia/macrophage activation and T cell subset balance in cryptococcal meningitis.

    PubMed

    Che, Yuan-Mei; Zhang, Yi; Li, Ming; Li, Xiao-Peng; Zhang, Lun-Li

    2018-04-01

    This study aimed to investigate the PD-1/ PD-L1 signaling pathway and its effects the activation of microglia/macrophage and balancing T cell subsets in cryptococcal meningitis (CM). A total of 126 CM patients and 126 healthy individuals were recruited for the study. The CM patients were treated with amphotericin B (AmB). Seventy five C57BL/6 mice were grouped into the normal control, CM model, CM + AmB, sham, and CM + PD-1 antibodies (Ab) groups. CD4 + and CD8 + T cells as well as microglia/macrophages were analyzed by means of flow cytometry. Ionized calcium-binding adaptor molecule 1 (Ibal) expression was detected using western blotting and immunohistochemistry techniques. And the expression of Rab5 and Rab11 were detected using an immunofluorescence assay. Both PD-1 and PD-L1 mRNA and protein expression among the mice in the study were evaluated by qRT-PCR and western blotting methods. Compared to the CM model group, the CM + AmB and CM + PD-1 Ab groups exhibited increased levels of Th1 cytokines and chemokines expression, and reduced levels of Th2 cytokines expressions. Elevated cell purity and viability of CD4 + T cell were recorded as well as increases in microglia, however, there were reductions in the number of CD8 + T cells. Depleted expressions of Ibal, Rab5, and Rab11 as well as reduced mRNA expressions of PD-1 and PD-L1 in CD4 + , microglia, and macrophage cells. The findings suggested that suppression of the PD-1/PD-L1 signaling pathway restricts the proliferation of CM by down-regulating the expressions of Th2 cells and suppressing microglia and macrophage activation. © 2017 Wiley Periodicals, Inc.

  15. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation

    PubMed Central

    Tomlinson, Gareth H.; Miles, Katherine; Smith, Richard W. P.; Rossi, Adriano G.; Hiemstra, Pieter S.; van ’t Wout, Emily F. A.; Dean, Jonathan L. E.; Gray, Nicola K.; Lu, Wuyuan; Gray, Mohini

    2016-01-01

    Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection with Salmonella enterica serovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a “molecular brake” on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage. PMID:27044108

  16. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

    PubMed Central

    Mott, Kevin R; UnderHill, David; Wechsler, Steven L; Town, Terrence; Ghiasi, Homayon

    2009-01-01

    Background Macrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages. PMID:19439086

  17. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.

    PubMed

    Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. αMβ₂ integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation.

    PubMed

    Yakubenko, Valentin P; Bhattacharjee, Ashish; Pluskota, Elzbieta; Cathcart, Martha K

    2011-03-04

    The alternative activation of monocytes by interleukin (IL)-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. In this report, we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of 2 proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis, an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. We found that adhesion of resting monocytes through β(2) integrins and inside-out activation of β(2) integrins by monocyte chemoattractant protein-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of β(2) integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of β(1) integrins had no effect on 15-LO expression. Analysis of integrin clustering through α(M), α(L), α(X), and α(D) subunits demonstrated the pivotal role for integrin α(M)β(2) in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes; our studies showed that β(2) integrin activation and α(M) integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression, as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of α(M)-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression, and lipid accumulation as compared with wild-type controls. The adhesion of monocytes/macrophages through activated integrin α(M)β(2) has a regulatory and potential atheroprotective function during the alternative activation of macrophages.

  19. Differential regulation of IL-23 production in M1 macrophages by TIR8/SIGIRR through TLR4- or TLR7/8-mediated signaling.

    PubMed

    Yamaguchi, Rui; Sakamoto, Arisa; Yamamoto, Takatoshi; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2017-11-01

    Cross-talks between toll-like receptors (TLRs) including various negative regulatory mechanisms are many unknown. We investigated the differential mechanism of IL-23 production in M1 macrophages by single immunoglobulin interleukin-1 receptor-related (SIGIRR) molecule through TLR4 or TLR7/8. IL-12p40 production by M1 macrophages pretreated with human neutrophil elastase (HNE) was synergistically enhanced IL-12p40, but not IL-23 production, after exposure to lipopolysaccharide (LPS). LPS (a TLR4 agonist) induced a slight increase of IL-23 production, while Resiquimod (a TLR7/8 agonist) significantly enhanced IL-23 production. Expression of SIGIRR protein, a negative regulator of TLR4, was higher in M1 macrophages than in monocytes. Interestingly, SIGIRR siRNA induced a slight increment of IL-23 production after exposure of macrophages to LPS, while IL-23 production in response to Resiquimod was significantly upregulated by SIGIRR siRNA. Silencing SIGIRR enhanced IRF4 protein level determined by western blotting or ELISA. IRF4 siRNA dramatically restored IL-23 production after exposure to Resiquimod in macrophages transfected with SIGIRR siRNA. In conclusion, production of IL-23 is differentially regulated in M1 macrophages by SIGIRR through TLR4- or TLR7/8-mediated signaling. SIGIRR is both a negative regulator of TLR4 and a positive regulator of TLR7/8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells

    PubMed Central

    Prima, Victor; Kaliberova, Lyudmila N.; Kaliberov, Sergey; Curiel, David T.; Kusmartsev, Sergei

    2017-01-01

    In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host. PMID:28096371

  1. Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.

    1978-01-01

    The effects of glucocorticoids on biochemical functions of macrophages from man, mouse, rabbit, and guinea pig were examined. Secretion of plasminogen activator by human peripheral blood monocytes was decreased 50% with 1 nM dexamethasone. Differentiation of murine monocytic and granulocytic colonies in agar from bone marrow precursors was decreased 50% at 7 days with 20 nM dexamethasone. Secretion of elastase, collagenase, and plasminogen activator by resident and thioglycollate-elicited mouse peritoneal macrophages was decreased by dexamethasone, cortisol, and triamcinolone acetonide (1 to 1,000 nM), but not by progesterone, estradiol, and dihydrotestosterone (1,000 nM); in contast, secretion of lysozyme was not affectedmore » by glucocorticoids. The inhibition of macrophage secretion by dexamethasone was both time and dose dependent. Inhibition of macrophage secretion increased with increasing glucocorticoid concentration. Half-maximum inhibition of secretion of elastase, collagenase, and plasminogen activator was seen at dexamethasone concentrations (1 to 10 nM) similar to those that half-saturated the specific glucocorticoid receptors. At high concentrations of dexamethasone (100 to 1,000 nM) the secretion of plasminogen activator was inhibited to a greater extent (>95%) than the secretion of elastase (60 to 80%).Progesterone alone had no effect on secretion, but blocked the inhibitory effects of dexamethasone and cortisol. Secretion of collagenase, neutral proteinases, and plasminogen activator by elicited rabbit alveolar macrophages was inhibited with glucocorticoids (0.1 to 100 nM) but not with progesterone or sex steroids. Secretion of a neutral elastinolytic proteinase by guinea pig alveolar macrophages was also inhibited by dexamethasone.« less

  2. Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1b stimulation.

    PubMed

    Shimodaira, Takahiro; Matsuda, Kazuyuki; Uchibori, Takaaki; Sugano, Mitsutoshi; Uehara, Takeshi; Honda, Takayuki

    2018-04-25

    Fibrosis is attributed to dysregulation of tissue-remodeling. In remodeling areas, fibroblasts and macrophages actively make contact with each other. Osteopontin (OPN) is a pro-fibrotic molecule, whose expression is upregulated by interleukin (IL)-1β via secretion of its downstream cytokines, such as IL-6. Here, we investigated the effect of interaction between fibroblasts and macrophages under IL-1β stimulation on the expression of OPN. We used human lung fibroblasts and THP-1 macrophages differentiated from THP-1 cells using phorbol 12-myristate 13-acetate. These cells were either cultured alone or co-cultured under IL-1β stimulation. Secretion of OPN and IL-6 were examined by enzyme-linked immunosorbent assay, and mRNA expression was assessed by quantitative real-time PCR. The effects of siRNA against IL-6 or OPN on OPN expression were evaluated. OPN expression increased when fibroblasts and THP-1 macrophages were co-cultured under IL-1β stimulation. The siRNA against IL-6 in fibroblasts suppressed the upregulation of OPN expression during co-culture, whereas siRNA against IL-6 in THP-1 macrophages did not. The upregulation of expression of OPN mRNA in fibroblasts or THP-1 macrophages when co-cultured under IL-1β stimulation was mediated by IL-6 from fibroblasts. OPN from THP-1 macrophages was involved in the increase of OPN expression in fibroblasts. The present study revealed the crosstalk between fibroblasts and THP-1 macrophages under IL-1β stimulation, where IL-6 from fibroblasts, stimulated by IL-1β, upregulated OPN expression in fibroblasts themselves via increase in OPN from THP-1 macrophages. The fibroblasts/macrophages network may induce activation or qualitative changes in both cells, which contributes to inflammation-associated fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Alternatively activated macrophages in helminth infections

    PubMed Central

    Kreider, Timothy; Anthony, Robert M.; Urban, Joseph F.; Gause, William C.

    2007-01-01

    Summary Helminthic parasites can trigger highly polarized immune responses typically associated with increased numbers of CD4+ Th2 cells, eosinophils, mast cells, and basophils. These cell populations are thought to coordinate an effective response ultimately leading to parasite expulsion, but they also play a role in the regulation of associated pathologic inflammation. Recent studies suggest that macrophages, conventionally associated with IFNγ-dominant Th1-type responses to many bacteria and viruses, also play an essential role in the Th2-type inflammatory response. These macrophages are referred to as alternatively activated macrophages (AAMΦs) as they express a characteristic pattern of cell surface and secreted molecules distinct from that of classically activated macrophages (CAMΦs) associated with microbe infections. In this review, we will discuss recent findings regarding the role of AAMΦs in the development of disease and host protection following helminth infection. PMID:17702561

  4. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer.

    PubMed

    Lan, Chunyan; Huang, Xin; Lin, Suxia; Huang, Huiqiang; Cai, Qichun; Wan, Ting; Lu, Jiabin; Liu, Jihong

    2013-06-01

    Macrophages are polarized into two functionally distinct forms, M1 and M2, in response to different microenvironment. Tumor-associated macrophages (TAMs) generally have M2 phenotype and promote tumor progression. Few studies to date have described the infiltration of M2-polarized macrophages in ovarian cancer. We used two macrophages markers, CD68 and CD163, to analyze the expression of TAMs and to clarify the relationship between the M2 form and survival in advanced ovarian cancer. Clinical data of 110 patients with stages III-IV epithelial ovarian cancer at Sun Yat-sen University Cancer Center between 1999 and 2007 were retrospectively reviewed. Immunohistochemical staining of CD68 and CD163 was performed. Correlations between macrophage density and patient survival were analyzed. Our data showed that no significant difference was observed in survival between patients in the high- and the low-CD68 expression groups. In contrast, the progression-free survival (PFS) rates (p = 0.003) and overall survival (OS) rates (p = 0.004) were significantly higher in the low-CD163 expression group than in the high-CD163 expression group, respectively. Similarly, we also observed significantly improved 3-year PFS (49.8% vs. 11.0%, p < 0.001) and OS (77.4% vs. 45.0%, p < 0.001) rates in patients in the low-CD163/CD68 ratio group when compared with the high-CD163/CD68 ratio group. Multivariate analysis identified the density of CD163-positive cells as well as the ratio of CD163/CD68 as negative predictors for PFS and OS, respectively. Our results show that the infiltration of CD163-positive M2 macrophages as well as activation of macrophages towards the M2 phenotype may contribute to poor survival in advanced ovarian cancer.

  5. Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis.

    PubMed

    Xu, Gang; Watanabe, Takuya; Iso, Yoshitaka; Koba, Shinji; Sakai, Tetsuo; Nagashima, Masaharu; Arita, Shigeko; Hongo, Shigeki; Ota, Hidekazu; Kobayashi, Youichi; Miyazaki, Akira; Hirano, Tsutomu

    2009-08-28

    Human heregulins, neuregulin-1 type I polypeptides that activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, are expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter (ABC)A1. The present study clarified the roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta(1) levels were significantly decreased in 31 patients with acute coronary syndrome and 33 patients with effort angina pectoris compared with 34 patients with mild hypertension and 40 healthy volunteers (1.3+/-0.3, 2.0+/-0.4 versus 7.6+/-1.4, 8.2+/-1.2 ng/mL; P<0.01). Among all patients with acute coronary syndrome and effort angina pectoris, plasma heregulin-beta(1) levels were further decreased in accordance with the severity of coronary artery lesions. Expression of heregulin-beta(1) was observed at trace levels in intracoronary atherothrombosis obtained by aspiration thrombectomy from acute coronary syndrome patients. Heregulin-beta(1), but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein-induced cholesterol ester accumulation in primary cultured human monocyte-derived macrophages by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta(1) significantly decreased endocytic uptake of [(125)I]acetylated low-density lipoprotein and ACAT activity, and increased cholesterol efflux to apolipoprotein (Apo)A-I from human macrophages. Chronic infusion of heregulin-beta(1) into ApoE(-/-) mice significantly suppressed the development of atherosclerotic lesions. This study provided the first evidence that heregulin-beta(1) inhibits atherogenesis and suppresses macrophage foam cell formation via SR

  6. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  7. Intracellular Survival and Persistence of Chlamydia muridarum Is Determined by Macrophage Polarization

    PubMed Central

    Gracey, Eric; Lin, Aifeng; Akram, Ali; Chiu, Basil; Inman, Robert D.

    2013-01-01

    Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ)/LPS induced (M1) and alternatively-activated, IL-4 induced (M2) macrophages. The goal of this study is to characterize macrophage- Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia . M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU) than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia . However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host–pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host. PMID:23967058

  8. Vitamin A mediates conversion of monocyte-derived macrophages into tissue resident macrophages during alternative activation

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M; Gonzalez, Michael A; Tang, Mei San; Van Der Zande, Hendrik J P; Lin, Jian-Da; Ouimet, Mireille; Ma, Lily J; Poles, Jordan A; Vozhilla, Nikollaq; Fisher, Edward A; Moore, Kathryn J; Loke, P’ng

    2017-01-01

    Whether activated inflammatory macrophages can adopt features of tissue resident macrophages and what mechanisms mediate this phenotypic conversion remain unclear. Here we show that vitamin A was required for phenotypic conversion of interleukin 4 (IL-4)-activated monocyte-derived F4/80intCD206+PD-L2+MHCII+ macrophages into macrophages with a tissue-resident F4/80hiCD206−PD-L2−MHCII−UCP1+ phenotype in the peritoneal cavity of mice and during liver granuloma formation in mice infected with Schistosoma mansoni. Phenotypic conversion of F4/80intCD206+ macrophages into F4/80hiCD206− macrophages was associated with almost complete remodeling of the chromatin landscape, as well as alteration of the transcriptional profiles. Vitamin A deficient mice infected with S. mansoni had disrupted liver granuloma architecture and increased mortality, indicating that failure to convert from F4/80intCD206+ macrophages to F4/80hiCD206− macrophages may lead to dysregulated inflammation during helminth infection. PMID:28436955

  9. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds.

    PubMed

    Chanput, Wasaporn; Mes, Jurriaan J; Savelkoul, Huub F J; Wichers, Harry J

    2013-02-01

    Little is known about the polarizing potential of currently used human macrophage cell lines, while a better understanding phenomena can support the prediction of effects in vivo based on in vitro analysis. To test the polarization capability of PMA differentiated-THP-1 macrophages (M0), cells were stimulated with 20 ng ml(-1) IFNγ + 1 μg ml(-1) LPS and 20 ng ml(-1) IL-4, which are known to influence macrophage polarization in vivo and ex vivo into the M1 and M2 state, respectively. Apart from several well-known M1 and M2 markers, also new possible markers for M1 and M2 polarization were analysed in this study. The expression of M1 marker genes was up-regulated in IFNγ + LPS stimulated-M0 THP-1 macrophages. The IL-4 stimulated-M0 THP-1 macrophages expressed M2 cell membrane receptor genes. However, M2 chemokine and their receptor genes were only slightly up-regulated which might be due to the complexity of the secondary cell-cell interaction of the chemokine system. Lipopolysaccharides from E. coli (LPS) and food compounds [lentinan, vitamin D3 (vD3) and the combination of lentinan + vitamin D3 (Len + vD3)] were investigated for their polarizing ability on M0 THP-1 macrophages towards either the M1 or M2 state. LPS (700 ng ml(-1)) was able to skew M0 THP-1 macrophages towards the M1 direction since all analysed M1 marker genes were strongly expressed. Lentinan, vD3 and Len + vD3 did not induce expression of either M1 or M2 markers, indicating no polarizing ability of these compounds. Based on the expression of M1 and M2 marker genes we concluded that THP-1 macrophages could be successfully polarized into either the M1 or M2 state. Therefore, they can be used as a new macrophage polarizing model to estimate the polarizing/switching ability of test food compounds.

  10. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin

    PubMed Central

    Tan, H-Y; Wang, N; Man, K; Tsao, S-W; Che, C-M; Feng, Y

    2015-01-01

    The plasticity of tumour-associated macrophages (TAMs) has implicated an influential role in hepatocellular carcinoma (HCC). Repolarisation of TAM towards M1 phenotype characterises an immune-competent microenvironment that favours tumour regression. To investigate the role and mechanism of TAM repolarisation in suppression of HCC by a natural compound baicalin, Orthotopic HCC implantation model was used to investigate the effect of baicalin on HCC; liposome-clodronate was introduced to suppress macrophage populations in mice; bone marrow-derived monocytes (BMDMs) were induced to unpolarised, M1-like, M2-like macrophages and TAM using different conditioned medium. We observed that oral administration of baicalin (50 mg/kg) completely blocked orthotopic growth of implanted HCC. Suppression of HCC by baicalin was diminished when mice macrophage was removed by clodronate treatment. Baicalin induced repolarisation of TAM to M1-like phenotype without specific toxicity to either phenotype of macrophages. Baicalin initiated TAM reprogramming to M1-like macrophage, and promoted pro-inflammatory cytokines production. Co-culturing of HCC cells with baicalin-treated TAMs resulted in reduced proliferation and motility in HCC. Baicalin had minimal effect on derivation of macrophage polarisation factors by HCC cells, while directly induced repolarisation of TAM and M2-like macrophage. This effect was associated with elevated autophagy, and transcriptional activation of RelB/p52 pathway. Suppression of autophagy or RelB abolished skewing of baicalin-treated TAM. Autophagic degradation of TRAF2 in baicalin-treated TAM might be responsible for RelB/p52 activation. Our findings unveil the essential role of TAM repolarisation in suppressive effect of baicalin on HCC, which requires autophagy-associated activation of RelB/p52. PMID:26492375

  11. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    PubMed

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-06-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro-inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Six-shogaol inhibits production of tumour necrosis factor alpha, interleukin-1 beta and nitric oxide from lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Levy, A S A; Simon, O R

    2009-09-01

    We previously reported that 6-shogaol, a phenolic compound from ginger has antiinflammatory properties in a Complete Freund's Adjuvant (CFA) model of mono-arthritic rats. In the present study, we investigated the effects of 6-shogaol on the production of inflammatory mediators from lipopolysaccharide (LPS) activated RAW 264.7 macrophages. These mediators (TNF-alpha, IL-1-beta and NO) and their output from macrophages are involved in various pathophysiological events of chronic inflammation and arthritis. Effects of 6-shogaol were investigated on the production of the mediators TNF-alpha, IL-1-beta and NO (measured as nitrate)from macrophages. Lipopolysaccharide activated RAW 264.7 macrophages were cultured in the presence and absence of 6-shogaol (2 microM, 10 microM and 20 microM) and ELISA was used to quantify the output of the mediators. 6-shogoal (2 microM, 10 microM and 20 microM) significantly inhibited the production of nitric oxide (NO), IL-1beta and TNF-alpha from the LPS activated RAW264.7 macrophages. The results suggest that macrophages are targets for the anti-inflammatory effects of 6-shogaol. Also, the inhibitory effects against TNF-alpha, IL-1beta and NO production from LPS activated macrophages are cellular mechanisms by which 6-shogaol produced its anti-inflammatory effects. These mechanisms provide an explanation of the protection by 6-shogaol against development of joint inflammation and cartilage degradation in CFA induced mono-arthritis that we previously demonstrated (1). Based on these results with 6-shogaol, there is evidence that it exhibits exploitable anti-inflammatory properties.

  13. Promising landscape for regulating macrophage polarization: epigenetic viewpoint

    PubMed Central

    Chen, Lu; Zhang, Wen; Xu, Zhenyu; Zuo, Jian; Jiang, Hui; Luan, Jiajie

    2017-01-01

    Macrophages are critical myeloid cells with the hallmark of phenotypic heterogeneity and functional plasticity. Macrophages phenotypes are commonly described as classically-activated M1 and alternatively-activated M2 macrophages which play an essential role in the tissues homeostasis and diseases pathogenesis. Alternations of macrophage polarization and function states require precise regulation of target-gene expression. Emerging data demonstrate that epigenetic mechanisms and transcriptional factors are becoming increasingly appreciated in the orchestration of macrophage polarization in response to local environmental signals. This review is to focus on the advanced concepts of epigenetics changes involved with the macrophage polarization, including microRNAs, DNA methylation and histone modification, which are responsible for the altered cellular signaling and signature genes expression during M1 or M2 polarization. Eventually, the persistent investigation and understanding of epigenetic mechanisms in tissue macrophage polarization and function will enhance the potential to develop novel therapeutic targets for various diseases. PMID:28915705

  14. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro.

    PubMed

    Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf

    2017-03-15

    Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  15. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential.

    PubMed

    Boulakirba, Sonia; Pfeifer, Anja; Mhaidly, Rana; Obba, Sandrine; Goulard, Michael; Schmitt, Thomas; Chaintreuil, Paul; Calleja, Anne; Furstoss, Nathan; Orange, François; Lacas-Gervais, Sandra; Boyer, Laurent; Marchetti, Sandrine; Verhoeyen, Els; Luciano, Frederic; Robert, Guillaume; Auberger, Patrick; Jacquel, Arnaud

    2018-01-10

    CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.

  16. Galectin-3 in M2 macrophages plays a protective role in resolution of neuropathology in brain parasitic infection by regulating neutrophil turnover.

    PubMed

    Quenum Zangbede, Fredice O; Chauhan, Arun; Sharma, Jyotika; Mishra, Bibhuti B

    2018-06-26

    Macrophages/microglia with M2- activation phenotype are thought to play an important anti-inflammatory and tissue reparative functions in the brain, yet the molecular basis of their functions in the central nervous system (CNS) remain to be clearly defined. In a preclinical model of neurocysticercosis using brain infection with a parasite Mesocestoides corti , we previously reported the presence of large numbers of M2 cells in the CNS. In this study using female mice, we report that M2 macrophages in the parasite-infected brain display abundant galectin-3 expression. Disease severity was increased in Galectin-3 -/- mice correlating with increased neurological defects, augmented cell death and, importantly, massive accumulation of neutrophils and M2 macrophages in the CNS of these mice. Because neutrophil clearance by efferocytosis is an important function of M2 macrophages, we investigated a possible role of galectin-3 in this process. Indeed, galectin-3 deficient M2 macrophages exhibited a defect in efferocytic clearance of neutrophils in-vitro. Furthermore, adoptive transfer of M2 macrophages from Galectin-3 sufficient WT mice reduced neutrophilia in the CNS and ameliorated disease severity in parasite-infected Galectin-3 -/- mice. Together, these results demonstrate for the first time a novel role of galectin-3 in M2 macrophage function in neutrophil turnover and resolution of inflammatory pathology in the CNS. This likely will have implications in neurocysticercosis and neuro-inflammatory diseases. SIGNIFICANCE STATEMENT Macrophages/microglia with M1-activation phenotype are thought to promote CNS pathology, whereas M2-anti-inflammatory phenotype promote CNS repair. However, the mechanisms regulating M2 cell protective functions in the CNS microenvironment are undefined. Quenum Zangbede et. al., report that helminth infection of the brain induces an increased expression of galectin-3 in M2 macrophages accumulated in the CNS. Using multiple experimental models

  17. SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1R-dependent signaling

    PubMed Central

    Anthony, Desiree; McQualter, Jonathan L.; Bishara, Maria; Lim, Ee X.; Yatmaz, Selcuk; Seow, Huei Jiunn; Hansen, Michelle; Thompson, Michelle; Hamilton, John A.; Irving, Louis B.; Levy, Bruce D.; Vlahos, Ross; Anderson, Gary P.; Bozinovski, Steven

    2014-01-01

    Serum amyloid A (SAA) is expressed locally in chronic inflammatory conditions such as chronic obstructive pulmonary disease (COPD), where macrophages that do not accord with the classic M1/M2 paradigm also accumulate. In this study, the role of SAA in regulating macrophage differentiation was investigated in vitro using human blood monocytes from healthy subjects and patients with COPD and in vivo using an airway SAA challenge model in BALB/c mice. Differentiation of human monocytes with SAA stimulated the proinflammatory monokines IL-6 and IL-1β concurrently with the M2 markers CD163 and IL-10. Furthermore, SAA-differentiated macrophages stimulated with lipopolysaccharide (LPS) expressed markedly higher levels of IL-6 and IL-1β. The ALX/FPR2 antagonist WRW4 reduced IL-6 and IL-1β expression but did not significantly inhibit phagocytic and efferocytic activity. In vivo, SAA administration induced the development of a CD11chighCD11bhigh macrophage population that generated higher levels of IL-6, IL-1β, and G-CSF following ex vivo LPS challenge. Blocking CSF-1R signaling effectively reduced the number of CD11chighCD11bhigh macrophages by 71% and also markedly inhibited neutrophilic inflammation by 80%. In conclusion, our findings suggest that SAA can promote a distinct CD11chighCD11bhigh macrophage phenotype, and targeting this population may provide a novel approach to treating chronic inflammatory conditions associated with persistent SAA expression.—Anthony, D., McQualter, J. L., Bishara, M., Lim, E. X., Yatmaz, S., Seow, H. J., Hansen, M., Thompson, M., Hamilton, J. A., Irving, L. B., Levy, B. D., Vlahos, R., Anderson, G. P., Bozinovski, S. SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1R-dependent signaling. PMID:24846388

  18. Overexpression of IL-10 in C2D macrophages promotes a macrophage phenotypic switch in adipose tissue environments.

    PubMed

    Xie, Linglin; Fu, Qiang; Ortega, Teresa M; Zhou, Lun; Rasmussen, Dane; O'Keefe, Jacy; Zhang, Ke K; Chapes, Stephen K

    2014-01-01

    Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206(+), CD301(+), CD11c(-)CD206(+) (M2) and CD11c(+)CD206(+) (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.

  19. Ethanol Extract of Mylabris phalerata Inhibits M2 Polarization Induced by Recombinant IL-4 and IL-13 in Murine Macrophages

    PubMed Central

    Chung, Hwan-Suck; Lee, Bong-Seon

    2017-01-01

    Mylabris phalerata (MP) is an insect used in oriental herbal treatments for tumor, tinea infections, and stroke. Recent studies have shown that tumor-associated macrophages (TAM) have detrimental roles such as tumor progression, angiogenesis, and metastasis. Although TAM has phenotypes and characteristics in common with M2-polarized macrophages, M1 macrophages have tumor suppression and immune stimulation effects. Medicines polarizing macrophages to M1 have been suggested to have anticancer effects via the modulation of the tumor microenvironment. In this line, we screened oriental medicines to find M1 polarizing medicines in M2-polarized macrophages. Among approximately 400 types of oriental medicine, the ethanol extract of M. phalerata (EMP) was the most proficient in increasing TNF-α secretion in M2-polarized macrophages and TAM. Although EMP enhanced the levels of an M1 cytokine (TNF-α) and a marker (CD86), it significantly reduced the levels of an M2 marker (arginase-1) in M2-polarized macrophages. In addition, EMP-treated macrophages increased the levels of M1 markers (Inos and Tnf-α) and reduced those of the enhanced M2 markers (Fizz-1, Ym-1, and arginase-1). EMP-treated macrophages significantly reduced Lewis lung carcinoma cell migration in a transwell migration assay and inhibited EL4-luc2 lymphoma proliferation. In our mechanism study, EMP was found to inhibit STAT3 phosphorylation in M2-polarized macrophages. These results suggest that EMP is effective in treating TAM-mediated tumor progression and metastasis. PMID:28811825

  20. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.

    PubMed

    Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2017-09-15

    It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Low Necroptosis Process Predicts Poor Treatment Outcome of Human Papillomavirus Positive Cervical Cancers by Decreasing Tumor-Associated Macrophages M1 Polarization.

    PubMed

    Li, Lin; Yu, Song; Zang, Chunyi

    2018-01-01

    The aim of this study was to assess the functions of the necroptosis process on the prognosis of high-risk human papillomavirus (HR-HPV)-related cervical cancer. PCR and western blotting were used to demonstrate the expression of the necroptosis marker, mixed lineage kinase domain-like protein (MLKL), in whole blood and peripheral blood mononuclears (PBMCs) of 89 cervical cancer patients and 15 healthy volunteers. Necroptosis levels and M1 polarization were determined in tumor co-cultured macrophages. We found that MLKL expressions were significantly increased in cervical cancer patients in both whole blood and PBMC samples compared to the expressions in the healthy controls. Low MLKL expression was significantly associated with decreased survival rate in overall survival and disease-free survival. Co-culture cervical cancer cells decrease the necroptosis process of macrophage, together with the proinflammatory factors (M1 markers) downregulation, and this negative regulation was exacerbated in HPV-positive cases. Necroptosis enhancer RIPK3 overexpression showed reversed regulation of these M1 markers, suggesting that co-culture cervical cancer cells decrease the macrophage M1 polarization partly through necroptosis downregulation. Our study revealed that necroptosis process could be a relevant marker for the determination of the prognosis in cervical cancer patients, which might be because of its role in regulating macrophage polarization. © 2018 S. Karger AG, Basel.

  2. MCPIP1 Regulates Alveolar Macrophage Apoptosis and Pulmonary Fibroblast Activation After in vitro Exposure to Silica.

    PubMed

    Wang, Xingang; Zhang, Yuxia; Zhang, Wei; Liu, Haijun; Zhou, Zewei; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Yao, Honghong; Chao, Jie

    2016-05-01

    Silicosis is a fatal and fibrotic pulmonary disease caused by the inhalation of silica. After arriving at the alveoli, silica is ingested by alveolar macrophages (AMOs), in which monocyte chemotactic protein-induced protein 1 (MCPIP1) plays an essential role in controlling macrophage-mediated inflammatory responses. However, the mechanism of action of MCPIP1 in silicosis is poorly understood. Primary rat AMOs were isolated and treated with SiO2 (50 µg/cm(2)). MCPIP1 and AMO activation/apoptosis markers were detected by immunoblotting. MCPIP1 was down-regulated using siRNA in AMOs. The effects of AMOs on fibroblast activation and migration were evaluated using a gel contraction assay, a scratch assay, and a nested collagen matrix migration model. After exposure to SiO2, MCPIP1 was significantly increased in rat AMOs. Activation and apoptosis markers in AMOs were up-regulated after exposure to SiO2 Following siRNA-mediated silencing of MCPIP1 mRNA, the markers of AMO activation and apoptosis were significantly decreased. Rat pulmonary fibroblasts (PFBs) cultured in conditional medium from AMOs treated with MCPIP1 siRNA and SiO2 showed significantly less activation and migration compared with those cultured in conditional medium from AMOs treated with control siRNA and SiO2 CONCLUSION: Our data suggest a vital role for MCPIP1 in AMO apoptosis and PFB activation/migration induced by SiO2. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.

    PubMed

    Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine

    2017-07-04

    The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse

  4. YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense

    PubMed Central

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B.

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic

  5. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense.

    PubMed

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJ(KIM)) strains have high cytotoxic activity. In addition, YopJ(KIM)-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJ(KIM)-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJ(KIM)-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJ(KIM). Wild-type and

  6. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis

    PubMed Central

    Nguyen, Khoa D.; Qiu, Yifu; Cui, Xiaojin; Goh, Y.P. Sharon; Mwangi, Julia; David, Tovo; Mukundan, Lata; Brombacher, Frank; Locksley, Richard M.; Chawla, Ajay

    2011-01-01

    All homeotherms utilize thermogenesis to maintain core body temperature, ensuring that cellular functions and physiologic processes can ensue in cold environments1-3. In the prevailing model, when the hypothalamus senses cold temperatures, it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue (BAT) and white adipose tissue (WAT)4,5. Acting via the β3-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes6, whereas it stimulates the expression of thermogenic genes, such as PPARγ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1), and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes7-9. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report an unexpected requirement for the interleukin 4 (IL4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Cold exposure rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in BAT and lipolysis in WAT. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL4 increased thermogenic gene expression, fatty acid mobilization, and energy expenditure, all in a macrophage-dependent manner. We have thus discovered a surprising role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold. PMID:22101429

  7. αMβ2 Integrin Activation Prevents Alternative Activation of Human and Murine Macrophages and Impedes Foam Cell Formation

    PubMed Central

    Yakubenko, Valentin P.; Bhattacharjee, Ashish; Pluskota, Elzbieta; Cathcart, Martha K.

    2011-01-01

    Rationale The alternative activation of monocytes by IL-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. Objective In this paper we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of two proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis - an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. Methods and Results We found that adhesion of resting monocytes through β2 integrins and inside-out activation of β2 integrins by MCP-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of β2 integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of β1 integrins had no effect on 15-LO expression. Analysis of integrin clustering through αM, αL, αX and αD subunits demonstrated the pivotal role for integrin αMβ2 in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes, our studies showed that β2 integrin activation and αM integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of αM-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression and lipid accumulation as compared to wild type controls. Conclusions The adhesion of monocytes/macrophages through activated integrin αMβ2 has a regulatory and potential athero-protective function during the alternative activation of macrophages. PMID:21252155

  8. Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo

    PubMed Central

    Cecil, Jessica D.; O’Brien-Simpson, Neil M.; Lenzo, Jason C.; Holden, James A.; Singleton, William; Perez-Gonzalez, Alexis; Mansell, Ashley; Reynolds, Eric C.

    2017-01-01

    Outer membrane vesicles (OMVs) are proteoliposomes blebbed from the surface of Gram-negative bacteria. Chronic periodontitis is associated with an increase in subgingival plaque of Gram-negative bacteria, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. In this study, we investigated the immune-modulatory effects of P. gingivalis, T. denticola, and T. forsythia OMVs on monocytes and differentiated macrophages. All of the bacterial OMVs were phagocytosed by monocytes, M(naïve) and M(IFNγ) macrophages in a dose-dependent manner. They also induced NF-κB activation and increased TNFα, IL-8, and IL-1β cytokine secretion. P. gingivalis OMVs were also found to induce anti-inflammatory IL-10 secretion. Although unprimed monocytes and macrophages were resistant to OMV-induced cell death, lipopolysaccharide or OMV priming resulted in a significantly reduced cell viability. P. gingivalis, T. denticola, and T. forsythia OMVs all activated inflammasome complexes, as monitored by IL-1β secretion and ASC speck formation. ASC was critical for OMV-induced inflammasome formation, while AIM2−/− and Caspase-1−/− cells had significantly reduced inflammasome formation and NLRP3−/− cells exhibited a slight reduction. OMVs were also found to provide both priming and activation of the inflammasome complex. High-resolution microscopy and flow cytometry showed that P. gingivalis OMVs primed and activated macrophage inflammasomes in vivo with 80% of macrophages exhibiting inflammasome complex formation. In conclusion, periodontal pathogen OMVs were found to have significant immunomodulatory effects upon monocytes and macrophages and should therefore influence pro-inflammatory host responses associated with disease. PMID:28890719

  9. Cot/tpl2 participates in the activation of macrophages by adiponectin.

    PubMed

    Sanz-Garcia, Carlos; Nagy, Laura E; Lasunción, Miguel A; Fernandez, Margarita; Alemany, Susana

    2014-06-01

    Whereas the main function of APN is to enhance insulin activity, it is also involved in modulating the macrophage phenotype. Here, we demonstrate that at physiological concentrations, APN activates Erk1/2 via the IKKβ-p105/NF-κΒ1-Cot/tpl2 intracellular signal transduction cassette in macrophages. In peritoneal macrophages stimulated with APN, Cot/tpl2 influences the ability to phagocytose beads. However, Cot/tpl2 did not modulate the known capacity of APN to decrease lipid content in peritoneal macrophages in response to treatment with oxLDL or acLDL. A microarray analysis of gene-expression profiles in BMDMs exposed to APN revealed that APN modulated the expression of ∼3300 genes; the most significantly affected biological functions were the inflammatory and the infectious disease responses. qRT-PCR analysis of WT and Cot/tpl2 KO macrophages stimulated with APN for 0, 3, and 18 h revealed that Cot/tpl2 participated in the up-regulation of APN target inflammatory mediators included in the cytokine-cytokine receptor interaction pathway (KEGG ID 4060). In accordance with these data, macrophages stimulated with APN increased secretion of cytokines and chemokines, including IL-1β, IL-1α, TNF-α, IL-10, IL-12, IL-6, and CCL2. Moreover, Cot/tpl2 also played an important role in the production of these inflammatory mediators upon stimulation of macrophages with APN. It has been reported that different types of signals that stimulate TLRs, IL-1R, TNFR, FcγR, and proteinase-activated receptor-1 activate Cot/tpl2. Here, we demonstrate that APN is a new signal that activates the IKKβ-p105/NF-κΒ1-Cot/tpl2-MKK1/2-Erk1/2 axis in macrophages. Furthermore, this signaling cassette modulates the biological functions triggered by APN in macrophages. © 2014 Society for Leukocyte Biology.

  10. Cot/tpl2 participates in the activation of macrophages by adiponectin

    PubMed Central

    Sanz-Garcia, Carlos; Nagy, Laura E.; Lasunción, Miguel A.; Fernandez, Margarita; Alemany, Susana

    2014-01-01

    Whereas the main function of APN is to enhance insulin activity, it is also involved in modulating the macrophage phenotype. Here, we demonstrate that at physiological concentrations, APN activates Erk1/2 via the IKKβ-p105/NF-κΒ1-Cot/tpl2 intracellular signal transduction cassette in macrophages. In peritoneal macrophages stimulated with APN, Cot/tpl2 influences the ability to phagocytose beads. However, Cot/tpl2 did not modulate the known capacity of APN to decrease lipid content in peritoneal macrophages in response to treatment with oxLDL or acLDL. A microarray analysis of gene-expression profiles in BMDMs exposed to APN revealed that APN modulated the expression of ∼3300 genes; the most significantly affected biological functions were the inflammatory and the infectious disease responses. qRT-PCR analysis of WT and Cot/tpl2 KO macrophages stimulated with APN for 0, 3, and 18 h revealed that Cot/tpl2 participated in the up-regulation of APN target inflammatory mediators included in the cytokine–cytokine receptor interaction pathway (KEGG ID 4060). In accordance with these data, macrophages stimulated with APN increased secretion of cytokines and chemokines, including IL-1β, IL-1α, TNF-α, IL-10, IL-12, IL-6, and CCL2. Moreover, Cot/tpl2 also played an important role in the production of these inflammatory mediators upon stimulation of macrophages with APN. It has been reported that different types of signals that stimulate TLRs, IL-1R, TNFR, FcγR, and proteinase-activated receptor-1 activate Cot/tpl2. Here, we demonstrate that APN is a new signal that activates the IKKβ-p105/NF-κΒ1-Cot/tpl2-MKK1/2-Erk1/2 axis in macrophages. Furthermore, this signaling cassette modulates the biological functions triggered by APN in macrophages. PMID:24532642

  11. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    PubMed Central

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  12. Lysosomes Integrate Metabolic-Inflammatory Cross-talk in Primary Macrophage Inflammasome Activation*

    PubMed Central

    Weber, Kassandra; Schilling, Joel D.

    2014-01-01

    Macrophage dysfunction and inflammasome activation have been implicated in the pathogenesis of diabetes and its complications. Prolonged inflammation and impaired healing are hallmarks of the diabetic response to tissue injury, and excessive inflammasome activation has been associated in these phenotypes. However, the mechanisms that regulate the inflammasome in response to lipid metabolic and inflammatory stress are incompletely understood. We have shown previously that IL-1β secretion is induced in primary macrophages exposed to the dietary saturated fatty acid palmitate in combination with LPS. In this study, we sought to unravel the mechanisms underlying the activation of this lipotoxic inflammasome. We demonstrate that palmitate-loaded primary macrophages challenged with LPS activate the NLRP3 inflammasome through a mechanism that involves the lysosome. Interestingly, the lysosome was involved in both the regulation of pro-IL-1β levels and its subsequent cleavage/release. The lysosomal protease cathepsin B was required for IL-1β release but not pro-IL-1β production. In contrast, disrupting lysosomal calcium regulation decreased IL-1β release by reducing pro-IL-1β levels. The calcium pathway involved the calcium-activated phosphatase calcineurin, which stabilized IL-1β mRNA. Our findings provide evidence that the lysosome plays a key role in both the priming and assembly phases of the lipostoxic inflammasome. These findings have potential relevance to the hyperinflammatory phenotypes observed in diabetics during tissue damage or infection and identify lysosomes and calcineurin as potential therapeutic targets. PMID:24532802

  13. Bioelectric modulation of macrophage polarization

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  14. Attenuated EAN in TNF-α Deficient Mice Is Associated with an Altered Balance of M1/M2 Macrophages

    PubMed Central

    Zhang, Hong-Liang; Hassan, Mohammed Y.; Zheng, Xiang-Yu; Azimullah, Sheikh; Quezada, Hernan Concha; Amir, Naheed; Elwasila, Mohamed; Mix, Eilhard; Adem, Abdu; Zhu, Jie

    2012-01-01

    The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α’s mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180–199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180–199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages. PMID:22666471

  15. Role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in gastric ulcer healing in mice.

    PubMed

    Kawahara, Y; Nakase, Y; Isomoto, Y; Matsuda, N; Amagase, K; Kato, S; Takeuchi, K

    2011-08-01

    We examined the role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in the healing of gastric ulcers in mice. Male M-CSF-deficient (op/op) and M-CSF-expressing heterozygote (+/?) mice were used. Gastric ulcers were induced by thermal cauterization under ether anesthesia, and healing was observed for 14 days after ulceration. The numbers of macrophages and microvessels in the gastric mucosa were determined immunohistochemically with anti-CD68 and anti-CD31 antibodies, respectively. Expression of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF) mRNA was determined via real-time reverse transcription-polymerase chain reaction (RT-PCR), and the mucosal content of prostaglandin (PG) E(2) was determined via enzyme immunoassay on day 10 after ulceration. The healing of gastric ulcers was significantly delayed in op/op mice compared with +/? mice. Further, significantly fewer macrophages were observed in the normal gastric mucosa of op/op mice than in +/? mice. Ulcer induction caused a marked accumulation of macrophages around the ulcer base in +/? mice, but this response was attenuated in op/op mice. The mucosal PGE(2) content as well as the expression of COX-2, VEGF, and TNF-α mRNA were all upregulated in the ulcerated area of +/? mice but significantly suppressed in op/op mice. The degree of vascularization in the ulcerated area was significantly lower in op/op mice than in +/? mice. Taken together, these results suggest that M-CSF-dependent macrophages play an important role in the healing of gastric ulcers, and that this action may be associated with angiogenesis promoted by upregulation of COX-2/PGE(2) production.

  16. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain tomore » be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the

  17. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages

    PubMed Central

    Donnelly, Sheila; Stack, Colin M.; O'Neill, Sandra M.; Sayed, Ahmed A.; Williams, David L.; Dalton, John P.

    2008-01-01

    During helminth infections, alternatively activated macrophages (AAMacs) are key to promoting Th2 responses and suppressing Th1-driven inflammatory pathology. Th2 cytokines IL-4 and/or IL-13 are believed to be important in the induction and activation of AAMacs. Using murine models for the helminth infections caused by Fasciola hepatica (Fh) and Schistosoma mansoni (Sm), we show that a secreted antioxidant, peroxiredoxin (Prx), induces alternative activation of macrophages. These activated, Ym1-expressing macrophages enhanced the secretion of IL-4, IL-5, and IL-13 from naive CD4+ T cells. Administration of recombinant FhPrx and SmPrx to wild-type and IL-4−/− and IL-13−/− mice induced the production of AAMacs. In addition, Prx stimulated the expression of markers of AAMacs (particularly, Ym1) in vitro, and therefore can act independently of IL-4/IL-13 signaling. The immunomodulatory property of Prx is not due to its antioxidant activity, as an inactive recombinant variant with active site Cys residues replaced by Gly could also induce AAMacs and Th2 responses. Immunization of mice with recombinant Prx or passive transfer of anti-Prx antibodies prior to infection with Fh not only blocked the induction of AAMacs but also the development of parasite-specific Th2 responses. We propose that Prx activates macrophages as an initial step in the induction of Th2 responses by helminth parasites and is thereby a novel pathogen-associated molecular pattern.—Donnelly, S., Stack, C. M., O'Neill, S. M., Sayed, A. A., Williams, D. L., Dalton, J. P. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. PMID:18708590

  18. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    PubMed Central

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  19. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Ping-Ge; Jiang, Zhi-Xin; Li, Jian-Hua

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that themore » sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.« less

  20. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions.

    PubMed

    Mantovani, Alberto; Locati, Massimo

    2013-07-01

    Macrophages are present in all body compartments, including cancerous tissues, and their functions are profoundly affected by signals from the microenvironment under homeostatic and pathological conditions. Tumor-associated macrophages are a major cellular component of cancer-related inflammation and have served as a paradigm for the plasticity and functional polarization of mononuclear phagocytes. Tumor-associated macrophages can exert dual influence of cancer depending on the activation state, with classically activated (M1) and alternatively activated (M2) cells generally exerting antitumoral and protumoral functions, respectively. These are extremes in a continuum of polarization states in a universe of diversity. Tumor-associated macrophages affect virtually all aspects of tumor tissues, including stem cells, metabolism, angiogenesis, invasion, and metastasis. Progress has been made in defining signaling molecules, transcription factors, epigenetic changes, and repertoire of microRNAs underlying macrophage polarization. Preclinical and early clinical data suggest that macrophages may serve as tools for the development of innovative diagnostic and therapeutic strategies in cancer and chronic nonresolving inflammatory diseases.

  1. Pneumolysin-Dependent Calpain Activation and Interleukin-1α Secretion in Macrophages Infected with Streptococcus pneumoniae.

    PubMed

    Fang, Rendong; Wu, Rui; Du, Huihui; Jin, Meilan; Liu, Yajing; Lei, Guihua; Jiang, Bing; Lei, Zehui; Peng, Yuanyi; Nie, Kui; Tsuchiya, Kohsuke

    2017-09-01

    Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae , is a pore-forming cytolysin that modulates host innate responses contributing to host defense against and pathogenesis of pneumococcal infections. Interleukin-1α (IL-1α) has been shown to be involved in tissue damage in a pneumococcal pneumonia model; however, the mechanism by which this cytokine is produced during S. pneumoniae infection remains unclear. In this study, we examined the role of PLY in IL-1α production. Although the strains induced similar levels of pro-IL-1α expression, wild-type S. pneumoniae D39, but not a deletion mutant of the ply gene (Δ ply ), induced the secretion of mature IL-1α from host macrophages, suggesting that PLY is critical for the maturation and secretion of IL-1α during S. pneumoniae infection. Further experiments with calcium chelators and calpain inhibitors indicated that extracellular calcium ions and calpains (calcium-dependent proteases) facilitated the maturation and secretion of IL-1α from D39-infected macrophages. Moreover, we found that PLY plays a critical role in calcium influx and calpain activation, as elevated intracellular calcium levels and the degradation of the calpain substrate α-fodrin were detected in macrophages infected with D39 but not the Δ ply strain. These results suggested that PLY induces the influx of calcium in S. pneumoniae -infected macrophages, followed by calpain activation and subsequent IL-1α maturation and secretion. Copyright © 2017 American Society for Microbiology.

  2. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.

    PubMed

    Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta

    2017-07-04

    Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.

  3. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis

    PubMed Central

    Lefèvre, Lise; Authier, Hélène; Stein, Sokrates; Majorel, Clarisse; Couderc, Bettina; Dardenne, Christophe; Eddine, Mohamad Ala; Meunier, Etienne; Bernad, José; Valentin, Alexis; Pipy, Bernard; Schoonjans, Kristina; Coste, Agnès

    2015-01-01

    Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis. PMID:25873311

  4. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro

    PubMed Central

    Bonaterra, Gabriel A.; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf

    2017-01-01

    Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity. PMID:28294970

  5. Viral Infection of Human Lung Macrophages Increases PDL1 Expression via IFNβ

    PubMed Central

    Staples, Karl J.; Nicholas, Ben; McKendry, Richard T.; Spalluto, C. Mirella; Wallington, Joshua C.; Bragg, Craig W.; Robinson, Emily C.; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M. A.

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production. PMID:25775126

  6. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    PubMed

    Staples, Karl J; Nicholas, Ben; McKendry, Richard T; Spalluto, C Mirella; Wallington, Joshua C; Bragg, Craig W; Robinson, Emily C; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M A

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  7. Early Secreted Antigenic Target of 6 kDa of Mycobacterium tuberculosis Stimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4.

    PubMed

    Ma, J; Jung, B-G; Yi, N; Samten, B

    2016-07-01

    Early secreted antigenic target of 6 kDa (ESAT-6), the major virulence factor of Mycobacterium tuberculosis, affects host immunity and the formation of granulomas likely through inflammatory cytokines. To understand its role in this regard further, we investigated the effect of ESAT-6 on macrophages by determining the production of macrophage chemoattractant protein (MCP)-1, a major chemokine associated with tuberculosis pathogenesis, by murine bone marrow-derived macrophages (BMDMs) and its regulation by protein kinases and cytokines. The results revealed that ESAT-6, but not Ag85A and culture filtrate protein 10 kDa (CFP10), induced MCP-1 production by BMDMs dose and time dependently. Inhibition of p38 but not other mitogen-activated protein kinases (MAPK) and PI3K further enhanced ESAT-6-induced MCP-1 production by BMDMs. Inhibition of p38 MAPK enhanced ESAT-6-induced MCP-1 mRNA accumulation without affecting mRNA stability. ESAT-6 also induced TNF-α from BMDMs and MCP-1 from mouse lung epithelial cells, and these were suppressed by p38 MAPK inhibition, implying cytokine- and cell-specific effect of p38 MAPK inhibition on ESAT-6-induced MCP-1 by macrophages. Pretreatment of BMDMs with IL-4, but not other cytokines (IL-2, IL-10, TNF-α, IFN-γ and IL-1α) further elevated ESAT-6-stimulated MCP-1 production although IL-4 did not induce MCP-1 without ESAT-6. Both p38 MAPK inhibitor and IL-4 did not show additive effect on ESAT-6-induced MCP-1 protein level despite such effect on MCP-1 mRNA level was evident. In conclusion, these results indicate a specific role for both p38 MAPK and IL-4 in ESAT-6-induced MCP-1 production by macrophages and suggest a pathway with significance in tuberculosis pathogenesis. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  8. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity.

    PubMed

    Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2018-11-01

    Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.

  9. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    PubMed

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  10. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    PubMed

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  11. Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: Role of fluoxetine.

    PubMed

    Ghosh, Sayan; Mukherjee, Sudeshna; Choudhury, Sreetama; Gupta, Payal; Adhikary, Arghya; Baral, Rathindranath; Chattopadhyay, Sreya

    2015-07-01

    Macrophages are projected as one of the key players responsible for the progression of cancer. Classically activated (M1) macrophages are pro-inflammatory and have a central role in host defense, while alternatively activated (M2) macrophages are associated with immunosuppression. Macrophages residing at the site of neoplastic growth are alternately activated and are referred to as tumor-associated macrophages (TAMs). These "cooperate" with tumor tissue, promoting increased proliferation and immune escape. Selective serotonin reuptake inhibitors like fluoxetine have recently been reported to possess anti-inflammatory activity. We used fluoxetine to target tumor-associated inflammation and consequent alternate polarization of macrophages. We established that murine peritoneal macrophages progressed towards an altered activation state when exposed to cell-free tumor fluid, as evidenced by increased IL-6, IL-4 and IL-10 levels. These polarized macrophages showed significant pro-oxidant bias and increased p65 nuclear localization. It was further observed that these altered macrophages could induce oxidative insult and apoptosis in cultured mouse CD3(+) T cells. To validate these findings, we replicated key experiments in vivo, and observed that there was increased serum IL-6, IL-4 and IL-10 in tumor-bearing animals, with increased % CD206(+) cells within the tumor niche. TAMs showed increased nuclear localization of p65 with decreased Nrf2 expression in the nucleus. These results were associated with increase in apoptosis of CD3(+) T cells co-cultured with TAM-spent media. We could establish that fluoxetine treatment could specifically re-educate the macrophages both in vitro and in vivo by skewing their phenotype such that immune suppression mediated by tumor-dictated macrophages was successfully mitigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    PubMed

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  13. Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro

    PubMed Central

    Heinrich, Franziska; Lehmbecker, Annika; Raddatz, Barbara B.; Kegler, Kristel; Tipold, Andrea; Stein, Veronika M.; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-01-01

    Macrophages are a heterogeneous cell population playing a pivotal role in tissue homeostasis and inflammation, and their phenotype strongly depends on the micromilieu. Despite its increasing importance as a translational animal model for human diseases, there is a considerable gap of knowledge with respect to macrophage polarization in dogs. The present study comprehensively investigated the morphologic, phenotypic, and transcriptomic characteristics of unstimulated (M0), M1- (GM-CSF, LPS, IFNγ-stimulated) and M2- (M-CSF, IL-4-stimulated)-polarized canine blood-derived macrophages in vitro. Scanning electron microscopy revealed distinct morphologies of polarized macrophages with formation of multinucleated cells in M2-macrophages, while immunofluorescence employing literature-based prototype-antibodies against CD16, CD32, iNOS, MHC class II (M1-markers), CD163, CD206, and arginase-1 (M2-markers) demonstrated that only CD206 was able to discriminate M2-macrophages from both other phenotypes, highlighting this molecule as a promising marker for canine M2-macrophages. Global microarray analysis revealed profound changes in the transcriptome of polarized canine macrophages. Functional analysis pointed out that M1-polarization was associated with biological processes such as “respiratory burst”, whereas M2-polarization was associated with processes such as “mitosis”. Literature-based marker gene selection revealed only minor overlaps in the gene sets of the dog compared to prototype markers of murine and human macrophages. Biomarker selection using supervised clustering suggested latexin (LXN) and membrane-spanning 4-domains, subfamily A, member 2 (MS4A2) to be the most powerful predicting biomarkers for canine M1- and M2-macrophages, respectively. Immunofluorescence for both markers demonstrated expression of both proteins by macrophages in vitro but failed to reveal differences between canine M1 and M2-macrophages. The present study provides a solid basis for

  14. Macrophages under pressure: the role of macrophage polarization in hypertension.

    PubMed

    Harwani, Sailesh C

    2018-01-01

    Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Role of the Lipoxygenase Pathway in RSV-induced Alternatively Activated Macrophages Leading to Resolution of Lung Pathology

    PubMed Central

    Shirey, Kari Ann; Lai, Wendy; Pletneva, Lioubov M.; Karp, Christopher L.; Divanovic, Senad; Blanco, Jorge C. G.; Vogel, Stefanie N.

    2013-01-01

    Resolution of severe RSV-induced bronchiolitis is mediated by alternatively activated macrophages (AA-Mϕ) that counteract cyclooxygenase (COX)-2-induced lung pathology. Herein, we report that RSV infection of 5-lipoxygenase (LO)−/− and 15-LO−/− macrophages or mice failed to elicit AA-Mϕ differentiation and concomitantly exhibited increased COX-2 expression. Further, RSV infection of 5-LO−/− mice resulted in enhanced lung pathology. Pharmacologic inhibition of 5-LO or 15-LO also blocked differentiation of RSV-induced AA-Mϕ in vitro and, conversely, treatment of 5-LO−/− macrophages with downstream products, lipoxin A4 (LXA4) and resolvin E1 (RvE1), but not leukotriene B4 (LTB4) or LTD4, partially restored expression of AA-Mϕ markers. Indomethacin blockade of COX activity in RSV-infected macrophages increased 5-LO, and 15-LO, as well as arginase-1 mRNA expression. Treatment of RSV-infected mice with indomethacin also resulted not only in enhanced lung arginase-1 mRNA expression and decreased COX-2, but also, decreased lung pathology in RSV-infected 5-LO−/− mice. Treatment of RSV-infected cotton rats with a COX-2-specific inhibitor resulted in enhanced lung 5-LO mRNA and AA-Mϕ marker expression. Together, these data suggest a novel therapeutic approach for RSV that promotes AA-Mϕ differentiation by activating the 5-LO pathway. PMID:24064666

  16. [Molecular mechanisms and relationship of M2-polarized macrophages with early response in multiple myeloma].

    PubMed

    Chen, X Y; Sun, R X; Zhang, W Y; Liu, T; Zheng, Y H; Wu, Y

    2017-06-14

    Objective: To investigate the relationship between M2-polarized macrophages and early response in multiple myeloma and its molecular mechanism. Methods: Two hundred and forty bone marrow biopsy tissue were collected and M2-polarized macrophages were stained by anti-CD163 monoclonal antibody. In vitro M2-polarized macrophages were derived from human peripheral blood mononuclear cell or THP-1 cells and identified by flow cytometry. Two myeloma cell lines RPMI 8226 and U266 were co-cultured with M2 macrophages using a transwell system. We measured myeloma cells proliferation through CCK-8 method and the pro-inflammatory cytokines expression (TNF-α and IL-6) by ELISA. Real time PCR was applied to measure chemokines (CCL2 and CCL3) , chemokine receptors (CCR2, CCR5) , VEGF and their receptors. In addition, flow cytometry was used to analyze the apoptosis of myeloma cells induced by dexamethasone. Results: ①Patients with high percentage of M2 macrophage involvement in bone marrow showed poorer response (23.9% versus 73.0%, χ (2)=60.31, P <0.001). ② In vitro the proliferation of RPMI 8226 cells ( P =0.005 at 24 h, P =0.020 at 36 h) or U266 myeloma cells ( P = 0.030 at 24h, P =0.020 at 36h) co-cultured with M2-polarized macrophages was higher than control group. ③In vitro the apoptotic rate of RPMI 8226 cells (29.0% versus 71.0%, t =4.97, P =0.008) or U266 myeloma cells (24.9% versus 67.7%, t =6.99, P =0.002) co-cultured with M2-polarized macrophages was lower than control group. ④ In vitro M2-polarized macrophages promoted myeloma cells secreting higher level of IL-6, TNF-α and higher expression of CCL2, CCL3, CCR2, CCR5, VEGFA, VEGFR-1,-2 compared with the non-macrophage co-culture system. Conclusion: M2-polarized macrophages promote myeloma cells proliferation and inhibit apoptosis through a very complex mechanism involving pro-inflammatory cytokines IL-6 and TNF-α, chemokines and related receptors such as CCL2, CCL3, CCR2, CCR3, and VEGF as well as related

  17. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in

  18. Effects of Thalidomide on Intracellular Mycobacterium leprae in Normal and Activated Macrophages

    PubMed Central

    Tadesse, A.; Shannon, E. J.

    2005-01-01

    Thalidomide is an effective drug for the treatment of erythema nodosum leprosum (ENL). ENL is an inflammatory reaction that may occur in multibacillary leprosy patients. Its cause(s) as well as the mechanism of thalidomide in arresting this condition are not fully understood. It has been suggested that ENL is an immune complex-mediated hypersensitivity precipitated by the release of Mycobacterium leprae from macrophages. The released antigen may complex with precipitating antibodies, initiating complement fixation and the production of inflammatory cytokines like tumor necrosis factor alpha (TNF-α). Thalidomide has been shown in vitro to reduce antigen- or mitogen-activated macrophage production of TNF-α. We investigated if thalidomide could also influence the viability of intracellular M. leprae. Mouse peritoneal macrophages were infected with M. leprae, activated with gamma interferon and endotoxin, or nonactivated, and treated with thalidomide. Intracellular bacilli were recovered, and metabolic activity was assessed by a radiorespirometric procedure. Thalidomide did not possess antimicrobial action against M. leprae in normal and activated host macrophages. This suggests that thalidomide does not retard the release of mycobacterial antigens, a possible prelude or precipitating factor for ENL. A distinct sequence of events explaining the mechanism of action for thalidomide's successful treatment of ENL has yet to be established. PMID:15642997

  19. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia.

    PubMed

    Feng, Q; Xu, M; Yu, Y Y; Hou, Y; Mi, X; Sun, Y X; Ma, S; Zuo, X Y; Shao, L L; Hou, M; Zhang, X H; Peng, J

    2017-09-01

    Essentials M1/M2 imbalance is involved in many autoimmune diseases, and could be restored. The expressions and functions of M1 and M2 were investigated in an in vitro culture system. A preferred M1 polarization is involved in the pathogenesis of immune thrombocytopenia (ITP). High-dose dexamethasone or all-trans-retinoic acid restores M1/M2 balance in ITP patients. Background Immune thrombocytopenia (ITP) is an autoimmune disorder. Deficiency of immune tolerance in antigen-presenting cells and cross-communication between antigen-presenting cells and T cells are involved in the pathogenesis of ITP. Macrophages can polarize into proinflammatory M1 or anti-inflammatory M2 phenotypes in response to different environmental stimuli, and have diverse immunologic functions. Objectives To investigate the M1/M2 imbalance in ITP and whether high-dose dexamethasone (HD-DXM) or all-trans-retinoic acid (ATRA) could restore this imbalance. Methods The numbers of M1 and M2 macrophages in the spleens of ITP patients and patients with traumatic spleen rupture were analyzed by immunofluorescence. Monocyte-derived macrophages were cultured and induced with cytokines and drugs. The expression of M1 and M2 markers and functions of M1 and M2 macrophages before and after modulation by HD-DXM or ATRA were evaluated with flow cytometry and ELISA. Results There was preferred M1 polarization in ITP spleens as compared with healthy controls. Monocyte-derived macrophages from ITP patients had increased expression of M1 markers and impaired immunosuppressive functions. Either HD-DXM or ATRA corrected this imbalance by decreasing the expression of M1 markers and increasing the expression of M2 markers. Moreover, HD-DXM-modulated or ATRA-modulated macrophages suppressed both CD4 + and CD8 + T-cell proliferation and expanded CD4 + CD49 + LAG3 + type 1 T-regulatory cells. HD-DXM or ATRA modulated macrophages to shift the T-cell cytokine profile towards Th2. Treating patients with HD-DXM or ATRA

  20. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    PubMed

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  1. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    PubMed Central

    Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo

    2018-01-01

    Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865

  2. BCL6 mediates the effects of Gastrodin on promoting M2-like macrophage polarization and protecting against oxidative stress-induced apoptosis and cell death in macrophages.

    PubMed

    Jia, Jing; Shi, Xiaojie; Jing, Xiaoqian; Li, Jianguo; Gao, Jie; Liu, Mengya; Lin, Chi-Iou; Guo, Xinzhi; Hua, Qian

    2017-04-29

    Cerebral palsy (CP) is the most common childhood disability worldwide, yet biomarkers for predicting CP are lacking. By subjecting peripheral blood samples from 62 CP patients and 30 healthy controls to Affymetrix GeneChip ® PrimeView™ HumanGene Expression Microarray analysis, we identified the novel biomarker B-cell lymphoma 6 (BCL6) as the most upregulated gene in the CP samples. Gastrodin is a traditional Chinese medicine and bioactive compound that promotes adductor angle release, as well as gross and fine motor performance by increasing Gross Motor Function Measure-66 and Fine Motor Function Measure-45 scores. Gastrodin upregulates the mRNA expression of Mgl2 and Mrc1, M2 macrophage markers, and arginase activity, an M2 polarization indicator, in murine RAW264.7 macrophages. Moreover, these effects were blocked by BCL6 siRNA, which also abrogated the protective effects of Gastrodin against hydrogen peroxide-induced apoptosis and death in RAW264.7 cells. Our work identified BCL6 as a novel biomarker for early prediction of CP. Moreover, we demonstrated that Gastrodin not only stimulated polarization toward M2-like macrophages, which promote tissue repair, but also rescued macrophages from oxidative stress, apoptosis and death by inducing BCL6 expression. BCL6-targeted therapeutic strategies have promise for improving motor performance in CP patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of Pfaffia paniculata (Brazilian ginseng) extract on macrophage activity.

    PubMed

    Pinello, Kátia Cristina; Fonseca, Evelise de S M; Akisue, Gokithi; Silva, Ana Paula; Salgado Oloris, Silvia Catarina; Sakai, Mônica; Matsuzaki, Patrícia; Nagamine, Márcia Kazumi; Palermo Neto, João; Dagli, Maria Lúcia Zaidan

    2006-02-16

    The roots of Pfaffia paniculata (Brazilian ginseng) have been indicated for the treatment of several diseases and as an analgesic and antiinflamatory drug. Treatment of mice with 200 mg/kg of the powdered root of P. paniculata reduced the Ehrlich ascitic volume [Matsuzaki, P., Akisue, G., Salgado Oloris, S.C., Gorniak, S.L., Zaidan Dagli, M.L., 2003. Effect of Pffafia paniculata (Brazilian ginseng) on the Ehrlich tumor on its ascitic form. Life Sciences, Dec 19; 74 (5), 573-579.]. One of the putative means to control the Ehrlich tumor growth is by increasing macrophage activity [Kleeb, S.R., Xavier, J.G., Frussa-Filho, R., Dagli, M.L.Z., 1997. Effect of haloperidol on the development of the solid Ehrlich tumor in mice. Life Sciences, 60 (4/5), 69-742.]. The aim of this study was to investigate experimentally the effects of the methanolic extract of P. paniculata roots on macrophage activity. Male mice received, by gavage, once a day, different doses (100, 250, or 500 mg/kg) of the methanolic extract of P. paniculata or filtered water, as control, for 10 days. Macrophage activity was evaluated through the phagocytosis index (PI), spreading index (SI), production of peroxide oxigen and nitric oxide. The peritoneal cells were activated with ip inoculation of Ehrlich ascitic cells, 24 h before the macrophage harvesting. The methanolic extract raised significantly the SI of mice from group of 500 mg/kg in comparison with the control group and group of 100 mg/kg. This raise of SI possibly induced the higher phagocytic activity observed in the experimental situation. Increased macrophage activity may be one of the effects contributing to inhibition of the Ehrlich ascitic tumor growth in mice.

  4. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  5. Stem bromelain-induced macrophage apoptosis and activation curtail Mycobacterium tuberculosis persistence.

    PubMed

    Mahajan, Sahil; Chandra, Vemika; Dave, Sandeep; Nanduri, Ravikanth; Gupta, Pawan

    2012-08-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, has a remarkable ability to usurp its host's innate immune response, killing millions of infected people annually. One approach to manage infection is prevention through the use of natural agents. In this regard, stem bromelain (SBM), a pharmacologically active member of the sulfhydryl proteolytic enzyme family, obtained from Ananas comosus and possessing a remarkable ability to induce the innate and acquired immune systems, is important. We evaluated SBM's ability to induce apoptosis and free-radical generation in macrophages. We also studied antimycobacterial properties of SBM and its effect on foamy macrophages. SBM treatment of peritoneal macrophages resulted in the upregulation of proapoptotic proteins and downregulation of antiapoptotic proteins. Additionally, SBM treatment activated macrophages, curtailed the levels of free glutathione, and augmented the production of hydrogen peroxide, superoxide anion, peroxynitrite, and nitric oxide. SBM cleaves CD36 and reduced the formation of foam cells, the hallmark of M. tuberculosis infection. These conditions created an environment for the increased clearance of M. tuberculosis. Together these data provide a mechanism for antimycobacterial activity of SBM and provide important insights for the use of cysteine proteases as immunomodulatory agents.

  6. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophagesmore » isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested

  7. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  8. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling.

    PubMed

    Li, Chen-Guang; Yan, Liang; Jing, Yan-Yun; Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-03

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.

  9. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia.

    PubMed

    Liu, Xiangrong; Liu, Jia; Zhao, Shangfeng; Zhang, Haiyue; Cai, Wei; Cai, Mengfei; Ji, Xunming; Leak, Rehana K; Gao, Yanqin; Chen, Jun; Hu, Xiaoming

    2016-02-01

    Interleukin-4 (IL-4) is a unique cytokine that may contribute to brain repair by regulating microglia/macrophage functions. Thus, we examined the effect of IL-4 on long-term recovery and microglia/macrophage polarization in 2 well-established stroke models. Transient middle cerebral artery occlusion or permanent distal middle cerebral artery occlusion was induced in wild-type and IL-4 knockout C57/BL6 mice. In a separate cohort of wild-type animals, IL-4 (60 ng/d for 7 days) or vehicle was infused into the cerebroventricle after transient middle cerebral artery occlusion. Behavioral outcomes were assessed by the Rotarod, corner, foot fault, and Morris water maze tests. Neuronal tissue loss was verified by 2 independent neuron markers. Markers of classically activated (M1) and alternatively activated (M2) microglia were assessed by real-time polymerase chain reaction, immunofluorescence, and flow cytometry. Loss of IL-4 exacerbated sensorimotor deficits and impaired cognitive functions ≤21 days post injury. In contrast to the delayed deterioration of neurological functions, IL-4 deficiency increased neuronal tissue loss only in the acute phase (5 days) after stroke and had no impact on neuronal tissue loss 14 or 21 days post injury. Loss of IL-4 promoted expression of M1 microglia/macrophage markers and impaired expression of M2 markers at 5 and 14 days post injury. Administration of IL-4 into the ischemic brain also enhanced long-term functional recovery. The cytokine IL-4 improves long-term neurological outcomes after stroke, perhaps through M2 phenotype induction in microglia/macrophages. These results are the first to suggest that immunomodulation with IL-4 is a promising approach to promote long-term functional recovery after stroke. © 2016 American Heart Association, Inc.

  10. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  11. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed Central

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W.; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  12. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  13. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.

  14. Mast Cell and M1 Macrophage Infiltration and Local Pro-Inflammatory Factors Were Attenuated with Incretin-Based Therapies in Obesity-Related Glomerulopathy.

    PubMed

    He, Jiao; Yuan, Geheng; Cheng, Fangxiao; Zhang, Junqing; Guo, Xiaohui

    2017-09-01

    The global increase of obesity parallels the obesity-related glomerulopathy (ORG) epidemic. Dipeptidyl peptidase 4 inhibitors and glucagon-like peptide-1 receptor agonists were well recognized to attenuate renal injury independent of glucose control in diabetic nephropathy. There are limited studies focusing on their effects on ORG. We explored the effects of incretin-based therapies on early ORG and the inflammatory responses involved mainly concentrated on mast cell (MC) and macrophage (M) infiltration and local pro-inflammatory factors. ORG rat models were induced by high-fat diet and then divided into ORG vehicle, vildagliptin (3 mg/kg/day, qd) and liraglutide (200 μg/kg, bid) treated groups. After 8 weeks of treatments, albuminuria, glomerular histology, renal inflammatory cell infiltration, and pro-inflammatory factors were analyzed. Early ORG model was demonstrated by albuminuria, glomerulomegaly, foot process fusion, and mesangial and endothelial mild proliferation. Incretin-based therapies limited body weight gain and improved insulin sensitivity. ORG was alleviated, manifested by decreased average glomerular area, attenuated mesangial and endothelial cell proliferation, and revived cell-to-cell propagation of podocytes, which contributed to reduced albuminuria. Compared with ORG vehicle, MC and M1 macrophage (pro-inflammatory) infiltration and M1/M2 ratio were significantly decreased; M2 macrophage (anti-inflammatory) was not significantly increased after incretin-based treatments. Tumor necrosis factor-α (TNF-α) and IL-6 in renal cortex were significantly downregulated, while transforming growth factor-β1 (TGF-β1) remained unchanged. Incretin-based treatments could alleviate high-fat diet-induced ORG partly through the systemic insulin sensitivity improvement and the attenuated local inflammation, mainly by the decrease of MC and M1 macrophage infiltration and reduction of TNF-α and IL-6.

  15. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    PubMed

    Kim, Eun-Min; Kwak, You Shine; Yi, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok; Yong, Tai-Soon

    2017-05-01

    Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  16. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo

    PubMed Central

    Kim, Eun-Min; Kwak, You Shine; YI, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok

    2017-01-01

    Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection. PMID:28542159

  17. Translocator protein as an imaging marker of macrophage and stromal activation in RA pannus.

    PubMed

    Narayan, Nehal; Owen, David; Mandhair, Harpreet; Smyth, Erica; Carlucci, Francesco; Saleem, Azeem; Gunn, Roger; Rabiner, Eugenii Ilan A; Wells, Lisa; Dakin, Stephanie; Sabokbar, Afsie; Taylor, Peter

    2018-01-04

    Positron Emission Tomography (PET) radioligands targeted to Translocator protein (TSPO), offer a highly sensitive and specific means of imaging joint inflammation in rheumatoid arthritis (RA). Through high expression of TSPO on activated macrophages, TSPO PET has been widely reported in several studies of RA as a means of imaging synovial macrophages in vivo. However, this premise does not take into account the ubiquitous expression of TSPO. This study aimed to investigate TSPO expression in major cellular constituents of RA pannus; monocytes, macrophages, fibroblast-like synoviocytes (FLS) and CD4+ T lymphocytes, to more accurately interpret TSPO PET signal from RA synovium. Methods: 3 RA patients and 3 healthy volunteers underwent PET both knees using the TSPO radioligand 11 C-PBR28. Through synovial tissue 3H-PBR28 autoradiography and immunostaining of 6 RA patients and 6 healthy volunteers, cellular expression of TSPO in synovial tissue was evaluated. TSPO mRNA expression and 3H-PBR28 radioligand binding was assessed using in vitro monocytes, macrophages, FLS and CD4+ T-lymphocytes. Results: 11 C-PBR28 PET signal was significantly higher in RA compared to healthy joints (average SUV 0.82± 0.12 compared to 0.03± 0.004 respectively, p<0.01). Further, 3H-PBR28 specific binding in synovial tissue was approximately 10-fold higher in RA compared to healthy controls. Immunofluorescence revealed TSPO expression on macrophages, FLS and CD4+ T cells. In vitro study demonstrated highest TSPO mRNA expression and 3H-PBR28 specific binding, in activated FLS, non-activated and activated 'M2' reparative macrophages, with least TSPO expression in activated and non-activated CD4+ T lymphocytes. Conclusion: This study is the first evaluation of cellular TSPO expression in synovium, finding highest TSPO expression and PBR28 binding on activated synovial FLS and M2 phenotype macrophages. TSPO targeted PET may therefore have unique sensitivity to detect FLS and macrophage

  18. Macrophage Activation Syndrome.

    PubMed

    Ravelli, Angelo; Davì, Sergio; Minoia, Francesca; Martini, Alberto; Cron, Randy Q

    2015-10-01

    Macrophage activation syndrome (MAS) is a potentially life-threatening complication of rheumatic disorders that occurs most commonly in systemic juvenile idiopathic arthritis. In recent years, there have been several advances in the understanding of the pathophysiology of MAS. Furthermore, new classification criteria have been developed. Although the place of cytokine blockers in the management of MAS is still unclear, interleukin-1 inhibitors represent a promising adjunctive therapy, particularly in refractory cases. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    PubMed

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  20. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes

    NASA Astrophysics Data System (ADS)

    Qie, Yaqing; Yuan, Hengfeng; von Roemeling, Christina A.; Chen, Yuanxin; Liu, Xiujie; Shih, Kevin D.; Knight, Joshua A.; Tun, Han W.; Wharen, Robert E.; Jiang, Wen; Kim, Betty Y. S.

    2016-05-01

    Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.

  1. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages

    PubMed Central

    Mancini, Giacomo; Rey, Alejandro Aparisi; Cardinal, Pierre; Tedesco, Laura; Zingaretti, Cristina Maria; Sassmann, Antonia; Quarta, Carmelo; Schwitter, Claudia; Conrad, Andrea; Wettschureck, Nina; Vemuri, V. Kiran; Makriyannis, Alexandros; Hartwig, Jens; Mendez-Lago, Maria; Monory, Krisztina; Giordano, Antonio; Cinti, Saverio; Marsicano, Giovanni; Offermanns, Stefan; Pagotto, Uberto; Cota, Daniela

    2017-01-01

    Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1–KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1–KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot–specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1–KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role. PMID:29035280

  2. Tissue Inhibitor of Metalloproteinases–3 Moderates the Proinflammatory Status of Macrophages

    PubMed Central

    Gharib, Sina A.; Bench, Eli M.; Sussman, Samuel W.; Wang, Roy T.; Rims, Cliff; Birkland, Timothy P.; Wang, Ying; Manicone, Anne M.; McGuire, John K.; Parks, William C.

    2013-01-01

    Tissue inhibitor of metalloproteinases–3 (TIMP-3) has emerged as a key mediator of inflammation. Recently, we reported that the resolution of inflammation is impaired in Timp3−/− mice after bleomycin-induced lung injury. Here, we demonstrate that after LPS instillation (another model of acute lung injury), Timp3−/− mice demonstrate enhanced and persistent neutrophilia, increased numbers of infiltrated macrophages, and delayed weight gain, compared with wild-type (WT) mice. Because macrophages possess broad immune functions and can differentiate into cells that either stimulate inflammation (M1 macrophages) or are immunosuppressive (M2 macrophages), we examined whether TIMP-3 influences macrophage polarization. Comparisons of the global gene expression of unstimulated or LPS-stimulated bone marrow–derived macrophages (BMDMs) from WT and Timp3−/− mice revealed that Timp3−/− BMDMs exhibited an increased expression of genes associated with proinflammatory (M1) macrophages, including Il6, Il12, Nos2, and Ccl2. Microarray analyses also revealed a baseline difference in gene expression between WT and Timp3−/− BMDMs, suggesting altered macrophage differentiation. Furthermore, the treatment of Timp3−/− BMDMs with recombinant TIMP-3 rescued this altered gene expression. We also examined macrophage function, and found that Timp3−/− M1 cells exhibit significantly more neutrophil chemotactic activity and significantly less soluble Fas ligand–induced caspase-3/7 activity, a marker of apoptosis, compared with WT M1 cells. Macrophage differentiation into immunosuppressive M2 cells is mediated by exposure to IL-4/IL-13, and we found that Timp3−/− M2 macrophages demonstrated a lower expression of genes associated with an anti-inflammatory phenotype, compared with WT M2 cells. Collectively, these findings indicate that TIMP-3 functions to moderate the differentiation of macrophages into proinflammatory (M1) cells. PMID:23742180

  3. RRx-001: a systemically non-toxic M2-to-M1 macrophage stimulating and prosensitizing agent in Phase II clinical trials.

    PubMed

    Oronsky, Bryan; Paulmurugan, Ramasamy; Foygel, Kira; Scicinski, Jan; Knox, Susan J; Peehl, Donna; Zhao, Hongjuan; Ning, Shoucheng; Cabrales, Pedro; Summers, Thomas A; Reid, Tony R; Fitch, William L; Kim, Michelle M; Trepel, Jane B; Lee, Min-Jung; Kesari, Santosh; Abrouk, Nacer D; Day, Regina M; Oronsky, Arnold; Ray, Carolyn M; Carter, Corey A

    2017-01-01

    According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes. Areas covered: This article summarizes the characteristics of the macrophage-stimulating agent RRx-001, a molecular iconoclast, sourced from the aerospace industry, with a particular emphasis on the cell-to-cell transfer mechanism of action (RBCs to TAMs) underlying its antitumor activity as well as its chemo and radioprotective properties, consolidated from various preclinical and clinical studies. Expert opinion: RRx-001 is macrophage-stimulating agent with the potential to synergize with chemotherapy, radiotherapy and immunotherapy while simultaneously protecting normal tissues from their cytotoxic effects. Given the promising indications of activity in multiple tumor types and these normal tissue protective properties, RRx-001 may be used to treat a broad spectrum of malignancies, if it is approved in the future.

  4. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  5. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression

    PubMed Central

    Zhou, Zhong'e; Tang, Yong; Chen, Chengjun; Lu, Yi; Liu, Liang

    2016-01-01

    Advanced glycation end products (AGEs) are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) mRNA expression, RAGE expression, and NFκB activation; (2) metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while promoting CD206 (M2 marker) surface expression and anti-inflammatory cytokine (IL-10) mRNA expression; and (3) the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. PMID:27761470

  6. CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy.

    PubMed

    Huang, Zhen-Zhen; Li, Dai; Liu, Cui-Cui; Cui, Yu; Zhu, He-Quan; Zhang, Wen-Wen; Li, Yong-Yong; Xin, Wen-Jun

    2014-08-01

    Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. Paclitaxel treatment also increased cleaved caspase-3 expression, induced the loss of primary afferent terminal fibers and decreased sciatic-evoked A-fiber responses in the spinal dorsal horn, indicating DRG neuronal apoptosis induced by paclitaxel. In addition, the paclitaxel-induced DRG neuronal apoptosis occurred exclusively in the presence of macrophage in vitro study. Intrathecal or systemic injection of CX3CL1 neutralizing antibody blocked paclitaxel-induced macrophage recruitment and neuronal apoptosis in the DRG, and also attenuated paclitaxel-induced allodynia. Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2D in macrophages

    PubMed Central

    Han, Xiaobin; Li, Linqiang; Yang, Jiancheng; King, Gwendalyn; Xiao, Zhousheng; Quarles, Leigh Darryl

    2016-01-01

    Mechanisms underlying the association between fibroblastic growth factor 23 (FGF-23) and inflammation are uncertain. We found that FGF-23 was markedly up-regulated in LPS/INF-γ-induced proinflammatory M1 macrophages and Hyp mouse-derived peritoneal macrophages, but not in IL-4-induced M2 anti-inflammatory macrophages. NF-κB and JAK/STAT1 pathways mediated the increased transcription of FGF-23 in response to M1 polarization. FGF-23 stimulated TNF-α, but not IL-6, expression in M0 macrophages and suppressed Arginase-1 expression in M2 macrophages through FGFR-mediated mechanisms. 1,25(OH)2D stimulated Arginase-1 expression and inhibited FGF-23 stimulation of TNF-α. FGF-23 has proinflammatory paracrine functions and counter-regulatory actions to 1,25(OH)2D on innate immune responses. PMID:26762170

  8. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  9. Riboflavin deprivation inhibits macrophage viability and activity - a study on the RAW 264.7 cell line.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Buchala, Beata; Plytycz, Barbara

    2013-08-28

    Riboflavin, or vitamin B2, as a precursor of the coenzymes FAD and FMN, has an indirect influence on many metabolic processes and determines the proper functioning of several systems, including the immune system. In the human population, plasma riboflavin concentration varies from 3·1 nM (in a moderate deficiency, e.g. in pregnant women) to 10·4 nM (in healthy adults) and 300 nM (in cases of riboflavin supplementation). The purpose of the present study was to investigate the effects of riboflavin concentration on the activity and viability of macrophages, i.e. on one of the immunocompetent cell populations. The study was performed on the murine monocyte/macrophage RAW 264.7 cell line cultured in medium with various riboflavin concentrations (3·1, 10·4, 300 and 531 nM). The results show that riboflavin deprivation has negative effects on both the activity and viability of macrophages and reduces their ability to generate an immune response. Signs of riboflavin deficiency developed in RAW 264.7 cells within 4 d of culture in the medium with a low riboflavin concentration (3·1 nM). In particular, the low riboflavin content reduced the proliferation rate and enhanced apoptotic cell death connected with the release of lactate dehydrogenase. The riboflavin deprivation impaired cell adhesion, completely inhibited the respiratory burst and slightly impaired phagocytosis of the zymosan particles. In conclusion, macrophages are sensitive to riboflavin deficiency; thus, a low riboflavin intake in the diet may affect the immune system and may consequently decrease proper host immune defence.

  10. Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for 18F FDG PET Imaging of Vessel Wall Inflammation

    PubMed Central

    Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.

    2017-01-01

    Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433

  11. Characterization of Macrophage/Microglial Activation and Effect of Photobiomodulation in the Spared Nerve Injury Model of Neuropathic Pain.

    PubMed

    Kobiela Ketz, Ann; Byrnes, Kimberly R; Grunberg, Neil E; Kasper, Christine E; Osborne, Lisa; Pryor, Brian; Tosini, Nicholas L; Wu, Xingjia; Anders, Juanita J

    2017-05-01

    Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Photobiomodulation effectively reduced

  12. Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis.

    PubMed

    Gleissner, Christian A

    2012-01-01

    During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate toward macrophages and foam cells. The major driver of monocyte-macrophage differentiation is macrophage colony-stimulating factor (M-CSF). M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 also prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe(-/-) mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology, and functional in vitro and ex vivo experiments. Our data indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced counterparts and other known macrophage polarizations like M1 macrophages (induced by lipopolysaccharide and interferon-gamma) or M2 macrophages (induced by interleukin-4). CXCL4-induced macrophages have distinct phenotypic and functional characteristics, e.g., the complete loss of the hemoglobin-haptoglobin (Hb-Hp) scavenger receptor CD163 which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme oxygenase-1 in response to Hb-Hp complexes. This review covers the current knowledge about CXCL4-induced macrophages. Based on their unique properties, we have suggested to call these macrophages "M4." CXCL4 may represent an important orchestrator of macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on macrophage differentiation may help to

  13. Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis

    PubMed Central

    Gleissner, Christian A.

    2011-01-01

    During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate toward macrophages and foam cells. The major driver of monocyte–macrophage differentiation is macrophage colony-stimulating factor (M-CSF). M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 also prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe−/− mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology, and functional in vitro and ex vivo experiments. Our data indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced counterparts and other known macrophage polarizations like M1 macrophages (induced by lipopolysaccharide and interferon-gamma) or M2 macrophages (induced by interleukin-4). CXCL4-induced macrophages have distinct phenotypic and functional characteristics, e.g., the complete loss of the hemoglobin–haptoglobin (Hb–Hp) scavenger receptor CD163 which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme oxygenase-1 in response to Hb–Hp complexes. This review covers the current knowledge about CXCL4-induced macrophages. Based on their unique properties, we have suggested to call these macrophagesM4.” CXCL4 may represent an important orchestrator of macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on macrophage differentiation may

  14. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling.

    PubMed

    Arya, Subhash B; Kumar, Gaurav; Kaur, Harmeet; Kaur, Amandeep; Tuli, Amit

    2018-06-22

    A DP- r ibosylation factor- l ike GTPase 11 ( ARL11 ) is a cancer-predisposing gene that has remained functionally uncharacterized to date. In this study, we report that ARL11 is endogenously expressed in mouse and human macrophages and regulates their activation in response to lipopolysaccharide (LPS) stimulation. Accordingly, depletion of ARL11 impaired both LPS-stimulated pro-inflammatory cytokine production by macrophages and their ability to control intracellular replication of Salmonella. LPS-stimulated activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was substantially compromised in Arl11 -silenced macrophages. In contrast, increased expression of ARL11 led to constitutive ERK1/2 phosphorylation, resulting in macrophage exhaustion. Finally, we found that ARL11 forms a complex with phospho-ERK in macrophages within minutes of LPS stimulation. Taken together, our findings establish ARL11 as a novel regulator of ERK signaling in macrophages, required for macrophage activation and immune function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  16. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    PubMed

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  17. Hyperglycemia Suppresses Calcium Phosphate-Induced Aneurysm Formation Through Inhibition of Macrophage Activation.

    PubMed

    Tanaka, Teruyoshi; Takei, Yuichiro; Yamanouchi, Dai

    2016-03-28

    The aim of this study was to elucidate aspects of diabetes mellitus-induced suppression of aneurysm. We hypothesized that high glucose suppresses aneurysm by inhibiting macrophage activation via activation of Nr1h2 (also known as liver X receptor β), recently characterized as a glucose-sensing nuclear receptor. Calcium phosphate (CaPO4)-induced aneurysm formation was significantly suppressed in the arterial wall in type 1 and 2 diabetic mice. A murine macrophage cell line, RAW264.7, was treated with tumor necrosis factor α (TNF-α) plus CaPO4 and showed a significant increase in matrix metalloproteinase 9 (Mmp9) mRNA and secreted protein expression compared with TNF-α alone. Elevated Mmp9 expression was significantly suppressed by hyperglycemic conditions (15.5 mmol/L glucose) compared with normoglycemic conditions (5.5 mmol/L glucose) or normoglycemic conditions with high osmotic pressure (5.5 mmol/L glucose +10.0 mmol/L mannitol). Nr1h2 mRNA and protein expression were suppressed by treatment with TNF-α plus CaPO4 but were restored by hyperglycemic conditions. Activation of Nr1h2 by the antagonist GW3965 during stimulation with TNF-α plus CaPO4 mimicked hyperglycemic conditions and inhibited Mmp9 upregulation, whereas the deactivation of Nr1h2 by small interfering RNA (siRNA) under hyperglycemic conditions canceled the suppressive effect and restored Mmp9 expression induced by TNF-α plus CaPO4. Moreover, Nr1h2 activation with GW3965 significantly suppressed CaPO4-induced aneurysm in mice compared with vehicle-injected control mice. Our results show that hyperglycemia suppresses macrophage activation and aneurysmal degeneration through the activation of Nr1h2. Although further validation of the underlying pathway is necessary, targeting Nr1h2 is a potential therapeutic approach to treating aneurysm. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Macrophage Mitochondrial Oxidative Stress Promotes Atherosclerosis and NF-κB-Mediated Inflammation in Macrophages

    PubMed Central

    Wang, Ying; Wang, Gary Z.; Rabinovitch, Peter S.; Tabas, Ira

    2014-01-01

    Rationale Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell-type specific causation studies in vivo are lacking, and the molecular mechanisms of potential pro-atherogenic effects remain to be determined. Objective To assess the importance of macrophage mitoOS in atherogenesis and explore the underlying molecular mechanisms. Methods & Results We first validated Western-type diet-fed Ldlr-/- mice as a model of human mitoOS-atherosclerosis association by showing that a marker of mitoOS in lesional macrophages, non-nuclear oxidative DNA damage, correlates with aortic root lesion development. To investigate the importance of macrophage-mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6chi monocyte infiltration into lesions, and lower levels of the monocyte chemotactic protein-1 (MCP-1). The decrease in lesional MCP-1 was associated with suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the pro-inflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed MCP-1 expression by decreasing activation of the Iκ-kinase-RelA NF-κB pathway. Conclusions MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis. PMID:24297735

  19. A droplet-merging platform for comparative functional analysis of m1 and m2 macrophages in response to e. coli-induced stimuli.

    PubMed

    Hondroulis, Evangelia; Movila, Alexandru; Sabhachandani, Pooja; Sarkar, Saheli; Cohen, Noa; Kawai, Toshihisa; Konry, Tania

    2017-03-01

    Microfluidic droplets are used to isolate cell pairs and prevent crosstalk with neighboring cells, while permitting free motility and interaction within the confined space. Dynamic analysis of cellular heterogeneity in droplets has provided insights in various biological processes. Droplet manipulation methods such as fusion and fission make it possible to precisely regulate the localized environment of a cell in a droplet and deliver reagents as required. Droplet fusion strategies achieved by passive mechanisms preserve cell viability and are easier to fabricate and operate. Here, we present a simple and effective method for the co-encapsulation of polarized M1 and M2 macrophages with Escherichia coli (E. coli) by passive merging in an integrated droplet generation, merging, and docking platform. This approach facilitated live cell profiling of effector immune functions in situ and quantitative functional analysis of macrophage heterogeneity. Biotechnol. Bioeng. 2017;114: 705-709. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal.

    PubMed

    Mills, Evanna L; O'Neill, Luke A

    2016-01-01

    Mitochondria are master regulators of metabolism. Mitochondria generate ATP by oxidative phosphorylation using pyruvate (derived from glucose and glycolysis) and fatty acids (FAs), both of which are oxidized in the Krebs cycle, as fuel sources. Mitochondria are also an important source of reactive oxygen species (ROS), creating oxidative stress in various contexts, including in the response to bacterial infection. Recently, complex changes in mitochondrial metabolism have been characterized in mouse macrophages in response to varying stimuli in vitro. In LPS and IFN-γ-activated macrophages (M1 macrophages), there is decreased respiration and a broken Krebs cycle, leading to accumulation of succinate and citrate, which act as signals to alter immune function. In IL-4-activated macrophages (M2 macrophages), the Krebs cycle and oxidative phosphorylation are intact and fatty acid oxidation (FAO) is also utilized. These metabolic alterations in response to the nature of the stimulus are proving to be determinants of the effector functions of M1 and M2 macrophages. Furthermore, reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Here, we describe the role that metabolism plays in macrophage function in infection and immunity, and propose that reprogramming with metabolic inhibitors might be a novel therapeutic approach for the treatment of inflammatory diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; Loyola, Elva; Escobedo, Dante; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Torres, Martha; Sada, Eduardo

    2014-09-25

    Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.

  2. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    PubMed Central

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  3. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung.

    PubMed

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-03-01

    Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor-homologous molecule expressed on T(H)2 cells) in regulating macrophages have not been elucidated to date. We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. In vitro studies, including migration, Ca(2+) flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca(2+) flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The Role of Macrophage Phenotype in Vascularization of Tissue Engineering Scaffolds

    PubMed Central

    Spiller, Kara L.; Anfang, Rachel; Spiller, Krista J.; Ng, Johnathan; Nakazawa, Kenneth R.; Daulton, Jeffrey W.; Vunjak-Novakovic, Gordana

    2014-01-01

    Angiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from “classically activated” M1 to “alternatively activated” M2 macrophages. M2 macrophages, including the subsets M2a and M2c, are typically considered to promote angiogenesis and tissue regeneration, while M1 macrophages are considered to be anti-angiogenic, although these classifications are controversial. Here we show that in contrast to this traditional paradigm, primary human M1 macrophages secrete the highest levels of potent angiogenic stimulators including VEGF; M2a macrophages secrete the highest levels of PDGF-BB, a chemoattractant stabilizing pericytes, and also promote anastomosis of sprouting endothelial cells in vitro; and M2c macrophages secrete the highest levels of MMP9, an important protease involved in vascular remodeling. In a murine subcutaneous implantation model, porous collagen scaffolds were surrounded by a fibrous capsule, coincident with high expression of M2 macrophage markers, while scaffolds coated with the bacterial lipopolysaccharide were degraded by inflammatory macrophages, and glutaraldehyde-crosslinked scaffolds were infiltrated by substantial numbers of blood vessels accompanied by high levels of M1 and M2 macrophages. These results suggest that coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization, which may explain some of the controversy over which phenotype is the angiogenic phenotype. PMID:24589361

  5. Adenosine A2A Receptor Activation and Macrophage-mediated Experimental Glomerulonephritis

    PubMed Central

    Garcia, Gabriela E.; Truong, Luan D.; Li, Ping; Zhang, Ping; Du, Jie; Chen, Jiang-Fan; Feng, Lili

    2010-01-01

    In immune-induced inflammation, leukocytes are key mediators of tissue damage. Since A2A adenosine receptors (A2AR) are endogenous suppressors of inflammation, we examined cellular and molecular mechanisms of kidney damage to determine whether selective activation of A2AR will suppress inflammation in a rat model of glomerulonephritis. Activation of A2AR reduced the degree of kidney injury in both the acute inflammatory phase and the progressive phase of glomerulonephritis. This protection against acute and chronic inflammation was associated with suppression of the glomerular expression of the MDC/CCL22 chemokine and down-regulation of MIP-1α/CCL3, RANTES/CCL5, MIP-1β/CCL4, and MCP-1/CCL2 chemokines. The expression of anti-inflammatory cytokines, IL-4 and IL-10, also increased. The mechanism for these anti-inflammatory responses to the A2AR agonist was suppression of macrophages function. A2AR expression was increased in macrophages, macrophage-derived chemokines were reduced in response to the A2AR agonist, and chemokines not expressed in macrophages did not respond to A2AR activation. Thus, activation of the A2AR on macrophages inhibits immune-associated inflammation. In glomerulonephritis, A2AR activation modulates inflammation and tissue damage even in the progressive phase of glomerulonephritis. Accordingly, pharmacological activation of A2AR could be developed into a novel treatment for glomerulonephritis and other macrophage-related inflammatory diseases. PMID:17898087

  6. Macrophage activation by polysaccharides from Atractylodes macrocephala Koidz through the nuclear factor-κB pathway.

    PubMed

    Ji, Guang-Quan; Chen, Ren-Qiong; Zheng, Jian-Xian

    2015-04-01

    Atractylodes macrocephala Koidz is a traditional herb. Atractylodes macrocephalaon polysaccharides (AMP) have been found to enhance immunity and improve heart function. However, the mechanisms of the immunomodulatory effect have not been investigated. We examined whether AMP activated macrophages and explored the mechanisms of activation. AMP was prepared and evaluated its immunomodulatory activity (25, 50, 100, and 200 μg/mL) by detecting the phagocytosis and the production of tumor necrosis factor-α (TNF-α), IFN-γ, and nitric oxide (NO) in RAW264.7 macrophages. Furthermore, the role of nuclear factor-κB (NF-κB) pathway was examined in regulating TNF-α and NO production. The phagocytosis of macrophages was enhanced by AMP in a dose-dependent manner and the maximal phagocytosis of macrophages occurred at concentrations of 100 and 200 μg/mL. NO, TNF-α, and IFN-γ release was also found to be dose dependent by increasing concentrations of AMP and reached the peak at a concentration of 200 μg/mL. In addition, AMP induced inhibitor kappaB (IκB) degradation and the activation of NF-κB by p65 nuclear translocation, and then the activation of NF-κB in nucleus peaked at a concentration of 200 μg/mL. Besides, NF-κB-specific inhibitor pyrrolidine dithiocarbamate (PDTC) decreased AMP-induced NO and TNF-α production. These data suggest that AMP may modulate macrophage activities by stimulating NF-κB or activating NF-κB-dependent mechanisms.

  7. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis.

    PubMed

    Kang, Jung-Woo; Lee, Sun-Mee

    2016-09-01

    Resolution of inflammation is an active process involving a novel category of lipid factors known as specialized pro-resolving lipid mediators, which includes Resolvin D1 (RvD1). While accumulating evidence suggests that RvD1 counteracts proinflammatory signaling and promotes resolution, the specific cellular targets and mechanisms of action of RvD1 remain largely unknown. In the present study, we investigated the role and molecular mechanisms of RvD1 in ischemia/reperfusion (IR)-induced sterile liver inflammation. Male C57BL/6 mice underwent 70% hepatic ischemia for 60min, followed by reperfusion. RvD1 (5, 10, and 15μg/kg, i.p.) was administered to the mice 1h before ischemia and then immediately prior to reperfusion. RvD1 attenuated IR-induced hepatocellular damage and the proinflammatory response. In purified Kupffer cells (KCs) from mice exposed to IR, the levels of M1 marker genes (Nos2a and Cd40) increased, while those of M2 marker genes (Arg1, Cd206, and Mst1r) decreased, demonstrating a proinflammatory shift. RvD1 markedly attenuated these changes. Depletion of KCs by liposome clodronate abrogated the effects of RvD1 on proinflammatory mediators and macrophage polarization. In addition, RvD1 attenuated increases in myeloperoxidase activity and Cxcl1 and Cxcl2 mRNA expression. RvD1 markedly augmented the efferocytic activity of KCs, as indicated by increases in F4/80(+)Gr-1(+) cells in the liver. However, antagonist pretreatment or gene silencing of the RvD1 receptor, ALX/FPR2, abrogated the anti-inflammatory and pro-resolving actions of RvD1. These data indicate that RvD1 ameliorates IR-induced liver injury, and this protection is associated with enhancement of M2 polarization and efferocytosis via ALX/FPR2 activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.

    PubMed

    Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A

    2016-09-01

    HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.

  9. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma

    PubMed Central

    Kamińska, Natalia; Matuszczak, Sybilla; Cichoń, Tomasz; Pamuła-Piłat, Jolanta; Czapla, Justyna; Smolarczyk, Ryszard; Skwarzyńska, Daria; Kulik, Klaudia; Szala, Stanisław

    2018-01-01

    Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression. In contrast M1-like TAMs trigger immune response and normalize irregular tumor vascular network which should sensitize cancer cells to chemo- and radiotherapy and lead to tumor growth regression. Here, we demonstrated that combination of endoglin-based DNA vaccine with interleukin 12 repolarizes TAMs from tumor growth-promoting M2-like phenotype to tumor growth-inhibiting M1-like phenotype. Combined therapy enhances tumor infiltration by CD4+, CD8+ lymphocytes and NK cells. Depletion of TAMs as well as CD8+ lymphocytes and NK cells, but not CD4+ lymphocytes, reduces the effect of combined therapy. Furthermore, combined therapy improves tumor vessel maturation, perfusion and reduces hypoxia. It caused that suboptimal doses of doxorubicin reduced the growth of tumors in mice treated with combined therapy. To summarize, combination of antiangiogenic drug and immunostimulatory agent repolarizes TAMs phenotype from M2-like (pro-tumor) into M1-like (anti-tumor) which affects the structure of tumor blood vessels, improves the effect of chemotherapy and leads to tumor growth regression. PMID:29320562

  10. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression.

    PubMed

    López-Peláez, Marta; Soria-Castro, Irene; Boscá, Lisardo; Fernández, Margarita; Alemany, Susana

    2011-06-01

    LPS stimulation activates IKK and different MAP kinase pathways, as well as the PI3K-Akt-mTOR-p70 S6k pathway, a negative regulator of these MyD88-dependent intracellular signals. Here, we show that Cot/tpl2, a MAP3K responsible for the activation of the MKK1-Erk1/2, controls P-Ser473 Akt and P-Thr389 p70 S6k phosphorylation in LPS-stimulated macrophages. Analysis of the intracellular signalling in Cot/tpl2 KO macrophages versus WT macrophages reveals lower IκBα recovery and higher phosphorylation of JNK and p38α after 1 h of LPS stimulation. Moreover, Cot/tpl2 deficiency increases LPS-induced NO synthase 2 (NOS2) expression in macrophages. Inhibition of the PI3K pathway abolishes the differences in IκBα and NOS2 expression between Cot/tpl2 KO and WT macrophages following LPS administration. Furthermore, in zymosan- and polyI:C-stimulated macrophages, Cot/tpl2 mediates P-Ser473 Akt phosphorylation, increases IκBα levels and decreases NOS2 expression. In conclusion, these data reveal a novel role for the Cot/tpl2 pathway in mediating TLR activation of the Akt-mTOR-p70 S6k pathway, allowing Cot/tpl2 to fine-control the activation state of other signalling pathways. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation.

    PubMed

    Veremeyko, Tatyana; Yung, Amanda W Y; Dukhinova, Marina; Kuznetsova, Inna S; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S; Ponomarev, Eugene D

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro , suggesting prevalence of indirect effect of Forskolin on differentiation and

  12. Niacin and its metabolites as master regulators of macrophage activation.

    PubMed

    Montserrat-de la Paz, Sergio; Naranjo, M Carmen; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J Garcia; Bermudez, Beatriz

    2017-01-01

    Niacin is a broad-spectrum lipid-regulating drug used for clinical therapy of chronic high-grade inflammatory diseases. However, the mechanisms by which either niacin or the byproducts of its catabolism ameliorate these inflammatory diseases are not clear yet. Human circulating monocytes and mature macrophages were used to analyze the effects of niacin and its metabolites (NAM, NUA and 2-Pyr) on oxidative stress, plasticity and inflammatory response by using biochemical, flow cytometry, quantitative real-time PCR and Western blot technologies. Niacin, NAM and 2-Pyr significantly decreased ROS, NO and NOS2 expression in LPS-treated human mature macrophages. Niacin and NAM skewed macrophage polarization toward antiinflammatory M2 macrophage whereas a trend toward proinflammatory M1 macrophage was noted following treatment with NUA. Niacin and NAM also reduced the inflammatory competence of LPS-treated human mature macrophages and promoted bias toward antiinflammatory CD14 + CD16 ++ nonclassical human primary monocytes. This study reveals for the first time that niacin and its metabolites possess antioxidant, reprogramming and antiinflammatory properties on human primary monocytes and monocyte-derived macrophages. Our findings imply a new understanding of the mechanisms by which niacin and its metabolites favor a continuous and gradual plasticity process in the human monocyte/macrophage system. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An in vitro test system for compounds that modulate human inflammatory macrophage polarization.

    PubMed

    Shiratori, Hiromi; Feinweber, Carmen; Luckhardt, Sonja; Wallner, Nadja; Geisslinger, Gerd; Weigert, Andreas; Parnham, Michael J

    2018-06-16

    Macrophages undergo activation by pathophysiological stimuli to pro-inflammatory and bactericidal, or wound-healing and anti-inflammatory phenotypes, termed M1 or M2, respectively. Dysregulation of the M1-M2 balance is often associated with inflammatory diseases. Therefore, mechanisms of macrophage polarization may reveal new drug targets. We profiled six compounds with claimed modulatory effects on macrophage polarization using peripheral blood monocyte-derived macrophages. Based on the distinct mRNA or protein expression in macrophages stimulated either with M1 [lipopolysaccharide (LPS) + interferon-γ, IFNγ] or M2 interleukin-4 (IL-4) stimuli, we selected a combination of M1 (IL1β, tumor necrosis factor-α,TNFα, CC chemokine receptor 7, CCR7 and CD80) and M2 (chemokine (C-C motif) ligand 22, CCL22, CD200R and mannose receptor C type 1, MRC1) markers to monitor drug effects on "M1 polarization" or cells "pre-polarized to M1". Azithromycin (25-50μM), tofacitinib (2.5-5μM), hydroxychloroquine (40µg/ml) and pioglitazone (15-60μM) exhibit an anti-inflammatory profile because they downregulated M1 markers and upregulated some M2 markers when given both before and after M1 polarization. Lovastatin given before M1 polarization downregulated M1 marker genes but enhanced the M1 phenotype in macrophages pre-polarized with LPS and IFNγ. Methotrexate (1.25-5μM) did not modulate macrophage polarization. We have, thus, established a test system suitable to identify novel compounds or repurposed drugs that modulate inflammatory macrophage plasticity. Compounds with potential to reduce expression of molecules involved in inflammatory T cell activation (IL-1β, TNFα, CD80), while enhancing production of a major chemokine involved in recruitment of Tregs (CCL22) may be of interest for treating chronic inflammatory diseases. Copyright © 2018. Published by Elsevier B.V.

  14. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    PubMed

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  15. Enhanced Replication of Virulent Newcastle Disease Virus in Chicken Macrophages Is due to Polarized Activation of Cells by Inhibition of TLR7.

    PubMed

    Zhang, Pingze; Ding, Zhuang; Liu, Xinxin; Chen, Yanyu; Li, Junjiao; Tao, Zhi; Fei, Yidong; Xue, Cong; Qian, Jing; Wang, Xueli; Li, Qingmei; Stoeger, Tobias; Chen, Jianjun; Bi, Yuhai; Yin, Renfu

    2018-01-01

    Newcastle disease (ND), caused by infections with virulent strains of Newcastle disease virus (NDV), is one of the most important infectious disease affecting wild, peridomestic, and domestic birds worldwide. Vaccines constructed from live, low-virulence (lentogenic) viruses are the most accepted prevention and control strategies for combating ND in poultry across the globe. Avian macrophages are one of the first cell lines of defense against microbial infection, responding to signals in the microenvironment. Although macrophages are considered to be one of the main target cells for NDV infection in vivo , very little is known about the ability of NDV to infect chicken macrophages, and virulence mechanisms of NDV as well as the polarized activation patterns of macrophages and correlation with viral infection and replication. In the present study, a cell culture model (chicken bone marrow macrophage cell line HD11) and three different virulence and genotypes of NDV (including class II virulent NA-1, class II lentogenic LaSota, and class I lentogenic F55) were used to solve the above underlying questions. Our data indicated that all three NDV strains had similar replication rates during the early stages of infection. Virulent NDV titers were shown to increase compared to the other lentogenic strains, and this growth was associated with a strong upregulation of both pro-inflammatory M1-like markers/cytokines and anti-inflammatory M2-like markers/cytokines in chicken macrophages. Virulent NDV was found to block toll-like receptor (TLR) 7 expression, inducing higher expression of type I interferons in chicken macrophages at the late stage of viral infection. Only virulent NDV replication can be inhibited by pretreatment with TLR7 ligand. Overall, this study demonstrated that virulent NDV activates a M1-/M2-like mixed polarized activation of chicken macrophages by inhibition of TLR7, resulting in enhanced replication compared to lentogenic viruses.

  16. Cigarette Smoking Decreases Global MicroRNA Expression in Human Alveolar Macrophages

    PubMed Central

    Graff, Joel W.; Powers, Linda S.; Dickson, Anne M.; Kim, Jongkwang; Reisetter, Anna C.; Hassan, Ihab H.; Kremens, Karol; Gross, Thomas J.

    2012-01-01

    Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs) could control, in part, the unique messenger RNA (mRNA) expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory) and M2 (anti-inflammatory) polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an “inverse” M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages. PMID:22952876

  17. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

  18. Tripeptidyl peptidase II promotes maturation of caspase-1 in Shigella flexneri-induced macrophage apoptosis.

    PubMed

    Hilbi, H; Puro, R J; Zychlinsky, A

    2000-10-01

    The invasive enteropathogenic bacterium Shigella flexneri activates apoptosis in macrophages. Shigella-induced apoptosis requires caspase-1. We demonstrate here that tripeptidyl peptidase II (TPPII), a cytoplasmic, high-molecular-weight protease, participates in the apoptotic pathway triggered by Shigella. The TPPII inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk) and clasto-lactacystin beta-lactone (lactacystin), an inhibitor of both TPPII and the proteasome, protected macrophages from Shigella-induced apoptosis. AAF-cmk was more potent than lactacystin and irreversibly blocked Shigella-induced apoptosis by 95% at a concentration of 1 microM. Conversely, peptide aldehyde and peptide vinylsulfone proteasome inhibitors had little effect on Shigella-mediated cytotoxicity. Both AAF-cmk and lactacystin prevented the maturation of pro-caspase-1 and its substrate pro-interleukin 1beta in Shigella-infected macrophages, indicating that TPPII is upstream of caspase-1. Neither of these compounds directly inhibited caspase-1. AAF-cmk and lactacystin did not impair macrophage phagocytosis or the ability of Shigella to escape the macrophage phagosome. TPPII was also found to be involved in apoptosis induced by ATP and the protein kinase inhibitor staurosporine. We propose that TPPII participates in apoptotic pathways.

  19. Tripeptidyl Peptidase II Promotes Maturation of Caspase-1 in Shigella flexneri-Induced Macrophage Apoptosis

    PubMed Central

    Hilbi, Hubert; Puro, Robyn J.; Zychlinsky, Arturo

    2000-01-01

    The invasive enteropathogenic bacterium Shigella flexneri activates apoptosis in macrophages. Shigella-induced apoptosis requires caspase-1. We demonstrate here that tripeptidyl peptidase II (TPPII), a cytoplasmic, high-molecular-weight protease, participates in the apoptotic pathway triggered by Shigella. The TPPII inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk) and clasto-lactacystin β-lactone (lactacystin), an inhibitor of both TPPII and the proteasome, protected macrophages from Shigella-induced apoptosis. AAF-cmk was more potent than lactacystin and irreversibly blocked Shigella-induced apoptosis by 95% at a concentration of 1 μM. Conversely, peptide aldehyde and peptide vinylsulfone proteasome inhibitors had little effect on Shigella-mediated cytotoxicity. Both AAF-cmk and lactacystin prevented the maturation of pro-caspase-1 and its substrate pro-interleukin 1β in Shigella-infected macrophages, indicating that TPPII is upstream of caspase-1. Neither of these compounds directly inhibited caspase-1. AAF-cmk and lactacystin did not impair macrophage phagocytosis or the ability of Shigella to escape the macrophage phagosome. TPPII was also found to be involved in apoptosis induced by ATP and the protein kinase inhibitor staurosporine. We propose that TPPII participates in apoptotic pathways. PMID:10992446

  20. Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development

    PubMed Central

    Chen, Tianxiang; Wang, Xi; Guo, Lei; Wu, Mingmei; Duan, Zhaoxia; Lv, Jing; Tai, Wenjiao; Renganathan, Hemamalini; Didier, Ruth; Li, Jinhua; Sun, Dongming; Chen, Xiaoming; He, Xijing; Fan, Jianqing; Young, Wise; Ren, Yi

    2014-01-01

    Stem cell therapies have had tremendous potential application for many diseases in recent years. However, the tumorigenic properties of stem cells restrict their potential clinical application; therefore, strategies for reducing the tumorigenic potential of stem cells must be established prior to transplantation. We have demonstrated that syngeneic transplantation of embryonic stem cells (ESCs) provokes an inflammatory response that involves the rapid recruitment of bone marrow-derived macrophages (BMDMs). ESCs are able to prevent mature macrophages from macrophage colony-stimulating factor (M-CSF) withdrawal-induced apoptosis, and thus prolong macrophage lifespan significantly by blocking various apoptotic pathways in an M-CSF-independent manner. ESCs express and secrete IL-34, which may be responsible for ESC-promoted macrophage survival. This anti-apoptotic effect of ESCs involves activation of extracellular signal-regulated kinase (ERK)1/2 and PI3K/Akt pathways and thus, inhibition of ERK1/2 and PI3K/AKT activation decreases ESC-induced macrophage survival. Functionally, ESC-treated macrophages also showed a higher level of phagocytic activity. ESCs further serve to polarize BMDMs into M2-like macrophages that exhibit most tumor-associated macrophage phenotypic and functional features. ESC-educated macrophages produce high levels of arginase-1, Tie-2, and TNF-α, which participate in angiogenesis and contribute to teratoma progression. Our study suggests that induction of M2-like macrophage activation is an important mechanism for teratoma development. Strategies targeting macrophages to inhibit teratoma development would increase the safety of ESC-based therapies, inasmuch as the depletion of macrophages completely inhibits ESC-induced angiogenesis and teratoma development. PMID:25071759

  1. Macrophage Differentiation in Normal and Accelerated Wound Healing.

    PubMed

    Kotwal, Girish J; Chien, Sufan

    2017-01-01

    Chronic wounds pose considerable public health challenges and burden. Wound healing is known to require the participation of macrophages, but mechanisms remain unclear. The M1 phenotype macrophages have a known scavenger function, but they also play multiple roles in tissue repair and regeneration when they transition to an M2 phenotype. Macrophage precursors (mononuclear cells/monocytes) follow the influx of PMN neutrophils into a wound during the natural wound-healing process, to become the major cells in the wound. Natural wound-healing process is a four-phase progression consisting of hemostasis, inflammation, proliferation, and remodeling. A lag phase of 3-6 days precedes the remodeling phase, which is characterized by fibroblast activation and finally collagen production. This normal wound-healing process can be accelerated by the intracellular delivery of ATP to wound tissue. This novel ATP-mediated acceleration arises due to an alternative activation of the M1 to M2 transition (macrophage polarization), a central and critical feature of the wound-healing process. This response is also characterized by an early increased release of pro-inflammatory cytokines (TNF, IL-1 beta, IL-6), a chemokine (MCP-1), an activation of purinergic receptors (a family of plasma membrane receptors found in almost all mammalian cells), and an increased production of platelets and platelet microparticles. These factors trigger a massive influx of macrophages, as well as in situ proliferation of the resident macrophages and increased synthesis of VEGFs. These responses are followed, in turn, by rapid neovascularization and collagen production by the macrophages, resulting in wound covering with granulation tissue within 24 h.

  2. DHA Suppresses Primary Macrophage Inflammatory Responses via Notch 1/ Jagged 1 Signaling

    PubMed Central

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.

    2016-01-01

    Persistent macrophages were observed in the lungs of murine offspring exposed to maternal LPS and neonatal hyperoxia. Maternal docosahexaenoic acid (DHA) supplementation prevented the accumulation of macrophages and improved lung development. We hypothesized that these macrophages are responsible for pathologies observed in this model and the effects of DHA supplementation. Primary macrophages were isolated from adult mice fed standard chow, control diets, or DHA supplemented diets. Macrophages were exposed to hyperoxia (O2) for 24 h and LPS for 6 h or 24 h. Our data demonstrate significant attenuation of Notch 1 and Jagged 1 protein levels in response to DHA supplementation in vivo but similar results were not evident in macrophages isolated from mice fed standard chow and supplemented with DHA in vitro. Co-culture of activated macrophages with MLE12 epithelial cells resulted in the release of high mobility group box 1 and leukotriene B4 from the epithelial cells and this release was attenuated by DHA supplementation. Collectively, our data indicate that long term supplementation with DHA as observed in vivo, resulted in deceased Notch 1/Jagged 1 protein expression however, DHA supplementation in vitro was sufficient to suppress release LTB4 and to protect epithelial cells in co-culture. PMID:26940787

  3. DHA Suppresses Primary Macrophage Inflammatory Responses via Notch 1/ Jagged 1 Signaling.

    PubMed

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K

    2016-03-04

    Persistent macrophages were observed in the lungs of murine offspring exposed to maternal LPS and neonatal hyperoxia. Maternal docosahexaenoic acid (DHA) supplementation prevented the accumulation of macrophages and improved lung development. We hypothesized that these macrophages are responsible for pathologies observed in this model and the effects of DHA supplementation. Primary macrophages were isolated from adult mice fed standard chow, control diets, or DHA supplemented diets. Macrophages were exposed to hyperoxia (O2) for 24 h and LPS for 6 h or 24 h. Our data demonstrate significant attenuation of Notch 1 and Jagged 1 protein levels in response to DHA supplementation in vivo but similar results were not evident in macrophages isolated from mice fed standard chow and supplemented with DHA in vitro. Co-culture of activated macrophages with MLE12 epithelial cells resulted in the release of high mobility group box 1 and leukotriene B4 from the epithelial cells and this release was attenuated by DHA supplementation. Collectively, our data indicate that long term supplementation with DHA as observed in vivo, resulted in deceased Notch 1/Jagged 1 protein expression however, DHA supplementation in vitro was sufficient to suppress release LTB4 and to protect epithelial cells in co-culture.

  4. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    PubMed

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes/macrophages

  5. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.

    PubMed

    Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang

    2017-06-01

    Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

  6. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis

    PubMed Central

    Zhang, Hui; Li, Jiufeng; He, Tianfang; Yeo, Eun-Jin; Soong, Daniel Y.H.; Carragher, Neil O.; Munro, Alison; Chang, Alvin; Bresnick, Anne R.; Lang, Richard A.

    2015-01-01

    Although the link between inflammation and cancer initiation is well established, its role in metastatic diseases, the primary cause of cancer deaths, has been poorly explored. Our previous studies identified a population of metastasis-associated macrophages (MAMs) recruited to the lung that promote tumor cell seeding and growth. Here we show that FMS-like tyrosine kinase 1 (Flt1, also known as VEGFR1) labels a subset of macrophages in human breast cancers that are significantly enriched in metastatic sites. In mouse models of breast cancer pulmonary metastasis, MAMs uniquely express FLT1. Using several genetic models, we show that macrophage FLT1 signaling is critical for metastasis. FLT1 inhibition does not affect MAM recruitment to metastatic lesions but regulates a set of inflammatory response genes, including colony-stimulating factor 1 (CSF1), a central regulator of macrophage biology. Using a gain-of-function approach, we show that CSF1-mediated autocrine signaling in MAMs is downstream of FLT1 and can restore the tumor-promoting activity of FLT1-inhibited MAMs. Thus, CSF1 is epistatic to FLT1, establishing a link between FLT1 and inflammatory responses within breast tumor metastases. Importantly, FLT1 inhibition reduces tumor metastatic efficiency even after initial seeding, suggesting that these pathways represent therapeutic targets in metastatic disease. PMID:26261265

  7. [Effects of interferon-gamma on cytotoxicity of murine activated macrophages against murine glioma cells].

    PubMed

    Ohyama, K; Kikuchi, H; Oda, Y; Moritake, K; Yamasaki, T

    1993-06-01

    We studied the effects of mouse IFN-gamma on the cytotoxic activity of murine activated macrophages (M phi) against mouse VM-Glioma cells (H-2b). Activated M phi were obtained from peritoneal exudate cells of mice from four strains, C57BL/6 (H-2b), C3H/He(H-2k), DBA/2 (H-2d), and BALB/c (H-2d), following intraperitoneal injection of (1) LPS 200 micrograms, (2) BCG 200 micrograms, (3) C. parvum 200 micrograms, or (4) MDP 350 micrograms 7 days prior to 20-hr 51Cr release-assay. Of the various combination of mouse strains and activating agents tested, that of activated M phi of the C3H/He mouse with induction by LPS had the most tumoricidal effect against the glioma cells, which was not MHC restricted. Although LPS-activated M phi underwent marked loss of cytotoxicity following initiation of in vitro culture, this 24 hr pretreatment with IFN-gamma inhibited this reduction in tumoricidal effects in a dose-dependent fashion. On the other hand, 24 hr pretreatment of target cells with IFN-gamma did not increase their susceptibility to lysis by activated M phi. These findings suggest that IFN-gamma augments the in vitro tumoricidal activation of M phi; This effect appears to be unrelated to any influence of IFN-gamma on target sensitivity to lysis by macrophages.

  8. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  9. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion.

    PubMed

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio; Masiello, Francesca; Federici, Giulia; Zingariello, Maria; Girelli, Gabriella; Whitsett, Carolyn; Petricoin, Emanuel F; Moestrup, Søren Kragh; Zeuner, Ann; Migliaccio, Anna Rita

    2015-02-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages. Copyright© Ferrata Storti Foundation.

  10. Epinephrine Enhances the Response of Macrophages under LPS Stimulation

    PubMed Central

    Zhou, Jianyun; Liang, Huaping; Jiang, Jianxin

    2014-01-01

    Trauma associated with infection may directly trigger a neuroendocrine reaction in vivo while the hormone epinephrine is known to mediate immune responses to inflammation after injury. However, the role of epinephrine during the earliest stage of trauma still remains unclear. We therefore explored the role of epinephrine on activated macrophages under LPS stimulation in vitro as well as the mechanisms underlying its effect. Dose- and time-dependent effects of epinephrine on macrophage immune function were assessed after LPS activation. We also employed CD14 siRNA interference to investigate whether CD14 played a role in the mechanism underlying the effect of epinephrine on LPS-induced macrophage responses. Our results showed that epinephrine pretreatment (10 ng/mL) significantly promoted immune responses from LPS stimulated macrophages, including phagocytic rate, phagocytic index, TNFα/IL-1β/IL-10 secretion, and CD14 expression (P < 0.05). Moreover, TNFα/IL-1β/IL-10 levels attained their peak value 1 hour after incubation with 10 ng/mL epinephrine (P < 0.05), and CD14 siRNA transfection dramatically decreased phagocytosis and cytokine secretion by LPS-activated macrophages (P < 0.05). We therefore conclude that 10 ng/mL epinephrine enhances immune responses from macrophages under LPS stimulation and that the underlying mechanism may relate to CD14 upregulation on the surface of macrophages. PMID:25243125

  11. Temporal Phenotypic Features Distinguish Polarized Macrophages In Vitro

    PubMed Central

    Melton, David W.; McManus, Linda M.; Gelfond, Jonathan A.L.; Shireman, Paula K.

    2015-01-01

    Macrophages are important in vascular inflammation and environmental factors influence macrophage plasticity. Macrophage transitions into pro-inflammatory (M1) or anti-inflammatory (M2) states have been defined predominately by measuring cytokines in culture media (CM). However, temporal relationships between cellular and secreted cytokines have not been established. We measured phenotypic markers and cytokines in cellular and CM of murine bone marrow-derived macrophages at multiple time points following stimulation with IFN-γ+LPS (M1), IL-4 (M2a), or IL-10 (M2c). Cytokines/proteins in M1-polarized macrophages exhibited two distinct temporal patterns; an early (0.5–3 hr), transient increase in cellular cytokines (GM-CSF, KC-GRO, MIP-2, IP-10 and MIP-1β) and a delayed (3–6 hrs) response that was more sustained [IL-3, regulated on activation normal T cell expressed and secreted (RANTES), and tissue inhibitor of metalloproteinases 1 (TIMP-1)]. M2a-related cytokine/cell markers (IGF-1, Fizz1, and Ym1) were progressively (3–24 hrs) increased post-stimulation. Additionally, novel patterns were observed. First, and unexpectedly, cellular pro-inflammatory chemokines, MCP-1 and MCP-3 but not MCP-5, were comparably increased in M1 and M2a macrophages. Second, Vegfr1 mRNA was decreased in M1 and increased in M2a macrophages. Finally, VEGF-A was increased in the CM of M1 cultures and strikingly reduced in M2a coinciding with increased Vegfr1 expression, suggesting decreased VEGF-A in M2a CM was secondary to increased soluble VEGFR1. In conclusion, macrophage cytokine production and marker expression were temporally regulated and relative levels compared across polarizing conditions were highly dependent upon the timing and location (cellular vs. CM) of the sample collection. For most cytokines, cellular production preceded increases in the CM suggesting that cellular regulatory pathways should be studied within 6 hours of stimulation. The divergent polarization

  12. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr

    PubMed Central

    Datta, Prasun K.; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C.; Fecchio, Chiara; Barrero, Carlos A.

    2016-01-01

    ABSTRACT HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560

  13. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    PubMed Central

    Canna, Scott W.; de Jesus, Adriana Almeida; Gouni, Sushanth; Brooks, Stephen R.; Marrero, Bernadette; Liu, Yin; DiMattia, Michael A.; Zaal, Kristien J.M.; Montealegre Sanchez, Gina A.; Kim, Hanna; Chapelle, Dawn; Plass, Nicole; Huang, Yan; Villarino, Alejandro V.; Biancotto, Angelique; Fleisher, Thomas A.; Duncan, Joseph A.; O’Shea, John J; Benseler, Susanne; Grom, Alexei; Deng, Zuoming; Laxer, Ronald M; Goldbach-Mansky, Raphaela

    2014-01-01

    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy. PMID:25217959

  14. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages.

    PubMed

    Park, Sung Bum; Park, Ji Seon; Jung, Won Hoon; Kim, Hee Youn; Kwak, Hyun Jung; Ahn, Jin Hee; Choi, Kyoung-Jin; Na, Yoon-Ju; Choi, Sunhwa; Dal Rhee, Sang; Kim, Ki Young

    2016-08-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS)-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Expression and regulation of complement C1q by human THP-1-derived macrophages.

    PubMed

    Walker, D G

    1998-01-01

    The regulation of C1q expression was examined in the human monocytic cell line THP-1. Since these cells can be differentiated into cells with macrophage properties and induced to express C1q, they were used as models for mature human monocyte/macrophages and indirectly microglia. Interferon-gamma (IFN-gamma) and the anti-inflammatory steroid agents dexamethasone and prednisone were powerful stimulators of C1q production, alone or in combination. Interleukin-6 (IL-6) and lipopolysaccharide (LPS) also had significant stimulatory activity. Phorbol myristate acetate, a protein kinase C activator, reduced C1q expression. Four additional classes of pharmacological agents were tested for their effect on C1q secretion. Tacrine, but not indomethacin, cimetidine, or propentofylline, showed activity in inhibiting C1q secretion by IFN-gamma treated THP-1-derived macrophages.

  16. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick,

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5{sup fl/fl}LysM-Cre{sup +} mice resulted in enhanced cytotoxicity and inflammationmore » after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5{sup fl/fl}LysM-Cre{sup +} mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.« less

  17. Degraded λ-carrageenan activates NF-κB and AP-1 pathways in macrophages and enhances LPS-induced TNF-α secretion through AP-1.

    PubMed

    Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun

    2014-07-01

    Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.

    PubMed

    McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B

    2015-01-01

    Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.

  19. MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages.

    PubMed

    Yao, Yan; Zhang, Xin; Chen, Hai-Peng; Li, Liang; Xie, Wei; Lan, Gang; Zhao, Zhen-Wang; Zheng, Xi-Long; Wang, Zong-Bao; Tang, Chao-Ke

    2016-07-01

    Several studies suggest that cardiomyocyte-enriched miR-186 is involved in cardiac injury and myocardial infarction, and also plays an important role in atherosclerotic diseases, but the underlying mechanism is unknown. Cystathionine-γ-lyase (CSE) is the predominant enzyme to produce H2S in the cardiovascular system. Here, miR-186 was identified to bind to the 3'UTR of CSE. In this study, we aimed at exploring whether miR-186 affects lipid accumulation and secretion of pro-inflammatory cytokines by targeting CSE and its underlying mechanism in human THP-1 macrophages and peripheral blood monocyte-derived macrophages (PBMDM). PBMDM just as a control group for the comparison with the THP-1 macrophages. MiR-186 target genes, CSE 3'UTR sequence and free energy were predicted and analyzed by bioinformatics analyses and dual-luciferase reporter assays. The expression of CSE mRNA and protein were measured by real-time quantitative PCR and western blot analyses. The lipid accumulation in THP-1 macrophages was detected by high performance liquid chromatography (HPLC). The effects of miR-186 on secretion of IL-6, IL-1β and TNF-α were examined by ELISA. Endogenous H2S was detected by spectrophotometry. Using small interfering RNA (siRNA) approach to decrease the expression of CSE protein and mRNA. We found that miR-186 directly inhibited CSE protein and mRNA expression through targeting CSE 3'UTR by bioinformatics analyses and dual-luciferase reporter assays. HPLC assays showed that miR-186 increased the lipid accumulation in human THP-1 macrophages. We also showed that miR-186 enhanced secretion of pro-inflammatory cytokines in human THP-1 macrophages. Using siRNA approach, we found that CSE siRNA could inhibit the miR-186 inhibitor-induced decrease in the expression of LPL protein and mRNA in human THP-1 macrophages, which was accompanied a decrease in the level of H2S. MicroRNA-186 promotes macrophage lipid accumulation and pro-inflammatory cytokine secretion by

  20. SHIP-1 Increases Early Oxidative Burst and Regulates Phagosome Maturation in Macrophages1

    PubMed Central

    Kamen, Lynn A.; Levinsohn, Jonathan; Cadwallader, Amy; Tridandapani, Susheela; Swanson, Joel A.

    2010-01-01

    Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5) P3 to PI(3,4)P2 on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1-deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3′ phosphoinositide composition. PMID:18490750

  1. Isorhamnetin Attenuates Atherosclerosis by Inhibiting Macrophage Apoptosis via PI3K/AKT Activation and HO-1 Induction

    PubMed Central

    Luo, Yun; Sun, Guibo; Dong, Xi; Wang, Min; Qin, Meng; Yu, Yingli; Sun, Xiaobo

    2015-01-01

    Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction. PMID:25799286

  2. Transplantation of Mesenchymal Stem Cells Promotes an Alternative Pathway of Macrophage Activation and Functional Recovery after Spinal Cord Injury

    PubMed Central

    Uchida, Kenzo; Guerrero, Alexander Rodriguez; Watanabe, Shuji; Sugita, Daisuke; Takeura, Naoto; Yoshida, Ai; Long, Guang; Wright, Karina T.; Johnson, William E.B.; Baba, Hisatoshi

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9–T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×106 PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-α and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery. PMID:22233298

  3. Recognition of TLR2 N-Glycans: Critical Role in ArtinM Immunomodulatory Activity

    PubMed Central

    da Silva, Thiago Aparecido; Ruas, Luciana Pereira; Nohara, Lilian L.; de Almeida, Igor Correia; Roque-Barreira, Maria Cristina

    2014-01-01

    TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-κB activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties. PMID:24892697

  4. "In vivo" murine macrophages activation by a dichloromethane extract of Tilia x viridis.

    PubMed

    Davicino, Roberto; Micucci, Patricia; Zettler, Gabriela; Ferraro, Graciela; Anesini, Claudia

    2010-09-01

    Macrophages are involved in the host defense against infectious pathogens and tumors. Tilia species have been used in folk medicine for the treatment of infectious diseases, previously it was demonstrated that a dichloromethane (DM) extract possess antiproliferative action "in vitro" on a lymphoma cell line. The aim of this work was to study the "in vivo" effect of DM extract upon mice peritoneal macrophages. DM extract-activated macrophages phagocytosis through hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production (phagocytosis (%): basal 16.93 +/- 0.18, DM extract 25.93 +/- 2.8; H(2)O(2) (M): basal 0.0022 +/- 0.00016, DM extract 0.0036 +/- 0.0005; NO (mM): basal 0.0052 +/- 0.0007, DM extract 0.0099 +/- 0.0004). These actions were mediated by cell superoxide dismutase activation. On the other hand, DM extract decreased tumor necrosis factor alpha but increased interleukin-10 in serum. These results suggest that the modulation activity exerted by the extract on immune system cells could be an important mechanism to acquire resistance to tumors and infectious diseases.

  5. Nanomedicine Strategies to Target Tumor-Associated Macrophages

    PubMed Central

    Binnemars-Postma, Karin; Storm, Gert; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail. PMID:28471401

  6. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.

    PubMed

    Wang, Ying; Wang, Gary Z; Rabinovitch, Peter S; Tabas, Ira

    2014-01-31

    Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell type-specific causation studies in vivo are lacking, and the molecular mechanisms of potential proatherogenic effects remain to be determined. Our aims were to assess the importance of macrophage mitoOS in atherogenesis and to explore the underlying molecular mechanisms. We first validated Western diet-fed Ldlr(-/-) mice as a model of human mitoOS-atherosclerosis association by showing that non-nuclear oxidative DNA damage, a marker of mitoOS in lesional macrophages, correlates with aortic root lesion development. To investigate the importance of macrophage mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c(hi) monocyte infiltration into lesions, and lower levels of monocyte chemotactic protein-1. The decrease in lesional monocyte chemotactic protein-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the proinflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed monocyte chemotactic protein-1 expression by decreasing the activation of the IκB-kinase β-RelA NF-κB pathway. MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.

  7. The Macrophage Activation Induced by Bacillus thuringiensis Cry1Ac Protoxin Involves ERK1/2 and p38 Pathways and the Interaction with Cell-Surface-HSP70.

    PubMed

    Rubio-Infante, Nestor; Ilhuicatzi-Alvarado, Damaris; Torres-Martínez, Marilu; Reyes-Grajeda, Juan Pablo; Nava-Acosta, Raúl; González-González, Edith; Moreno-Fierros, Leticia

    2018-01-01

    Here, we aimed to further characterize the mechanisms involved in protoxin (p) Cry1Ac-induced macrophage activation. We demonstrated that pCry1Ac induces MAPK ERK1/2, p38, and JNK phosphorylation in RAW264.7 macrophages. Because MAPK activation is mainly triggered via ligand-receptor interactions, we focused on the identification of potential pCry1Ac-receptor proteins. Flow cytometry and confocal analysis showed specific saturable pCry1Ac-binding to the macrophage surface and evidenced its internalization via the clathrin-pathway. We performed immunoprecipitation assays and identified by MALDI-TOF-TOF several possible pCry1Ac-binding proteins, such as heat shock proteins (HSPs), vimentin, α-enolase, and actin; whose interaction and presence was confirmed, respectively, by ligand blot and Western blot assays. We also detected cell-surface (cs) pCry1Ac-HSP70 colocalization, so HSP70 was chosen for further characterization. Co-immunoprecipitation with HSP70 antibodies followed by Western blot confirmed the pCry1Ac-HSP70 interaction. Furthermore, pretreatment of RAW264.7 cells with HSP70 antibodies reduced pCry1Ac-induced ERK1 phosphorylation and MCP-1 production; thus suggest the functional participation of csHSP70 in pCry1Ac-induced macrophage activation. csHSP70 also was evaluated in peritoneal-cavity (PerC) macrophages of untreated BALB/c mice, interestingly it was found that the predominant population namely large-peritoneal-macrophages (LPM) displayed csHSP70 + hi. Furthermore, the dynamics of PerC macrophage subsets, LPM, and small-peritoneal macrophages (SPM) were evaluated in response to in vivo pCry1Ac stimuli in presence or not of phenylethynesulfonamide (PES) a functional HSP70 inhibitor. It was found that pCry1Ac increased the proportion of SPM CD11b + F4/80 + lowMHCII + csHSP70 + low and markedly reduced the amount of LPM CD11b + F4/80 + hiMHCII-csHSP70 + hi; while PES, partially suppressed this pCry1Ac-induced effect

  8. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation.

    PubMed

    Marwick, John A; Mills, Ross; Kay, Oliver; Michail, Kyriakos; Stephen, Jillian; Rossi, Adriano G; Dransfield, Ian; Hirani, Nikhil

    2018-06-04

    Apoptotic cells modulate the function of macrophages to control and resolve inflammation. Here, we show that neutrophils induce a rapid and sustained suppression of NF-κB signalling in the macrophage through a unique regulatory relationship which is independent of apoptosis. The reduction of macrophage NF-κB activation occurs through a blockade in transforming growth factor β-activated kinase 1 (TAK1) and IKKβ activation. As a consequence, NF-κB (p65) phosphorylation is reduced, its translocation to the nucleus is inhibited and NF-κB-mediated inflammatory cytokine transcription is suppressed. Gene Set Enrichment Analysis reveals that this suppression of NF-κB activation is not restricted to post-translational modifications of the canonical NF-κB pathway, but is also imprinted at the transcriptional level. Thus neutrophils exert a sustained anti-inflammatory phenotypic reprogramming of the macrophage, which is reflected by the sustained reduction in the release of pro- but not anti- inflammatory cytokines from the macrophage. Together, our findings identify a novel apoptosis-independent mechanism by which neutrophils regulate the mediator profile and reprogramming of monocytes/macrophages, representing an important nodal point for inflammatory control.

  9. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Xue; Tamai, Riyoko; Endo, Yasuo

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, amore » promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.« less

  10. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    PubMed

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone.

    PubMed

    Yang, Li; Yang, Jin Bo; Chen, Jia; Yu, Guang Yao; Zhou, Pei; Lei, Lei; Wang, Zhen Zhen; Cy Chang, Catherine; Yang, Xin Ying; Chang, Ta Yuan; Li, Bo Liang

    2004-08-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  12. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages.

    PubMed

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L

    2009-08-01

    The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced

  13. Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages*

    PubMed Central

    Yao, Yongfang; Shi, Qian; Chen, Bing; Wang, Qingsong; Li, Xinda; Li, Long; Huang, Yahong; Ji, Jianguo; Shen, Pingping

    2016-01-01

    Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro. In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy. PMID:27325699

  14. Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR

    PubMed Central

    Guo, Xiaofan; Xue, Hao; Shao, Qianqian; Wang, Jian; Guo, Xing; Chen, Xi; Zhang, Jinsen; Xu, Shugang; Li, Tong; Zhang, Ping; Gao, Xiao; Qiu, Wei

    2016-01-01

    Tumor-associated macrophages (TAMs) are enriched in gliomas and help create a tumor-immunosuppressive microenvironment. A distinct M2-skewed type of macrophages makes up the majority of glioma TAMs, and these cells exhibit pro-tumor functions. Gliomas contain large hypoxic areas, and the presence of a correlation between the density of M2-polarized TAMs and hypoxic areas suggests that hypoxia plays a supportive role during TAM recruitment and induction. Here, we investigated the effects of hypoxia on human macrophage recruitment and M2 polarization. We also investigated the influence of the HIF inhibitor acriflavine (ACF) on M2 TAM infiltration and tumor progression in vivo. We found that hypoxia increased periostin (POSTN) expression in glioma cells and promoted the recruitment of macrophages. Hypoxia-inducible POSTN expression was increased by TGF-α via the RTK/PI3K pathway, and this effect was blocked by treating hypoxic cells with ACF. We also demonstrated that both a hypoxic environment and hypoxia-treated glioma cell supernatants were capable of polarizing macrophages toward a M2 phenotype. ACF partially reversed the M2 polarization of macrophages by inhibiting the upregulation of M-CSFR in macrophages and TGF-β in glioma cells under hypoxic conditions. Administering ACF also ablated tumor progression in vivo. Our findings reveal a mechanism that underlies hypoxia-induced TAM enrichment and M2 polarization and suggest that pharmacologically inhibiting HIFs may reduce M2-polarized TAM infiltration and glioma progression. PMID:27602954

  15. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis

    PubMed Central

    Coppo, Maddalena; Chinenov, Yurii; Sacta, Maria A.; Rogatsky, Inez

    2016-01-01

    Diet-induced obesity causes chronic macrophage-driven inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT macrophages, however, differ in their origin, gene expression and activities: unlike infiltrating monocyte-derived inflammatory macrophages, WAT-resident macrophages counteract inflammation and insulin resistance, yet, the mechanisms underlying their transcriptional programming remain poorly understood. We recently reported that a nuclear receptor cofactor—glucocorticoid receptor (GR)-interacting protein (GRIP)1—cooperates with GR to repress inflammatory genes. Here, we show that GRIP1 facilitates macrophage programming in response to IL4 via a GR-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4—a driver of tissue-resident macrophage differentiation. Moreover, obese mice conditionally lacking GRIP1 in macrophages develop massive macrophage infiltration and inflammation in metabolic tissues, fatty livers, hyperglycaemia and insulin resistance recapitulating metabolic disease. Thus, GRIP1 is a critical regulator of immunometabolism, which engages distinct transcriptional mechanisms to coordinate the balance between macrophage populations and ultimately promote metabolic homeostasis. PMID:27464507

  16. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells

    PubMed Central

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S. Joseph

    2017-01-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF–positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  17. Rabbit notochordal cells modulate the expression of inflammatory mediators by human annulus fibrosus cells cocultured with activated macrophage-like THP-1 cells.

    PubMed

    Kim, Joo Han; Moon, Hong Joo; Lee, Jin Hoon; Kim, Jong Hyun; Kwon, Taek Hyun; Park, Youn Kwan

    2012-10-15

    We evaluated the influence of rabbit notochordal cells on the expression of inflammatory mediators by human annulus fibrosus (AF) cells cocultured with macrophage-like cells. To identify the protective effect of rabbit notochordal cells on AF during in vitro inflammation. Discogenic pain, which is an important cause of intractable lower back pain, is associated with macrophage-mediated inflammation in the AF. Although rabbit notochordal cells prevent intervertebral disc degeneration, their effects on human AF inflammation remain unknown. Human AF pellets were cocultured for 48 hours with notochordal cell clusters from adult New Zealand White rabbits and phorbol myristate acetate (PMA)-stimulated human macrophage-like THP-1 cells. Conditioned media (CM) from the cocultures were assayed by enzyme-linked immunosorbent assay. The expression of inflammatory mediators in the AF pellets was evaluated by real-time reverse-transcription polymerase chain reaction. The levels of mRNA for interleukin (IL)-6, IL-8, and inducible nitric oxide synthase (iNOS) in the AF pellets cocultured with notochordal cells and macrophages (hAF[rNC-M]) were significantly lower than those in the AF pellets cultured with macrophages alone (hAF[M]) (P < 0.05). The levels of IL-6 and IL-8 proteins in the CM of hAF(rNC-M) were significantly lower than those in the CM of hAF(M) (P < 0.05). Coculturing with notochordal cells significantly decreased the levels of mRNA for IL-6, IL-8, and iNOS in the macrophage-exposed AF pellets (P < 0.05). After 1 ng/mL IL-1β stimulation, the levels of IL-6 and IL-8 mRNA and the level of IL-8 protein production were significantly decreased in the AF pellets with notochordal cells compared with naïve AF pellets (P < 0.05). In an in vitro coculture system, rabbit notochordal cells reduced the levels of main inflammatory mediators and gene expression in the human AF during inflammation. Therefore, rabbit notochordal cells may constitute an important protective tool

  18. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    PubMed

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  19. Lung-Restricted Macrophage Activation in the Pearl Mouse Model of Hermansky-Pudlak Syndrome1

    PubMed Central

    Young, Lisa R.; Borchers, Michael T.; Allen, Holly L.; Gibbons, Reta S.; McCormack, Francis X.

    2013-01-01

    Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring “pearl” HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1γ) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-α, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-α, MIP1α, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-α responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-γ/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-α at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-α secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation. PMID:16547274

  20. Cot/Tpl2 regulates IL-23 p19 expression in LPS-stimulated macrophages through ERK activation.

    PubMed

    Kakimoto, K; Musikacharoen, T; Chiba, N; Bandow, K; Ohnishi, T; Matsuguchi, T

    2010-03-01

    We have previously reported that a serine/threonine protein kinase, Cot/Tpl2, is a negative regulator of Th1-type immunity through inhibiting IL-12 expression in antigen presenting cells (APCs) stimulated by Toll-like receptor (TLR) ligands. We here show that Cot/Tpl2(-/-) macrophages produce significantly less IL-23, an important regulator of Th17-type response, than the wild-type counterparts in response to lipopolysaccharide (LPS), which is a ligand for TLR4. The decreased IL-23 production in Cot/Tpl2(-/-) macrophages is, at least partly, regulated at the transcriptional level, as the LPS-mediated IL-23 p19 mRNA induction was significantly less in Cot/Tpl2(-/-) macrophages. Chemical inhibition of extracellular signal-regulated kinase (ERK) activity similarly inhibited IL-23 expression in LPS-stimulated wild-type macrophages. As Cot/Tpl2 is an essential upstream component of the ERK activation pathway of LPS, it is suggested that Cot/Tpl2 positively regulates IL-23 expression through ERK activation. These results indicate that Cot/Tpl2 may be involved in balancing Th1/Th17 differentiation by regulating the expression ratio of IL-12 and IL-23 in APCs.

  1. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation

    PubMed Central

    Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Kuznetsova, Inna S.; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S.; Ponomarev, Eugene D.

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and

  2. Reduced susceptibility of clinical strains of Mycobacterium tuberculosis to reactive nitrogen species promotes survival in activated macrophages

    PubMed Central

    Idh, Jonna; Andersson, Blanka; Lerm, Maria; Raffetseder, Johanna; Eklund, Daniel; Woksepp, Hanna; Werngren, Jim; Mansjö, Mikael; Sundqvist, Tommy; Stendahl, Olle

    2017-01-01

    Background Drugs such as isoniazid (INH) and pretomanid (PRT), used against Mycobacterium tuberculosis are active partly through generation of reactive nitrogen species (RNS). The aim of this study was to explore variability in intracellular susceptibility to nitric oxide (NO) in clinical strains of M. tuberculosis. Method Luciferase-expressing clinical M. tuberculosis strains with or without INH resistance were exposed to RNS donors (DETA/NO and SIN-1) in broth cultures and bacterial survival was analysed by luminometry. NO-dependent intracellular killing in a selection of strains was assessed in interferon gamma/lipopolysaccharide-activated murine macrophages using the NO inhibitor L-NMMA. Results When M. tuberculosis H37Rv was compared to six clinical isolates and CDC1551, three isolates with inhA mediated INH resistance showed significantly reduced NO-susceptibility in broth culture. All strains showed a variable but dose-dependent susceptibility to RNS donors. Two clinical isolates with increased susceptibility to NO exposure in broth compared to H37Rv were significantly inhibited by activated macrophages whereas there was no effect on growth inhibition when activated macrophages were infected by clinical strains with higher survival to NO exposure in broth. Furthermore, the most NO-tolerant clinical isolate showed increased resistance to PRT both in broth culture and the macrophage model compared to H37Rv in the absence of mutational resistance in genes associated to reduced susceptibility against PRT or NO. Conclusion In a limited number of clinical M. tuberculosis isolates we found a significant difference in susceptibility to NO between clinical isolates, both in broth cultures and in macrophages. Our results indicate that mycobacterial susceptibility to cellular host defence mechanisms such as NO need to be taken into consideration when designing new therapeutic strategies. PMID:28704501

  3. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Abdalrahman, Akram

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promisesmore » in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an

  4. Macrophage polarization in response to ECM coated polypropylene mesh

    PubMed Central

    Wolf, MT; Dearth, CL; Ranallo, CA; LoPresti, S; Carey, LE; Daly, KA; Brown, BN; Badylak, SF

    2015-01-01

    The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3-35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. PMID:24856104

  5. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation.

    PubMed

    Perrotta, Cristiana; Buldorini, Marcella; Assi, Emma; Cazzato, Denise; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2014-01-01

    The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation

    PubMed Central

    McNeill, Eileen; Crabtree, Mark J.; Sahgal, Natasha; Patel, Jyoti; Chuaiphichai, Surawee; Iqbal, Asif J.; Hale, Ashley B.; Greaves, David R.; Channon, Keith M.

    2015-01-01

    Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl

  7. Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages.

    PubMed

    Moon, Eun-Yi; Lee, Yu-Sun; Choi, Wahn Soo; Lee, Mi-Hee

    2011-10-15

    B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  8. Studies on the mechanisms of macrophage activation. I. Destruction of intracellular Leishmania enriettii in macrophages activated by cocultivation with stimulated lymphocytes.

    PubMed

    Mauel, J; Buchmüller, Y; Behin, R

    1978-08-01

    When cultures of normal mouse peritoneal macrophages were infected with the intracellular protozoan parasite Leishmania enrietti, the micro-organism was found to survive intracellularly for several days, apparently without multiplication. However, exposure of infected macrophages to certain stimuli led to rapid parasite killing and digestion, providing a sensitive assay with which the mechanisms of macrophage activation can be studied. Microbicidal activity was induced by incubation of macrophages with syngeneic spleen lymphocytes, which were stimulated either by allogeneic cells in mixed lymphocyte culture (MLC) or by the plant lectin concanavalin A (Con A). Cocultivation with MLCs led to parasite killing within 48-72 h, whereas exposure of infected cells to Con A-stimulated lymphocytes resulted in substantial destruction of the micro-organism within less than 24 h, an effect which was dependent on the presence of thymus-derived lymphocytes and was inhibited by alpha methyl-mannoside. Incubation with Con A-stimulated lymphocytes also led to lysis of part of the macrophage monolayer. However, parasite killing did not result from decreased macrophage survival, as destruction of the micro-organism was highest under culture conditions which were the least detrimental to the phagocytes. Conversely, excess numbers of Con A-stimulated lymphocytes were less efficient at inducing macrophage activation and displayed marked toxicity to the macrophage monolayer. When spleen cells were stimulated by Con A at concentrations above 10 mug/ml, a decrease was noted in the capacity of macrophages to destroy the parasite, probably reflecting a toxicity of the lectin for lymphocytes resulting in impaired activating capacity.

  9. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization.

    PubMed

    Feng, Xiujing; Weng, Dan; Zhou, Feifei; Owen, Young D; Qin, Haohan; Zhao, Jingfa; WenYu; Huang, Yahong; Chen, Jiajia; Fu, Haijian; Yang, Nanfei; Chen, Dianhua; Li, Jianxin; Tan, Renxiang; Shen, Pingping

    2016-07-01

    PPARγ has emerged as a master regulator of macrophage polarization and is the molecular target of the thiazolidinedione drugs. Here we show that apigenin binds and activates PPARγ by acting as a modulator. Activation of PPARγ by apigenin blocks p65 translocation into nuclei through inhibition of p65/PPARγ complex translocation into nuclei, thereby decreasing NF-κB activation and favoringM2 macrophage polarization. In HFD and ob/ob mice, apigenin significantly reverses M1 macrophage into M2 and reduces the infiltration of inflammatory cells in liver and adipose tissues, as well as decreases the levels of pro-inflammatory cytokines, thereby alleviating inflammation. Strikingly, apigenin reduces liver and muscular steatosis, decreases the levels of ALT, AST, TC and TG, improving glucose resistance obviously. Unlike rosiglitazone, apigenin does not cause significant weight gain, osteoporosis et al. Our findings identify apigenin as a modulator of PPARγ and a potential lead compound for treatment of metabolic disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages

    PubMed Central

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H.; Oberlies, Nicholas H.; Dirsch, Verena M.; Atanasov, Atanas G.

    2016-01-01

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease. PMID:26729088

  11. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages.

    PubMed

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H; Oberlies, Nicholas H; Dirsch, Verena M; Atanasov, Atanas G

    2015-12-31

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease.

  12. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.

    PubMed

    Jin, Xueting; Kruth, Howard S

    2016-06-30

    A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.

  13. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity.

    PubMed

    Wu, Beiqing; Huang, Yunlong; Braun, Alexander L; Tong, Zenghan; Zhao, Runze; Li, Yuju; Liu, Fang; Zheng, Jialin C

    2015-11-06

    HIV-1-infected and/or immune-activated microglia and macrophages are pivotal in the pathogenesis of HIV-1-associated neurocognitive disorders (HAND). Glutaminase, a metabolic enzyme that facilitates glutamate generation, is upregulated and may play a pathogenic role in HAND. Our previous studies have demonstrated that glutaminase is released to the extracellular fluid during HIV-1 infection and neuroinflammation. However, key molecular mechanisms that regulate glutaminase release remain unknown. Recent advances in understanding intercellular trafficking have identified microvesicles (MVs) as a novel means of shedding cellular contents. We posit that during HIV-1 infection and immune activation, microvesicles may mediate glutaminase release, generating excessive and neurotoxic levels of glutamate. MVs isolated through differential centrifugation from cell-free supernatants of monocyte-derived macrophages (MDM) and BV2 microglia cell lines were first confirmed in electron microscopy and immunoblotting. As expected, we found elevated number of MVs, glutaminase immunoreactivities, as well as glutaminase enzyme activity in the supernatants of HIV-1 infected MDM and lipopolysaccharide (LPS)-activated microglia when compared with controls. The elevated glutaminase was blocked by GW4869, a neutral sphingomyelinase inhibitor known to inhibit MVs release, suggesting a critical role of MVs in mediating glutaminase release. More importantly, MVs from HIV-1-infected MDM and LPS-activated microglia induced significant neuronal injury in rat cortical neuron cultures. The MV neurotoxicity was blocked by a glutaminase inhibitor or GW4869, suggesting that the neurotoxic potential of HIV-1-infected MDM and LPS-activated microglia is dependent on the glutaminase-containing MVs. These findings support MVs as a potential pathway/mechanism of excessive glutamate generation and neurotoxicity in HAND and therefore MVs may serve as a novel therapeutic target.

  14. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation.

    PubMed

    Zhang, Yuchen; Cheng, Junjun; Zhang, Junmeng; Wu, Xiaofan; Chen, Fang; Ren, Xuejun; Wang, Yunlong; Li, Quan; Li, Yu

    2016-09-02

    Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Coxiella burnetii Subverts p62/Sequestosome 1 and Activates Nrf2 Signaling in Human Macrophages.

    PubMed

    Winchell, Caylin G; Dragan, Amanda L; Brann, Katelynn R; Onyilagha, Frances I; Kurten, Richard C; Voth, Daniel E

    2018-05-01

    Coxiella burnetii is the causative agent of human Q fever, a debilitating flu-like illness that can progress to chronic disease presenting as endocarditis. Following inhalation, C. burnetii is phagocytosed by alveolar macrophages and generates a lysosome-like replication compartment termed the parasitophorous vacuole (PV). A type IV secretion system (T4SS) is required for PV generation and is one of the pathogen's few known virulence factors. We previously showed that C. burnetii actively recruits autophagosomes to the PV using the T4SS but does not alter macroautophagy. In the current study, we confirmed that the cargo receptor p62/sequestosome 1 (SQSTM-1) localizes near the PV in primary human alveolar macrophages infected with virulent C. burnetii p62 and LC3 typically interact to select cargo for autophagy-mediated degradation, resulting in p62 degradation and LC3 recycling. However, in C. burnetii -infected macrophages, p62 was not degraded when cells were starved, suggesting that the pathogen stabilizes the protein. In addition, phosphorylated p62 levels increased, indicative of activation, during infection. Small interfering RNA experiments indicated that p62 is not absolutely required for intracellular growth, suggesting that the protein serves a signaling role during infection. Indeed, the Nrf2-Keap1 cytoprotective pathway was activated during infection, as evidenced by sustained maintenance of Nrf2 levels and translocation of the protein to the nucleus in C. burnetii -infected cells. Collectively, our studies identify a new p62-regulated host signaling pathway exploited by C. burnetii during intramacrophage growth. Copyright © 2018 American Society for Microbiology.

  16. Ski can negatively regulates macrophage differentiation through its interaction with PU.1

    PubMed Central

    Ueki, N; Zhang, L; Haymann, MJ

    2010-01-01

    In the hematopoietic cell system, the oncoprotein Ski dramatically affects growth and differentiation programs, in some cases leading to malignant leukemia. However, little is known about the interaction partners or signaling pathways involved in the Ski-mediated block of differentiation in hematopoietic cells. Here we show that Ski interacts with PU.1, a lineage-specific transcription factor essential for terminal myeloid differentiation, and thereby represses PU.1-dependent transcriptional activation. Consistent with this, Ski inhibits the biological function of PU.1 to promote myeloid cells to differentiate into macrophage colony-stimulating factor receptor (M-CSFR)-positive macrophages. Using a Ski mutant deficient in PU.1 binding, we demonstrate that Ski–PU.1 interaction is critical for Ski's ability to repress PU.1-dependent transcription and block macrophage differentiation. Furthermore, we provide evidence that Ski-mediated repression of PU.1 is due to Ski's ability to recruit histone deacetylase 3 to PU.1 bound to DNA. Since inactivation of PU.1 is closely related to the development of myeloid leukemia and Ski strongly inhibits PU.1 function, we propose that aberrant Ski expression in certain types of myeloid cell lineages might contribute to leukemogenesis. PMID:17621263

  17. Comparative effects of conjugated linoleic acid (CLA) and linoleic acid (LA) on the oxidoreduction status in THP-1 macrophages.

    PubMed

    Rybicka, Marta; Stachowska, Ewa; Gutowska, Izabela; Parczewski, Miłosz; Baśkiewicz, Magdalena; Machaliński, Bogusław; Boroń-Kaczmarska, Anna; Chlubek, Dariusz

    2011-04-27

    The aim of this study was to investigate the effect of conjugated linoleic acids (CLAs) on macrophage reactive oxygen species synthesis and the activity and expression of antioxidant enzymes, catalase (Cat), glutathione peroxidase (GPx), and superoxide dismutase (SOD). The macrophages were obtained from the THP-1 monocytic cell line. Cells were incubated with the addition of cis-9,trans-11 CLA or trans-10,cis-12 CLA or linoleic acid. Reactive oxygen species (ROS) formation was estimated by flow cytometry. Enzymes activity was measured spectrophotometrically. The antioxidant enzyme mRNA expression was estimated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was based on nonparametric statistical tests [Friedman analysis of variation (ANOVA) and Wilcoxon signed-rank test]. cis-9,trans-11 CLA significantly increased the activity of Cat, while trans-10,cis-12 CLA notably influenced GPx activity. Both isomers significantly decreased mRNA expression for Cat. Only trans-10,cis-12 significantly influenced mRNA for SOD-2 expression. The CLAs activate processes of the ROS formation in macrophages. Adverse metabolic effects of each isomer action were observed.

  18. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Patel-Vayas, Kinal; Shen, Jianliang

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h andmore » 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are

  19. Activation of Nrf2/HO-1signaling pathway involves the anti-inflammatory activity of magnolol in Porphyromonas gingivalis lipopolysaccharide-stimulated mouse RAW 264.7 macrophages.

    PubMed

    Lu, Sheng-Hua; Hsu, Wen-Lin; Chen, Tso-Hsiao; Chou, Tz-Chong

    2015-12-01

    Magnolol isolated from Magnolia officinalis, a Chinese medical herb, exhibits an anti-inflammatory activity and a protective effect against periodontitis. The inflammation caused by lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) has been considered a key inducer in the development of periodontitis. In this study, we investigated whether magnolol inhibits P. gingivalis LPS-evoked inflammatory responses in RAW 264.7 macrophages and the involvement of heme oxygenase-1 (HO-1). Magnolol significantly activated p38 MAPK, Nrf-2/HO-1 cascade and reactive oxygen species (ROS) formation. Notably, the Nrf-2 activation and HO-1 induction by magnolol were greatly diminished by blocking p38 MAPK activity and ROS production. Furthermore, in P. gingivalis LPS-stimulated macrophages, magnolol treatment remarkably inhibited the inflammatory responses evidenced by suppression of pro-inflammatory cytokine, prostaglandin E2, nitrite formation, and the expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as NF-κB activation accompanied by a significant elevation of Nrf-2 nuclear translocation and HO-1 expression/activity. However, inhibiting HO-1 activity with tin protoporphyrin IX markedly reversed the anti-inflammatory effects of magnolol. Collectively, these findings provide a novel mechanism by which magnolol inhibits P. gingivalis LPS-induced inflammation in macrophages is at least partly mediated by HO-1 activation, and thereby promoting its clinical use in periodontitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Immunomodulatory Effects of Adipose Stromal Vascular Fraction Cells Promote Alternative Activation Macrophages to Repair Tissue Damage.

    PubMed

    Bowles, Annie C; Wise, Rachel M; Gerstein, Brittany Y; Thomas, Robert C; Ogelman, Roberto; Febbo, Isabella; Bunnell, Bruce A

    2017-10-01

    The pathogenesis of many diseases is driven by the interactions between helper T (T H ) cells and macrophages. The phenotypes of these cells are functional dichotomies that are persuaded according to the surrounding milieu. In both multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, T H 1 and T H 17 cells propagate autoimmune signaling and inflammation in the peripheral lymphoid tissues. In turn, this proinflammatory repertoire promotes the classical activation, formerly the M1-type, macrophages. Together, these cells infiltrate into the central nervous system (CNS) tissues and generate inflammatory and demyelinating lesions. Our most recent report demonstrated the immunomodulatory and anti-inflammatory effects of adipose stromal vascular fraction (SVF) cells and adipose-derived stem cells (ASCs) that led to functional, immunological, and pathological improvements in the EAE model. Here, a deeper investigation revealed the induction of regulatory T cells and alternative activation, or M2-type, macrophages in the periphery followed by the presence of alternative activation macrophages, reduced cellular infiltrates, and attenuation of neuroinflammation in CNS tissues following intraperitoneal administration of these treatments. Spleens from treated EAE mice revealed diminished T H 1 and T H 17 cell activities and were markedly higher in the levels of anti-inflammatory cytokine interleukin-10. Interestingly, SVF cells were more effective than ASCs at mediating these beneficial changes, which were attributed to their localization to the spleens after administration. Together, SVF cells rapidly and robustly attenuated the propagation of autoimmune signaling in the periphery that provided a permissive milieu in the CNS for repair and possibly regeneration. Stem Cells 2017;35:2198-2207. © 2017 AlphaMed Press.

  1. Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell-cell adhesion of colorectal cancer cells.

    PubMed

    Aarons, Cary B; Bajenova, Olga; Andrews, Charles; Heydrick, Stanley; Bushell, Kristen N; Reed, Karen L; Thomas, Peter; Becker, James M; Stucchi, Arthur F

    2007-01-01

    The liver is the most common site for metastasis by colorectal cancer, and numerous studies have shown a relationship between serum carcinoembryonic antigen (CEA) levels and metastasis to this site. CEA activates hepatic macrophages or Kupffer cells via binding to the CEA receptor (CEA-R), which results in the production of cytokines and the up-regulation of endothelial adhesion molecules, both of which are implicated in hepatic metastasis. Since tissue macrophages implicated in the metastatic process can often be difficult to isolate, the aim of this study was to develop an in vitro model system to study the complex mechanisms of CEA-induced macrophage activation and metastasis. Undifferentiated, human monocytic THP-1 (U-THP) cells were differentiated (D-THP) to macrophages by exposure to 200 ng/ml phorbol myristate acetate (PMA) for 18 h. Immunohistochemistry showed two CEA-R isoforms present in both U- and D-THP cells. The receptors were localized primarily to the nucleus in U-THP cells, while a significant cell-surface presence was observed following PMA-differentiation. Incubation of D-THP-1 cells with CEA resulted in a significant increase in tumor necrosis factor-alpha (TNF-alpha) release over 24 h compared to untreated D-THP-1 or U-THP controls confirming the functionality of these cell surface receptors. U-THP cells were unresponsive to CEA. Attachment of HT-29 cells to human umbilical vein endothelial cells significantly increased at 1 h after incubation with both recombinant TNF-alpha and conditioned media from CEA stimulated D-THP cells by six and eightfold, respectively. This study establishes an in vitro system utilizing a human macrophage cell line expressing functional CEA-Rs to study activation and signaling mechanisms of CEA that facilitate tumor cell attachment to activated endothelial cells. Utilization of this in vitro system may lead to a more complete understanding of the expression and function of CEA-R and facilitate the design of anti

  2. Isolation and Differentiation of Murine Macrophages.

    PubMed

    Rios, Francisco J; Touyz, Rhian M; Montezano, Augusto C

    2017-01-01

    Macrophages play a major role in inflammation, wound healing, and tissue repair. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. In the heart and vascular tissues, pathological activation promotes cardiovascular inflammation and remodeling and there is increasing evidence that macrophages play important mechanisms in this environment. Primary murine macrophages can be obtained from: bone marrow by different treatments (granulocyte-macrophage colony-stimulating factor-GM-CSF, macrophage colony-stimulating factor-M-CSF or supernatant of murine fibroblast L929), peritoneal cavity (resident or thioglycolate elicit macrophages), from the lung (alveolar macrophages) or from adipose tissue. In this chapter we describe some protocols to obtain primary murine macrophages and how to identify a pure macrophage population or activation phenotypes using different markers.

  3. Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles.

    PubMed

    Huang, Yen-Jang; Hung, Kun-Che; Hung, Huey-Shan; Hsu, Shan-Hui

    2018-06-13

    Nanomaterials with surface functionalized by different chemical groups can either provoke or attenuate the immune responses of the nanomaterials, which is critical to their biomedical efficacies. In this study, we demonstrate that synthetic waterborne polyurethane nanoparticles (PU NPs) can inhibit the macrophage polarization toward the M1 phenotype but not M2 phenotype. The surface-functionalized PU NPs decrease the secretion levels of proinflammatory cytokines (TNF-α and IL-1β) for M1 macrophages. Specifically, PU NPs with carboxyl groups on the surface exhibit a greater extent of inhibition on M1 polarization than those with amine groups. These water-suspended PU NPs reduce the nuclear factor-κB (NF-κB) activation and suppress the subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome signals. Furthermore, the dried PU films assembled from PU NPs have a similar effect on macrophage polarization and present a smaller shifting foreign body reaction (FBR) in vivo than the conventional poly(l-lactic acid). Taken together, the biodegradable waterborne PU NPs demonstrate surface-dependent immunosuppressive properties and macrophage polarization effects. The findings suggest potential therapeutic applications of PU NPs in anti-inflammation and macrophage-related disorders and propose a mechanism for the low FBR observed for biodegradable PU materials.

  4. Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis

    PubMed Central

    Linton, MacRae F.; Babaev, Vladimir R.; Huang, Jiansheng; Linton, Edward F.; Tao, Huan; Yancey, Patricia G.

    2017-01-01

    Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH2-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. PMID:27725526

  5. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases

    PubMed Central

    Tan, Hor-Yue; Li, Sha; Hong, Ming; Wang, Xuanbin

    2016-01-01

    High heterogeneity of macrophage is associated with its functions in polarization to different functional phenotypes depending on environmental cues. Macrophages remain in balanced state in healthy subject and thus macrophage polarization may be crucial in determining the tissue fate. The two distinct populations, classically M1 and alternatively M2 activated, representing the opposing ends of the full activation spectrum, have been extensively studied for their associations with several disease progressions. Accumulating evidences have postulated that the redox signalling has implication in macrophage polarization and the key roles of M1 and M2 macrophages in tissue environment have provided the clue for the reasons of ROS abundance in certain phenotype. M1 macrophages majorly clearing the pathogens and ROS may be crucial for the regulation of M1 phenotype, whereas M2 macrophages resolve inflammation which favours oxidative metabolism. Therefore how ROS play its role in maintaining the homeostatic functions of macrophage and in particular macrophage polarization will be reviewed here. We also review the biology of macrophage polarization and the disturbance of M1/M2 balance in human diseases. The potential therapeutic opportunities targeting ROS will also be discussed, hoping to provide insights for development of target-specific delivery system or immunomodulatory antioxidant for the treatment of ROS-related diseases. PMID:27143992

  6. Gomesin acts in the immune system and promotes myeloid differentiation and monocyte/macrophage activation in mouse.

    PubMed

    Buri, Marcus V; Dias, Carol C; Barbosa, Christiano M V; Nogueira-Pedro, Amanda; Ribeiro-Filho, Antonio C; Miranda, Antonio; Paredes-Gamero, Edgar J

    2016-11-01

    Due to the cytotoxic effect of antimicrobial peptides (AMP) against several microorganism and tumor cells has been proposed their association with the immune system. However, just a few reports have shown this relationship. In this study, mice were treated with gomesin, a β-hairpin AMP that exhibit high cytotoxicity against bacterial and tumor cells. Different effects in the immune system were observed, such as, decrease of CD3 + in T lymphocytes (Control: 17.7±1.4%; Gomesin: 7.67±1.2%) and in hematopoietic progenitors and increase of hematopoietic stem cell (Control: 0.046±0.004%; Gomesin: 0.067±0.003%), B220 + B lymphocytes (Control: 38.63±1.5%; Gomesin: 47.83±0.48%), and Mac-1 + F4/80 + macrophages (Control: 11.76±3.4%; Gomesin: 27.13±4.0%). Additionally, macrophage increase was accompanied by an increase of macrophage phagocytosis (Control 20.85±1.53; Gomesin 31.32±1 Geometric mean), interleukin 6 (Control: 47.24±1.9ng/mL; Gomesin: 138.68±33.68ng/mL) and monocyte chemoattractant protein-1 (Control: 0.872±0.093ng/mL; Gomesin: 1.83±0.067ng/mL). Thus, this report showed immunomodulatory activity of gomesin in the immune system of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination

    PubMed Central

    Polycarpou, Anastasia; Holland, Martin J.; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L.; Willcocks, Sam; Lockwood, Diana N. J.

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates “non-specific” protection to the human immune system. PMID:27458573

  8. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination.

    PubMed

    Polycarpou, Anastasia; Holland, Martin J; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L; Willcocks, Sam; Lockwood, Diana N J

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates "non-specific" protection to the human immune system.

  9. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages.

    PubMed

    Salari, Samira; Seibert, Tara; Chen, Yong-Xiang; Hu, Tieqiang; Shi, Chunhua; Zhao, Xiaoling; Cuerrier, Charles M; Raizman, Joshua E; O'Brien, Edward R

    2013-01-01

    Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism(s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro- and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro- and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.

  10. A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity*

    PubMed Central

    Lok, Hiu Chuen; Sahni, Sumit; Jansson, Patric J.; Kovacevic, Zaklina; Hawkins, Clare L.; Richardson, Des R.

    2016-01-01

    Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity. PMID:27866158

  11. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    PubMed Central

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  12. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production

    PubMed Central

    Mashiba, Michael; Collins, David R.; Terry, Valeri H.; Collins, Kathleen L.

    2014-01-01

    Summary The HIV-1 accessory protein Vpr enhances infection of primary macrophages through unknown mechanisms. Recent studies demonstrated that Vpr interactions with the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex limit activation of innate immunity and interferon (IFN) induction. We describe a restriction mechanism that targets the HIV-1 envelope protein Env but is overcome by Vpr and its interaction with DCAF1. This restriction is active in the absence of Vpr in HIV-1-infected primary macrophages and macrophage-epithelial cell heterokaryons, but not epithelial cell lines. HIV-1-infected macrophages lacking Vpr express more IFN following infection, target Env for lysosomal degradation and produce fewer Env-containing virions. Conversely, Vpr expression reduces IFN induction, rescues Env expression and enhances virion release. Addition of IFN or silencing DCAF1 reduces the amount of cell-associated Env and virion production in wild-type HIV-1-infected primary macrophages. These findings provide insight into an IFN-stimulated macrophage-specific restriction pathway targeting HIV-1 Env that is counteracted by Vpr. PMID:25464830

  13. Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola.

    PubMed

    Rosen, G; Sela, M N; Naor, R; Halabi, A; Barak, V; Shapira, L

    1999-03-01

    We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-alpha secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-alpha in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases.

  14. Haemophilus ducreyi infection induces activation of the NLRP3 inflammasome in nonpolarized but not in polarized human macrophages.

    PubMed

    Li, Wei; Katz, Barry P; Bauer, Margaret E; Spinola, Stanley M

    2013-08-01

    Recognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whether Haemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). Although H. ducreyi is predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated in H. ducreyi-infected skin. Infection of MDM with live, but not heat-killed, H. ducreyi induced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage of H. ducreyi uptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K(+) efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited by H. ducreyi. Our study data indicate that H. ducreyi induces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.

  15. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages.

    PubMed

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno

    2015-12-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Secreted and intracellular phospholipases A2 inhibition by 1-decyl 2-octyl-glycerophosphocholine in rat peritoneal macrophages.

    PubMed

    Boucrot, P; Bobin-Dubigeon, C; Elkihel, L; Letourneux, Y; Jugé, M; Gandemer, G; Petit, J Y

    1998-01-01

    Compounds able to inhibit phospholipases A2 can be considered as potential anti-inflammatory drugs. In this respect, the inhibitory effect of the phospholipid analogue 1-decyl 2-octyl-rac-glycero-3-phosphocholine (decyloctyl-GPC) added to the culture medium of rat peritoneal macrophages stimulated with ionophore A23187 was determined. (a) The substrate of phospholipase A2 1-octadecanoyl 2-[14C]eicosatetraenoyl-sn-glycero-3-phosphocholine ([14C]20:4-GPC) was added to the culture medium. In macrophages + extracellular fluids, its hydrolysis at the 2-position, produced [14C]non-phosphorous lipids which reached 12% of the dose at 0.14 microM, 73% at 0.9 and > 90% at 1.6 microM; in experiments where macrophages and extracellular fluids were analyzed separately, decyloctyl-GPC initially added at 4 microM, significantly inhibited the release of [14C]fatty acids and the eicosanoid synthesis, demonstrating its ability to inhibit secreted and/or intracellular phospholipases A2. (b) Extracellular fluids were separated from the macrophages and incubated with [14C]20:4-GPC: 48% of the dose was hydrolyzed by extracellular fluid-associated secreted phospholipase A2 and decyloctyl-GPC at 3 microM, reduced this hydrolysis by 50%. (c) [3H]arachidonic acid ([3H]20:4) was added to the culture medium and was esterified in the macrophage membrane phospholipids. Activation of intracellular phospholipase A2 induced the release of [3H] fatty acids and eicosanoid synthesis. These releases were inhibited by 50% with decyloctyl-GPC added at 4 microM. (d) [3H]20:4 and [14C]20:4-GPC were added to the culture medium of the macrophages. [3H] and [14C] fatty acids and eicosanoids were released in macrophages or extracellular fluids. They were significantly reduced by the phospholipid analogue added at 4 microM. It is concluded that secreted and intracellular phospholipases A2 were both inhibited by decyloctyl-GPC which extensively reduced the 20:4 release from exogenous and membrane phospholipids

  17. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages

    PubMed Central

    Daniel, Bence; Hah, Nasun; Horvath, Attila; Czimmerer, Zsolt; Poliska, Szilard; Gyuris, Tibor; Keirsse, Jiri; Gysemans, Conny; Van Ginderachter, Jo A.; Balint, Balint L.; Evans, Ronald M.; Barta, Endre; Nagy, Laszlo

    2014-01-01

    RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program. PMID:25030696

  18. Effects of macrophage colony-stimulating factor on macrophages and their related cell populations in the osteopetrosis mouse defective in production of functional macrophage colony-stimulating factor protein.

    PubMed Central

    Umeda, S.; Takahashi, K.; Shultz, L. D.; Naito, M.; Takagi, K.

    1996-01-01

    The development of macrophage populations in osteopetrosis (op) mutant mice defective in production of functional macrophage colony-stimulating factor (M-CSF) and the response of these cell populations to exogenous M-CSF were used to classify macrophages into four groups: 1) monocytes, monocyte-derived macrophages, and osteoclasts, 2) MOMA-1-positive macrophages, 3) ER-TR9-positive macrophages, and 4) immature tissue macrophages. Monocytes, monocyte-derived macrophages, osteoclasts in bone, microglia in brain, synovial A cells, and MOMA-1- or ER-TR9-positive macrophages were deficient in op/op mice. The former three populations expanded to normal levels in op/op mice after daily M-CSF administration, indicating that they are developed and differentiated due to the effect of M-CSF supplied humorally. In contrast, the other cells did not respond or very slightly responded to M-CSF, and their development seems due to either M-CSF produced in situ or expression of receptor for M-CSF. Macrophages present in tissues of the mutant mice were immature and appear to be regulated by either granulocyte/macrophage colony-stimulating factor and/or interleukin-3 produced in situ or receptor expression. Northern blot analysis revealed different expressions of GM-CSF and IL-3 mRNA in various tissues of the op/op mice. However, granulocyte/macrophage colony-stimulating factor and interleukin-3 in serum were not detected by enzyme-linked immunosorbent assay. The immature macrophages differentiated and matured into resident macrophages after M-CSF administration, and some of these cells proliferated in response to M-CSF. Images Figure 4 Figure 6 Figure 8 Figure 10 Figure 11 PMID:8701995

  19. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    PubMed

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  20. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p < 0.01) increase in cytokine (TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 μg Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  1. Antitumor activity of the Korean mistletoe lectin is attributed to activation of macrophages and NK cells.

    PubMed

    Yoon, Taek Joon; Yoo, Yung Choon; Kang, Tae Bong; Song, Seong Kyu; Lee, Kyung Bok; Her, Erk; Song, Kyung Sik; Kim, Jong Bae

    2003-10-01

    Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26-M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 microg/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26-M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity, i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.

  2. Biochemistry of proinflammatory macrophage activation.

    PubMed

    Nonnenmacher, Yannic; Hiller, Karsten

    2018-06-01

    In the last decade, metabolism has been recognized as a major determinant of immunological processes. During an inflammatory response, macrophages undergo striking changes in their metabolism. This metabolic reprogramming is governed by a complex interplay between metabolic enzymes and metabolites of different pathways and represents the basis for proper macrophage function. It is now evident that these changes go far beyond the well-known Warburg effect and the perturbation of metabolic targets is being investigated as a means to treat infections and auto-immune diseases. In the present review, we will aim to provide an overview of the metabolic responses during proinflammatory macrophage activation and show how these changes modulate the immune response.

  3. [Effects of traditional tibetan medicine, Fructus Lonicerae microphyllae on phagecytosis and cytokines production of murine macrophages].

    PubMed

    Wang, Ju-Le; Sun, Yang; Zhou, Hui-Ying; Xu, Qiang; Dun, Zhu

    2006-01-01

    To explore the effects of traditional Tibetan medicine, Fructus Lonicerae microphyllae (FLM) on phagecytosis and cytokines production of murine macrophages. The phagecytosis of murine macrophages was analyzed by neutral red phagecytosis assay. The activities of IL-1 and TNF-alpha were measured by biological methods. The mRNA of TNF-alpha and INF-gamma expressed by macrophages was detected by RT-PCR. The phagecytosis of murine macrophages was significantly enhanced by FLM at a concentration from 1 microg x mL(-1) to 100 microg x mL(-1) and the secretions of IL-1, and TNF-alpha from macrophages were markedly induced by FLM. Meanwhile, FLM also increased the expression of TNF-alpha mRNA and INF-gamma mRHA from macrophages in vitro. FLM could promote phagecytosis and cytokines production of murine macrophages.

  4. Emodin suppresses pulmonary metastasis of breast cancer cells accompanied with decreased macrophage recruitment and M2 polarization in the lungs

    PubMed Central

    Jia, Xuemei; Yu, Fang; Wang, Junfeng; Iwanowycz, Stephen; Saaoud, Fatma; Wang, Yuzhen; Hu, Jun; Wang, Qian; Fan, Daping

    2014-01-01

    Purpose Breast cancer is the leading cause of death in female cancer patients due to the lack of effective treatment for metastasis. Macrophages are the most abundant immune cells in the primary and metastatic tumors, and contribute to tumor initiation, progression and metastasis. Emodin has been found to exert anti-tumor effects through promoting cell cycle arrest and apoptosis, and inhibiting angiogenesis, but its effects on tumor-associated macrophages during cancer metastasis have not been investigated. Methods Mice inoculated with 4T1 or EO771 breast cancer cells orthotopically were treated with Emodin after the primary tumors reached 200 mm3 in size. Primary tumor growth, lung metastasis, and macrophage infiltration in the lungs were analyzed. In vitro experiments were performed to examine the effects of Emodin on macrophage migration and M2 polarization, and the underlying mechanisms. Results Emodin significantly suppressed breast cancer lung metastasis in both orthotopic mouse models without apparent effects on primary tumors. Reduced infiltration of F4/80+ macrophages and Ym1+ M2 macrophages in lungs was observed in Emodin-treated mice. In vitro experiments demonstrated that Emodin decreased the migration of macrophages towards tumor cell conditioned medium (TCM) and inhibited macrophage M2 polarization induced by TCM. Mechanistically, Emodin suppressed STAT6 phosphorylation and C/EBPβ expression, two crucial signaling events in macrophage M2 polarization, in macrophages treated with IL-4 or TCM. Conclusion Taken together, our study, for the first time, demonstrated that Emodin suppressed pulmonary metastasis of breast cancer probably through inhibiting macrophage recruitment and M2 polarization in the lungs by reducing STAT6 phosphorylation and C/EBPβ expression. PMID:25311112

  5. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling.

    PubMed

    Coates, Philip J; Rundle, Jana K; Lorimore, Sally A; Wright, Eric G

    2008-01-15

    In addition to the directly mutagenic effects of energy deposition in DNA, ionizing radiation is associated with a variety of untargeted and delayed effects that result in ongoing bone marrow damage. Delayed effects are genotype dependent with CBA/Ca mice, but not C57BL/6 mice, susceptible to the induction of damage and also radiation-induced acute myeloid leukemia. Because macrophages are a potential source of ongoing damaging signals, we have determined their gene expression profiles and we show that bone marrow-derived macrophages show widely different intrinsic expression patterns. The profiles classify macrophages derived from CBA/Ca mice as M1-like (pro-inflammatory) and those from C57BL/6 mice as M2-like (anti-inflammatory); measurements of NOS2 and arginase activity in normal bone marrow macrophages confirm these findings. After irradiation in vivo, but not in vitro, C57BL/6 macrophages show a reduction in NOS2 and an increase in arginase activities, indicating a further M2 response, whereas CBA/Ca macrophages retain an M1 phenotype. Activation of specific signal transducer and activator of transcription signaling pathways in irradiated hemopoietic tissues supports these observations. The data indicate that macrophage activation is not a direct effect of radiation but a tissue response, secondary to the initial radiation exposure, and have important implications for understanding genotype-dependent responses and the mechanisms of the hemotoxic and leukemogenic consequences of radiation exposure.

  6. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol[S

    PubMed Central

    Zhu, Xuewei; Owen, John S.; Wilson, Martha D.; Li, Haitao; Griffiths, Gary L.; Thomas, Michael J.; Hiltbold, Elizabeth M.; Fessler, Michael B.; Parks, John S.

    2010-01-01

    We previously showed that macrophages from macrophage-specific ATP-binding cassette transporter A1 (ABCA1) knockout (Abca1-M/-M) mice had an enhanced proinflammatory response to the Toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS), compared with wild-type (WT) mice. In the present study, we demonstrate a direct association between free cholesterol (FC), lipid raft content, and hyper-responsiveness of macrophages to LPS in WT mice. Abca1-M/-M macrophages were also hyper-responsive to specific agonists to TLR2, TLR7, and TLR9, but not TLR3, compared with WT macrophages. We hypothesized that ABCA1 regulates macrophage responsiveness to TLR agonists by modulation of lipid raft cholesterol and TLR mobilization to lipid rafts. We demonstrated that Abca1-M/-M vs. WT macrophages contained 23% more FC in isolated lipid rafts. Further, mass spectrometric analysis suggested raft phospholipid composition was unchanged. Although cell surface expression of TLR4 was similar between Abca1-M/-M and WT macrophages, significantly more TLR4 was distributed in membrane lipid rafts in Abca1-M/-M macrophages. Abca1-M/-M macrophages also exhibited increased trafficking of the predominantly intracellular TLR9 into lipid rafts in response to TLR9-specific agonist (CpG). Collectively, our data suggest that macrophage ABCA1 dampens inflammation by reducing MyD88-dependent TLRs trafficking to lipid rafts by selective reduction of FC content in lipid rafts. PMID:20650929

  7. Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2.

    PubMed

    Barroso, Marina Valente; Cattani-Cavalieri, Isabella; de Brito-Gitirana, Lycia; Fautrel, Alain; Lagente, Vincent; Schmidt, Martina; Porto, Luís Cristóvão; Romana-Souza, Bruna; Valença, Samuel Santos; Lanzetti, Manuella

    2017-10-15

    Chronic obstructive pulmonary disease (COPD) is an incurable and progressive disease. Emphysema is the principal manifestation of COPD, and the main cause of this condition is cigarette smoke (CS). Natural products have shown antioxidant and anti-inflammatory properties that can prevent acute lung inflammation and emphysema, but there are few reports in the literature regarding therapeutic approaches to emphysema. We hypothesized that supplementation with natural extracts would repair lung damage in emphysema caused by CS exposure. Mice were exposed to 60days of CS and then treated or not with three different natural extracts (mate tea, grape and propolis) orally for additional 60days. Histological analysis revealed significant improvements in lung histoarchitecture, with recovery of alveolar spaces in all groups treated with natural extracts. Propolis was also able to recovery alveolar septa and elastic fibers. Propolis also increased MMP-2 and decreased MMP-12 expression, favoring the process of tissue repair. Additionally, propolis recruited leukocytes, including macrophages, without ROS release. These findings led us to investigate the profile of these macrophages, and we showed that propolis could promote macrophage alternative activation, thus increasing the number of arginase-positive cells and IL-10 levels and favoring an anti-inflammatory microenvironment. We further investigated the participation of Nrf2 in lung repair, but no Nrf2 translocation to the nucleus was observed in lung cells. Proteins and enzymes related to Nrf2 were not altered, other than NQO1, which seemed to be activated by propolis in a Nrf2-independent manner. Finally, propolis downregulated IGF1 expression. In conclusion, propolis promoted lung repair in a mouse emphysema model via macrophage polarization from M1 to M2 in parallel to the downregulation of IGF1 expression in a Nrf2-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytesmore » exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.« less

  9. Type I IFN Inhibits Alternative Macrophage Activation during Mycobacterium tuberculosis Infection and Leads to Enhanced Protection in the Absence of IFN-γ Signaling

    PubMed Central

    Sousa, Jeremy; McNab, Finlay W.; Torrado, Egídio; Cardoso, Filipa; Machado, Henrique; Castro, Flávia; Cardoso, Vânia; Gaifem, Joana; Wu, Xuemei; Appelberg, Rui; Castro, António Gil; O’Garra, Anne; Saraiva, Margarida

    2016-01-01

    Tuberculosis causes ∼1.5 million deaths every year, thus remaining a leading cause of death from infectious diseases in the world. A growing body of evidence demonstrates that type I IFN plays a detrimental role in tuberculosis pathogenesis, likely by interfering with IFN-γ–dependent immunity. In this article, we reveal a novel mechanism by which type I IFN may confer protection against Mycobacterium tuberculosis infection in the absence of IFN-γ signaling. We show that production of type I IFN by M. tuberculosis–infected macrophages induced NO synthase 2 and inhibited arginase 1 gene expression. In vivo, absence of both type I and type II IFN receptors led to strikingly increased levels of arginase 1 gene expression and protein activity in infected lungs, characteristic of alternatively activated macrophages. This correlated with increased lung bacterial burden and pathology and decreased survival compared with mice deficient in either receptor. Increased expression of other genes associated with alternatively activated macrophages, as well as increased expression of Th2-associated cytokines and decreased TNF expression, were also observed. Thus, in the absence of IFN-γ signaling, type I IFN suppressed the switching of macrophages from a more protective classically activated phenotype to a more permissive alternatively activated phenotype. Together, our data support a model in which suppression of alternative macrophage activation by type I IFN during M. tuberculosis infection, in the absence of IFN-γ signaling, contributes to host protection. PMID:27849167

  10. Bergenin, Acting as an Agonist of PPARγ, Ameliorates Experimental Colitis in Mice through Improving Expression of SIRT1, and Therefore Inhibiting NF-κB-Mediated Macrophage Activation.

    PubMed

    Wang, Kai; Li, Yun-Fan; Lv, Qi; Li, Xi-Ming; Dai, Yue; Wei, Zhi-Feng

    2017-01-01

    Bergenin, isolated from the herb of Saxifraga stolonifera Curt. (Hu-Er-Cao), has anti-inflammatory, antitussive and wound healing activities. The aim of the present study was to identify the effect of bergenin on experimental colitis, and explored the related mechanisms. Our results showed that oral administration of bergenin remarkably alleviated disease symptoms of mice with dextran sulfate sodium (DSS)-induced colitis, evidenced by reduced DAI scores, shortening of colon length, MPO activity and pathologic abnormalities in colons. Bergenin obviously inhibited the mRNA and protein expressions of IL-6 and TNF-α in colon tissues, but not that of mucosal barrier-associated proteins occludin, E -cadherin and MUC-2. In vitro , bergenin significantly inhibited the expressions of IL-6 and TNF-α as well as nuclear translocation and DNA binding activity of NF-κB-p65 in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and RAW264.7 cells, which was almost reversed by addition of PPARγ antagonist GW9662 and siPPARγ. Subsequently, bergenin was identified as a PPARγ agonist. It could enter into macrophages, bind with PPARγ, promote nuclear translocation and transcriptional activity of PPARγ, and increase mRNA expressions of CD36, LPL and ap2. In addition, bergenin significantly up-regulated expression of SIRT1, inhibited acetylation of NF-κB-p65 and increased association NF-κB-p65 and IκBα. Finally, the correlation between activation of PPARγ and attenuation of colitis, inhibition of IL-6 and TNF-α expressions, NF-κB-p65 acetylation and nuclear translocation, and up-regulation of SIRT1 expression by bergenin was validated in mice with DSS-induced colitis and/or LPS-stimulated macrophages. In summary, bergenin could ameliorate colitis in mice through inhibiting the activation of macrophages via regulating PPARγ/SIRT1/NF-κB-p65 pathway. The findings can provide evidence for the further development of bergenin as an anti-UC drug, and offer a paradigm

  11. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  12. A novel assay system for macrophage-activating factor activity using a human U937 cell line.

    PubMed

    Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2014-08-01

    Macrophages play important roles in antitumor immunity, and immunotherapy with the group-specific component protein-derived macrophage-activating factor (GcMAF) has been reported to be effective in patients with various types of cancers. However, in macrophage research, it is important to properly evaluate macrophage activity. U937 macrophages were induced by 12-O-tetradecanoyl-13-phorbolacetate (TPA). The phagocytic activity of macrophages was evaluated as the internalized beads ratio. The MAF activity was assessed at 30 min after MAF addition as the activation ratio. We established a novel assay for phagocytic activities using differentiated U937 macrophages. The novel protocol was simple and rapid and was sensitive for GcMAF. This protocol should be useful not only for basic studies, such as those on molecular mechanisms underlying macrophage activation, but also for clinical studies, such as assessment of GcMAF activity prior to clinical use. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro

    PubMed Central

    Guo, Yang; Chen, Jie; Xiong, Guoliang; Peng, Yiping; Ye, Jianqing; Li, Junming

    2015-01-01

    The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization. PMID:26091535

  14. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    PubMed

    Huang, Zikun; Luo, Qing; Guo, Yang; Chen, Jie; Xiong, Guoliang; Peng, Yiping; Ye, Jianqing; Li, Junming

    2015-01-01

    The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  15. Activation of Murine Macrophages by Lipoprotein and Lipooligosaccharide of Treponema denticola

    PubMed Central

    Rosen, Graciela; Sela, Michael N.; Naor, Ronit; Halabi, Amal; Barak, Vivian; Shapira, Lior

    1999-01-01

    We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-α secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-α in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases. PMID:10024558

  16. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages.

    PubMed

    Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan

    2014-11-01

    The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB.

    PubMed

    Li, Xuesong; Zhang, Xin; Zheng, Longbin; Kou, Jiayuan; Zhong, Zhaoyu; Jiang, Yueqing; Wang, Wei; Dong, Zengxiang; Liu, Zhongni; Han, Xiaobo; Li, Jing; Tian, Ye; Zhao, Yajun; Yang, Liming

    2016-12-22

    Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques.

  18. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    PubMed

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Controlled Release of Cytokines Using Silk-biomaterials for Macrophage Polarization

    PubMed Central

    Reeves, Andrew R.D.; Spiller, Kara L.; Freytes, Donald O.; Vunjak-Novakovic, Gordana

    2015-01-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophages has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4–8 hours) of either cytokine, with smaller amounts released out to 24 hours. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. PMID:26421484

  20. The function of cancer-shed gangliosides in macrophage phenotype: involvement with angiogenesis.

    PubMed

    Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Lee, Syng-Ook; Kim, Keuk-Jun; Kim, Cheorl-Ho; Hong, Changwan; Kim, Kyun-Ha; Joo, Myungsoo; Ha, Ki-Tae

    2017-01-17

    Tumor-derived gangliosides in the tumor microenvironment are involved in the malignant progression of cancer. However, the molecular mechanisms underlying the effects of gangliosides shed from tumors on macrophage phenotype remain unknown. Here, we showed that ganglioside GM1 highly induced the activity and expression of arginase-1 (Arg-1), a major M2 macrophage marker, compared to various gangliosides in bone marrow-derived macrophages (BMDM), peritoneal macrophages and Raw264.7 macrophage cells. We found that GM1 bound to macrophage mannose receptor (MMR/CD206) and common gamma chain (γc). In addition, GM1 increased Arg-1 expression through CD206 and γc-mediated activation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription- 6 (STAT-6). Interestingly, GM1-stimulated macrophages secreted monocyte chemoattractant protein-1 (MCP-1/CCL2) through a CD206/γc/STAT6-mediated signaling pathway and induced angiogenesis. Moreover, the angiogenic effect of GM1-treated macrophages was diminished by RS102895, an MCP-1 receptor (CCR2) antagonist. From these results we suggest that tumor-shed ganglioside is a secretory factor regulating the phenotype of macrophages and consequently enhancing angiogenesis.