Science.gov

Sample records for activated mammalian target

  1. [Significance of mTOR (mammalian target of rapamycin) activity in human lymphomas].

    PubMed

    Márk, Ágnes

    2014-06-01

    Neoplastic processes, tumor growth, and tumor cell proliferation and survival are often due to the altered activation of different signaling pathways. The increased activity of PI3K/AKT/mTOR signaling has been shown to be an important regulator of tumor growth in several solid tumors and in mantle cell lymphomas. The active form of mTOR kinase (mammalian target of rapamycin) is a key signaling molecule, and it exists in two different complexes, mTORC1 and mTORC2. In the present work, mTOR activity was investigated in different lymphoma types, in parallel with clinical data. We also examined in Hodgkin lymphomas (HL) the role of mTOR activity in survival mechanisms such as antiapoptotic protein expression and alterations in the microenvironment. We determined which lymphoma types display characteristic high mTOR activity in our TMA (tissue microarray) study. We observed that mTOR activity is increased in mitotic lymphoid cells compared to interphasic cells. The number of diffuse large B cell lymphoma (DLBCL) and HL cases was extended in a further set of TMA. We observed significantly higher mTOR activity in the non-centrum germinativum derived subtype of DLBCL than in the centrum germinativum derived subtype, which was a prognostic marker; 63% of mTOR active cases showed Rictor overexpression, indicating mTORC2 activity. High mTOR activity was also established in 92% of HL cases, which was linked to mTORC1. This finding was not a prognostic marker, however, it can be useful in targeted therapy. We observed the overexpression of the antiapoptotic protein BCL-xL and NFκB-p50 in the majority of mTOR active HLs. HLs showed high numbers of regulatory T cells in the microenvironment and high expression of galectin-1 in tumor cells and in the extracellular matrix, when compared to reactive lymph nodes. We confirmed that mTOR inhibition had significant antiproliferative and antiapoptotic effects in lymphoma cell lines and in lymphoma xenografts (HL, DLBCL, Burkitt lymphoma

  2. Activation of Mammalian target of rapamycin in canine mammary carcinomas: an immunohistochemical study.

    PubMed

    Delgado, L; Gärtner, F; Dias Pereira, P

    2015-01-01

    Mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in cell growth, proliferation and survival. Activation of mTOR has been reported in various tumour types, including human breast cancer; however, the expression of mTOR in canine mammary tumours has not been examined. In the present study, expression of the activated form of mTOR (phospho-mTOR [p-mTOR]) was examined immunohistochemically in five normal canine mammary glands, 45 canine mammary carcinomas and their corresponding metastatic lesions (n = 15). Phospho-mTOR was not expressed in normal canine mammary tissue, but cytoplasmic labelling was observed in 78% of canine mammary carcinomas. Two carcinomas had both cytoplasmic and nuclear labelling. No significant relationship was found between p-mTOR cytoplasmic expression and histological type or grading of carcinomas, degree of tubular formation, anisokaryosis, mitotic activity or lymph node metastasis. In all except one case, the expression pattern of p-mTOR in lymph node metastases was similar or decreased when compared with the primary lesion. The findings suggest that p-mTOR is involved in mammary carcinogenesis in dogs. However, p-mTOR cytoplasmic expression does not appear to be a prognostic indicator in canine mammary carcinomas, which may be related to its subcellular location in the neoplastic cells. Canine mammary tumours may provide a model for the development of innovative medical strategies involving mTOR inhibitors in human breast cancer. PMID:25670666

  3. C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock.

    PubMed

    Oshima, Tsuyoshi; Yamanaka, Iori; Kumar, Anupriya; Yamaguchi, Junichiro; Nishiwaki-Ohkawa, Taeko; Muto, Kei; Kawamura, Rika; Hirota, Tsuyoshi; Yagita, Kazuhiro; Irle, Stephan; Kay, Steve A; Yoshimura, Takashi; Itami, Kenichiro

    2015-06-01

    The synthesis and functional analysis of KL001 derivatives, which are modulators of the mammalian circadian clock, are described. By using cutting-edge C-H activation chemistry, a focused library of KL001 derivatives was rapidly constructed, which enabled the identification of the critical sites on KL001 derivatives that induce a rhythm-changing activity along with the components that trigger opposite modes of action. The first period-shortening molecules that target the cryptochrome (CRY) were thus discovered. Detailed studies on the effects of these compounds on CRY stability implicate the existence of an as yet undiscovered regulatory mechanism. PMID:25960183

  4. Activation of mammalian target of rapamycin (mTOR) in triple negative feline mammary carcinomas

    PubMed Central

    2013-01-01

    Background Triple negative breast cancer (TNBC) in humans is defined by the absence of oestrogen receptor (ER), progesterone receptor (PR) and HER2 overexpression. Mammalian target of rapamycin (mTOR) is overexpressed in TNBC and it represents a potential target for the treatment of this aggressive tumour. Feline mammary carcinoma (FMC) is considered to be a model for hormone-independent human breast cancer. This study investigated mTOR and p-mTOR expression in FMC in relation to triple negative (TN) phenotype. Results The expression of mTOR, p-mTOR, ERα, PR and HER2 was evaluated in 58 FMCs by immunohistochemistry and in six FMC cell lines by Western blot analysis. 53.5% of FMC analyzed were ER, PR, HER2 negative (TN-FMC) while 56.9% and 55.2% of cases expressed mTOR and p-mTOR respectively. In this study we found that m-TOR and p-mTOR were more frequently detected in TN-FMC and in HER2 negative samples. Conclusions In this study, we demonstrate that there is also a FMC subset defined as TN FMC, which is characterised by a statistically significant association with m-TOR and p-mTOR expression as demonstrated in human breast cancer. PMID:23587222

  5. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain.

    PubMed

    Vieux-Rochas, Maxence; Fabre, Pierre J; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-04-14

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments. PMID:25825760

  6. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    PubMed

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. PMID:27163752

  7. Olanzapine Activates Hepatic Mammalian Target of Rapamycin: New Mechanistic Insight into Metabolic Dysregulation with Atypical Antipsychotic Drugs

    PubMed Central

    Schmidt, Robin H.; Jokinen, Jenny D.; Massey, Veronica L.; Falkner, K. Cameron; Shi, Xue; Yin, Xinmin; Zhang, Xiang; Beier, Juliane I.

    2013-01-01

    Olanzapine (OLZ), an effective treatment of schizophrenia and other disorders, causes weight gain and metabolic syndrome. Most studies to date have focused on the potential effects of OLZ on the central nervous system’s mediation of weight; however, peripheral changes in liver or other key metabolic organs may also play a role in the systemic effects of OLZ. Thus, the purpose of this study was to investigate the effects of OLZ on hepatic metabolism in a mouse model of OLZ exposure. Female C57Bl/6J mice were administered OLZ (8 mg/kg per day) or vehicle subcutaneously by osmotic minipumps for 28 days. Liver and plasma were taken at sacrifice for biochemical analyses and for comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics analysis. OLZ increased body weight, fat pad mass, and liver-to-body weight ratio without commensurate increase in food consumption, indicating that OLZ altered energy expenditure. Expression and biochemical analyses indicated that OLZ induced anaerobic glycolysis and caused a pseudo-fasted state, which depleted hepatic glycogen reserves. OLZ caused similar effects in cultured HepG2 cells, as determined by Seahorse analysis. Metabolomic analysis indicated that OLZ increased hepatic concentrations of amino acids that can alter metabolism via the mTOR pathway; indeed, hepatic mTOR signaling was robustly increased by OLZ. Interestingly, OLZ concomitantly activated AMP-activated protein kinase (AMPK) signaling. Taken together, these data suggest that disturbances in glucose and lipid metabolism caused by OLZ in liver may be mediated, at least in part, via simultaneous activation of both catabolic (AMPK) and anabolic (mammalian target of rapamycin) pathways, which yields new insight into the metabolic side effects of this drug. PMID:23926289

  8. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.

    PubMed

    McMillin, Douglas W; Ooi, Melissa; Delmore, Jake; Negri, Joseph; Hayden, Patrick; Mitsiades, Nicolas; Jakubikova, Jana; Maira, Sauveur-Michel; Garcia-Echeverria, Carlos; Schlossman, Robert; Munshi, Nikhil C; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2009-07-15

    The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway mediates proliferation, survival, and drug resistance in multiple myeloma (MM) cells. Here, we tested the anti-MM activity of NVP-BEZ235 (BEZ235), which inhibits PI3K/Akt/mTOR signaling at the levels of PI3K and mTOR. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric survival assays showed that MM cell lines exhibited dose- and time-dependent decreased viability after exposure to BEZ235 (IC(50), 25-800 nmol/L for 48 hours). MM cells highly sensitive (IC(50), <25 nmol/L) to BEZ235 (e.g., MM.1S, MM.1R, Dox40, and KMS-12-PE) included both lines sensitive and resistant to conventional (dexamethasone, cytotoxic chemotherapeutics) agents. Pharmacologically relevant BEZ235 concentrations (25-400 nmol/L) induced rapid commitment to and induction of MM.1S and OPM-2 cell death. Furthermore, normal donor peripheral blood mononuclear cells were less sensitive (IC(50), >800 nmol/L) than the majority of MM cell lines tested, suggesting a favorable therapeutic index. In addition, BEZ235 was able to target MM cells in the presence of exogenous interleukin-6, insulin-like growth factor-1, stromal cells, or osteoclasts, which are known to protect against various anti-MM agents. Molecular profiling revealed that BEZ235 treatment decreased the amplitude of transcriptional signatures previously associated with myc, ribosome, and proteasome function, as well as high-risk MM and undifferentiated human embryonic stem cells. In vivo xenograft studies revealed significant reduction in tumor burden (P = 0.011) and survival (P = 0.028) in BEZ235-treated human MM tumor-bearing mice. Combinations of BEZ235 with conventional (e.g., dexamethasone and doxorubicin) or novel (e.g., bortezomib) anti-MM agents showed lack of antagonism. These results indicate that BEZ235 merits clinical testing, alone and in combination with other agents, in MM. PMID:19584292

  9. cAMP-dependent activation of mammalian target of rapamycin (mTOR) in thyroid cells. Implication in mitogenesis and activation of CDK4.

    PubMed

    Blancquaert, Sara; Wang, Lifu; Paternot, Sabine; Coulonval, Katia; Dumont, Jacques E; Harris, Thurl E; Roger, Pierre P

    2010-07-01

    How cAMP-dependent protein kinases [protein kinase A (PKA)] transduce the mitogenic stimulus elicited by TSH in thyroid cells to late activation of cyclin D3-cyclin-dependent kinase 4 (CDK4) remains enigmatic. Here we show in PC Cl3 rat thyroid cells that TSH/cAMP, like insulin, activates the mammalian target of rapamycin (mTOR)-raptor complex (mTORC1) leading to phosphorylation of S6K1 and 4E-BP1. mTORC1-dependent S6K1 phosphorylation in response to both insulin and cAMP required amino acids, whereas inhibition of AMP-activated protein kinase and glycogen synthase kinase 3 enhanced insulin but not cAMP effects. Unlike insulin, TSH/cAMP did not activate protein kinase B or induce tuberous sclerosis complex 2 phosphorylation at T1462 and Y1571. However, like insulin, TSH/cAMP produced a stable increase in mTORC1 kinase activity that was associated with augmented 4E-BP1 binding to raptor. This could be caused in part by T246 phosphorylation of PRAS40, which was found as an in vitro substrate of PKA. Both in PC Cl3 cells and primary dog thyrocytes, rapamycin inhibited DNA synthesis and retinoblastoma protein phosphorylation induced by TSH and insulin. Although rapamycin reduced cyclin D3 accumulation, the abundance of cyclin D3-CDK4 complexes was not affected. However, rapamycin inhibited the activity of these complexes by decreasing the TSH and insulin-mediated stimulation of activating T172 phosphorylation of CDK4. We propose that mTORC1 activation by TSH, at least in part through PKA-dependent phosphorylation of PRAS40, crucially contributes to mediate cAMP-dependent mitogenesis by regulating CDK4 T172-phosphorylation. PMID:20484410

  10. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway

    PubMed Central

    Varghese, Binny V.; Koohestani, Faezeh; McWilliams, Michelle; Colvin, Arlene; Gunewardena, Sumedha; Kinsey, William H.; Nowak, Romana A.; Nothnick, Warren B.; Chennathukuzhi, Vargheese M.

    2013-01-01

    Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase–protein kinase B/AKT–mammalian target of rapamycin (PI3K/AKT–mTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3K–AKT–mTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids. PMID:23284171

  11. Mammalian Target of Rapamycin (mTOR) Activity Dependent Phospho-Protein Expression in Childhood Acute Lymphoblastic Leukemia (ALL)

    PubMed Central

    Márk, Ágnes; Hajdu, Melinda; Kenessey, István; Sticz, Tamás; Nagy, Eszter; Barna, Gábor; Váradi, Zsófia; Kovács, Gábor; Kopper, László; Csóka, Monika

    2013-01-01

    Modern treatment strategies have improved the prognosis of childhood ALL; however, treatment still fails in 25–30% of patients. Further improvement of treatment may depend on the development of targeted therapies. mTOR kinase, a central mediator of several signaling pathways, has recently attracted remarkable attention as a potential target in pediatric ALL. However, limited data exists about the activity of mTOR. In the present study, the amount of mTOR activity dependent phospho-proteins was characterized by ELISA in human leukemia cell lines and in lymphoblasts from childhood ALL patients (n = 49). Expression was measured before and during chemotherapy and at relapses. Leukemia cell lines exhibited increased mTOR activity, indicated by phospho-S6 ribosomal protein (p-S6) and phosphorylated eukaryotic initiation factor 4E binding protein (p-4EBP1). Elevated p-4EBP1 protein levels were detected in ALL samples at diagnosis; efficacy of chemotherapy was followed by the decrease of mTOR activity dependent protein phosphorylation. Optical density (OD) for p-4EBP1 (ELISA) was significantly higher in patients with poor prognosis at diagnosis, and in the samples of relapsed patients. Our results suggest that measuring mTOR activity related phospho-proteins such as p-4EBP1 by ELISA may help to identify patients with poor prognosis before treatment, and to detect early relapses. Determining mTOR activity in leukemic cells may also be a useful tool for selecting patients who may benefit from future mTOR inhibitor treatments. PMID:23573198

  12. Production of lentiviral vectors with enhanced efficiency to target dendritic cells by attenuating mannosidase activity of mammalian cells

    PubMed Central

    2011-01-01

    Background Dendritic cells (DCs) are antigen-presenting immune cells that interact with T cells and have been widely studied for vaccine applications. To achieve this, DCs can be manipulated by lentiviral vectors (LVs) to express antigens to stimulate the desired antigen-specific T cell response, which gives this approach great potential to fight diseases such as cancers, HIV, and autoimmune diseases. Previously we showed that LVs enveloped with an engineered Sindbis virus glycoprotein (SVGmu) could target DCs through a specific interaction with DC-SIGN, a surface molecule predominantly expressed by DCs. We hypothesized that SVGmu interacts with DC-SIGN in a mannose-dependent manner, and that an increase in high-mannose structures on the glycoprotein surface could result in higher targeting efficiencies of LVs towards DCs. It is known that 1-deoxymannojirimycin (DMJ) can inhibit mannosidase, which is an enzyme that removes high-mannose structures during the glycosylation process. Thus, we investigated the possibility of generating LVs with enhanced capability to modify DCs by supplying DMJ during vector production. Results Through western blot analysis and binding tests, we were able to infer that binding of SVGmu to DC-SIGN is directly related to amount of high-mannose structures on SVGmu. We also found that the titer for the LV (FUGW/SVGmu) produced with DMJ against 293T.DCSIGN, a human cell line expressing the human DC-SIGN atnibody, was over four times higher than that of vector produced without DMJ. In addition, transduction of a human DC cell line, MUTZ-3, yielded a higher transduction efficiency for the LV produced with DMJ. Conclusion We conclude that LVs produced under conditions with inhibited mannosidase activity can effectively modify cells displaying the DC-specific marker DC-SIGN. This study offers evidence to support the utilization of DMJ in producing LVs that are enhanced carriers for the development of DC-directed vaccines. PMID:21276219

  13. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin.

    PubMed

    Saito, Kota; Araki, Yasuhiro; Kontani, Kenji; Nishina, Hiroshi; Katada, Toshiaki

    2005-03-01

    The Ras-homologous GTPase Rheb that is conserved from yeast to human appears to be involved not only in cell growth but also in nutrient uptake. Recent biochemical analysis revealed that tuberous sclerosis complex (TSC), a GTPase-activating protein (GAP), deactivates Rheb and that phosphatidylinositol 3'-kinase (PI3k)-Akt/PKB kinase pathway activates Rheb through inhibition of the GAP-mediated deactivation. Although mammalian target of rapamycin (mTOR) kinase is implicated in the downstream target of Rheb, the direct effector(s) and exact functions of Rheb have not been fully elucidated. Here we identified that Rheb expression in cultured cells induces the formation of large cytoplasmic vacuoles, which are characterized as late endocytic (late endosome- and lysosome-like) components. The vacuole formation required the GTP form of Rheb, but not the activation of the downstream mTOR kinase. These results suggest that Rheb regulates endocytic trafficking pathway independent of the previously identified mTOR pathway. The physiological roles of the two Rheb-dependent signaling pathways are discussed in terms of nutrient uptake and cell growth or cell cycle progression. PMID:15809346

  14. Fibrous Papule of the Face, Similar to Tuberous Sclerosis Complex-Associated Angiofibroma, Shows Activation of the Mammalian Target of Rapamycin Pathway: Evidence for a Novel Therapeutic Strategy?

    PubMed Central

    Chan, Jung-Yi Lisa; Wang, Kuo-Hsien; Fang, Chia-Lang; Chen, Wei-Yu

    2014-01-01

    Fibrous papules of the face are hamartomas characterized by stellate-shaped stromal cells, multinucleated giant cells, and proliferative blood vessels in the dermis. The pathogenesis of fibrous papules remains unclear. There is a striking microscopic resemblance between fibrous papules and tuberous sclerosis complex (TSC)-associated angiofibromas. A germline mutation of the TSC1 or TSC2 gene, leading to activation of the mammalian target of rapamycin (mTOR) pathway, accounts for the pathogenesis of TSC-associated angiofibromas. Activated mTOR subsequently activates p70 ribosomal protein S6 kinase (p70S6K) and ribosomal protein S6 (S6) by phosphorylation. Rapamycin, a mTOR inhibitor, is effective in treating TSC-associated angiofibromas. The aim of this study was to understand whether the mTOR pathway is activated in fibrous papules. We studied immunoexpressions of phosphorylated (p-) mTOR effectors in fibrous papules, TSC-associated angiofibromas, and normal skin controls. P-mTOR, p-p70S6K and p-S6 were highly expressed in dermal stromal cells and epidermal keratinocytes in fibrous papules and TSC-associated angiofibromas but not in fibroblasts and epidermal keratinocytes of normal skin controls (p<0.001). The results suggest topical rapamycin may be a novel treatment option for fibrous papules. PMID:24558502

  15. Redox Regulates Mammalian Target of Rapamycin Complex 1 (mTORC1) Activity by Modulating the TSC1/TSC2-Rheb GTPase Pathway*

    PubMed Central

    Yoshida, Sei; Hong, Sungki; Suzuki, Tsukasa; Nada, Shigeyuki; Mannan, Aristotle M.; Wang, Junying; Okada, Masato; Guan, Kun-Liang; Inoki, Ken

    2011-01-01

    Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1−/− or TSC2−/− mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18−/− and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex. PMID:21784859

  16. Natural killer group 2D and CD28 receptors differentially activate mammalian/mechanistic target of rapamycin to alter murine effector CD8+ T-cell differentiation.

    PubMed

    McQueen, Bryan; Trace, Kelsey; Whitman, Emily; Bedsworth, Taylor; Barber, Amorette

    2016-03-01

    Memory CD8+ T cells are an essential component of anti-tumour and anti-viral immunity. Activation of the mammalian/mechanistic target of rapamycin (mTOR) pathway has been implicated in regulating the differentiation of effector and memory T cells. However, the mechanisms that control mTOR activity during immunity to tumours and infections are not well known. Activation of co-stimulatory receptors, including CD28 and natural killer group 2D (NKG2D), activate phosphatidylinositol-3 kinase and subsequently may activate the mTOR pathway in CD8+ T cells. This study compared the activation of the mTOR signalling pathway after co-stimulation through CD28 or NKG2D receptors in murine effector CD8+ T cells. Compared with CD28 co-stimulation, activation through CD3 and NKG2D receptors had weaker activation of mTORc1, as shown by decreased phosphorylation of mTORc1 targets S6K1, ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1. NKG2D co-stimulation also showed increased gene expression of tuberous sclerosis protein 2, a negative regulator of mTORc1, whereas CD28 co-stimulation increased gene expression of Ras homologue enriched in brain, an activator of mTORc1, and hypoxia-inducible factor-1α and vascular endothelial growth factor-α, pro-angiogenic factors downstream of mTORc1. Strong mTORc1 activation in CD28-co-stimulated cells also increased expression of transcription factors that support effector cell differentiation, namely T-bet, B lymphocyte-induced maturation protein (BLIMP-1), interferon regulatory factor 4, and inhibitor of DNA binding 2, whereas low levels of mTORc1 activation allowed for the expression of Eomes, B-cell lymphoma 6 (BCL6), and inhibitor of DNA binding 3 during NKG2D stimulation, and increased expression of memory markers CD62 ligand and CD127. These data show that compared with CD28, co-stimulation through the NKG2D receptor leads to the differential activation of the mTOR signalling pathway and potentially supports

  17. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy.

    PubMed

    You, Jae-Sung; Lincoln, Hannah C; Kim, Chan-Ran; Frey, John W; Goodman, Craig A; Zhong, Xiao-Ping; Hornberger, Troy A

    2014-01-17

    The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass. PMID:24302719

  18. Peroxisome proliferator-activated receptor-γ agonist inhibits the mammalian target of rapamycin signaling pathway and has a protective effect in a rat model of status epilepticus.

    PubMed

    San, Yong-Zhi; Liu, Yu; Zhang, Yu; Shi, Ping-Ping; Zhu, Yu-Lan

    2015-08-01

    Peroxisome proliferator-activated receptor γ (PPAR-γ) has a protective role in several neurological diseases. The present study investigated the effect of the PPAR-γ agonist, pioglitazone, on the mammalian target of rapamycin (mTOR) signaling pathway in a rat model of pentylenetetrazol (PTZ)-induced status epilepticus (SE). The investigation proceeded in two stages. First, the course of activation of the mTOR signaling pathway in PTZ-induced SE was examined to determine the time-point of peak activity, as reflected by phopshorylated (p)-mTOR/mTOR and p-S6/S6 ratios. Subsequently, pioglitazone was administrated intragastrically to investigate its effect on the mTOR signaling pathway, through western blot and immunochemical analyses. The levels of the interleukin (IL)-1β and IL-6 inflammatory cytokines were detected using ELISA, and neuronal loss was observed via Nissl staining. In the first stage of experimentation, the mTOR signaling pathway was activated, and the p-mTOR/mTOR and p-S6/S6 ratios peaked on the third day. Compared with the vehicle treated-SE group, pretreatment with pioglitazone was associated with the loss of fewer neurons, lower levels of IL-1β and IL-6, and inhibition of the activation of the mTOR signaling pathway. Therefore, the mTOR signaling pathway was activated in the PTZ-induced SE rat model, and the PPAR-γ agonist, pioglitazone, had a neuroprotective effect, by inhibiting activation of the mTOR pathway and preventing the increase in the levels of IL-1β and IL-6. PMID:25891824

  19. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator.

    PubMed

    Jiang, Feng; Hua, Li-Ming; Jiao, Yun-Lu; Ye, Pin; Fu, Jin; Cheng, Zhi-Jun; Ding, Gang; Ji, Yong-Hua

    2014-02-01

    The mammalian target of rapamycin (mTOR) pathway is essential for maintenance of the sensitivity of certain adult sensory neurons. Here, we investigated whether the mTOR cascade is involved in scorpion envenomation-induced pain hypersensitivity in rats. The results showed that intraplantar injection of a neurotoxin from Buthus martensii Karsch, BmK I (10 μg), induced the activation of mTOR, as well as its downstream molecules p70 ribosomal S6 protein kinase (p70 S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), in lumbar 5-6 dorsal root ganglia neurons on both sides in rats. The activation peaked at 2 h and recovered 1 day after injection. Compared with the control group, the ratios of p-mTOR/p-p70 S6K/p-4EBP1 in three types of neurons changed significantly. The cell typology of p-mTOR/p-p70 S6K/p-4E-BP1 immuno-reactive neurons also changed. Intrathecal administration of deforolimus, a specific inhibitor of mTOR, attenuated BmK I-induced pain responses (spontaneous flinching, paroxysmal pain-like behavior, and mechanical hypersensitivity). Together, these results imply that the mTOR signaling pathway is mobilized by and contributes to experimental scorpion sting-induced pain. PMID:24132796

  20. Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling*

    PubMed Central

    Fonseca, Bruno D.; Diering, Graham H.; Bidinosti, Michael A.; Dalal, Kush; Alain, Tommy; Balgi, Aruna D.; Forestieri, Roberto; Nodwell, Matt; Rajadurai, Charles V.; Gunaratnam, Cynthia; Tee, Andrew R.; Duong, Franck; Andersen, Raymond J.; Orlowski, John; Numata, Masayuki; Sonenberg, Nahum; Roberge, Michel

    2012-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH. PMID:22474287

  1. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling.

    PubMed

    Fonseca, Bruno D; Diering, Graham H; Bidinosti, Michael A; Dalal, Kush; Alain, Tommy; Balgi, Aruna D; Forestieri, Roberto; Nodwell, Matt; Rajadurai, Charles V; Gunaratnam, Cynthia; Tee, Andrew R; Duong, Franck; Andersen, Raymond J; Orlowski, John; Numata, Masayuki; Sonenberg, Nahum; Roberge, Michel

    2012-05-18

    Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH. PMID:22474287

  2. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling

    PubMed Central

    Ren, Jiafa; Li, Jianzhong; Liu, Xin; Feng, Ye; Gui, Yuan; Yang, Junwei; He, Weichun; Dai, Chunsun

    2016-01-01

    Quercetin, a flavonoid found in a wide variety of plants and presented in human diet, displays promising potential in preventing kidney fibroblast activation. However, whether quercetin can ameliorate kidney fibrosis in mice with obstructive nephropathy and the underlying mechanisms remain to be further elucidated. In this study, we found that administration of quercetin could largely ameliorate kidney interstitial fibrosis and macrophage accumulation in the kidneys with obstructive nephropathy. MTORC1, mTORC2, β-catenin as well as Smad signaling were activated in the obstructive kidneys, whereas quercetin could markedly reduce their abundance except Smad3 phosphorylation. In cultured NRK-49F cells, quercetin could inhibit α-SMA and fibronectin (FN) expression induced by TGFβ1 treatment. MTORC1, mTORC2, β-catenin and Smad signaling pathways were stimulated by TGFβ1 at a time dependent manner. Similar to those findings in the obstructive kidneys, mTORC1, mTORC2 and β-catenin, but not Smad signaling pathways were remarkably blocked by quercetin treatment. Together, these results suggest that quercetin inhibits fibroblast activation and kidney fibrosis involving a combined inhibition of mTOR and β-catenin signaling transduction, which may act as a therapeutic candidate for patients with chronic kidney diseases. PMID:27052477

  3. Alternative Mammalian Target of Rapamycin (mTOR) Signal Activation in Sorafenib-resistant Hepatocellular Carcinoma Cells Revealed by Array-based Pathway Profiling*

    PubMed Central

    Masuda, Mari; Chen, Wei-Yu; Miyanaga, Akihiko; Nakamura, Yuka; Kawasaki, Kumiko; Sakuma, Tomohiro; Ono, Masaya; Chen, Chi-Long; Honda, Kazufumi; Yamada, Tesshi

    2014-01-01

    Sorafenib is a multi-kinase inhibitor that has been proven effective for the treatment of unresectable hepatocellular carcinoma (HCC). However, its precise mechanisms of action and resistance have not been well established. We have developed high-density fluorescence reverse-phase protein arrays and used them to determine the status of 180 phosphorylation sites of signaling molecules in the 120 pathways registered in the NCI-Nature curated database in 23 HCC cell lines. Among the 180 signaling nodes, we found that the level of ribosomal protein S6 phosphorylated at serine residue 235/236 (p-RPS6 S235/236) was most significantly correlated with the resistance of HCC cells to sorafenib. The high expression of p-RPS6 S235/236 was confirmed immunohistochemically in biopsy samples obtained from HCC patients who responded poorly to sorafenib. Sorafenib-resistant HCC cells showed constitutive activation of the mammalian target of rapamycin (mTOR) pathway, but whole-exon sequencing of kinase genes revealed no evident alteration in the pathway. p-RPS6 S235/236 is a potential biomarker that predicts unresponsiveness of HCC to sorafenib. The use of mTOR inhibitors may be considered for the treatment of such tumors. PMID:24643969

  4. Activation of Autophagic Flux against Xenoestrogen Bisphenol-A-induced Hippocampal Neurodegeneration via AMP kinase (AMPK)/Mammalian Target of Rapamycin (mTOR) Pathways*

    PubMed Central

    Agarwal, Swati; Tiwari, Shashi Kant; Seth, Brashket; Yadav, Anuradha; Singh, Anshuman; Mudawal, Anubha; Chauhan, Lalit Kumar Singh; Gupta, Shailendra Kumar; Choubey, Vinay; Tripathi, Anurag; Kumar, Amit; Ray, Ratan Singh; Shukla, Shubha; Parmar, Devendra; Chaturvedi, Rajnish Kumar

    2015-01-01

    The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell's compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be

  5. Mammalian Tribbles Homologs at the Crossroads of Endoplasmic Reticulum Stress and Mammalian Target of Rapamycin Pathways

    PubMed Central

    Cunard, Robyn

    2013-01-01

    In 2000, investigators discovered Tribbles, a Drosophila protein that coordinates morphogenesis by inhibiting mitosis. Further work has delineated Xenopus (Xtrb2), Nematode (Nipi-3), and mammalian homologs of Drosophila tribbles, which include TRB1, TRB2, and TRB3. The sequences of tribbles homologs are highly conserved, and despite their protein kinase structure, to date they have not been shown to have kinase activity. TRB family members play a role in the differentiation of macrophages, lymphocytes, muscle cells, adipocytes, and osteoblasts. TRB isoforms also coordinate a number of critical cellular processes including glucose and lipid metabolism, inflammation, cellular stress, survival, apoptosis, and tumorigenesis. TRB family members modulate multiple complex signaling networks including mitogen activated protein kinase cascades, protein kinase B/AKT signaling, mammalian target of rapamycin, and inflammatory pathways. The following review will discuss metazoan homologs of Drosophila tribbles, their structure, expression patterns, and functions. In particular, we will focus on TRB3 function in the kidney in podocytes. This review will also discuss the key signaling pathways with which tribbles proteins interact and provide a rationale for developing novel therapeutics that exploit these interactions to provide better treatment options for both acute and chronic kidney disease. PMID:24490110

  6. Antineoplastic effects of mammalian target of rapamycine inhibitors.

    PubMed

    Salvadori, Maurizio

    2012-10-24

    Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin (mTOR) inhibitor. The role of mTOR pathways in cell homeostasis is complex but enough clear. As a consequence the mTOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of mTOR inhibitors. The authors review the complex mechanism of action of mTOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of mTOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate mTOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of mTOR inhibition. More recently mTOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the mTOR pathway at different levels. PMID:24175199

  7. Metformin attenuates graft-versus-host disease via restricting mammalian target of rapamycin/signal transducer and activator of transcription 3 and promoting adenosine monophosphate-activated protein kinase-autophagy for the balance between T helper 17 and Tregs.

    PubMed

    Park, Min-Jung; Lee, Seon-Yeong; Moon, Su-Jin; Son, Hye-Jin; Lee, Sung-Hee; Kim, Eun-Kyung; Byun, Jae-Kyeong; Shin, Dong Yun; Park, Sung-Hwan; Yang, Chul-Woo; Cho, Mi-La

    2016-07-01

    Acute graft-versus-host disease (aGVHD), caused by donor T cell-mediated injury to host tissues, is a problem in allogeneic bone marrow transplantation. The transition from naïve to effector T cells is accompanied by shift in metabolism main pathway; from glucose oxidative phosphorylation to aerobic glycolysis. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine kinase that is a metabolic sensor that helps maintain cellular energy homeostasis. Although AMPK activation can exert anti-inflammatory properties by negatively regulating pro-inflammatory mediators, its role as a therapeutic potential of graft-versus-host disease development remains unclear. In this study, we found that the intraperitoneal administration of metformin, which activates AMPK signaling significantly, ameliorated the clinical severity of aGHVD and lethality. This was associated with reductions in type I T helper (Th1) and Th17 and rises in Th2 and regulatory T (Treg) cell. The enhanced signal transducer and activator of transcription 3 activation noted during the development of aGVHD was reduced by metformin treatment. Furthermore, metformin-treated Th17 cells became converted into Treg cells via enhanced autophagy. The reduction in mortality associated with metformin treatment was associated with inhibition of the mammalian target of rapamycin/signal transducer and activator of transcription 3 pathway. These results suggest that metformin might be of significant use in the treatment of patients with aGVHD. PMID:27126953

  8. Activation of the Mammalian Target of Rapamycin in the Rostral Ventromedial Medulla Contributes to the Maintenance of Nerve Injury-Induced Neuropathic Pain in Rat

    PubMed Central

    Wang, Jian; Feng, Da-Yun; Li, Zhi-Hua; Feng, Ban; Zhang, Han; Zhang, Ting; Chen, Tao; Li, Yun-Qing

    2015-01-01

    The mammalian target of rapamycin (mTOR), a serine-threonine protein kinase, integrates extracellular signals, thereby modulating several physiological and pathological processes, including pain. Previous studies have suggested that rapamycin (an mTOR inhibitor) can attenuate nociceptive behaviors in many pain models, most likely at the spinal cord level. However, the mechanisms of mTOR at the supraspinal level, particularly at the level of the rostral ventromedial medulla (RVM), remain unclear. Thus, the aim of this study was to elucidate the role of mTOR in the RVM, a key relay region for the descending pain control pathway, under neuropathic pain conditions. Phosphorylated mTOR was mainly expressed in serotonergic spinally projecting neurons and was significantly increased in the RVM after spared nerve injury- (SNI-) induced neuropathic pain. Moreover, in SNI rat brain slices, rapamycin infusion both decreased the amplitude instead of the frequency of spontaneous excitatory postsynaptic currents and reduced the numbers of action potentials in serotonergic neurons. Finally, intra-RVM microinjection of rapamycin effectively alleviated established mechanical allodynia but failed to affect the development of neuropathic pain. In conclusion, our data provide strong evidence for the role of mTOR in the RVM in nerve injury-induced neuropathic pain, indicating a novel mechanism of mTOR inhibitor-induced analgesia. PMID:26770837

  9. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    PubMed

    Du, Dan; Qi, Lei S

    2016-01-01

    Targeted modulation of transcription is necessary for understanding complex gene networks and has great potential for medical and industrial applications. CRISPR is emerging as a powerful system for targeted genome activation and repression, in addition to its use in genome editing. This protocol describes how to design, construct, and experimentally validate the function of sequence-specific single guide RNAs (sgRNAs) for sequence-specific repression (CRISPRi) or activation (CRISPRa) of transcription in mammalian cells. In this technology, the CRISPR-associated protein Cas9 is catalytically deactivated (dCas9) to provide a general platform for RNA-guided DNA targeting of any locus in the genome. Fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in mammalian cells. Delivery of multiple sgRNAs further enables activation or repression of multiple genes. By using scaffold RNAs (scRNAs), different effectors can be recruited to different genes for simultaneous activation of some and repression of others. The CRISPRi and CRISPRa methods provide powerful tools for sequence-specific control of gene expression on a genome-wide scale to aid understanding gene functions and for engineering genetic regulatory systems. PMID:26729910

  10. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3.

    PubMed

    Sim, Joe C; Scerri, Thomas; Fanjul-Fernández, Miriam; Riseley, Jessica R; Gillies, Greta; Pope, Kate; van Roozendaal, Hanna; Heng, Julian I; Mandelstam, Simone A; McGillivray, George; MacGregor, Duncan; Kannan, Lakshminarayanan; Maixner, Wirginia; Harvey, A Simon; Amor, David J; Delatycki, Martin B; Crino, Peter B; Bahlo, Melanie; Lockhart, Paul J; Leventer, Richard J

    2016-01-01

    We describe first cousin sibling pairs with focal epilepsy, one of each pair having focal cortical dysplasia (FCD) IIa. Linkage analysis and whole-exome sequencing identified a heterozygous germline frameshift mutation in the gene encoding nitrogen permease regulator-like 3 (NPRL3). NPRL3 is a component of GAP Activity Towards Rags 1, a negative regulator of the mammalian target of rapamycin complex 1 signaling pathway. Immunostaining of resected brain tissue demonstrated mammalian target of rapamycin activation. Screening of 52 unrelated individuals with FCD identified 2 additional patients with FCDIIa and germline NPRL3 mutations. Similar to DEPDC5, NPRL3 mutations may be considered as causal variants in patients with FCD or magnetic resonance imaging-negative focal epilepsy. PMID:26285051

  11. [mTOR, the mammalian target of rapamycin].

    PubMed

    Julien, Louis-André; Roux, Philippe P

    2010-12-01

    The discovery of rapamycin from a soil sample on Easter Island in the mid 60's marked the beginning of an exciting field of research in cell biology and medicine. While it was first used as an antifungal and as an immunosuppressive drug, more recent studies confirmed rapamycin's antiproliferative properties over a variety of solid tumors. Research aimed at identifying its mechanism of action uncovered mTOR (mammalian target of rapamycin), a protein kinase that regulates mRNA translation and protein synthesis, an essential step in cell division and proliferation. Recent evidence suggests a more complex role for mTOR in the regulation of several growth factor-stimulated protein kinases, including the proto-oncogene Akt. This article reviews mTOR function and regulation, and briefly details the future challenges for anti-cancer therapies based on mTOR inhibition. PMID:21187044

  12. Dopamine- and cAMP-regulated Phosphoprotein of 32-kDa (DARPP-32)-dependent Activation of Extracellular Signal-regulated Kinase (ERK) and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in Experimental Parkinsonism*

    PubMed Central

    Santini, Emanuela; Feyder, Michael; Gangarossa, Giuseppe; Bateup, Helen S.; Greengard, Paul; Fisone, Gilberto

    2012-01-01

    Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia. PMID:22753408

  13. Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARPP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism.

    PubMed

    Santini, Emanuela; Feyder, Michael; Gangarossa, Giuseppe; Bateup, Helen S; Greengard, Paul; Fisone, Gilberto

    2012-08-10

    Dyskinesia, a motor complication caused by prolonged administration of the antiparkinsonian drug l-3,4-dihydroxyphenylalanine (l-DOPA), is accompanied by activation of cAMP signaling and hyperphosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). Here, we show that the abnormal phosphorylation of DARPP-32 occurs specifically in medium spiny neurons (MSNs) expressing dopamine D1 receptors (D1R). Using mice in which DARPP-32 is selectively deleted in D1R-expressing MSNs, we demonstrate that this protein is required for l-DOPA-induced activation of the extracellular signal-regulated protein kinases 1 and 2 and the mammalian target of rapamycin complex 1 (mTORC1) pathways, which are implicated in dyskinesia. We also show that mutation of the phosphorylation site for cAMP-dependent protein kinase on DARPP-32 attenuates l-DOPA-induced dyskinesia and reduces the concomitant activations of ERK and mTORC1 signaling. These studies demonstrate that, in D1R-expressing MSNs, l-DOPA-induced activation of ERK and mTORC1 requires DARPP-32 and indicates the importance of the cAMP/DARPP-32 signaling cascade in dyskinesia. PMID:22753408

  14. Driving neural regeneration through the mammalian target of rapamycin.

    PubMed

    Maiese, Kenneth

    2014-08-01

    Neurodegenerative disorders affect more than 30 million individuals throughout the world and lead to significant disability as well as death. These statistics will increase almost exponentially as the lifespan and age of individuals increase globally and individuals become more susceptible to acute disorders such as stroke as well as chronic diseases that involve cognitive loss, Alzheimer's disease, and Parkinson's disease. Current therapies for such disorders are effective only for a small subset of individuals or provide symptomatic relief but do not alter disease progression. One exciting therapeutic approach that may turn the tide for addressing neurodegenerative disorders involves the mammalian target of rapamycin (mTOR). mTOR is a component of the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) that are ubiquitous throughout the body and control multiple functions such as gene transcription, metabolism, cell survival, and cell senescence. mTOR through its relationship with phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) and multiple downstream signaling pathways such as p70 ribosomal S6 kinase (p70S6K) and proline rich Akt substrate 40 kDa (PRAS40) promotes neuronal cell regeneration through stem cell renewal and oversees critical pathways such as apoptosis, autophagy, and necroptosis to foster protection against neurodegenerative disorders. Targeting by mTOR of specific pathways that drive long-term potentiation, synaptic plasticity, and β-amyloid toxicity may offer new strategies for disorders such as stroke and Alzheimer's disease. Overall, mTOR is an essential neuroprotective pathway but must be carefully targeted to maximize clinical efficacy and eliminate any clinical toxic side effects. PMID:25317149

  15. Participation of Mammalian Target of Rapamycin Complex 1 in Toll-Like Receptor 2– and 4–Induced Neutrophil Activation and Acute Lung Injury

    PubMed Central

    Lorne, Emmanuel; Zhao, Xia; Zmijewski, Jaroslaw W.; Liu, Gang; Park, Young-Jun; Tsuruta, Yuko; Abraham, Edward

    2009-01-01

    mTOR complex 1 (mTORC1) plays a central role in cell growth and cellular responses to metabolic stress. Although mTORC1 has been shown to be activated after Toll-like receptor (TLR)-4 engagement, there is little information concerning the role that mTORC1 may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of rapamycin-induced inhibition of mTORC1 on TLR2- and TLR4-induced neutrophil activation. mTORC1 was dose- and time-dependently activated in murine bone marrow neutrophils cultured with the TLR4 ligand, LPS, or the TLR2 ligand, Pam3 Cys-Ser-(Lys)4 (PAM). Incubation of PAM- or LPS-stimulated neutrophils with rapamycin inhibited expression of TNF-α and IL-6, but not IκB-α degradation or nuclear translocation of NF-κB. Exposure of PAM or LPS-stimulated neutrophils to rapamycin inhibited phosphorylation of serine 276 in the NF-κB p65 subunit, a phosphorylation event required for optimal transcriptional activity of NF-κB. Rapamycin pretreatment inhibited PAM- or LPS-induced mTORC1 activation in the lungs. Administration of rapamycin also decreased the severity of lung injury after intratracheal LPS or PAM administration, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-α and IL-6 in bronchoalveolar lavage fluid. These results indicate that mTORC1 activation is essential in TLR2- and TLR4-induced neutrophil activation, as well as in the development and severity of acute lung injury. PMID:19131641

  16. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  17. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway.

    PubMed

    Zhang, Zheng; Yang, Ming; Wang, Yabin; Wang, Le; Jin, Zhitao; Ding, Liping; Zhang, Lijuan; Zhang, Lina; Jiang, Wei; Gao, Guojie; Yang, Junke; Lu, Bingwei; Cao, Feng; Hu, Taohong

    2016-06-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been demonstrated as an ideal autologous stem cells source for cell-based therapy for myocardial infarction (MI). However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency, whereas the underlying mechanism is still poorly understood. Autophagy, a highly conserved process of cellular degradation, is required for maintaining homeostasis and normal function. Here, we investigated the potential role of autophagy on apoptosis in BM-MSCs induced by hypoxic injury. BM-MSCs, isolated from male C57BL/6 mice, were subjected to hypoxia and serum deprivation (H/SD) injury for 6, 12, and 24 h, respectively. The autophagy state was regulated by 3-methyladenine (3MA) and rapamycin administration. Furthermore, compound C was administrated to inhibit AMPK. The apoptosis induced by H/SD was determined by TUNEL assays. Meanwhile, autophagy was measured by GFP-LC3 plasmids transfection and transmission electron microscope. Moreover, protein expressions were evaluated by Western blot assay. In the present study, we found that hypoxic stress increased autophagy and apoptosis in BM-MSCs time dependently. Meanwhile, hypoxia increased the activity of AMPK/mTOR signal pathway. Moreover, increased apoptosis in BM-MSCs under hypoxia was abolished by 3-MA, whereas was aggravated by rapamycin. Furthermore, the increased autophagy and apoptosis in BM-MSCs induced by hypoxia were abolished by AMPK inhibitor compound C. These data provide evidence that hypoxia induced AMPK/mTOR signal pathway activation which regulated the apoptosis and autophagy in BM-MSCs. Furthermore, the apoptosis of BM-MSCs under hypoxic condition was regulated by autophagy via AMPK/mTOR pathway. PMID:27005844

  18. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells.

    PubMed

    Ryu, Nae Hyung; Park, Kyung-Ran; Kim, Sung-Moo; Yun, Hyung-Mun; Nam, Dongwoo; Lee, Seok-Geun; Jang, Hyeung-Jin; Ahn, Kyoo Seok; Kim, Sung-Hoon; Shim, Bum Sang; Choi, Seung-Hoon; Mosaddik, Ashik; Cho, Somi K; Ahn, Kwang Seok

    2012-03-01

    This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography-mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer. PMID:22280146

  19. A Hexane Fraction of Guava Leaves (Psidium guajava L.) Induces Anticancer Activity by Suppressing AKT/Mammalian Target of Rapamycin/Ribosomal p70 S6 Kinase in Human Prostate Cancer Cells

    PubMed Central

    Ryu, Nae Hyung; Park, Kyung-Ran; Kim, Sung-Moo; Yun, Hyung-Mun; Nam, Dongwoo; Lee, Seok-Geun; Jang, Hyeung-Jin; Ahn, Kyoo Seok; Kim, Sung-Hoon; Shim, Bum Sang; Choi, Seung-Hoon; Mosaddik, Ashik

    2012-01-01

    Abstract This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography–mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer. PMID:22280146

  20. Discovery of mammalian target of rapamycin (mTOR) kinase inhibitor CC-223.

    PubMed

    Mortensen, Deborah S; Perrin-Ninkovic, Sophie M; Shevlin, Graziella; Zhao, Jingjing; Packard, Garrick; Bahmanyar, Sogole; Correa, Matthew; Elsner, Jan; Harris, Roy; Lee, Branden G S; Papa, Patrick; Parnes, Jason S; Riggs, Jennifer R; Sapienza, John; Tehrani, Lida; Whitefield, Brandon; Apuy, Julius; Bisonette, René R; Gamez, James C; Hickman, Matt; Khambatta, Godrej; Leisten, Jim; Peng, Sophie X; Richardson, Samantha J; Cathers, Brian E; Canan, Stacie S; Moghaddam, Mehran F; Raymon, Heather K; Worland, Peter; Narla, Rama Krishna; Fultz, Kimberly E; Sankar, Sabita

    2015-07-01

    We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K. The improved PK properties of this series allowed for exploration of in vivo efficacy and ultimately the selection of CC-223 for clinical development. PMID:26083478

  1. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway

    PubMed Central

    McDaniel, Sharon S.; Rensing, Nicholas R.; Thio, Liu Lin; Yamada, Kelvin A.; Wong, Michael

    2011-01-01

    Summary The ketogenic diet (KD) is an effective treatment for epilepsy, but its mechanisms of action are poorly understood. We investigated the hypothesis that KD inhibits mammalian target of rapamycin (mTOR) pathway signaling. The expression of pS6 and pAkt, markers of mTOR pathway activation, was reduced in hippocampus and liver of rats fed KD. In the kainate model of epilepsy, KD blocked the hippocampal pS6 elevation that occurs after status epilepticus. As mTOR signaling has been implicated in epileptogenesis, these results suggest that the KD may have anticonvulsant or antiepileptogenic actions via mTOR pathway inhibition. PMID:21371020

  2. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells.

    PubMed

    Lim, Kwang-il

    2015-01-01

    Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future. PMID:25104401

  3. Tumor Progression Locus 2 (Tpl2) Activates the Mammalian Target of Rapamycin (mTOR) Pathway, Inhibits Forkhead Box P3 (FoxP3) Expression, and Limits Regulatory T Cell (Treg) Immunosuppressive Functions.

    PubMed

    Li, Xin; Acuff, Nicole V; Peeks, Angela R; Kirkland, Rebecca; Wyatt, Kara D; Nagy, Tamas; Watford, Wendy T

    2016-08-01

    The serine/threonine kinase tumor progression locus 2 (Tpl2, also known as Map3k8/Cot) is a potent inflammatory mediator that drives the production of TNFα, IL-1β, and IFNγ. We previously demonstrated that Tpl2 regulates T cell receptor (TCR) signaling and modulates T helper cell differentiation. However, very little is known about how Tpl2 modulates the development of regulatory T cells (Tregs). Tregs are a specialized subset of T cells that express FoxP3 and possess immunosuppressive properties to limit excess inflammation. Because of the documented role of Tpl2 in promoting inflammation, we hypothesized that Tpl2 antagonizes Treg development and immunosuppressive function. Here we demonstrate that Tpl2 constrains the development of inducible Tregs. Tpl2(-/-) naïve CD4(+) T cells preferentially develop into FoxP3(+) inducible Tregs in vitro as well as in vivo in a murine model of ovalbumin (OVA)-induced systemic tolerance. Treg biasing of Tpl2(-/-) T cells depended on TCR signal strength and corresponded with reduced activation of the mammalian target of rapamycin (mTOR) pathway. Importantly, Tpl2(-/-) Tregs have basally increased expression of FoxP3 and immunosuppressive molecules, IL-10 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Furthermore, they were more immunosuppressive in vivo in a T cell transfer model of colitis, as evidenced by reduced effector T cell accumulation, systemic production of inflammatory cytokines, and colonic inflammation. These results demonstrate that Tpl2 promotes inflammation in part by constraining FoxP3 expression and Treg immunosuppressive functions. Overall, these findings suggest that Tpl2 inhibition could be used to preferentially drive Treg induction and thereby limit inflammation in a variety of autoimmune diseases. PMID:27261457

  4. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  5. Pharmacological Targeting of the Mammalian Clock Regulates Sleep Architecture and Emotional Behavior

    PubMed Central

    Banerjee, Subhashis; Wang, Yongjun; Solt, Laura A.; Griffett, Kristine; Kazantzis, Melissa; Amador, Ariadna; El-Gendy, Bahaa M.; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Shin, Youseung; Kamenecka, Theodore M.; Burris, Thomas P.

    2014-01-01

    Synthetic drug-like molecules that directly modulate the activity of key clock proteins offer the potential to directly modulate the endogenous circadian rhythm and treat diseases associated with clock dysfunction. Here, we demonstrate that synthetic ligands targeting a key component of the mammalian clock, the nuclear receptors REV-ERBα and β, regulate sleep architecture and emotional behavior in mice. REV-ERB agonists induce wakefulness and reduce REM and slow-wave sleep. Interestingly, REV-ERB agonists also reduce anxiety-like behavior. These data are consistent with increased anxiety-like behavior of REV-ERBβ null mice, in which REV-ERB agonists have no effect Also consistent with these effects being mediated by REV-ERB, the effect of the agonist on sleep and anxiety was suppressed by lithium treatment. These results indicate that pharmacological targeting of REVERB may lead to the development of novel therapeutics to treat sleep disorders and anxiety. PMID:25536025

  6. Mammalian EGF receptor activation by the rhomboid protease RHBDL2.

    PubMed

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-05-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  7. Mammalian EGF receptor activation by the rhomboid protease RHBDL2

    PubMed Central

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-01-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  8. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  9. Novel Targeting of Phoshatidylinositol-3 Kinase and Mammalian Target of Rapamycin (mTOR) in Renal Cell Carcinoma

    PubMed Central

    Cho, Daniel

    2013-01-01

    Allosteric inhibitors of the kinase mammalian target of rapamycin (mTOR) have demonstrated significant clinical activity in patients with advanced renal cell carcinoma (RCC). Unfortunately, substantial clinical responses to these rapalogues are only seen in a subset of patients with advanced RCC. Preclinical studies have identified multiple theoretical shortcomings of the rapalogues and numerous novel agents directed against the PI3-K/Akt/mTOR pathway which address many of these shortcomings are in active clinical development. In this review, we will discuss the preclinical and clinical experience with the rapalogues in RCC, potential mechanisms of resistance to the rapalogues, and the progress in the clinical development of novel agents directed against the PI3-K/Akt/mTOR Pathway. PMID:23867512

  10. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.

    PubMed

    Li, Xue; Oghi, Kenneth A; Zhang, Jie; Krones, Anna; Bush, Kevin T; Glass, Christopher K; Nigam, Sanjay K; Aggarwal, Aneel K; Maas, Richard; Rose, David W; Rosenfeld, Michael G

    2003-11-20

    The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1-Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis. PMID:14628042

  11. The cytotoxic T cell proteome and its shaping by mammalian Target of Rapamycin

    PubMed Central

    Hukelmann, Jens L.; Anderson, Karen E.; Sinclair, Linda V.; Grzes, Katarzyna M.; Murillo, Alejandro Brenes; Hawkins, Phillip T.; Stephens, Len R.; Lamond, Angus I.; Cantrell, Doreen A.

    2015-01-01

    High-resolution mass spectrometry maps the cytotoxic T lymphocyte (CTL) proteome and the impact of mammalian target of rapamycin complex 1 (mTORC1) on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes and mTORC1 selectively repressed and promoted expression of subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for mTORC1 negative control of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) production in CTL. mTORC1 was shown to repress PtdIns(3,4,5)P3 production and to determine the mTORC2 requirement for activation of the kinase Akt. Unbiased proteomic analysis thus provides a comprehensive understanding of CTL identity and mTORC1 control of CTL function. PMID:26551880

  12. Passive versus active local microrheology in mammalian cells and amoebae

    NASA Astrophysics Data System (ADS)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  13. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference

    PubMed Central

    Naito, Yuki; Yamada, Tomoyuki; Ui-Tei, Kumiko; Morishita, Shinichi; Saigo, Kaoru

    2004-01-01

    siDirect (http://design.RNAi.jp/) is a web-based online software system for computing highly effective small interfering RNA (siRNA) sequences with maximum target-specificity for mammalian RNA interference (RNAi). Highly effective siRNA sequences are selected using novel guidelines that were established through an extensive study of the relationship between siRNA sequences and RNAi activity. Our efficient software avoids off-target gene silencing to enumerate potential cross-hybridization candidates that the widely used BLAST search may overlook. The website accepts an arbitrary sequence as input and quickly returns siRNA candidates, providing a wide scope of applications in mammalian RNAi, including systematic functional genomics and therapeutic gene silencing. PMID:15215364

  14. Strategies to Detect Endogenous Ubiquitination of a Target Mammalian Protein.

    PubMed

    Sigismund, Sara; Polo, Simona

    2016-01-01

    Different biochemical techniques are well established to investigate target's ubiquitination in mammals without overexpressing a tagged version of ubiquitin (Ub). The simplest and more direct approach is to immunoprecipitate (IP) your target protein from cell lysate (stimulated and/or properly treated), followed by western blot analysis utilizing specific antibodies against Ub (see Subheading 3.1). This approach requires a good antibody against the target working in IP; alternatively, one could express a tagged version of the protein, possibly at the endogenous level. Another approach consists in IP ubiquitinated proteins from total cell lysate followed by detection with the antibody against the protein of interest. This second method relies on the availability of specific and very efficient antibodies against Ub (see Subheading 3.2). A more quantitative approach is the DELFIA assay (Perkin Elmer), an ELISA-based assay, which allows comparing more samples and conditions (see Subheading 3.3). Cross-validation with more than one approach is usually recommended in order to prove that your protein is modified by ubiquitin.Here we will use the EGFR as model system but protocols can be easily modified according to the protein of interest. PMID:27613032

  15. Mammalian Target of Rapamycin Mediates Kidney Injury Molecule 1-Dependent Tubule Injury in a Surrogate Model.

    PubMed

    Yin, Wenqing; Naini, Said Movahedi; Chen, Guochun; Hentschel, Dirk M; Humphreys, Benjamin D; Bonventre, Joseph V

    2016-07-01

    Kidney injury molecule 1 (KIM-1), an epithelial phagocytic receptor, is markedly upregulated in the proximal tubule in various forms of acute and chronic kidney injury in humans and many other species. Whereas acute expression of KIM-1 has adaptive anti-inflammatory effects, chronic expression may be maladaptive in mice. Here, we characterized the zebrafish Kim family, consisting of Kim-1, Kim-3, and Kim-4. Kim-1 was markedly upregulated in kidney after gentamicin-induced injury and had conserved phagocytic activity in zebrafish. Both constitutive and tamoxifen-induced expression of Kim-1 in zebrafish kidney tubules resulted in loss of the tubule brush border, reduced GFR, pericardial edema, and increased mortality. Kim-1-induced kidney injury was associated with reduction of growth of adult fish. Kim-1 expression led to activation of the mammalian target of rapamycin (mTOR) pathway, and inhibition of this pathway with rapamycin increased survival. mTOR pathway inhibition in KIM-1-overexpressing transgenic mice also significantly ameliorated serum creatinine level, proteinuria, tubular injury, and kidney inflammation. In conclusion, persistent Kim-1 expression results in chronic kidney damage in zebrafish through a mechanism involving mTOR. This observation predicted the role of the mTOR pathway and the therapeutic efficacy of mTOR-targeted agents in KIM-1-mediated kidney injury and fibrosis in mice, demonstrating the utility of the Kim-1 renal tubule zebrafish models. PMID:26538632

  16. Mammalian Target of Rapamycin Complex 1 and Cyclooxygenase 2 Pathways Cooperatively Exacerbate Endometrial Cancer

    PubMed Central

    Daikoku, Takiko; Terakawa, Jumpei; Hossain, Md M.; Yoshie, Mikihiro; Cappelletti, Monica; Yang, Peiying; Ellenson, Lora H.; Dey, Sudhansu K.

    2015-01-01

    The underlying causes of endometrial cancer (EMC) are poorly understood, and treatment options for patients with advanced stages of the disease are limited. Mutations in the phosphatase and tensin homologue gene are frequently detected in EMC. Cyclooxygenase 2 (Cox2) and mammalian target of rapamycin complex 1 (mTORC1) are known downstream targets of the phosphatase and tensin homologue protein, and their activities are up-regulated in EMC. However, it is not clear whether Cox2 and mTORC1 are crucial players in cancer progression or whether they work in parallel or cooperatively. In this study, we used a Cox2 inhibitor, celecoxib, and an mTORC1 inhibitor, rapamycin, in mouse models of EMC and in human EMC cell lines to explore the interactive roles of Cox2 and mTORC1 signaling. We found that a combined treatment with celecoxib and rapamycin markedly reduces EMC progression. We also observed that rapamycin reduces Cox2 expression, whereas celecoxib reduces mTORC1 activity. These results suggest that Cox2 and mTORC1 signaling is cross-regulated and cooperatively exacerbate EMC. PMID:25058027

  17. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation.

    PubMed

    Zhao, Yang; Zhao, Ming-Ming; Cai, Yan; Zheng, Ming-Fei; Sun, Wei-Liang; Zhang, Song-Yang; Kong, Wei; Gu, Jun; Wang, Xian; Xu, Ming-Jiang

    2015-10-01

    Vascular calcification (VC) is a major risk factor for cardiovascular mortality in chronic renal failure (CRF) patients, but the pathogenesis remains partially unknown and effective therapeutic targets should be urgently explored. Here we pursued the therapeutic role of rapamycin in CRF-related VC. Mammalian target of rapamycin (mTOR) signal was activated in the aortic wall of CRF rats. As expected, oral rapamycin administration significantly reduced VC by inhibiting mTOR in rats with CRF. Further in vitro results showed that activation of mTOR by both pharmacological agent and genetic method promoted, while inhibition of mTOR reduced, inorganic phosphate-induced vascular smooth muscle cell (VSMC) calcification and chondrogenic/osteogenic gene expression, which were independent of autophagy and apoptosis. Interestingly, the expression of Klotho, an antiaging gene that suppresses VC, was reduced in calcified vasculature, whereas rapamycin reversed membrane and secreted Klotho decline through mTOR inhibition. When mTOR signaling was enhanced by either mTOR overexpression or deletion of tuberous sclerosis 1, Klotho mRNA was further decreased in phosphate-treated VSMCs, suggesting a vital association between mTOR signaling and Klotho expression. More importantly, rapamycin failed to reduce VC in the absence of Klotho by using either siRNA knockdown of Klotho or Klotho knockout mice. Thus, Klotho has a critical role in mediating the observed decrease in calcification by rapamycin in vitro and in vivo. PMID:26061549

  18. Superoxide radical and iron modulate aconitase activity in mammalian cells.

    PubMed

    Gardner, P R; Raineri, I; Epstein, L B; White, C W

    1995-06-01

    Aconitase is a member of a family of iron-sulfur-containing (de)hydratases whose activities are modulated in bacteria by superoxide radical (O2-.)-mediated inactivation and iron-dependent reactivation. The inactivation-reactivation of aconitase(s) in cultured mammalian cells was explored since these reactions may impact important and diverse aconitase functions in the cytoplasm and mitochondria. Conditions which increase O2-. production including exposure to the redox-cycling agent phenazine methosulfate (PMS), inhibitors of mitochondrial ubiquinol-cytochrome c oxidoreductase, or hyperoxia inactivated aconitase in mammalian cells. Overproduction of mitochondrial Mn-superoxide dismutase protected aconitase from inactivation by PMS or inhibitors of ubiquinol-cytochrome c oxidoreductase, but not from normobaric hyperoxia. Aconitase activity was reactivated (t1/2 of 12 +/- 3 min) upon removal of PMS. The iron chelator deferoxamine impaired reactivation and increased net inactivation of aconitase by O2-.. The ability of ubiquinol-cytochrome c oxidoreductase-generated O2-. to inactivate aconitase in several cell types correlated with the fraction of the aconitase activity localized in mitochondria. Extracellular O2-. generated with xanthine oxidase did not affect aconitase activity nor did exogenous superoxide dismutase decrease aconitase inactivation by PMS. The results demonstrate a dynamic and cyclical O2-.-mediated inactivation and iron-dependent reactivation of the mammalian [4Fe-4S] aconitases under normal and stress conditions and provide further evidence for the membrane compartmentalization of O2-.. PMID:7768942

  19. Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock

    PubMed Central

    Cao, Ruifeng; Li, Aiqing; Cho, Hee-yeon; Lee, Boyoung; Obrietan, Karl

    2010-01-01

    Inducible gene expression appears to be an essential event that couples light to entrainment of the master mammalian circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we reported that light triggers phase-dependent activation of the mammalian target of rapamycin (mTOR) signaling pathway, a major regulator of protein synthesis, in the SCN, thus raising the possibility that mTOR-evoked mRNA translation contributes to clock entrainment. Here, we employed a combination of cellular, molecular and behavioral assays to address this question. To this end, we show that the in vivo infusion of the mTOR inhibitor rapamycin led to a significant attenuation of the phase-delaying effect of early night light. Conversely, disruption of mTOR during the late night augmented the phase-advancing effect of light. To assess the role of mTOR signaling within the context of molecular entrainment, the effects of rapamycin on light-induced expression of PERIOD1 and PERIOD2 were examined. At both the early and late night time points, abrogation of mTOR signaling led to a significant attenuation of light-evoked PERIOD protein expression. Our results also reveal that light-induced mTOR activation leads to translation of mRNAs with a 5′-terminal oligopyrimidine tract such as eukaryotic elongation factor 1 A (eEF1A) and the immediate early gene JunB. Together, these data indicate that the mTOR pathway functions as potent and selective regulator of light-evoked protein translation and SCN clock entrainment. PMID:20445056

  20. Targeting mammalian organelles with internalizing phage (iPhage) libraries

    PubMed Central

    Rangel, Roberto; Dobroff, Andrey S.; Guzman-Rojas, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Techniques largely used for protein interaction studies and discovery of intracellular receptors, such as affinity capture complex purification and yeast two-hybrid, may produce inaccurate datasets due to protein insolubility, transient or weak protein interactions, or irrelevant intracellular context. A versatile tool to overcome these limitations as well as to potentially create vaccines and engineer peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries utilizing a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and to fingerprint functional protein domains in living cells. Here we explain the design, cloning, construction, and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ~8 weeks. PMID:24030441

  1. Targeting the mammalian target of Rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma

    PubMed Central

    Gasperini, Paola; Tosato, Giovanna

    2009-01-01

    Primary effusion lymphoma (PEL) is a fatal malignancy, which typically presents as a lymphomatous effusion that later disseminates. Rapamycin (Rapa), which targets mTOR (mammalian target of Rapa), is currently evaluated as a treatment for PEL, but the recent development of PEL in Rapa-treated post-transplant recipients questions the drug's use in PEL. Here, we used a murine model of PEL effusion that mimics the human disease to investigate the anti-PEL activity of Rapa. We found that Rapa reduces ascites accumulation and extends mouse survival. Initially, Rapa reduced PEL load compared to control mice, but most mice rapidly showed PEL progression. Levels of VEGF, which promotes vascular permeability contributing to effusion formation, were significantly reduced in ascites of Rapa-treated mice compared to controls. Expression of IL-10, the principal autocrine growth factor for PEL, was initially reduced in PEL from Rapa-treated mice but rapidly increased despite treatment. We found that the hypoxic environment of ascites and Rapa cooperate in stimulating IL-10 expression in PEL, which likely contributes to the emergence of drug resistance. These results identify Rapa an effective drug to reduce PEL effusions but illustrate the rapid development of drug resistance, which likely limits the efficacy of Rapa in PEL. PMID:19554030

  2. Target activated frame capture

    NASA Astrophysics Data System (ADS)

    Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert

    2008-04-01

    Over the past decade, technological advances have enabled the use of increasingly intelligent systems for battlefield surveillance. These systems are triggered by a combination of external devices including acoustic and seismic sensors. Such products are mainly used to detect vehicles and personnel. These systems often use infra-red imagery to record environmental information, but Textron Defense Systems' Terrain Commander is one of a small number of systems which analyze these images for the presence of targets. The Terrain Commander combines acoustic, infrared, magnetic, seismic, and visible spectrum sensors to detect nearby targets in military scenarios. When targets are detected by these sensors, the cameras are triggered and images are captured in the infrared and visible spectrum. In this paper we discuss a method through which such systems can perform target tracking in order to record and transmit only the most pertinent surveillance images. This saves bandwidth which is crucial because these systems often use communication systems with throughputs below 2400bps. This method is expected to be executable on low-power processors at frame rates exceeding 10HZ. We accomplish this by applying target activated frame capture algorithms to infra-red video data. The target activated frame capture algorithms combine edge detection and motion detection to determine the best frames to be transmitted to the end user. This keeps power consumption and bandwidth requirements low. Finally, the results of the algorithm are analyzed.

  3. Recombination induced by triple-helix-targeted DNA damage in mammalian cells.

    PubMed Central

    Faruqi, A F; Seidman, M M; Segal, D J; Carroll, D; Glazer, P M

    1996-01-01

    Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy. PMID:8943337

  4. Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation.

    PubMed

    Kelly, Patrick; Bailey, Candice L; Fueger, Patrick T; Newgard, Christopher B; Casey, Patrick J; Kimple, Michelle E

    2010-05-21

    Recent studies have implicated Epac2, a guanine-nucleotide exchange factor for the Rap subfamily of monomeric G proteins, as an important regulator of insulin secretion from pancreatic beta-cells. Although the Epac proteins were originally identified as cAMP-responsive activators of Rap1 GTPases, the role of Rap1 in beta-cell biology has not yet been defined. In this study, we examined the direct effects of Rap1 signaling on beta-cell biology. Using the Ins-1 rat insulinoma line, we demonstrate that activated Rap1A, but not related monomeric G proteins, promotes ribosomal protein S6 phosphorylation. Using isolated rat islets, we show that this signaling event is rapamycin-sensitive, indicating that it is mediated by the mammalian target of rapamycin complex 1-p70 S6 kinase pathway, a known growth regulatory pathway. This newly defined beta-cell signaling pathway acts downstream of cAMP, in parallel with the stimulation of cAMP-dependent protein kinase, to drive ribosomal protein S6 phosphorylation. Activated Rap1A promotes glucose-stimulated insulin secretion, islet cell hypertrophy, and islet cell proliferation, the latter exclusively through mammalian target of rapamycin complex 1, suggesting that Rap1 is an important regulator of beta-cell function. This newly defined signaling pathway may yield unique targets for the treatment of beta-cell dysfunction in diabetes. PMID:20339002

  5. Garcinielliptone FC: antiparasitic activity without cytotoxicity to mammalian cells.

    PubMed

    Silva, Ana P; Silva, Marcos P; Oliveira, Cristiano G; Monteiro, Daniela C; Pinto, Pedro L; Mendonça, Ronaldo Z; Costa Júnior, Joaquim S; Freitas, Rivelilson M; de Moraes, Josué

    2015-06-01

    Garcinielliptone FC (GFC) is a natural prenylated benzophenone found in the seeds of Platonia insignis Mart. (Clusiaceae), a native Brazilian plant. It has been chemically characterized and it is known that GFC has several biological activities such as antioxidant and vasorelaxant properties. In this study, we report the in vitro effect of GFC against the blood fluke Schistosoma mansoni, the parasite responsible for schistosomiasis mansoni. The anti-S. mansoni activity and cytotoxicity toward mammalian cells were determined for the compound. GFC⩾6.25 μM showed antischistosomal activity and confocal laser scanning microscopy analysis demonstrated several morphological alterations on the tegument of worms, and a correlation between viability and tegumental damage was observed. In addition, at sub-lethal concentrations of GFC (⩽3.125 μM), the number of S. mansoni eggs was reduced. More importantly, GFC exhibited no activity toward mammalian cells and, therefore, there is an appreciable selectivity of this compound against the helminths. In conclusion, these findings indicate the potential of GFC as an antiparasitic agent. PMID:25553916

  6. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells.

    PubMed

    Kwaks, T H J; Sewalt, R G A B; van Blokland, R; Siersma, T J; Kasiem, M; Kelder, A; Otte, A P

    2005-01-12

    Silencing of transfected genes in mammalian cells is a fundamental problem that probably involves the (in)accessibility status of chromatin. A potential solution to this problem is to provide a cell with protein factors that make the chromatin of a promoter more open or accessible for transcription. We tested this by targeting such proteins to different promoters. We found that targeting the p300 histone acetyltransferase (HAT) domain to strong viral or cellular promoters is sufficient to result in higher expression levels of a reporter protein. In contrast, targeting the chromatin-remodeling factor Brahma does not result in stable, higher protein expression levels. The long-term effects of the targeted p300HAT domain on protein expression levels are positively reinforced, when also anti-repressor elements are applied to flank the reporter construct. These elements were previously shown to be potent blockers of chromatin-associated repressors. The simultaneous application of the targeted p300HAT domain and anti-repressor elements conveys long-term stability to protein expression. Whereas no copy number dependency is achieved by targeting of the p300HAT domain alone, copy number dependency is improved when anti-repressor elements are included. We conclude that targeting of protein domains such as HAT domains helps to facilitate expression of transfected genes in mammalian cells. However, the simultaneous application of other genomic elements such as the anti-repressor elements prevents silencing more efficiently. PMID:15607223

  7. RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes.

    PubMed

    Wei, Chaoliang; Xiao, Rui; Chen, Liang; Cui, Hanwei; Zhou, Yu; Xue, Yuanchao; Hu, Jing; Zhou, Bing; Tsutsui, Taiki; Qiu, Jinsong; Li, Hairi; Tang, Liling; Fu, Xiang-Dong

    2016-06-16

    Increasing evidence suggests that diverse RNA binding proteins (RBPs) interact with regulatory RNAs to regulate transcription. RBFox2 is a well-characterized pre-mRNA splicing regulator, but we now encounter an unexpected paradigm where depletion of this RBP induces widespread increase in nascent RNA production in diverse cell types. Chromatin immunoprecipitation sequencing (ChIP-seq) reveals extensive interaction of RBFox2 with chromatin in a nascent RNA-dependent manner. Bayesian network analysis connects RBFox2 to Polycomb complex 2 (PRC2) and H3K27me3, and biochemical experiments demonstrate the ability of RBFox2 to directly interact with PRC2. Strikingly, RBFox2 inactivation eradicates PRC2 targeting on the majority of bivalent gene promoters and leads to transcriptional de-repression. Together, these findings uncover a mechanism underlying the enigmatic association of PRC2 with numerous active genes, highlight the importance of gene body sequences to gauge transcriptional output, and suggest nascent RNAs as critical signals for transcriptional feedback control to maintain homeostatic gene expression in mammalian genomes. PMID:27211866

  8. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside.

    PubMed

    Kim, Hyun-Jung; Edelstein, Charles L

    2012-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA resulting in chronic kidney disease and the need for dialysis and transplantation. Approximately 85% of cases of ADPKD are caused by a mutation in the Pkd1 gene that encodes polycystin-1, a large membrane receptor. The Pkd1 gene mutation results in abnormal proliferation in tubular epithelial cells, which plays a crucial role in cyst development and/or growth in PKD. Activation of the proliferative mammalian target of rapamycin (mTOR) signaling pathway has been demonstrated in polycystic kidneys from rodents and humans. mTOR inhibition with sirolimus or everolimus decreases cysts in most animal models of PKD including Pkd1 and Pkd2 gene deficient orthologous models of human disease. On the basis of animal studies, human studies were undertaken. Two large randomized clinical trials published in the New England Journal of Medicine of everolimus or sirolimus in ADPKD patients were very unimpressive and associated with a high side-effect profile. Possible reasons for the unimpressive nature of the human studies include their short duration, the high drop-out rate, suboptimal dosing, lack of randomization of "fast" and "slow progressors" and the lack of correlation between kidney size and kidney function in ADPKD. The future of mTOR inhibition in ADPKD is discussed. PMID:26894018

  9. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.

    PubMed

    Dowling, Ryan J O; Zakikhani, Mahvash; Fantus, I George; Pollak, Michael; Sonenberg, Nahum

    2007-11-15

    Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth. PMID:18006825

  10. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation.

    PubMed Central

    Wang, G; Levy, D D; Seidman, M M; Glazer, P M

    1995-01-01

    As an alternative to standard gene transfer techniques for genetic manipulation, we have investigated the use of triple helix-forming oligonucleotides to target mutations to selected genes within mammalian cells. By treating monkey COS cells with oligonucleotides linked to psoralen, we have generated targeted mutations in a simian virus 40 (SV40) vector contained within the cells via intracellular triple helix formation. Oligonucleotide entry into the cells and sequence-specific triplex formation within the SV40 DNA deliver the psoralen to the targeted site. Photoactivation of the psoralen by long-wavelength UV light yields adducts and thereby mutations at that site. We engineered into the SV40 vector novel supF mutation reporter genes containing modified polypurine sites amenable to triplex formation. By comparing the abilities of a series of oligonucleotides to target these new sites, we show that targeted mutagenesis in vivo depends on the strength and specificity of the third-strand binding. Oligonucleotides with weak target site binding affinity or with only partial target site homology were ineffective at inducing mutations in the SV40 vectors within the COS cells. We also show that the targeted mutagenesis is dependent on the oligonucleotide concentration and is influenced by the timing of the oligonucleotide treatment and of the UV irradiation of the cells. Frequencies of intracellular targeted mutagenesis in the range of 1 to 2% were observed, depending upon the conditions of the experiment. DNA sequence analysis revealed that most of the mutations were T.A-to-A.T transversions precisely at the targeted psoralen intercalation site. Several deletions encompassing that site were also seen. The ability to target mutations to selected sites within mammalian cells by using modified triplex-forming oligonucleotides may provide a new research tool and may eventually lead to therapeutic applications. PMID:7862165

  11. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases

    PubMed Central

    Santiago, Yolanda; Chan, Edmond; Liu, Pei-Qi; Orlando, Salvatore; Zhang, Lin; Urnov, Fyodor D.; Holmes, Michael C.; Guschin, Dmitry; Waite, Adam; Miller, Jeffrey C.; Rebar, Edward J.; Gregory, Philip D.; Klug, Aaron; Collingwood, Trevor N.

    2008-01-01

    Gene knockout is the most powerful tool for determining gene function or permanently modifying the phenotypic characteristics of a cell. Existing methods for gene disruption are limited by their efficiency, time to completion, and/or the potential for confounding off-target effects. Here, we demonstrate a rapid single-step approach to targeted gene knockout in mammalian cells, using engineered zinc-finger nucleases (ZFNs). ZFNs can be designed to target a chosen locus with high specificity. Upon transient expression of these nucleases the target gene is first cleaved by the ZFNs and then repaired by a natural—but imperfect—DNA repair process, nonhomologous end joining. This often results in the generation of mutant (null) alleles. As proof of concept for this approach we designed ZFNs to target the dihydrofolate reductase (DHFR) gene in a Chinese hamster ovary (CHO) cell line. We observed biallelic gene disruption at frequencies >1%, thus obviating the need for selection markers. Three new genetically distinct DHFR−/− cell lines were generated. Each new line exhibited growth and functional properties consistent with the specific knockout of the DHFR gene. Importantly, target gene disruption is complete within 2–3 days of transient ZFN delivery, thus enabling the isolation of the resultant DHFR−/− cell lines within 1 month. These data demonstrate further the utility of ZFNs for rapid mammalian cell line engineering and establish a new method for gene knockout with application to reverse genetics, functional genomics, drug discovery, and therapeutic recombinant protein production. PMID:18359850

  12. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    PubMed

    Du, Dan; Qi, Lei S

    2016-01-01

    CRISPR interference/activation (CRISPRi/a) technology provides a simple and efficient approach for targeted repression or activation of gene expression in the mammalian genome. It is highly flexible and programmable, using an RNA-guided nuclease-deficient Cas9 (dCas9) protein fused with transcriptional regulators for targeting specific genes to effect their regulation. Multiple studies have shown how this method is an effective way to achieve efficient and specific transcriptional repression or activation of single or multiple genes. Sustained transcriptional modulation can be obtained by stable expression of CRISPR components, which enables directed reprogramming of cell fate. Here, we introduce the basics of CRISPRi/a technology for genome repression or activation. PMID:26729914

  13. Origin of basal activity in mammalian olfactory receptor neurons

    PubMed Central

    2010-01-01

    Mammalian odorant receptors form a large, diverse group of G protein–coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain. PMID:20974772

  14. Active zones of mammalian neuromuscular junctions: formation, density, and aging

    PubMed Central

    Nishimune, Hiroshi

    2012-01-01

    Presynaptic active zones are synaptic vesicle release sites that playessential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization utilize presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2, and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. PMID:23252894

  15. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    SciTech Connect

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  16. Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes.

    PubMed

    Reis, Alexandra; Madgwick, Suzanne; Chang, Heng-Yu; Nabti, Ibtissem; Levasseur, Mark; Jones, Keith T

    2007-10-01

    The first female meiotic division (meiosis I, MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss. Here, we show a fundamental difference in the control of mammalian meiosis that may underlie such susceptibility. It involves a reversal in the well-established timing of activation of the anaphase-promoting complex (APC) by its co-activators cdc20 and cdh1. APC(cdh1) was active first, during prometaphase I, and was needed in order to allow homologue congression, as loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APC(cdh1) targeted cdc20 for degradation, but did not target securin or cyclin B1. These were degraded later in MI through APC(cdc20), making cdc20 re-synthesis essential for successful meiotic progression. The switch from APC(cdh1) to APC(cdc20) activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes that is not observed in meioses of other species. PMID:17891138

  17. High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes.

    PubMed

    Wu, Qi; Gaddis, Sara S; MacLeod, Michael C; Walborg, Earl F; Thames, Howard D; DiGiovanni, John; Vasquez, Karen M

    2007-01-01

    Site-specific recognition of duplex DNA by triplex-forming oligonucleotides (TFOs) provides a promising approach to manipulate mammalian genomes. A prerequisite for successful gene targeting using this approach is that the targeted gene must contain specific, high-affinity TFO target sequences (TTS). To date, TTS have been identified and characterized in only approximately 37 human or rodent genes, limiting the application of triplex-directed gene targeting. We searched the complete human and mouse genomes using an algorithm designed to identify high-affinity TTS. The resulting data set contains 1.9 million potential TTS for each species. We found that 97.8% of known human and 95.2% of known mouse genes have at least one potential high-affinity TTS in the promoter and/or transcribed gene regions. Importantly, 86.5% of known human and 83% of the known mouse genes have at least one TTS that is unique to that gene. Thus, it is possible to target the majority of human and mouse genes with specific TFOs. We found substantially more potential TTS in the promoter sequences than in the transcribed gene sequences or intergenic sequences in both genomes. We selected 12 mouse genes and 2 human genes critical for cell signaling, proliferation, and/or carcinogenesis, identified potential TTS in each, and determined TFO binding affinities to these sites in vitro. We identified at least one high-affinity, specific TFO binding site within each of these genes. Using this information, many genes involved in mammalian cell proliferation and carcinogenesis can now be targeted. PMID:17013831

  18. Genotoxic activity of caramel on Salmonella and cultured mammalian cells.

    PubMed

    Yu, Y N; Chen, X R; Ding, C; Cai, Z N; Li, Q G

    1984-04-01

    The genetic activity of 2 commercial caramel preparations, manufactured either by heating the malt sugar solution directly (non-ammoniated caramel) or by heating it with ammonia (ammoniated caramel) was studied in the Salmonella mutagenicity test and UDS assay in cultured mammalian cells. The non-ammoniated caramel was found to be mutagenic to S. typhimurium TA100, while the ammoniated one was genetically active in all the tester strains used, namely TA100, TA97 and TA98. It was also demonstrated that non-ammoniated caramel was capable of inducing UDS in cultured human amnion FL cells, but for the ammoniated one, no such activity was observed. Furthermore, based on the results obtained in the DNA synthesis inhibition assay, it was suggested that the DNA synthesis inhibition seen in our experiments with the ammoniated caramel was probably not of DNA damage in origin. These data indicate that the mutagenic fractions formed during ammoniated and non-ammoniated caramelization were quite different. PMID:6371518

  19. Targeted gene conversion induced by triplex-directed psoralen interstrand crosslinks in mammalian cells.

    PubMed

    Liu, Yaobin; Nairn, Rodney S; Vasquez, Karen M

    2009-10-01

    Correction of a defective gene is a promising approach for both basic research and clinical gene therapy. However, the absence of site-specific targeting and the low efficiency of homologous recombination in human cells present barriers to successful gene targeting. In an effort to overcome these barriers, we utilized triplex-forming oligonucleotides (TFOs) conjugated to a DNA interstrand crosslinking (ICL) agent, psoralen (pTFO-ICLs), to improve the gene targeting efficiency at a specific site in DNA. Gene targeting events were monitored by the correction of a deletion on a recipient plasmid with the homologous sequence from a donor plasmid in human cells. The mechanism underlying this event is stimulation of homologous recombination by the pTFO-ICL. We found that pTFO-ICLs are efficient in inducing targeted gene conversion (GC) events in human cells. The deletion size in the recipient plasmid influenced both the recombination frequency and spectrum of recombinants; i.e. plasmids with smaller deletions had a higher frequency and proportion of GC events. The polarity of the pTFO-ICL also had a prominent effect on recombination. Our results suggest that pTFO-ICL induced intermolecular recombination provides an efficient method for targeted gene correction in mammalian cells. PMID:19726585

  20. Effective Targeted Gene Knockdown in Mammalian Cells Using the piggyBac Transposase-based Delivery System

    PubMed Central

    Owens, Jesse B; Mathews, Juanita; Davy, Philip; Stoytchev, Ilko; Moisyadi, Stefan; Allsopp, Rich

    2013-01-01

    Nonviral gene delivery systems are rapidly becoming a desirable and applicable method to overexpress genes in various types of cells. We have recently developed a piggyBac transposase-based, helper-independent and self-inactivating delivery system (pmGENIE-3) capable of high-efficiency transfection of mammalian cells including human cells. In the following study, we have assessed the potential of this delivery system to drive the expression of short hairpin RNAs to knock down genes in human cells. Two independent pmGENIE-3 vectors were developed to specifically target knockdown of an endogenous gene, telomerase reverse transcriptase (TERT), in telomerase-positive human immortalized cell lines. As compared with a transposase-deficient vector, pmGENIE-3 showed significantly improved short-term transfection efficiency (~4-fold enhancement, 48 hours posttransfection) and long-term integration efficiency (~5-fold enhancement) following antibiotic selection. We detected a significant reduction of both TERT expression and telomerase activity in both HEK293 and MCF-7 breast carcinoma cells transfected with two pmGENIE-3 construct targeting distinct regions of TERT. Importantly, this knockdown of expression was sufficient to abrogate telomerase function since telomeres were significantly shortened (3–4 Kb, P < 0.001) in both TERT-targeted cell lines following antibiotic selection of stable integrants. Together, these data show the capacity of the piggyBac nonviral delivery system to stably knockdown gene expression in mammalian cells and indicate the potential to develop novel tumor-targeting therapies. PMID:24326734

  1. Mammalian Rest/Activity Patterns Explained by Physiologically Based Modeling

    PubMed Central

    Phillips, A. J. K.; Fulcher, B. D.; Robinson, P. A.; Klerman, E. B.

    2013-01-01

    Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological

  2. Most mammalian mRNAs are conserved targets of microRNAs

    PubMed Central

    Friedman, Robin C.; Farh, Kyle Kai-How; Burge, Christopher B.; Bartel, David P.

    2009-01-01

    MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3′ untranslated regions (3′UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3′UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3′UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3′ end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3′-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target. PMID:18955434

  3. Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes

    PubMed Central

    Reis, Alexandra; Madgwick, Suzanne; Chang, Heng-Yu; Nabti, Ibtissem; Levasseur, Mark; Jones, Keith T

    2008-01-01

    Summary The first female meiotic division (MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss1. Here, we show a fundamental difference in the control of mammalian meiosis which may underlie such susceptibility. It involved a reversal in the well-established timing of activation of the Anaphase-Promoting Complex (APC)2, 3 by its co-activators cdc20 and cdh1. APCcdh1 was active first, during prometaphase I, and was needed in order to allow homologue congression, since loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APCcdh1 targeted cdc20 for degradation but not securin and cyclin B1. These were degraded later in MI through APCcdc20, making cdc20 re-synthesis essential for successful meiotic progression. The switch from APCcdh1 to APCcdc20 activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes not observed in meioses of other species. PMID:17891138

  4. Larger Mammalian Body Size Leads to Lower Retroviral Activity

    PubMed Central

    Katzourakis, Aris; Magiorkinis, Gkikas; Lim, Aaron G.; Gupta, Sunetra; Belshaw, Robert; Gifford, Robert

    2014-01-01

    Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto's paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity. PMID:25033295

  5. Follicle-stimulating Hormone Activation of Hypoxia-inducible Factor-1 by the Phosphatidylinositol 3-Kinase/AKT/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (mTOR) Pathway Is Necessary for Induction of Select Protein Markers of Follicular Differentiation*

    PubMed Central

    Alam, Hena; Maizels, Evelyn T.; Park, Youngkyu; Ghaey, Shail; Feiger, Zachary J.; Chandel, Navdeep S.; Hunzicker-Dunn, Mary

    2006-01-01

    We sought to elucidate the role of AKT in follicle-stimulating hormone (FSH)-mediated granulosa cell (GC) differentiation. Our results define a signaling pathway in GCs whereby the inactivating phosphorylation of tuberin downstream of phosphatidylinositol (PI) 3-kinase/AKT activity leads to Rheb (Ras homolog enriched in brain) and subsequent mTOR (mammalian target of rapamycin) activation. mTOR then stimulates translation by phosphorylating p70 S6 kinase and, consequently, the 40 S ribosomal protein S6. Activation of this pathway is required for FSH-mediated induction of several follicular differentiation markers, including luteinizing-hormone receptor (LHR), inhibin-α, microtubule-associated protein 2D, and the PKA type IIβ regulatory subunit. FSH also promotes activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). FSH-stimulated HIF-1 activity is inhibited by the PI 3-kinase inhibitor LY294002, the Rheb inhibitor FTI-277 (farne-syltransferase inhibitor-277), and the mTOR inhibitor rapamycin. Finally, we find that the FSH-mediated up-regulation of reporter activities for LHR, inhibin-α, and vascular endothelial growth factor is dependent upon HIF-1 activity, because a dominant negative form of HIF-1α interferes with the up-regulation of these genes. These results show that FSH enhances HIF-1 activity downstream of the PI 3-kinase/AKT/Rheb/mTOR pathway in GCs and that HIF-1 activity is necessary for FSH to induce multiple follicular differentiation markers. PMID:14982927

  6. Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin

    SciTech Connect

    Knight, Steven D.; Adams, Nicholas D.; Burgess, Joelle L.; Chaudhari, Amita M.; Darcy, Michael G.; Donatelli, Carla A.; Luengo, Juan I.; Newlander, Ken A.; Parrish, Cynthia A.; Ridgers, Lance H.; Sarpong, Martha A.; Schmidt, Stanley J.; Aller, Glenn S.Van; Carson, Jeffrey D.; Diamond, Melody A.; Elkins, Patricia A.; Gardiner, Christine M.; Garver, Eric; Gilbert, Seth A.; Gontarek, Richard R.; Jackson, Jeffrey R.; Kershner, Kevin L.; Luo, Lusong; Raha, Kaushik; Sherk, Christian S.; Sung, Chiu-Mei; Sutton, David; Tummino, Peter J.; Wegrzyn, Ronald J.; Auger, Kurt R.; Dhanak, Dashyant

    2010-09-30

    Phosphoinositide 3-kinase {alpha} (PI3K{alpha}) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{l_brace}2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl{r_brace}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3K{alpha} and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

  7. Post-conversion targeted capture of modified cytosines in mammalian and plant genomes

    PubMed Central

    Li, Qing; Suzuki, Masako; Wendt, Jennifer; Patterson, Nicole; Eichten, Steven R.; Hermanson, Peter J.; Green, Dawn; Jeddeloh, Jeffrey; Richmond, Todd; Rosenbaum, Heidi; Burgess, Daniel; Springer, Nathan M.; Greally, John M.

    2015-01-01

    We present a capture-based approach for bisulfite-converted DNA that allows interrogation of pre-defined genomic locations, allowing quantitative and qualitative assessments of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CG dinucleotides and in non-CG contexts (CHG, CHH) in mammalian and plant genomes. We show the technique works robustly and reproducibly using as little as 500 ng of starting DNA, with results correlating well with whole genome bisulfite sequencing data, and demonstrate that human DNA can be tested in samples contaminated with microbial DNA. This targeting approach will allow cell type-specific designs to maximize the value of 5mC and 5hmC sequencing. PMID:25813045

  8. Syntaxin13 Expression Is Regulated by Mammalian Target of Rapamycin (mTOR) in Injured Neurons to Promote Axon Regeneration*

    PubMed Central

    Cho, Yongcheol; Di Liberto, Valentina; Carlin, Dan; Abe, Namiko; Li, Kathy H.; Burlingame, Alma L.; Guan, Shenheng; Michaelevski, Izhak; Cavalli, Valeria

    2014-01-01

    Injured peripheral neurons successfully activate intrinsic signaling pathways to enable axon regeneration. We have previously shown that dorsal root ganglia (DRG) neurons activate the mammalian target of rapamycin (mTOR) pathway following injury and that this activity enhances their axon growth capacity. mTOR plays a critical role in protein synthesis, but the mTOR-dependent proteins enhancing the regenerative capacity of DRG neurons remain unknown. To identify proteins whose expression is regulated by injury in an mTOR-dependent manner, we analyzed the protein composition of DRGs from mice in which we genetically activated mTOR and from mice with or without a prior nerve injury. Quantitative label-free mass spectrometry analyses revealed that the injury effects were correlated with mTOR activation. We identified a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins, syntaxin13, whose expression was increased by injury in an mTOR-dependent manner. Increased syntaxin13 levels in injured nerves resulted from local protein synthesis and not axonal transport. Finally, knockdown of syntaxin13 in cultured DRG neurons prevented axon growth and regeneration. Together, these data suggest that syntaxin13 translation is regulated by mTOR in injured neurons to promote axon regeneration. PMID:24737317

  9. Mis-regulation of Mammalian Target of Rapamycin (mTOR) Complexes Induced by Albuminuria in Proximal Tubules*

    PubMed Central

    Peruchetti, Diogo B.; Cheng, Jie; Caruso-Neves, Celso; Guggino, William B.

    2014-01-01

    High albumin concentrations in the proximal tubule of the kidney causes tubulointerstitial injury, but how this process occurs is not completely known. To address the signal transduction pathways mis-regulated in renal injury, we studied the modulation of mammalian target of rapamycin (mTOR) complexes by physiologic and pathophysiologic albumin concentrations in proximal tubule cells. Physiologic albumin concentrations activated the PI3K/mTORC2/PKB/mTORC1/S6 kinase (S6K) pathway, but pathophysiologically high albumin concentrations overactivated mTORC1 and inhibited mTORC2 activity. This control process involved the activation of ERK1/2, which promoted the inhibition of TSC2 and activation of S6K. Furthermore, S6K was crucial to promoting the over activation of mTORC1 and inhibition of mTORC2. Megalin expression at the luminal membrane is reduced by high concentrations of albumin. In addition, knockdown of megalin mimicked all the effects of pathophysiologic albumin concentrations, which disrupt normal signal transduction pathways and lead to an overactivation of mTORC1 and inhibition of mTORC2. These data provide new perspectives for understanding the molecular mechanisms behind the effects of albumin on the progression of renal disease. PMID:24790108

  10. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  11. Blocking mammalian target of rapamycin alleviates bone cancer pain and morphine tolerance via µ-opioid receptor.

    PubMed

    Jiang, Zongming; Wu, Shaoyong; Wu, Xiujuan; Zhong, Junfeng; Lv, Anqing; Jiao, Jing; Chen, Zhonghua

    2016-04-15

    The current study was to examine the underlying mechanisms responsible for the role of mammalian target of rapamycin (mTOR) in regulating bone cancer-evoked pain and the tolerance of systemic morphine. Breast sarcocarcinoma Walker 256 cells were implanted into the tibia bone cavity of rats and this evoked significant mechanical and thermal hyperalgesia. Our results showed that the protein expression of p-mTOR, mTOR-mediated phosphorylation of 4E-binding protein 4 (4E-BP1), p70 ribosomal S6 protein kinase 1 (S6K1) as well as phosphatidylinositide 3-kinase (p-PI3K) pathways were amplified in the superficial dorsal horn of the spinal cord of bone cancer rats compared with control rats. Blocking spinal mTOR by using rapamycin significantly attenuated activities of PI3K signaling pathways as well as mechanical and thermal hyperalgesia. Additionally, rapamycin enhanced attenuations of protein kinase Cɛ (PKCɛ)/protein kinase A (PKA) induced by morphine and further extended analgesia of morphine via µ-opioid receptor (MOR). Our data for the first time revealed specific signaling pathways leading to bone cancer pain, including the activation of mTOR and PI3K and downstream PKCɛ/PKA, and resultant sensitization of MOR. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of bone cancer pain often observed in clinics. PMID:26566757

  12. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells

    PubMed Central

    Kato, Yuzuru; Katsuki, Takeo; Kokubo, Hiroki; Masuda, Aki; Saga, Yumiko

    2016-01-01

    Evolutionally conserved Nanos RNA-binding proteins play crucial roles in germ cell development. While a mammalian Nanos family protein, NANOS2, is required for sexual differentiation of male (XY) germ cells in mice, the underlying mechanisms and the identities of its target RNAs in vivo remain elusive. Using comprehensive microarray analysis and a bacterial artificial chromosome transgenic system, here we identify Dazl, a germ cell-specific gene encoding an RNA-binding protein implicated in translation, as a crucial target of NANOS2. Importantly, removal of the Dazl 3′-untranslated region in XY germ cells stabilizes the Dazl mRNA, resulting in elevated meiotic gene expression, abnormal resumption of the cell cycle and impaired processing-body formation, reminiscent of Nanos2-knockout phenotypes. Furthermore, our data suggest that NANOS2 acts as an antagonist of the DAZL protein. We propose a dual system of NANOS2-mediated suppression of Dazl expression as a pivotal molecular mechanism promoting sexual differentiation of XY germ cells. PMID:27072294

  13. Mammalian Target of Rapamycin Inhibitors and Life-Threatening Conditions in Tuberous Sclerosis Complex.

    PubMed

    Moavero, Romina; Romagnoli, Gloria; Graziola, Federica; Curatolo, Paolo

    2015-12-01

    Tuberous sclerosis complex (TSC) is a multisystem disease associated with an overall reduction in life expectancy due to the possible occurrence of different life-threatening conditions. Subjects affected by TSC are, in fact, at risk of hydrocephalus secondary to the growth of subependymal giant cell astrocytomas, or of sudden unexpected death in epilepsy. Other nonneurological life-threatening conditions include abdominal bleeding owing to renal angiomyolipomas rupture, renal insufficiency due to progressive parenchymal destruction by multiple cysts, pulmonary complications due to lymphangioleiomyomatosis, and cardiac failure or arrhythmias secondary to rhabdomyomas. In the last decades, there has been a great progress in understanding the pathophysiology of TSC-related manifestations, which are mainly linked to the hyperactivation of the so-called mammalian target of rapamycin (mTOR) pathway, as a consequence of the mutation in 1 of the 2 genes TSC1 or TSC2. This led to the development of new treatment strategies for this disease. In fact, it is now available as a biologically targeted therapy with everolimus, a selective mTOR inhibitor, which has been licensed in Europe and USA for the treatment of subependymal giant cell astrocytomas and angiomyolipomas in subjects with TSC. This drug also proved to benefit other TSC-related manifestations, including pulmonary lymphangioleiomyomatosis, cardiac rhabdomyomas, and presumably epileptic seizures. mTOR inhibitors are thus proving to be a systemic therapy able to simultaneously address different and potentially life-threatening complications, giving the hope of improving life expectation in individuals with TSC. PMID:26706015

  14. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells

    PubMed Central

    Rangel, Roberto; Guzman-Rojas, Liliana; le Roux, Lucia G.; Staquicini, Fernanda I.; Hosoya, Hitomi; Barbu, E. Magda; Ozawa, Michael G.; Nie, Jing; Jr, Kenneth Dunner; Langley, Robert R.; Sage, E. Helene; Koivunen, Erkki; Gelovani, Juri G.; Lobb, Roy R.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2012-01-01

    Phage display screening allows the study of functional protein–protein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-derived peptide, can be displayed on the phage envelope and mediate receptor-independent uptake of internalizing phage into cells. We also show that an internalizing-phage construct displaying an established mitochondria-specific localization signal targets mitochondria, and that an internalizing-phage random peptide library selects for peptide motifs that localize to different intracellular compartments. As a proof-of-concept, we demonstrate that one such peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to mitochondria, and promotes cell death. This combinatorial platform technology has potential applications in cell biology and drug development. PMID:22510693

  15. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells.

    PubMed

    Kato, Yuzuru; Katsuki, Takeo; Kokubo, Hiroki; Masuda, Aki; Saga, Yumiko

    2016-01-01

    Evolutionally conserved Nanos RNA-binding proteins play crucial roles in germ cell development. While a mammalian Nanos family protein, NANOS2, is required for sexual differentiation of male (XY) germ cells in mice, the underlying mechanisms and the identities of its target RNAs in vivo remain elusive. Using comprehensive microarray analysis and a bacterial artificial chromosome transgenic system, here we identify Dazl, a germ cell-specific gene encoding an RNA-binding protein implicated in translation, as a crucial target of NANOS2. Importantly, removal of the Dazl 3'-untranslated region in XY germ cells stabilizes the Dazl mRNA, resulting in elevated meiotic gene expression, abnormal resumption of the cell cycle and impaired processing-body formation, reminiscent of Nanos2-knockout phenotypes. Furthermore, our data suggest that NANOS2 acts as an antagonist of the DAZL protein. We propose a dual system of NANOS2-mediated suppression of Dazl expression as a pivotal molecular mechanism promoting sexual differentiation of XY germ cells. PMID:27072294

  16. SHEDDING NEW LIGHT ON NEURODEGENERATIVE DISEASES THROUGH THE MAMMALIAN TARGET OF RAPAMYCIN

    PubMed Central

    Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui; Maiese, Kenneth

    2012-01-01

    Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/ TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments. PMID:22980037

  17. ATP-Competitive Inhibitors of the Mammalian Target of Rapamycin: Design and Synthesis of Highly Potent and Selective Pyrazolopyrimidines

    SciTech Connect

    Zask, Arie; Verheijen, Jeroen C.; Curran, Kevin; Kaplan, Joshua; Richard, David J.; Nowak, Pawel; Malwitz, David J.; Brooijmans, Natasja; Bard, Joel; Svenson, Kristine; Lucas, Judy; Toral-Barza, Lourdes; Zhang, Wei-Guo; Hollander, Irwin; Gibbons, James J.; Abraham, Robert T.; Ayral-Kaloustian, Semiramis; Mansour, Tarek S.; Yu, Ker

    2009-09-18

    The mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described. Structural features leading to potency and selectivity were identified and refined leading to compounds with in vivo efficacy in tumor xenograft models.

  18. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.

    PubMed

    O'Neil, T K; Duffy, L R; Frey, J W; Hornberger, T A

    2009-07-15

    Resistance exercise induces a hypertrophic response in skeletal muscle and recent studies have begun to shed light on the molecular mechanisms involved in this process. For example, several studies indicate that signalling by the mammalian target of rapamycin (mTOR) is necessary for a hypertrophic response. Furthermore, resistance exercise has been proposed to activate mTOR signalling through an upstream pathway involving the phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB); however, this hypothesis has not been thoroughly tested. To test this hypothesis, we first evaluated the temporal pattern of signalling through PI3K-PKB and mTOR following a bout of resistance exercise with eccentric contractions (EC). Our results indicated that the activation of signalling through PI3K-PKB is a transient event (<15 min), while the activation of mTOR is sustained for a long duration (>12 h). Furthermore, inhibition of PI3K-PKB activity did not prevent the activation of mTOR signalling by ECs, indicating that PI3K-PKB is not part of the upstream regulatory pathway. These observations led us to investigate an alternative pathway for the activation of mTOR signalling involving the synthesis of phosphatidic acid (PA) by phospholipase D (PLD). Our results demonstrate that ECs induce a sustained elevation in [PA] and inhibiting the synthesis of PA by PLD prevented the activation of mTOR. Furthermore, we determined that similar to ECs, PA activates mTOR signalling through a PI3K-PKB-independent mechanism. Combined, the results of this study indicate that the activation of mTOR following eccentric contractions occurs through a PI3K-PKB-independent mechanism that requires PLD and PA. PMID:19470781

  19. Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue.

    PubMed

    Semenyuk, A; Darian, E; Liu, J; Majumdar, A; Cuenoud, B; Miller, P S; Mackerell, A D; Seidman, M M

    2010-09-14

    The DNA triple helix consists of a third strand of nucleic acid lying in the major groove of an intact DNA duplex. The most stable triplexes form on polypurine:polypyrimidine sequences, and pyrimidine interruptions in the purine strand are destabilizing. Sequence stringency is imparted by specific Hoogsteen hydrogen bonds between third strand bases and the purine bases in the duplex. Appropriate base and sugar modifications of triple helix-forming oligonucleotides (TFOs) confer chromosome targeting activity in living cells. However, broad utilization of TFOs as gene targeting reagents in mammalian cells has been limited by the requirement for homopurine target sequences. Although there have been a number of base analogues described that appear to be promising as candidates for triplex target expansion, none has been examined in a biological system. We have employed a postsynthetic strategy to prepare a collection of TFOs with base analogues at a defined position. Following assessment of affinity for a triplex target with a single C:G inversion, TFOs with a second generation of analogues were synthesized. One of these, TFO-5a, with 2'-OMe-guanidinylethyl-5-methylcytosine at the position corresponding to the C:G interruption in the target sequence, was further modified to confer bioactivity. The activity of this TFO, linked to psoralen, was measured in a mammalian cell line that was engineered by directed sequence conversion to carry a triplex target with a single C:G interruption. TFO-5a was active against this target and inactive against the corresponding target with an uninterrupted polypurine:polypyrimidine sequence. PMID:20701359

  20. Targeting of an Interrupted Polypurine:Polypyrimidine Sequence in Mammalian Cells by a Triplex-Forming Oligonucleotide Containing a Novel Base Analogue†

    PubMed Central

    Semenyuk, A.; Darian, E.; Liu, J.; Majumdar, A.; Cuenoud, B.; Miller, P. S.; MacKerell, A. D.; Seidman, M. M.

    2010-01-01

    The DNA triple helix consists of a third strand of nucleic acid lying in the major groove of an intact DNA duplex. The most stable triplexes form on polypurine:polypyrimidine sequences, and pyrimidine interruptions in the purine strand are destabilizing. Sequence stringency is imparted by specific Hoogsteen hydrogen bonds between third strand bases and the purine bases in the duplex. Appropriate base and sugar modifications of triple helix-forming oligonucleotides (TFOs) confer chromosome targeting activity in living cells. However, broad utilization of TFOs as gene targeting reagents in mammalian cells has been limited by the requirement for homopurine target sequences. Although there have been a number of base analogues described that appear to be promising as candidates for triplex target expansion, none has been examined in a biological system. We have employed a postsynthetic strategy to prepare a collection of TFOs with base analogues at a defined position. Following assessment of affinity for a triplex target with a single C:G inversion, TFOs with a second generation of analogues were synthesized. One of these, TFO-5a, with 2′-OMeguanidinylethyl-5-methylcytosine at the position corresponding to the C:G interruption in the target sequence, was further modified to confer bioactivity. The activity of this TFO, linked to psoralen, was measured in a mammalian cell line that was engineered by directed sequence conversion to carry a triplex target with a single C:G interruption. TFO-5a was active against this target and inactive against the corresponding target with an uninterrupted polypurine:polypyrimidine sequence. PMID:20701359

  1. Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner.

    PubMed

    Zhang, Lianjun; Tschumi, Benjamin O; Lopez-Mejia, Isabel C; Oberle, Susanne G; Meyer, Marten; Samson, Guerric; Rüegg, Markus A; Hall, Michael N; Fajas, Lluis; Zehn, Dietmar; Mach, Jean-Pierre; Donda, Alena; Romero, Pedro

    2016-02-01

    Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions. PMID:26804903

  2. Efficacy and Safety of Mammalian Target of Rapamycin Inhibitors in Vascular Anomalies: A Systematic Review.

    PubMed

    Nadal, Marion; Giraudeau, Bruno; Tavernier, Elsa; Jonville-Bera, Annie-Pierre; Lorette, Gerárd; Maruani, Annabel

    2016-05-01

    Mammalian target of rapamycin (mTOR) inhibitors are a promising new treatment in vascular anomalies, but no published randomized controlled trials are available. The aim of this systematic review of all reported cases was to assess the efficacy and safety of mTOR inhibitors in all vascular anomalies, except cancers, in children and adults. In November 2014 MEDLINE, CENTRAL, LILACS and EMBASE were searched for studies of mTOR inhibitors in any vascular condition, except for malignant lesions, in humans. Fourteen publications and 9 posters, with data on 25 and 59 patients, respectively, all < 18 years old were included. Of these patients, 35.7% (n = 30) had vascular tumours, and 64.3% (n = 54) had malformations. Sirolimus was the most frequent mTOR inhibitor used (98.8%, n = 83). It was efficient in all cases, at a median time of 2 weeks (95% confidence interval 1-10 weeks). Sirolimus was well tolerated, the main side-effect being mouth sores, which led to treatment withdrawal in one case. The dosage of sirolimus was heterogeneous, the most common being 1.6 mg/m2/day. PMID:26607948

  3. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin

    PubMed Central

    Maiese, Kenneth

    2014-01-01

    A significant portion of the world’s population suffers from sporadic Alzheimer’s disease (AD) with available present therapies limited to symptomatic care that does not alter disease progression. Over the next decade, advancing age of the global population will dramatically increase the incidence of AD and severely impact health care resources, necessitating novel, safe, and efficacious strategies for AD. The mammalian target of rapamycin (mTOR) and its protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) offer exciting and unique avenues of intervention for AD through the oversight of programmed cell death pathways of apoptosis, autophagy, and necroptosis. mTOR modulates multi-faceted signal transduction pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex, proline-rich Akt substrate 40 kDa (PRAS40), and p70 ribosomal S6 kinase (p70S6K) and can interface with the neuroprotective pathways of growth factors, sirtuins, wingless, fork-head transcription factors, and glycogen synthase kinase-3β. With the ability of mTOR to broadly impact cellular function, clinical strategies for AD that implement mTOR must achieve parallel objectives of protecting neuronal, vascular, and immune cell survival in conjunction with preserving networks that determine memory and cognitive function. PMID:25105207

  4. The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility.

    PubMed

    Schell, Christoph; Kretz, Oliver; Liang, Wei; Kiefer, Betina; Schneider, Simon; Sellung, Dominik; Bork, Tillmann; Leiber, Christian; Rüegg, Markus A; Mallidis, Con; Schlatt, Stefan; Mayerhofer, Artur; Huber, Tobias B; Grahammer, Florian

    2016-02-01

    The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin and its analogs are being increasingly used in solid-organ transplantation. A commonly reported side effect is male subfertility to infertility, yet the precise mechanisms of mTOR interference with male fertility remain obscure. With the use of a conditional mouse genetic approach we demonstrate that deficiency of mTORC1 in the epithelial derivatives of the Wolffian duct is sufficient to cause male infertility. Analysis of spermatozoa from Raptor fl/fl*KspCre mice revealed an overall decreased motility pattern. Both epididymis and seminal vesicles displayed extensive organ regression with increasing age. Histologic and ultrastructural analyses demonstrated increased amounts of destroyed and absorbed spermatozoa in different segments of the epididymis. Mechanistically, genetic and pharmacologic mTORC1 inhibition was associated with an impaired cellular metabolism and a disturbed protein secretion of epididymal epithelial cells. Collectively, our data highlight the role of mTORC1 to preserve the function of the epididymis, ductus deferens, and the seminal vesicles. We thus reveal unexpected new insights into the frequently observed mTORC1 inhibitor side effect of male infertility in transplant recipients. PMID:26683665

  5. A comprehensive review of everolimus clinical reports: a new mammalian target of rapamycin inhibitor.

    PubMed

    Gurk-Turner, Cheryle; Manitpisitkul, Wana; Cooper, Matthew

    2012-10-15

    As new immunosuppressive agents are introduced to the market, clinicians are faced with the daunting task of sifting through the published literature to decide the value that the agent will add to their own practice. We often must extrapolate information provided through study in other solid-organ transplantation populations than our specific area of interest as we interpret the results and outcomes. With these challenges in mind, this compilation of published work for the newest mammalian target of rapamycin inhibitor everolimus (Certican; Novartis Pharmaceuticals, Hanover, NJ) (Zortress; Novartis Pharmaceuticals, Basel, Switzerland) is intended to provide a concise but thorough presentation of available literature so that the reader who may be unfamiliar with the agent can make their own judgment. Both Ovid and PubMed search engines were queried with a particular focus on high-impact articles noted in the Web of Science or Citation Index. Work described solely in abstract or case report form was excluded, as well as meta-analyses or those that were editorial or commentary in nature. Included were publications presented using the English language that described adult human subjects who received a heart, lung, kidney, or liver allograft. The goal of this strategy was to allow for the inclusion of pertinent literature in an unbiased fashion. Tables are provided that outline trial specific information, leaving a discussion of major outcomes to the text of the review. PMID:22986894

  6. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer's disease pathology.

    PubMed

    Orr, Miranda E; Salinas, Angelica; Buffenstein, Rochelle; Oddo, Salvatore

    2014-06-01

    High sugar consumption and diabetes increase the risk of developing Alzheimer's disease (AD) by unknown mechanisms. Using an animal model of AD, here we show that high sucrose intake induces obesity with changes in central and peripheral insulin signaling. These pre-diabetic changes are associated with an increase in amyloid-β production and deposition. Moreover, high sucrose ingestion exacerbates tau phosphorylation by increasing Cdk5 activity. Mechanistically, the sucrose-mediated increase in AD-like pathology results from hyperactive mammalian target of rapamycin (mTOR), a key nutrient sensor important in regulating energy homeostasis. Specifically, we show that rapamycin, an mTOR inhibitor, prevents the detrimental effects of sucrose in the brain without altering changes in peripheral insulin resistance. Overall, our data suggest that high sucrose intake and dysregulated insulin signaling, which are known to contribute to the occurrence of diabetes, increase the risk of developing AD by upregulating brain mTOR signaling. Therefore, early interventions to modulate mTOR activity in individuals at high risk of developing diabetes may decrease their AD susceptibility. PMID:24411482

  7. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.

    PubMed

    Pickford, Daniel B

    2010-11-01

    In order to minimize risks to human and environmental health, chemical safety assessment programs are being reinforced with toxicity tests more specifically designed for detecting endocrine disrupters. This includes the necessity to detect thyroid-disrupting chemicals, which may operate through a variety of modes of action, and have potential to impair neurological development in humans, with resulting deficits of individual and social potential. Mindful of these concerns, the consensus favors in vivo models for both hazard characterization (testing) and hazard identification (screening) steps, in order to minimize false negatives. Owing to its obligate dependence on thyroid hormones, it has been proposed that amphibian metamorphosis be used as a generalized vertebrate model for thyroid function in screening batteries for detection of thyroid disrupters. However, it seems unlikely that such an assay would ever fully replace in vivo mammalian assays currently being validated for human health risk assessment: in its current form the amphibian metamorphosis screening assay would not provide capacity for reliably detecting other modes of endocrine-disrupting activity. Conversely, several candidate mammalian screening assays appear to offer robust capacity to detect a variety of modes of endocrine-disrupting activity, including thyroid activity. To assess whether omission of an amphibian metamorphosis assay from an in vivo screening battery would generate false negatives, the response of amphibian and mammalian assays to a variety known thyroid disrupters, as reported in peer-reviewed literature or government agency reports, was critically reviewed. Of the chemicals investigated from the literature selected (41), more had been tested in mammalian studies with thyroid-relevant endpoints (32) than in amphibian assays with appropriate windows of exposure and developmental endpoints (27). One chemical (methoxychlor) was reported to exhibit thyroid activity in an appropriate

  8. Congenital segmental lymphedema in tuberous sclerosis complex with associated subependymal giant cell astrocytomas treated with Mammalian target of rapamycin inhibitors.

    PubMed

    Prato, Giulia; Mancardi, Maria Margherita; Baglietto, Maria Giuseppina; Janis, Sara; Vercellino, Nadia; Rossi, Andrea; Consales, Alessandro; Raso, Alessandro; Garrè, Maria Luisa

    2014-09-01

    Tuberous sclerosis complex is a genetic, multisystemic disorder characterized by circumscribed benign lesions (hamartomas) in several organs, including brain. This is the result of defects in the TSC1 and/or TSC2 tumor suppressor genes, encoding the hamartin-tuberin complex that inhibits the mammalian target of rapamycin pathway. Specific inhibitors of this pathway have been shown to reduce the volume of subependymal giant cell astrocytomas associated with tuberous sclerosis. Congenital lymphedema is rarely seen in association with tuberous sclerosis, with only a few reported cases. Although this association can be coincidental, the dysgenetic lymphatic system can represent a hamartia as a consequence of gene mutation. We describe a child with congenital lymphedema in tuberous sclerosis and associated subependymal giant cell astrocytoma who experienced lymphangitis under treatment with mammalian target of rapamycin inhibitors. Because our patient did not show worsening of lymphedema, congenital lymphedema does not seem to be a contraindication for this therapy. PMID:24056156

  9. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy

    PubMed Central

    Saeedi Saravi, Seyed Soheil; Ghazi-Khansari, Mahmoud; Ejtemaei Mehr, Shahram; Nobakht, Maliheh; Mousavi, Seyyedeh Elaheh; Dehpour, Ahmad Reza

    2016-01-01

    AIM: To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition. METHODS: Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein. RESULTS: Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. CONCLUSION: In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of

  10. Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2)

    PubMed Central

    DeStefano, Michael A.; Jacinto, Estela

    2016-01-01

    mTOR (mammalian target of rapamycin) responds to the presence of nutrients, energy and growth factors to link cellular metabolism, growth and proliferation. The rapamycin-sensitive mTORC (mTOR complex) 1 activates the translational regulator S6K (S6 kinase), leading to increased protein synthesis in the presence of nutrients. On the other hand, the rapamycin-insensitive mTORC2 responds to the presence of growth factors such as insulin by phosphorylating Akt to promote its maturation and allosteric activation. We recently found that mTORC2 can also regulate insulin signalling at the level of IRS-1 (insulin receptor substrate-1). Whereas mTORC1 promotes IRS-1 serine phosphorylation that is linked to IRS-1 down-regulation, we uncovered that mTORC2 mediates its degradation. In mTORC2-disrupted cells, inactive IRS-1 accumulated despite undergoing phosphorylation at the mTORC1-mediated serine sites. Defective IRS-1 degradation was due to attenuated expression of the CUL7 (Cullin 7) ubiquitin ligase substrate-targeting subunit Fbw8. mTORC2 and Fbw8 co-localize at the membrane where mTORC2 phosphorylates Ser86 to stabilize Fbw8 and promotes its cytosolic localization upon insulin stimulation. Under conditions of chronic insulin exposure, inactive serine-phosphorylated IRS-1 and Fbw8 co-localize to the cytosol where the former becomes ubiquitylated via CUL7/Fbw8. Thus mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that, in addition to persistent mTORC1 signalling, increased mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1. PMID:23863152

  11. Isolation, characterization and targeted disruption of mouse ppia: cyclophilin A is not essential for mammalian cell viability.

    PubMed

    Colgan, J; Asmal, M; Luban, J

    2000-09-01

    Cyclophilins (CyPs) are a family of proteins found in organisms ranging from prokaryotes to humans. These molecules exhibit peptidyl-prolyl isomerase activity in vitro, suggesting that they influence the conformation of proteins in cells. CyPs also bind with varying affinities to the immunosuppressive drug cyclosporin A (CsA), a compound used clinically to prevent allograft rejection. The founding member of the family, cyclophilin A (CyPA), is an abundant, ubiquitously expressed protein of unknown function that binds with nanomolar affinity to CsA. Here, we describe the isolation and characterization of mouse Ppia (mPpia), the gene encoding CyPA. Ppia was isolated using a PCR screen that distinguishes the expressed gene from multiple pseudogenes present in the mouse genome. mPpia consists of 5 exons and 4 introns spanning roughly 4.5 kb and maps to chromosome 11 near the centromere. Sequence analysis of a 369-bp fragment from the proximal promoter region of mPpia revealed the presence of a TATA box and sites recognized by several transcriptional regulators, including Sp1, AP-2, GATA factors, c-Myb, and NF-IL-6. This region is sufficient to drive high-level reporter gene expression in transfected cells. Both copies of Ppia were disrupted in murine embryonic stem (ES) cells via gene targeting. Ppia(-/-) ES cells grow normally and differentiate into hematopoeitic precursor cells in vitro, indicating that CyPA is not essential for mammalian cell viability. PMID:10964515

  12. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA

    PubMed Central

    Zhang, Lin; Hou, Dongxia; Chen, Xi; Li, Donghai; Zhu, Lingyun; Zhang, Yujing; Li, Jing; Bian, Zhen; Liang, Xiangying; Cai, Xing; Yin, Yuan; Wang, Cheng; Zhang, Tianfu; Zhu, Dihan; Zhang, Dianmu; Xu, Jie; Chen, Qun; Ba, Yi; Liu, Jing; Wang, Qiang; Chen, Jianqun; Wang, Jin; Wang, Meng; Zhang, Qipeng; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2012-01-01

    Our previous studies have demonstrated that stable microRNAs (miRNAs) in mammalian serum and plasma are actively secreted from tissues and cells and can serve as a novel class of biomarkers for diseases, and act as signaling molecules in intercellular communication. Here, we report the surprising finding that exogenous plant miRNAs are present in the sera and tissues of various animals and that these exogenous plant miRNAs are primarily acquired orally, through food intake. MIR168a is abundant in rice and is one of the most highly enriched exogenous plant miRNAs in the sera of Chinese subjects. Functional studies in vitro and in vivo demonstrated that MIR168a could bind to the human/mouse low-density lipoprotein receptor adapter protein 1 (LDLRAP1) mRNA, inhibit LDLRAP1 expression in liver, and consequently decrease LDL removal from mouse plasma. These findings demonstrate that exogenous plant miRNAs in food can regulate the expression of target genes in mammals. PMID:21931358

  13. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance

    PubMed Central

    Yoon, Mee-Sup; Choi, Cheol Soo

    2016-01-01

    Mammalian target of rapamycin (mTOR) controls cell growth and metabolism in response to nutrients, energy, and growth factors. Recent findings have placed the lysosome at the core of mTOR complex 1 (mTORC1) regulation by amino acids. Two parallel pathways, Rag GTPase-Ragulator and Vps34-phospholipase D1 (PLD1), regulate mTOR activation on the lysosome. This review describes the recent advances in understanding amino acid-induced mTOR signaling with a particular focus on the role of mTOR in insulin resistance. PMID:27534530

  14. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance.

    PubMed

    Yoon, Mee-Sup; Choi, Cheol Soo

    2016-01-01

    Mammalian target of rapamycin (mTOR) controls cell growth and metabolism in response to nutrients, energy, and growth factors. Recent findings have placed the lysosome at the core of mTOR complex 1 (mTORC1) regulation by amino acids. Two parallel pathways, Rag GTPase-Ragulator and Vps34-phospholipase D1 (PLD1), regulate mTOR activation on the lysosome. This review describes the recent advances in understanding amino acid-induced mTOR signaling with a particular focus on the role of mTOR in insulin resistance. PMID:27534530

  15. Antioxidation activities of pteridines in mammalian cell lines

    SciTech Connect

    Zhang, Y.; Shen, R. )

    1991-03-11

    L-erythro-5,6,7,8-Tetrahydrobiopterin (BH{sub 4}), the cofactor for aromatic amino acid hydroxylases (AAA-H), is a predominant form of pteridines which occur ubiquitously in nature. When BH{sub 4} is oxidized to quinonoid dihydrobiopterin by AAA-H, it is regenerated by dihydropteridine reductase (DHPR) at the expense of NADH. The role of BH{sub 4} other than serving as the hydroxylase cofactor is not clear. The existence of BH{sub 4} and DHPR in tissues which are devoid of AAA-H suggests that BH{sub 4} may play an as yet undiscovered physiological function. This study demonstrates a BH{sub 4}-mediated antioxidation system, which consists of BH{sub 4}, DHPR, peroxidase and NADH in rat pheochromocytoma PC 12 cells and mouse macrophages J774A.1. This system was as effective as catalase and ascorbic acid in protecting cells against H{sub 2}O{sub 2} and xanthine/xanthine oxidase-induced toxicity and was more effective than catalase in defense against nitrofurantoin-induced toxicity. The antioxidation effect of this system was not due to peroxidase and was improved when synthetic pteridines were substituted for BH{sub 4}. Since BH{sub 4}, DHPR, peroxidases and NADH are widely distributed in major organs and blood cells, they may constitute an as yet little known antioxidation system in mammalian cells.

  16. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  17. Phosphoproteomic Profiling of In Vivo Signaling in Liver by the Mammalian Target of Rapamycin Complex 1 (mTORC1)

    PubMed Central

    Demirkan, Gokhan; Yu, Kebing; Boylan, Joan M.; Salomon, Arthur R.; Gruppuso, Philip A.

    2011-01-01

    Background Our understanding of signal transduction networks in the physiological context of an organism remains limited, partly due to the technical challenge of identifying serine/threonine phosphorylated peptides from complex tissue samples. In the present study, we focused on signaling through the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is at the center of a nutrient- and growth factor-responsive cell signaling network. Though studied extensively, the mechanisms involved in many mTORC1 biological functions remain poorly understood. Methodology/Principal Findings We developed a phosphoproteomic strategy to purify, enrich and identify phosphopeptides from rat liver homogenates. Using the anticancer drug rapamycin, the only known target of which is mTORC1, we characterized signaling in liver from rats in which the complex was maximally activated by refeeding following 48 hr of starvation. Using protein and peptide fractionation methods, TiO2 affinity purification of phosphopeptides and mass spectrometry, we reproducibly identified and quantified over four thousand phosphopeptides. Along with 5 known rapamycin-sensitive phosphorylation events, we identified 62 new rapamycin-responsive candidate phosphorylation sites. Among these were PRAS40, gephyrin, and AMP kinase 2. We observed similar proportions of increased and reduced phosphorylation in response to rapamycin. Gene ontology analysis revealed over-representation of mTOR pathway components among rapamycin-sensitive phosphopeptide candidates. Conclusions/Significance In addition to identifying potential new mTORC1-mediated phosphorylation events, and providing information relevant to the biology of this signaling network, our experimental and analytical approaches indicate the feasibility of large-scale phosphoproteomic profiling of tissue samples to study physiological signaling events in vivo. PMID:21738781

  18. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism.

    PubMed

    Maya-Monteiro, Clarissa M; Almeida, Patricia E; D'Avila, Heloisa; Martins, Aline S; Rezende, Ana Paula; Castro-Faria-Neto, Hugo; Bozza, Patricia T

    2008-01-25

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Lipid bodies (lipid droplets) are emerging as dynamic organelles with roles in lipid metabolism and inflammation. Here we investigated the roles of leptin in signaling pathways involved in cytoplasmic lipid body biogenesis and leukotriene B(4) synthesis in macrophages. Our results demonstrated that leptin directly activated macrophages and induced the formation of adipose differentiation-related protein-enriched lipid bodies. Newly formed lipid bodies were sites of 5-lipoxygenase localization and correlated with an enhanced capacity of leukotriene B(4) production. We demonstrated that leptin-induced macrophage activation was dependent on phosphatidylinositol 3-kinase (PI3K) activity, since the lipid body formation was inhibited by LY294002 and was absent in the PI3K knock-out mice. Leptin induces phosphorylation of p70(S6K) and 4EBP1 key downstream signaling intermediates of the mammalian target of rapamycin (mTOR) pathway in a rapamycin-sensitive mechanism. The mTOR inhibitor, rapamycin, inhibited leptin-induced lipid body formation, both in vivo and in vitro. In addition, rapamycin inhibited leptin-induced adipose differentiation-related protein accumulation in macrophages and lipid body-dependent leukotriene synthesis, demonstrating a key role for mTOR in lipid body biogenesis and function. Our results establish PI3K/mTOR as an important signaling pathway for leptin-induced cytoplasmic lipid body biogenesis and adipose differentiation-related protein accumulation. Furthermore, we demonstrate a previously unrecognized link between intracellular (mTOR) and systemic (leptin) nutrient sensors in macrophage lipid metabolism. Leptin-induced increased formation of cytoplasmic lipid bodies and enhanced inflammatory mediator production in macrophages may have implications for obesity-related cardiovascular diseases. PMID:18039669

  19. Developing a de novo targeted knock-in method based on in utero electroporation into the mammalian brain.

    PubMed

    Tsunekawa, Yuji; Terhune, Raymond Kunikane; Fujita, Ikumi; Shitamukai, Atsunori; Suetsugu, Taeko; Matsuzaki, Fumio

    2016-09-01

    Genome-editing technology has revolutionized the field of biology. Here, we report a novel de novo gene-targeting method mediated by in utero electroporation into the developing mammalian brain. Electroporation of donor DNA with the CRISPR/Cas9 system vectors successfully leads to knock-in of the donor sequence, such as EGFP, to the target site via the homology-directed repair mechanism. We developed a targeting vector system optimized to prevent anomalous leaky expression of the donor gene from the plasmid, which otherwise often occurs depending on the donor sequence. The knock-in efficiency of the electroporated progenitors reached up to 40% in the early stage and 20% in the late stage of the developing mouse brain. Furthermore, we inserted different fluorescent markers into the target gene in each homologous chromosome, successfully distinguishing homozygous knock-in cells by color. We also applied this de novo gene targeting to the ferret model for the study of complex mammalian brains. Our results demonstrate that this technique is widely applicable for monitoring gene expression, visualizing protein localization, lineage analysis and gene knockout, all at the single-cell level, in developmental tissues. PMID:27578183

  20. Angiographic and volumetric effects of mammalian target of rapamycin inhibitors on angiomyolipomas in tuberous sclerosis

    PubMed Central

    Sheth, Rahul A; Feldman, Adam S; Paul, Elahna; Thiele, Elizabeth A; Walker, T Gregory

    2016-01-01

    AIM: To investigate the angiographic and volumetric effects of mammalian target of rapamycin (mTOR) inhibitors on angiomyolipomas (AMLs) in a case series of patients with tuberous sclerosis complex. METHODS: All patients who underwent catheter angiography prior to and following mTOR inhibitor therapy (n = 3) were evaluated. All cross-sectional imaging studies were analyzed with three-dimensional volumetrics, and tumor volume curves for all three tissue compartments (soft tissue, vascular, and fat) were generated. Segmentation analysis tools were used to automatically create a region of interest (ROI) circumscribing the AML. On magnetic resonance images, the “fat only” map calculated from the in- and opposed-phase gradient recalled echo sequences was used to quantify fat volume within tumors. Tumor vascularity was measured by applying a thresholding tool within the ROI on post-contrast subtraction images. On computed tomography images, volume histogram analysis of Hounsfield unit was performed to quantify tumor tissue composition. The angiography procedures were also reviewed, and tumor vascularity based on pre-embolization angiography was characterized in a semi-quantitative manner. RESULTS: Patient 1 presented at the age of 15 with a 6.8 cm right lower pole AML and a 4.0 cm right upper pole AML. Embolization was performed of both tumors, and after a few years of size control, the tumors began to grow, and the patient was initiated on mTOR inhibitor therapy. There was an immediate reduction in the size of both lesions. The patient then underwent repeat embolization and discontinuation of mTOR inhibition, after which point there was a substantial regrowth in both tumors across all tissue compartments. Patient 2 presented at the age of 18 with a right renal AML. Following a brief period of tumor reduction after embolization, she was initiated on mTOR inhibitor therapy, with successful reduction in tumor size across all tissue compartments. As with patient 1

  1. Diversity between mammalian tolloid proteinases: Oligomerisation and non-catalytic domains influence activity and specificity

    PubMed Central

    Bayley, Christopher P.; Ruiz Nivia, Hilda D.; Dajani, Rana; Jowitt, Thomas A.; Collins, Richard F.; Rada, Heather; Bird, Louise E.; Baldock, Clair

    2016-01-01

    The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction. PMID:26902455

  2. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-beta.

    PubMed

    Rahimi, Rod A; Andrianifahanana, Mahefatiana; Wilkes, Mark C; Edens, Maryanne; Kottom, Theodore J; Blenis, John; Leof, Edward B

    2009-01-01

    Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex 1 (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia. PMID:19117990

  3. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension

    PubMed Central

    Kudryashova, Tatiana V.; Goncharov, Dmitry A.; Pena, Andressa; Ihida-Stansbury, Kaori; DeLisser, Horace; Kawut, Steven M.

    2015-01-01

    Abstract Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography–based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate–competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites—components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars—intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation. PMID:26697174

  4. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells.

    PubMed

    Kuo, Po-Lin; Hsu, Ya-Ling; Cho, Chien-Yu

    2006-12-01

    This study is the first to investigate the anticancer effect of plumbagin in human breast cancer cells. Plumbagin exhibited cell proliferation inhibition by inducing cells to undergo G2-M arrest and autophagic cell death. Blockade of the cell cycle was associated with increased p21/WAF1 expression and Chk2 activation, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the levels of inactivated phospho-Cdc2 and phospho-Cdc25C by Chk2 activation. Plumbagin triggered autophagic cell death but not predominantly apoptosis. Pretreatment of cells with autophagy inhibitor bafilomycin suppressed plumbagin-mediated cell death. We also found that plumbagin inhibited survival signaling through the phosphatidylinositol 3-kinase/AKT signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin, forkhead transcription factors, and glycogen synthase kinase 3beta. Phosphorylation of both of mammalian target of rapamycin downstream targets, p70 ribosomal protein S6 kinase and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased plumbagin-mediated autophagic cell death, whereas reduction of AKT expression by small interfering RNA potentiated the effect of plumbagin, supporting the inhibition of AKT being beneficial to autophagy. Furthermore, suppression of AKT by plumbagin enhanced the activation of Chk2, resulting in increased inactive phosphorylation of Cdc25C and Cdc2. Further investigation revealed that plumbagin inhibition of cell growth was also evident in a nude mouse model. Taken together, these results imply a critical role for AKT inhibition in plumbagin-induced G2-M arrest and autophagy of human breast cancer cells. PMID:17172425

  5. Motor unit regulation of mammalian pharyngeal dilator muscle activity.

    PubMed Central

    van Lunteren, E; Dick, T E

    1989-01-01

    The present study examined the cellular regulation of one of the pharyngeal dilator muscles, the geniohyoid, by assessing its motor unit (MU) behavior in anesthetized cats. During spontaneous breathing, MU that (a) were active during inspiration only (I-MU) and (b) were active during both inspiration and expiration (I/E-MU) were identified. I-MU had a later inspiratory onset time and a shorter duration of inspiratory firing than did I/E-MU (P less than 0.002 and P less than 0.0001, respectively). I-MU were usually quiescent whereas I/E-MU were usually active during the last 20% of inspiration. I/E-MU fired more rapidly (P less than 0.00001) and for relatively longer periods of time (P less than 0.00001) during inspiration than during expiration. End-expiratory airway occlusion (preventing lung expansion during inspiration) augmented the inspiratory activity of both I-MU and I/E-MU. Conversely, end-expiratory airway occlusion reduced the absolute and relative firing durations (P less than 0.002 and P less than 0.00002, respectively) and the firing frequency (P less than 0.001) of I/E-MU activity during expiration. These results indicate that (a) the complex pattern of pharyngeal dilator muscle activity is due to the integrated activity of a heterogeneous group of MU, (b) changes in the degree to which pharyngeal dilator muscles are active result from combinations of MU recruitment/decruitment and modulations of the frequency and duration of MU firing, and (c) gating of lung-volume afferent information occurs during the respiratory cycle. PMID:2760202

  6. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002.

    PubMed Central

    Brunn, G J; Williams, J; Sabers, C; Wiederrecht, G; Lawrence, J C; Abraham, R T

    1996-01-01

    The immunosuppressant, rapamycin, inhibits cell growth by interfering with the function of a novel kinase, termed mammalian target of rapamycin (mTOR). The putative catalytic domain of mTOR is similar to those of mammalian and yeast phosphatidylinositol (PI) 3-kinases. This study demonstrates that mTOR is a component of a cytokine-triggered protein kinase cascade leading to the phosphorylation of the eukaryotic initiation factor-4E (eIF-4E) binding protein, PHAS-1, in activated T lymphocytes. This event promotes G1 phase progression by stimulating eIF-4E-dependent translation initiation. A mutant YAC-1 T lymphoma cell line, which was selected for resistance to the growth-inhibitory action of rapamycin, was correspondingly resistant to the suppressive effect of this drug on PHAS-1 phosphorylation. In contrast, the PI 3-kinase inhibitor, wortmannin, reduced the phosphorylation of PHAS-1 in both rapamycin-sensitive and -resistant T cells. At similar drug concentrations (0.1-1 microM), wortmannin irreversibly inhibited the serine-specific autokinase activity of mTOR. The autokinase activity of mTOR was also sensitive to the structurally distinct PI 3-kinase inhibitor, LY294002, at concentrations (1-30 microM) nearly identical to those required for inhibition of the lipid kinase activity of the mammalian p85-p110 heterodimer. These studies indicate that the signaling functions of mTOR, and potentially those of other high molecular weight PI 3-kinase homologs, are directly affected by cellular treatment with wortmannin or LY294002. Images PMID:8895571

  7. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    SciTech Connect

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun; Song, Sang Heon; Shin, Hwa Kyoung; Bae, Sun Sik

    2015-08-14

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.

  8. Bactericidal Activity of Mammalian Cathelicidin-Derived Peptides

    PubMed Central

    Travis, Sue M.; Anderson, Norma N.; Forsyth, William R.; Espiritu, Cesar; Conway, Barbara D.; Greenberg, E. P.; McCray, Paul B.; Lehrer, Robert I.; Welsh, Michael J.; Tack, Brian F.

    2000-01-01

    Endogenous antimicrobial peptides of the cathelicidin family contribute to innate immunity. The emergence of widespread antibiotic resistance in many commonly encountered bacteria requires the search for new bactericidal agents with therapeutic potential. Solid-phase synthesis was employed to prepare linear antimicrobial peptides found in cathelicidins of five mammals: human (FALL39/LL37), rabbit (CAP18), mouse (mCRAMP), rat (rCRAMP), and sheep (SMAP29 and SMAP34). These peptides were tested at ionic strengths of 25 and 175 mM against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. Each peptide manifested activity against P. aeruginosa irrespective of the NaCl concentration. CAP18 and SMAP29 were the most effective peptides of the group against all test organisms under both low- and high-salt conditions. Select peptides of 15 to 21 residues, modeled on CAP18 (37 residues), retained activity against the gram-negative bacteria and methicillin-sensitive S. aureus, although the bactericidal activity was reduced compared to that of the parent peptide. In accordance with the behavior of the parent molecule, the truncated peptides adopted an α-helical structure in the presence of trifluoroethanol or lipopolysaccharide. The relationship between the bactericidal activity and several physiochemical properties of the cathelicidins was examined. The activities of the full-length peptides correlated positively with a predicted gradient of hydrophobicity along the peptide backbone and with net positive charge; they correlated inversely with relative abundance of anionic residues. The salt-resistant, antimicrobial properties of CAP18 and SMAP29 suggest that these peptides or congeneric structures have potential for the treatment of bacterial infections in normal and immunocompromised persons and individuals with cystic fibrosis. PMID:10768969

  9. Bactericidal activity of mammalian cathelicidin-derived peptides.

    PubMed

    Travis, S M; Anderson, N N; Forsyth, W R; Espiritu, C; Conway, B D; Greenberg, E P; McCray, P B; Lehrer, R I; Welsh, M J; Tack, B F

    2000-05-01

    Endogenous antimicrobial peptides of the cathelicidin family contribute to innate immunity. The emergence of widespread antibiotic resistance in many commonly encountered bacteria requires the search for new bactericidal agents with therapeutic potential. Solid-phase synthesis was employed to prepare linear antimicrobial peptides found in cathelicidins of five mammals: human (FALL39/LL37), rabbit (CAP18), mouse (mCRAMP), rat (rCRAMP), and sheep (SMAP29 and SMAP34). These peptides were tested at ionic strengths of 25 and 175 mM against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. Each peptide manifested activity against P. aeruginosa irrespective of the NaCl concentration. CAP18 and SMAP29 were the most effective peptides of the group against all test organisms under both low- and high-salt conditions. Select peptides of 15 to 21 residues, modeled on CAP18 (37 residues), retained activity against the gram-negative bacteria and methicillin-sensitive S. aureus, although the bactericidal activity was reduced compared to that of the parent peptide. In accordance with the behavior of the parent molecule, the truncated peptides adopted an alpha-helical structure in the presence of trifluoroethanol or lipopolysaccharide. The relationship between the bactericidal activity and several physiochemical properties of the cathelicidins was examined. The activities of the full-length peptides correlated positively with a predicted gradient of hydrophobicity along the peptide backbone and with net positive charge; they correlated inversely with relative abundance of anionic residues. The salt-resistant, antimicrobial properties of CAP18 and SMAP29 suggest that these peptides or congeneric structures have potential for the treatment of bacterial infections in normal and immunocompromised persons and individuals with cystic fibrosis. PMID:10768969

  10. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  11. p53-dependent inhibition of mammalian cell survival by a genetically selected peptide aptamer that targets the regulatory subunit of protein kinase CK2.

    PubMed

    Martel, V; Filhol, O; Colas, P; Cochet, C

    2006-11-30

    Based on the perturbation of its expression in human cancers and on its involvement in transformation and tumorigenesis, protein kinase CK2 has recently attracted attention as a potential therapeutic target. To assess the value of CK2 as a target for antiproliferative strategies, we have initiated a program aiming to develop inhibitors targeting specifically the regulatory CK2beta subunit. Here, we use a two-hybrid approach to isolate from combinatorial libraries, peptide aptamers that specifically interact with CK2beta. One of these (P1), which has significant sequence homology to the cytomegalovirus IE2 protein, binds with high affinity to the N-terminal domain of CK2beta without disrupting the formation of the CK2 holoenzyme. Expression of green fluorescent protein (GFP)-P1 in different mammalian cell lines activates p53 phosphorylation on serine 15, induces an upregulation of p21 and the release of the Cyt-C and apoptosis-inducing factor proapoptotic proteins triggering caspase-dependent and caspase-independent apoptosis. GFP-P1-induced apoptosis is associated with a p53-dependent pathway as cell death was abrogated in p53 knocked out cells. In summary, our data show that genetically selected peptide aptamers that specifically target CK2beta can induce apoptosis in mammalian cells through the recruitment of a p53-dependent apoptosis pathway. They also emphasize the critical role of CK2beta for cell survival and might allow the design of novel proapoptotic agents targeting this protein. PMID:16751801

  12. Mechanism of arsenate activation of mammalian phosphoglycerate mutase

    SciTech Connect

    Rea, D.W.; McWilliams, A.D.; Hass, L.F.

    1987-05-01

    Towne demonstrated that arsenate (As/sub i/) can replace D-glycerate-2,3-P/sub 2/ (2,3-DPG) as an activator for cofactor-dependent phosphoglycerate mutase (PGM). Arsenate activation was found to be accompanied by a lag phase which, over a period of several minutes, gradually evolved into a region of steady-state kinetics. The authors have verified and expanded Towne's findings through isotope exchange studies and kinetic analysis. In the absence of 2,3-DPG, reciprocal plots of PGM-catalyzed steady-state velocities versus As/sub i/ concentrations at different D-glycerate-3-P (3-PGA) levels yield a family of curves which suggest a ping-pong mechanism accompanied by double competitive substrate inhibition. Other experiments show that incubation of doubly-labelled 0.25 mM (U-/sup 14/C, /sup 32/P)-3-PGA with 20 mM As/sub i/ and PGM for several hrs. promotes the release of P/sub i/ with the concomitant formation of D-glycerate. Addition of 0.2 mM glycolate-2-P to the reaction medium accelerates the process. P/sub i/, but not vanadate, also promotes hydrolysis of 3-PGA, but to a much lesser extent than As/sub i/, even in the presence of glycolate-2-P. The pH optimum for 3-PGA phosphatase activity is 6.0-6.2. These and other findings suggest that As/sub i/ accelerates PGM catalysis by first forming 2-As-3-PGA which in turn forms phosphoenzyme (EP). Previous studies have shown that EP is the active form of PGM.

  13. An update on targeted gene repair in mammalian cells: methods and mechanisms.

    PubMed

    Jensen, Nanna M; Dalsgaard, Trine; Jakobsen, Maria; Nielsen, Roni R; Sørensen, Charlotte B; Bolund, Lars; Jensen, Thomas G

    2011-01-01

    Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research. PMID:21284895

  14. An update on targeted gene repair in mammalian cells: methods and mechanisms

    PubMed Central

    2011-01-01

    Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research. PMID:21284895

  15. 4-Alkynylphenylsilatranes: Insecticidal activity, mammalian toxicity, and mode of action

    SciTech Connect

    Horsham, M.A.; Palmer, C.J.; Cole, L.M.; Casida, J.E. )

    1990-08-01

    4-Ethynyl- and 4-(prop-1-ynyl)phenylsilatranes (N(CH{sub 2}CH{sub 2}O){sub 3}SiR, R = C{sub 6}H{sub 4}-4-C{triple bond}CH or C{sub 6}H{sub 4}-4-C{triple bond}CCH{sub 3}) are highly toxic to houseflies (pretreated with piperonyl butoxide) and milkweed bugs (topical LD{sub 50}s 3-14 {mu}g/g) and to mice (intraperitoneal LD{sub 50}s 0.4-0.9 mg/kg), and they are moderately potent inhibitors of the ({sup 35}S)-tert-butylbicyclophosphorothionate or TBPS binding site (GABA-gated chloride channel) of mouse brain membranes. Scatchard analysis indicates noncompetitive interaction of 4-ethynylphenylsilatrane with the TBPS binding site. Phenylsilatrane analogues with 4-substituents of H, CH{sub 3}, Cl, Br, and C{triple bond}CSi(CH{sub 3}){sub 3} are highly toxic to mice but have little or no activity in the insect and receptor assays. Radioligand binding studies with (4-{sup 3}H)phenylsilatrane failed to reveal a specific binding site in mouse brain. Silatranes with R = H, CH{sub 3}, CH{sub 2}Cl, CH{double bond}CH{sub 2}, OCH{sub 2}CH{sub 3}, and C{sub 6}H{sub 4}-4-CH{sub 2}CH{sub 3} are of little or no activity in the insect and mouse toxicity and TBPS binding site assays as are the trithia and monocyclic analogues of phenylsilatrane. 4-Alkynylphenylsilatranes are new probes to examine the GABA receptor-ionophore complex of insects and mammals.

  16. Resveratrol Inhibits Inflammatory Responses via the Mammalian Target of Rapamycin Signaling Pathway in Cultured LPS-Stimulated Microglial Cells

    PubMed Central

    Guo, Jia-Zhi; Zhang, Wei; He, Ying; Song, Rui; Wang, Wen-Min; Xiao, Chun-Jie; Lu, Di

    2012-01-01

    Background Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. Methodology/Principal Findings BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). Conclusion and Implications This study indicates that resveratrol inhibited LPS-induced proinflammatory

  17. GSK3β, But Not GSK3α, Inhibits the Neuronal Differentiation of Neural Progenitor Cells As a Downstream Target of Mammalian Target of Rapamycin Complex1

    PubMed Central

    Ahn, Jyhyun; Jang, Jiwon; Choi, Jinyong; Lee, Junsub; Oh, Seo-Ho; Lee, Junghun; Yoon, Keejung

    2014-01-01

    Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway. PMID:24397546

  18. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher

    NASA Astrophysics Data System (ADS)

    Normanno, Davide; Boudarène, Lydia; Dugast-Darzacq, Claire; Chen, Jiji; Richter, Christian; Proux, Florence; Bénichou, Olivier; Voituriez, Raphaël; Darzacq, Xavier; Dahan, Maxime

    2015-07-01

    Many cellular functions rely on DNA-binding proteins finding and associating to specific sites in the genome. Yet the mechanisms underlying the target search remain poorly understood, especially in the case of the highly organized mammalian cell nucleus. Using as a model Tet repressors (TetRs) searching for a multi-array locus, we quantitatively analyse the search process in human cells with single-molecule tracking and single-cell protein-DNA association measurements. We find that TetRs explore the nucleus and reach their target by 3D diffusion interspersed with transient interactions with non-cognate sites, consistent with the facilitated diffusion model. Remarkably, nonspecific binding times are broadly distributed, underlining a lack of clear delimitation between specific and nonspecific interactions. However, the search kinetics is not determined by diffusive transport but by the low association rate to nonspecific sites. Altogether, our results provide a comprehensive view of the recruitment dynamics of proteins at specific loci in mammalian cells.

  19. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher.

    PubMed

    Normanno, Davide; Boudarène, Lydia; Dugast-Darzacq, Claire; Chen, Jiji; Richter, Christian; Proux, Florence; Bénichou, Olivier; Voituriez, Raphaël; Darzacq, Xavier; Dahan, Maxime

    2015-01-01

    Many cellular functions rely on DNA-binding proteins finding and associating to specific sites in the genome. Yet the mechanisms underlying the target search remain poorly understood, especially in the case of the highly organized mammalian cell nucleus. Using as a model Tet repressors (TetRs) searching for a multi-array locus, we quantitatively analyse the search process in human cells with single-molecule tracking and single-cell protein-DNA association measurements. We find that TetRs explore the nucleus and reach their target by 3D diffusion interspersed with transient interactions with non-cognate sites, consistent with the facilitated diffusion model. Remarkably, nonspecific binding times are broadly distributed, underlining a lack of clear delimitation between specific and nonspecific interactions. However, the search kinetics is not determined by diffusive transport but by the low association rate to nonspecific sites. Altogether, our results provide a comprehensive view of the recruitment dynamics of proteins at specific loci in mammalian cells. PMID:26151127

  20. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher

    PubMed Central

    Normanno, Davide; Boudarène, Lydia; Dugast-Darzacq, Claire; Chen, Jiji; Richter, Christian; Proux, Florence; Bénichou, Olivier; Voituriez, Raphaël; Darzacq, Xavier; Dahan, Maxime

    2015-01-01

    Many cellular functions rely on DNA-binding proteins finding and associating to specific sites in the genome. Yet the mechanisms underlying the target search remain poorly understood, especially in the case of the highly organized mammalian cell nucleus. Using as a model Tet repressors (TetRs) searching for a multi-array locus, we quantitatively analyse the search process in human cells with single-molecule tracking and single-cell protein–DNA association measurements. We find that TetRs explore the nucleus and reach their target by 3D diffusion interspersed with transient interactions with non-cognate sites, consistent with the facilitated diffusion model. Remarkably, nonspecific binding times are broadly distributed, underlining a lack of clear delimitation between specific and nonspecific interactions. However, the search kinetics is not determined by diffusive transport but by the low association rate to nonspecific sites. Altogether, our results provide a comprehensive view of the recruitment dynamics of proteins at specific loci in mammalian cells. PMID:26151127

  1. Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR).

    PubMed

    Takeuchi, Craig S; Kim, Byung Gyu; Blazey, Charles M; Ma, Sunghoon; Johnson, Henry W B; Anand, Neel K; Arcalas, Arlyn; Baik, Tae Gon; Buhr, Chris A; Cannoy, Jonah; Epshteyn, Sergey; Joshi, Anagha; Lara, Katherine; Lee, Matthew S; Wang, Longcheng; Leahy, James W; Nuss, John M; Aay, Naing; Aoyama, Ron; Foster, Paul; Lee, Jae; Lehoux, Isabelle; Munagala, Narsimha; Plonowski, Arthur; Rajan, Sharmila; Woolfrey, John; Yamaguchi, Kyoko; Lamb, Peter; Miller, Nicole

    2013-03-28

    A series of novel, highly potent, selective, and ATP-competitive mammalian target of rapamycin (mTOR) inhibitors based on a benzoxazepine scaffold have been identified. Lead optimization resulted in the discovery of inhibitors with low nanomolar activity and greater than 1000-fold selectivity over the closely related PI3K kinases. Compound 28 (XL388) inhibited cellular phosphorylation of mTOR complex 1 (p-p70S6K, pS6, and p-4E-BP1) and mTOR complex 2 (pAKT (S473)) substrates. Furthermore, this compound displayed good pharmacokinetics and oral exposure in multiple species with moderate bioavailability. Oral administration of compound 28 to athymic nude mice implanted with human tumor xenografts afforded significant and dose-dependent antitumor activity. PMID:23394126

  2. Phosphofructokinase from Fasciola hepatica: activation by phosphorylation and other regulatory properties distinct from the mammalian enzyme.

    PubMed

    Kamemoto, E S; Iltzsch, M H; Lan, L; Mansour, T E

    1987-10-01

    Phosphofructokinase from the liver fluke, Fasciola hepatica, was phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase isolated from this organism. Phosphorylated fluke phosphofructokinase had a sevenfold lower apparent Km for its substrate, Fru-6-P, and an eightfold higher 0.5 Vopt for ATP, the enzyme's primary inhibitor, than native phosphofructokinase. Activation of fluke phosphofructokinase following phorphorylation by a mammalian protein kinase catalytic subunit was previously reported (E. S. Kamemoto and T. E. Mansour (1986) J. Biol. Chem. 261, 4346-4351). The catalytic subunit of protein kinase isolated from the liver fluke phosphorylated sites on fluke phosphofructokinase similar to those phosphorylated by the mammalian enzyme. Maximal phosphate incorporation was 0.3 mol P/mol of protomer. The native enzyme was found to contain 1.3 mol P/mol of protomer. In contrast to fluke phosphofructokinase, activity of the mammalian heart enzyme was slightly decreased following phosphorylation. The dependence of allosteric interaction on an acidic pH observed with the mammalian phosphofructokinase was not observed with the fluke enzyme. Unlike mammalian phosphofructokinase, allosteric kinetics of the fluke enzyme was observed at alkaline pH (8.0). Fluke phosphofructokinase was found to be relatively insensitive to inhibition by citrate, a known potent inhibitor of the mammalian enzyme. Fru-2,6-P2, a potent modifier of phosphofructokinase from a variety of sources, was found to activate both native and phosphorylated fluke phosphofructokinase. The most potent activators of fluke phosphofructokinase were found to be Fru-2,6-P2, AMP, and phosphorylation. The endogenous level of Fru-2,6-P2 in the flukes was determined to be 29 +/- 1.3 nmol/g wet wt, a level that may well modulate enzyme activity. Fru-6-P,2-kinase, the enzyme responsible for synthesis of Fru-2,6-P2, was found to be present in the flukes. Our results suggest physiological roles for

  3. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons.

    PubMed

    Lim, Jung-Hwan A; Stafford, Benjamin K; Nguyen, Phong L; Lien, Brian V; Wang, Chen; Zukor, Katherine; He, Zhigang; Huberman, Andrew D

    2016-08-01

    Axons in the mammalian CNS fail to regenerate after injury. Here we show that if the activity of mouse retinal ganglion cells (RGCs) is increased by visual stimulation or using chemogenetics, their axons regenerate. We also show that if enhancement of neural activity is combined with elevation of the cell-growth-promoting pathway involving mammalian target of rapamycin (mTOR), RGC axons regenerate long distances and re-innervate the brain. Analysis of genetically labeled RGCs revealed that this regrowth can be target specific: RGC axons navigated back to their correct visual targets and avoided targets incorrect for their function. Moreover, these regenerated connections were successful in partially rescuing a subset of visual behaviors. Our findings indicate that combining neural activity with activation of mTOR can serve as powerful tool for enhancing axon regeneration, and they highlight the remarkable capacity of CNS neurons to re-establish accurate circuit connections in adulthood. PMID:27399843

  4. Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines.

    PubMed

    Zhang, Weiguang; Khatibi, Nikan H; Yamaguchi-Okada, Mitsuo; Yan, Junhao; Chen, Chunhua; Hu, Qin; Meng, Haiwei; Han, Hongbin; Liu, Shuwei; Zhou, Changman

    2012-02-01

    Mammalian target of rapamycin (mTOR) pathway is a serine/threonine protein kinase that plays a vital role in regulating growth, proliferation, survival, and protein synthesis among cells. In the present study, we investigated the role of the mTOR pathway following subarachnoid hemorrhage brain injury--specifically investigating its ability to mediate the activation of cerebral vasospasm. Additionally, we investigated whether key signaling pathway molecules such as the mTOR, P70S6K1, and 4E-BP1 play a role in the process. Thirty dogs were randomly divided into 5 groups: sham, SAH (subarachnoid hemorrhage), SAH+DMSO (dimethyl sulfoxide), SAH+Rapamycin and SAH+AZD8055. An established canine double-hemorrhage model of SAH was used by injecting autologous arterial blood into the cisterna magna on days 0 and 2. Angiography was performed at days 0 and 7. Clinical behavior, histology, immunohistochemistry, and Western blot of mTOR, P70S6K1, 4E-BP1 and PCNA (proliferating cell nuclear antigen) in the basilar arteries were examined. In the SAH and SAH+DMSO groups, severe angiographic vasospasm was obtained (34.3±19.8%, 38.4±10.3) compared with that in Sham (93.9±5.0%) respectively. mTOR, P70S6K1, 4E-BP1 and PCNA increased in the sample of spastic basilar arteries (p<0.05). In the SAH+RAPA and SAH+AZD8055 groups, Rapamycin and AZD8055 attenuated angiographic vasospasm (62.3±15.9% and 65.2±10.3%) while improving appetite and activity scores (p<0.05) on days 5 through 7. Rapamycin and AZD8055 significantly reduced the level and expression of mTOR, P70S6K1, 4E-BP1 and PCNA (p<0.05). In conclusion, our study suggests that the mTOR molecular signaling pathway plays a significant role in cerebral vasospasm following SAH, and that inhibition of the mTOR pathway has the potential to become an attractive strategy to treat vasospasm following SAH. PMID:22177999

  5. Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs

    PubMed Central

    Bresson, Stefan M.; Hunter, Olga V.; Hunter, Allyson C.; Conrad, Nicholas K.

    2015-01-01

    The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 promotes hyperadenylation by stimulating poly(A)-polymerases (PAPα/γ), but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A) tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts. PMID:26484760

  6. Small Molecule Membrane Transporters in the Mammalian Podocyte: A Pathogenic and Therapeutic Target

    PubMed Central

    Zennaro, Cristina; Artero, Mary; Di Maso, Vittorio; Carraro, Michele

    2014-01-01

    The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development. PMID:25411800

  7. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress

    PubMed Central

    Fujii, Junichi; Imai, Hirotaka

    2014-01-01

    Reduction-oxidation (Redox) reactions are ubiquitous mechanisms for vital activities in all organisms, and they play pivotal roles in the regulation of spermatogenesis as well. Here we focus on 3 redox-involved processes that have drawn much recent attention: the regulation of signal transduction by reactive oxygen species (ROS) such as hydrogen peroxide, oxidative protein folding in the endoplasmic reticulum (ER), and sulfoxidation of protamines during sperm chromatin condensation. The first 2 of these processes are emerging topics in cell biology and are applicable to most living cells, which includes spermatogenic cells. The roles of ROS in signal transduction have been elucidated in the last 2 decades and have received broad attention, most notably from the viewpoint of the proper control of mitotic signals. Redox processes in the ER are important because this is the organelle where secretory and membrane proteins are synthesized and proceed toward their functional structure, so that malfunction of the ER affects not only the involved cells but also the accepting cells of the secreted proteins in multicellular organisms. Sulfoxidation is the third of these processes, and the sulfoxidation of chromatin is a unique process in sperm maturation. During recent sulfoxidase research, GPX4 has emerged as a promising enzyme that plays essential roles in the production of fertile sperm, but the involvement of other redox proteins is also becoming evident. Because the molecules involved in the redox reactions are prone to oxidation, they can be sensitive to oxidative damage, which makes them potential targets for antioxidant therapy. PMID:26413390

  8. Requirement of Mammalian Target of Rapamycin Complex 1 Downstream Effectors in Cued Fear Memory Reconsolidation and Its Persistence

    PubMed Central

    Huynh, Thu N.; Santini, Emanuela

    2014-01-01

    Memory retrieval, often termed reconsolidation, can render previously consolidated memories susceptible to manipulation that can lead to alterations in memory strength. Although it is known that reconsolidation requires mammalian target of rapamycin complex 1 (mTORC1)-dependent translation, the specific contributions of its downstream effectors in reconsolidation are unclear. Using auditory fear conditioning in mice, we investigated the role of eukaryotic translation initiation factor 4E (eIF4E)–eIF4G interactions and p70 S6 kinase polypeptide 1 (S6K1) in reconsolidation. We found that neither 4EGI-1 (2-[(4-(3,4-dichlorophenyl)-thiazol-2-ylhydrazono)-3-(2-nitrophenyl)]propionic acid), an inhibitor of eFI4E–eIF4G interactions, nor PF-4708671 [2-((4-(5-ethylpyrimidin-4-yl)piperazin-1-yl)methyl)-5-(trifluoromethyl)-1H-benzo[d]imidazole], an inhibitor of S6K1, alone blocked the reconsolidation of auditory fear memory. In contrast, using these drugs in concert to simultaneously block eIF4E–eIF4G interactions and S6K1 immediately after memory reactivation significantly attenuated fear memory reconsolidation. Moreover, the combination of 4EGI-1 and PF-4708671 further destabilized fear memory 10 d after memory reactivation, which was consistent with experiments using rapamycin, an mTORC1 inhibitor. Furthermore, inhibition of S6K1 immediately after retrieval resulted in memory destabilization 10 d after reactivation, whereas inhibition of eIF4E–eIF4G interactions did not. These results indicate that the reconsolidation of fear memory requires concomitant association of eIF4E to eIF4G as well as S6K1 activity and that the persistence of memory at longer intervals after memory reactivation also requires mTORC1-dependent processes that involve S6K1. These findings suggest a potential mechanism for how mTORC1-dependent translation is fine tuned to alter memory persistence. PMID:24990923

  9. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers.

    PubMed

    Wong, Edgar H H; Khin, Mya Mya; Ravikumar, Vikashini; Si, Zhangyong; Rice, Scott A; Chan-Park, Mary B

    2016-03-14

    The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10 000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases. PMID:26859230

  10. Optimization of a Series of Triazole Containing Mammalian Target of Rapamycin (mTOR) Kinase Inhibitors and the Discovery of CC-115.

    PubMed

    Mortensen, Deborah S; Perrin-Ninkovic, Sophie M; Shevlin, Graziella; Elsner, Jan; Zhao, Jingjing; Whitefield, Brandon; Tehrani, Lida; Sapienza, John; Riggs, Jennifer R; Parnes, Jason S; Papa, Patrick; Packard, Garrick; Lee, Branden G S; Harris, Roy; Correa, Matthew; Bahmanyar, Sogole; Richardson, Samantha J; Peng, Sophie X; Leisten, Jim; Khambatta, Godrej; Hickman, Matt; Gamez, James C; Bisonette, René R; Apuy, Julius; Cathers, Brian E; Canan, Stacie S; Moghaddam, Mehran F; Raymon, Heather K; Worland, Peter; Narla, Rama Krishna; Fultz, Kimberly E; Sankar, Sabita

    2015-07-23

    We report here the synthesis and structure-activity relationship (SAR) of a novel series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors. SAR studies examining the potency, selectivity, and PK parameters for a series of triazole containing 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones resulted in the identification of triazole containing mTOR kinase inhibitors with improved PK properties. Potent compounds from this series were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC-3 cancer cells, in vitro and in vivo. When assessed in efficacy models, analogs exhibited dose-dependent efficacy in tumor xenograft models. This work resulted in the selection of CC-115 for clinical development. PMID:26102506

  11. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection

    PubMed Central

    Cottle, Renee N.; Lee, Ciaran M.; Archer, David; Bao, Gang

    2015-01-01

    Tal-effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated (Cas) proteins are genome editing tools with unprecedented potential. However, the ability to deliver optimal amounts of these nucleases into mammalian cells with minimal toxicity poses a major challenge. Common delivery approaches are transfection- and viral-based methods; each associated with significant drawbacks. An alternative method for directly delivering genome-editing reagents into single living cells with high efficiency and controlled volume is microinjection. Here, we characterize a glass microcapillary-based injection system and demonstrate controlled co-injection of TALENs or CRISPR/Cas9 together with donor template into single K562 cells for targeting the human β-globin gene. We quantified nuclease induced insertions and deletions (indels) and found that, with β-globin-targeting TALENs, similar levels of on- and off-target activity in cells could be achieved by microinjection compared with nucleofection. Furthermore, we observed 11% and 2% homology directed repair in single K562 cells co-injected with a donor template along with CRISPR/Cas9 and TALENs respectively. These results demonstrate that a high level of targeted gene modification can be achieved in human cells using glass-needle microinjection of genome editing reagents. PMID:26558999

  12. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection.

    PubMed

    Cottle, Renee N; Lee, Ciaran M; Archer, David; Bao, Gang

    2015-01-01

    Tal-effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated (Cas) proteins are genome editing tools with unprecedented potential. However, the ability to deliver optimal amounts of these nucleases into mammalian cells with minimal toxicity poses a major challenge. Common delivery approaches are transfection- and viral-based methods; each associated with significant drawbacks. An alternative method for directly delivering genome-editing reagents into single living cells with high efficiency and controlled volume is microinjection. Here, we characterize a glass microcapillary-based injection system and demonstrate controlled co-injection of TALENs or CRISPR/Cas9 together with donor template into single K562 cells for targeting the human β-globin gene. We quantified nuclease induced insertions and deletions (indels) and found that, with β-globin-targeting TALENs, similar levels of on- and off-target activity in cells could be achieved by microinjection compared with nucleofection. Furthermore, we observed 11% and 2% homology directed repair in single K562 cells co-injected with a donor template along with CRISPR/Cas9 and TALENs respectively. These results demonstrate that a high level of targeted gene modification can be achieved in human cells using glass-needle microinjection of genome editing reagents. PMID:26558999

  13. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation

    PubMed Central

    Zhang, Yichi; Aguilar, Oscar A.

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only

  14. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation.

    PubMed

    Zhang, Yichi; Aguilar, Oscar A; Storey, Kenneth B

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser(319) and Thr(24), as well as p-Foxo3a Thr(32) decreased by at least 45% throughout torpor. MyoG was

  15. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function.

    PubMed

    Garza-Lombó, Carla; Gonsebatt, María E

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  16. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  17. Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy.

    PubMed

    Sasazawa, Yukiko; Sato, Natsumi; Umezawa, Kazuo; Simizu, Siro

    2015-03-01

    Macroautophagy is a cellular response that leads to the bulk, nonspecific degradation of cytosolic components, including organelles. In recent years, it has been recognized that autophagy is essential for prevention of neurodegenerative diseases, including Parkinson disease (PD) and Huntington disease (HD). Here, we show that conophylline (CNP), a vinca alkaloid, induces autophagy in an mammalian target of rapamycin-independent manner. Using a cellular model of PD, CNP suppressed protein aggregation and protected cells from cell death caused by treatment with 1-methyl-4-phenylpyridinium, a neurotoxin, by inducing autophagy. Moreover, in the HD model, CNP also eliminated mutant huntingtin aggregates. Our findings demonstrate the possible use of CNP as a therapeutic drug for neurodegenerative disorders, including PD and HD. PMID:25596530

  18. Conophylline Protects Cells in Cellular Models of Neurodegenerative Diseases by Inducing Mammalian Target of Rapamycin (mTOR)-independent Autophagy*

    PubMed Central

    Sasazawa, Yukiko; Sato, Natsumi; Umezawa, Kazuo; Simizu, Siro

    2015-01-01

    Macroautophagy is a cellular response that leads to the bulk, nonspecific degradation of cytosolic components, including organelles. In recent years, it has been recognized that autophagy is essential for prevention of neurodegenerative diseases, including Parkinson disease (PD) and Huntington disease (HD). Here, we show that conophylline (CNP), a vinca alkaloid, induces autophagy in an mammalian target of rapamycin-independent manner. Using a cellular model of PD, CNP suppressed protein aggregation and protected cells from cell death caused by treatment with 1-methyl-4-phenylpyridinium, a neurotoxin, by inducing autophagy. Moreover, in the HD model, CNP also eliminated mutant huntingtin aggregates. Our findings demonstrate the possible use of CNP as a therapeutic drug for neurodegenerative disorders, including PD and HD. PMID:25596530

  19. The molecular basis of multiple vector insertion by gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration. PMID:10049930

  20. Targeted toxin-based selectable drug-free enrichment of Mammalian cells with high transgene expression.

    PubMed

    Sato, Masahiro; Akasaka, Eri; Saitoh, Issei; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi

    2013-01-01

    Almost all transfection protocols for mammalian cells use a drug resistance gene for the selection of transfected cells. However, it always requires the characterization of each isolated clone regarding transgene expression, which is time-consuming and labor-intensive. In the current study, we developed a novel method to selectively isolate clones with high transgene expression without drug selection. Porcine embryonic fibroblasts were transfected with pCEIEnd, an expression vector that simultaneously expresses enhanced green fluorescent protein (EGFP) and endo-b-galactosidase C(EndoGalC; an enzyme capable of digesting cell surface a-Gal epitope) upon transfection. After transfection, the surviving cells were briefly treated with IB4SAP (a-Gal epitope-specific BS-I-B4 lectin conjugated with a toxin saporin). The treated cells were then allowed to grow in normal medium, during which only cells strongly expressing EndoGalC and EGFP would survive because of the absence of a-Gal epitopes on their cell surface. Almost all the surviving colonies after IB4SAP treatment were in fact negative for BS-I-B4 staining, and also strongly expressed EGFP. This system would be particularly valuable for researchers who wish to perform large-scale production of therapeutically important recombinant proteins. PMID:24832665

  1. Non-targeted Identification of Prions and Amyloid-forming Proteins from Yeast and Mammalian Cells*

    PubMed Central

    Kryndushkin, Dmitry; Pripuzova, Natalia; Burnett, Barrington G.; Shewmaker, Frank

    2013-01-01

    The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin. PMID:23926098

  2. Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues.

    PubMed

    Nateewattana, Jintapat; Saeeng, Rungnapha; Kasemsook, Sakkasem; Suksen, Kanoknetr; Dutta, Suman; Jariyawat, Surawat; Chairoungdua, Arthit; Suksamrarn, Apichart; Piyachaturawat, Pawinee

    2013-04-01

    Topoisomerase II α enzyme plays a critical role in DNA replication process. It controls the topologic states of DNA during transcription and is essential for cell proliferation. Human DNA topoisomerase II α (hTopo II α) is a promising chemotherapeutic target for anticancer agents against a variety of cancer types. In the present study, andrographolide and its structurally modified analogues were investigated for their inhibitory activities on hTopo II α enzyme. Five out of nine andrographolide analogues potently reduced hTopo II α activity and inhibited cell proliferation in four mammalian cell lines (Hela, CHO, BCA-1 and HepG2 cells). IC50 values for cytotoxicity of analogues 3A.1, 3A.2, 3A.3, 1B and 2C were 4 to 7 μM. Structure-activity relationship studies revealed that both core structure of andrographolide and silicon based molecule of functional group were important for the inhibition of hTopo II α activity whereas position C-19 of analogues was required for anti-proliferation. In addition, the analogue 2C at 10 μM concentration inhibited hTopo II α, and induced apoptosis with nuclear fragmentation and formation of apoptotic bodies in HepG2 cells. The analogue 2C may, therefore, have a therapeutic potential as effective anticancer agent targeting the hTopo II α functions. PMID:22899371

  3. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.

    PubMed

    Tee, Andrew R; Fingar, Diane C; Manning, Brendan D; Kwiatkowski, David J; Cantley, Lewis C; Blenis, John

    2002-10-15

    Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that occurs upon mutation of either the TSC1 or TSC2 genes, which encode the protein products hamartin and tuberin, respectively. Here, we show that hamartin and tuberin function together to inhibit mammalian target of rapamycin (mTOR)-mediated signaling to eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). First, coexpression of hamartin and tuberin repressed phosphorylation of 4E-BP1, resulting in increased association of 4E-BP1 with eIF4E; importantly, a mutant of TSC2 derived from TSC patients was defective in repressing phosphorylation of 4E-BP1. Second, the activity of S6K1 was repressed by coexpression of hamartin and tuberin, but the activity of rapamycin-resistant mutants of S6K1 were not affected, implicating mTOR in the TSC-mediated inhibitory effect on S6K1. Third, hamartin and tuberin blocked the ability of amino acids to activate S6K1 within nutrient-deprived cells, a process that is dependent on mTOR. These findings strongly implicate the tuberin-hamartin tumor suppressor complex as an inhibitor of mTOR and suggest that the formation of tumors within TSC patients may result from aberrantly high levels of mTOR-mediated signaling to downstream targets. PMID:12271141

  4. Spatiotemporal regulation of GLI target genes in the mammalian limb bud.

    PubMed

    Lewandowski, Jordan P; Du, Fang; Zhang, Shilu; Powell, Marian B; Falkenstein, Kristin N; Ji, Hongkai; Vokes, Steven A

    2015-10-01

    GLI proteins convert Sonic hedgehog (Shh) signaling into a transcriptional output in a tissue-specific fashion. The Shh pathway has been extensively studied in the limb bud, where it helps regulate growth through a SHH-FGF feedback loop. However, the transcriptional response is still poorly understood. We addressed this by determining the gene expression patterns of approximately 200 candidate GLI-target genes and identified three discrete SHH-responsive expression domains. GLI-target genes expressed in the three domains are predominately regulated by derepression of GLI3 but have different temporal requirements for SHH. The GLI binding regions associated with these genes harbor both distinct and common DNA motifs. Given the potential for interaction between the SHH and FGF pathways, we also measured the response of GLI-target genes to inhibition of FGF signaling and found the majority were either unaffected or upregulated. These results provide the first characterization of the spatiotemporal response of a large group of GLI-target genes and lay the foundation for a systems-level understanding of the gene regulatory networks underlying SHH-mediated limb patterning. PMID:26238476

  5. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycins, streptovirudins, and corynetoxins are natural products that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg**2+ complex established as a transition state analog for hexosamine-1-phosphate:pren...

  6. Target for optically activated seekers and trackers

    NASA Astrophysics Data System (ADS)

    Lakin, C. T.; Willett, N. F.

    1984-05-01

    This abstract discloses a target for optically activated seekers and trackers (TOAST) which provides for calibrated and variable target characteristics such as size, intensity, spatial position, color and interfering background. The TOAST has a first ilumination system providing a target light beam through an adjustable iris which controls image size. The target beam passes through a collimator lens which focuses the light at infinity. With the target beam focused at infinity, the motion of an elevation plate lengthens or shortens the distance from the collimator lens to a one motion mirror. The target beam is attenuated by a variable filter driven by a servo-motor, and a color selection process is provided by passing the beam through spectral filters. A background light beam with background imagery is provided to the beamsplitter mirror and mixed with the target image so as to simulate the target environment encountered by an operating optically activated seeker and tracker.

  7. Functional Proteomics Identifies Acinus L as a Direct Insulin- and Amino Acid-Dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Substrate*

    PubMed Central

    Schwarz, Jennifer Jasmin; Wiese, Heike; Tölle, Regine Charlotte; Zarei, Mostafa; Dengjel, Jörn; Warscheid, Bettina; Thedieck, Kathrin

    2015-01-01

    The serine/threonine kinase mammalian target of rapamycin (mTOR) governs growth, metabolism, and aging in response to insulin and amino acids (aa), and is often activated in metabolic disorders and cancer. Much is known about the regulatory signaling network that encompasses mTOR, but surprisingly few direct mTOR substrates have been established to date. To tackle this gap in our knowledge, we took advantage of a combined quantitative phosphoproteomic and interactomic strategy. We analyzed the insulin- and aa-responsive phosphoproteome upon inhibition of the mTOR complex 1 (mTORC1) component raptor, and investigated in parallel the interactome of endogenous mTOR. By overlaying these two datasets, we identified acinus L as a potential novel mTORC1 target. We confirmed acinus L as a direct mTORC1 substrate by co-immunoprecipitation and MS-enhanced kinase assays. Our study delineates a triple proteomics strategy of combined phosphoproteomics, interactomics, and MS-enhanced kinase assays for the de novo-identification of mTOR network components, and provides a rich source of potential novel mTOR interactors and targets for future investigation. PMID:25907765

  8. Functional Proteomics Identifies Acinus L as a Direct Insulin- and Amino Acid-Dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Substrate.

    PubMed

    Schwarz, Jennifer Jasmin; Wiese, Heike; Tölle, Regine Charlotte; Zarei, Mostafa; Dengjel, Jörn; Warscheid, Bettina; Thedieck, Kathrin

    2015-08-01

    The serine/threonine kinase mammalian target of rapamycin (mTOR) governs growth, metabolism, and aging in response to insulin and amino acids (aa), and is often activated in metabolic disorders and cancer. Much is known about the regulatory signaling network that encompasses mTOR, but surprisingly few direct mTOR substrates have been established to date. To tackle this gap in our knowledge, we took advantage of a combined quantitative phosphoproteomic and interactomic strategy. We analyzed the insulin- and aa-responsive phosphoproteome upon inhibition of the mTOR complex 1 (mTORC1) component raptor, and investigated in parallel the interactome of endogenous mTOR. By overlaying these two datasets, we identified acinus L as a potential novel mTORC1 target. We confirmed acinus L as a direct mTORC1 substrate by co-immunoprecipitation and MS-enhanced kinase assays. Our study delineates a triple proteomics strategy of combined phosphoproteomics, interactomics, and MS-enhanced kinase assays for the de novo-identification of mTOR network components, and provides a rich source of potential novel mTOR interactors and targets for future investigation. PMID:25907765

  9. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells

    PubMed Central

    Zhuang, Hanyi; Matsunami, Hiroaki

    2009-01-01

    A fundamental question in olfaction is which odorant receptors (ORs) are activated by a given odorant. A major roadblock to investigate odorant-OR relationship in mammals has been an inability to express ORs in heterologous cells suitable for screening active ligands for ORs. The discovery of the receptor-transporting protein (RTP) family has facilitated the effective cell-surface expression of ORs in heterologous cells. The establishment of a robust heterologous expression system for mammalian ORs facilitates the high-throughput “deorphanization” of these receptors by matching them to their cognate ligands. This protocol details the method used for evaluating the cell-surface expression and measuring the functional activation of ORs of transiently-expressed mammalian odorant receptors in HEK293T cells. The stages of odorant receptor cell-surface expression include cell culture preparation, transfer of cells, transfection, and immunocytochemistry/flow cytometry, odorant stimulation, and luciferase assay. This protocol can be completed in a period of 3 days from transfer of cells to cell-surface expression detection and/or measurement of functional activation. PMID:18772867

  10. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    PubMed Central

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  11. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation.

    PubMed

    Halayko, Andrew J; Kartha, Sreedharan; Stelmack, Gerald L; McConville, John; Tam, John; Camoretti-Mercado, Blanca; Forsythe, Sean M; Hershenson, Marc B; Solway, Julian

    2004-09-01

    Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocytes acquiring an elongated contractile phenotype in serum-free culture. In vitro assays revealed a sustained activation of PI(3) kinase and p70S6K during serum deprivation up to 12 d, with concomitant accumulation of SM22 and smooth muscle myosin heavy chain (smMHC) proteins. Immunocytochemistry revealed that activation of PI3K/mTOR/p70S6K occurred almost exclusively in myocytes that acquire the contractile phenotype. Inhibition of PI(3) kinase or mTOR with LY294002 or rapamycin blocked p70S6K activation, prevented formation of large elongated contractile phenotype myocytes, and blocked accumulation of SM22 and smMHC. Inhibition of MEK had no effect. Steady-state mRNA abundance for SM22 and smMHC was unaffected by blocking p70S6K activation. These studies provide primary evidence that PI(3) kinase and mTOR activate p70S6K in airway myocytes leading to the accumulation of contractile apparatus proteins, differentiation, and growth of large, elongated contractile phenotype airway smooth muscle cells. PMID:15105162

  12. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.

    PubMed

    Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun

    2015-11-01

    Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. PMID:26041412

  13. Characterization of two nuclear mammalian homologous DNA-pairing activities that do not require associated exonuclease activity.

    PubMed Central

    Akhmedov, A T; Bertrand, P; Corteggiani, E; Lopez, B S

    1995-01-01

    We have developed an assay to study homologous DNA-pairing activities in mammalian nuclear extracts. This assay is derived from the POM blot assay, described earlier, which was specific for RecA activity in bacterial crude extracts. In the present work, proteins from mammalian nuclear extracts were resolved by electrophoresis on SDS/polyacrylamide gels and then electrotransferred onto a nitrocellulose membrane coated with circular single-stranded DNA (ssDNA). The blot obtained was incubated with a labeled homologous double-stranded DNA (dsDNA). Homologous pairing between the ssDNA and the labeled dsDNA was detected by autoradiography as a radioactive spot on the membrane. In nuclear extracts from mammalian cells, we found two major polypeptides of 100 and 75 kDa, able to promote the formation of stable plectonemic joints. Joint molecule formation required at least one homologous end on the dsDNA, but either end of the dsDNA could be recruited to initiate the reaction. For each polypeptide, the reaction required divalent cations such as Mg2+, Ca2+, or Mn2+. Although ATP was not necessary, ADP was inhibitory in each case. Unlike most of the known eukaryotic DNA-pairing proteins, both activities identified here were able to promote the formation of joint molecules without requiring an associated exonuclease activity. In addition, these two proteins were detected in cell lines from different tissues and from different mammalian species (human, mouse, and hamster). Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7878049

  14. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter

    PubMed Central

    Ide, Satoru; Dejardin, Jerome

    2015-01-01

    The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals. PMID:25812914

  15. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter.

    PubMed

    Ide, Satoru; Dejardin, Jerome

    2015-01-01

    The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals. PMID:25812914

  16. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  17. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  18. MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines

    PubMed Central

    Kulkarni, Varun; Naqvi, Afsar Raza; Uttamani, Juhi Raju; Nares, Salvador

    2016-01-01

    MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. PMID:26761000

  19. Mammalian Target of Rapamycin (mTOR) Inhibition as a Potential Antiepileptogenic Therapy: From Tuberous Sclerosis to Common Acquired Epilepsies

    PubMed Central

    Wong, Michael

    2011-01-01

    SUMMARY Most current treatments for epilepsy are symptomatic therapies that suppress seizures but do not affect the underlying course or prognosis of epilepsy. The need for disease-modifying or “antiepileptogenic” treatments for epilepsy is widely recognized, but no such preventative therapies have yet been established for clinical use. A rational strategy for preventing epilepsy is to target primary signaling pathways that initially trigger the numerous downstream mechanisms mediating epileptogenesis. The mammalian target of rapamycin (mTOR) pathway represents a logical candidate, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. The importance of the mTOR pathway in epileptogenesis is best illustrated by Tuberous Sclerosis Complex (TSC), one of the most common genetic causes of epilepsy. In mouse models of TSC, mTOR inhibitors prevent the development of epilepsy and underlying brain abnormalities associated with epileptogenesis. Accumulating evidence suggests that mTOR also participates in epileptogenesis due to a variety of other causes, including focal cortical dysplasia and acquired brain injuries, such as in animal models following status epilepticus or traumatic brain injury. Thus, mTOR inhibition may represent a potential antiepileptogenic therapy for diverse types of epilepsy, including both genetic and acquired epilepsies. PMID:19817806

  20. The effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells

    SciTech Connect

    Diamond, A.M.; Murray, J.L.; Dale, P.; Tritz, R.; Grdina, D.J.

    1995-09-05

    The media of representative mammalian cell lines were supplemented with low levels of selenium in the form of sodium selenite in order to investigate the effects of selenium on mammalian cells. Following incubation in 30 nM sodium selenite, these cells were assayed for changes in glutathione peroxidase (GPx) activity. The cells examined included NIH 3T3 mouse fibroblasts, PC12 rat sympathetic precursor cells, SupT-1 human lymphocytes, MCF-7{sup adr} human breast carcinoma cells and AA8 Chinese hamster ovary cells. Selenium supplementation resulted in a marginal increase in GPx activity for the NIH 3T3, MCF-7{sup adr} and Supt-1 cells but stimulated GPx activity approximately 5-fold in PC12 and AA8 cells. AA8 cells were selected to evaluate whether selenium supplementation was radioprotective against {sup 60}cobalt gamma irradiation. Protection against radiation-induced mutation was measured by evaluating mutation frequency at the hprt locus. In this assay, preincubation of AA8 CHO cells significantly protected these cells from exposure to 8 Gy.

  1. Chemical Inhibitors and microRNAs (miRNA) Targeting the Mammalian Target of Rapamycin (mTOR) Pathway: Potential for Novel Anticancer Therapeutics

    PubMed Central

    AlQurashi, Naif; Hashimi, Saeed M.; Wei, Ming Q.

    2013-01-01

    The mammalian target of rapamycin (mTOR) is a critical regulator of many fundamental features in response to upstream cellular signals, such as growth factors, energy, stress and nutrients, controlling cell growth, proliferation and metabolism through two complexes, mTORC1 and mTORC2. Dysregulation of mTOR signalling often occurs in a variety of human malignant diseases making it a crucial and validated target in the treatment of cancer. Tumour cells have shown high susceptibility to mTOR inhibitors. Rapamycin and its derivatives (rapalogs) have been tested in clinical trials in several tumour types and found to be effective as anticancer agents in patients with advanced cancers. To block mTOR function, they form a complex with FKBP12 and then bind the FRB domain of mTOR. Furthermore, a new generation of mTOR inhibitors targeting ATP-binding in the catalytic site of mTOR showed potent and more selective inhibition. More recently, microRNAs (miRNA) have emerged as modulators of biological pathways that are essential in cancer initiation, development and progression. Evidence collected to date shows that miRNAs may function as tumour suppressors or oncogenes in several human neoplasms. The mTOR pathway is a promising target by miRNAs for anticancer therapy. Extensive studies have indicated that regulation of the mTOR pathway by miRNAs plays a major role in cancer progression, indicating a novel way to investigate the tumorigenesis and therapy of cancer. Here, we summarize current findings of the role of mTOR inhibitors and miRNAs in carcinogenesis through targeting mTOR signalling pathways and determine their potential as novel anti-cancer therapeutics. PMID:23434669

  2. Probabilistic Evaluation of Mammalian Pharmacology Data to Target Pharmaceuticals for Environmental Hazard Assessment

    EPA Science Inventory

    Active Pharmaceutical Ingredients (APIs) are being detected with increasing frequency in aquatic systems associated with municipal effluent. APIs considered a Contaminant of Emerging Concern (CEC) -Little, if any, regulation considering aquatic systems -Effects on aquatic o...

  3. Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling

    PubMed Central

    Moyes, David L.; Shen, Chengguo; Murciano, Celia; Runglall, Manohursingh; Richardson, Jonathan P.; Arno, Matthew; Aldecoa-Otalora, Estibaliz; Naglik, Julian R.

    2014-01-01

    Background. The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. Methods. Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans–induced damage protection was determined using chemical inhibitors. Results. Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. Conclusions. PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling. PMID:24357630

  4. The mammalian tachykinin ligand-receptor system: an emerging target for central neurological disorders

    PubMed Central

    Pantaleo, Nick; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Zhou, Yu; Martin, Bronwen; Maudsley, Stuart

    2010-01-01

    Our understanding of the complex signaling neurophysiology of the central nervous system has facilitated the exploration of potential novel receptor-ligand system targets for disorders of this most complex organ. In recent years, many relatively neglected receptor-ligand systems have been re-evaluated with respect to their ability to potently modulate discrete tracts in the central nervous system. One such system is the tachykinin (previously neurokinin) system. The multiple heptahelical G protein-coupled receptors and neuropeptide ligands that comprise this system may be significantly involved in more central nervous systems actions than previously thought, including sleep disorders, amyotrophic lateral sclerosis, Alzheimer’s and Machado-Joseph disease. The development of our understanding of the role of the tachykinin receptor-ligand system in higher order central functions is likely to allow the creation of more specific and selective tachykinin-related neurotherapeutics. PMID:20632965

  5. Intrinsic activity of human immunodeficiency virus type 1 protease heterologous fusion proteins in mammalian cells.

    PubMed

    Arrigo, S J; Haines, J K; Huffman, K M

    1995-01-01

    We have generated various mammalian expression constructs that produce fusion proteins of human immunodeficiency virus type 1 (HIV-1) protease (PR) with the HIV-1 Nef protein. The expression of these proteins is inducible by the HIV-1 Tat protein. High-level expression of proteolytically active PR was produced from PR imbedded into Nef coding sequences, flanked by PR cleavage sites. The fusion protein was cleaved nearly to completion and did not exhibit the regulated processing that is seen with the virally encoded PR. No cytotoxic effect of PR expression was detected. The self-cleavage of PR could be inhibited by a specific inhibitor of HIV-1 PR (U75875). Elimination of the aminoterminal PR cleavage site did not have a measurable effect on cleavage of the precursor fusion protein. The cleaved fusion proteins appeared to be extremely unstable in the transfected cells. These findings demonstrate the intrinsic activity of HIV-1 PR in mammalian cells, in the context of a heterologous fusion protein. PMID:7832989

  6. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells

    PubMed Central

    Longen, Sebastian; Richter, Florian; Köhler, Yvette; Wittig, Ilka; Beck, Karl-Friedrich; Pfeilschifter, Josef

    2016-01-01

    H2S is an important signalling molecule involved in diverse biological processes. It mediates the formation of cysteine persulfides (R-S-SH), which affect the activity of target proteins. Like thiols, persulfides show reactivity towards electrophiles and behave similarly to other cysteine modifications in a biotin switch assay. In this manuscript, we report on qPerS-SID a mass spectrometry-based method allowing the isolation of persulfide containing peptides in the mammalian proteome. With this method, we demonstrated that H2S donors differ in their efficacy to induce persulfides in HEK293 cells. Furthermore, data analysis revealed that persulfide formation affects all subcellular compartments and various cellular processes. Negatively charged amino acids appeared more frequently adjacent to cysteines forming persulfides. We confirmed our proteomic data using pyruvate kinase M2 as a model protein and showed that several cysteine residues are prone to persulfide formation finally leading to its inactivation. Taken together, the site-specific identification of persulfides on a proteome scale can help to identify target proteins involved in H2S signalling and enlightens the biology of H2S and its releasing agents. PMID:27411966

  7. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells.

    PubMed

    Longen, Sebastian; Richter, Florian; Köhler, Yvette; Wittig, Ilka; Beck, Karl-Friedrich; Pfeilschifter, Josef

    2016-01-01

    H2S is an important signalling molecule involved in diverse biological processes. It mediates the formation of cysteine persulfides (R-S-SH), which affect the activity of target proteins. Like thiols, persulfides show reactivity towards electrophiles and behave similarly to other cysteine modifications in a biotin switch assay. In this manuscript, we report on qPerS-SID a mass spectrometry-based method allowing the isolation of persulfide containing peptides in the mammalian proteome. With this method, we demonstrated that H2S donors differ in their efficacy to induce persulfides in HEK293 cells. Furthermore, data analysis revealed that persulfide formation affects all subcellular compartments and various cellular processes. Negatively charged amino acids appeared more frequently adjacent to cysteines forming persulfides. We confirmed our proteomic data using pyruvate kinase M2 as a model protein and showed that several cysteine residues are prone to persulfide formation finally leading to its inactivation. Taken together, the site-specific identification of persulfides on a proteome scale can help to identify target proteins involved in H2S signalling and enlightens the biology of H2S and its releasing agents. PMID:27411966

  8. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    PubMed Central

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.

    2010-01-01

    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA conjugated with branched cationic polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knockdown led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules was observed. Observed siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. PMID:20727922

  9. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function

    PubMed Central

    Romanino, Klaas; Mazelin, Laetitia; Albert, Verena; Conjard-Duplany, Agnès; Lin, Shuo; Bentzinger, C. Florian; Handschin, Christoph; Puigserver, Pere; Zorzato, Francesco; Schaeffer, Laurent; Gangloff, Yann-Gaël; Rüegg, Markus A.

    2011-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy. PMID:22143799

  10. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function.

    PubMed

    Romanino, Klaas; Mazelin, Laetitia; Albert, Verena; Conjard-Duplany, Agnès; Lin, Shuo; Bentzinger, C Florian; Handschin, Christoph; Puigserver, Pere; Zorzato, Francesco; Schaeffer, Laurent; Gangloff, Yann-Gaël; Rüegg, Markus A

    2011-12-20

    Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy. PMID:22143799

  11. [Regulative mechanisms of mammalian target of rapamycin signaling pathway in glomerular hypertrophy in diabetic nephropathy and interventional effects of Chinese herbal medicine].

    PubMed

    Yang, Jing-Jing; Huang, Yan-ru; Wan, Yi-gang; Shen, Shan-mei; Mao, Zhi-min; Wu, Wei; Yao, Jian

    2015-08-01

    Glomerular hypertrophy is the main pathological characteristic in the early stage of diabetic nephropathy (DN), and its regulatory mechanism is closely related to mammalian target of rapamycin (mTOR) signaling pathway activity. mTOR includes mTOR complex 1 (mTORC1) and mTOR complex 2(mTORC2), in which, the upstream pathway of mTORC1 is phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase(Akt)/adenosine monophosphate activated protein kinase(AMPK), and the representative signaling molecules in the downstream pathway of mTORC1 are 4E-binding proteins(4EBP) and phosphoprotein 70 S6Kinase(p70S6K). Some Chinese herbal extracts could improve cell proliferation via intervening the expressions of the key molecules in the upstream or downstream of PIK/Akt/mTOR signaling pathway in vivo. As for glomerular mesangial cells(MC) and podocyte, mTOR plays an important role in regulating glomerular inherent cells, including adjusting cell cycle, energy metabolism and matrix protein synthesis. Rapamycin, the inhibitor of mTOR, could suppress glomerular inherent cell hypertrophy, cell proliferation, glomerular basement membrane (GBM) thickening and mesangial matrix deposition in model rats with DN. Some Chinese herbal extracts could alleviate glomerular lesions by intervening mTOR signaling pathway activity in renal tissue of DN animal models or in renal inherent cells in vivo and in vitro. PMID:26790279

  12. Screening of mammalian target of rapamycin inhibitors in natural product extracts by capillary electrophoresis in combination with high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Yanmei; Li, Feng; Li, Mingxia; Kang, Jingwu

    2015-04-01

    In this study, capillary electrophoresis (CE) combined with HPLC-MS/MS were used as a powerful platform for screening of inhibitors of mammalian target of rapamycin (mTOR) in natural product extracts. The screening system has been established by using 5-carboxyfluorescein labeled substrate peptide F-4EBP1, a known mTOR inhibitor AZD8055, and a small chemical library consisted of 18 natural product extracts. Biochemical screening of natural product extracts was performed by CE with laser induced fluorescence detection. The CE separation allowed a quantitative measurement of the phosphorylated product, hence the quantitation of enzymatic inhibition as well as inhibition kinetics. The hits are readily identified as long as the peak area of the phosphorylated product is reduced in comparison with the negative control. Subsequent assay-guided isolation of the active natural product extract was performed with HPLC-MS/MS to track the particular active components. The structures of the identified active components were elucidated by the molecular ions and fragmentation information provided by MS/MS analysis. The CE-based assay method only requires minute pure compounds, which can be readily purified by HPLC. Therefore, the combination of CE and HPLC-MS/MS provides a high-throughput platform for screening bioactive compounds from the crude nature extracts. By taking the advantage of the screening system, salvianolic acid A and C in extract of Salvia miltiorrhiza were discovered as the new mTOR inhibitors. PMID:25725958

  13. Rictor Phosphorylation on the THR-1135 Site Does Not Require Mammalian Target of Rapamycin Complex 2

    PubMed Central

    Boulbes, Delphine; Chen, Chien-Hung; Shaikenov, Tattym; Agarwal, Nitin K.; Peterson, Timothy R.; Addona, Terri A.; Keshishian, Hasmik; Carr, Steven A.; Magnuson, Mark A.; Sabatini, David M.; Sarbassov, Dos D.

    2010-01-01

    In animal cells growth factors coordinate cell proliferation and survival by regulating the PI3K/Akt signaling pathway. Deregulation of this signaling pathway is common in a variety of human cancers. The PI3K dependent signaling kinase complex defined as mTORC2 functions as a regulatory Ser-473 kinase of Akt. We find that activation of mTORC2 by growth factor signaling is linked to the specific phosphorylation of its component rictor on Thr-1135. The phosphorylation of this site is induced by the growth factor stimulation and expression of the oncogenic forms of ras or PI3K. Rictor phosphorylation is sensitive to inhibition of PI3K, mTOR, or expression of ILK. The substitution of wild-type rictor with its specific phospho-mutants in rictor null mouse embryonic fibroblasts did not alter the growth factor-dependent phosphorylation of Akt indicating that the rictor Thr-1135 phosphorylation is not critical in regulation of the mTORC2 kinase activity. We found that this rictor phosphorylation takes place in the mTORC2-deficient cells suggesting that this modification might play a role in regulation not only mTORC2 but also the mTORC2-independent function of rictor. PMID:20501647

  14. Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice.

    PubMed

    Peterson, Douglas E; O'Shaughnessy, Joyce A; Rugo, Hope S; Elad, Sharon; Schubert, Mark M; Viet, Chi T; Campbell-Baird, Cynthia; Hronek, Jan; Seery, Virginia; Divers, Josephine; Glaspy, John; Schmidt, Brian L; Meiller, Timothy F

    2016-08-01

    In recent years oral mucosal injury has been increasingly recognized as an important toxicity associated with mammalian target of rapamycin (mTOR) inhibitors, including in patients with breast cancer who are receiving everolimus. This review addresses the state-of-the-science regarding mTOR inhibitor-associated stomatitis (mIAS), and delineates its clinical characteristics and management. Given the clinically impactful pain associated with mIAS, this review also specifically highlights new research focusing on the study of the molecular basis of pain. The incidence of mIAS varies widely (2-78%). As reported across multiple mTOR inhibitor clinical trials, grade 3/4 toxicity occurs in up to 9% of patients. Managing mTOR-associated oral lesions with topical oral, intralesional, and/or systemic steroids can be beneficial, in contrast to the lack of evidence supporting steroid treatment of oral mucositis caused by high-dose chemotherapy or radiation. However, steroid management is not uniformly efficacious in all patients receiving mTOR inhibitors. Furthermore, technology does not presently exist to permit clinicians to predict a priori which of their patients will develop these lesions. There thus remains a strategic need to define the pathobiology of mIAS, the molecular basis of pain, and risk prediction relative to development of the clinical lesion. This knowledge could lead to novel future interventions designed to more effectively prevent mIAS and improve pain management if clinically significant mIAS lesions develop. PMID:27334013

  15. Antisense Oligonucleotides Targeting Parasite Inositol 1,4,5-Trisphosphate Receptor Inhibits Mammalian Host Cell Invasion by Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko

    2014-02-01

    Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.

  16. N-terminal region of Mannheimia haemolytica leukotoxin serves as a mitochondrial targeting signal in mammalian cells.

    PubMed

    Kisiela, Dagmara I; Aulik, Nicole A; Atapattu, Dhammika N; Czuprynski, Charles J

    2010-07-01

    Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase-9-dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N-terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N-terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagic Escherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N-terminal region in addressing certain RTX toxins to mitochondria. PMID:20109159

  17. PTK7 regulates myosin II activity to orient planar polarity in the mammalian auditory epithelium

    PubMed Central

    Lee, Jianyi; Andreeva, Anna; Sipe, Conor W.; Liu, Lixia; Cheng, Amy; Lu, Xiaowei

    2012-01-01

    Summary Background Planar Cell Polarity (PCP) signaling is a key regulator of epithelial morphogenesis, including neural tube closure and the orientation of inner ear sensory hair cells, and is mediated by a conserved noncanonical Wnt pathway. Ptk7 is a novel vertebrate-specific regulator of PCP, yet the mechanisms by which Ptk7 regulates mammalian epithelial PCP remain poorly understood. Results Here we show that, in the mammalian auditory epithelium, Ptk7 is not required for membrane recruitment of Dishevelled 2; Ptk7 and Frizzled3/Frizzled6 receptors act in parallel and have opposing effects on hair cell PCP. Mosaic analysis identified a requirement of Ptk7 in neighboring supporting cells for hair cell PCP. Ptk7 and the noncanonical Wnt pathway differentially regulate a contractile myosin II network near the apical surface of supporting cells. We provide evidence that this apical myosin II network exerts polarized contractile tension on hair cells to align their PCP, as revealed by asymmetric junctional recruitment of vinculin, a tension-sensitive actin binding protein. In Ptk7 mutants, compromised myosin II activity resulted in loss of planar asymmetry and reduced junctional localization of vinculin. By contrast, vinculin planar asymmetry and stereociliary bundle orientation were restored in Fz3−/−; Ptk7−/− double mutants. Conclusions These findings suggest that PTK7 acts in conjunction with the noncanonical Wnt pathway to orient epithelial PCP through modulation of myosin-II based contractile tension between supporting cells and hair cells. PMID:22560610

  18. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  19. Characterization of a conserved C-terminal motif (RSPRR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation.

    PubMed

    Schalm, Stefanie S; Tee, Andrew R; Blenis, John

    2005-03-25

    The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR. PMID:15659381

  20. Target activation by regulatory RNAs in bacteria

    PubMed Central

    Papenfort, Kai; Vanderpool, Carin K.

    2015-01-01

    Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5′ untranslated region (UTR), the coding sequence or the 3′ UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation. PMID:25934124

  1. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation.

    PubMed

    Dutta, Pujarini; Das, Santasabuj

    2016-01-01

    Antimicrobial peptides (AMPs) are integral components of the host innate immune system and functional throughout the plant and animal kingdoms. AMPs are short cationic molecules and lethal against a wide range of bacteria, viruses, fungi, yeast and protozoa due to their membranolytic effects on the negatively-charged microbial membranes. In addition, they exert multiple immunomodulatory roles like chemotaxis, modulation of cytokine and chemokine expression, leukocyte activation etc. Since AMPs suffer loss of microbicidal properties under serum and tissue environments, their capacity to modulate the immune system may predominates under the physiological conditions. Discovery of new antibiotics is lagging far behind the rapidly spreading drug resistance among the microorganisms. Both natural and synthetic AMPs have shown promise as 'next generation antibiotics' due to their unique mode of action, which minimises the chance of development of microbial resistance. In addition, they have therapeutic potential against non-infectious diseases like chronic inflammation and cancer. Many of the synthetic AMPs are currently undergoing clinical trials for the treatment of debilitating diseases, such as catheter-related infections, diabetic foot ulcers, chemotherapy-associated infections etc. Some of them have already entered the market as topical preparations. In this review, we synopsise the current literature of natural and synthetic AMPs in different infectious and inflammatory diseases of human microfloral habitats, especially the gastrointestinal, respiratory and genitourinary tracts and the skin. We also discuss the classification of AMPs, their mode action and antimicrobial spectrum, including the pathogen evasion mechanisms. In short, we tried to present the locus standi of AMPs in relation to human diseases and highlight the most promising synthetic peptides emerging from the clinical trials. Finally, we focused on the limitations and hurdles in terms of cost of

  2. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    PubMed

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses. PMID:23035235

  3. Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells

    PubMed Central

    Schnettler, Esther; Sterken, Mark G.; Leung, Jason Y.; Metz, Stefan W.; Geertsema, Corinne; Goldbach, Rob W.; Vlak, Just M.; Kohl, Alain

    2012-01-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses. PMID:23035235

  4. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    PubMed Central

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  5. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome

    PubMed Central

    Harlow, Philippa H.; Perry, Simon J.; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A.; Flemming, Anthony J.

    2016-01-01

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals. PMID:26987796

  6. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    PubMed

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking. PMID:23527944

  7. cAMP phosphodiesterase and activator protein of mammalian cAMP phosphodiesterase from Trypanosoma cruzi.

    PubMed

    Gonçalves, M F; Zingales, B; Colli, W

    1980-04-01

    Epimastigote forms of Trypanosoma cruzi contain a soluble cAMP phosphodiesterase. Optimal activity was found at pH 8.0 and in the presence of 5 mM Mn2+. Other cations were less efficient and did not give rise to an additional stimulation when added in the presence of optimal concentrations of Mn2+. The enzyme is not Ca2+ dependent. The apparent Km of the enzyme for the substrate is 40 microM and no kinetic evidence for the existence of two enzymes has been found. Theophylline and caffein did not inhibit the T. cruzi cAMP phosphodiesterase. The enzyme activity does not change during cell growth suggesting that the fluctuation observed in the levels of cAMP are largely a response to variations in adenylyl cyclase activity. The intracellular concentrations of cAMP ranged between 0.04--0.15 microM. No evidence that the T. cruzi cAMP phosphodiesterase is regulated by an endogenous activator could be found. However, T. cruzi contains a heat-stable, low molecular weight, non-dialysable protein that activates mammalian cAMP phosphodiesterase in the presence of Ca2+. The properties so far studied of such an activator suggest that it might be equivalent to other Ca2+-dependent regulators described in vertebrate and invertebrate species. PMID:6255327

  8. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  9. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  10. Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235

    PubMed Central

    YANG, XIAOYU; NIU, BINGXUAN; WANG, LIBO; CHEN, MEILING; KANG, XIAOCHUN; WANG, LUONAN; JI, YINGHUA; ZHONG, JIATENG

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CRC). Autophagy is a catabolic process that maintains cellular homeostasis and reduces diverse stresses through lysosomal recycling of the unnecessary and damaged cell components. This process is also observed to antagonize the antitumor efficacy of PI3K/mTOR inhibitor agents such as NVP-BEZ235, via apoptosis inhibition. In the present study, we investigated anti-proliferative and apoptosis-inducing ability of NVP-BEZ235 in SW480 cells and the crosstalk between autophagy and apoptosis in SW480 cells treated with NVP-BEZ235 in combination with an autophagy inhibitor. The results revealed that, NVP-BEZ235 effectively inhibit the growth of SW480 cells by targeting the PI3K/mTOR signaling pathway and induced apoptosis. The inhibition of autophagy with 3-methyladenine or chloroquine inhibitors in combination with NVP-BEZ235 in SW480 cells enhanced the apoptotic rate as componets to NVP-BEZ235 alone. In conclusion, the findings provide a rationale for chemotherapy targeting the PI3K/mTOR signaling pathway presenting a potential therapeutic strategy to enhance the efficacy of dual PI3K/mTOR inhibitor NVP-BEZ235 in combination with an autophagy inhibitor in CRC treatment and treatment of other tumors. PMID:27347108

  11. Dual inhibition of phosphatidylinositol 3'-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach for mucinous adenocarcinoma of the ovary.

    PubMed

    Kudoh, Akiko; Oishi, Tetsuro; Itamochi, Hiroaki; Sato, Seiya; Naniwa, Jun; Sato, Shinya; Shimada, Muneaki; Kigawa, Junzo; Harada, Tasuku

    2014-03-01

    Ovarian mucinous adenocarcinoma (MAC) resists standard chemotherapy and is associated with poor prognosis. A more effective treatment is needed urgently. The present study assessed the possibility of molecular-targeted therapy with a novel dual inhibitor of phosphatidylinositol 3'-kinase (PI3K) and mammalian target of rapamycin (mTOR), NVP-BEZ235 (BEZ235) to treat of MAC. Seven human MAC cell lines were used in this study. The sensitivity of the cells to BEZ235, temsirolimus, and anticancer agents was determined with the WST-8 assay. Cell cycle distribution was assessed by flow cytometry, and the expression of proteins in apoptotic pathways and molecules of the PI3K/Akt/mTOR signaling pathways was determined by Western blot analysis. We also examined the effects of BEZ235 on tumor growth in nude mice xenograft models. The cell lines showed half-maximal inhibitory concentration values of BEZ235 from 13 to 328 nmol/L. Low half-maximal inhibitory concentration values to BEZ235 were observed in MCAS and OMC-1 cells; these 2 lines have an activating mutation in the PIK3CA gene. NVP-BEZ235 down-regulated the protein expression of phosphorylated (p-) Akt, p-p70S6K, and p-4E-BP1, suppressed cell cycle progression, up-regulated the expression of cleaved PARP and cleaved caspase 9, and increased apoptotic cells. Synergistic effects were observed on more than 5 cell lines when BEZ235 was combined with paclitaxel or cisplatin. The treatment of mice bearing OMC-1 or RMUG-S with BEZ235 significantly suppressed tumor growth in MAC xenograft models without severe weight loss. We conclude that the PI3K/Akt/mTOR pathway is a potential therapeutic target and that BEZ235 should be explored as a therapeutic agent for MAC. PMID:24552895

  12. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.

    PubMed Central

    Jordan, I; Kaplan, J

    1994-01-01

    Mammalian cells accumulate iron from ferric citrate or ferric nitrilotriacetate through the activity of a transferrin-independent iron transport system [Sturrock, Alexander, Lamb, Craven and Kaplan (1990) J. Biol. Chem. 265, 3139-3145]. The uptake system might recognize and transport ferric-anion complexes, or cells may reduce ferric iron at the surface and then transport ferrous iron. To distinguish between these possibilities we exposed cells to either [59Fe]ferric citrate or ferric [14C]citrate and determined whether accumulation of iron was accompanied by the obligatory accumulation of citrate. In HeLa cells and human skin fibroblasts the rate of accumulation of iron was three to five times greater than that of citrate. Incubation of fibroblasts with ferric citrate or ferric ammonium citrate resulted in an enhanced accumulation of iron and citrate; the molar ratio of accumulation approaching unity. A similar rate of citrate accumulation, however, was observed when ferric citrate-incubated cells were exposed to [14C]citrate alone. Further studies demonstrated the independence of iron and citrate accumulation: addition of unlabelled citrate to cells decreased the uptake of labelled citrate without affecting the accumulation of 59Fe; iron uptake was decreased by the addition of ferrous chelators whereas the uptake of citrate was unaffected; reduction of ferric iron by ascorbate increased the uptake of iron but had no effect on the uptake of citrate. When HeLa cells were depleted of calcium, iron uptake decreased, but there was little effect on citrate uptake. These results indicate that transport of iron does not require the obligatory transport of citrate and vice versa. The mammalian transferrin-independent iron transport system appears functionally similar to iron transport systems in both the bacterial and plant kingdoms which require the activities of both a surface reductase and a ferrous metal transporter. PMID:7945215

  13. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    PubMed

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  14. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor

    PubMed Central

    Ukhanov, K.; Bobkov, Y.; Corey, E.A.; Ache, B.W.

    2014-01-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca2+ release and/or Ca2+ influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5 mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  15. An Emerging Role for the Mammalian Target of Rapamycin in “Pathological” Protein Translation: Relevance to Cocaine Addiction

    PubMed Central

    Dayas, Christopher V.; Smith, Doug W.; Dunkley, Peter R.

    2011-01-01

    Complex neuroadaptations within key nodes of the brain’s “reward circuitry” are thought to underpin long-term vulnerability to relapse. A more comprehensive understanding of the molecular and cellular signaling events that subserve relapse vulnerability may lead to pharmacological treatments that could improve treatment outcomes for psychostimulant-addicted individuals. Recent advances in this regard include findings that drug-induced perturbations to neurotrophin, metabotropic glutamate receptor, and dopamine receptor signaling pathways perpetuate plasticity impairments at excitatory glutamatergic synapses on ventral tegmental area and nucleus accumbens neurons. In the context of addiction, much previous work, in terms of downstream effectors to these receptor systems, has centered on the extracellular-regulated MAP kinase signaling pathway. The purpose of the present review is to highlight the evidence of an emerging role for another downstream effector of these addiction-relevant receptor systems – the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 functions to regulate synaptic protein translation and is a potential critical link in our understanding of the neurobiological processes that drive addiction and relapse behavior. The precise cellular and molecular changes that are regulated by mTORC1 and contribute to relapse vulnerability are only just coming to light. Therefore, we aim to highlight evidence that mTORC1 signaling may be dysregulated by drug exposure and that these changes may contribute to aberrant translation of synaptic proteins that appear critical to increased relapse vulnerability, including AMPARs. The importance of understanding the role of this signaling pathway in the development of addiction vulnerability is underscored by the fact that the mTORC1 inhibitor rapamycin reduces drug-seeking in pre-clinical models and preliminary evidence indicating that rapamycin suppresses drug craving in humans. PMID:22347189

  16. Iron deficiency down-regulates the Akt/TSC1-TSC2/mammalian Target of Rapamycin signaling pathway in rats and in COS-1 cells.

    PubMed

    Ndong, Moussa; Kazami, Machiko; Suzuki, Tsukasa; Uehara, Mariko; Katsumata, Shin-Ichi; Inoue, Hirohumi; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Suzuki, Kazuharu; Yamamoto, Yuji

    2009-09-01

    Iron deficiency (ID) is one of the most commonly known forms of nutritional deficiencies. Low body iron is thought to induce neurologic defects but may also play a protective role against cancer development by cell growth arrest. Thus, ID may affect cellular pathways controlling cell growth and proliferation, the mechanism of which is still not fully understood. The serine/threonine protein kinase Akt and its downstream target, the mammalian Target of Rapamycin (mTOR), is known to play a crucial role in the regulation of cell growth and survival. Therefore, we hypothesized that Akt/mTOR pathway could be influenced by ID. Three-week-old male Wistar-strain rats were divided into 3 groups and the 2 groups had free access to a control diet (C group) or an iron-deficient diet (D group). The third group (PF group) were pair-fed the control diet to the mean intake of the D group. After 4 weeks, rats were killed and their brains were sampled. In separate experiments, COS-1 cells were cultured with or without the iron chelator deferoxamine. Western blots of brain samples and COS-1 lysates were used to analyze the expression and phosphorylation state of Akt, TSC2, mTOR, and S6 kinase proteins implicated in the Akt/mTOR pathway. Using 2 different ID models, we show for the first time that iron deficiency depresses Akt activity in rats and in COS-1 cells, leading to a decrease in mTOR activity. PMID:19854379

  17. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Quigley, Andrew; Carpenter, Elisabeth P; Hruz, Paul W

    2016-08-12

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  18. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids*

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Quigley, Andrew; Carpenter, Elisabeth P.; Hruz, Paul W.

    2016-01-01

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  19. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.

    PubMed

    Krishnamurthy, Srinath; Moorthy, Balakrishnan Shenbaga; Xin Xiang, Lim; Xin Shan, Lim; Bharatham, Kavitha; Tulsian, Nikhil Kumar; Mihalek, Ivana; Anand, Ganesh S

    2014-09-16

    Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and

  20. Altered APP Processing in Insulin-Resistant Conditions Is Mediated by Autophagosome Accumulation via the Inhibition of Mammalian Target of Rapamycin Pathway

    PubMed Central

    Son, Sung Min; Song, Hyundong; Byun, Jayoung; Park, Kyong Soo; Jang, Hak Chul; Park, Young Joo; Mook-Jung, Inhee

    2012-01-01

    Insulin resistance, one of the major components of type 2 diabetes mellitus (T2DM), is a known risk factor for Alzheimer’s disease (AD), which is characterized by an abnormal accumulation of intra- and extracellular amyloid β peptide (Aβ). Insulin resistance is known to increase Aβ generation, but the underlying mechanism that links insulin resistance to increased Aβ generation is unknown. In this study, we examined the effect of high-fat diet–induced insulin resistance on amyloid precursor protein (APP) processing in mouse brains. We found that the induced insulin resistance promoted Aβ generation in the brain via altered insulin signal transduction, increased β- and γ-secretase activities, and accumulation of autophagosomes. These findings were confirmed in diabetic db/db mice brains. Furthermore, in vitro experiments in insulin-resistant SH-SY5Y cells and primary cortical neurons confirmed the alteration of APP processing by insulin resistance–induced autophagosome accumulation. Defects in insulin signal transduction affect autophagic flux by inhibiting the mammalian target of rapamycin pathway, resulting in altered APP processing in these cell culture systems. Thus, the insulin resistance that underlies the pathogenesis of T2DM might also trigger accumulation of autophagosomes, leading to increased Aβ generation, which might be involved in the pathogenesis of AD. PMID:22829447

  1. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and

  2. Calcium signaling in mammalian egg activation and embryo development: Influence of subcellular localization

    PubMed Central

    Miao, Yi-Liang; Williams, Carmen J.

    2012-01-01

    Calcium (Ca2+) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca2+ signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca2+ sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca2+ in many cell types and the impact of cellular localization on Ca2+ signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca2+ is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca2+ release and effectors of Ca2+ signals. We then summarize studies exploring how Ca2+ directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca2+ signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe areas for future research. PMID:22888043

  3. The stretch-activation response may be critical to the proper functioning of the mammalian heart

    PubMed Central

    Vemuri, Ramesh; Lankford, Edward B.; Poetter, Karl; Hassanzadeh, Shahin; Takeda, Kazuyo; Yu, Zu-Xi; Ferrans, Victor J.; Epstein, Neal D.

    1999-01-01

    The “stretch-activation” response is essential to the generation of the oscillatory power required for the beating of insect wings. It has been conjectured but not previously shown that a stretch-activation response contributes to the performance of a beating heart. Here, we generated transgenic mice that express a human mutant myosin essential light chain derived from a family with an inherited cardiac hypertrophy. These mice faithfully replicate the cardiac disease of the patients with this mutant allele. They provide the opportunity to study the stretch-activation response before the hearts are distorted by the hypertrophic process. Studies disclose a mismatch between the physiologic heart rate and resonant frequency of the cardiac papillary muscles expressing the mutant essential light chain. This discordance reduces oscillatory power at frequencies that correspond to physiologic heart-rates and is followed by subsequent hypertrophy. It appears, therefore, that the stretch-activation response, first described in insect flight muscle, may play a role in the mammalian heart, and its further study may suggest a new way to modulate human cardiac function. PMID:9927691

  4. Isolation of the protein and RNA content of active sites of transcription from mammalian cells.

    PubMed

    Melnik, Svitlana; Caudron-Herger, Maïwen; Brant, Lilija; Carr, Ian M; Rippe, Karsten; Cook, Peter R; Papantonis, Argyris

    2016-03-01

    Mammalian cell nuclei contain three RNA polymerases (RNAP I, RNAP II and RNAP III), which transcribe different gene subsets, and whose active forms are contained in supramolecular complexes known as 'transcription factories.' These complexes are difficult to isolate because they are embedded in the 3D structure of the nucleus. Factories exchange components with the soluble nucleoplasmic pool over time as gene expression programs change during development or disease. Analysis of their content can provide information on the nascent transcriptome and its regulators. Here we describe a protocol for the isolation of large factory fragments under isotonic salt concentrations in <72 h. It relies on DNase I-mediated detachment of chromatin from the nuclear substructure of freshly isolated, unfixed cells, followed by caspase treatment to release multi-megadalton factory complexes. These complexes retain transcriptional activity, and isolation of their contents is compatible with downstream analyses by mass spectrometry (MS) or RNA-sequencing (RNA-seq) to catalog the proteins and RNA associated with sites of active transcription. PMID:26914315

  5. Analysis of poly(ADP-ribose) glycohydrolase activity in nuclear extracts from mammalian cells.

    PubMed

    Bernardi, R; Rossi, L; Poirier, G G; Scovassi, A I

    1997-03-01

    We have analysed poly(ADP-ribose) glycohydrolase, the enzyme responsible for in vivo degradation of ADP-ribose polymers, by means of a biochemical assay based on the capacity of the enzyme to use a synthetic 32P-labelled polymer as a substrate. The visualization of the reaction has been achieved by separation of poly and mono(ADP-ribose) by thin-layer chromatography followed by autoradiography, whereas polymer hydrolysis has been quantified by counting the spots corresponding to poly and mono(ADP-ribose). By addition of the enzyme inhibitor ethacridine to the reaction mixture, we have confirmed the specificity of the procedure we have developed. The protocol has been applied to study the specific activity of glycohydrolase in nuclear extracts from different mammalian cell lines and to an apoptotic experimental system, namely HL60 cells treated with etoposide. We have observed the activation of the enzyme after a two-hour drug treatment, that is concomitant with the activation of poly(ADP-ribose) polymerase, the enzyme which synthesizes the polymer. These data suggest a precise regulation of ADP-ribosylation process during cell death by apoptosis. PMID:9074616

  6. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type.

    PubMed Central

    McFarland, E W; Kushmerick, M J; Moerland, T S

    1994-01-01

    We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics. PMID:7858128

  7. A single-chain bispecific Fv2 molecule produced in mammalian cells redirects lysis by activated CTL.

    PubMed

    Jost, C R; Titus, J A; Kurucz, I; Segal, D M

    1996-02-01

    Single-chain Fv (sFv) molecules consist of the two variable domains of an antibody (Ab) connected by a polypeptide spacer and contain the binding activities of their parental antibodies (Abs). In this paper we have attached the C-terminus of 2C11-sFv (anti-mouse CD3 epsilon-chain) to the N-terminus of OKT9-sFv (anti-human transferrin receptor [TfR]) through a 23 amino acid inter-sFv linker consisting primarily of CH1 region residues from 2C11, to form a single-chain bispecific Fv2 [bs(sFv)2] molecule. The bs(sFv)2 was expressed in COS-7 cells, and was secreted at the same rate as the two parental sFvs. The secreted protein had both anti-CD3 and anti-TfR binding activities. Essentially all of the secreted bs(sFv)2 molecules bound TfR and the binding affinity of the bs(sFv)2 was comparable to that of OKT9 sFv and Fab. Thus, the attachment of the inter-sFv linker to the N-terminus of OKT9-sFv did not impair its binding function. The bs(sFv)2 retained both binding specificities after long-term storage at 4 degrees C or overnight incubation at 37 degrees C. It redirected activated mouse CTL to specifically lyse human TfR+ target cells at low (ng/ml) concentrations and was much more active than a chemically cross-linked heteroconjugate prepared from the same parental mAbs. Because bs(sFv)2 molecules secreted by mammalian cells are homogeneous proteins containing two binding sites in a single polypeptide chain, they hold great promise as an easily obtainable, economic source of a bispecific molecule suitable for in vivo use. PMID:8649442

  8. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  9. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma

    SciTech Connect

    Baumann, Philipp Mandl-Weber, Sonja; Oduncu, Fuat; Schmidmaier, Ralf

    2009-02-01

    NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.

  10. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade

    PubMed Central

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995

  11. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade.

    PubMed

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995

  12. Active Targets for Experiments with Rare Isotopes

    NASA Astrophysics Data System (ADS)

    Wiedenhoever, Ingo

    2014-09-01

    Experimental studies of un-bound nuclear states and nuclear reaction rates relevant for astrophysical processes are an important area of research with rare isotope beams. Both topics require the development of specialized experimental methods to study resonant reactions. The so-called active target approach, where the target material becomes part of the detection process, promises to combine high yields from thicker targets and low background with high resolution. This presentation will describe the implementation of the active-target technique in the ANASEN detector, which was developed by researchers from Louisiana State University and Florida State University. ANASEN was used in a number of stable and rare iosotope experiments in α- and proton scattering, as well as (α , p) and (d , p) reactions at FSU's in-flight radioactive beam facility RESOLUT. ANASEN also was used to perform the first experiment, proton scattering off a 37K beam at the ReA3 facility. Another active-target detector with a very different approach is found in the Active Target Time-Projection Chamber, which was developed by a collaboration between researchers from MSU, the University of Notre Dame, Western Michigan University, LLNL, LBNL, and St. Mary's University (Canada). First experiments with an AT-TPC prototype have been reported. The talk will summarize the results from the first experiments with these systems, describe further development and future research projects. Experimental studies of un-bound nuclear states and nuclear reaction rates relevant for astrophysical processes are an important area of research with rare isotope beams. Both topics require the development of specialized experimental methods to study resonant reactions. The so-called active target approach, where the target material becomes part of the detection process, promises to combine high yields from thicker targets and low background with high resolution. This presentation will describe the implementation of the

  13. Innate Immune Activation and Subversion of Mammalian Functions by Leishmania Lipophosphoglycan

    PubMed Central

    Franco, Luis H.; Beverley, Stephen M.; Zamboni, Dario S.

    2012-01-01

    Leishmania promastigotes express several prominent glycoconjugates, either secreted or anchored to the parasite surface. Of these lipophosphoglycan (LPG) is the most abundant, and along with other phosphoglycan-bearing molecules, plays important roles in parasite infectivity and pathogenesis in both the sand fly and the mammalian host. Besides its contribution for parasite survival in the sand fly vector, LPG is important for modulation the host immune responses to favor the establishment of mammalian infection. This review will summarize the current knowledge regarding the role of LPG in Leishmania infectivity, focusing on the interaction of LPG and innate immune cells and in the subversion of mammalian functions by this molecule. PMID:22523640

  14. Innate immune activation and subversion of Mammalian functions by leishmania lipophosphoglycan.

    PubMed

    Franco, Luis H; Beverley, Stephen M; Zamboni, Dario S

    2012-01-01

    Leishmania promastigotes express several prominent glycoconjugates, either secreted or anchored to the parasite surface. Of these lipophosphoglycan (LPG) is the most abundant, and along with other phosphoglycan-bearing molecules, plays important roles in parasite infectivity and pathogenesis in both the sand fly and the mammalian host. Besides its contribution for parasite survival in the sand fly vector, LPG is important for modulation the host immune responses to favor the establishment of mammalian infection. This review will summarize the current knowledge regarding the role of LPG in Leishmania infectivity, focusing on the interaction of LPG and innate immune cells and in the subversion of mammalian functions by this molecule. PMID:22523640

  15. Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons.

    PubMed

    Baranauskas, Gytis; Martina, Marco

    2006-01-11

    Hodgkin and Huxley established that sodium currents in the squid giant axons activate after a delay, which is explained by the model of a channel with three identical independent gates that all have to open before the channel can pass current (the HH model). It is assumed that this model can adequately describe the sodium current activation time course in all mammalian central neurons, although there is no experimental evidence to support such a conjecture. We performed high temporal resolution studies of sodium currents gating in three types of central neurons. The results show that, within the tested voltage range from -55 to -35 mV, in all of these neurons, the activation time course of the current could be fit, after a brief delay, with a monoexponential function. The duration of delay from the start of the voltage command to the start of the extrapolated monoexponential fit was much smaller than predicted by the HH model. For example, in prefrontal cortex pyramidal neurons, at -46 mV and 12 degrees C, the observed average delay was 140 micros versus the 740 micros predicted by the two-gate HH model and the 1180 micros predicted by the three-gate HH model. These results can be explained by a model with two closed states and one open state. In this model, the transition between two closed states is approximately five times faster than the transition between the second closed state and the open state. This model captures all major properties of the sodium current activation. In addition, the proposed model reproduces the observed action potential shape more accurately than the traditional HH model. PMID:16407565

  16. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells.

    PubMed

    Vilcaes, Aldo A; Demichelis, Vanina Torres; Daniotti, Jose L

    2011-09-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  17. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  18. Targeted activation in deterministic and stochastic systems

    NASA Astrophysics Data System (ADS)

    Eisenhower, Bryan; Mezić, Igor

    2010-02-01

    Metastable escape is ubiquitous in many physical systems and is becoming a concern in engineering design as these designs (e.g., swarms of vehicles, coupled building energetics, nanoengineering, etc.) become more inspired by dynamics of biological, molecular and other natural systems. In light of this, we study a chain of coupled bistable oscillators which has two global conformations and we investigate how specialized or targeted disturbance is funneled in an inverse energy cascade and ultimately influences the transition process between the conformations. We derive a multiphase averaged approximation to these dynamics which illustrates the influence of actions in modal coordinates on the coarse behavior of this process. An activation condition that predicts how the disturbance influences the rate of transition is then derived. The prediction tools are derived for deterministic dynamics and we also present analogous behavior in the stochastic setting and show a divergence from Kramers activation behavior under targeted activation conditions.

  19. Regulation of the expression and activity of Unr in mammalian cells.

    PubMed

    Anderson, Emma C; Catnaigh, Pól Ó

    2015-12-01

    Unr (upstream of N-ras) is a post-transcriptional regulator of gene expression, essential for mammalian development and mutated in many human cancers. The expression of unr is itself regulated at many levels; transcription of unr, which also affects expression of the downstream N-ras gene, is tissue and developmental stage-dependent and is repressed by c-Myc and Max (Myc associated factor X). Alternative splicing gives rise to six transcript variants, which include three different 5'-UTRs. The transcripts are further diversified by the use of three alternative polyadenylation signals, which governs whether AU-rich instability elements are present in the 3'-UTR or not. Translation of at least some unr transcripts can occur by internal initiation and is regulated in a cell-cycle-dependent manner; binding of PTB (polypyrimidine tract-binding protein) and Unr to the 5'-UTR inhibits translation, but these are displaced by heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNPC1/C2) during mitosis to stimulate translation. Finally, Unr is post-translationally modified by phosphorylation and lysine acetylation, although it is not yet known how these modifications affect Unr activity. PMID:26614667

  20. Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus

    PubMed Central

    Foley, Nicholas C.; Tong, Tina Y.; Foley, Duncan; LeSauter, Joseph; Welsh, David K.

    2012-01-01

    Because we can observe oscillation within individual cells and in the tissue as a whole, the suprachiasmatic nucleus (SCN) presents a unique system in the mammalian brain for the analysis of individual cells and the networks of which they are a part. While dispersed cells of the SCN sustain circadian oscillations in isolation, they are unstable oscillators that require network interactions for robust cycling. Using cluster analysis to assess bioluminescence in acute brain slices from PERIOD2∷Luciferase (PER2∷LUC) knockin mice, and immunochemistry of SCN from animals harvested at various circadian times, we assessed the spatiotemporal activation patterns of PER2 to explore the emergence of a coherent oscillation at the tissue level. The results indicate that circadian oscillation is characterized by a stable daily cycle of PER2 expression involving orderly serial activation of specific SCN subregions, followed by a silent interval, with substantial symmetry between the left and right side of the SCN. The biological significance of the clusters identified in living slices was confirmed by co-expression of LUC and PER2 in fixed, immunochemically stained brain sections, with the spatiotemporal pattern of LUC expression resembling that revealed in the cluster analysis of bioluminescent slices. We conclude that the precise timing of PER2 expression within individual neurons is dependent on their location within the nucleus, and that small groups of neurons within the SCN give rise to distinctive and identifiable subregions. We propose that serial activation of these subregions is the basis of robustness and resilience of the daily rhythm of the SCN. PMID:21488990

  1. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo

    PubMed Central

    Sharon, Chetna; Baranwal, Somesh; Patel, Nirmita J.; Rodriguez-Agudo, Daniel; Pandak, William M.; Majumdar, Adhip PN; Krystal, Geoffrey; Patel, Bhaumik B.

    2015-01-01

    We observed a co-upregulation of the insulin-like growth factor receptor (IGF-1R)/AKT/mammalian target of rapamycin (mTOR) [InAT] axis and the mevalonate-isoprenoid biosynthesis (MIB) pathways in colorectal cancer stem cells (CSCs) in an unbiased approach. Hence, we hypothesized that the InAT axis might regulate the MIB pathway to govern colorectal CSCs growth. Stimulation (IGF-1) or inhibition (IGF-1R depletion and pharmacological inhibition of IGF-1R/mTOR) of the InAT axis produced induction or attenuation of CSC growth as well as expression of CSC markers and self-renewal factors respectively. Intriguingly, activation of the InAT axis (IGF-1) caused significant upregulation of the MIB pathway genes (both mRNA and protein); while its inhibition produced the opposite effects in colonospheres. More importantly, supplementation with dimethylallyl- and farnesyl-PP, MIB metabolites downstream of isopentenyl-diphosphate delta isomerase (IDI), but not mevalonate and isopentenyl-pp that are upstream of IDI, resulted in a near-complete reversal of the suppressive effect of the InAT axis inhibitors on CSCs growth. The latter findings suggest a specific regulation of the MIB pathway by the InAT axis distal to the target of statins that inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Effects of IGF-1R inhibition on colonic CSCs proliferation and the MIB pathway were confirmed in an ‘in vivo’ HCT-116 xenograft model. These observations establish a novel mechanistic link between the InAT axis that is commonly deregulated in colorectal cancer and the MIB pathway in regulation of colonic CSCs growth. Hence, the InAT-MIB corridor is a novel target for developing paradigm shifting optimum anti-CSCs therapies for colorectal cancer. PMID:25895029

  2. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  3. Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex Controlling Mammalian Target of Rapamycin Complex 1 Signaling.

    PubMed

    Andrzejewska, Zuzanna; Nevo, Nathalie; Thomas, Lucie; Chhuon, Cerina; Bailleux, Anne; Chauvet, Véronique; Courtoy, Pierre J; Chol, Marie; Guerrera, Ida Chiara; Antignac, Corinne

    2016-06-01

    Cystinosis is a rare autosomal recessive storage disorder characterized by defective lysosomal efflux of cystine due to mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin. Lysosomal cystine accumulation leads to crystal formation and functional impairment of multiple organs. Moreover, cystinosis is the most common inherited cause of renal Fanconi syndrome in children. Oral cysteamine therapy delays disease progression by reducing intracellular cystine levels. However, because cysteamine does not correct all complications of cystinosis, including Fanconi syndrome, we hypothesized that cystinosin could have novel roles in addition to transporting cystine out of the lysosome. By coimmunoprecipitation experiments and mass spectrometry, we found cystinosin interacts with almost all components of vacuolar H(+)-ATPase and the Ragulator complex and with the small GTPases Ras-related GTP-binding protein A (RagA) and RagC. Furthermore, the mammalian target of rapamycin complex 1 (mTORC1) pathway was downregulated in proximal tubular cell lines derived from Ctns(-/-) mice. Decrease of lysosomal cystine levels by cysteamine did not rescue mTORC1 activation in these cells, suggesting that the downregulation of mTORC1 is due to the absence of cystinosin rather than to the accumulation of cystine. Our results show a dual role for cystinosin as a cystine transporter and as a component of the mTORC1 pathway, and provide an explanation for the appearance of Fanconi syndrome in cystinosis. Furthermore, this study highlights the need to develop new treatments not dependent on lysosomal cystine depletion alone for this devastating disease. PMID:26449607

  4. Mammalian target of rapamycin/p70 ribosomal S6 protein kinase signaling is altered by sevoflurane and/or surgery in aged rats.

    PubMed

    Liu, Yongzhe; Ma, Li; Jiao, Linbo; Gao, Minglong; Guo, Wenzhi; Chen, Lin; Pan, Ningling; Ma, Yaqun

    2015-12-01

    The mammalian target of rapamycin (mTOR)/p70 ribosomal S6 protein kinase (p70S6k) pathway exerts anti‑apoptotic effects that may contribute to disease pathogenesis. The memory impairment in patients with Alzheimer's disease (AD) has been suggested to be contributed to by abnormal mTOR signaling. The aim of the current study was to investigate the association between sevoflurane and/or surgery and AD through the mTOR/p70S6K signaling pathway. Sprague‑Dawley rats were randomly assigned to the sevoflurane, surgery or control groups. The animals in the surgery group received a partial hepatectomy under sevoflurane anesthesia. The hippocampal levels of phosphorylated (p)‑mTOR, p‑p70S6K, caspase‑3 and p‑tau/total (t)‑tau were analyzed. The Morris water maze (MWM) was used to evaluate cognitive function following treatment. The levels of p‑mTOR and p‑p70S6K were reduced, whereas caspase‑3 levels were increased in the surgery group compared with the sevoflurane group. The p‑tau/t‑tau levels were increased, however, tau mRNA was unaffected by sevoflurane and/or surgery. The rats in the surgery group required a significantly longer time to locate the platform in the MWM test compared with the control and sevoflurane groups. Sevoflurane treatment and/or surgery reduced anti‑apoptotic activity, and the postoperative cognitive dysfunction following surgery may be due to mTOR signaling pathway inhibition in aged rats. Increased neuronal apoptosis and tau phosphorylation are suggested to be involved in the association between anesthesia and AD occurrence. PMID:26497858

  5. Mammalian Target of Rapamycin Inhibitor Induced Complete Remission of a Recurrent Subependymal Giant Cell Astrocytoma in a Patient Without Features of Tuberous Sclerosis Complex.

    PubMed

    Appalla, Deepika; Depalma, Andres; Calderwood, Stanley

    2016-07-01

    The majority of patients with subependymal giant cell astrocytoma (SEGA) have tuberous sclerosis complex (TSC). In such patients, the mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to induce responses. Isolated SEGA have been reported in patients without clinical or genetic features of TSC. The treatment of these patients with everolimus has not previously been reported. We treated a patient with a recurrent isolated SEGA with an mTOR inhibitor. The patient tolerated therapy well and had a sustained complete remission. MTOR inhibitors may be useful for the treatment of isolated SEGA. Further study is warranted. PMID:26929034

  6. Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells

    PubMed Central

    Mellert, Hestia S.; McMahon, Steven B.

    2009-01-01

    Protein phosphorylation is dynamically regulated in eukaryotic cells via modulation of the enzymatic activity of kinases and phosphatases. Like phosphorylation, acetylation has emerged as a critical regulatory protein modification that is dynamically altered in response to diverse cellular cues. Moreover, acetyltransferases and deacetylases are tightly linked to cellular signaling pathways. Recent studies provide clues about the mechanisms utilized to regulate acetyltransferases and deacetylases. The therapeutic value of deacetylase inhibitors suggests that understanding acetylation pathways will directly impact our ability to rationally target these enzymes in patients. Recently discovered mechanisms which directly regulate the catalytic activity of acetyltransferases and deacetylases provide exciting new insights about these enzymes. PMID:19819149

  7. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    NASA Astrophysics Data System (ADS)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  8. Bacterial Ortholog of Mammalian Translocator Protein (TSPO) with Virulence Regulating Activity

    PubMed Central

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G. J.

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10−5 M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies. PMID:19564920

  9. Bacterial ortholog of mammalian translocator protein (TSPO) with virulence regulating activity.

    PubMed

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G J

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5) M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies. PMID:19564920

  10. GSK621 Targets Glioma Cells via Activating AMP-Activated Protein Kinase Signalings

    PubMed Central

    Jiang, Hong; Liu, Wei; Zhan, Shi-Kun; Pan, Yi-Xin; Bian, Liu-Guan; Sun, Bomin; Sun, Qing-Fang; Pan, Si-Jian

    2016-01-01

    Here, we studied the anti-glioma cell activity by a novel AMP-activated protein kinase (AMPK) activator GSK621. We showed that GSK621 was cytotoxic to human glioma cells (U87MG and U251MG lines), possibly via provoking caspase-dependent apoptotic cell death. Its cytotoxicity was alleviated by caspase inhibitors. GSK621 activated AMPK to inhibit mammalian target of rapamycin (mTOR) and downregulate Tetraspanin 8 (Tspan8) in glioma cells. AMPK inhibition, through shRNA knockdown of AMPKα or introduction of a dominant negative (T172A) AMPKα, almost reversed GSK621-induced AMPK activation, mTOR inhibition and Tspan8 degradation. Consequently, GSK621’s cytotoxicity in glioma cells was also significantly attenuated by AMPKα knockdown or mutation. Further studies showed that GSK621, at a relatively low concentration, significantly potentiated temozolomide (TMZ)’s sensitivity and lethality against glioma cells. We summarized that GSK621 inhibits human glioma cells possibly via activating AMPK signaling. This novel AMPK activator could be a novel and promising anti-glioma cell agent. PMID:27532105

  11. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction.

    PubMed

    Li, Nan; Cheng, C Yan

    2016-09-01

    mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier "leaky"; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier "tighter". These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis. PMID:26957088

  12. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A member of the sirtuin family of NAD (+) dependent deacetylases, SIRT3, is identified as one of the major mitochondrial deacetylases, located in mammalian mitochondria responsible for deacetylation of several metabolic enzymes and components of oxidative phosphorylation. Regulation of protein deace...

  13. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides.

    PubMed Central

    Rein, T; Zorbas, H; DePamphilis, M L

    1997-01-01

    ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins. PMID:8972222

  14. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. PMID:24815694

  15. Δ²,³-ivermectin ethyl secoester, a conjugated ivermectin derivative with leishmanicidal activity but without inhibitory effect on mammalian P-type ATPases.

    PubMed

    Noël, François; Pimenta, Paulo Henrique Cotrim; Dos Santos, Anderson Rouge; Tomaz, Erick Carlos Loureiro; Quintas, Luis Eduardo Menezes; Kaiser, Carlos Roland; Silva, Claudia Lucia Martins; Férézou, Jean-Pierre

    2011-01-01

    Looking at a new putative target for the large spectrum antiparasitic drug ivermectin, we recently showed that avermectin-derived drugs are active against promastigote and amastigote forms of Leishmania amazonensis at low micromolar concentrations. However, we then reported that at this concentration range ivermectin is also able to inhibit three important mammalian P-type ATPases so that unacceptable adverse effects could occur if this drug were used at such high doses therapeutically. The present work aimed to test the activity of ten ivermectin analogs on these rat ATPases in search of a compound with similar leishmanicidal activity but with no effect on the mammalian (host) ATPases at effective concentrations. We synthesized three new ivermectin analogs for testing on rat SERCA (1a and 1b), Na+, K+-ATPase (α₁ and α₂/α₃ isoforms) and H+/K+-ATPase activity, along with seven analogs already characterized for their leishmanicidal activity. Our main finding is that one of the prepared derivatives, Δ²,³-ivermectin ethyl secoester 8, is equipotent to ivermectin 1 for the in vitro leishmanicidal effects but is nearly without effect on the rat ATPases, indicating that it could have a better therapeutic index in vivo and could serve as a candidate for hit-to-lead progression. This conclusion is further supported by the fact that compound 8 produced only 6% (vs 77% for ivermectin) inhibition of the human kidney enzyme at 5 μM, a concentration corresponding to the IC₅₀ for the activity against L. amazonensis amastigotes. PMID:21088826

  16. Active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.

    2013-05-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  17. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  18. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    PubMed

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  19. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis.

    PubMed Central

    Rutter, Guy A; Da Silva Xavier, Gabriela; Leclerc, Isabelle

    2003-01-01

    AMPK (5'-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain. PMID:12839490

  20. Active Debris Removal of Multiple Priority Targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Flegel, Sven Kevin; Vörsmann, Peter; Wiedemann, Carsten; Gelhaus, Johannes; Moeckel, Marek; Kebschull, Christopher

    2012-07-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 kilometers with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any future launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target. In this paper several systems, e.g. chemical and electrical engines are analysed with the main focus on removing multiple targets within one single mission. The service satellite has to undock from the previously de-orbited target in order to start the rendezvous and docking phase for a subsequent target. The targets are chosen from a previously defined priority list in order to enhance the mission

  1. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide.

    PubMed

    Klüppel, Michael

    2011-05-01

    Proteoglycans carrying chondroitin sulfate side chains have been shown to fulfill important biological functions in development, disease, and signaling. One area of considerable interest is the functional importance of chondroitin sulfates as inhibitors of the regeneration of axonal projections in the mammalian central nervous system. In animal models of spinal cord injury, injections of the enzyme Chondroitinase ABC from the bacterium Proteus vulgaris into the lesion site leads to degradation of chondroitin sulfates, and promotes axonal regeneration and significant functional recovery. Here, a mammalian expression system of an epitope-tagged Chondroitinase ABC protein is described. It is demonstrated that the addition of a eukaryotic secretion signal sequence to the N-terminus of the bacterial Chondroitinase ABC sequence allowed secretion, but interfered with function of the secreted enzyme. In contrast, expression of the Chondroitinase ABC gene without N-terminal eukaryotic secretion sequence or bacterial hydrophobic leader sequence led to efficient secretion of a biologically active Chondroitinase ABC protein from both immortalized and primary cells. Moreover, the C-terminal epitope tag could be utilized to follow expression of this protein. This novel Chondroitinase ABC gene is a valuable tool for a better understanding of the in vivo roles of chondroitin sulfates in mammalian development and disease, as well as in gene therapy approaches, including the treatment of spinal chord injuries. PMID:21213020

  2. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    NASA Astrophysics Data System (ADS)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  3. Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site engineering of sphingomyelin synthases.

    PubMed

    Kol, Matthijs; Panatala, Radhakrishnan; Nordmann, Mirjana; Swart, Leoni; van Suijlekom, Leonie; Cabukusta, Birol; Hilderink, Angelika; Grabietz, Tanja; Mina, John G M; Somerharju, Pentti; Korneev, Sergei; Tafesse, Fikadu G; Holthuis, Joost C M

    2016-07-01

    SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes. PMID:27165857

  4. Anti-inflammatory and antiplatelet activities of plasma are conserved across twelve mammalian species.

    PubMed

    Ahmed, Sagheer; Gul, Saima; Idris, Fazean; Hussain, Abrar; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E; Moga, Marius

    2014-01-01

    Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins. PMID:25090125

  5. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA

    PubMed Central

    Fortes, Puri; Cuevas, Yolanda; Guan, Fei; Liu, Peng; Pentlicky, Sara; Jung, Stephen P.; Martínez-Chantar, Maria L.; Prieto, Jesús; Rowe, David; Gunderson, Samuel I.

    2003-01-01

    Reducing or eliminating expression of a given gene is likely to require multiple methods to ensure coverage of all of the genes in a given mammalian cell. We and others [Furth, P. A., Choe, W. T., Rex, J. H., Byrne, J. C., and Baker, C. C. (1994) Mol. Cell. Biol. 14, 5278–5289] have previously shown that U1 small nuclear (sn) RNA, both natural or with 5′ end mutations, can specifically inhibit reporter gene expression in mammalian cells. This inhibition occurs when the U1 snRNA 5′ end base pairs near the polyadenylation signal of the reporter gene's pre-mRNA. This base pairing inhibits poly(A) tail addition, a key, nearly universal step in mRNA biosynthesis, resulting in degradation of the mRNA. Here we demonstrate that expression of endogenous mammalian genes can be efficiently inhibited by transiently or stably expressed 5′ end-mutated U1 snRNA. Also, we determine the inhibitory mechanism and establish a set of rules to use this technique and to improve the efficiency of inhibition. Two U1 snRNAs base paired to a single pre-mRNA act synergistically, resulting in up to 700-fold inhibition of the expression of specific reporter genes and 25-fold inhibition of endogenous genes. Surprisingly, distance from the U1 snRNA binding site to the poly(A) signal is not critical for inhibition, instead the U1 snRNA must be targeted to the terminal exon of the pre-mRNA. This could reflect a disruption by the 5′ end-mutated U1 snRNA of the definition of the terminal exon as described by the exon definition model. PMID:12826613

  6. Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases.

    PubMed

    Vaidhyanathan, Shruthi; Wilken-Resman, Brynna; Ma, Daniel J; Parrish, Karen E; Mittapalli, Rajendar K; Carlson, Brett L; Sarkaria, Jann N; Elmquist, William F

    2016-02-01

    Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood-brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood-brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show that

  7. Activation and proliferation of lymphocytes and other mammalian cells in microgravity

    NASA Technical Reports Server (NTRS)

    Cogoli, A.; Cogoli-Greuter, M.

    1997-01-01

    The experimental findings reviewed in this chapter support the following conclusions: Proliferation. Human T-lymphocytes, associated with monocytes as accessory cells, show dramatic changes in the centrifuge, in the clinostat and in space. In free-floating cells the mitogenic response is depressed by 90% in microgravity, whereas in cells attached to a substratum activation is enhanced by 100% compared to 1-G ground and inflight controls. The duration of phase G1 of the mitotic cycle of HeLa cells is reduced in hypergravity, resulting in an increased proliferation rate. Other systems like Friend cells and WI38 human embryonic lung cells do not show significant changes. Genetic expression and signal transduction. T-lymphocytes and monocytes show important changes in the expression of cytokines like interleukin-1, interleukin-2, interferon-gamma and tumor necrosis factor. The data from space experiments in Spacelab, Space Shuttle mid-deck, and Biokosmos have helped to clarify certain aspects of the mechanism of T-cell activation. Epidermoid A431 cells show changes in the genetic expression of the proto-oncogenes c-fos and c-jun in the clinostat and in sounding rockets. Membrane function, in particular the binding of ligates as first messengers of a signal, is not changed in most of the cell systems in microgravity. Morphology and Mortility. Free cells, lymphocytes in particular, are able to move and form aggregates in microgravity, indicating that cell-cell contacts and cell communications do take place in microgravity. Dramatic morphological and ultrastructural changes are not detected in cells cultured in microgravity. Important experiments with single mammalian cells, including immune cells, were carried out recently in three Spacelab flights, (SL-J, D-2, and IML-2 in 1992, 1993, and 1994, respectively). The results of the D-2 mission have been published in ref. 75; those of the IML-2 mission in ref. 76. Finally, many cell biology experiments in space have suffered

  8. Development of a model describing regulation of casein synthesis by the mammalian target of rapamycin (mTOR) signaling pathway in response to insulin, amino acids, and acetate.

    PubMed

    Castro, J J; Arriola Apelo, S I; Appuhamy, J A D R N; Hanigan, M D

    2016-08-01

    To improve dietary protein use efficiency in lactating cows, mammary protein synthesis responses to AA, energy substrates, and hormones must be better understood. These entities exert their effects through stimulation of mRNA translation via control of initiation and elongation rates at the cellular level. A central protein kinase of this phenomenon is the mammalian target of rapamycin (mTOR), which transfers the nutritional and hormonal stimuli onto a series of proteins downstream through a cascade of phosphorylation reactions that ultimately affect protein synthesis. The objective of this work was to further develop an existing mechanistic model of mTOR phosphorylation responses to insulin and total essential AA to include the effects of specific essential AA and acetate mediated by signaling proteins including protein kinase B (Akt), adenosine monophosphate activated protein kinase (AMPK), and mTOR and to add a representation of milk protein synthesis. Data from 6 experiments in MAC-T cells and mammary tissue slices previously conducted in our laboratory were assembled and used to parameterize the dynamic system of differential equations representing Akt, AMPK, and mTOR in their phosphorylated and dephosphorylated states and the resulting regulation of milk protein synthesis. The model predicted phosphorylated Akt, mTOR, AMPK, and casein synthesis rates with root mean square prediction errors of 16.8, 28.4, 33.0, and 54.9%, respectively. All other dependent variables were free of mean and slope bias, indicating an adequate representation of the data. Whereas mTOR was not very sensitive to changes in insulin or acetate levels, it was highly sensitive to leucine and isoleucine, and this signal appeared to be effectively transduced to casein synthesis. Although prior work had observed a relationship with additional essential AA, and data supporting those conclusions were present in the data set, we were unable to derive significant relationships with any essential

  9. Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity

    SciTech Connect

    Meyer, Ralph G. . E-mail: meyerg@vet.upenn.edu; Meyer-Ficca, Mirella L.; Whatcott, Clifford J.; Jacobson, Elaine L.; Jacobson, Myron K.

    2007-08-01

    Poly(ADP-ribose)glycohydrolase (PARG) is the major enzyme capable of rapidly hydrolyzing poly(ADP-ribose) (PAR) formed by the diverse members of the PARP enzyme family. This study presents an alternative splice mechanism by which two novel PARG protein isoforms of 60 kDa and 55 kDa are expressed from the human PARG gene, termed hPARG60 and hPARG55, respectively. Homologous forms were found in the mouse (mPARG63 and mPARG58) supporting the hypothesis that expression of small PARG isoforms is conserved among mammals. A PARG protein of {approx} 60 kDa has been described for decades but with its genetic basis unknown, it was hypothesized to be a product of posttranslational cleavage of larger PARG isoforms. While this is not excluded entirely, isolation and expression of cDNA clones from different sources of RNA indicate that alternative splicing leads to expression of a catalytically active hPARG60 in multiple cell compartments. A second enzyme, hPARG55, that can be expressed through alternative translation initiation from hPARG60 transcripts is strictly targeted to the mitochondria. Functional studies of a mitochondrial targeting signal (MTS) in PARG exon IV suggest that hPARG60 may be capable of shuttling between nucleus and mitochondria, which would be in line with a proposed function of PAR in genotoxic stress-dependent, nuclear-mitochondrial crosstalk.

  10. A fluorescent lipid analogue can be used to monitor secretory activity and for isolation of mammalian secretion mutants.

    PubMed Central

    Ktistakis, N T; Kao, C Y; Wang, R H; Roth, M G

    1995-01-01

    The use of reporter proteins to study the regulation of secretion has often been complicated by posttranslational processing events that influence the secretion of certain proteins, but are not part of the cellular mechanisms that specifically regulate secretion. This has been a particular limitation for the isolation of mammalian secretion mutants, which has typically been a slow process. To provide a reporter of secretory activity independent of protein processing events, cells were labeled with the fluorescent lipid analogue C5-DMB-ceramide (ceramide coupled to the fluorophore boron dipyrromethene difluoride) and its secretion was followed by fluorescence microscopy and fluorescence-activated cell sorting. Brefeldin A, which severely inhibits secretion in Chinese hamster ovary cells, blocked secretion of C5-DMB-ceramide. At high temperature, export of C5-DMB-ceramide was inhibited in HRP-1 cells, which have a conditional defect in secretion. Using C5-DMB-ceramide as a reporter of secretory activity, several different pulse-chase protocols were designed that selected mutant Chinese hamster ovary cells that were resistant to the drug brefeldin A and others that were defective in the transport of glycoproteins to the cell surface. Mutant cells of either type were identified in a mutagenized population at a frequency of 10(-6). Thus, the fluorescent lipid C5-DMB-ceramide can be used as a specific marker of secretory activity, providing an efficient, general approach for isolating mammalian cells with defects in the secretory pathway. Images PMID:7787242

  11. A novel analytical method to evaluate directly catalase activity of microorganisms and mammalian cells by ESR oximetry.

    PubMed

    Nakamura, Keisuke; Kanno, Taro; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro

    2010-09-01

    Electron spin resonance (ESR) oximetry technique was applied for analysis of catalase activity in the present study. Catalase activity was evaluated by measuring oxygen from the reaction between hydrogen peroxide (H(2)O(2)) and catalase-positive cells. It was demonstrated that the ESR spectra of spin-label probes, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO) and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (4-maleimido-TEMPO) in the presence of H(2)O(2) were broadened with the concentrations of catalase. It was possible to make a calibration curve for catalase activity by peak widths of the spectra of each spin-label probe, which are broadened dependently on catalase concentrations. The broadened ESR spectra were also observed when the catalase-positive micro-organisms or the mammalian cells originally from circulating monocytes/macrophages were mixed with TEMPOL and H(2)O(2). Meanwhile, catalase-negative micro-organisms caused no broadening change of ESR spectra. The present study indicates that it is possible to evaluate directly the catalase activity of various micro-organisms and mammalian cells by using an ESR oximetry technique. PMID:20815766

  12. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

    PubMed

    Austenaa, Liv M I; Barozzi, Iros; Simonatto, Marta; Masella, Silvia; Della Chiara, Giulia; Ghisletti, Serena; Curina, Alessia; de Wit, Elzo; Bouwman, Britta A M; de Pretis, Stefano; Piccolo, Viviana; Termanini, Alberto; Prosperini, Elena; Pelizzola, Mattia; de Laat, Wouter; Natoli, Gioacchino

    2015-11-01

    Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. PMID:26593720

  13. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability

    PubMed Central

    Lange, Sabine S.; Tomida, Junya; Boulware, Karen S.; Bhetawal, Sarita; Wood, Richard D.

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents. PMID:26727495

  14. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  15. Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity.

    PubMed

    Lu, Yong; Anderson, W Ray; Zhang, Hua; Feng, Siqian; Pick, Leslie

    2013-05-01

    Drosophila Ftz-F1 is an orphan nuclear receptor required for segmentation and metamorphosis. Its mammalian orthologs, SF-1 and LRH-1, function in sexual development and homeostasis, and have been implicated in stem cell pluripotency maintenance and tumorigenesis. These NR5A family members bind DNA as monomers and strongly activate transcription. However, controversy exists as to whether their activity is regulated by ligand-binding. Structural evidence suggested that SF-1 and human LRH-1 bind regulatory ligands, but mouse LRH-1 and Drosophila FTZ-F1 are active in the absence of ligand. We found that Dm-Ftz-F1 and mLRH-1, thought not to bind ligand, or mSF-1 and hLRH-1, predicted to bind ligand, each efficiently rescued the defects of Drosophila ftz-f1 mutants. Further, each correctly activated expression of a Dm-Ftz-F1 target gene in Drosophila embryos. The functional equivalence of ftz-f1 orthologs in these sensitive in vivo assays argues against specific activating ligands for NR5A family members. PMID:23340581

  16. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1. PMID:26431207

  17. Combined antitumor gene therapy with herpes simplex virus-thymidine kinase and short hairpin RNA specific for mammalian target of rapamycin.

    PubMed

    Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran

    2015-12-01

    A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy. PMID:26459571

  18. Specific and Nonspecific Membrane-binding Determinants Cooperate in Targeting Phosphatidylinositol Transfer Protein β-Isoform to the Mammalian Trans-Golgi Network

    PubMed Central

    Phillips, Scott E.; Ile, Kristina E.; Boukhelifa, Malika; Huijbregts, Richard P.H.; Bankaitis, Vytas A.

    2006-01-01

    Phosphatidylinositol transfer proteins (PITPs) regulate the interface between lipid metabolism and specific steps in membrane trafficking through the secretory pathway in eukaryotes. Herein, we describe the cis-acting information that controls PITPβ localization in mammalian cells. We demonstrate PITPβ localizes predominantly to the trans-Golgi network (TGN) and that this localization is independent of the phospholipid-bound state of PITPβ. Domain mapping analyses show the targeting information within PITPβ consists of three short C-terminal specificity elements and a nonspecific membrane-binding element defined by a small motif consisting of adjacent tryptophan residues (the W202W203 motif). Combination of the specificity elements with the W202W203 motif is necessary and sufficient to generate an efficient TGN-targeting module. Finally, we demonstrate that PITPβ association with the TGN is tolerant to a range of missense mutations at residue serine 262, we describe the TGN localization of a novel PITPβ isoform with a naturally occurring S262Q polymorphism, and we find no other genetic or pharmacological evidence to support the concept that PITPβ localization to the TGN is obligately regulated by conventional protein kinase C (PKC) or the Golgi-localized PKC isoforms δ or ε. These latter findings are at odds with a previous report that conventional PKC-mediated phosphorylation of residue Ser262 is required for PITPβ targeting to Golgi membranes. PMID:16540520

  19. Non-enzymic nature of the pyridine haemochrome-cleaving activity of mammalian tissue extracts (`haem α-methyl oxygenase')

    PubMed Central

    Colleran, Emer; Carra, P. Ó

    1970-01-01

    1. The pyridine haemochrome-cleaving activity of extracts from mammalian liver and other tissues is shown conclusively to be entirely non-enzymic in nature and attributable to coupled oxidation with ascorbate. 2. Reduced glutathione probably contributes to the activity indirectly by continuously regenerating the ascorbate to the reduced form. 3. The cleavage shows no specificity for the α-methine bridge of pyridine haemochrome. 4. Results are presented suggesting some probable reasons for the erroneous characterization of the activity as an α-methine-specific haem-cleaving enzyme (`haem α-methenyl oxygenase') by Nakajima and co-workers (e.g. Nakajima, Takemura, Nakajima & Yamaoka, 1963; Nakajima & Gray, 1967). PMID:5492854

  20. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins. The potential for selective inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycins are a heterologous family of nucleoside antibiotics that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg2+ complex established as a transition state analog for hexosamine-1-phosphate: prenol pho...

  1. Class IIa Histone Deacetylases are Hormone-activated regulators of FOXO and Mammalian Glucose Homeostasis

    PubMed Central

    Mihaylova, Maria M.; Vasquez, Debbie S.; Ravnskjaer, Kim; Denechaud, Pierre-Damien; Yu, Ruth T.; Alvarez, Jacqueline G.; Downes, Michael; Evans, Ronald M.; Montminy, Marc; Shaw, Reuben J.

    2011-01-01

    SUMMARY Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, Class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, Class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of Foxo family transcription factors. Loss of Class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of Class IIa HDACs in mouse models of Type 2 Diabetes ameliorates hyperglycemia, suggesting that inhibitors of Class I/II HDACs may be potential therapeutics for metabolic syndrome. PMID:21565617

  2. Definition of two agonist types at the mammalian cold-activated channel TRPM8.

    PubMed

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. PMID:27449282

  3. The Atlantic Salmon MHC class II alpha and beta promoters are active in mammalian cell lines.

    PubMed

    Vestrheim, O; Lundin, M; Syed, M

    2007-01-01

    The major histocompatibility complex class II (MHCII) genes are only constitutively expressed in certain immune response cells such as B cells, macrophages, dendritic cells and other antigen presenting cells. This cell specific expression pattern and the presence of conserved regions such as the X-, X2-, Y-, and W-boxes make the MHCII promoters especially interesting as vector constructs. We tested whether the Atlantic salmon (Salmo salar L.) MHCII promoters can function in cell lines from other organisms. We found that the salmon MHCII alpha and MHCII beta promoters could drive expression of a LacZ reporter gene in adherent lymphoblast cell lines from dog (DH82) and rabbit (HybL-L). This paper shows that the promoters of Atlantic salmon MHCII alpha and beta genes can function in mammalian cell lines. PMID:17934904

  4. Effects of intermediates between vitamins K(2) and K(3) on mammalian DNA polymerase inhibition and anti-inflammatory activity.

    PubMed

    Mizushina, Yoshiyuki; Maeda, Jun; Irino, Yasuhiro; Nishida, Masayuki; Nishiumi, Shin; Kondo, Yasuyuki; Nishio, Kazuyuki; Kuramochi, Kouji; Tsubaki, Kazunori; Kuriyama, Isoko; Azuma, Takeshi; Yoshida, Hiromi; Yoshida, Masaru

    2011-01-01

    Previously, we reported that vitamin K(3) (VK(3)), but not VK(1) or VK(2) (=MK-4), inhibits the activity of human DNA polymerase γ (pol γ). In this study, we chemically synthesized three intermediate compounds between VK(2) and VK(3), namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; whereas VK(3) was the strongest inhibitor of human pol γ, an A-family pol. MK-2 potently inhibited the activity of all animal species of pol tested, and its inhibitory effect on pol λ activity was the strongest with an IC(50) value of 24.6 μM. However, MK-2 did not affect the activity of plant or prokaryotic pols, or that of other DNA metabolic enzymes such as primase of pol α, RNA polymerase, polynucleotide kinase or deoxyribonuclease I. Because we previously found a positive relationship between pol λ inhibition and anti-inflammatory action, we examined whether these compounds could inhibit inflammatory responses. Among the five compounds tested, MK-2 caused the greatest reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute inflammation in mouse ear. In addition, in a cell culture system using mouse macrophages, MK-2 displayed the strongest suppression of the production of tumor necrosis factor (TNF)-α induced by lipopolysaccharide (LPS). Moreover, MK-2 was found to inhibit the action of nuclear factor (NF)-κB. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of MK-2 in mice led to suppression of TNF-α production in serum. In conclusion, this study has identified VK(2) and VK(3) intermediates, such as MK-2, that are promising anti-inflammatory candidates. PMID:21541047

  5. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  6. How targets select activation or repression in response to Wnt.

    PubMed

    Murgan, Sabrina; Bertrand, Vincent

    2015-01-01

    In metazoans, the Wnt signaling pathway plays a key role in the regulation of binary decisions during development. During this process different sets of target genes are activated in cells where the Wnt pathway is active (classic target genes) versus cells where the pathway is inactive (opposite target genes). While the mechanism of transcriptional activation is well understood for classic target genes, how opposite target genes are activated in the absence of Wnt remains poorly characterized. Here we discuss how the key transcriptional mediator of the Wnt pathway, the TCF family member POP-1, regulates opposite target genes during C. elegans development. We examine recent findings suggesting that the direction of the transcriptional output (activation or repression) can be determined by the way TCF is recruited and physically interacts with its target gene. PMID:27123368

  7. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation

    PubMed Central

    Barker, Nick; Hurlstone, Adam; Musisi, Hannah; Miles, Antony; Bienz, Mariann; Clevers, Hans

    2001-01-01

    Wnt-induced formation of nuclear Tcf–β-catenin complexes promotes transcriptional activation of target genes involved in cell fate decisions. Inappropriate expression of Tcf target genes resulting from mutational activation of this pathway is also implicated in tumorigenesis. The C-terminus of β-catenin is indispensable for the transactivation function, which probably reflects the presence of binding sites for essential transcriptional coactivators such as p300/CBP. However, the precise mechanism of transactivation remains unclear. Here we demonstrate an interaction between β-catenin and Brg-1, a component of mammalian SWI/SNF and Rsc chromatin-remodelling complexes. A functional consequence of reintroduction of Brg-1 into Brg-1-deficient cells is enhanced activity of a Tcf-responsive reporter gene. Consistent with this, stable expression of inactive forms of Brg-1 in colon carcinoma cell lines specifically inhibits expression of endogenous Tcf target genes. In addition, we observe genetic interactions between the Brg-1 and β-catenin homologues in flies. We conclude that β-catenin recruits Brg-1 to Tcf target gene promoters, facilitating chromatin remodelling as a prerequisite for transcriptional activation. PMID:11532957

  8. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    PubMed Central

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  9. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    PubMed

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  10. Drug-Related Pneumonitis During Mammalian Target of Rapamycin Inhibitor Therapy: Radiographic Pattern-Based Approach in Waldenström Macroglobulinemia as a Paradigm

    PubMed Central

    Boswell, Erica N.; Hatabu, Hiroto; Ghobrial, Irene M.; Ramaiya, Nikhil H.

    2015-01-01

    Background. This study determined the frequency of drug-related pneumonitis during mammalian target of rapamycin (mTOR) inhibitor therapy in Waldenström macroglobulinemia patients and investigated the imaging characteristics and radiographic patterns of pneumonitis. Materials and Methods. A total of 40 patients (23 men, 17 women; 43–84 years old) with Waldenström macroglobulinemia treated in 2 trials of the mTOR inhibitor everolimus were retrospectively studied. Chest computed tomography (CT) scans during therapy were reviewed for abnormalities suspicious for drug-related pneumonitis by the consensus of three radiologists, evaluating the extent, distributions, and specific findings. The radiographic patterns of pneumonitis were classified using the American Thoracic Society/European Respiratory Society classification of interstitial pneumonia. Results. Drug-related pneumonitis was noted in 23 patients (58%). The median time from the initiation of therapy to the onset of pneumonitis was 5.7 months. Lower lungs were involved in all 23 patients, with a higher extent than in the other zones (p < .001). The distribution was peripheral and lower in 11 patients (48%) and mixed and multifocal in 10 (44%). The findings were bilateral in 20 patients (87%). Ground glass opacities (GGOs) and reticular opacities were present in all 23 patients, with consolidation in 12, traction bronchiectasis in 2, and centrilobular nodularity in 1. The pattern of pneumonitis was classified as cryptogenic organizing pneumonia (COP) in 16 (70%) and nonspecific interstitial pneumonia (NSIP) in 7 (30%), with overlapping features of COP and NSIP in 7 patients. Conclusion. Drug-related pneumonitis was noted on CT in 58% of Waldenström macroglobulinemia patients treated with mTOR inhibitor therapy. Most common findings were bilateral GGOs and reticular opacities, with or without consolidation, in peripheral and lower lungs, demonstrating COP and NSIP patterns. Implications for Practice: The

  11. An active target concept for the electronuclear reactor

    SciTech Connect

    Grebyonkin, K.F.; Shzerebzov, A.L.; Kandiev, Ya.Z.; Maloyaroslavtsev, A.N.; Modin, V.N.; Orlov, A.I.; Peschkov, I.A.; Scherbakov, A.P.

    1995-12-31

    Preliminary identification of the components and efficiency estimations for the proposed (by Chelyabinsk-70) concept of active target for electronuclear reactor are goals of this work. (The electronuclear reactor comprises a high-energy proton acclerator, a high-atomic-number target (lead, tungsten) which produces neutrons from the protons, and a subcritical blanket.) Results of preliminary neutron and thermal-hydraulic simulations of the target are represented in the paper and preliminary detailing of the active target components is performed. It is shown that the use of active target can lead to an essential reduction of the requirements to the accelerator power without deterioration of the safety of the system.

  12. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    SciTech Connect

    Li, Kuiqing; Chen, Xu; Liu, Cheng; Gu, Peng; Li, Zhuohang; Wu, Shaoxu; Xu, Kewei; Lin, Tianxin; Huang, Jian

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  13. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells.

    PubMed

    Li, Kuiqing; Chen, Xu; Liu, Cheng; Gu, Peng; Li, Zhuohang; Wu, Shaoxu; Xu, Kewei; Lin, Tianxin; Huang, Jian

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. PMID:25791481

  14. Identification of the novel interacting partners of the mammalian target of rapamycin complex 1 in human CCRF-CEM and HEK293 cells.

    PubMed

    Rahman, Hazir; Qasim, Muhammad; Oellerich, Michael; Asif, Abdul R

    2014-01-01

    The present study was undertaken to identify proteins that interact with the mammalian target of rapamycin complex 1 (mTORC1) to enable it to carry out its crucial cell signaling functions. Endogenous and myc-tag mTORC1 was purified, in-gel tryptic digested and then identified by nano-LC ESI Q-TOF MS/MS analysis. A total of nine novel interacting proteins were identified in both endogenous and myc-tag mTORC1 purifications. These new mTORC1 interacting partners include heterogeneous nuclear ribonucleoproteins A2/B1, enhancer of mRNA decapping protein 4, 60S acidic ribosomal protein, P0, nucleolin, dynamin 2, glyceraldehyde 3 phosphate dehydrogenase, 2-oxoglutarate dehydrogenase, glycosyl transferase 25 family member 1 and prohibitin 2. Furthermore hnRNP A2/B1 and dynamin 2 interaction with mTORC1 was confirmed on immunoblotting. The present study has for the first time identified novel interacting partners of mTORC1 in human T lymphoblasts (CCRF-CEM) and human embryonic kidney (HEK293) cells. These new interacting proteins may offer new targets for therapeutic interventions in human diseases caused by perturbed mTORC1 signaling. PMID:24646917

  15. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2-Dependent Bladder Cancer Cell Migration and Invasion.

    PubMed

    Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E

    2016-05-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. PMID:26988652

  16. Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

    PubMed Central

    Yun, Maximina H.; Gates, Phillip B.; Brockes, Jeremy P.

    2014-01-01

    Summary In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species. PMID:25068118

  17. Definition of two agonist types at the mammalian cold-activated channel TRPM8

    PubMed Central

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. DOI: http://dx.doi.org/10.7554/eLife.17240.001 PMID:27449282

  18. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  19. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain.

    PubMed

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22(-/-) cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. PMID:27083047

  20. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

    PubMed Central

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. DOI: http://dx.doi.org/10.7554/eLife.12151.001 PMID:27083047

  1. Activation and Alliance of Regulatory Pathways in C. albicans during Mammalian Infection

    PubMed Central

    Xu, Wenjie; Solis, Norma V.; Ehrlich, Rachel L.; Woolford, Carol A.; Filler, Scott G.; Mitchell, Aaron P.

    2015-01-01

    Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct

  2. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats.

    PubMed

    You, Wanchun; Wang, Zhong; Li, Haiying; Shen, Haitao; Xu, Xiang; Jia, Genlai; Chen, Gang

    2016-08-15

    Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway. PMID:27423593

  3. Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo.

    PubMed

    Busada, Jonathan T; Niedenberger, Bryan A; Velte, Ellen K; Keiper, Brett D; Geyer, Christopher B

    2015-11-01

    Spermatogonial stem cells (SSCs) must balance self-renewal with production of transit-amplifying progenitors that differentiate in response to retinoic acid (RA) before entering meiosis. This self-renewal vs. differentiation spermatogonial fate decision is critical for maintaining tissue homeostasis, as imbalances cause spermatogenesis defects that can lead to human testicular cancer or infertility. A great deal of effort has been exerted to understand how the SSC population is maintained. In contrast, little is known about the essential program of differentiation initiated by retinoic acid (RA) that precedes meiosis, and the pathways and proteins involved are poorly defined. We recently reported a novel role for RA in stimulating the PI3/AKT/mTOR kinase signaling pathway to activate translation of repressed mRNAs such as Kit. Here, we examined the requirement for mTOR complex 1 (mTORC1) in mediating the RA signal to direct spermatogonial differentiation in the neonatal testis. We found that in vivo inhibition of mTORC1 by rapamycin blocked spermatogonial differentiation, which led to an accumulation of undifferentiated spermatogonia. In addition, rapamycin also blocked the RA-induced translational activation of mRNAs encoding KIT, SOHLH1, and SOHLH2 without affecting expression of STRA8. These findings highlight dual roles for RA in germ cell development - transcriptional activation of genes, and kinase signaling to stimulate translation of repressed messages required for spermatogonial differentiation. PMID:26254600

  4. Mammalian target of rapamycin complex 1 (mTORC1) plays a role in Pasteurella multocida toxin (PMT)-induced protein synthesis and proliferation in Swiss 3T3 cells.

    PubMed

    Oubrahim, Hammou; Wong, Allison; Wilson, Brenda A; Chock, P Boon

    2013-01-25

    Pasteurella multocida toxin (PMT) is a potent mitogen known to activate several signaling pathways via deamidation of a conserved glutamine residue in the α subunit of heterotrimeric G-proteins. However, the detailed mechanism behind mitogenic properties of PMT is unknown. Herein, we show that PMT induces protein synthesis, cell migration, and proliferation in serum-starved Swiss 3T3 cells. Concomitantly PMT induces phosphorylation of ribosomal S6 kinase (S6K1) and its substrate, ribosomal S6 protein (rpS6), in quiescent 3T3 cells. The extent of the phosphorylation is time and PMT concentration dependent, and is inhibited by rapamycin and Torin1, the two specific inhibitors of the mammalian target of rapamycin complex 1 (mTORC1). Interestingly, PMT-mediated mTOR signaling activation was observed in MEF WT but not in Gα(q/11) knock-out cells. These observations are consistent with the data indicating that PMT-induced mTORC1 activation proceeds via the deamidation of Gα(q/11), which leads to the activation of PLCβ to generate diacylglycerol and inositol trisphosphate, two known activators of the PKC pathway. Exogenously added diacylglycerol or phorbol 12-myristate 13-acetate, known activators of PKC, leads to rpS6 phosphorylation in a rapamycin-dependent manner. Furthermore, PMT-induced rpS6 phosphorylation is inhibited by PKC inhibitor, Gö6976. Although PMT induces epidermal growth factor receptor activation, it exerts no effect on PMT-induced rpS6 phosphorylation. Together, our findings reveal for the first time that PMT activates mTORC1 through the Gα(q/11)/PLCβ/PKC pathway. The fact that PMT-induced protein synthesis and cell migration is partially inhibited by rapamycin indicates that these processes are in part mediated by the mTORC1 pathway. PMID:23223576

  5. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins.

    PubMed

    Kralt, Annemarie; Jagalur, Noorjahan B; van den Boom, Vincent; Lokareddy, Ravi K; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M

    2015-09-15

    Endoplasmic reticulum-synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins. PMID:26179916

  6. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

    PubMed Central

    Kralt, Annemarie; Jagalur, Noorjahan B.; van den Boom, Vincent; Lokareddy, Ravi K.; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M.

    2015-01-01

    Endoplasmic reticulum–synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins. PMID:26179916

  7. Non-human primate fetal kidney transcriptome analysis indicates mammalian target of rapamycin (mTOR) is a central nutrient-responsive pathway

    PubMed Central

    Nijland, Mark J; Schlabritz-Loutsevitch, Natalia E; Hubbard, Gene B; Nathanielsz, Peter W; Cox, Laura A

    2007-01-01

    Developmental programming is defined as the process by which gene–environment interaction in the developing organism leads to permanent changes in phenotype and function. Numerous reports of maternal nutrient restriction during pregnancy demonstrate altered renal development. Typically this alteration manifests as a reduction in the total number of glomeruli in the mature kidney of the offspring, and suggests that predisposition to develop chronic renal disease may include an in utero origin. In a previous study, we defined the transcriptome in the kidney from fetuses of control (CON, fed ad libitum) and nutrient-restricted (NR, fed 70% of CON starting at 0.16 gestation (G)) pregnancies at half-way through gestation (0.5G), and established transcriptome and morphological changes in NR kidneys compared to CON. One goal of the present study was to use transcriptome data from fetal kidneys of CON and NR mothers at 0.5G with histological data to identify the molecular mechanisms that may regulate renal development. A second goal was to identify mechanisms by which NR elicits its affect on fetal baboon kidney. We have used an end-of-pathway gene expression analysis to prioritize and identify key pathways regulating the 0.5G kidney phenotype in response NR. From these data we have determined that the mammalian target of rapamycin (mTOR) signalling pathway is central to this phenotype. PMID:17185341

  8. Different in vitro proliferation and cytokine-production inhibition of memory T-cell subsets after calcineurin and mammalian target of rapamycin inhibitors treatment.

    PubMed

    Merino, David; San Segundo, David; Medina, Juan M; Rodrigo, Emilio; Asensio, Esther; Irure, Juan; Fernández-Fresnedo, Gema; Arias, Manuel A; López-Hoyos, Marcos

    2016-06-01

    Calcineurin inhibitors (CNI) and mammalian target of rapamycin inhibitors (mTORi) are the main immunosuppressants used for long-term maintenance therapy in transplant recipients to avoid acute rejection episodes. Both groups of immunosuppressants have wide effects and are focused against the T cells, although different impacts on specific T-cell subsets, such as regulatory T cells, have been demonstrated. A greater knowledge of the impact of immunosuppression on the cellular components involved in allograft rejection could facilitate decisions for individualized immunosuppression when an acute rejection event is suspected. Memory T cells have recently gained focus because they might induce a more potent response compared with naive cells. The impact of immunosuppressants on different memory T-cell subsets remains unclear. In the present study, we have studied the specific impact of CNI (tacrolimus) and mTORi (rapamycin and everolimus) over memory and naive CD4(+) T cells. To do so, we have analysed the proliferation, phenotypic changes and cytokine synthesis in vitro in the presence of these immunosuppressants. The present work shows a more potent effect of CNI on proliferation and cytokine production in naive and memory T cells. However, the mTORi permit the differentiation of naive T cells to the memory phenotype and allow the production of interleukin-2. Taken together, our data show evidence to support the combined use of CNI and mTORi in transplant immunosuppression. PMID:26931075

  9. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family.

    PubMed

    Wolf, Gernot; Greenberg, David; Macfarlan, Todd S

    2015-01-01

    Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome. PMID:26435754

  10. Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Downregulates ELOVL1 Gene Expression and Fatty Acid Synthesis in Goat Fetal Fibroblasts

    PubMed Central

    Wang, Weipeng; He, Qiburi; Guo, Zhixin; Yang, Limin; Bao, Lili; Bao, Wenlei; Zheng, Xu; Wang, Yanfeng; Wang, Zhigang

    2015-01-01

    Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene that belongs to the ELOVL family and regulates the synthesis of very-long-chain fatty acids (VLCFAs) and sphingolipids, from yeast to mammals. Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell metabolism and is associated with fatty acids synthesis. In this study, we cloned the cDNA that encodes Cashmere goat (Capra hircus) ELOVL1 (GenBank Accession number KF549985) and investigated its expression in 10 tissues. ELOVL1 cDNA was 840 bp, encoding a deduced protein of 279 amino acids, and ELOVL1 mRNA was expressed in a wide range of tissues. Inhibition of mTORC1 by rapamycin decreased ELOVL1 expression and fatty acids synthesis in Cashmere goat fetal fibroblasts. These data show that ELOVL1 expression is regulated by mTORC1 and that mTORC1 has significant function in fatty acids synthesis in Cashmere goat. PMID:26204830

  11. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels

    PubMed Central

    Hyder, Fahmeed; Rothman, Douglas L.; Bennett, Maxwell R.

    2013-01-01

    The continuous need for ion gradient restoration across the cell membrane, a prerequisite for synaptic transmission and conduction, is believed to be a major factor for brain’s high oxidative demand. However, do energy requirements of signaling and nonsignaling components of cortical neurons and astrocytes vary with activity levels and across species? We derived oxidative ATP demand associated with signaling (Ps) and nonsignaling (Pns) components in the cerebral cortex using species-specific physiologic and anatomic data. In rat, we calculated glucose oxidation rates from layer-specific neuronal activity measured across different states, spanning from isoelectricity to awake and sensory stimulation. We then compared these calculated glucose oxidation rates with measured glucose metabolic data for the same states as reported by 2-deoxy-glucose autoradiography. Fixed values for Ps and Pns were able to predict the entire range of states in the rat. We then calculated glucose oxidation rates from human EEG data acquired under various conditions using fixed Ps and Pns values derived for the rat. These calculated metabolic data in human cerebral cortex compared well with glucose metabolism measured by PET. Independent of species, linear relationship was established between neuronal activity and neuronal oxidative demand beyond isoelectricity. Cortical signaling requirements dominated energy demand in the awake state, whereas nonsignaling requirements were ∼20% of awake value. These predictions are supported by 13C magnetic resonance spectroscopy results. We conclude that mitochondrial energy support for signaling and nonsignaling components in cerebral cortex are conserved across activity levels in mammalian species. PMID:23319606

  12. The leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) does not activate transcription in mammalian mitochondria.

    PubMed

    Harmel, Julia; Ruzzenente, Benedetta; Terzioglu, Mügen; Spåhr, Henrik; Falkenberg, Maria; Larsson, Nils-Göran

    2013-05-31

    Regulation of mtDNA expression is critical for controlling oxidative phosphorylation capacity and has been reported to occur at several different levels in mammalian mitochondria. LRPPRC (leucine-rich pentatricopeptide repeat-containing protein) has a key role in this regulation and acts at the post-transcriptional level to stabilize mitochondrial mRNAs, to promote mitochondrial mRNA polyadenylation, and to coordinate mitochondrial translation. However, recent studies have suggested that LRPPRC may have an additional intramitochondrial role by directly interacting with the mitochondrial RNA polymerase POLRMT to stimulate mtDNA transcription. In this study, we have further examined the intramitochondrial roles for LRPPRC by creating bacterial artificial chromosome transgenic mice with moderately increased LRPPRC expression and heterozygous Lrpprc knock-out mice with moderately decreased LRPPRC expression. Variation of LRPPRC levels in mice in vivo, occurring within a predicted normal physiological range, strongly affected the levels of an unprocessed mitochondrial precursor transcript (ND5-cytochrome b) but had no effect on steady-state levels of mitochondrial transcripts or de novo transcription of mtDNA. We further assessed the role of LRPPRC in mitochondrial transcription by performing size exclusion chromatography and immunoprecipitation experiments in human cell lines and mice, but we found no interaction between LRPPRC and POLRMT. Furthermore, addition of purified LRPPRC to a recombinant human in vitro transcription system did not activate mtDNA transcription. On the basis of these data, we conclude that LRPPRC does not directly regulate mtDNA transcription but rather acts as a post-transcriptional regulator of mammalian mtDNA expression. PMID:23599432

  13. The Leucine-rich Pentatricopeptide Repeat-containing Protein (LRPPRC) Does Not Activate Transcription in Mammalian Mitochondria*

    PubMed Central

    Harmel, Julia; Ruzzenente, Benedetta; Terzioglu, Mügen; Spåhr, Henrik; Falkenberg, Maria; Larsson, Nils-Göran

    2013-01-01

    Regulation of mtDNA expression is critical for controlling oxidative phosphorylation capacity and has been reported to occur at several different levels in mammalian mitochondria. LRPPRC (leucine-rich pentatricopeptide repeat-containing protein) has a key role in this regulation and acts at the post-transcriptional level to stabilize mitochondrial mRNAs, to promote mitochondrial mRNA polyadenylation, and to coordinate mitochondrial translation. However, recent studies have suggested that LRPPRC may have an additional intramitochondrial role by directly interacting with the mitochondrial RNA polymerase POLRMT to stimulate mtDNA transcription. In this study, we have further examined the intramitochondrial roles for LRPPRC by creating bacterial artificial chromosome transgenic mice with moderately increased LRPPRC expression and heterozygous Lrpprc knock-out mice with moderately decreased LRPPRC expression. Variation of LRPPRC levels in mice in vivo, occurring within a predicted normal physiological range, strongly affected the levels of an unprocessed mitochondrial precursor transcript (ND5-cytochrome b) but had no effect on steady-state levels of mitochondrial transcripts or de novo transcription of mtDNA. We further assessed the role of LRPPRC in mitochondrial transcription by performing size exclusion chromatography and immunoprecipitation experiments in human cell lines and mice, but we found no interaction between LRPPRC and POLRMT. Furthermore, addition of purified LRPPRC to a recombinant human in vitro transcription system did not activate mtDNA transcription. On the basis of these data, we conclude that LRPPRC does not directly regulate mtDNA transcription but rather acts as a post-transcriptional regulator of mammalian mtDNA expression. PMID:23599432

  14. A Novel Signaling Pathway Mediated by the Nuclear Targeting of C-Terminal Fragments of Mammalian Patched 1

    PubMed Central

    Kagawa, Hiroki; Shino, Yuka; Kobayashi, Daigo; Demizu, Syunsuke; Shimada, Masumi; Ariga, Hiroyoshi; Kawahara, Hiroyuki

    2011-01-01

    Background Patched 1 (Ptc1) is a polytopic receptor protein that is essential for growth and differentiation. Its extracellular domains accept its ligand, Sonic Hedgehog, while the function of its C-terminal intracellular domain is largely obscure. Principal Findings In this study, we stably expressed human Ptc1 protein in HeLa cells and found that it is subjected to proteolytic cleavage at the C-terminus, resulting in the generation of soluble C-terminal fragments. These fragments accumulated in the nucleus, while the N-terminal region of Ptc1 remained in the cytoplasmic membrane fractions. Using an anti-Ptc1 C-terminal domain antibody, we provide conclusive evidence that C-terminal fragments of endogenous Ptc1 accumulate in the nucleus of C3H10T1/2 cells. Similar nuclear accumulation of endogenous C-terminal fragments was observed not only in C3H10T1/2 cells but also in mouse embryonic primary cells. Importantly, the C-terminal fragments of Ptc1 modulate transcriptional activity of Gli1. Conclusions Although Ptc1 protein was originally thought to be restricted to cell membrane fractions, our findings suggest that its C-terminal fragments can function as an alternative signal transducer that is directly transported to the cell nucleus. PMID:21533246

  15. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  16. Camera calibration approach based on adaptive active target

    NASA Astrophysics Data System (ADS)

    Zhang, Yalin; Zhou, Fuqiang; Deng, Peng

    2011-12-01

    Aiming at calibrating camera on site, where the lighting condition is hardly controlled and the quality of target images would be declined when the angle between camera and target changes, an adaptive active target is designed and the camera calibration approach based on the target is proposed. The active adaptive target in which LEDs are embedded is flat, providing active feature point. Therefore the brightness of the feature point can be modified via adjusting the electricity, judging from the threshold of image feature criteria. In order to extract features of the image accurately, the concept of subpixel-precise thresholding is also proposed. It converts the discrete representation of the digital image to continuous function by bilinear interpolation, and the sub-pixel contours are acquired by the intersection of the continuous function and the appropriate selection of threshold. According to analysis of the relationship between the features of the image and the brightness of the target, the area ratio of convex hulls and the grey value variance are adopted as the criteria. Result of experiments revealed that the adaptive active target accommodates well to the changing of the illumination in the environment, the camera calibration approach based on adaptive active target can obtain high level of accuracy and fit perfectly for image targeting in various industrial sites.

  17. Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug-resistant microenvironment via Akt/mammalian target of rapamycin and extracellular signal-related kinase signaling pathways.

    PubMed

    Wu, Kang-Ni; Zhao, Yan-Min; He, Ying; Wang, Bin-Sheng; Du, Kai-Li; Fu, Shan; Hu, Kai-Min; Zhang, Li-Fei; Liu, Li-Zhen; Hu, Yong-Xian; Wang, Ying-Jia; Huang, He

    2014-03-01

    T-cell acute lymphoblastic leukemias (T-ALLs) are clonal lymphoid malignancies with a poor prognosis, and still a lack of effective treatment. Here we examined the interactions between the mammalian target of rapamycin (mTOR) inhibitor rapamycin and idarubicin (IDA) in a series of human T-ALL cell lines Molt-4, Jurkat, CCRF-CEM and CEM/C1. Co-exposure of cells to rapamycin and IDA synergistically induced T-ALL cell growth inhibition and apoptosis mediated by caspase activation via the intrinsic mitochondrial pathway and extrinsic pathway. Combined treatment with rapamycin and IDA down-regulated Bcl-2 and Mcl-1, and inhibited the activation of phosphoinositide 3-kinase (PI3K)/mTOR and extracellular signal-related kinase (ERK). They also played synergistic pro-apoptotic roles in the drug-resistant microenvironment simulated by mesenchymal stem cells (MSCs) as a feeder layer. In addition, MSCs protected T-ALL cells from IDA cytotoxicity by up-regulating ERK phosphorylation, while rapamycin efficiently reversed this protective effect. Taken together, we confirm the synergistic antitumor effects of rapamycin and IDA, and provide an insight into the potential future clinical applications of combined rapamycin-IDA regimens for treating T-cell malignancies. PMID:23741975

  18. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  19. HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts.

    PubMed

    Ye, Meiping; Sharma, Kavita; Thakur, Meghna; Smith, Alexis A; Buyuktanir, Ozlem; Xiang, Xuwu; Yang, Xiuli; Promnares, Kamoltip; Lou, Yongliang; Yang, X Frank; Pal, Utpal

    2016-08-01

    High-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity. PMID:27271745

  20. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-03-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  1. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  2. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells.

    PubMed

    Figarola, James L; Singhal, Jyotsana; Tompkins, Joshua D; Rogers, George W; Warden, Charles; Horne, David; Riggs, Arthur D; Awasthi, Sanjay; Singhal, Sharad S

    2015-12-18

    Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity. PMID:26534958

  3. Targeted, noninvasive blockade of cortical neuronal activity

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Zhang, Yongzhi; Power, Chanikarn; Arvanitis, Costas D.; Vykhodtseva, Natalia; Livingstone, Margaret

    2015-11-01

    Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.

  4. Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain

    PubMed Central

    Gibson, Erin M.; Purger, David; Mount, Christopher W.; Goldstein, Andrea K.; Lin, Grant L.; Wood, Lauren S.; Inema, Ingrid; Miller, Sarah E.; Bieri, Gregor; Zuchero, J. Bradley; Barres, Ben A.; Woo, Pamelyn J.; Vogel, Hannes; Monje, Michelle

    2014-01-01

    Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity–regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement. PMID:24727982

  5. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully

  6. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao

    2014-06-01

    Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of

  7. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability.

    PubMed

    Itoh, Yuji; Murata, Agato; Sakamoto, Seiji; Nanatani, Kei; Wada, Takehiko; Takahashi, Satoshi; Kamagata, Kiyoto

    2016-07-17

    Tumor suppressor p53 binds to the target in a genome and regulates the expression of downstream genes. p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding along the DNA. To examine the regulation mechanism of the target binding, we constructed the pseudo-wild type (pseudo-WT), activated (S392E), and inactive (R248Q) mutants of p53 and observed their target binding in long DNA using single-molecule fluorescence imaging. The pseudo-WT sliding along the DNA showed many pass events over the target and possessed target recognition probability (TRP) of 7±2%. The TRP increased to 18±2% for the activated mutant but decreased to 0% for the inactive mutant. Furthermore, the fraction of the target binding by the one-dimensional sliding among the total binding events increased from 63±9% for the pseudo-WT to 87±2% for the activated mutant. Control of TRP upon activation, as demonstrated here for p53, might be a general activation mechanism of transcription factors. PMID:27291286

  8. Mutagenicity and cytotoxicity of five antitumor ellipticines in mammalian cells and their structure-activity relationships in Salmonella

    SciTech Connect

    DeMarini, D.M.; Cros, S.; Paoletti, C.; Lecointe, P.; Hsie, A.W.

    1983-08-01

    The mutagenicity and cytotoxicity of five antitumor compounds (ellipticines) were investigated in the Chinese hamster ovary cell hypoxanthine-guanine phosphoribosyltransferase assay and in six strains of Salmonella. All five compounds (ellipticine, 9-methoxyellipticine, 9-hydroxyellipticine, 9-aminoellipticine, and 2-methyl-9-hydroxyellipticinium) were cytotoxic and mutagenic in the Chinese hamster ovary cell hypoxanthine-guanine phosphoribosyltransferase assay in the presence or absence of Aroclor 1254-induced rat liver S9, and all except the last compound were mutagenic in Salmonella. Based on the reversion pattern obtained in various frame-shift and DNA repair-proficient (uvrB/sup +/) or -deficient (uvrB) strains of Salmonella in the presence or absence of S9, the first three compounds appear to cause frameshift mutations by both intercalation and covalent bonding with DNA; thus, these are classified as reactive intercalators. However, 9-aminoellipticine intercalates only weakly and may instead exert its mutagenic activity primarily (or exclusively) by forming a covalent adduct with DNA. Compared to the published antitumor data obtained in mice, the results in Salmonella and Chinese hamster ovary cells suggest that the ability of ellipticine, 9-methoxyellipticine, and 9-hydroxyellipticine to intercalate with DNA, induce frame-shift mutations, and cause cell killing is associated with and may be the basis for their antitumor activity. The observation that the ellipticines are mutagenic in mammalian cells suggests that these antitumor agents may be carcinogenic.

  9. Structurally diverse low molecular weight activators of the mammalian pre-mRNA 3′ cleavage reaction

    PubMed Central

    Liu, Min Ting; Nagre, Nagaraja N.; Ryan, Kevin

    2014-01-01

    The 3′ end formation of mammalian pre-mRNA contributes to gene expression regulation by setting the downstream boundary of the 3′ untranslated region, which in many genes carries regulatory sequences. A large number of protein cleavage factors participate in this pre-mRNA processing step, but chemical tools to manipulate this process are lacking. Guided by a hypothesis that a PPM1 family phosphatase negatively regulates the 3′ cleavage reaction, we have found a variety of new small molecule activators of the in vitro reconstituted pre-mRNA 3′ cleavage reaction. New activators include a cyclic peptide PPM1D inhibitor, a dipeptide with modifications common to histone tails, abscisic acid and an improved L-arginine β-naphthylamide analog. The minimal concentration required for in vitro cleavage has been improved from 200 μM to the 200 nM-100 μM range. These compounds provide unexpected leads in the search for small molecule tools able to affect pre-mRNA 3′ end formation. PMID:24373842

  10. Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome

    PubMed Central

    Regha, Kakkad; Sloane, Mathew A.; Huang, Ru; Pauler, Florian M.; Warczok, Katarzyna E.; Melikant, Balázs; Radolf, Martin; Martens, Joost H.A.; Schotta, Gunnar; Jenuwein, Thomas; Barlow, Denise P.

    2010-01-01

    SUMMARY The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 ± HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome. PMID:17679087

  11. Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells

    SciTech Connect

    Ye, R.D.; Wun, T.C.; Sadler, J.E.

    1988-04-05

    Plasminogen activator inhibitor-2 (PAI-2) is a serine protease inhibitor that regulates plasmin generation by inhibiting urokinase and tissue plasminogen activator. The primary structure of PAI-2 suggests that it may be secreted without cleavage of a single peptide. To confirm this hypothesis we have studied the glycosylation and secretion of PAI-2 in human monocytic U-937 cells by metabolic labeling, immunoprecipitation, glycosidase digestion, and protein sequencing. PAI-2 is variably glycosylated on asparagine residues to yield intracellular intermediates with zero, one, two, or three high mannose-type oligosaccharide units. Secretion of the N-glycosylated species began by 1 h of chase and the secreted molecules contained both complex-type N-linked and O-linked oligosaccharides. Enzymatically deglycosylated PAI-2 had an electrophoretic mobility identical to that of the nonglycosylated precursor and also to that of PAI-2 synthesized in vitro in a rabbit reticulocyte lysate from synthetic mRNA derived from full length PAI-2 cDNA. The amino-terminal protein sequence of secreted PAI-2 began with the initiator methionine residue. These results indicate that PAI-2 is glycosylated and secreted efficiently without the cleavage of a signal peptide. PAI-2 shares this property with its nearest homologue in the serine protease inhibitor family, chicken ovalbumin, and appears to be the first well characterized example of this phenomenon among natural mammalian proteins.

  12. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  13. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity

    PubMed Central

    Rahman, Motiur; Nirala, Niraj K.; Singh, Alka; Zhu, Lihua Julie; Taguchi, Kaori; Bamba, Takeshi; Fukusaki, Eiichiro; Shaw, Leslie M.; Lambright, David G.; Acharya, Jairaj K.

    2014-01-01

    Adenosine triphosphate (ATP) synthase β, the catalytic subunit of mitochondrial complex V, synthesizes ATP. We show that ATP synthase β is deacetylated by a human nicotinamide adenine dinucleotide (NAD+)–dependent protein deacetylase, sirtuin 3, and its Drosophila melanogaster homologue, dSirt2. dsirt2 mutant flies displayed increased acetylation of specific Lys residues in ATP synthase β and decreased complex V activity. Overexpression of dSirt2 increased complex V activity. Substitution of Lys 259 and Lys 480 with Arg in human ATP synthase β, mimicking deacetylation, increased complex V activity, whereas substitution with Gln, mimicking acetylation, decreased activity. Mass spectrometry and proteomic experiments from wild-type and dsirt2 mitochondria identified the Drosophila mitochondrial acetylome and revealed dSirt2 as an important regulator of mitochondrial energy metabolism. Additionally, we unravel a ceramide–NAD+–sirtuin axis wherein increased ceramide, a sphingolipid known to induce stress responses, resulted in depletion of NAD+ and consequent decrease in sirtuin activity. These results provide insight into sirtuin-mediated regulation of complex V and reveal a novel link between ceramide and Drosophila acetylome. PMID:25023514

  14. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase

    SciTech Connect

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-07-11

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.

  15. Active calibration target for bistatic radar cross-section measurements

    NASA Astrophysics Data System (ADS)

    Pienaar, M.; Odendaal, J. W.; Joubert, J.; Cilliers, J. E.; Smit, J. C.

    2016-05-01

    Either passive calibration targets are expensive and complex to manufacture or their bistatic radar cross section (RCS) levels are significantly lower than the monostatic RCS levels of targets such as spheres, dihedral, and trihedral corner reflectors. In this paper the performance of an active calibration target with relative high bistatic RCS values is illustrated as a reference target for bistatic RCS measurements. The reference target is simple to manufacture, operates over a wide frequency range, and can be configured to calibrate all four polarizations (VV, HH, HV, and VH). Bistatic RCS measurements of canonical targets, performed in a controlled environment, are calibrated with the reference target and the results are compared to simulated results using FEKO.

  16. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.

    PubMed

    De Cecco, Marco; Criscione, Steven W; Peterson, Abigail L; Neretti, Nicola; Sedivy, John M; Kreiling, Jill A

    2013-12-01

    Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells. PMID:24323947

  17. Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle

    PubMed Central

    Ajijola, Olujimi A.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; Benharash, Peyman; Hadaya, Joseph; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Increased cardiac sympathetic activation worsens dispersion of repolarization and is proarrhythmic. The functional differences between intrinsic nerve stimulation and adrenergic receptor activation remain incompletely understood. This study was undertaken to determine the functional differences between efferent cardiac sympathetic nerve stimulation and direct adrenergic receptor activation in porcine ventricles. Female Yorkshire pigs (n = 13) underwent surgical exposure of the heart and stellate ganglia. A 56-electrode sock was placed over the ventricles to record epicardial electrograms. Animals underwent bilateral sympathetic stimulation (BSS) (n = 8) or norepinephrine (NE) administration (n = 5). Activation recovery intervals (ARIs) were measured at each electrode before and during BSS or NE. The degree of ARI shortening during BSS or NE administration was used as a measure of functional nerve or adrenergic receptor density. During BSS, ARI shortening was nonuniform across the epicardium (F value 9.62, P = 0.003), with ARI shortening greatest in the mid-basal lateral right ventricle and least in the midposterior left ventricle (LV) (mean normalized values: 0.9 ± 0.08 vs. 0.56 ± 0.08; P = 0.03). NE administration resulted in greater ARI shortening in the LV apex than basal segments [0.91 ± 0.04 vs. 0.63 ± 0.05 (averaged basal segments); P = 0.003]. Dispersion of ARIs increased in 50% and 60% of the subjects undergoing BSS and NE, respectively, but decreased in the others. There is nonuniform response to cardiac sympathetic activation of both porcine ventricles, which is not fully explained by adrenergic receptor density. Different pools of adrenergic receptors may mediate the cardiac electrophysiological effects of efferent sympathetic nerve activity and circulating catecholamines. PMID:23241324

  18. The Herbicide Atrazine Activates Endocrine Gene Networks via Non-Steroidal NR5A Nuclear Receptors in Fish and Mammalian Cells

    PubMed Central

    Suzawa, Miyuki; Ingraham, Holly A.

    2008-01-01

    Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 µg/L), and increased the ratio of female to male fish (22 µg/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1), whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHß, INHα, αGSU, and 11ß-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates. PMID:18461179

  19. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    PubMed Central

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background. PMID:23630316

  20. Dramatic differences in organophosphorus hydrolase activity between human and chimeric recombinant mammalian paraoxonase-1 enzymes†

    PubMed Central

    Otto, Tamara C.; Harsch, Christina K.; Yeung, David T.; Magliery, Thomas J.; Cerasoli, Douglas M.; Lenz, David E.

    2009-01-01

    Human serum paraoxonase-1 (HuPON1) has the capacity to hydrolyze aryl esters, lactones, oxidized phospholipids, and organophosphorus (OP) compounds. HuPON1 and bacterially expressed chimeric recombinant PON1s (G2E6 and G3C9) differ by multiple amino acids, none of which are in the putative enzyme active site. To address the importance of these amino acid differences, the abilities of HuPON1, G2E6, G3C9, and several variants to hydrolyze phenyl acetate, paraoxon, and V-type OP nerve agents were examined. HuPON1 and G2E6 have a ten-fold greater catalytic efficiency toward phenyl acetate than G3C9. In contrast, bacterial PON1s are better able to promote hydrolysis of paraoxon, whereas HuPON1 is considerably better at catalyzing the hydrolysis of the nerve agents VX and VR. These studies demonstrate that mutations distant from the active site of PON1 have large and unpredictable effects on the substrate specificities and possibly the hydrolytic mechanisms of HuPON1, G2E6, and G3C9. The replacement of residue H115 in the putative active site with tryptophan (H115W) has highly disparate effects on HuPON1 and G2E6. In HuPON1, variant H115W loses the ability to hydrolyze VR but has improved activity toward paraoxon and VX. The H115W variant of G2E6 has similar paraoxonase activity to wild type G2E6, modest activity with phenyl acetate and VR, and increased VX hydrolysis. VR inhibits H115W HuPON1 competitively when paraoxon is the substrate and non-competitively when VX is the substrate. We have identified the first variant of HuPON1, H115W, that displays significantly enhanced catalytic activity against an authentic V-type nerve agent. PMID:19764813

  1. A treadmill exercise reactivates the signaling of the mammalian target of rapamycin (mTor) in the skeletal muscles of starved mice.

    PubMed

    Zheng, Dong-Mei; Bian, Zehua; Furuya, Norihiko; Oliva Trejo, Juan Alejandro; Takeda-Ezaki, Mitsue; Takahashi, Katsuyuki; Hiraoka, Yuka; Mineki, Reiko; Taka, Hikari; Ikeda, Shin-Ichi; Komatsu, Masaaki; Fujimura, Tsutomu; Ueno, Takashi; Ezaki, Junji

    2015-01-01

    It has been well established that a starvation-induced decrease in insulin/IGF-I and serum amino acids effectively suppresses the mammalian target of rapamycin (mTor) signaling to induce autophagy, which is a major degradative cellular pathway in skeletal muscles. In this study, we investigated the systematic effects of exercise on the mTor signaling of skeletal muscles. Wild type C57BL/6J mice were starved for 24h under synchronous autophagy induction conditions. Under these conditions, endogenous LC3-II increased, while both S6-kinse and S6 ribosomal protein were dephosphorylated in the skeletal muscles, which indicated mTor inactivation. Using GFP-LC3 transgenic mice, it was also confirmed that fluorescent GFP-LC3 dots in the skeletal muscles increased, including soleus, plantaris, and gastrocnemius, which clearly showed autophagosomal induction. These starved mice were then subjected to a single bout of running on a treadmill (12m/min, 2h, with a lean of 10 degrees). Surprisingly, biochemical analyses revealed that the exercise elicited a decrease in the LC3-II/LC3-I ratio as well as an inversion from the dephosphorylated state to the rephosphorylated state of S6-kinase and ribosomal S6 in these skeletal muscles. Consistently, the GFP-LC3 dots of the skeletal muscles were diminished immediately after the exercise. These results indicated that exercise suppressed starvation-induced autophagy through a reactivation of mTor signaling in the skeletal muscles of these starved mice. PMID:25485704

  2. Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate.

    PubMed

    Coupland, M E; Puchert, E; Ranatunga, K W

    2001-11-01

    1. The effect of added inorganic phosphate (P(i), range 3-25 mM) on active tension was examined at a range of temperatures (5-30 degrees C) in chemically skinned (0.5 % Brij) rabbit psoas muscle fibres. Three types of experiments were carried out. 2. In one type of experiment, a muscle fibre was maximally activated at low temperature (5 degrees C) and its tension change was recorded during stepwise heating to high temperature in approximately 60 s. As found in previous studies, the tension increased with temperature and the normalised tension-(reciprocal) temperature relation was sigmoidal, with a half-maximal tension at 8 degrees C. In the presence of 25 mM added P(i), the temperature for half-maximal tension of the normalised curve was approximately 5 degrees C higher than in the control. The difference in the slope was small. 3. In a second type of experiment, the tension increment during a large temperature jump (from 5 to 30 degrees C) was examined during an active contraction. The relative increase of active tension on heating was significantly higher in the presence of 25 mM added P(i) (30/5 degrees C tension ratio of 6-7) than in the control with no added P(i) (tension ratio of approximately 3). 4. In a third type of experiment, the effect on the maximal Ca(2+)-activated tension of different levels of added P(i) (3-25 mM) (and P(i) mop adequate to reduce contaminating P(i) to micromolar levels) was examined at 5, 10, 20 and 30 degrees C. The tension was depressed with increased [P(i)] in a concentration-dependent manner at all temperatures, and the data could be fitted with a hyperbolic relation. The calculated maximal tension depression in excess [P(i)] was approximately 65 % of the control at 5-10 degrees C, in contrast to a maximal depression of 40 % at 20 degrees C and 30 % at 30 degrees C. 5. These experiments indicate that the active tension depression induced by P(i) in psoas fibres is temperature sensitive, the depression becoming less marked at

  3. Structural characterization and anti-aging activity of a novel extracellular polysaccharide from fungus Phellinus sp. in a mammalian system.

    PubMed

    Ma, Xiao-Kui; Guo, Dan Dan; Peterson, Eric Charles; Dun, Ying; Li, Dan Yang

    2016-08-10

    Little is known about the chemical structure of purified extracellular polysaccharides from Phellinus sp., a fungal species with known medicinal properties. A combination of IR spectroscopy, methylation analysis and NMR were performed for the structural analysis of a purified extracellular polysaccharide derived from Phellinus sp. culture, denoted as SHP-1, along with an evaluation of the anti-aging effect in vivo of the polysaccharide supplementation. The structure of SHP-1 was established, with a backbone composed of →2,4)-α-d-glucopyranose-(1→ and →2)-β-d-mannopyranose-(1→ and two terminal glucopyranose branches. Biochemical analysis from mammalian animal experiments demonstrated that SHP-1 possesses the ability to enhance antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD) activities, Trolox equivalent antioxidant capacity (TEAC) in serum of d-galactose-aged mice, while reducing lipofuscin levels, another indicator of cell aging, indicating a potential association with anti-aging activities in a dose dependent manner. This compound had a favourable influence on immune organ indices, and a marked amelioration ability of histopathological hepatic lesions such as necrosis, karyolysis and reduced inflammation and apoptosis in mouse hepatocytes. These results suggest that SHP-1 has strong antioxidant activities and a significant protective effect against oxidative stress or hepatotoxicity induced by d-galactose in mice and it could be developed as a food ingredient or a pharmaceutical to prevent many age-associated diseases such as major depressive disorder and hepatotoxicity. To our knowledge, this is the first report on the antioxidant effects of a novel purified exopolysaccharide derived from Phellinus sp. PMID:27405813

  4. Mammalian peptide isomerase: platypus-type activity is present in mouse heart.

    PubMed

    Koh, Jennifer M S; Chow, Stephanie J P; Crossett, Ben; Kuchel, Philip W

    2010-06-01

    Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D-isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N-terminus from the L- to the D-form, and vice versa. A reversed-phase high-performance liquid chromatography (RP-HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin-like peptide-2 (DLP-2) and DLP-4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man. PMID:20564672

  5. Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns.

    PubMed

    Mathis, Alexander; Stemmler, Martin B; Herz, Andreas Vm

    2015-01-01

    Lattices abound in nature-from the crystal structure of minerals to the honey-comb organization of ommatidia in the compound eye of insects. These arrangements provide solutions for optimal packings, efficient resource distribution, and cryptographic protocols. Do lattices also play a role in how the brain represents information? We focus on higher-dimensional stimulus domains, with particular emphasis on neural representations of physical space, and derive which neuronal lattice codes maximize spatial resolution. For mammals navigating on a surface, we show that the hexagonal activity patterns of grid cells are optimal. For species that move freely in three dimensions, a face-centered cubic lattice is best. This prediction could be tested experimentally in flying bats, arboreal monkeys, or marine mammals. More generally, our theory suggests that the brain encodes higher-dimensional sensory or cognitive variables with populations of grid-cell-like neurons whose activity patterns exhibit lattice structures at multiple, nested scales. PMID:25910055

  6. Isolation of Mammalian Oogonial Stem Cells by Antibody-Based Fluorescence-Activated Cell Sorting.

    PubMed

    Navaroli, Deanna M; Tilly, Jonathan L; Woods, Dori C

    2016-01-01

    The ability to isolate and subsequently culture mitotically active female germ cells from adult ovaries, referred to as either oogonial stem cells (OSCs) or adult female germline stem cells (aFGSCs), has provided a robust system to study female germ cell development under multiple experimental conditions, and in many species. Flow cytometry or fluorescence-activated cell sorting (FACS) is an integral part of many isolation and characterization protocols. Here, we provide methodological details for antibody-based flow cytometric isolation of OSCs using antibodies specific for external epitopes of the proteins Ddx4 or Ifitm3, alone or in combination with the use of fluorescent reporter mice. Beginning with sample preparation, we provide point-by-point instructions to guide researchers on how to isolate OSCs using flow cytometry. PMID:27557587

  7. Cancer active targeting by nanoparticles: a comprehensive review of literature

    PubMed Central

    Bazak, Remon; Houri, Mohamad; Achy, Samar El; Kamel, Serag

    2016-01-01

    Purpose Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the “magic bullet”—recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves. Methods Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review. Results In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting. Conclusion To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy. PMID:25005786

  8. African Swine Fever Virus IAP Homologue Inhibits Caspase Activation and Promotes Cell Survival in Mammalian Cells

    PubMed Central

    Nogal, María L.; González de Buitrago, Gonzalo; Rodríguez, Clara; Cubelos, Beatriz; Carrascosa, Angel L.; Salas, María L.; Revilla, Yolanda

    2001-01-01

    African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis. PMID:11222676

  9. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  10. Histoplasma capsulatum Encodes a Dipeptidyl Peptidase Active against the Mammalian Immunoregulatory Peptide, Substance P

    PubMed Central

    Cooper, Kendal G.; Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    The pathogenic fungus Histoplasma capsulatum secretes dipeptidyl peptidase (Dpp) IV enzyme activity and has two putative DPPIV homologs (HcDPPIVA and HcDPPIVB). We previously showed that HcDPPIVB is the gene responsible for the majority of secreted DppIV activity in H. capsulatum culture supernatant, while we could not detect any functional contribution from HcDPPIVA. In order to determine whether HcDPPIVA encodes a functional DppIV enzyme, we expressed HcDPPIVA in Pichia pastoris and purified the recombinant protein. The recombinant enzyme cleaved synthetic DppIV substrates and had similar biochemical properties to other described DppIV enzymes, with temperature and pH optima of 42°C and 8, respectively. Recombinant HcDppIVA cleaved the host immunoregulatory peptide substance P, indicating the enzyme has the potential to affect the immune response during infection. Expression of HcDPPIVA under heterologous regulatory sequences in H. capsulatum resulted in increased secreted DppIV activity, indicating that the encoded protein can be expressed and secreted by its native organism. However, HcDPPIVA was not required for virulence in a murine model of histoplasmosis. This work reports a fungal enzyme that can function to cleave the immunomodulatory host peptide substance P. PMID:19384411

  11. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator.

    PubMed

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K; Shapiro, Charles L; Chen, Ching-Shih

    2011-11-11

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC(50), 0.3 μM) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC(50), 5 and 2 μM, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47-49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  12. Body size and activity times mediate mammalian responses to climate change.

    PubMed

    McCain, Christy M; King, Sarah R B

    2014-06-01

    Model predictions of extinction risks from anthropogenic climate change are dire, but still overly simplistic. To reliably predict at-risk species we need to know which species are currently responding, which are not, and what traits are mediating the responses. For mammals, we have yet to identify overarching physiological, behavioral, or biogeographic traits determining species' responses to climate change, but they must exist. To date, 73 mammal species in North America and eight additional species worldwide have been assessed for responses to climate change, including local extirpations, range contractions and shifts, decreased abundance, phenological shifts, morphological or genetic changes. Only 52% of those species have responded as expected, 7% responded opposite to expectations, and the remaining 41% have not responded. Which mammals are and are not responding to climate change is mediated predominantly by body size and activity times (phylogenetic multivariate logistic regressions, P < 0.0001). Large mammals respond more, for example, an elk is 27 times more likely to respond to climate change than a shrew. Obligate diurnal and nocturnal mammals are more than twice as likely to respond as mammals with flexible activity times (P < 0.0001). Among the other traits examined, species with higher latitudinal and elevational ranges were more likely to respond to climate change in some analyses, whereas hibernation, heterothermy, burrowing, nesting, and study location did not influence responses. These results indicate that some mammal species can behaviorally escape climate change whereas others cannot, analogous to paleontology's climate sheltering hypothesis. Including body size and activity flexibility traits into future extinction risk forecasts should substantially improve their predictive utility for conservation and management. PMID:24449019

  13. Antiinflammatory Activity of a Novel Folic Acid Targeted Conjugate of the mTOR Inhibitor Everolimus.

    PubMed

    Lu, Yingjuan; Parker, Nikki; Kleindl, Paul J; Cross, Vicky A; Wollak, Kristin; Westrick, Elaine; Stinnette, Torian W; Gehrke, Mark A; Wang, Kevin; Santhapuram, Hari Krishna R; You, Fei; Hahn, Spencer J; Vaughn, Jeremy F; Klein, Patrick J; Vlahov, Iontcho R; Low, Philip S; Leamon, Christopher P

    2015-01-01

    Folate receptor (FR)-β has been identified as a promising target for antimacrophage and antiinflammatory therapies. In the present study, we investigated EC0565, a folic acid-derivative of everolimus, as a FR-specific inhibitor of the mammalian target of rapamycin (mTOR). Because of its amphiphilic nature, EC0565 was first evaluated for water solubility, critical micelle formation, stability in culture and FR-binding specificity. Using FR-expressing macrophages, the effect of EC0565 on mTOR signaling and cellular proliferation was studied. The pharmacokinetics, metabolism and bioavailability of EC0565 were studied in normal rats. The in vivo activity of EC0565 was assessed in rats with adjuvant arthritis, a "macrophage-rich" model with close resemblance to rheumatoid arthritis. EC0565 forms micellar aggregates in physiological buffers and demonstrates good water solubility as well as strong multivalent FR-binding capacity. EC0565 inhibited mTOR signaling in rat macrophages at nanomolar concentrations and induced G0/G1 cell cycle arrest in serum-starved RAW264.7 cells. Subcutaneously administered EC0565 in rats displayed good bioavailability and a relatively long half-life (~12 h). When given at 250 nmol/kg, EC0565 selectively inhibited proliferating cell nuclear antigen expression in thioglycollate-stimulated rat peritoneal cells. With limited dosing regimens, the antiarthritic activity of EC0565 was found superior to that of etanercept, everolimus and a nontargeted everolimus analog. The in vivo activity of EC0565 was also comparable to that of a folate-targeted aminopterin. Folate-targeted mTOR inhibition may be an effective way of suppressing activated macrophages in sites of inflammation, especially in nutrient-deprived conditions, such as in the arthritic joints. Further investigation and improvement upon the physical and biochemical properties of EC0565 are warranted. PMID:26181632

  14. Activations of the Ca dependent K channel by Ca released from the sarcoplasmic reticulum of mammalian smooth muscles.

    PubMed

    Kitamura, K; Sakai, T; Kajioka, S; Kuriyama, H

    1989-01-01

    In mammalian smooth muscles, the outward K current recorded using the whole cell voltage clamp or patch clamp methods can be classified into the Ca-dependent and independent K currents. The former is sub-classified into the extra- and intra-cellular Ca dependent K current. The intra-cellular Ca dependent K current has a close relation to Ca released from the sarcoplasmic reticulum, i.e. Ca released by inositol 1,4,5-trisphosphate (InsP3), ryanodine or Ca ionophores (A23187 or ionomycin) modify the appearance of the K current. The transient (Ca dependent) outward current evoked by depolarization pulses, as measured using the whole cell voltage clamp method, is closely related with after-hyperpolarization of the action potential as recorded using the microelectrode method and is postulated to be due to activations of the Ca-induced Ca release mechanism in the sarcoplasmic reticulum. The oscillatory (Ca dependent) outward K current is closely related with the amount of Ca released from the sarcoplasmic reticulum during the long depolarization induced by electrical stimulation (command pulse) or applications of Ca releasers such as InsP3 or ryanodine. In this review, the Ca dependent K current recorded from smooth muscle cells is compared with the influx and release of Ca. PMID:2667516

  15. Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns

    PubMed Central

    Mathis, Alexander; Stemmler, Martin B; Herz, Andreas VM

    2015-01-01

    Lattices abound in nature—from the crystal structure of minerals to the honey-comb organization of ommatidia in the compound eye of insects. These arrangements provide solutions for optimal packings, efficient resource distribution, and cryptographic protocols. Do lattices also play a role in how the brain represents information? We focus on higher-dimensional stimulus domains, with particular emphasis on neural representations of physical space, and derive which neuronal lattice codes maximize spatial resolution. For mammals navigating on a surface, we show that the hexagonal activity patterns of grid cells are optimal. For species that move freely in three dimensions, a face-centered cubic lattice is best. This prediction could be tested experimentally in flying bats, arboreal monkeys, or marine mammals. More generally, our theory suggests that the brain encodes higher-dimensional sensory or cognitive variables with populations of grid-cell-like neurons whose activity patterns exhibit lattice structures at multiple, nested scales. DOI: http://dx.doi.org/10.7554/eLife.05979.001 PMID:25910055

  16. Effects of trimebutine maleate on electrical activities of isolated mammalian cardiac preparations.

    PubMed

    Igawa, O; Kotake, H; Hirai, S; Hisatome, I; Hasegawa, J; Mashiba, H

    1989-05-01

    The effects of trimebutine maleate on electrical activity in guinea-pig isolated papillary muscles and rabbit sino-atrial nodes have been studied by means of a standard microelectrode method. In papillary muscles, trimebutine (above 10 microM) decreased the maximum rate of rise (Vmax) and the action potential duration at 90% repolarization (APD90), whereas the resting potential was not significantly altered. As to a decrease in Vmax, trimebutine produced a negative shift of the curve relating Vmax to the resting potential along the voltage axis. Trimebutine also depressed the slow action potentials of papillary muscles produced by 27 mM K and 0.2 mM Ba. In spontaneously beating sino-atrial node preparations, trimebutine (above 10 microM) decreased the heart rate, Vmax and the rate of diastolic depolarization. These results indicate that trimebutine maleate possesses a depressant action on the electrical activities of the fast- and slow-response fibres of the heart mainly due to inhibitions of both fast Na+ and slow Ca2+ channels. PMID:2569517

  17. Length-dependent Ca2+ activation in skeletal muscle fibers from mammalians.

    PubMed

    Rassier, Dilson E; Minozzo, Fábio C

    2016-08-01

    We tested the hypotheses that 1) a decrease in activation of skeletal muscles at short sarcomere lengths (SLs) is caused by an inhibition of Ca(2+) release from the sarcoplasmic reticulum (SR), and 2) the decrease in Ca(2+) would be caused by an inhibition of action potential conduction from the periphery to the core of the fibers. Intact, single fibers dissected from the flexor digitorum brevis from mice were activated at different SLs, and intracellular Ca(2+) was imaged with confocal microscopy. Force decreased at SLs shorter than 2.1 μm, while Ca(2+) concentration decreased at SLs below 1.9 μm. The concentration of Ca(2+) at short SL was lower at the core than at the peripheries of the fiber. When the external concentration of Na(+) was decreased in the experimental media, impairing action potential conduction, Ca(2+) gradients were observed in all SLs. When caffeine was used in the experimental media, the gradients of Ca(2+) were abolished. We concluded that there is an inhibition of Ca(2+) release from the sarcoplasmic reticulum (SR) at short SLs, which results from a decreased conduction of action potential from the periphery to the core of the fibers. PMID:27225655

  18. Discovery and optimization of 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxybenzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR)

    SciTech Connect

    Tsoua, Hwei-Ru; MacEwana, Gloria; Birnberga, Gary; Grosua, George; Bursavicha, Matthew G.; Barda, Joel; Brooijmansa, Natasja; Toral-Barzab, Lourdes; Hollanderb, Irwin; Mansoura, Tarek S.; Ayral-Kaloustiana, Semiramis; Yub, Ker

    2010-07-19

    We discovered 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxybenzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR). Since phenolic OH groups pose metabolic liability, one of the two hydroxyl groups was selectively removed. The SAR data showed the structural features necessary for subnanomolar inhibitory activity against mTOR kinase as well as selectivity over PI3K?. An X-ray co-crystal structure of one inhibitor with the mTOR-related PI3K? revealed the key hydrogen bonding interactions.

  19. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  20. Effects of pethidine and nalorphine on the mechanical and electrical activities of mammalian isolated ventricular muscle.

    PubMed

    Grundy, H F; Tritthart, H

    1972-09-01

    1. The strength of the isometric mechanical contraction of electricallydriven ventricular muscle has been recorded simultaneously with the resting and action potentials; the effects of pethidine and of nalorphine on these parameters have been studied.2. When lower concentrations of pethidine (0.22-6.5 mug/ml) were perfused, isometric peak tension was decreased in parallel with the maximum upstroke velocity of the action potential; these actions are considered to result from membrane stabilization. At higher concentrations (11.8-109 mug/ml) pethidine usually produced, in addition, a progressive decrease in the resting and action potentials associated with marked irregularities in, or even abolition of, the mechanical response. It is suggested that these effects of the higher doses might be due to a depression of ATPase activity in the myocardial membrane.3. Compared with pethidine, nalorphine had similar, but weaker, actions. PMID:4263795

  1. Physical Activity, Exercise, and Mammalian Testis Function: Emerging Preclinical Protein Biomarker and Integrative Biology Insights.

    PubMed

    Gomes, Mariana; Freitas, Maria João; Fardilha, Margarida

    2015-09-01

    Exercise and physical activity have long been recognized for health promotion and to delay the onset of many pathological situations such as diabetes and cancers. Still, there appears to be an upper limit on the beneficial health effects regarding intensity and frequency of exercise training. In humans, the effect of exercise training in the male reproductive system has been studied mainly through the analysis of semen quality parameters, with inconsistent results. Less is known on molecular biomarkers of exercise-related changes in testis at the protein/proteome level. This review offers an in-depth analysis on the small scale protein studies available primarily from the preclinical studies and interprets their functional impact on the reproductive health with a view to humans. In all, exercise training in preclinical models seems to negatively modulate, in the course of health, critical functions that directly affect spermatogenesis, such as testosterone biosynthesis, energy supply, and antioxidant system components. Exercise training induces apoptosis, leading to the impairment of spermatogenesis and, consequently, to male infertility. In pathological conditions, an improvement in the testicular functions is observed by increases in steroidogenic enzymes and antioxidant defenses, and reductions in activity of inflammatory pathways. Importantly, the mechanisms by which exercise training modulates the reproductive function are far from being fully understood. The analyses of the testis proteome in varying exercise conditions would inform the molecular mechanisms involved and identify putative theranostics opportunities. Such future research is a cornerstone for health promotion in the pursuit of reproductive health informed by omics systems sciences. PMID:26284990

  2. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation.

    PubMed

    Li, Zhenfei; Nie, Fen; Wang, Sheng; Li, Lin

    2011-02-22

    Histone methylation has an important role in transcriptional regulation. However, unlike H3K4 and H3K9 methylation, the role of H4K20 monomethylation (H4K20me-1) in transcriptional regulation remains unclear. Here, we show that Wnt3a specifically stimulates H4K20 monomethylation at the T cell factor (TCF)-binding element through the histone methylase SET8. Additionally, SET8 is crucial for activation of the Wnt reporter gene and target genes in both mammalian cells and zebrafish. Furthermore, SET8 interacts with lymphoid enhancing factor-1 (LEF1)/TCF4 directly, and this interaction is regulated by Wnt3a. Therefore, we conclude that SET8 is a Wnt signaling mediator and is recruited by LEF1/TCF4 to regulate the transcription of Wnt-activated genes, possibly through H4K20 monomethylation at the target gene promoters. Our findings also indicate that H4K20me-1 is a marker for gene transcription activation, at least in canonical Wnt signaling. PMID:21282610

  3. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    PubMed

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. PMID:25808616

  4. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.

    PubMed Central

    Ranatunga, K W

    1994-01-01

    Temperature dependence of the isometric tension was examined in chemically skinned, glycerinated, rabbit Psoas, muscle fibers immersed in relaxing solution (pH approximately 7.1 at 20 degrees C, pCa approximately 8, ionic strength 200 mM); the average rate of heating/cooling was 0.5-1 degree C/s. The resting tension increased reversibly with temperature (5-42 degrees C); the tension increase was slight in warming to approximately 25 degrees C (a linear thermal contraction, -alpha, of approximately 0.1%/degree C) but became more pronounced above approximately 30 degrees C (similar behavior was seen in intact rat muscle fibers). The extra tension rise at the high temperatures was depressed in acidic pH and in the presence of 10 mM inorganic phosphate; it was absent in rigor fibers in which the tension decreased with heating (a linear thermal expansion, alpha, of approximately 4 x 10(-5)/degree C). Below approximately 20 degrees C, the tension response after a approximately 1% length increase (complete < 0.5 ms) consisted of a fast decay (approximately 150.s-1 at 20 degrees C) and a slow decay (approximately 10.s-1) of tension. The rate of fast decay increased with temperature (Q10 approximately 2.4); at 35-40 degrees C, it was approximately 800.s-1, and it was followed by a delayed tension rise (stretch-activation) at 30-40.s-1. The linear rise of passive tension in warming to approximately 25 degrees C may be due to increase of thermal stress in titin (connectin)-myosin composite filament, whereas the extra tension above approximately 30 degrees C may arise from cycling cross-bridges; based on previous findings from regulated actomyosin in solution (Fuchs, 1975), it is suggested that heating reversibly inactivates the troponin-tropomyosin control mechanism and leads to Ca-independent thin filament activation at high temperatures. Additionally, we propose that the heating-induced increase of endo-sarcomeric stress within titin-myosin composite filament makes the

  5. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  6. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD.

    PubMed

    Sosanya, Natasha M; Cacheaux, Luisa P; Workman, Emily R; Niere, Farr; Perrone-Bizzozero, Nora I; Raab-Graham, Kimberly F

    2015-06-26

    The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the "capture" of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the "tag" is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner. PMID:25944900

  7. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  8. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  9. Salmonid Tollip and MyD88 factors can functionally replace their mammalian orthologues in TLR-mediated trout SAA promoter activation.

    PubMed

    Rebl, Alexander; Rebl, Henrike; Liu, Shuzhen; Goldammer, Tom; Seyfert, Hans-Martin

    2011-01-01

    Many functional details of the piscine Toll-like receptor (TLR) signal-mediated activation of immune defense are still elusive. We used an established reconstitution system of mammalian TLR signaling to examine if this system would allow for pathogen-dependent promoter activation of the serum amyloid A (SAA)-encoding gene from rainbow trout (Oncorhynchus mykiss) and if the key mediators MyD88 and Tollip from trout can functionally substitute for their mammalian orthologues. Cells of the established human embryonic kidney line HEK-293 were transiently co-transfected with vectors expressing bovine TLR2 or TLR4 factors and a reporter gene driven by the promoter of the trout SAA gene. Escherichia coli stimulation increased reporter gene expression more than 3-fold. Deletion series and point mutations identified in the proximal SAA promoter a composite overlapping binding site for NF-κB and CEBP factors as crucial for promoter activation. Overexpression of NF-κB p65, but not of p50 or different members of the CEBP factor family proved this factor as an essential driver for SAA expression. Overexpression of a transdominant-negative mutant of the trout MyD88 factor reduced TLR-mediated SAA promoter activation confirming functional conservation of its TIR domain. Overexpression of the Tollip factor from trout also quenched TLR-mediated NF-κB and TLR4-mediated SAA promoter activation. The MyD88 mutant and Tollip expression studies confirm the functional homology of both piscine factors and their mammalian counterparts. We provide for the first time evidence that also the Tollip-mediated negative loop of TLR signaling may be conserved in non-mammalian organisms. PMID:20813127

  10. Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs

    PubMed Central

    Tribouillard-Tanvier, Déborah; Dos Reis, Suzana; Gug, Fabienne; Voisset, Cécile; Béringue, Vincent; Sabate, Raimon; Kikovska, Ema; Talarek, Nicolas; Bach, Stéphane; Huang, Chenhui; Desban, Nathalie; Saupe, Sven J.; Supattapone, Surachai; Thuret, Jean-Yves; Chédin, Stéphane; Vilette, Didier; Galons, Hervé; Sanyal, Suparna; Blondel, Marc

    2008-01-01

    Background 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. Methodology/Principal Findings Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. Conclusion/Significance 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity. PMID:18478094

  11. Inhibition of Autophagy as a Strategy to Augment Radiosensitization by the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235S⃞

    PubMed Central

    Cerniglia, George J.; Karar, Jayashree; Tyagi, Sonia; Christofidou-Solomidou, Melpo; Rengan, Ramesh; Koumenis, Constantinos

    2012-01-01

    We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of cancer cell lines, including SQ20B head and neck carcinoma cells and U251 glioblastoma cells. NVP-BEZ235 also increased in vivo radiation response in SQ20B xenografts. Knockdown of Akt1, p110α, or mTOR resulted in radiosensitization, but not to the same degree as with NVP-BEZ235. NVP-BEZ235 interfered with DNA damage repair after radiation as measured by the CometAssay and resolution of phosphorylated H2A histone family member X foci. NVP-BEZ235 abrogated the radiation-induced phosphorylation of both DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated. Knockdown of either p110α or mTOR failed to decrease the phosphorylation of DNA-PKcs, suggesting that the effect of the drug was direct rather than mediated via p110α or mTOR. The treatment of cells with NVP-BEZ235 also promoted autophagy. To assess the importance of this process in radiosensitization, we used the autophagy inhibitors 3-methyladenine and chloroquine and found that either drug increased cell killing after NVP-BEZ235 treatment and radiation. Knocking down the essential autophagy proteins autophagy related 5 (ATG5) and beclin1 increased NVP-BEZ235-mediated radiosensitization. Furthermore, NVP-BEZ235 radiosensitized autophagy-deficient ATG5(−/−) fibroblasts to a greater extent than ATG5(+/+) cells. We conclude that NVP-BEZ235 radiosensitizes cells and induces autophagy by apparently distinct mechanisms. Inhibiting autophagy via pharmacologic or genetic means increases radiation killing after NVP-BEZ235 treatment; hence, autophagy seems to be cytoprotective in this

  12. Mammalian target of rapamycin (mTOR) inhibitors and combined chemotherapy in breast cancer: a meta-analysis of randomized controlled trials

    PubMed Central

    Qiao, Longwei; Liang, Yuting; Mira, Ranim R; Lu, Yaojuan; Gu, Junxia; Zheng, Qiping

    2014-01-01

    The mammalian target of rapamycin (mTOR) inhibitor, in combination with other chemotherapeutic drugs, has been used for treatment of breast cancer that develops resistance to endocrine therapy. However, the efficacy and safety need further evaluation. Here, we report a meta-analysis of randomized controlled trials (RCT) in breast cancer patients undergoing chemotherapy using steroid (exemestane) or nonsteroid (letrozole) aromatase inhibitors with or without mTOR inhibitors (everolimus). The overall response rate (ORR), progression-free survival (PFS), clinical benefi;t rate with 95% confidence interval (CI), and the major toxicities/adverse effects were analyzed. Data were extracted from twelve studies that meet the selection criteria. Among these, six studies that enrolled 3693 women received treatment of everolimus plus exemestane, or placebo with exemestane. The results showed that everolimus plus exemestane significantly increased the ORR relative risk (relative risk = 9.18, 95% CI = 5.21-16.15), PFS hazard ratio (hazard ratio = 0.44, 95% CI = 0.41-0.48), and clinical benefi;t rate (relative risk = 1.92, 95% CI 1.69-2.17) compared to placebo control, while the risks of stomatitis, rash, hyperglycemia, diarrhea, fatigue, anorexia and pneumonitis also increased. Three studies that enrolled 715 women who received everolimus as neoadjuvant therapy were analyzed. Compared to chemotherapy with placebo, chemotherapy plus everolimus did not increase the ORR relative risk (relative risk = 0.90, 95% CI = 0.77-1.05). Meanwhile, two other studies that enrolled 2104 women examined the efficacy of temsirolimus (or placebo control) plus letrozole. The results indicated that emsirolimus plus letrozole did not increase the ORR relative risk and clinical benefi;t rate (p > 0.05). Together, these data suggest that the combined mTOR inhibitor (everolimus) plus endocrine therapy (exemestane) is superior to endocrine therapy alone. As a neoadjuvant, everolimus did not increase the

  13. Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species.

    PubMed

    Aye, Yimon; Long, Marcus J C; Stubbe, JoAnne

    2012-10-12

    Triapine® (3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP)) is a drug in Phase II trials. One of its established cellular targets is the β(2) subunit of ribonucleotide reductase that requires a diferric-tyrosyl-radical [(Fe(III)(2)-Y·)(Fe(III)(2))] cofactor for de novo DNA biosynthesis. Several mechanisms for 3-AP inhibition of β(2) have been proposed; one involves direct iron chelation from β(2), whereas a second involves Y· destruction by reactive oxygen species formed in situ in the presence of O(2) and reductant by Fe(II)-(3-AP). Inactivation of β(2) can thus arise from cofactor destruction by loss of iron or Y·. In vitro kinetic data on the rates of (55)Fe and Y· loss from [((55)Fe(III)(2)-Y·)((55)Fe(III)(2))]-β(2) under aerobic and anaerobic conditions reveal that Y· loss alone is sufficient for rapid β(2) inactivation. Oxyblot(TM) and mass spectrometric analyses of trypsin-digested inhibited β(2), and lack of Y· loss from H(2)O(2) and O(2)(•) treatment together preclude reactive oxygen species involvement in Y· loss. Three mammalian cell lines treated with 5 μm 3-AP reveal Y· loss and β(2) inactivation within 30-min of 3-AP-exposure, analyzed by whole-cell EPR and lysate assays, respectively. Selective degradation of apo- over [(Fe(III)(2)-Y·)(Fe(III)(2))]-β(2) in lysates, similar iron-content in β(2) immunoprecipitated from 3-AP-treated and untreated [(55)Fe]-prelabeled cells, and prolonged (12 h) stability of the inhibited β(2) are most consistent with Y· loss being the predominant mode of inhibition, with β(2) remaining iron-loaded and stable. A model consistent with in vitro and cell-based biochemical studies is presented in which Fe(II)-(3-AP), which can be cycled with reductant, directly reduces Y· of the [(Fe(III)(2)-Y·)(Fe(III)(2))] cofactor of β(2). PMID:22915594

  14. An active target for the accelerator-based transmutation system

    SciTech Connect

    Grebyonkin, K. F.

    1995-09-15

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket--the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the proton beam and, hence considerably improve economic characteristics of the electronuclear reactor.

  15. Proper Regulation of Cdc42 Activity is Required for Tight Actin Concentration at the Equator during Cytokinesis in Adherent Mammalian Cells

    PubMed Central

    Zhu, Xiaodong; Wang, Junxia; Moriguchi, Kazuki; Liow, Lu Ting; Ahmed, Sohail; Kaverina, Irina; Murata-Hori, Maki

    2012-01-01

    Cytokinesis in mammalian cells requires actin assembly at the equatorial region. Although functions of RhoA in this process have been well established, additional mechanisms are likely involved. We have examined if Cdc42 is involved in actin assembly during cytokinesis. Depletion of Cdc42 had no apparent effects on the duration of cytokinesis, while overexpression of constitutively active Cdc42 (CACdc42) caused cytokinesis failure in normal rat kidney epithelial cells. Cells depleted of Cdc42 displayed abnormal cell morphology and caused a failure of tight accumulation of actin and RhoA at the equator. In contrast, in cells overexpressing CACdc42, actin formed abnormal bundles and RhoA was largely eliminated from the equator. Our results suggest that accurate regulation of Cdc42 activity is crucial for proper equatorial actin assembly and RhoA localization during cytokinesis. Notably, our observations also suggest that tight actin concentration is not essential for cytokinesis in adherent mammalian cells. PMID:21763307

  16. The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

    PubMed Central

    Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A

    2003-01-01

    Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants. PMID:14594623

  17. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.

    PubMed

    Xu, Jianqiang; Cheng, Qing; Arnér, Elias S J

    2016-05-01

    The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide. The activity also utilizes the FAD and the N-terminal redox active disulfide/dithiol motif of TrxR1. If a sole Cys residue at the C-terminal tail of TrxR1, in the absence of Sec, was moved further towards the C-terminal end of the protein compared to its natural position at residue 497, juglone reduction was, surprisingly, further increased. Ala substitutions of Trp407, Asn418 and Asn419 in a previously described "guiding bar", thought to mediate interactions of the C-terminal tail of TrxR1 with the FAD/dithiol site at the N-terminal domain of the other subunit in the dimeric enzyme, lowered turnover with juglone about 4.5-fold. Four residues of Sec-deficient TrxR1 were found to be easily arylated by juglone, including the Cys residue at position 497. Based upon our observations we suggest a model for involvement of the juglone-arylated C-terminal motif of TrxR1 to explain its high activity with juglone. This study thus provides novel insights into the catalytic mechanisms of TrxR1. One-electron juglone reduction by TrxR1 producing superoxide should furthermore contribute to the well-known prooxidant cytotoxicity of juglone. PMID:26898501

  18. A Comparison of Ci/Gli Activity as Regulated by Sufu in Drosophila and Mammalian Hedgehog Response

    PubMed Central

    Zhang, Chi; Guo, Yurong; Beachy, Philip A.

    2015-01-01

    Suppressor of fused (Su(fu)/Sufu), one of the most conserved components of the Hedgehog (Hh) signaling pathway, binds Ci/Gli transcription factors and impedes activation of target gene expression. In Drosophila, the Su(fu) mutation has a minimal phenotype, and we show here that Ci transcriptional activity in large part is regulated independently of Su(fu) by other pathway components. Mutant mice lacking Sufu in contrast show excessive pathway activity and die as embryos with patterning defects. Here we show that in cultured cells Hh stimulation can augment transcriptional activity of a Gli2 variant lacking Sufu interaction and, surprisingly, that regulation of Hh pathway targets is nearly normal in the neural tube of Sufu-/- mutant embryos that also lack Gli1 function. Some degree of Hh-induced transcriptional activation of Ci/Gli thus can occur independently of Sufu in both flies and mammals. We further note that Sufu loss can also reduce Hh induction of high-threshold neural tube fates, such as floor plate, suggesting a possible positive pathway role for Sufu. PMID:26271100

  19. Activated Toxicity of Diesel Particulate Extract by Ultraviolet A Radiation in Mammalian Cells: Role of Singlet Oxygen

    PubMed Central

    Bao, Lingzhi; Xu, An; Tong, Liping; Chen, Shaopeng; Zhu, Lingyan; Zhao, Ye; Zhao, Guoping; Jiang, Erkang; Wang, Jun; Wu, Lijun

    2009-01-01

    Background Diesel exhaust [diesel exhaust particles (DEPs) and their extracts (DPE)] and ultraviolet A radiation (UVA) are two ubiquitous environmental factors that have been identified as essential risk factors for various benign or malignant human diseases, either alone or in combination with other agents. Objectives We aimed to investigate the synergistic effects of DPE and UVA at low-dose exposures in human–hamster hybrid (AL) cells and their underlying mechanisms. Methods We exposed exponentially growing AL cells to DPE and/or UVA radiation with or without reactive oxygen species (ROS) quenchers and then assayed the cells for survival, mutation induction, apoptosis, and micronucleus generation. In addition, using a singlet oxygen (1O2) trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron paramagnetic resonance spectroscopy, we determined the production of 1O2. Results Treatment of AL cells with DPE + UVA induced significant cytotoxic and genotoxic damage. In contrast, we found no significant damage in cells treated with either UVA or DPE alone at the same doses. Mutation spectra of CD59− mutants showed that treatment with DPE + UVA easily induces multilocus deletions. Sodium azide significantly inhibited both cellular and DNA damage induced by DPE + UVA treatment, whereas other ROS inhibitors had little protecting effect. Furthermore, we found a significant increase of 1O2 in the cells that received DPE + UVA treatment. Conclusion These findings suggest that UVA activated the genotoxicity and cytotoxicity of DPE in mammalian cells and that 1O2 played an important role in these processes. PMID:19337519

  20. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  1. Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by anisomycin: p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells.

    PubMed Central

    Barros, L F; Young, M; Saklatvala, J; Baldwin, S A

    1997-01-01

    1. Inhibitors of protein synthesis stimulate sugar transport in mammalian cells through activation of plasma membrane GLUT1, the housekeeping isoform of the glucose transporter. However, it has been reported that some of these compounds, in addition to their effect on protein synthesis, also activate protein kinases. 2. In the present study we have explored the role of these two effects on GLUT1 activation. In 3T3-L1 adipocytes and Clone 9 cells, stimulation of sugar transport by puromycin, a translational inhibitor that does not activate kinases, was not detectable until 90 min after exposure. In contrast, stimulation by anisomycin, a potent Jun-NH2-terminal kinase (JNK) agonist, exhibited no lag phase. An intermediate response was observed to emetine and cycloheximide, weak activators of JNK. 3. The potency of anisomycin to stimulate transport acutely (30 min of exposure) was 5- to 10-fold greater than for its chronic stimulation of transport, measured after 4 h of exposure. The stimulation of transport by a low concentration of anisomycin (0.3 microM) was transient, peaked at 30-60 min and it was inhibited (IC50 < 1 microM) by SB203580, which indicates that its mediator is not JNK, but the homologous p38(MAP kinase) (p38(MAPK)). In contrast, the responses to 4 h exposure to 300 microM anisomycin or puromycin were refractory to SB203580. 4. Exposure to anisomycin resulted in rapid activation of p38(MAPK). Activation of both p38(MAPK) and GLUT1 by 0.3 microM anisomycin was cancelled by puromycin. 5. We conclude that the activation of GLUT1 in response to anisomycin includes two components: a delayed component involving translational inhibition and a fast, puromycin-inhibitable component that is secondary to activation of p38(MAPK). Images Figure 2 Figure 7 PMID:9401960

  2. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours.

    PubMed

    Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei

    2016-08-01

    It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors. PMID:26878228

  3. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC).

    PubMed

    Niere, Farr; Namjoshi, Sanjeev; Song, Ehwang; Dilly, Geoffrey A; Schoenhard, Grant; Zemelman, Boris V; Mechref, Yehia; Raab-Graham, Kimberly F

    2016-02-01

    Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes

  4. Use of mammalian target of rapamycin inhibitors after failure of tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma undergoing hemodialysis: A single-center experience with four cases.

    PubMed

    Omae, Kenji; Kondo, Tsunenori; Takagi, Toshio; Iizuka, Junpei; Kobayashi, Hirohito; Hashimoto, Yasunobu; Tanabe, Kazunari

    2016-07-01

    We retrospectively identified patients with end-stage renal disease undergoing hemodialysis treated with the mammalian target of rapamycin inhibitors as a second- and/or third-line targeted therapy after treatment failure with the tyrosine kinase inhibitors for metastatic renal cell carcinoma. Patient medical records were reviewed to evaluate the response to therapies and treatment-related toxicities. Four patients were identified. All patients had undergone nephrectomy, and one had received immunotherapy before targeted therapy. Two patients had clear cell histology, and the other two had papillary histology. All patients were classified into the intermediate risk group according to the Memorial Sloan-Kettering Cancer Center risk model. All patients were treated with everolimus as a second- or third-line therapy, and two patients were treated with temsirolimus as a second- or third-line therapy after treatment failure with sorafenib or sunitinib. The median duration of everolimus therapy was 6.7 months, whereas that of temsirolimus was 9.5 months. All patients had stable disease as the best response during each period of therapy. There were no severe adverse events. The use of mammalian target of rapamycin inhibitors in patients who previously failed to respond to tyrosine kinase inhibitors appears to be feasible in patients with end-stage renal disease requiring hemodialysis. PMID:26833674

  5. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR)C1-dependent and independent cell signaling.

    PubMed

    Sciascia, Q; Pacheco, D; McCoard, S A

    2013-04-01

    The objective of this study was to determine if increased milk protein synthesis observed in lactating dairy cows treated with growth hormone (GH) was associated with mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) regulation of downstream factors controlling nucleocytoplasmic export and translation of mRNA. To address this objective, biochemical indices of mammary growth and secretory activity and the abundance and phosphorylation status of mTORC1 pathway factors were measured in mammary tissues harvested from nonpregnant lactating dairy cows 6 d after treatment with a slow-release formulation of GH or saline (n=4/group). Treatment with GH increased mammary parenchymal weight and total protein content and tended to increase ribosome number and cell size, whereas protein synthetic efficiency, capacity, and cell number were unchanged. Cellular abundance of the mTORC1 components mTOR and (phosphorylated) mTOR(Ser2448) increased, as did complex eukaryotic initiation factor 4E:eukaryotic initiation factor 4E binding protein 1 (eIF4E:4EBP1), whereas no change was observed for mTORC1-downstream targets 4EBP1, 4EBP1(Ser65), p70/p85(S6K) and p70(S6K)Thre389/p85(S6K)Thre412. Changes in activation were not observed for any of the targets measured. These results indicate that GH treatment influences signaling to mTORC1 but not downstream targets involved in the nucleocytoplasmic export and translation of mRNA. Increased eIF4E:4EBP1 complex formation indicates involvement of the mitogen-activated protein kinase (MAPK) pathway. Abundance of MAPK pathway components eIF4E, eIF4E(Ser209), eIF4E:eIF4G complex, MAP kinase-interacting serine/threonine-protein kinase 1 (MKNK1), MKNK1(Thr197202), and ribosomal protein S6 kinase, 90kDa, polypeptide 1 (RPS6KA1) increased significantly in response to GH, whereas relative activation of the proteins was unchanged. Expression of IGFBP3 and IGFBP5 increased, that of IGF1R decreased, and that of IGF1 remained unchanged in

  6. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  7. Synthesis of 3,3'-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2016-01-14

    Hitherto unknown 3,3'-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1- (2-hydroxyphenyl)-2-propen-1-ones 9. The method is generally applicable for the synthesis of novel symmetrical or non-symmetrical products which were found to inhibit mammalian alkaline phosphatases. PMID:26490672

  8. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  9. A helium gas scintillator active target for photoreaction measurements

    NASA Astrophysics Data System (ADS)

    Al Jebali, Ramsey; Annand, John R. M.; Adler, Jan-Olof; Akkurt, Iskender; Buchanan, Emma; Brudvik, Jason; Fissum, Kevin; Gardner, Simon; Hamilton, David J.; Hansen, Kurt; Isaksson, Lennart; Livingston, Kenneth; Lundin, Magnus; McGeorge, John C.; MacGregor, Ian J. D.; MacRae, Roderick; Middleton, Duncan G.; Reiter, Andreas J. H.; Rosner, Günther; Schröder, Bent; Sjögren, Johan; Sokhan, Daria; Strandberg, Bruno

    2015-10-01

    A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm3 at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N2 to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in 4He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response.

  10. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  11. Rapid, Specific, No-wash, Far-red Fluorogen Activation in Subcellular Compartments by Targeted Fluorogen Activating Proteins

    PubMed Central

    2015-01-01

    Live cell imaging requires bright photostable dyes that can target intracellular organelles and proteins with high specificity in a no-wash protocol. Organic dyes possess the desired photochemical properties and can be covalently linked to various protein tags. The currently available fluorogenic dyes are in the green/yellow range where there is high cellular autofluorescence and the near-infrared (NIR) dyes need to be washed out. Protein-mediated activation of far-red fluorogenic dyes has the potential to address these challenges because the cell-permeant dye is small and nonfluorescent until bound to its activating protein, and this binding is rapid. In this study, three single chain variable fragment (scFv)-derived fluorogen activating proteins (FAPs), which activate far-red emitting fluorogens, were evaluated for targeting, brightness, and photostability in the cytosol, nucleus, mitochondria, peroxisomes, and endoplasmic reticulum with a cell-permeant malachite green analog in cultured mammalian cells. Efficient labeling was achieved within 20–30 min for each protein upon the addition of nM concentrations of dye, producing a signal that colocalized significantly with a linked mCerulean3 (mCer3) fluorescent protein and organelle specific dyes but showed divergent photostability and brightness properties dependent on the FAP. These FAPs and the ester of malachite green dye (MGe) can be used as specific, rapid, and wash-free labels for intracellular sites in live cells with far-red excitation and emission properties, useful in a variety of multicolor experiments. PMID:25650487

  12. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  13. Acoustic gaze adjustments during active target selection in echolocating porpoises.

    PubMed

    Wisniewska, Danuta Maria; Johnson, Mark; Beedholm, Kristian; Wahlberg, Magnus; Madsen, Peter Teglberg

    2012-12-15

    Visually dominant animals use gaze adjustments to organize perceptual inputs for cognitive processing. Thereby they manage the massive sensory load from complex and noisy scenes. Echolocation, as an active sensory system, may provide more opportunities to control such information flow by adjusting the properties of the sound source. However, most studies of toothed whale echolocation have involved stationed animals in static auditory scenes for which dynamic information control is unnecessary. To mimic conditions in the wild, we designed an experiment with captive, free-swimming harbor porpoises tasked with discriminating between two hydrophone-equipped targets and closing in on the selected target; this allowed us to gain insight into how porpoises adjust their acoustic gaze in a multi-target dynamic scene. By means of synchronized cameras, an acoustic tag and on-target hydrophone recordings we demonstrate that porpoises employ both beam direction control and range-dependent changes in output levels and pulse intervals to accommodate their changing spatial relationship with objects of immediate interest. We further show that, when switching attention to another target, porpoises can set their depth of gaze accurately for the new target location. In combination, these observations imply that porpoises exert precise vocal-motor control that is tied to spatial perception akin to visual accommodation. Finally, we demonstrate that at short target ranges porpoises narrow their depth of gaze dramatically by adjusting their output so as to focus on a single target. This suggests that echolocating porpoises switch from a deliberative mode of sensorimotor operation to a reactive mode when they are close to a target. PMID:23175527

  14. Effect of target probability on pre-stimulus brain activity.

    PubMed

    Lucci, G; Berchicci, M; Perri, R L; Spinelli, D; Di Russo, F

    2016-05-13

    Studies on perceptual decision-making showed that manipulating the proportion of target and non-target stimuli affects the behavioral performance. Tasks with high frequency of targets are associated to faster response times (RTs) conjunctively to higher number of errors (reflecting a response bias characterized by speed/accuracy trade-off) when compared to conditions with low frequency of targets. Electroencephalographic studies well described modulations of post-stimulus event-related potentials as effect of the stimulus probability; in contrast, in the present study we focused on the pre-stimulus preparatory activities subtending the response bias. Two versions of a Go/No-go task characterized by different proportion of Go stimuli (88% vs. 12%) were adopted. In the task with frequent go trials, we observed a strong enhancement in the motor preparation as indexed by the Bereitschaftspotential (BP, previously associated with activity within the supplementary motor area), faster RTs, and larger commission error rate than in the task with rare go trials. Contemporarily with the BP, a right lateralized prefrontal negativity (lateral pN, previously associated with activity within the dorsolateral prefrontal cortex) was larger in the task with rare go trial. In the post-stimulus processing stage, we confirmed that the N2 and the P3 components were larger for rare trials, irrespective of the Go/No-go stimulus category. The increase of activities recorded in the preparatory phase related to frequency of targets is consistent with the view proposed in accumulation models of perceptual decision for which target frequency affects the subjective baseline, reducing the distance between the starting-point and the response boundary, which determines the response speed. PMID:26912279

  15. Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling

    PubMed Central

    Culican, Susan M.; Bloom, A. Joseph; Weiner, Joshua A.; DiAntonio, Aaron

    2009-01-01

    Proper functioning of the mammalian visual system requires that connections between the eyes and their central targets develop precisely. At birth, axons from the two eyes project to broad, overlapping regions of the dorsal Lateral Geniculate Nucleus (dLGN). In the adult, retinal axons segregate into distinct monocular regions at stereotyped locations within the dLGN. This process is driven by both molecular cues and activity-dependent synaptic competition. Here we demonstrate that Phr1, an evolutionarily conserved regulator of synapse formation and axon guidance, defines a novel molecular pathway required for proper localization of retinogeniculate projections. Following conditional excision of Phr1 in the retina, eye-specific domains within the dLGN are severely disturbed, despite normal spontaneous retinal wave activity and monocular segregation. Although layer placement is dramatically altered, Phr1 mutant retinal axons respond to ephrin-A in vitro. These findings indicate that Phr1 is a key presynaptic regulator of retinogeniculate layer placement independent of activity, segregation, or ephrin-A signaling. PMID:19371781

  16. Eliciting Production of L2 Target Structures through Priming Activities

    ERIC Educational Resources Information Center

    McDonough, Kim; Trofimovich, Pavel; Neumann, Heike

    2015-01-01

    This study focuses on the pedagogical applications of structural priming research in an English for academic purposes (EAP) context, investigating whether priming activities are an effective tool for eliciting production of target grammatical structures. University students across four EAP classes carried out a total of 6 information-exchange…

  17. A Functional Dissection of PTEN N-Terminus: Implications in PTEN Subcellular Targeting and Tumor Suppressor Activity

    PubMed Central

    Gil, Anabel; Rodríguez-Escudero, Isabel; Stumpf, Miriam; Molina, María; Cid, Víctor J.; Pulido, Rafael

    2015-01-01

    Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations. PMID:25875300

  18. The unfolded protein response selectively targets active smoothened mutants.

    PubMed

    Marada, Suresh; Stewart, Daniel P; Bodeen, William J; Han, Young-Goo; Ogden, Stacey K

    2013-06-01

    The Hedgehog signaling pathway, an essential regulator of developmental patterning, has been implicated in playing causative and survival roles in a range of human cancers. The signal-transducing component of the pathway, Smoothened, has revealed itself to be an efficacious therapeutic target in combating oncogenic signaling. However, therapeutic challenges remain in cases where tumors acquire resistance to Smoothened antagonists, and also in cases where signaling is driven by active Smoothened mutants that exhibit reduced sensitivity to these compounds. We previously demonstrated that active Smoothened mutants are subjected to prolonged endoplasmic reticulum (ER) retention, likely due to their mutations triggering conformation shifts that are detected by ER quality control. We attempted to exploit this biology and demonstrate that deregulated Hedgehog signaling driven by active Smoothened mutants is specifically attenuated by ER stressors that induce the unfolded protein response (UPR). Upon UPR induction, active Smoothened mutants are targeted by ER-associated degradation, resulting in attenuation of inappropriate pathway activity. Accordingly, we found that the UPR agonist thapsigargin attenuated mutant Smoothened-induced phenotypes in vivo in Drosophila melanogaster. Wild-type Smoothened and physiological Hedgehog patterning were not affected, suggesting that UPR modulation may provide a novel therapeutic window to be evaluated for targeting active Smoothened mutants in disease. PMID:23572559

  19. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  20. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    NASA Astrophysics Data System (ADS)

    Morris, Meg; Annand, John; Hornidge, David; Strandberg, Bruno

    2015-12-01

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  1. Glycosylation in a Mammalian Expression System Is Critical for the Production of Functionally Active Leukocyte Immunoglobulin-like Receptor A3 Protein

    PubMed Central

    Lee, Terry H. Y.; Mitchell, Ainslie; Liu Lau, Sydney; An, Hongyan; Rajeaskariah, Poornima; Wasinger, Valerie; Raftery, Mark; Bryant, Katherine; Tedla, Nicodemus

    2013-01-01

    The leukocyte immunoglobulin-like receptor (LILR) A3 is a member of the highly homologous activating and inhibitory receptors expressed on leukocytes. LILRA3 is a soluble receptor of unknown functions but is predicted to act as a broad antagonist to other membrane-bound LILRs. Functions of LILRA3 are unclear primarily because of the lack of high quality functional recombinant protein and insufficient knowledge regarding its ligand(s). Here, we expressed and characterized recombinant LILRA3 (rLILRA3) proteins produced in 293T cells, Escherichia coli, and Pichia pastoris. We found that the purified rLILRA3 produced in the mammalian system was the same size as a 70-kDa native macrophage LILRA3. This is 20 kDa larger than the calculated size, suggesting significant post-translational modifications. In contrast, rLILRA3 produced in E. coli was similar in size to the unprocessed protein, but yeast-produced protein was 2–4 times larger than the unprocessed protein. Treatment with peptide-N-glycosidase F reduced the size of the mammalian cell- and yeast-produced rLILRA3 to 50 kDa, suggesting that most modifications are due to glycosylation. Consistent with this, mass spectrometric analysis of the mammalian rLILRA3 revealed canonical N-glycosylation at the predicted Asn140, Asn281, Asn302, Asn341, and Asn431 sites. Functionally, only mammalian cell-expressed rLILRA3 bound onto the surface of monocytes with high affinity, and importantly, only this significantly abrogated LPS-induced TNFα production by monocytes. Binding to monocytes was partially blocked by β-lactose, indicating that optimally glycosylated LILRA3 might be critical for ligand binding and function. Overall, our data demonstrated for the first time that LILRA3 is a potential new anti-inflammatory protein, and optimal glycosylation is required for its functions. PMID:24085305

  2. Reversible, activity-dependent targeting of profilin to neuronal nuclei

    SciTech Connect

    Birbach, Andreas . E-mail: andreas.birbach@lbicr.lbg.ac.at; Verkuyl, J. Martin; Matus, Andrew . E-mail: aim@fmi.ch

    2006-07-15

    The actin cytoskeleton in pyramidal neurons plays a major role in activity-dependent processes underlying neuronal plasticity. The small actin-binding protein profilin shows NMDA receptor-dependent accumulation in dendritic spines, which is correlated with suppression of actin dynamics and long-term stabilization of synaptic morphology. Here we show that following NMDA receptor activation profilin also accumulates in the nucleus of hippocampal neurons via a process involving rearrangement of the actin cytoskeleton. This simultaneous targeting to dendritic spines and the cell nucleus suggests a novel mechanism of neuronal plasticity in which profilin both tags activated synapses and influences nuclear events.

  3. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

    PubMed

    Civiero, Laura; Cirnaru, Maria Daniela; Beilina, Alexandra; Rodella, Umberto; Russo, Isabella; Belluzzi, Elisa; Lobbestael, Evy; Reyniers, Lauran; Hondhamuni, Geshanthi; Lewis, Patrick A; Van den Haute, Chris; Baekelandt, Veerle; Bandopadhyay, Rina; Bubacco, Luigi; Piccoli, Giovanni; Cookson, Mark R; Taymans, Jean-Marc; Greggio, Elisa

    2015-12-01

    Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6. PMID:26375402

  4. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    PubMed

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+)) and MDA-MB-453 cells (CD44-), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+) is a commonly used cancer-stem-cell biomarker, our

  5. Buoyancy-Activated Cell Sorting Using Targeted Biotinylated Albumin Microbubbles

    PubMed Central

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including florescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10g for 1 min, and then allowed 1 hour at 4°C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44+) and MDA-MB-453 cells (CD44–), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44+ is a commonly used cancer-stem-cell biomarker, our targeted

  6. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  7. AMPK activation: a therapeutic target for type 2 diabetes?

    PubMed Central

    Coughlan, Kimberly A; Valentine, Rudy J; Ruderman, Neil B; Saha, Asish K

    2014-01-01

    Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly – some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D. PMID:25018645

  8. The Platin-X series: activation, targeting, and delivery.

    PubMed

    Basu, Uttara; Banik, Bhabatosh; Wen, Ru; Pathak, Rakesh K; Dhar, Shanta

    2016-08-16

    Anticancer platinum (Pt) complexes have long been considered to be one of the biggest success stories in the history of medicinal inorganic chemistry. Yet there remains the hunt for the "magic bullet" which can satisfy the requirements of an effective chemotherapeutic drug formulation. Pt(iv) complexes are kinetically more inert than the Pt(ii) congeners and offer the opportunity to append additional functional groups/ligands for prodrug activation, tumor targeting, or drug delivery. The ultimate aim of functionalization is to enhance the tumor selective action and attenuate systemic toxicity of the drugs. Moreover, an increase in cellular accumulation to surmount the resistance of the tumor against the drugs is also of paramount importance in drug development and discovery. In this review, we will address the attempts made in our lab to develop Pt(iv) prodrugs that can be activated and delivered using targeted nanotechnology-based delivery platforms. PMID:27493131

  9. Feasibility study of an active target for the MEG experiment

    NASA Astrophysics Data System (ADS)

    Papa, A.; Cavoto, G.; Ripiccini, E.

    2014-03-01

    We consider the possibility to have an active target for the upgrade of the MEG experiment (MEG II). The active target should work as (1) a beam monitoring, to continuously measure the muon stopping rate and therefore provide a direct evaluation of the detector acceptance (or an absolute normalization of the stopped muon); and as (2) an auxiliary device for the spectrometer, to improve the determination of the muon decay vertex and consequently to achieve a better positron momentum and angular resolutions, detecting the positron from the muon decay. In this work we studied the feasibility of detecting minimum ionizing particle with a single layer of 250 μm fiber and the capability to discriminate between the signal induced by either a muon or a positron.

  10. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases.

    PubMed

    Perl, Andras

    2016-03-01

    Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases. PMID:26698023

  11. Active multispectral near-IR detection of small surface targets

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Winkel, Hans; Roos, Marco J. J.

    2001-10-01

    The detection and identification of small surface targets with Electro-Optical sensors is seriously hampered by ground clutter, leading to false alarms and reduced detection probabilities. Active ground illumination can improve the detection performance of EO sensors compared to passive skylight illumination because of the knowledge of the illumination level and of its temporal stability. Sun and sky cannot provide this due to the weather variability. In addition multispectral sensors with carefully chosen spectral bands ranging from the visual into the near IR from 400-2500 nm wavelength can take benefit of a variety of cheap active light sources, ranging from lasers to Xenon or halogen lamps. Results are presented, obtained with a two- color laser scanner with one wavelength in the chlorophyll absorption dip. Another active scanner is described operating at 4 wavebands between 1400 and 2300 nm, using tungsten halogen lamps. Finally a simple TV camera was used with either a ste of narrow band spectral filters or polarization filters in front of the lamps. The targets consisted of an array of mixed objects, most of them real mines. The results how great promise in enhancing the detection and identification probabilities of EO sensors against small surface targets.

  12. Target system of IFMIF/EVEDA in Japanese activities

    NASA Astrophysics Data System (ADS)

    Ida, M.; Fukada, S.; Furukawa, T.; Hirakawa, Y.; Horiike, H.; Kanemura, T.; Kondo, H.; Miyashita, M.; Nakamura, H.; Sigiura, H.; Suzuki, A.; Terai, T.; Tsuji, Y.; Ushimaru, H.; Watanabe, K.; Yagi, J.

    2011-10-01

    The Engineering Validation and Engineering Design Activities (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) have been started. As Japanese activities for the target system, the EVEDA Lithium (Li) Test Loop to simulate hydraulic and impurity conditions of the IFMIF Li loop is under design. The feasibility of the thermo-mechanical structure of the target assembly and the replaceable back-plate made of F82H and 316L stainless steel is a key research subject. Toward final validation at the EVEDA loop, diagnostics systems applicable to the high-speed free-surface Li flow and hot traps to control nitrogen and hydrogen in Li loop have been investigated. In the remote handling subject of target assemblies and the replaceable back-plates activated by irradiation up to 50 dpa/y, lip welds on 316L-316L by laser and dissimilar metal welds on F82H-316L are necessary. Water experiments and hydraulic/thermo-mechanical analyses of the back-plate are underway.

  13. Brain activation underlying threat detection to targets of different races.

    PubMed

    Senholzi, Keith B; Depue, Brendan E; Correll, Joshua; Banich, Marie T; Ito, Tiffany A

    2015-01-01

    The current study examined blood oxygen level-dependent signal underlying racial differences in threat detection. During functional magnetic resonance imaging, participants determined whether pictures of Black or White individuals held weapons. They were instructed to make shoot responses when the picture showed armed individuals but don't shoot responses to unarmed individuals, with the cost of not shooting armed individuals being greater than that of shooting unarmed individuals. Participants were faster to shoot armed Blacks than Whites, but faster in making don't shoot responses to unarmed Whites than Blacks. Brain activity differed to armed versus unarmed targets depending on target race, suggesting different mechanisms underlying threat versus safety decisions. Anterior cingulate cortex was preferentially engaged for unarmed Whites than Blacks. Parietal and visual cortical regions exhibited greater activity for armed Blacks than Whites. Seed-based functional connectivity of the amygdala revealed greater coherence with parietal and visual cortices for armed Blacks than Whites. Furthermore, greater implicit Black-danger associations were associated with increased amygdala activation to armed Blacks, compared to armed Whites. Our results suggest that different neural mechanisms may underlie racial differences in responses to armed versus unarmed targets. PMID:26357911

  14. Minireview: Targeting GPCR Activated ERK Pathways for Drug Discovery

    PubMed Central

    Eishingdrelo, Haifeng; Kongsamut, Sathapana

    2013-01-01

    It has become clear in recent years that multiple signal transduction pathways are employed upon GPCR activation. One of the major cellular effectors activated by GPCRs is extracellular signal-regulated kinase (ERK). Both G-protein and β-arrestin mediated signaling pathways can lead to ERK activation. However, depending on activation pathway, the subcellular destination of activated ERK1/2 may be different. G-protein -dependent ERK activation results in the translocation of active ERK to the nucleus, whereas ERK activated via an arrestin-dependent mechanism remains largely in the cytoplasm. The subcellular location of activated ERK1/2 determines the downstream signaling cascade. Many substrates of ERK1/2 are found in the nucleus: nuclear transcription factors that participate in gene transcription, cell proliferation and differentiation. ERK1/2 substrates are also found in cytosol and other cellular organelles: they may play roles in translation, mitosis, apoptosis and cross-talk with other signaling pathways. Therefore, determining specific subcellular locations of activated ERK1/2 mediated by GPCR ligands would be important in correlating signaling pathways with cellular physiological functions. While GPCR-stimulated selective ERK pathway activation has been studied in several receptor systems, exploitation of these different signaling cascades for therapeutics has not yet been seriously pursued. Many old drug candidates were identified from screens based on G-protein signaling assays, and their activity on β-arrestin signaling pathways being mostly unknown, especially regarding their subcellular ERK pathways. With today’s knowledge of complicated GPCR signaling pathways, drug discovery can no longer rely on single-pathway approaches. Since ERK activation is an important signaling pathway and associated with many physiological functions, targeting the ERK pathway, especially specific subcellular activation pathways should provide new avenues for GPCR drug

  15. Phosphoinositide 3-kinase (PI3K) and the nutrient sensing mTOR (mammalian target of rapamycin) pathways control T cell migration

    PubMed Central

    Finlay, David; Cantrell, Doreen

    2012-01-01

    The established role for Phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3) signalling pathways is to regulate cell metabolism. More recently it has emerged that PI(3,4,5)P3 signalling via mTOR and Foxo transcription factors also controls lymphocyte trafficking by determining the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. In quiescent T cells, non-phosphorylated active Foxos maintain expression of KLF2, a transcription factor that regulates expression of the chemokine receptors CCR7 and S1P1and the adhesion receptor CD62L that together control T cell transmigration into secondary lymphoid tissues. PI(3,4,5)P3 mediated activation of Protein Kinase B phosphorylates and inactivates Foxos thereby terminating expression of KLF2 and its target genes. The correct localization of lymphocytes is essential for effective immune responses and the ability of PI3K and mTOR to regulate expression of chemokine receptor and adhesion molecules puts these signaling molecules at the core of the molecular mechanisms that control lymphocyte trafficking. PMID:20146713

  16. Asp-ase Activity of the Opossum Granzyme B Supports the Role of Granzyme B as Part of Anti-Viral Immunity Already during Early Mammalian Evolution

    PubMed Central

    Fu, Zhirong; Thorpe, Michael; Akula, Srinivas; Hellman, Lars

    2016-01-01

    Granzyme B is one of the key effector molecules in our defense against viruses and intracellular bacteria. This serine protease together with the pore forming protein perforin, induces caspase or Bid-dependent apoptosis in target cells. Here we present the first characterization of a granzyme B homolog, the grathepsodenase, in a non-placental mammal, the American opossum (Monodelphis domestica). The recombinant enzyme was produced in a human cell line and used to study its primary and extended cleavage specificity using a panel of chromogenic substrates and recombinant protein substrates. The opossum granzyme B was found to have a specificity similar to human granzyme B, although slightly less restrictive in its extended specificity. The identification of a granzyme B homolog with asp-ase (cleaving after aspartic acid) specificity in a non-placental mammal provides strong indications that caspase or Bid-dependent apoptosis by a serine protease with a conserved primary specificity has been part of anti-viral immunity since early mammalian evolution. This finding also indicates that an asp-ase together with a chymase were the first two serine protease genes to appear in the mammalian chymase locus. PMID:27152961

  17. Asp-ase Activity of the Opossum Granzyme B Supports the Role of Granzyme B as Part of Anti-Viral Immunity Already during Early Mammalian Evolution.

    PubMed

    Fu, Zhirong; Thorpe, Michael; Akula, Srinivas; Hellman, Lars

    2016-01-01

    Granzyme B is one of the key effector molecules in our defense against viruses and intracellular bacteria. This serine protease together with the pore forming protein perforin, induces caspase or Bid-dependent apoptosis in target cells. Here we present the first characterization of a granzyme B homolog, the grathepsodenase, in a non-placental mammal, the American opossum (Monodelphis domestica). The recombinant enzyme was produced in a human cell line and used to study its primary and extended cleavage specificity using a panel of chromogenic substrates and recombinant protein substrates. The opossum granzyme B was found to have a specificity similar to human granzyme B, although slightly less restrictive in its extended specificity. The identification of a granzyme B homolog with asp-ase (cleaving after aspartic acid) specificity in a non-placental mammal provides strong indications that caspase or Bid-dependent apoptosis by a serine protease with a conserved primary specificity has been part of anti-viral immunity since early mammalian evolution. This finding also indicates that an asp-ase together with a chymase were the first two serine protease genes to appear in the mammalian chymase locus. PMID:27152961

  18. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  19. Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

    PubMed Central

    Mazet, Muriel; Perozzo, Remo; Bergamini, Christian; Prati, Federica; Fato, Romana; Lenaz, Giorgio; Capranico, Giovanni; Brun, Reto; Bakker, Barbara M.; Michels, Paul A. M.; Scapozza, Leonardo; Bolognesi, Maria Laura; Cavalli, Andrea

    2013-01-01

    Background and Methodology Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. Principal Findings A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. Conclusions and Significance Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands. PMID:23350008

  20. Active targets for the study of nuclei far from stability

    NASA Astrophysics Data System (ADS)

    Beceiro-Novo, S.; Ahn, T.; Bazin, D.; Mittig, W.

    2015-09-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Reactions leading to bound and unbound states in systems with very unbalanced neutron-to-proton ratios are used to understand the properties of these systems. Radioactive beams with energies from below the Coulomb barrier up to several hundreds MeV/nucleon are now available, and with these beams, a broad variety of studies of nuclei near the drip-line can be performed. To compensate for the low intensity of secondary beams as compared to primary beams, thick targets and high efficiency detection is necessary. In this context, a new generation of detectors was developed, called active target detectors: the detector gas is used as target, and the determination of the reaction vertex in three dimensions allows for good resolution even with thick targets. The reaction products can be measured over essentially 4 π. The physics explored with these detectors together with the technology developed will be described.

  1. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells.

    PubMed

    Zamporlini, Federica; Ruggieri, Silverio; Mazzola, Francesca; Amici, Adolfo; Orsomando, Giuseppe; Raffaelli, Nadia

    2014-11-01

    The redox coenzyme NAD(+) is also a rate-limiting co-substrate for several enzymes that consume the molecule, thus rendering its continuous re-synthesis indispensable. NAD(+) biosynthesis has emerged as a therapeutic target due to the relevance of NAD(+) -consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD(+) biosynthesis with tissue/cell-specific efficiencies, probably reflecting differential expression of the corresponding rate-limiting enzymes, i.e. nicotinamide phosphoribosyltransferase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase and nicotinamide riboside kinase. Understanding the contribution of these enzymes to NAD(+) levels depending on the tissue/cell type and metabolic status is necessary for the rational design of therapeutic strategies aimed at modulating NAD(+) availability. Here we report a simple, fast and sensitive coupled fluorometric assay that enables simultaneous determination of the four activities in whole-cell extracts and biological fluids. Its application to extracts from various mouse tissues, human cell lines and plasma yielded for the first time an overall picture of the tissue/cell-specific distribution of the activities of the various enzymes. The screening enabled us to gather novel findings, including (a) the presence of quinolinate phosphoribosyltransferase and nicotinamide riboside kinase in all examined tissues/cell lines, indicating that quinolinate and nicotinamide riboside are relevant NAD(+) precursors, and (b) the unexpected occurrence of nicotinate phosphoribosyltransferase in human plasma. PMID:25223558

  2. Fine Time Course Expression Analysis Identifies Cascades of Activation and Repression and Maps a Putative Regulator of Mammalian Sex Determination

    PubMed Central

    Looger, Loren L.; Ohler, Uwe; Capel, Blanche

    2013-01-01

    In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E) 11.0–E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6) XY gonads showed a consistent ∼5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs) mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4) is a novel regulator of sex determination upstream of SF1 (Nr5a1), Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems. PMID:23874228

  3. A numerically optimized active shield for improved TMS targeting

    PubMed Central

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-01-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451

  4. Factor XI and Contact Activation as Targets for Antithrombotic Therapy

    PubMed Central

    Gailani, David; Bane, Charles E.; Gruber, Andras

    2015-01-01

    Summary The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally-induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on factor XII, the zymogen of a protease (factor XIIa) that initiates contact activation when blood is exposed to foreign surfaces; and factor XI, the zymogen of the protease factor XIa, which links contact activation to the thrombin generation mechanism. In the case of factor XI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of factor XI may be more effective than low-molecular-weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here we review data on the role of factor XI and factor XII in thrombosis, and results of pre-clinical and human trials for therapies targeting these proteins. PMID:25976012

  5. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  6. Immunoglobulin G response to mammalian cell entry 1A (Mce1A) protein as biomarker of active tuberculosis.

    PubMed

    Takenami, Iukary; de Oliveira, Carolina C; Lima, Filipe R; Soares, Jéssica; Machado, Almério; Riley, Lee W; Arruda, Sérgio

    2016-09-01

    Cell wall components are major determinants of virulence of Mycobacterium tuberculosis and they contribute to the induction of both humoral and cell-mediated immune response. The mammalian cell entry protein 1A (Mce1A), in the cell wall of M. tuberculosis, mediates entry of the pathogen into mammalian cells. Here, we examined serum immunoglobulin levels (IgA, IgM and total IgG) against Mce1A as a potential biomarker for diagnosis and monitoring tuberculosis (TB) treatment response. Serum samples of 39 pulmonary TB patients and 65 controls (15 healthy household contacts, 19 latently infected household contacts, 13 non-TB and 18 leprosy patients) were screened by ELISA. The median levels of all immunoglobulin classes were significantly higher in TB patients when compared with control groups. The positive test results for IgA, IgM and total IgG were 62, 54 and 82%, respectively. For comparison, routine sputum smear examination diagnosed only 26 (67%) of 39 TB cases. Sensitivities of IgA, IgM and IgG test were 59, 51.3 and 79.5%, respectively, while the specificities observed were 77.3, 83.3 and 84.4%, respectively. A significant decrease compared with baseline was also shown after TB treatment. These results suggest that circulating total IgG antibody to Mce1A could be a complementary tool to diagnosis pulmonary TB. PMID:27553414

  7. Targeting DXP synthase in human pathogens: enzyme inhibition and antimicrobial activity of butylacetylphosphonate

    PubMed Central

    Smith, Jessica M.; Warrington, Nicole V.; Vierling, Ryan J.; Kuhn, Misty L.; Anderson, Wayne F.; Koppisch, Andrew T.; Freel Meyers, Caren L.

    2013-01-01

    The unique methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis is essential in most bacterial pathogens. The first enzyme in this pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase, catalyzes a distinct thiamin diphosphate (ThDP)-dependent reaction to form DXP from D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate and represents a potential anti-infective drug target. We have previously demonstrated that the unnatural bisubstrate analog, butylacetylphosphonate (BAP), exhibits selective inhibition of Escherichia coli DXP synthase over mammalian ThDP-dependent enzymes. Here, we report the selective inhibition by BAP against recombinant DXP synthase homologs from Mycobacterium tuberculosis, Yersinia pestis, and Salmonella enterica. We also demonstrate antimicrobial activity of BAP against both Gram-negative and Gram-positive strains (including E. coli, S. enterica, Bacillus anthracis), and several clinically isolated pathogens. Our results suggest a mechanism of action involving inhibition of DXP synthase and show that BAP acts synergistically with established antimicrobial agents, highlighting a potential strategy to combat emerging resistance in bacterial pathogens. PMID:24169798

  8. Development of AN Active 238UF6 Gas Target

    NASA Astrophysics Data System (ADS)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2014-09-01

    Detailed studies of the fission process, e.g., the search for parity nonconservation (PNC) effects, the energy dependence of fission modes or the population of fission isomers, depend on high quality data, therefore requiring high luminosities. An active gas target containing uranium may overcome the deterioration of energy and angular resolution caused by large solid target thicknesses. A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uranium hexafluoride (238UF6), utilizing a triple alpha source to evaluate signal quality and drift velocity. For mass fractions of up to 4 percent of 238U the drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  9. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.

    PubMed

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C Y; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S W; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  10. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C. Y.; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S. W.; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  11. Modeling the target acquisition performance of active imaging systems.

    PubMed

    Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown. PMID:19532626

  12. Modeling the target acquisition performance of active imaging systems

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

  13. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases. PMID:27038376

  14. Purification and characterization of 3-hydroxymethylglutaryl-coenzyme A reductase of Schistosoma mansoni: regulation of parasite enzyme activity differs from mammalian host.

    PubMed

    Chen, G Z; Foster, L; Bennett, J L

    1991-07-01

    The enzyme 3-hydroxymethylglutaryl-CoA (HMG-CoA) reductase plays a critical role in regulating the production of cholesterol, dolichols, and ubiquinones in mammals. The inhibition of this enzyme in Schistosoma mansoni is accompanied by a cessation of egg production by the female parasite and a reduced ability of the parasite to properly glycoslyate their proteins. Furthermore, we recently demonstrated that mevinolin, if given continuously over a period of 10-14 days, is a potent antischistosomal drug. In this paper, we describe the properties of purified HMG-CoA reductase from S. mansoni. Using affinity chromatography, we were able to obtain a 417-fold purification of the enzyme which had Km values similar to the rat enzyme for HMG-CoA and NADPH. The Ki value for mevinolin, a potent and selective inhibitor of the rat reductase (Ki = 0.6 nM), was significantly higher (Ki = 46 nM) for the schistosome enzyme. SDS-PAGE and HPLC of the purified enzyme resulted in the appearance of a single protein, which had a molecular weight (66,000) in the range reported for the rat enzyme. Parasite reductase activity, unlike that of its host, did not display a circadian rhythm. Furthermore, agents which elevate (cholestyramine) or decrease (cholesterol) mammalian reductase activity had no effect on the parasite enzyme. Our results suggest that the mechanism which regulates production of the parasite's enzyme may differ from its mammalian host. PMID:1905241

  15. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  16. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  17. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction.

    PubMed

    Rash, John E; Vanderpool, Kimberly G; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T; Nagy, James I

    2016-04-01

    Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in

  18. NON-MAMMALIAN ESTROGENICITY SCREEN: RAINBOW TROUT ESTROGEN RECEPTOR BINDING

    EPA Science Inventory

    The U.S. EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. Current assays for measuring endocrine activity are primarily mammalian-based. The appropriateness of extrapolating mammalian results to non-mammalian species is uncert...

  19. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways

    PubMed Central

    SONG, GUIJUN; LI, YU; LIN, LULU; CAO, YUNPENG

    2015-01-01

    Memantine non-competitively blocks the N-methyl-d-aspartate receptor in order to inhibit beta-amyloid (Aβ) secretion, and has been used to treat moderate-to-severe Alzheimer's disease (AD). However, the mechanisms underlying the role of memantine in the autophagy and apoptosis of neuronal cells in AD, as well as the association between neuronal autophagy and apoptosis have yet to be elucidated. The present study aimed to establish an AD cell model overexpressing the 695-amino-acid Swedish mutant of Aβ precursor protein (APP695swe) in order to observe the effects of memantine on the cell viability, autophagy and apoptosis of SH-SY5Y cells in the AD model, and to investigate the associated underlying mechanisms. A pcDNA3.1-APP695 plasmid was transfected into the SH-SY5Y cells. Reverse transcription-quantitative polymerase chain reaction and western blot analyses demonstrated that the AD cell model was successfully established. MTT assays demonstrated that memantine was able to upregulate neuronal cell survival, and acridine orange staining and flow cytometry demonstrated that memantine (5 µM) was able to inhibit neuronal autophagy and apoptosis. Following neuronal autophagy induction by rapamycin, cell apoptosis rates increased significantly. Further experiments revealed that memantine was able to upregulate the expression of signaling molecules phosphorylated (p)-phosphoinositide 3-kinase, p-Akt and p-mammalian target of rapamycin (mTOR), and also inhibited the phosphorylation of the B-cell lymphoma 2/Beclin-1 complex via mitogen-activated protein kinase 8. In conclusion, the results of the present study demonstrated that in the AD cell model, autophagy was able to promote apoptosis. Memantine exerted anti-autophagic and anti-apoptotic functions, and mTOR-dependent as well as-independent autophagic signaling pathways were involved in this process. Therefore, these results of the present study strongly supported the use of memantine as a potential therapeutic

  20. Effects of slow-release urea and rumen-protected methionine and histidine on mammalian target of rapamycin (mTOR) signaling and ubiquitin proteasome-related gene expression in skeletal muscle of dairy cows.

    PubMed

    Sadri, H; Giallongo, F; Hristov, A N; Werner, J; Lang, C H; Parys, C; Saremi, B; Sauerwein, H

    2016-08-01

    The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis, whereas the ubiquitin-proteasome system (UPS) is regarded as the main proteolytic pathway in skeletal muscle. The objective of the current study was to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet on the abundance of key components of the mTOR pathway and of the UPS in skeletal muscle of dairy cows. Sixty Holstein cows were blocked based on days in milk and milk yield and were randomly assigned within block to 1 of 5 diets in a 10-wk experiment (including the first 2 wk as covariate period) as follows: (1) MP-adequate diet (AMP; 107% of MP requirements, based on the National Research Council requirements); (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Muscle biopsies were collected from longissimus dorsi during the last week of the experiment. The mRNA abundance of key mTOR signaling genes was not affected by the treatments. The phosphorylated (P)-mTOR protein was or tended to be greater for DMP compared with DMPU and AMP, respectively. The P-mTOR protein in DMPUMH was decreased when compared against DMPUM. The P-ribosomal protein S6 tended to be increased by DMPUM compared with DMPU. The abundance of total-S6 was or tended to be greater for DMP compared with AMP and DMPU, respectively. The mRNA abundance of ubiquitin activating and conjugating enzymes was not affected by the treatments, whereas that of muscle ring-finger protein 1 (MuRF-1) was greater in DMP than DMPU. The increased abundance of mTOR-associated signaling proteins and MuRF-1 mRNA abundance indicates a higher rate of protein turnover in muscle of DMP-fed cows. The reduced abundance of P-mTOR by supplementation of RPHis may suggest that His is likely partitioned to the

  1. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception?

    PubMed

    Kössl, Manfred; Hechavarria, Julio; Voss, Cornelia; Schaefer, Markus; Vater, Marianne

    2015-03-01

    Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance. PMID:25728173

  2. Regulation of Blood–Testis Barrier (BTB) Dynamics during Spermatogenesis via the “Yin” and “Yang” Effects of Mammalian Target of Rapamycin Complex 1 (mTORC1) and mTORC2

    PubMed Central

    Mok, Ka Wai; Mruk, Dolores D.; Cheng, C. Yan

    2014-01-01

    In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ~10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell–cell interface and/or the Sertoli–spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the “yin” and “yang” antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood–testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB. PMID:23317821

  3. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the

  4. Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration

    PubMed Central

    Diekmann, Heike; Kalbhen, Pascal; Fischer, Dietmar

    2015-01-01

    The developmental decrease of the intrinsic regenerative ability of the mammalian central nervous system (CNS) is associated with reduced activity of mechanistic target of rapamycin (mTOR) in mature neurons such as retinal ganglion cells (RGCs). While mTOR activity is further decreased upon axonal injury, maintenance of its pre-injury level, for instance by genetic deletion of the phosphatase and tensin homolog (PTEN), markedly promotes axon regeneration in mammals. The current study now addressed the question whether active mTOR might generally play a central role in axon regeneration by analyzing its requirement in regeneration-competent zebrafish. Remarkably, regulation of mTOR activity after optic nerve injury in zebrafish is fundamentally different compared to mammals. Hardly any activity was detected in naïve RGCs, whereas it was markedly increased upon axotomy in vivo as well as in dissociated cell cultures. After a short burst, mTOR activity was quickly attenuated, which is contrary to the requirements for axon regeneration in mammals. Surprisingly, mTOR activity was not essential for axonal growth per se, but correlated with cytokine- and PTEN inhibitor-induced neurite extension in vitro. Moreover, inhibition of mTOR using rapamycin significantly reduced axon regeneration in vivo and compromised functional recovery after optic nerve injury. Therefore, axotomy-induced mTOR activity is involved in CNS axon regeneration in zebrafish similar to mammals, although it plays an ancillary rather than essential role in this regeneration-competent species. PMID:26217179

  5. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

    PubMed

    Shen, Zheyu; Li, Yan; Kohama, Kazuhiro; Oneill, Brian; Bi, Jingxiu

    2011-01-01

    Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug

  6. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  7. Novel strategies for ultrahigh specific activity targeted nanoparticles

    SciTech Connect

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  8. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  9. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  10. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells.

    PubMed

    Huang, L; Farhood, H; Serbina, N; Teepe, A G; Barsoum, J

    1995-12-26

    We have explored the use of cationic liposomes to deliver the human immunodeficiency virus-1 trans-activator protein tat using a reporter gene expression assay. The human epidermoid carcinoma cell A431 stably transfected with a reporter gene under the control of human immunodeficiency virus-1 promoter was used as a target cell. Phosphatidylcholine-containing cationic liposomes had no detectable tat delivery activity. In contrast, delivery of tat was enhanced by up to 150-fold using cationic liposomes enriched with dioleoyl phosphatidylethanolamine (DOPE), a lipid which readily transforms a bilayer into a nonbilayer structure. Enhanced delivery of tat by DOPE-containing liposomes was most likely the result of the endosomolytic activity of the liposome. This phospholipid-rich formulation showed no toxicity at concentrations sufficient for maximal delivery of tat. A variety of cationic liposome formulations which contain DOPE were tested successfully for tat delivery. PMID:8554596

  11. Targeted training modifies oscillatory brain activity in schizophrenia patients

    PubMed Central

    Popov, Tzvetan G.; Carolus, Almut; Schubring, David; Popova, Petia; Miller, Gregory A.; Rockstroh, Brigitte S.

    2015-01-01

    Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects. PMID:26082889

  12. Crystal structure of mammalian acid sphingomyelinase.

    PubMed

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann-Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann-Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  13. Crystal structure of mammalian acid sphingomyelinase

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X.; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann–Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann–Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  14. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm).

    PubMed Central

    Tsuda, Yoko; Nakatani, Fumiki; Hashimoto, Keiko; Ikawa, Satoshi; Matsuura, Chikako; Fukada, Takashi; Sugimoto, Kenji; Himeno, Michio

    2003-01-01

    Cry1Aa, an insecticidal protein produced by Bacillus thuringiensis, has been shown to bind to cadherin-like protein, BtR175, in Bombyx mori (silkworm) midgut. We previously reported three variant alleles of BtR175 (BtR175a, b and c). When transiently expressed in COS7 cells, all the three BtR175 variants bound to Cry1Aa. We stably expressed BtR175b in HEK293 cells. These BtR175b-expressing cells swelled and died in the presence of activated Cry1Aa in a dose- and time-dependent manner, showing that BtR175b itself can impart Cry1Aa-susceptibility to mammalian cells. These cells were more susceptible to Cry1Aa than to Cry1Ab and Cry1Ac. Since dispersed B. mori midgut cells were reported to be highly susceptible to Cry1Ac, this result suggested that other Cry1Ac-specific receptor(s) were simultaneously working with BtR175 in the midgut cells. Advantages are also discussed of applying these transfected mammalian cells to toxicity assays of mutant Cry proteins. PMID:12403648

  15. Crowding and Follicular Fate: Spatial Determinants of Follicular Reserve and Activation of Follicular Growth in the Mammalian Ovary

    PubMed Central

    Gaytan, Francisco; Morales, Concepcion; Leon, Silvia; Garcia-Galiano, David; Roa, Juan; Tena-Sempere, Manuel

    2015-01-01

    Initiation of growth of resting ovarian follicles is a key phenomenon for providing an adequate number of mature oocytes in each ovulation, while preventing premature exhaustion of primordial follicle reserve during the reproductive lifespan. Resting follicle dynamics strongly suggest that primordial follicles are under constant inhibitory influences, by mechanisms and factors whose nature remains ill defined. In this work, we aimed to assess the influence of spatial determinants, with special attention to clustering patterns and crowding, on the fate of early follicles in the adult mouse and human ovary. To this end, detailed histological and morphometric analyses, targeting resting and early growing follicles, were conducted in ovaries from mice, either wild type (WT) or genetically modified to lack kisspeptin receptor expression (Kiss1r KO), and healthy adult women. Kiss1r KO mice were studied as model of persistent hypogonadotropism and anovulation. Different qualitative and quantitative indices of the patterns of spatial distribution of resting and early growing follicles in the mouse and human ovary, including the Morisita’s index of clustering, were obtained. Our results show that resting primordial follicles display a clear-cut clustered pattern of spatial distribution in adult mouse and human ovaries, and that resting follicle aggrupation is inversely correlated with the proportion of follicles initiating growth and entering into the growing pool. As a whole, our data suggest that resting follicle crowding, defined by changes in density and clustered pattern of distribution, is a major determinant of follicular activation and the fate of ovarian reserve. Uneven follicle crowding would constitute the structural counterpart of the major humoral regulators of early follicular growth, with potential implications in ovarian ageing and pathophysiology. PMID:26642206

  16. mRNA Targeting to Endoplasmic Reticulum Precedes Ago Protein Interaction and MicroRNA (miRNA)-mediated Translation Repression in Mammalian Cells*

    PubMed Central

    Barman, Bahnisikha; Bhattacharyya, Suvendra N.

    2015-01-01

    MicroRNA (miRNA) binds to the 3′-UTR of its target mRNAs to repress protein synthesis. Extensive research was done to understand the mechanism of miRNA-mediated repression in animal cells. Considering the progress in understanding the mechanism, information about the subcellular sites of miRNA-mediated repression is surprisingly limited. In this study, using an inducible expression system for an miRNA target message, we have delineated how a target mRNA passes through polysome association and Ago2 interaction steps on rough endoplasmic reticulum (ER) before the miRNA-mediated repression sets in. From this study, de novo formed target mRNA localization to the ER-bound polysomes manifested as the earliest event, which is followed by Ago2 micro-ribonucleoprotein binding, and translation repression of target message. Compartmentalization of this process to rough ER membrane ensures enrichment of miRNA-targeted messages and micro-ribonucleoprotein components on ER upon reaching a steady state. PMID:26304123

  17. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan