Science.gov

Sample records for activated metal treatment

  1. Metal treatment

    SciTech Connect

    Carlson, R.; Johnson, P.M.; Pierce, J.R.

    1993-07-13

    A process is described for increasing the corrosion resistance of a metal object bearing a preexisting protective conversion coating, said process comprising steps of: (A) contacting the pre-existing coating with a composition having a pH from about 5 to about 12 and consisting essentially of: (1) water, (2) from 25-5,000 ppm of triazole molecules selected from the group consisting of aryl triazoles containing from 6 to about 10 carbon atoms and alkyl triazoles containing from 1 to about 6 carbon atoms, and, optionally, (3) at least partially substituted poly(vinylphenol) polymer or copolymer including substituents on at least some of the phenol rings: wherein each of R[sub 5] through R[sub 12] is selected from hydrogen, an alkyl, an aryl, an aryl, a hydroxy-alkyl, an amino-alkyl, a mercapto-alkyl, or a phospho-alkyl moiety, except that R[sub 12] can also be [minus]O[sup [minus]1] or [minus]OH and that at least one of R[sub 9] and R[sub 10] must include a polyhydroxy functionality resulting from the condensation of an amine or ammonia with a ketose, aldose, or other polyhydroxyl compound having from about 3 to about 8 carbon atoms, followed by reduction from imino to amino, and, optionally, (4) polar organic solvents; and (B) drying the object completion of step (A).

  2. Heavy metal speciation and acid treatment of activated sludge developed in a membrane bioreactor.

    PubMed

    Daskalakis, N; Katsou, E; Malamis, S; Haralambous, K J

    2013-01-01

    The aim of this study was to identify the heavy metals forms (exchangeable and bound to carbonate, Fe/Mn oxides, bound to organic matter and sulphide, and residual) associated with different fractions of excess sludge produced by a membrane bioreactor (MBR). Furthermore, the release of metals from the sludge to the liquid was investigated by applying acid treatment using 10% (v/v) H2SO4 (T = 25 degrees C, solid-liquid ratio 1:5 w/v) for contact time ranging from 15 min to 4 h. Metal partitioning in sludge, as determined by the sequential chemical extraction showed that the dominant form of both Ni and Zn was bound to the exchangeable and carbonate fraction; the latter were very unstable and sensitive to environmental conditions. The dominant Cu fraction was bound to organic matter and sulphide, while Pb was found to be mainly in the residual fraction which is very stable. Metal speciation after acidification with H2SO4 indicates changes of metal content in sludge and an increase of the exchangeable and bound to carbonate fraction for all metals except Cu. Acidification resulted in removal of 82% for Ni, 78% for Zn, 47% for Cu and 45% for Pb. PMID:24527621

  3. Application of activated carbon impregnated with metal oxides to the treatment of multi-contaminants.

    PubMed

    Yu, Mok-Ryun; Chang, Yoon-Young; Yang, Jae-Kyu

    2012-01-01

    In this study, as a novel technique for the simultaneous treatment of As(III) and phenol in a single column reactor, different ratios of manganese-impregnated activated carbon (Mn-AC) and iron-impregnated activated carbon (Fe-AC) were applied in a bench-scale column reactor. In this bench-scale test, the column system packed with both Mn-AC and Fe-AC (binary system) was identified as the best system due to the good oxidation efficiency of As(III) to As(V) by Mn-AC, which reasonably controlled the mobility of total arsenic through adsorption of As(V), along with efficient removal of phenol . When the pilot-scale column reactor, packed with equal amounts of Mn-AC and Fe-AC, was applied for the removal of As(III) and phenol, the oxidation of As(III) by 1 g of Mn-AC for up to 110 days and the removal of phenol by total 1 g of Mn-AC and Fe-AC for up to 100 days were 1.81 x 10(-4) g and 8.20 x 10(-4) g, respectively. Based on this work, Fe-AC and Mn-AC can be regarded as a promising filter material in the treatment of wastewater contaminated with organic compounds, such as phenol, and redox-sensitive ions, such as As(III). PMID:22988615

  4. SURFACE TREATMENT OF METALLIC URANIUM

    DOEpatents

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  5. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  6. REMOVAL OF METALS IN COMBINED TREATMENT SYSTEMS

    EPA Science Inventory

    This project assessed the variables influencing the removal of eight metals through combined industrial-municipal treatment plants. The eight metals investigated were: aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc. The metals were studied at subtoxic influent ...

  7. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments.

    PubMed

    Oláh, Viktor; Hepp, Anna; Mészáros, Ilona

    2015-08-01

    Standard ecotoxicological test procedures use only active forms of aquatic plants. The potential effects of toxicants on vegetative propagules, which play an important role in the survival of several aquatic plant species, is not well understood. Because turion-like resting propagules overwinter on the water bottom in temperate regions, they could be exposed to contaminants for longer periods than active plants. Due to its turion producing capability, giant duckweed (Spirodela polyrhiza) is widely used in studying morphogenesis, dormancy, and activation mechanisms in plants. It is also suitable for ecotoxicological purposes. The present work aims to compare the growth inhibition sensitivity of active (normal frond) and overwintering (turion) forms of S. polyrhiza to concentrations of nickel (Ni), cadmium (Cd) and hexavalent chromium (Cr) ranging from 0 to 100mgL(-1). The results indicated that in general, resting turions have higher heavy metal tolerance than active fronds. Cd proved to be the most toxic heavy metal to S. polyrhiza active frond cultures because it induced rapid turion formation. In contrast, the toxicity of Ni and Cr were found to be similar but lower than the effects of Cd. Cr treatments up to 10mgL(-1) did not result in any future negative effects on turion activation. Turions did not survive heavy metal treatments at higher concentrations of Cr. Cd and Ni treatments affected both the floating-up and germination of turions but did not significantly affect the vigor of sprouts. Higher concentrations (of 100mgL(-1)) Cd completely inhibited germination. PMID:25777504

  8. Active Metal-Insulator-Metal Plasmonic Devices

    NASA Astrophysics Data System (ADS)

    Diest, Kenneth Alexander

    As the field of photonics constantly strives for ever smaller devices, the diffraction limit of light emerges as a fundamental limitation in this pursuit. A growing number of applications for optical "systems on a chip" have inspired new ways of circumventing this issue. One such solution to this problem is active plasmonics. Active plasmonics is an emerging field that enables light compression into nano-structures based on plasmon resonances at a metal-dielectric interface and active modulation of these plasmons with an applied external field. One area of active plasmonics has focused on replacing the dielectric layer in these waveguides with an electro-optic material and designing the resulting structures in such a way that the transmitted light can be modulated. These structures can be utilized to design a wide range of devices including optical logic gates, modulators, and filters. This thesis focuses on replacing the dielectric layer within a metal-insulator-metal plasmonic waveguide with a range of electrically active materials. By applying an electric field between the metal layers, we take advantage of the electro-optic effect in lithium niobate, and modulating the carrier density distribution across the structure in n-type silicon and indium tin oxide. The first part of this thesis looks at fabricating metal-insulator-metal waveguides with ion-implantation induced layer transferred lithium niobate. The process is analyzed from a thermodynamic standpoint and the ion-implantation conditions required for layer transfer are determined. The possible failure mechanisms that can occur during this process are analyzed from a thin-film mechanics standpoint, and a metal-bonding method to improve successful layer transfer is proposed and analyzed. Finally, these devices are shown to naturally filter white light into individual colors based on the interference of the different optical modes within the dielectric layer. Full-field electromagnetic simulations show that

  9. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    SciTech Connect

    Sonnichsen, J.C.

    1997-05-01

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination.

  10. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  11. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  12. Coronal Metallicities of Active Binaries

    NASA Astrophysics Data System (ADS)

    Kashyap, V.; Drake, J. J.; Pease, D. O.; Schmitt, J. H. M. M.

    1998-09-01

    We analyze EUV and X-ray data on a sample of X-ray active binary stars to determine coronal abundances. EUVE spectrometer data are used to obtain line fluxes, which are then used to determine Differential Emission Measures (DEMs). The continuum emission predicted for these DEMs (constrained at high temperatures by measurements in the X-ray regime where available) are then compared with EUVE/DS counts to derive coronal metallicities. These measurements indicate whether the coronae on these stars are metal deficient (the ``MAD Syndrome'') or subject to the FIP-effect (low First Ionization Potential elements have enhanced abundances relative to the photospheres).

  13. Tinnitus activities treatment.

    PubMed

    Tyler, Richard S; Gogel, Stephanie A; Gehringer, Anne K

    2007-01-01

    Tinnitus Activities Treatment includes counseling of the whole person, and considers individual differences and needs. We consider four areas: thoughts and emotions, hearing and communication, sleep, and concentration. We typically use Partial Masking Sound Therapy, with a noise or music set to the lowest level that provides relief. A picture-based approach facilitates engagement of the patient, and provides thorough and structured counseling. We engage the patient by including homework and activities to demonstrate understanding and facilitate progress. PMID:17956807

  14. Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

  15. REVIEW OF TREATMENT FOR METAL HAZARDOUS WASTESTREAMS

    EPA Science Inventory

    This publication will examine some of the practices being used or considered for use at on-site or commercial hazardous waste treatment, storage and disposal facilities (TSDF). ptions for managing hazardous wastes containing heavy metals and/or cyanide compounds involve conventio...

  16. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) reduces the concentrations and/or leachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. he objective of the project was to determine the effectiveness and commercial viabili...

  17. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  18. Diagnosis and treatment of metal-induced side-effects.

    PubMed

    Stejskal, Vera; Hudecek, Romuald; Stejskal, Jenny; Sterzl, Ivan

    2006-12-01

    Environmental factors are recognized as a cause of the increasing frequency of allergic and autoimmune diseases. In addition to external pollutants, metal ions released from dental restorations or from other body implants might trigger inflammation in susceptible subjects. In humans, genes governing metal-induced inflammation and autoimmunity are not yet known. In clinical praxis, metal-sensitive patients will present various symptoms ranging from oral mucosal changes and skin disease to excessive fatigue and autoimmune diseases. Since genetic markers of genetic susceptibility in man are not known, one has to rely on the phenototypic markers. Such biomarkers might be certain detoxification enzymes but also the presence of metal-specific memory cells in the blood. With the increasing use of metal implants in medicine and dentistry, it is important to have a proper tool for the diagnosis of metal allergy in susceptible subjects. After nickel, gold is now the second most common sensitizer. In addition to patch test, an in vitro blood test, an optimized commercially available lymphocyte transformation test (MELISA) is discussed. Both tests were used for the diagnosis of metal allergy in a selected group of 15 patients who suffered from clinical metal sensitivity in addition to other health problems. The concordance of the two tests was good but MELISA detected more metal allergies than patch test. The removal of incompatible dental material (RID) resulted in long-term health improvement in the majority of patients. We postulate that in vivo, metal ions activate T-cells, initiating systemic inflammation, which, through cytokines, affects the brain and hypothalamus-pituitary-adrenal axis. We postulate that in vivo metal ions will activate T-cells starting systemic inflammation which, through cytokines affect the brain and hypothalamus-pituitary-adrenal (HPA) axis. The treatment and rehabilitation of metal sensitive patients is based on a firm understanding and

  19. Chemical treatment of chelated metal finishing wastes.

    PubMed

    McFarland, Michael J; Glarborg, Christen; Ross, Mark A

    2012-12-01

    This study evaluated two chemical approaches for treatment of commingled cadmium-cyanide (Cd-CN) and zinc-nickel (Zn-Ni) wastewaters. The first approach, which involved application of sodium hypochlorite (NaOCl), focused on elimination of chelating substances. The second approach evaluated the use of sodium dimethyldithiocarbamate (DMDTC) to specifically target and precipitate regulated heavy metals. Results demonstrated that by maintaining a pH of 10.0 and an oxidation-reduction potential (ORP) value of +600 mV, NaOCl treatment was effective in eliminating all chelating substances. Cadmium, chromium, nickel, and zinc solution concentrations were reduced from 0.27, 4.44, 0.06, and 0.10 ppm to 0.16, 0.17, 0.03, and 0.06 ppm, respectively. Similarly, a 1% DMDTC solution reduced these same metal concentrations in commingled wastewater to 0.009, 1.142, 0.036, and 0.320 ppm. Increasing the DMDTC concentration to 2% improved the removal of all regulated heavy metals except zinc, the removal of which at high pH values is limited by its amphotericity. PMID:23342939

  20. Metallic Stents for Tracheobronchial Pathology Treatment

    SciTech Connect

    Serrano, Carolina; Laborda, Alicia; Lozano, Juan M.; Caballero, Hugo; Sebastian, Antonio; Lopera, Jorge; Gregorio, Miguel Angel de

    2013-12-15

    Purpose: To present the 7-year experience of the treatment of benign and malignant tracheobronchial stenoses using metallic stents. Patients and Methods: One hundred twenty-three stents were inserted in 86 patients (74 benign and 12 malignant stenoses). Ninety-seven stents were placed in the trachea and 26 in the bronchi. The procedures were performed under fluoroscopic and flexible bronchoscopic guidance with the patient under light sedation. In cases of severe stenotic lesions or obstructions, laser resection was performed before stent placement. Clinical and functional pulmonary data were recorded before and 3 months after the procedure. Follow-up involved clinical data and radiographic techniques at 48 h and at 1-, 3-, 6-, and 12-month intervals. Results: The technical success was 100 %. Dyspnea disappearance, forced expiratory volume in the first second, and pulmonary functional data improvement was observed in all patients (p < 0.001). Complications were detected in 23 patients (26.7 %). Mean follow-up time was 6.3 {+-} 1.2 months in patients with malignant lesions and 76.2 {+-} 2.3 months patients with in benign lesions. By the end of the study, 100 % of patients with malignant pathology and 6.7 % of patients with benign lesions had died. Conclusion: Endoluminal treatment of tracheobronchial stenosis with metallic stents is a therapeutic alternative in patients who are poor candidates for surgery. In unresectable malignant lesions, the benefit of metallic stenting is unquestionable. In benign lesions, the results are satisfactory, but sometimes other interventions are required to treat complications. New stent technology may improve these results.

  1. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  2. Occurrence and removal of metals in urban wastewater treatment plants.

    PubMed

    Ustün, Gökhan Ekrem

    2009-12-30

    In this study, nine metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) found in urban wastewater treatment plants (WTPs) in Bursa (Turkey) were monitored for 23 months in 2002 and 2007. Metal influent and effluent concentrations of wastewater stabilization ponds (WSPs) and the activated sludge process (ASP) measured via 24-h composite samples were used to determine removal efficiencies. Average influent concentrations ranged between 2 microg/L (Cd) and 1975 microg/L (Fe). In the stabilization ponds, the removal efficiency was 58% for Cr, while for Cd, Mn, and Pb, it was less than 20%. The activated sludge process yielded high removal efficiencies, ranging from 47% for Ni to 95% for Cr. The use of treated wastewaters for agricultural purposes was investigated, and it was determined that all metal concentrations met application limits, with the exception of Cr in wastewater stabilization pond effluent. Results showed that wastewater stabilization pond effluent reduced the receiving water quality with respect to Cr, Cu, Ni, and Pb. In addition, it was shown that effluent from the activated sludge process temporarily improved the receiving water quality with regard to the Cd, Cu, Mn, and Zn parameters. However, considering the periodic variations of the metals in both processes, water quality, and agricultural practices, it was determined that they should be monitored continuously. PMID:19683867

  3. TREATMENT OF METAL FINISHING WASTES BY SULFIDE PRECIPITATION

    EPA Science Inventory

    This project involved precipitating heavy metals normally present in metal finishing wastewaters by a novel process which employs ferrous sulfide addition (Sulfex), as well as by conventional treatment using calcium hydroxide for comparison purposes. These studies consisted of la...

  4. Exoemissive noise activity of different metallic materials

    NASA Astrophysics Data System (ADS)

    Bichevin, V.; Käämbre, H.; Sammelselg, V.; Kelle, H.; Asari, E.; Saks, O.

    1996-11-01

    A method is proposed for testing the exoemission activity of different metals, used as materials in high sensitivity electrometry (attoammetry). The presented test results allow us to select materials with weaker exoelectron spurious currents.

  5. Adsorption of heavy metals on sonicated activated sludge.

    PubMed

    Commenges-Bernole, N; Marguerie, J

    2009-01-01

    The objective of this work is to assess heavy metals fixation capacity on sonicated activated sludge. Ultrasonic treatment of sludge has lead to its desintegration and changes physico-chemical characteristics such as soluble chemical oxygen demand, proteins or particle size distribution. This study has shown that these modifications have improved significantly the capacity of sludge to fix heavy metals. Indeed, after a sonication of 15 min and storage of three days after irradiation, the equilibrium capacity is increased about 45%. The restructuration of sludge during the storage seems to increase the accessibility to active binding sites. PMID:18599337

  6. TREATMENT OF METALS PRIOR TO ELECTROPLATING

    DOEpatents

    Huddle, R.A.U.; Flint, O.

    1958-05-20

    The preparation of certain metal surfaces to receive electrodeposits is described. Surfaces of the metals are subjected to shot blasting by ferrous metal shot, and the surfaces then are given a coating of copper by displacement from a copper salt solution. The method applies to U, Zr, Ti, Ta, Ni, Mo, W, and V.

  7. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  8. METALS DISTRIBUTIONS IN ACTIVATED SLUDGE SYSTEMS

    EPA Science Inventory

    This project developed models to predict the distribution of metals in activated sludge system process streams. The data used to develop the models were obtained through extended pilot studies from a previous project. The objectives of the study were to evaluate the effects of wa...

  9. Heavy metal removal using peat/wetland treatment

    SciTech Connect

    Murawski, S.

    1994-12-31

    The purpose of this paper is to present an overview of the mechanisms and application of a peat/wetland treatment system for heavy metal removal from wastewater. The mechanisms involved in the removal of heavy metals are complex and difficult to predict, however, peat has been proven to be an effective medium to remove metals. The successful design of a peat/wetland treatment system for acid mine drainage is presented to emphasize the low cost and minimal maintenance involved in this passive metal removal technique.

  10. Production of metal waste forms from spent fuel treatment

    SciTech Connect

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  11. Surface treatment using metal foil liner

    NASA Technical Reports Server (NTRS)

    Garvey, Ray

    1989-01-01

    A metal foil liner can be used to seal large area surfaces. Characteristics of the two-layer foil liner are discussed. Micrographs for foil-to-foil, foil-to-composite, visible seams, and hidden seams are examined.

  12. A Simple MO Treatment of Metal Clusters.

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1980-01-01

    Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)

  13. METALS REMOVALS AND PARTITIONING IN CONVENTIONAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Metals removal and partitioning to primary and secondary sludge during treatment of domestic wastewater by conventional sewage treatment processes was studied. Raw wastewater entering the Mill Creek Sewage Treatment Plant, Cincinnati, Ohio, was fed to a 0.1 l/s (1.6 gpm) pilot tr...

  14. Antiretroviral activity of thiosemicarbazone metal complexes.

    PubMed

    Pelosi, Giorgio; Bisceglie, Franco; Bignami, Fabio; Ronzi, Paola; Schiavone, Pasqualina; Re, Maria Carla; Casoli, Claudio; Pilotti, Elisabetta

    2010-12-23

    Thiosemicarbazones display a wide antimicrobial activity by targeting bacteria, fungi, and viruses. Here, we report our studies on the antiviral activity of two thiosemicarbazone metal complexes, [bis(citronellalthiosemicarbazonato)nickel(II)] and [aqua(pyridoxalthiosemicarbazonato)copper(II)] chloride monohydrate, against the retroviruses HIV-1 and HTLV-1/-2. Both compounds exhibit antiviral properties against HIV but not against HTLVs . In particular, the copper complex shows the most potent anti-HIV activity by acting at the post-entry steps of the viral cycle. PMID:21121632

  15. Induction heating plant for heat treatment of spherical metal products

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, V. N.; Titov, S. S.

    2015-12-01

    A control system for an induction heating plant is developed and studied to perform symmetric high-rate surface induction heating of spherical metal products with given technological parameters for heat treatment.

  16. Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants.

    PubMed

    Xia, Wenbin; Gao, Hui; Wang, Xianhai; Zhou, Chunhua; Liu, Yunguo; Fan, Ting; Wang, Xin

    2009-05-30

    Two soil samples were collected at mining areas located in southern Hunan Province, China. EDTA extraction of Pb, Zn, Cu and Cd from these two tailing soils was studied using column leaching experiments. The redistributions of heavy metals (HMs) were determined using the modified BCR (Community Bureau of Reference) sequential extraction procedure, before and after EDTA extraction. The results indicated that EDTA was an effective extractant because of its strong chelating ability for various HMs. The proportions of Pb, Zn, Cu and Cd in the four fractions varied largely after EDTA extraction. The extraction efficiency of EDTA of the acid-extractable fraction (AEX) was significant in shallow soil column, while in deeper soil column, decrease of the extraction efficiency of reduced (RED), oxidizable (OX) and residual fractions (RES) was obtained, which was mainly due to the decrease of EDTA concentration. PMID:18838220

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    SciTech Connect

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  18. Metal ion effects on enolase activity

    SciTech Connect

    Lee, M.E.; Nowak, T.

    1986-05-01

    Most metal binding studies with yeast enolase suggest that two metals per monomer are required for catalytic activity. The functions of metal I and metal II have not been unequivocally defined. In a series of kinetic experiments where the concentration of MgII is kept constant at subsaturating levels (1mM), the addition of MnII or of ZnII gives a hyperbolic decrease in activity. The final velocity of these mixed metal systems is the same velocity obtained with either only MnII or ZnII respectively. The concentration of MnII (40 ..mu..M) or of Zn (2..mu..M) which gives half maximal effect in the presence of (1mM) MgII is approximately the same as the Km' value for MnII (9..mu..M) or ZnII (3..mu..M) respectively. Direct binding of MnII to enolase in the absence and presence of MgII shows that MnII and MgII compete for the same metal site on enolase. In the presence of 2-phosphoglycerate (2-PGA) and MgII, only a single site is occupied by MnII. Results suggest MnII at site I and MgII at site II. PRR and high resolution /sup 1/H and /sup 31/P NMR studies of enzyme-ligand complexes containing MnII and MgII and MnII are consistent with this model. /sub 31/P measurements allow a measure of the equilibrium constant (0.36) for enolase. Saturation transfer measurements yield net rate constants (k/sub f/ = 0.49s/sup -1/; k/sub r/ = 1.3s/sup -1/) for the overall reaction. These values are smaller than k/sub cat/ (38s/sup -1/) measured under analogous conditions. The cation at site I appears to determine catalytic activity.

  19. Constructed wetland treatment systems for the remediation of metal- bearing aqueous discharges. Final report

    SciTech Connect

    Woodis, A.L.

    1995-08-01

    Electric utility activities, such as coal mining, processing, and combustion, often produce aqueous (wastewater) discharges containing metals. Chemical treatment of these discharges to achieve compliance with National Pollution Discharge Elimination System (NPDES) requirements can be costly. Constructed wetland treatment systems offer an inexpensive, natural, low-maintenance, and potentially long-term solution for the treatment of aqueous discharges without chemical additives. At the present time, several electric utilities are using constructed wetland treatment systems to achieve NPDES compliance. Constructed wetland treatment systems take advantage of natural biogeochemical processes to treat utility wastewaters, thus meeting NPDES compliance levels in an environmentally effective manner. This report provides information on the natural science, wastewater treatment, and regulatory/jurisdictional aspects of constructed wetland treatment systems used within the electric utility industry. Included is data from a number of electric utility constructed wetland treatment sites. The principal advantages of using constructed wetland systems to treat wastewater are the low overall cost compared to more conventional chemical treatment methods, the simplicity of operation, and the capacity to provide long-term resource recovery. For example, using a lined constructed wetland treatment system with high retention efficiency for heavy metals provides the option of resource recovery at some future date from a discrete volume of wetland material. Contaminants that can be removed with high efficiency in a number of constructed wetland treatment systems include heavy metals, toxic organics, suspended solids, and nutrients. This report discusses the treatability of specific contaminants as well as metal uptake and translocation processes in constructed wetlands.

  20. The metal-free approach to restorative treatment planning.

    PubMed

    Cortellini, Davide; Valenti, Marco; Canale, Angelo

    2006-01-01

    Considerable developments in the area of metal-free restorations--in response to increasing esthetic demands from patients--are offering the clinician and dental technician new therapeutic paths to follow when performing restorative treatments. Effective and reliable high-strength ceramic systems, suitable for anterior and posterior sites, may allow the achievement of predictable esthetics and function. Along with the evident indications for the treatment of anterior compromised elements, these types of restorations may be used in a wider variety of clinical cases, including complex prosthetic rehabilitations. Appropriate usage of different materials according to the specific clinical situation is mandatory for long-lasting, functional, and esthetic results. Therefore, a thorough application of metal-free restorations may be considered a "metal-free approach", which includes a specific formulation of treatment planning. In this article, the different materials, selection criteria, clinical indications, and benefits are evaluated, with a particular regard for treatment planning. PMID:19655489

  1. Tailorable chiroptical activity of metallic nanospiral arrays

    NASA Astrophysics Data System (ADS)

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-01

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation

  2. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. PMID:25659306

  3. Tailorable chiroptical activity of metallic nanospiral arrays.

    PubMed

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-18

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications. PMID:26530309

  4. Enhanced zero-valent metal permeable wall treatment of contaminated groundwater

    SciTech Connect

    Reinhart, D.R.; Clausen, C.A.; Geiger, C.

    1997-12-31

    On-going research at the University of Central Florida, supported by NASA, is investigating the use of sonicated zero-valent metal permeable treatment walls to remediate chlorinated solvent contaminated groundwater. Use of ultrasound within the treatment wall is proposed to enhance and/or restore the activity of the zero-valent metal. Batch studies designed to evaluate the destruction of chlorinated hydrocarbons using enhanced zero-valent metal reduction found a nearly three-fold increase in reaction rates after ultrasound treatment. Column studies substantiated these results. It is hypothesized that ultrasound serves to remove corrosion products from the iron surface and will prolong the reactive life and efficiency of the permeable treatment wall, thus decreasing long-term costs of wall construction and maintenance.

  5. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released. PMID:27437755

  6. Treatment Method for Fermi Barrel Sodium Metal Residues

    SciTech Connect

    Steven R. Sherman; Collin J. Knight

    2005-06-01

    Fermi barrels are 55-gallon drums that once contained bulk sodium metal from the shutdown Fermi 1 breeder reactor facility, and now contain residual sodium metal and other sodium/air reaction products. This report provides a residual sodium treatment method and proposed quality assurance steps that will ensure that all residual sodium is deactivated and removed from the Fermi barrels before disposal. The treatment method is the application of humidified carbon dioxide to the residual sodium followed by a water wash. The experimental application of the treatment method to six Fermi barrels is discussed, and recommendations are provided for further testing and evaluation of the method. Though more testing would allow for a greater refinement of the treatment technique, enough data has been gathered from the tests already performed to prove that 100% compliance with stated waste criteria can be achieved.

  7. An alternative treatment of occlusal wear: cast metal occlusal surface.

    PubMed

    Kumar, Sandeep; Arora, Aman; Yadav, Reena

    2012-01-01

    Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures. PMID:22945724

  8. Carbide and carbonitride surface treatment method for refractory metals

    DOEpatents

    Meyer, G.A.; Schildbach, M.A.

    1996-12-03

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.

  9. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen. PMID:27127923

  10. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  11. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    PubMed

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process. PMID:27427689

  12. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction.

    PubMed

    Keller, Catherine; Ludwig, Christian; Davoli, Frédéric; Wochele, Jörg

    2005-05-01

    Phytoextraction is an environmentally sound method for cleaning up sites that are contaminated with toxic heavy metals. However, the method has been questioned because it produces a biomass-rich secondary waste containing the extracted metals. Therefore, further treatment of this biomass is necessary. In this study, we investigated whether thermal treatment could be a feasible option for evaporatively separating metals from the plant residues. We used a laboratory scale reactor designed to simulate the volatilization behavior of heavy metals in a grate furnace. The evaporation of alkali and heavy metals from plant samples was investigated online, using a thermo-desorption spectrometer (TDS). Experiments were performed in the temperature range of 25-950 degrees C with leaves of the Cd and Zn hyperaccumulator Thlaspi caerulescens and of the high biomass plant Salix viminalis (willow), both grown on contaminated soils. Gasification (i.e., pyrolysis), which occurs under reducing conditions, was a better method than incineration under oxidizing conditions to increase volatilization and, hence subsequently recovery, of Cd and Zn from plants. It would also allow the recycling of the bottom ash as fertilizer. Thus, our investigations confirmed that incineration (or co-incineration) is a viable option for the treatment of the heavy metal-enriched plants. PMID:15926590

  13. TREATMENT OF HEAVY METALS USING AN ORGANIC SULFATE REDUCING PRB

    EPA Science Inventory

    A mpilot-scale permeable reactive wall consisting of a leaf-rich compost-pea gravel mixture was installed at a site in the Vancouver area, Canada to evaluate its potential use for treatment of a large dissolved heavy metal plume. The compost based permeable reactive wall promote...

  14. Heat-treatment of metal parts facilitated by sand embedment

    NASA Technical Reports Server (NTRS)

    Briscoe, C. C.; Kelley, R. C.

    1966-01-01

    Embedding metal parts of complex shape in sand contained in a steel box prevents strains and warping during heat treatment. The sand not only provides a simple, inexpensive support for the parts but also ensures more uniform distribution of heat to the parts.

  15. Heavy metal vaporization and abatement during thermal treatment of modified wastes.

    PubMed

    Rio, S; Verwilghen, C; Ramaroson, J; Nzihou, A; Sharrock, P

    2007-09-30

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere. PMID:17467894

  16. Ambient non-thermal plasma for metal surface treatment

    NASA Astrophysics Data System (ADS)

    Nuamatha, Prasad; Pashaie, Bijan; Dhali, Shirshak; Dave, Bakul

    2002-10-01

    Atmospheric pressure discharge in Argon/Hydrogen and Argon/Oxygen mixture is used to clean metal surfaces prior to applying coating. Dielectric barrier discharges driven by low frequency (4 kHz) and RF (13.45 MHz) are used for the treatment. Plasma treatment removes organic contaminants from the surface of the steel and could provide an alternative to chemical cleaning. Peel tests indicate that Argon/Hydrogen plasma produces the strongest coatings. This would suggest that hydrogen plays a role in etching the surface of the metal. XPS results of surfaces coated with adhesives show that plasma treatment is capable of removing ester like compounds without the need for chemicals. The effect of both oxidizing and reducing atmospher will be discussed.

  17. Use of alum water treatment sludge to stabilize C and immobilize P and metals in composts.

    PubMed

    Haynes, R J; Zhou, Y-F

    2015-09-01

    Alum water treatment sludge is composed of amorphous hydroxyl-Al, which has variable charge surfaces with a large Brunauer-Emmett-Teller (BET) surface area (103 m(-2) g(-1)) capable of specific adsorption of organic matter molecules, phosphate, and heavy metals. The effects of adding dried, ground, alum water treatment sludge (10% w/w) to the feedstock for composting municipal green waste alone, green waste plus poultry manure, or green waste plus biosolids were determined. Addition of water treatment sludge reduced water soluble C, microbial biomass C, CO2 evolution, extractable P, and extractable heavy metals during composting. The decrease in CO2 evolution (i.e., C sequestration) was greatest for poultry manure and least for biosolid composts. The effects of addition of water treatment sludge to mature green waste-based poultry manure and biosolid composts were also determined in a 24-week incubation experiment. The composts were either incubated alone or after addition to a soil. Extractable P and heavy metal concentrations were decreased by additions of water treatment sludge in all treatments, and CO2 evolution was also reduced from the poultry manure compost over the first 16-18 weeks. However, for biosolid compost, addition of water treatment sludge increased microbial biomass C and CO2 evolution rate over the entire 24-week incubation period. This was attributed to the greatly reduced extractable heavy metal concentrations (As, Cr, Cu, Pb, and Zn) present following addition of water treatment sludge, and thus increased microbial activity. It was concluded that addition of water treatment sludge reduces concentrations of extractable P and heavy metals in composts and that its effect on organic matter stabilization is much greater during the composting process than for mature compost because levels of easily decomposable organic matter are initially much higher in the feedstock than those in matured composts. PMID:25948380

  18. Influent concentrations and removal performances of metals through municipal wastewater treatment processes.

    PubMed

    Choubert, J M; Pomiès, M; Ruel, S Martin; Coquery, M

    2011-01-01

    This extensive study aimed at quantifying the concentrations and removal efficiency of 23 metals and metalloids in domestic wastewater passing through full-scale plants. Nine facilities were equipped with secondary biological treatment and three facilities were equipped with a tertiary treatment stage. The metals investigated were Li, B, Al, Ti, V, Cr, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Mo, Ag, Cd, Sn, Sb, Ba, TI, Pb and U. Particulate and dissolved metals were measured using 24 h composite samples at each treatment stage. In influents, total concentrations of Cd, Sb, Co, Se, U, Ag, V were below a few microg/L, whereas at the other extremity Zn, B, Fe, Ti, Al were in the range of 0.1 to > 1 mg/L. It was demonstrated that secondary treatment stage (activated sludge, biodisc and membrane bioreactor) were efficient to remove most metals (removal rate > 70%), with the exception of B, Li, Rb, Mo, Co, As, Sb and V due to their low adsorption capacities. With the tested tertiary stages (polishing pond, rapid chemical settler, ozonation), a removal efficiency was obtained for Ti, Cr, Cd, Cu, Zn, Sn, Pb, Fe, Ag and Al, whereas a little removal (< 30%) was obtained for other metals. PMID:21902037

  19. Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently

    PubMed Central

    Rajapaksha, R. M. C. P.; Tobor-Kapłon, M. A; Bååth, E.

    2004-01-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  20. Metal toxicity affects fungal and bacterial activities in soil differently.

    PubMed

    Rajapaksha, R M C P; Tobor-Kapłon, M A; Bååth, E

    2004-05-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  1. Thermal treatment of harzardous waste for heavy metal recovery.

    PubMed

    Hoffmann, Gaston; Schirmer, Matthias; Bilitewski, Bernd; Kaszás Savos, Melania

    2007-07-16

    In this study, a new method for recovering heavy metals from hazardous waste is introduced. The process is characterized by a separation of heavy metals and residues during the thermal treatment under a sub-stoichiometric atmosphere in a rotary kiln. After leaving the rotary kiln the separated heavy metals are precipitated in a hot gas ceramic filter. Using this technology, hazardous materials, both liquids and pasty hazardous waste containing heavy metals, can be treated and a product with a quasi-raw material condition can be formed. In contrast to current methods,the harmful substances should not be immobilized and disposed. In fact, a saleable product highly concentrated with heavy metals should be formed. During preliminary investigations with a solution containing sodium chromate tetrahydrate, the process was tested in a pilot plant. Here,the separation of chromium could be demonstrated with leaching tests and characterization of the filter dust. Analysis concerning the disposability of the residues had not been carried out because only the process and the characteristic of the filter dust were in the centre of attention. PMID:17691119

  2. Size-dependent catalytic activity of supported metal clusters

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C.

    1994-11-01

    BECAUSE catalysis by metals is a surface phenomenon, many technological catalysts contain small (typically nanometre-sized) supported metal particles with a large fraction of the atoms exposed1. Many reactions, such as hydrocarbon hydrogenations, are structure-insensitive, proceeding at approximately the same rate on metal particles of various sizes provided that they are larger than about 1 nm and show bulk-like metallic behaviour1. But it is not known whether the catalytic properties of metal particles become size-dependent as the particles become so small that they are no longer metallic in character. Here we investigate the catalytic behaviour of precisely defined clusters of just four and six iridium atoms on solid supports. We find that the Ir4 and Ir6 clusters differ in catalytic activity both from each other and from metallic Ir particles. This raises the possibility of tailoring the catalytic behaviour of metal clusters by controlling the cluster size.

  3. Pharmacological activity of metal binding agents that alter copper bioavailability

    PubMed Central

    Helsel, Marian E.

    2015-01-01

    Iron, copper and zinc are required nutrients for many organisms but also potent toxins if misappropriated. An overload of any of these metals can be cytotoxic and ultimately lead to organ failure, whereas deficiencies can result in anemia, weakened immune system function, and other medical conditions. Cellular metal imbalances have been implicated in neurodegenerative diseases, cancer and infection. It is therefore critical for living organisms to maintain careful control of both the total levels and subcellular distributions of these metals to maintain healthy function. This perspective explores several strategies envisioned to alter the bioavailability of metal ions by using synthetic metal-binding agents targeted for diseases where misappropriated metal ions are suspected of exacerbating cellular damage. Specifically, we discuss chemical properties that influence the pharmacological outcome of a subset of metal-binding agents known as ionophores, and review several examples that have shown multiple pharmacological activities in metal-related diseases, with a specific focus on copper. PMID:25797044

  4. 42 CFR 441.154 - Active treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Active treatment. 441.154 Section 441.154 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... treatment. Inpatient psychiatric services must involve “active treatment”, which means implementation of...

  5. 42 CFR 441.154 - Active treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Active treatment. 441.154 Section 441.154 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... treatment. Inpatient psychiatric services must involve “active treatment”, which means implementation of...

  6. 42 CFR 441.154 - Active treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Active treatment. 441.154 Section 441.154 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... treatment. Inpatient psychiatric services must involve “active treatment”, which means implementation of...

  7. 42 CFR 441.154 - Active treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Active treatment. 441.154 Section 441.154 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... treatment. Inpatient psychiatric services must involve “active treatment”, which means implementation of...

  8. 42 CFR 441.154 - Active treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Active treatment. 441.154 Section 441.154 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... treatment. Inpatient psychiatric services must involve “active treatment”, which means implementation of...

  9. New applications of old metal-binding drugs in the treatment of human cancer

    PubMed Central

    Schmitt, Sara M.; Frezza, Michael; Dou, Qing Ping

    2013-01-01

    Significant advances in the use of metal complexes, precipitated by platinum, have fostered a renewed interest in harnessing their rich potential in the treatment of cancer. In addition to platinum-based complexes, the anticancer properties of other metals such as ruthenium have been realized, and ruthenium-based compounds are currently being investigated in clinical trials. Since the process of drug development can be expensive and cumbersome, finding new applications of existing drugs may provide effective means to expedite the regulatory process in bringing new drugs to the clinical setting. Encouraging findings from laboratory studies reveal significant anticancer activity from different classes of metal-chelating compounds, such as disulfiram, clioquinol, and dithiocarbamate derivatives that are currently approved for the treatment of various pathological disorders. Their use as coordination complexes with metals such as copper, zinc, and gold that target the ubiquitin-proteasome pathway have shown significant promise as potential anticancer agents. This review discusses the unique role of several selected metals in relation to their anti-cancer properties as well as the new therapeutic potential of several previously approved metal-chelating drugs. In vitro and in vivo experimental evidence along with mechanisms of action (e.g., via targeting the tumor proteasome) will also be discussed with anticipation of strengthening this exciting new concept. PMID:22202066

  10. Palliative Treatment of Malignant Colorectal Strictures with Metallic Stents

    SciTech Connect

    Paul Diaz, Laura; Pinto Pabon, Isabel; Fernandez Lobato, Rosa; Montes Lopez, Carmen

    1999-01-15

    Purpose: To assess the effectiveness and safety of self-expanding metallic stents as a primary palliative treatment for inoperable malignant colorectal strictures. Methods: Under radiological guidance 20 self-expanding metallic Wallstents were implanted in 16 consecutive patients with colorectal stenoses caused by malignant neoplasms, when surgical treatment of the condition had been ruled out. The patients were followed up clinically for 1-44 months, until death or termination of this study. Results: The stents were successfully implanted in all cases and resolved the clinical obstruction in all the patients except one, who underwent subsequent colostomy. During follow-up of the remaining 15 patients, clinical complications arising from the procedure were pain (two patients), minor rectal bleeding (one patient), and severe rectal bleeding (one patient) (26%). There were three cases of stent migration and three cases of stent occlusion, and reintervention by us was necessary in 20% of cases (3/15). The mean life span following the procedure was 130 days, and none of the patients exhibited clinical symptoms of obstruction at the time of death (12 patients) or termination of the study (3 patients). Conclusion: Deployment of metallic stents under radiologic guidance is an effective alternative as a primary palliative measure in malignant colorectal obstruction, though the possible clinical complications and need for repeat intervention during follow-up should be taken into account.

  11. Carbide and carbonitride surface treatment method for refractory metals

    DOEpatents

    Meyer, Glenn A.; Schildbach, Marcus A.

    1996-01-01

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.

  12. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication. PMID:26350735

  13. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    NASA Astrophysics Data System (ADS)

    Yae, Shinji; Morii, Yuma; Fukumuro, Naoki; Matsuda, Hitoshi

    2012-06-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium.

  14. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    PubMed Central

    2012-01-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium. PMID:22738277

  15. Functionalization of cellulose-containing fabrics by plasma and subsequent metal salt treatments.

    PubMed

    Ibrahim, N A; Eid, B M; Youssef, M A; El-Sayed, S A; Salah, A M

    2012-10-01

    In order to upgrade the UV-protection and antibacterial functional properties of cotton/polyester (80/20), cotton/linen (50/50) and linen/viscose-polyester (50/50) fabric blends, they were treated with different plasma gases (oxygen, air, and argon) followed by subsequent treatment with certain metal salts namely Zn-acetate, Cu-acetate, Al-chloride, and Zr-oxychloride. The obtained results show that the type of plasma gas, the kind of metal salt as well as the nature of the treated substrate play an important role in the extent of enhancing the demanded functional properties. Oxygen plasma treatment followed by Cu-acetate or Zn-acetate treatment gives the best UV-protection or antibacterial activity respectively, keeping other parameters constant. The surface morphology of some untreated and plasma-treated samples was also analyzed by SEM. PMID:22840019

  16. Neutron distribution and induced activity inside a Linac treatment room.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-08-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff. PMID:26737878

  17. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  18. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  19. Characterization and metal sorptive properties of oxidized active carbon.

    PubMed

    Strelko, Vladimir; Malik, Danish J

    2002-06-01

    A commercial activated carbon Chemviron F 400 has been oxidized using nitric acid in order to introduce a variety of acidic surface functional groups. Both unoxidized and oxidized carbon samples were characterized using nitrogen porosimetry, elemental analysis, pH titration, Boehm's titration, and electrophoretic mobility measurements. Results show that oxidation treatment reduced surface area and pore volume. However, the carbon surface acquires an acidic character with carboxylic groups being the dominant surface functional groups. The modified sample displays cation-exchange properties over a wide range of pH values and exhibits polyfunctional nature. Both carbon samples were challenged for the removal of transition metals such as copper(II), nickel(II), cobalt(II), zinc(II), and manganese(II). The affinity series Mn2+Zn2+ has been found to coincide with the general stability sequence of metal complexes (the Irving-Williams series). The higher preference displayed by carbons toward copper(II) is a consequence of the fact that copper(II) often forms distorted and more stable octahedral complexes. PMID:16290653

  20. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  1. Surface Plasma Treatment of Polyimide Film for Cu Metallization

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Jin; Choi, Jin-Woo; Bae, In-Seob; Nguyen, Trieu; Boo, Jin-Hyo

    2011-01-01

    Surface modification of polyimide films by oxygen/argon atmospheric pressure plasma (APP) was studied for copper metallization under several conditions, including plasma treatment time, gas ratio, and power of radio frequency (RF; 13.56 MHz) plasma. The effects of APP treatments on the surface properties of polyimide (PI) films were investigated in terms of Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and contact angle measurements. The results showed that the root-mean-squared (RMS) roughness of untreated PI films was 1.48 nm, increasing to 2.08, 2.17, and 2.57 nm after plasma treatment at 200, 400, and 600 W, respectively. At the same time, the contact angle of untreated PI film was 73.0° and reduced to 25.9, 20.3, and 17.3° after plasma treatment at 200, 400, and 600 W, respectively. The lowest contact angle and the maximum RMS roughness were 13° and 8.50 nm, respectively. Those values were achieved by oxygen/argon APP at an RF plasma power of 600 W and with 50 repetitions. Also, X-ray diffraction (XRD) was used to examine the Cu surface structure in the Cu/PI system to indicate the quality of Cu foil. The highest I(111)/I(200) ratio was 1.89 at an RF power of 600 W by oxygen/argon APP treatment.

  2. The effect of the metal-on-metal hip controversy on Internet search activity.

    PubMed

    Phelan, Nigel; Kelly, John C; Moore, David P; Kenny, Patrick

    2014-10-01

    The recall of the articular surface replacement (ASR) hip prosthesis in 2010 represents one of the most controversial areas in orthopaedic surgery in recent years. The aim of this study was to compare the impact of the metal-on-metal hip controversy on Internet search activity in four different regions and determine whether the number of related news reports affected Internet search activity. The Google Trends, Keywords and News applications were used to record the number of news articles and Internet search activity for the terms "hip recall", "metal-on-metal hip" and "ASR hip" from October 2009 to October 2012 in the USA, the UK, Australia and Ireland. There was a large increase in search activity following the official recall in August 2010 in all countries. There was significantly greater search activity after the recall in Ireland compared with the UK for the search term "hip recall" (P = 0.004). For the term "metal-on-metal hip", the UK had significantly more search activity (P = 0.0009). There was a positive correlation between the number of news stories in UK and Ireland with Internet search activity but not in the USA or Australia. Differences between countries affected by the same recall highlight the complex effects of the media on public awareness. The data demonstrates a window of opportunity prior to the official recall for the development of an awareness campaign to provide patients with accurate information. PMID:24390041

  3. Activation of the C-H bond by metal complexes

    NASA Astrophysics Data System (ADS)

    Shilov, Aleksandr E.; Shul'pin, Georgiy B.

    1990-09-01

    Reactions involving the cleavage of C-H bonds by metal complexes in saturated and aromatic hydrocarbons and also in other compounds are examined. Some of these processes occur with formation of a carbon-metal bond, whilst in others the interaction of the complexes with the hydrocarbon takes place without direct contact between the metal atom and the C-H bonds. Metal compounds are widely used as initiators of the liquid-phase oxidation of hydrocarbons at relatively low temperatures. There is a prospect of creating new technologies for the chemical processing of petroleum and gas hydrocarbons, whereby they can be converted into valuable products, for example, into alcohols, ketones, and carboxylic acids, on the basis of processes involving metal complexes. The study of the metal complex activation of the C-H bond also makes it possible to understand and model the metalloenzyme-catalysed hydrocarbon oxidation reactions in the living cell. The bibliography includes 340 references.

  4. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  5. Efficiency of metal activators of accelerated sulfur vulcanization

    SciTech Connect

    Duchacek, V.; Kuta, A.; Pribyl, P. )

    1993-01-20

    The effects of copper, mercury, nickel, zinc, cadmium, indium, magnesium, and calcium stearates on the course of N-cyclohexyl-2-benzthiazylsulphenamide-accelerated sulfur vulcanization of natural rubber have been investigated on the basis of curemeter measurements at 145 C. The differences in the efficiencies of these metal activators of accelerated sulfur vulcanization have been discussed from the points of view of the electron configurations of the metals and their affinities to sulfur. The authors attempted to determine why zinc oxide is generally accepted as the best metal vulcanization activator.

  6. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  7. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  8. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  9. Active Insolubilized Antibiotics Based on Cellulose-Metal Chelates1

    PubMed Central

    Kennedy, J. F.; Barker, S. A.; Zamir, A.

    1974-01-01

    Cellulose was converted into a more reactive form by chelation with the transition metals titaniumIII, ironIII, tinIV, vanadiumIII, and zirconiumIV. The remaining unsubstituted ligands of the transition metal ions were found to be amenable to replacement by electron-donating groups of antibiotic molecules. Ampicillin, gentamicin, kanamycin, neomycin, paromomycin, polymyxin B, and streptomycin were used as antibacterial antibiotics, and amphotericin B and natamycin were used as antifungal antibiotics. Antibacterial activity of the products was tested against two gram-positive and two gram-negative bacteria, and antifungal activity was tested against four fungi. That the antibacterial antibiotics had complexed with the cellulose-metal chelates was demonstrated in that the product cellulose-metal-antibiotic chelates exhibited antibiotic activities whereas the metal chelates of cellulose themselves were inactive. Of 140 tests conducted, cellulose-metal-antibiotic chelates were active in 102 cases. Since the antibiotic derivatives were water insoluble and in fact retain some of the antibacterial activities of the parent compounds, the chelation method provides a facile way of rendering cellulose surfaces, etc., resistant to microbial attack over and above that degree of protection afforded by noncovalent adsorption of the antibiotic to cellulose itself. The underlying principles of the chelation reactions involved are discussed in detail. PMID:4451349

  10. Biologically active compounds of semi-metals.

    PubMed

    Rezanka, Tomás; Sigler, Karel

    2008-02-01

    Semi-metals (boron, silicon, arsenic and selenium) form organo-metal compounds, some of which are found in nature and affect the physiology of living organisms. They include, e.g., the boron-containing antibiotics aplasmomycin, borophycin, boromycin, and tartrolon or the silicon compounds present in "silicate" bacteria, relatives of the genus Bacillus, which release silicon from aluminosilicates through the secretion of organic acids. Arsenic is incorporated into arsenosugars and arsenobetaines by marine algae and invertebrates, and fungi and bacteria can produce volatile methylated arsenic compounds. Some prokaryotes can use arsenate as a terminal electron acceptor while others can utilize arsenite as an electron donor to generate energy. Selenium is incorporated into selenocysteine that is found in some proteins. Biomethylation of selenide produces methylselenide and dimethylselenide. Selenium analogues of amino acids, antitumor, antibacterial, antifungal, antiviral, anti-infective drugs are often used as analogues of important pharmacological sulfur compounds. Other metalloids, i.e. the rare and toxic tellurium and the radioactive short-lived astatine, have no biological significance. PMID:17991498

  11. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    PubMed

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. PMID:21167631

  12. Characterization of activation energy for flow in metallic glasses

    SciTech Connect

    Wang, J. Q.; Wang, W. H.; Liu, Y. H.; Bai, H. Y.

    2011-01-15

    The molar volume (V{sub m}) scaled flow activation energy ({Delta}E), namely as the activation energy density {rho}{sub E}={Delta}E/V{sub m}, is proposed to describe the flow of metallic glasses. Based on the energy landscape, both the shear and bulk moduli are critical parameters accounting for the {rho}{sub E} of both homogeneous and inhomogeneous flows in metallic glasses. The expression of {rho}{sub E} is determined experimentally to be a simple expression of {rho}{sub E}=(10/11)G+(1/11)K. The energy density perspective depicts a realistic picture for the flow in metallic glasses and is suggestive for understanding the glass transition and deformation in metallic glasses.

  13. Elastic activator for treatment of open bite.

    PubMed

    Stellzig, A; Steegmayer-Gilde, G; Basdra, E K

    1999-06-01

    This article presents a modified activator for treatment of open bite cases. The intermaxillary acrylic of the lateral occlusal zones is replaced by elastic rubber tubes. By stimulating orthopaedic gymnastics (chewing gum effect), the elastic activator intrudes upper and lower posterior teeth. A noticeable counterclockwise rotation of the mandible was accomplished by a decrease of the gonial angle. Besides the simple fabrication of the device and uncomplicated replacement of the elastic rubber tubes, treatment can be started even in mixed dentition when affixing plates may be difficult. PMID:10420241

  14. Antischistosomal Activity of Oxindolimine-Metal Complexes

    PubMed Central

    Dario, Bruno S.; Couto, Ricardo A. A.; Pinto, Pedro L. S.; da Costa Ferreira, Ana M.

    2015-01-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO2+) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  15. Antischistosomal Activity of Oxindolimine-Metal Complexes.

    PubMed

    de Moraes, Josué; Dario, Bruno S; Couto, Ricardo A A; Pinto, Pedro L S; da Costa Ferreira, Ana M

    2015-10-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO(2+)) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  16. Surface treatment of metals with excimer and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Haidemenopoulos, G. N.; Zervaki, A.; Papadimitriou, K.; Tsipas, D. N.; McIntosh, J.; Zergioti, G.; Manousaki, G.; Hontzopoulos, Elias I.

    1993-05-01

    The availability of a variety of lasers including the high-power cw CO2 lasers, the pulsed- mode infrared Nd-YAG, and the pulsed-mode ultraviolet excimer laser has led to the development of many interesting applications of laser technology to materials processing. Among them the surface modification of metallic alloys appears to be one of the most important and very close to implementation in various industries. Specifically the applications of excimer lasers have been discussed in a recent workshop in the framework of the Eureka EU 205 program. The major topics concerned with surface modifications that were discussed in this workshop were surface smoothing and roughening, surface cleaning of Ti and Cu, mixing and interdiffusion of predeposited layers, surface irradiation of Cu-alloys to improve the corrosion resistance, surface remelting of Al-alloys for grain refinement through rapid solidification, and surface remelting of Ni-P electroless coatings on Al alloys for the improvement of corrosion resistance. Laser alloying of Ni-base superalloys has also been discussed. Applications discussed here include the surface treatment of Ni-base superalloys with high-power CO2 laser, the surface treatment of aluminum alloys with excimer lasers, the laser assisted chemical vapor deposition (LCVD) of wear and corrosion resistant layers of Ti, TiC, and TiN on tool steels, and the fracture surface sulphur printing with excimer lasers.

  17. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates. PMID:15141467

  18. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A.; Woolman, Joseph N.; Petrovic, John J.

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  19. Lossless propagation in metal-semiconductor-metal plasmonic waveguides using quantum dot active medium.

    PubMed

    Sheikhi, K; Granpayeh, N; Ahmadi, V; Pahlavan, S

    2015-04-01

    In this paper, we analyze and simulate the lossless propagation of lightwaves in the active metal-semiconductor-metal plasmonic waveguides (MSMPWs) at the wavelength range of 1540-1560 nm using a quantum dot (QD) active medium. The Maxwell's equations are solved in the waveguide, and the required gains for achieving lossless propagation are derived. On the other hand, the rate equations in quantum dot active regions are solved by using the Runge-Kutta method, and the achievable optical gain is derived. The analyses results show that the required optical gain for lossless propagation in MSMPWs is achievable using the QD active medium. Also, by adjusting the active medium parameters, the MSMPWs loss can be eliminated in a specific bandwidth, and the propagation length increases obviously. PMID:25967191

  20. Development of a metal hydride electrode waste treatment process

    SciTech Connect

    Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

    1999-12-01

    Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

  1. Maintaining professional activity during breast cancer treatment.

    PubMed

    Ganem, G; Antoine, E-C; Touboul, C; Naman, H; Dohollou, N; Facchini, T; Coscas, Y; Lortholary, A; Catala, S; Jacquot, S; Lhomel, C; Eisinger, F

    2016-05-01

    The question of returning to work and pursuing professional activity during cancer treatment is an increasingly important consideration. The present work focuses on factors affecting the feasibility of maintaining professional activity during treatment for breast cancer, for women who wished to do so. Written questionnaires were collected from 216 patients between March and November 2012. Since the onset of their treatment, 31.4% of the women (68/216) had not been on sick-leave. The main factors associated with the pursuit of professional activity were: considering the availability of their physician to answer questions as unimportant [OR = 18.83 (3.60-98.53); P ≤ 0.05]; considering the diagnosis of cancer as likely to have a weak impact on career perspectives [OR = 4.07 (2.49-6.64); P ≤ 0.05]; not having any children in the household [OR = 3.87 (2.38-6.28); P ≤ 0.05]; being in a managerial position [OR = 3.13 (1.88-5.21); P ≤ 0.05]. Negative predictive factors were: physician mentioning adverse effects of the treatment [OR = 0.31 (0.16-0.58); P ≤ 0.05], and patient rating workload as high [OR = 0.26 (0.15-0.46); P ≤ 0.05]. As a result of advances in therapeutic strategies, more patients will expect healthcare professionals, as well as employers and occupational health societies, to prioritise issues pertaining to the maintenance of professional activities during cancer treatment. PMID:26891443

  2. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination

    NASA Astrophysics Data System (ADS)

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  3. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites

    PubMed Central

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-01-01

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn2+, hyperthermophilic TETs prefers Co2+. Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites. PMID:26853450

  4. AMMONIUM-CARBONATE LEACHING OF METAL VALUES FROM WATER-TREATMENT SLUDGES

    EPA Science Inventory

    This project was undertaken to explore and develop processes based on ammoniacal leaching to recover metal values from metal-finishing wastewater treatment sludges. The objective was to eliminate or to reduce sufficiently the heavy metal content of the sludge so that it would no ...

  5. An approach to preparing porous and hollow metal phosphides with higher hydrodesulfurization activity

    SciTech Connect

    Song Limin; Zhang Shujuan; Wei Qingwu

    2011-06-15

    This paper describes an effective method for the synthesis of metal phosphides. Bulk and supported Ni{sub 2}P, Cu{sub 3}P, and CoP were prepared by thermal treatment of metal and the amorphous red phosphorus mixtures. Porous and hollow Ni{sub 2}P particles were also synthesized successfully using this method. The structural properties of these products are investigated using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP-AES) and X-ray photoemission spectroscopy (XPS). A rational mechanism was proposed for the selective formation of Ni{sub 2}P particles. In experimental conditions, the Ni{sub 2}P/SiO{sub 2} catalyst exhibits excellent hydrodesulfurization (HDS) activity for dibenzothiophene (DBT). - Graphical abstract: Bulk and supported Ni{sub 2}P, Cu{sub 3}P, and CoP were prepared by thermal treatment of their metal and amorphous red phosphorus mixtures. Porous and hollow Ni{sub 2}P particles were successfully synthesized by this method also. In the experimental condition, a Ni{sub 2}P/SiO{sub 2} catalyst exhibits excellent hydrodesulfurization activity for dibenzothiophene. Highlights: > A new synthetic route by heat treating mixtures of metal and red phosphorus in flowing N{sub 2} to prepare corresponding metal phosphides. > Porous and hollow Ni{sub 2}P particles may successfully be obtained using the route. > It is very easy to synthesize other bulk and supported metal phosphides using the mixing of bulk and supported metal and red phosphorus by the method. > The Ni{sub 2}P/SiO{sub 2} catalyst synthesized by the route shows a good HDS of dibenzothiophene. > Its operation is simple (only heat treating pure metal and red phosphorus), and the reaction time is short (only 0.5 h).

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  7. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  8. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  9. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  12. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-28

    This thirteenth quarterly report describes work done during the thirteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  13. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  14. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  15. Serum antimuscarinic activity during clozapine treatment.

    PubMed

    de Leon, Jose; Odom-White, Aruby; Josiassen, Richard C; Diaz, Francisco J; Cooper, Thomas B; Simpson, George M

    2003-08-01

    This study attempts: (1) to verify that serum antimuscarinic activity is related to clozapine dose, and more importantly to clozapine plasma concentrations; (2) to explore whether norclozapine has serum antimuscarinic activity; (3) to explore whether antimuscarinic activity is related to clozapine side effects; and (4) to compare the serum antimuscarinic activities of clozapine with those of antiparkinsonian drugs and other antipsychotics. In 39 patients participating in a double-blind clozapine study, the [3H]QNB assay was used to measure serum antimuscarinic activity: (1) on baseline medications; (2) after a 4-week haloperidol trial; (3) after a 16-week clozapine trial of either 100, 300, or 600 mg/d; and (4) after 1 or 2 consecutive 16-week clozapine trials with remaining doses in nonresponders. Clozapine levels predicted serum antimuscarinic activity better than clozapine dose. At the end of the 1st clozapine trial, the correlation with the levels explained 69% of the variance of serum antimuscarinic activity (r = 0.83, P < 0.001, N = 34). Clozapine levels were good predictors of serum antimuscarinic activity only in patients taking 300 or 600 mg/d. After correcting for clozapine levels, the within-subject correlation between norclozapine levels and serum antimuscarinic activity was relatively high and significant (r = 0.54, F = 26.7, df = 1.65, P < 0.001). Constipation was significantly associated with higher serum antimuscarinic activity during the 1st clozapine trial. Clozapine was associated with clearly higher antimuscarinic activity than other antipsychotics or low doses of antiparkinsonians. In vitro studies and new clinical studies are needed to verify whether norclozapine may significantly contribute to antimuscarinic activity during clozapine treatment. PMID:12920408

  16. Flexible macrocycles as versatile supports for catalytically active metal clusters.

    PubMed

    Ryan, Jason D; Gagnon, Kevin J; Teat, Simon J; McIntosh, Ruaraidh D

    2016-07-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide. PMID:26892948

  17. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  18. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment. PMID:21963338

  19. Divalent metal activation of a GH43 β-xylosidase.

    PubMed

    Lee, Charles C; Braker, Jay D; Grigorescu, Arabela A; Wagschal, Kurt; Jordan, Douglas B

    2013-02-01

    Depolymerization of xylan, a major fraction of lignocellulosic biomass, releases xylose which can be converted into transportation fuels and chemical feedstocks. A requisite enzyme for the breakdown of xylan is β-xylosidase. A gene encoding the 324-amino acid β-xylosidase, RS223-BX, was cloned from an anaerobic mixed microbial culture. This glycoside hydrolase belongs to family 43. Unlike other GH43 enzymes, RS223-BX can be strongly activated by exogenously supplied Ca(2+), Co(2+), Fe(2+), Mg(2+), Mn(2+) and Ni(2+) (e.g., 28-fold by Mg(2+)) and it is inhibited by Cu(2+) or Zn(2+). Sedimentation equilibrium centrifugation experiments indicated that the divalent metal cations mediate multimerization of the enzyme from a dimeric to a tetrameric state, which have equal catalytic activity on an active-site basis. Compared to the determined active sites of other GH43 β-xylosidases, the predicted active site of RS223-BX contains two additional amino acids with carboxylated side chains that provide potential sites for divalent metal cations to reside. Thus, the divalent metal cations likely occupy the active site and participate in the catalytic mechanism. RS223-BX accepts as substrate xylobiose, arabinobiose, 4-nitrophenyl-β-D-xylopyranoside, and 4-nitrophenyl-α-L-arabinofuranoside. Additionally, the enzyme has good pH and temperature stabilities and a large K(i) for D-glucose (1.3 M), favorable properties for performance in saccharification reactors. PMID:23273276

  20. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  1. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  2. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  3. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  4. [Asymptomatic kidney stones: active surveillance vs. treatment].

    PubMed

    Neisius, A; Thomas, C; Roos, F C; Hampel, C; Fritsche, H-M; Bach, T; Thüroff, J W; Knoll, T

    2015-09-01

    The prevalence of kidney stones is increasing worldwide. Asymptomatic non-obstructing kidney stones are increasingly detected as an incidental finding on radiologic imaging, which has been performed more frequently over the last decades. Beside the current interventional treatment modalities such as extracorporeal shockwave lithotripsy (ESWL), ureterorenoscopy (URS) and percutaneous nephrolithotomy (PNL), active surveillance of asymptomatic kidney stones has been a focus of discussion lately, not only for attending physicians, but even more so for patients. The current German and European guidelines recommend active surveillance for patients with asymptomatic kidney stones if no interventional therapy is mandatory because of pain or medical factors. Herein we review the current literature on risks and benefits of active surveillance of asymptomatic non-obstructing kidney stones. PMID:26378390

  5. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  6. Anticancer activity of Arkeshwara Rasa - A herbo-metallic preparation

    PubMed Central

    Nafiujjaman, Md; Nurunnabi, Md; Saha, Samir Kumar; Jahan, Rownak; Lee, Yong-kyu; Rahmatullah, Mohammed

    2015-01-01

    Introduction: Though metal based drugs have been prescribed in Ayurveda for centuries to treat various diseases, such as rheumatoid arthritis and cancer, toxicity of these drugs containing heavy metal is a great drawback for practical application. So, proper scientific validation of herbo-metallic drugs like Arkeshwara Rasa (AR) have become one of the focused research arena of new drugs against cancers. Aim: To investigate the in vitro anticancer effects of AR. Materials and Methods: Anticancer activity of AR was investigated on two human cancer cell lines, which represent two different tissues (pancreas and skin). Lactate dehydrogenase (LDH) assay for enzyme activity and trypan blue assay for cell morphology were performed for further confirmation. Results: AR showed potent activity against pancreatic cancer cells (MIA-PaCa-2). LDH activity confirmed that AR was active against pancreatic cancer cells. Finally, it was observed that AR exhibited significant effects on cancer cells due to synergistic effects of different compounds of AR. Conclusion: The study strongly suggests that AR has the potential to be an anticancer drug against pancreatic cancer. PMID:27313425

  7. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  8. [Water treatment systems of hemodialysis centers in Lithuania and trace metals in purified water in 2002].

    PubMed

    Skarupskiene, Inga; Kuzminskis, Vytautas; Abdrachmanovas, Olegas; Ryselis, Stanislovas; Smalinskiene, Alina; Naginiene, Rima

    2003-01-01

    The objective of this survey was to obtain information on hemodialysis chemical water quality and on water treatment systems of hemodialysis centers in Lithuania. Five trace metals (Al, Pb, Cd, Zn, Cu) were examined in the purified water (sample from a point after the water treatment system) of 28 hemodialysis centers. Atomic absorption spectrophotometry was applied to measure water trace metals levels. All hemodialysis centers in Lithuania used treated water. Softeners were used by 100%, reverse osmosis by 86.2% of the centers. Concomitant use of sand filter, softeners, activated carbon, reverse osmosis was found in 72.4% of the centers. The age of the water treatment system varied from 1 to 117 months (mean=39.7+/-30.4). Concentrations of Al, Pb, Cd, Zn, Cu in the purified water of 28 hemodialysis centers did not exceed standards of the European Pharmacopoeia. There was significant decrease in the mean levels of investigated trace elements in the treated water in Lithuania in 2002 compared with examined in 1998. PMID:12761429

  9. Activated metallic gold as an agent for direct methoxycarbonylation.

    PubMed

    Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2011-12-21

    We have discovered that metallic gold is a highly effective vehicle for the low-temperature vapor-phase carbonylation of methanol by insertion of CO into the O-H bond to form methoxycarbonyl. This reaction contrasts sharply to the carbonylation pathway well known for homogeneously catalyzed carbonylation reactions, such as the synthesis of acetic acid. The methoxycarbonyl intermediate can be further employed in a variety of methoxycarbonylation reactions, without the use or production of toxic chemicals. More generally we observe facile, selective methoxycarbonylation of alkyl and aryl alcohols and secondary amines on metallic gold well below room temperature. A specific example is the synthesis of dimethyl carbonate, which has extensive use in organic synthesis. This work establishes a unique framework for using oxygen-activated metallic gold as a catalyst for energy-efficient, environmentally benign production of key synthetic chemical agents. PMID:22035206

  10. Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. PMID:22921510

  11. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  12. Active Immobilized Antibiotics Based on Metal Hydroxides1

    PubMed Central

    Kennedy, John F.; Humphreys, John D.

    1976-01-01

    The water-insoluble hydroxides of zirconium (IV), titanium (IV), titanium (III), iron (II), vanadium (III), and tin (II) have been used to prepare insoluble derivatives of a cyclic peptide antibiotic by a facile chelation process. Testing of the antibacterial activities of the products against two gram-positive and two gram-negative bacteria showed that in the majority of cases the water-insoluble antibiotics remained active against those bacteria susceptible to the parent antibiotic. The power of the assay system has been extended by the novel use of colored organisms to aid determinations where the growth of normal organisms could not be distinguished from the appearance of the supporting material. Insoluble derivatives of neomycin, polymyxin B, streptomycin, ampicillin, penicillin G, and chloramphenicol were prepared by chelation with zirconium hydroxide, and these derivatives similarly reflected the antibacterial activities of the parent compounds. Several of the metal hydroxides themselves possess antibacterial activity due to complex formation with the bacteria. However, the use of selected metal hydroxides can afford a simple, inexpensive, and inert matrix for antibiotic immobilization, resulting in an antibacterial product that may possess slow-release properties. The mechanisms by which the metal hydroxide-antibiotic association-dissociation may occur are discussed. PMID:949174

  13. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  14. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    SciTech Connect

    Li, Wei; Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J. E-mail: liangxl@pku.edu.cn; Liang, Yiran; Tian, Boyuan; Liang, Xuelei E-mail: liangxl@pku.edu.cn; Peng, Lianmao

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  15. Transformations of particles, metal elements and natural organic matter in different water treatment processes.

    PubMed

    Yan, Ming-Quan; Wang, Dong-Sheng; Shi, Bao-You; Wei, Qun-Shan; Qu, Jiu-Hui; Tang, Hong-Xiao

    2007-01-01

    Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Pre-ozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system. PMID:17918586

  16. Microbial diversity and activity are increased by compost amendment of metal-contaminated soil.

    PubMed

    Farrell, Mark; Griffith, Gareth W; Hobbs, Phil J; Perkins, William T; Jones, Davey L

    2010-01-01

    Unlike organic pollutants, heavy metals cannot be degraded and can constitute a persistent environmental hazard. Here, we investigated the success of different remediation strategies in promoting microbial diversity and function with depth in an acidic soil heavily contaminated with Cu, Pb and Zn. Remediation involved the incorporation of either a high- or a low-quality compost or inorganic fertilizer into the topsoil and monitoring of microbial activity and diversity with soil depth over a 4-month period. While changes in topsoil microbial activity were expected, the possible effects on the subsurface microbial community due to the downward movement of metals, nutrients and/or soluble organic matter have not been examined previously. The results showed that both compost additions, especially the low-quality compost, resulted in significantly increased bacterial and fungal diversity (as assessed by terminal restriction fragment length polymorphism) and activity compared with the inorganic and control treatments in the topsoil. Although phospholipid fatty acid profiling indicated that compost addition had promoted enhanced microbial diversity in the subsoil, no concomitant increase in subsoil microbial activity was observed, suggesting that amelioration of the heavy metals remained localized in the topsoil. We conclude that although composts can successfully immobilize heavy metals and promote ecosystem diversity/function, surface incorporation had little remedial effect below the surface layer over the course of our short-term trial. PMID:19845764

  17. Plasma treatment of INEL soil contaminated with heavy metals

    SciTech Connect

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites.

  18. Successful treatment of potentially fatal heavy metal poisonings.

    PubMed

    Wang, Ernest E; Mahajan, Niraj; Wills, Brandon; Leikin, Jerrold

    2007-04-01

    Pure inorganic heavy metal ingestions for suicidal intent are a rare occurrence. Most case reports on this subject focus on the serious neurological, hepatic, or renal side effects. We describe two cases of significant heavy metal poisonings (arsenic trioxide and mercuric chloride) that were successfully managed with aggressive decontamination and combined chelation therapy. Both chemicals were obtained in pure powder form through the Internet. PMID:17394994

  19. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. PMID:26762546

  20. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract. PMID:26775006

  1. Surface treatment agent for dental metals using a thiirane monomer and a phosphoric acid monomer.

    PubMed

    Kadoma, Yoshinori

    2002-06-01

    To develop a new surface treatment agent which improves the bond strength of adhesive resin to both non-precious and precious metals, experimental treatment agents containing both an adhesive bonding promoter for precious metals and one for non-precious metals were prepared by dissolving epithioalkyl methacrylate (EP3MA or EP8MA) and 10-methacryloyloxydecyl dihydrogen phosphate (MDP) in acetone. The surfaces of dental metals were treated by the treatment agents and metal specimens were butt-jointed together with MMA-PMMA resins. After 2,000 thermal cyclings in water at temperatures of 4 and 60 degrees C, tensile bond strengths were measured. The effectiveness of surface treatments was evaluated by tensile bond strengths and microscopic failure mode analysis after the tensile test. The combined treatment of EP3MA-MDP or EP8MA-MDP was used effectively for non-precious metals as well as precious metals, and was shown to be extremely effective compared with the single treatment of EP3MA, EP8MA, or MDP. PMID:12238784

  2. Electrical active defects in HfO2 based metal/oxide/metal devices

    NASA Astrophysics Data System (ADS)

    El Kamel, F.

    2016-01-01

    Dielectric as well as thermally stimulated current measurements were performed on metal/HfO2/Pt capacitors in order to study the electrical active defects in hafnia thin films. Two thermally activated relaxation processes have been carried out from both measurements. At low temperatures, the relaxation process can be ascribed to the shallow traps level localized at 0.65 eV and generally evidenced by the second ionization of oxygen vacancies. At high temperatures, the relaxation process arises from the diffusion of positively charged oxygen vacancies by overcoming an energetic barrier of about 1 eV.

  3. Activation of Autophagy by Metals in Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Martín, Marta; Blaby-Haas, Crysten E.; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K.; Merchant, Sabeeha S.

    2015-01-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  4. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  5. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  6. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    PubMed

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  7. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    PubMed Central

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  8. A Metal-Based Inhibitor of NEDD8-Activating Enzyme

    PubMed Central

    Chan, Daniel Shiu-Hin; Leung, Chung-Hang; Wang, Hui-Min; Ma, Dik-Lung

    2012-01-01

    A cyclometallated rhodium(III) complex [Rh(ppy)2(dppz)]+ (1) (where ppy = 2-phenylpyridine and dppz = dipyrido[3,2-a:2′,3′-c]phenazine dipyridophenazine) has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE). The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme. PMID:23185368

  9. Porewater chemistry in a treatment wetland: links to metal retention and release

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Zhang, J.

    2011-12-01

    Constructed wetlands are gaining increased support for treatment of nonpoint source pollutants. A subsurface flow wetland treating runoff from an agricultural milkhouse floor and roof drainage has been monitored for metal removal. Influent dissolved concentrations from 5 to 30 ppb Cu and 60 to 800 ppb Zn were observed. Effluent concentrations of Zn were always lower from about 3 to 60 ppb Zn, however, Cu was typically around 10 ppb, and much larger at certain points in time, up to 95 ppb Cu. The results were similar in vegetated and non-vegetated wetlands, suggesting abiotic chemistry or microbial activity is controlling metal mobility. Porewater samples were taken using soil moisture lysimeters during both non-storm and storm events to examine metal and related chemistry with depth and distance in the wetland. Under non storm conditions, Cu and Zn average porewater concentrations were 64 and 250 ppb, respectively and did not vary much along the length of the wetland. During a storm event, Zn concentrations in the porewater initially increased near the inlet shortly after a storm, but typically decreased along the length and depth of the wetland to less than 60 ppb. Observed porewater Cu concentrations also increased near the inlet in some cases up to 700 ppb, but dropped rapidly with distance to less than 30 ppb near the middle of the wetland and increased again near the outlet. The dissolved Fe and Mn concentrations follow nearly opposite trends as Cu, increasing and then decreasing along the length of the wetland, suggesting possibly different roles in controlling Cu retention in each stage of the wetland, either co-precipitation with Cu initially, or reductive dissolution and release of Cu in later stages. An understanding of what controls metal retention and release is relevant to optimizing future design parameters of these wetlands.

  10. Effect of ultrasonic treatment on heavy metal decontamination in milk.

    PubMed

    Porova, Nataliya; Botvinnikova, Valentina; Krasulya, Olga; Cherepanov, Pavel; Potoroko, Irina

    2014-11-01

    Ultrasound has been found useful in increasing the efficiency and consumer safety in food processing. Removal of heavy metal (lead, mercury, and arsenic) contamination in milk is extremely important in regions of poor ecological environment - urban areas with heavy motor traffic or well established metallurgical/cement industry. In this communication, we report on the preliminary studies on the application of low frequency (20kHz) ultrasound for heavy metal decontamination of milk without affecting its physical, chemical, and microbiological properties. PMID:24746508

  11. An active metallic nanomatryushka with two similar super-resonances

    SciTech Connect

    Wu, D. J.; Cheng, Y.; Wu, X. W.; Liu, X. J.

    2014-07-07

    The optical properties of a simple metallic nanomatryushka (nanosphere-in-a-nanoshell) with gain have been investigated theoretically. The spaser (surface plasmon amplification by stimulated emission of radiation) phenomena can be observed at two critical wavelengths in the active metallic nanomatryushkas. With increasing the gain coefficient of the middle layer, a similar super surface plasmon (SP) resonance is first found at the ω₋⁺|₁ mode of the active nanoparticles and then breaks down. With further increasing the gain coefficient, another similar super-resonance occurs at the ω₋⁻|₁ mode. The near-field enhancements in the active nanomatryushkas also have been greatly amplified at the critical wavelengths for ω₋⁺|₊ and ω₋⁻|₁ modes. It is further found that the amplifications of SPs in the active Ag–SiO₂–Au nanoshell are strongest in four kinds of nanoshells and hence the largest near fields. The giant near-field enhancement can greatly enhance the Raman excitation and emission.

  12. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity.

    PubMed

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL(1) and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL(2) derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML((1-2)2) have been synthesized, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mnactivity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu>Mn>Ni>Co>Zn. PMID:22813991

  13. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  14. TREATMENT OF METAL FINISHING WASTES BY USE OF FERROUS SULFIDE

    EPA Science Inventory

    This demonstration was performed to study the operation, performance and economics of a new sulfide precipitation process ('Sulfex'TN), for treating metal finishing wastewaters. The study was performed by Holley Carburetor Division of Colt Industries, with assistance from the Per...

  15. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-01

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  16. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator.

    PubMed

    Yu, Jie; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng; Qiu, Jianrong

    2012-03-01

    This paper investigated the volatilization behavior of heavy metals during thermal treatment of model solid waste in a fluidized bed reactor. Four metal chlorides (Cd, Pb, Cu and Zn) were chosen as metal sources. The influence of redox conditions, water and mineral matrice on heavy metal volatilization was investigated. In general, Cd shows significant vaporization especially when HCl was injected, while Cu and Pb vaporize moderately and Zn vaporization is negligible. Increasing oxygen concentration can lower heavy metal vaporization. Heavy metal interactions with the mineral matter can result in the formation of stable metallic species thus playing a negative effect on their behavior. However, HCl can promote the heavy metal release by preventing the formation of stable metallic species. The chemical sorption (either physical or chemical) inside the pores, coupled with the internal diffusion of gaseous metal species, may also control the vaporization process. With SO(2) injected, Cd and Pb show a higher volatility as a result of SO(2) reducing characteristics. From the analysis, the subsequent order of heavy metal volatility can be found: Cd>Cu≥Pb≫Zn. PMID:22264859

  17. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  18. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process.

    PubMed

    Hu, Yuyan; Zhang, Pengfei; Li, Jianping; Chen, Dezhen

    2015-12-15

    In the paper, hydrothermal treatment (HT) of MSWI fly ashes was performed to stabilize and separate heavy metals. Influences of pre-treatment, types of ferric and/or ferrous additives, and subsequent heavy metal stabilization procedure by adding phosphate were investigated. The chemical stability of hydrothermal products was examined by solid waste extraction procedure with acetic acid buffer solution. Mineralogical investigation of selected hydrothermal product was carried out by XRD. FEGE SEM- -EDX was used to study the morphology and surface compositions of the ash particles. Experimental results revealed that HT process facilitated heavy metal exposure to leaching solution. FEGE SEM-EDX images revealed that fly ash particles were re-organized during hydrothermal process and that the minerals with special shapes and containing high levels of heavy metals were formed. A mild acid washing treatment with final pH around 6.20 could remove soluble heavy metals. Therefore, it may be a proper pre- or post-treatment method for fly ash particles for the purpose of reducing heavy metal contents. For the purpose of stabilizing heavy metals, the addition of ferric/ferrous salts in the HT process or phosphate stabilization after HT is recommended. The HT process may be applied to realize the environmentally sound management of MSWI fly ash or to recover and utilize MSWI fly ash. PMID:26100935

  19. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  20. Metal analysis, phytotoxic, insecticidal and cytotoxic activities of selected medicinal plants of Khyber Pakhtunkhwa.

    PubMed

    Khuda, Fazli; Iqbal, Zafar; Zakiullah; Khan, Ayub; Nasir, Fazli; Muhammad, Naveed; Khan, Jamshaid Ali; Khan, Muhammad Shafiq

    2012-01-01

    In the present study four medicinal plants traditionally used in Pakistan for treatment of various ailments were evaluated for their heavy metals content, insecticidal, cytotoxic and phytotoxic actions. The metals like Cr, Cu, Zn, Mn, Ni, Pb, Fe and Co were determined in crude extract and various fractions. Soil samples were also tested for heavy metals to determine assimilation of any metal by the plant. Lead, Chromium, copper, nickel and cobalt exceeded the permissible limit in most of the tested samples while the concentration of zinc, manganese and iron was within the permissible limit. Chloroform fraction from Achyranthes aspera and ethyl acetate fraction from Duchesnea indica showed significant phytotoxic activities. Crude extract and chloroform fraction from Xanthium strumarium showed insecticidal activity comparable to that of permethrin and thus could be a significant source of natural insecticide. The butanol fraction from X. strumarium showed significant cytotoxicity with LC(50) 1.9306 μg/ml, having mortality rate 93% at highest dose, while the crude extract from Valeriana wallichii showed 90% mortality rate (LC(50) 4.9730 μg/ml) at highest dose. However, the extracts from other plants were not effective against the brine shrimps tested. PMID:22186309

  1. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  2. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were

  3. Metal-induced crystallization of a-Si thin films by nonvacuum treatments

    SciTech Connect

    Kalkan, A.K.; Fonash, S.J.

    1997-11-01

    Thin film polycrystalline Si (poly-Si) is of considerable interest today for microelectronics, flat panel displays, and photovoltaics. Low thermal budget solid-phase crystallization (SPC) of a-Si precursor films was achieved using surface treatments with metal-containing solutions. Two different treatment procedures were demonstrated. With these treatments, one based on a Pd solution and the other on a Ni solution, the SPC time at 600 C was reduced from 18 h to 10 min or less. This approach renders the usual vacuum deposition step used in metal-induced crystallization unnecessary. The authors find that the ultraviolet reflectance and Raman shift signals for the crystallized films are independent of whether the SPC-enhancing metal is applied by vacuum or solution. These characterization results do differ, however, with the metal applied.

  4. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. PMID:26577578

  5. Transition metal activation and functionalization of carbon-hydrogen bonds

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  6. Metal Chaperones: A Holistic Approach to the Treatment of Alzheimer’s Disease

    PubMed Central

    Adlard, Paul Anthony; Bush, Ashley Ian

    2012-01-01

    As evidence for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer’s disease (AD), where the use of metal chaperones (that transport metals), as opposed to chelators (which exclude metals from biological interactions), may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology), modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more “holistic” approach to the treatment of this disease. PMID:22403554

  7. Asparagus cochinchinensis Extract Alleviates Metal Ion-Induced Gut Injury in Drosophila: An In Silico Analysis of Potential Active Constituents

    PubMed Central

    Zhang, Weiyu; Jin, Li Hua

    2016-01-01

    Metal ions and sulfate are components of atmospheric pollutants that have diverse ways of entering the human body. We used Drosophila as a model to investigate the effect of Asparagus cochinchinensis (A. cochinchinensis) extracts on the gut and characterized gut homeostasis following the ingestion of metal ions (copper, zinc, and aluminum). In this study, we found that the aqueous A. cochinchinensis extract increased the survival rate, decreased epithelial cell death, and attenuated metal ion-induced gut morphological changes in flies following chronic exposure to metal ions. In addition, we screened out, by network pharmacology, six natural products (NPs) that could serve as putative active components of A. cochinchinensis that prevented gut injury. Altogether, the results of our study provide evidence that A. cochinchinensis might be an effective phytomedicine for the treatment of metal ion-induced gut injury. PMID:27123034

  8. Asparagus cochinchinensis Extract Alleviates Metal Ion-Induced Gut Injury in Drosophila: An In Silico Analysis of Potential Active Constituents.

    PubMed

    Zhang, Weiyu; Jin, Li Hua

    2016-01-01

    Metal ions and sulfate are components of atmospheric pollutants that have diverse ways of entering the human body. We used Drosophila as a model to investigate the effect of Asparagus cochinchinensis (A. cochinchinensis) extracts on the gut and characterized gut homeostasis following the ingestion of metal ions (copper, zinc, and aluminum). In this study, we found that the aqueous A. cochinchinensis extract increased the survival rate, decreased epithelial cell death, and attenuated metal ion-induced gut morphological changes in flies following chronic exposure to metal ions. In addition, we screened out, by network pharmacology, six natural products (NPs) that could serve as putative active components of A. cochinchinensis that prevented gut injury. Altogether, the results of our study provide evidence that A. cochinchinensis might be an effective phytomedicine for the treatment of metal ion-induced gut injury. PMID:27123034

  9. Corrosion protection of metals by silane surface treatment

    NASA Astrophysics Data System (ADS)

    Zhu, Danqing

    2005-07-01

    The need for toxic chromate replacements in metal-finishing industries has prompted an intensive search for replacement technologies in recent years. Among the replacements that have been proposed, those that are based upon the use of organofunctional silanes rank very high in terms of performance, broad applicability as well as ease of application. This dissertation presents a four-part work: (1) structural characterization of silane films on metals, (2) mechanism studies of silane-treated metal systems, (3) development of water-based silane systems, and (4) measurements of other properties of silane films. In part 1, silane films, i.e., bis-[triethoxysilylpropyl]tetrasulfide (bis-sulfur silane) and bis-[trimethoxysilylpropyl]amine (bis-amino silane) were deposited on AA 2024-T3 and were characterized mainly using reflection-absorption Fourier-transform infrared spectroscopy (FTIR-RA) and electrochemical impedance spectroscopy (EIS) techniques. In part 2, the mechanistic study of corrosion protection of AA 2024-T3 by bis-sulfur silane film was carried out. In summation, the following two factors play critical roles in the corrosion protection of AA 2024-T3: (1) the formation of a highly crosslinked interfacial layer, and (2) high water resistance of silane films. The former inhibits corrosion in the following two ways: (1) blocking favorable sites for water adsorption by the formation of AlOSi bonds at the interface which effectively reduces the tendency of aqueous corrosion; and (2) bonding tightly to the metal and thus restricting transportation of the existing corrosion products away from their original sites which hinders pit growth. It should be noted that a high density of AlOSi bonds can be obtained employing bis-silanes rather than mono-silanes. A high water resistance makes water penetration difficult in silane films. This is essential for preventing AlOSi bonds from hydrolysis. In part 3, test results for newly-developed water-based silane systems were

  10. Development of engineering parameters for the design of metal biosorption waste treatment systems

    SciTech Connect

    Graham, W.S.

    1991-12-03

    Untreated landfill leachates and wastes from metal plating and mining operations are sources of environmental contamination by heavy metals. Because of their toxicity and potential for accumulation, the discharge of heavy metals must be controlled. Standard physical and chemical treatments used to remove metals from wastes such as concentration by electro-precipitation, ion exchange, solvent extraction, evaporative recovery, and conventional precipitation, are usually expensive and produce high quantities of sludge. Biosorption is the removal of metals from aqueous solutions by microorganisms. It is called biosorption rather than bioadsorption or bioaccumulation because the mechanisms of removal are not restricted to adsorption or metabolic uptake and so the more general term is preferable and has come to be accepted. In this thesis the focus is one two microorganisms and two metals. However, the possible combinations of conditions such as pH, relative metal molarities, time of contact, and organism are numerous. These experiments are designed to provide optimized parameters to facilitate the design of a functioning biosorption system. The two metals chosen for study are copper and lead in aqueous solution. The two types of microorganisms chosen for testing include an actinomycete and a fungus. The purpose of this research is to identify the significant engineering parameters to be evaluated include reaction rates, equilibrium partitioning of metal ions between those in solution and those removed to the cells, optimum pH for achieving the removal or recovery goal, and biosorption selectivity for one metal over another.

  11. The Effect of Pre-sowing Seed Treatment with Metal Nanoparticles on the Formation of the Defensive Reaction of Wheat Seedlings Infected with the Eyespot Causal Agent.

    PubMed

    Panyuta, Olga; Belava, Viktoriya; Fomaidi, Svitlana; Kalinichenko, Olena; Volkogon, Mykola; Taran, Nataliya

    2016-12-01

    The paper presents research data of lipid peroxidation and lectin activity in wheat seedlings at seed treatment with solution of metal nanoparticles (Zn, Ag, Fe, Mn, Cu) and sole solution of copper nanoparticles under the high pathogen infection background of Pseudocercosporella herpotrichoides (Fron) Deighton (synonym: Oculimacula yallundae (Wallwork & Sponer) Crous & W. Gams). It was shown that investigated nonionic colloidal solutions of biogenic metals have the antioxidant effect through the inhibition of the synthesis of lipid peroxidation products. The increase of lectin activity levels during the early plants ontogenesis stages was observed in wheat seedlings infected with pathogen pre-treated with the mixture of metal nanoparticles. PMID:26880729

  12. The Effect of Pre-sowing Seed Treatment with Metal Nanoparticles on the Formation of the Defensive Reaction of Wheat Seedlings Infected with the Eyespot Causal Agent

    NASA Astrophysics Data System (ADS)

    Panyuta, Olga; Belava, Viktoriya; Fomaidi, Svitlana; Kalinichenko, Olena; Volkogon, Mykola; Taran, Nataliya

    2016-02-01

    The paper presents research data of lipid peroxidation and lectin activity in wheat seedlings at seed treatment with solution of metal nanoparticles (Zn, Ag, Fe, Mn, Cu) and sole solution of copper nanoparticles under the high pathogen infection background of Pseudocercosporella herpotrichoides (Fron) Deighton (synonym: Oculimacula yallundae (Wallwork & Sponer) Crous & W. Gams). It was shown that investigated nonionic colloidal solutions of biogenic metals have the antioxidant effect through the inhibition of the synthesis of lipid peroxidation products. The increase of lectin activity levels during the early plants ontogenesis stages was observed in wheat seedlings infected with pathogen pre-treated with the mixture of metal nanoparticles.

  13. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation (Presentation)

    EPA Science Inventory

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  14. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation

    EPA Science Inventory

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  15. Treatment of ichthyophthiriasis with photodynamically active chlorophyllin.

    PubMed

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P R

    2016-04-01

    Water-soluble chlorophyll (chlorophyllin) exerts pronounced photodynamic activity on fish parasites. In order to determine its potential as a remedy against ectoparasites in fish carps were incubated in water with defined concentrations of chlorophyllin. The main focus of the experiments was on the ciliate Ichthyophthirius multifiliis (Fouquet) which is responsible for considerable losses in livestock in aquaculture. As malachite green, which in the past efficiently cured infected fishes, is banned because of its possible carcinogenicity; no effective remedy is presently available in aquaculture to treat ichthyophthiriasis. Using chlorophyllin, the number of trophonts was significantly reduced (more than 50 %) after 3 h incubation of infested fish at 2 and 4 mg/L and subsequent irradiation with simulated solar radiation. The lack of reinfection after light treatment indicates that also the remaining parasites have lost their multiplication capacity. In the controls (no chlorophyllin and no light, light but no chlorophyllin, or chlorophyllin but no light), no reduction of the I. multifiliis infection was observed. We propose that chlorophyllin (or other photodynamic substances) is a possible effective countermeasure against I. multifiliis and other ectoparasites in aquaculture. PMID:26693716

  16. Underground Corrosion of Activated Metals, 6-Year Exposure Analysis

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

  17. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    PubMed

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. PMID:27110984

  18. The Physical Speciation and Exchange of Metals in a Treatment Marsh

    NASA Astrophysics Data System (ADS)

    Lee, R.; Janssen, D. J.; Hurst, M. P.

    2010-12-01

    The mixing of well-oxygenated oxidation pond effluent and sulfidic treatment marsh waters was simulated in bottle experiments at the Arcata Marsh treatment facility to investigate trace metal (Fe, Ni, Cu, Zn, Cd, Pb) cycling between the soluble (< 0.03 um or 200 kDa), colloidal (0.03-0.45 um), and particulate (> 0.45 um) size-fractions. The physical speciation of these metals was also monitored in the treatment marsh over the course of an entire year. The focus of the study was to gain an understanding of the temporal variation in metal concentrations and to estimate the net and overall removal of metals by employing low abundance isotopes (57Fe, 61Ni, 62Ni, 65Cu, 67Zn, 68Zn, 116Cd, 204Pb) as tracers. The use of these tracers in bottle experiments is a novel approach for quantifying the exchange of trace metals between the different physico-chemical fractions found in a treatment marsh system. The temporal variation of particulate metals varied for most contaminant metals (Cu, Zn, Cd, Pb), except Ni, and were highly affected by wind and rain events. Soluble metal concentrations were stable over the monitoring period. In the bottle experiments, the highest rates of exchange occurred in the first two days of the experiment as dissolved oxygen levels in the samples were depleted. Net removal from the soluble phase and an increase in particulate metals were observed during this period (except Ni). Cd and Zn exhibited nutrient-type behavior and the net removal was similar to nitrate drawdown. Particulate Cu and Fe formed rapidly in the first two days but the tracers equilibrated with the different size-fractions for the remainder of the experiment. Ni had no affinity for the particulate phase and the low abundance isotopes equilibrated within the first 24 hours of the experiment. Pb was quickly scavenged by the particulate matter immediately after the additon of the soluble Pb. This work demonstrates the advantage of using low-abundance isotopes as tracers and the

  19. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  20. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  1. Enhanced removal of heavy metals in primary treatment using coagulation and flocculation.

    PubMed

    Johnson, Pauline D; Girinathannair, Padmanabhan; Ohlinger, Kurt N; Ritchie, Stephen; Teuber, Leah; Kirby, Jason

    2008-05-01

    The goal of this study was to determine the removal efficiencies of chromium, copper, lead, nickel, and zinc from raw wastewater by chemically enhanced primary treatment (CEPT) and to attain a total suspended solids removal goal of 80%. Operating parameters and chemical doses were optimized by bench-scale tests. Locally obtained raw wastewater samples were spiked with heavy metal solutions to obtain representative concentrations of metals in wastewater. Jar tests were conducted to compare the metals removal efficiencies of the chemical treatment options using ferric chloride, alum, and anionic polymer. The results obtained were compared with those from other studies. It was concluded that CEPT using ferric chloride and anionic polymer is more effective than CEPT using alum for metals removal. The CEPT dosing of 40 mg/L ferric chloride and 0.5 mg/L polymer enhanced heavy metals removal efficiencies by over 200% for chromium, copper, zinc, and nickel and 475% for lead, compared with traditional primary treatment. Efficient metals capture during CEPT can result in increased allowable headworks loadings or lower metal levels in the outfall. PMID:18605386

  2. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ligands'' with localized surface orbitals perturbed only by these ligands''. These complexes'' are based on a twelve coordinate species with the ligands'' attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  3. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ``ligands`` with localized surface orbitals perturbed only by these ``ligands``. These ``complexes`` are based on a twelve coordinate species with the ``ligands`` attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  4. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  5. Carbon mineralization, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste.

    PubMed

    Zornoza, Raúl; Faz, Ángel; Carmona, Dora M; Acosta, Jose A; Martínez-Martínez, Silvia; de Vreng, Arno

    2013-03-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 d. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralized C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3d these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. PMID:23260248

  6. An approach to preparing porous and hollow metal phosphides with higher hydrodesulfurization activity

    NASA Astrophysics Data System (ADS)

    Song, Limin; Zhang, Shujuan; Wei, Qingwu

    2011-06-01

    This paper describes an effective method for the synthesis of metal phosphides. Bulk and supported Ni 2P, Cu 3P, and CoP were prepared by thermal treatment of metal and the amorphous red phosphorus mixtures. Porous and hollow Ni 2P particles were also synthesized successfully using this method. The structural properties of these products are investigated using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP-AES) and X-ray photoemission spectroscopy (XPS). A rational mechanism was proposed for the selective formation of Ni 2P particles. In experimental conditions, the Ni 2P/SiO 2 catalyst exhibits excellent hydrodesulfurization (HDS) activity for dibenzothiophene (DBT).

  7. DEVELOPMENT OF LOCOMOTOR ACTIVITY OF RAT PUPS EXPOSED TO HEAVY METALS

    EPA Science Inventory

    Cadmium (Cd), triethyltin (TET), and trimethyltin (TMT) are heavy metals which are neurotoxic to developing animals. In the present experiment, preweaning assessment of locomotor activity was used to detect and differentiate between the developmental toxicity of these metals. On ...

  8. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    PubMed

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. PMID:27423405

  9. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    SciTech Connect

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  10. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  11. Bactericidal activity of metal-mediated peroxide-ascorbate systems.

    PubMed

    Drath, D B; Karnovsky, M L

    1974-11-01

    Model systems containing ascorbate, hydrogen peroxide, and divalent copper or cobalt have been shown to possess marked bactericidal activity. At equivalent concentrations, copper-containing systems were more bactericidal than the corresponding mixtures containing cobalt. Cobalt at concentrations below 10(-4) M did not appreciably augment microbicidal activity, whereas systems containing copper at concentrations as low as 5 x 10(-6) M were still capable of causing some bacterial death. Manganese was inactive. None of these systems was as potent as the well known myeloperoxidase-peroxide-halide system. The mechanisms of action of these systems are not as yet clear. The possibility that they function through the generation of superoxide (O(2) (-)), hydroxyl radical (OH.), or other free radicals was explored through the use of superoxide dismutase and several free radical scavengers. It seems likely at present that the two active metal-mediated systems function via separate mechanisms. The copper system acts with dehydroascorbate, whereas the cobalt system does not. Activity in the cobalt system appears to depend upon the generation of free radicals. PMID:16558093

  12. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  13. Heavy metal effects on the metabolic activity of Elliptio complanata: A calorimetric method

    SciTech Connect

    Cheney, M.A.; Criddle, R.S.

    1996-03-01

    The effects of short time exposure to mercury (Hg{sup 2+}), cadmium (Cd{sup 2+}), and copper (Cu{sup 2+}) ions on the metabolic activity of gill tissue from the freshwater bivalve Elliptio complanata were investigated by isothermal calorimetry and respirometry. Metabolic heat rates were altered following exposure of gill tissue to these ions over the concentration range from 10{sup {minus}6} to 10{sup {minus}3} M. The effects of metal ions on metabolic heat rates were metal ion specific and time and concentration dependent. Treatment of tissue with low concentrations of Hg{sup 2+} and Cu{sup 2+} for short times caused stimulation of metabolic heat rates. Longer exposures and higher concentrations caused inhibition. Cadmium was inhibitory under all conditions tested. Treatment of mitochrondria isolated from gill and muscle tissues showed a similar pattern of stimulation of respiratory rate at low concentration and inhibition at higher concentration. Analysis of CO{sub 2} and O{sub 2} from the headspace gasses in the calorimeter ampule showed an enhancement of respiratory quotient (RQ, i.e., R{sub CO{sub 2}}/R{sub O{sub 2}} where R = rate) following addition of 10{sup {minus}3} M Cd{sup 2+} for 30 min. The microcalorimetric method proved to be a useful technique to assess toxicity of heavy metals on the gills of a freshwater bivalve. 12 refs., 7 figs., 3 tabs.

  14. Development and evaluation of the Active Treatment Client Rights Checklist.

    PubMed

    Gross, E J; Maguire, K B; Shepard, S M; Piersel, W C

    1994-01-01

    The role of active treatment has been recognized as vital to the habilitation of persons with mental retardation; however, evaluating the provision of active treatment has been difficult. This study describes the development of the Active Treatment Client Rights checklist (ATCR), which was designed to facilitate the assessment, monitoring, and implementation of readily observable client active treatment services. This investigation provides an explanation of item content, initial reliability data (Phase I), and the results of implementation of the ATCR over a 2-year period in an ICF/MR facility with 29 living units serving nearly 500 clients (Phase II). The ATCR is highly reliable, valid, and useful in enhancing staff provision of active treatment. The most sensitive indicator of active treatment was shown to be related to frequency of functional interactions between clients and staff. PMID:8190969

  15. Highly active non-PGM catalysts prepared from metal organic frameworks

    DOE PAGESBeta

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; Xu, Tao; Liu, Di -Jia

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstratedmore » in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less

  16. Highly active non-PGM catalysts prepared from metal organic frameworks

    SciTech Connect

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; Xu, Tao; Liu, Di -Jia

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  17. Improving the efficiency of plasma heat treatment of metals

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanov, Az T.; Israphilov, I. H.; Galiakbarov, A. T.; Samigullin, A. D.; Gabdrakhmanov, Al T.

    2016-01-01

    This paper proposes an effective way of the plasma hardening the surface layer at the expense combined influence of the plasma jet and a cold air flow. After that influence occurs a distinctive by plasma treatment microstructure with increased microhardness (an increase of 35%) and depth. There is proposed an improved design of the vortex tube for receiving the air flow with a temperature of 20 C to - 120C.

  18. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  20. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  1. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  2. Phase-Transfer Activation of Transition Metal Catalysts.

    PubMed

    Tuba, Robert; Xi, Zhenxing; Bazzi, Hassan S; Gladysz, John A

    2015-11-01

    With metal-based catalysts, it is quite common that a ligand (L) must first dissociate from a catalyst precursor (L'n M-L) to activate the catalyst. The resulting coordinatively unsaturated active species (L'n M) can either back react with the ligand in a k-1 step, or combine with the substrate in a k2 step. When dissociation is not rate determining and k-1 [L] is greater than or comparable to k2 [substrate], this slows the rate of reaction. By introducing a phase label onto the ligand L and providing a suitable orthogonal liquid or solid phase, dramatic rate accelerations can be achieved. This phenomenon is termed "phase-transfer activation". In this Concept, some historical antecedents are reviewed, followed by successful applications involving fluorous/organic and aqueous/organic liquid/liquid biphasic catalysis, and liquid/solid biphasic catalysis. Variants that include a chemical trap for the phase-labeled ligands are also described. PMID:26338471

  3. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  4. The activity of calcium in calcium-metal-fluoride fluxes

    SciTech Connect

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + {und O} (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: {Delta}G{degree} = {minus}64,300({+-}700) + 19.8({+-}3.5)T J/mol (1,373 to 1,623 K). The activities of calcium in the CaO{sub satd.}-Ca-MF{sub 2} (M: Ca, Ba, Mg) and CaO{sub satd.}-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1,473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF{sub 2}, BaF{sub 2}, and MgF{sub 2} at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  5. Installation of reactive metals groundwater collection and treatment systems

    SciTech Connect

    Hopkins, J.K.; Primrose, A.L.; Vogan, J.; Uhland, J.

    1998-07-01

    Three groundwater plumes contaminated with volatile organic compounds (VOCs) and radionuclides at the Rocky Flats Environmental Technology Site are scheduled for remediation by 1999 based on the Rocky Flats Cleanup Agreement (RFCA) (DOE, 1996). These three plumes are among the top 20 environmental cleanup sites at Rocky Flats. One of these plumes, the Mound Site Plume, is derived from a previous drum storage area, and daylights as seeps near the South Walnut Creek drainage. Final design for remediation of the Mound Site Plume has been completed based on use of reactive metals to treat the contaminated groundwater, and construction is scheduled for early 1998. The two other plumes, the 903 Pad/Ryan`s Pit and the East Trenches Plumes, are derived from VOCs either from drums that leaked or that were disposed of in trenches. These two plumes are undergoing characterization and conceptual design in 1998 and construction is scheduled in 1999. The contaminants of concern in these plumes are tetrachloroethene, trichloroethene, carbon tetrachloride and low levels of uranium and americium.

  6. Transcription factor activation following exposure of an intact lung preparation to metallic particulate matter.

    PubMed Central

    Samet, James M; Silbajoris, Robert; Huang, Tony; Jaspers, Ilona

    2002-01-01

    Metallic constituents contained in ambient particulate matter have been associated with adverse effects in a number of epidemiologic, in vitro, and in vivo studies. Residual oil fly ash (ROFA) is a metallic by-product of the combustion of fossil fuel oil, which has been shown to induce a variety of proinflammatory responses in lung cells. We have examined signaling pathways activated in response to ROFA exposure and recently reported that ROFA treatment activates multiple mitogen-activated protein (MAP) kinases in the rat lung. In the present study we extended our investigations on the mechanism of toxicity of ROFA to include transcription factors whose activities are regulated by MAP kinases as well as possible effectors of transcriptional changes that mediate the effects of ROFA. We applied immunohistochemical methods to detect ROFA-induced activation of nuclear factor-kappa B (NF kappa B), activating transcription factor-2 (ATF-2), c-Jun, and cAMP response element binding protein (CREB) in intact lung tissue and confirmed and characterized their functional activation using DNA binding assays. We performed these studies using a perfused rabbit lung model that is devoid of blood elements in order to distinguish between intrinsic lung cell effects and effects that are secondary to inflammatory cell influx. We report here that exposure to ROFA results in a rapid activation of all of the transcription factors studied by exerting direct effects on lung cells. These findings validate the use of immunohistochemistry to detect transcription factor activation in vivo and demonstrate the utility of studying signaling changes in response to environmental exposures. PMID:12361922

  7. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    SciTech Connect

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O'Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  8. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    NASA Astrophysics Data System (ADS)

    Westphal, Brian R.; Frank, S. M.; McCartin, W. M.; Cummings, D. G.; Giglio, J. J.; O'Holleran, T. P.; Hahn, P. A.; Yoo, T. S.; Marsden, K. C.; Bateman, K. J.; Patterson, M. N.

    2015-01-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 °C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  9. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    PubMed

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application. PMID:25023656

  10. Theoretical study of carbon dioxide activation by metals (Co, Cu, Ni) supported on activated carbon.

    PubMed

    Ha, Nguyen Ngoc; Ha, Nguyen Thi Thu; Van Khu, Le; Cam, Le Minh

    2015-12-01

    The activation of carbon dioxide (CO2) by catalytic systems comprising a transition metal (Co, Cu,Ni) on an activated carbon (AC) support was investigated using a combination of different theoretical calculation methods: Monte Carlo simulation, DFT and DFT-D, molecular dynamics (MD), and a climbing image nudged elastic band (CI-NEB) method. The results obtained indicate that CO2 is easily adsorbed by AC or MAC (M: Cu, Co, Ni). The results also showed that the process of adsorbing CO2 does not involve a transition state, and that NiAC and CoAC are the most effective of the MAC catalysts at adsorbing CO2. Adsorption on NiAC led to the strongest activation of the C-O bond, while adsorption on CuAC led to the weakest activation. Graphical Abstract Models of CO2 activation on: a)- activated carbon; b)- metal supported activated carbon (M-AC), where M: Co, Cu, Ni. PMID:26637187

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  12. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    SciTech Connect

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective in removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.

  13. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    SciTech Connect

    Wittry, D.M.; Martin, H.L.

    1994-06-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies.

  14. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  15. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGESBeta

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  16. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    SciTech Connect

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).

  17. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  18. Strong metal-support interaction between mononuclear and polynuclear transition metal complexes and oxide supports which dramatically affects catalytic activity

    SciTech Connect

    Hucul, D.A.; Brenner, A.

    1981-03-05

    The interaction of carbonyl complexes with catalyst supports, primarily ..gamma..-alumina, has been studied by temperature-programmed decomposition. In all cases, including cluster complexes and complexes of noble metals, after heating to 600/sup 0/C in flowing He the catalysts are significantly oxidized due to a redox reaction between surface hydroxyl groups and the initially zero-valent metal. Contrary reports are probably incorrect and likely reflect the insensitivity of the experimental techniques used. For all but the most thermally unstable complexes, the oxidation occurs during the latter stages of decarbonylation indicating that there is no significant accumulation of bare zero-valent metal. Hence, decomposition does not in general provide a direct route to supported metals and, contrary to some claims, molecular cluster complexes cannot necessarily be used as precursors to supported metal clusters. Further, knowledge of this redox reaction is critical for understanding patterns of activity and for the development of improved catalysts.

  19. 76 FR 52686 - Agency Information Collection Activities: Comment Request for the Nonferrous Metals Surveys (30...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Geological Survey Agency Information Collection Activities: Comment Request for the Nonferrous Metals Surveys.... II. Data OMB Control Number: 1028-0053. Form Number: Various (30 forms). Title: Nonferrous Metals....S. nonfuel minerals producers of nonferrous and related metals. Respondent Obligation:...

  20. Active vision and sensor fusion for inspection of metallic surfaces

    NASA Astrophysics Data System (ADS)

    Puente Leon, Fernando; Beyerer, Juergen

    1997-09-01

    This paper deals with strategies for reliably obtaining the edges and the surface texture of metallic objects. Since illumination is a critical aspect regarding robustness and image quality, it is considered here as an active component of the image acquisition system. The performance of the methods presented is demonstrated -- among other examples -- with images of needles for blood sugar tests. Such objects show an optimized form consisting of several planar grinded surfaces delimited by sharp edges. To allow a reliable assessment of the quality of each surface, and a measurement of their edges, methods for fusing data obtained with different illumination constellations were developed. The fusion strategy is based on the minimization of suitable energy functions. First, an illumination-based segmentation of the object is performed. To obtain the boundaries of each surface, directional light-field illumination is used. By formulating suitable criteria, nearly binary images are selected by variation of the illumination direction. Hereafter, the surface edges are obtained by fusing the contours of the areas obtained before. Following, an optimally illuminated image is acquired for each surface of the object by varying the illumination direction. For this purpose, a criterion describing the quality of the surface texture has to be maximized. Finally, the images of all textured surfaces of the object are fused to an improved result, in which the whole object is contained with high contrast. Although the methods presented were designed for inspection of needles, they also perform robustly in other computer vision tasks where metallic objects have to be inspected.

  1. Metal-dithiocarbamate complexes: chemistry and biological activity.

    PubMed

    Hogarth, Graeme

    2012-10-01

    Dithiocarbamates are highly versatile mono-anionic chelating ligands which form stable complexes with all the transition elements and also the majority of main group, lanthanide and actinide elements. They are easily prepared from primary or secondary amines and depending upon the nature of the cation can show good solubility in water or organic solvents. They are related to the thiuram disulfides by a one-electron redox process (followed by dimerisation via sulfur-sulfur bond formation) which is easily carried out upon addition of iodide or ferric salts. Dithiocarbamates are lipophilic and generally bind to metals in a symmetrical chelate fashion but examples of other coordination modes are known, the monodentate and anisobidentate modes being most prevalent. They are planar sterically non-demanding ligands which can be electronically tuned by judicious choice of substituents. They stabilize metals in a wide range of oxidation states, this being attributed to the existence of soft dithiocarbamate and hard thioureide resonance forms, the latter formally resulting from delocalization of the nitrogen lone pair onto the sulfurs, and consequently their complexes tend to have a rich electrochemistry. Tetraethyl thiuramdisulfide (disulfiram or antabuse) has been used as a drug since the 1950s but it is only recently that dithiocarbamate complexes have been explored within the medicinal domain. Over the past two decades anti-cancer activity has been noted for gold and copper complexes, technetium and copper complexes have been used in PET-imaging, dithiocarbamates have been used to treat acute cadmium poisoning and copper complexes also have been investigated as SOD inhibitors. PMID:22931592

  2. Regeneration of spent three-way catalysts with nano-structured platinum group metals by gas and acid treatments.

    PubMed

    Kim, Sang Chai; Nahm, Seung Won; Wang, Geun Shim; Seo, Seong Gyu; Lee, Jae Wook

    2008-10-01

    The influence of physicochemical treatments on the catalytic activity of the spent nano-structured three way catalysts (TWCs) was examined to evaluate the possibility of using spent TWCs for removing VOCs. Thermal gases and acid aqueous solutions were used to regenerate the spent nano-structured TWCs. The characterization of the spent catalyst and its modified forms was carried out by using XRD, TEM, ICP, and N2 adsorption-desorption isotherms. The catalytic activity tests revealed that the spent nano-structured TWCs have a great potential for removing toxic compounds. The activities of catalysts were also found to be highly dependent on the treatment conditions. The acid aqueous treatments were very useful for improving the catalytic activity because they removed various contaminants such as fuel additives, lubricant oil additives, and metallic compounds. However, the thermal gas treated TWCs were less active than the parent TWCs. Furthermore, the activities of the catalysts treated with acids were closely connected with the remaining Pt/Al ratios. PMID:19198464

  3. Behavioral Activation Is an Evidence-Based Treatment for Depression

    ERIC Educational Resources Information Center

    Sturmey, Peter

    2009-01-01

    Recent reviews of evidence-based treatment for depression did not identify behavioral activation as an evidence-based practice. Therefore, this article conducted a systematic review of behavioral activation treatment of depression, which identified three meta-analyses, one recent randomized controlled trial and one recent follow-up of an earlier…

  4. The effect of baking treatments on E9018-B3 manual metal arc welding consumables

    SciTech Connect

    Fazackerley, W.; Gee, R.

    1996-12-31

    For the comparison and assessment of steel welding consumables, standard tests involving small model welds are widely used to determine diffusible hydrogen contents. The lowest scale normally quoted is less than 5 ml/100 g deposited metal (e.g., BS5135:1984 Scale D). However, due to industry`s demands for lower hydrogen levels for critical applications, it is now proposed to sub-divide this scale at around 2--3 ml/100 g. This has led to further development by consumable manufacturers in order to meet the new specification. Traditionally, reductions in potential hydrogen levels in manual metal arc welding consumables have been achieved by improved flux formulations and silicate binder systems. However, there is little published work on the effect of electrode baking treatments. A development program has been employed to study the effect of baking treatments on E9018-B3 type manual metal arc welding consumables. This type of welding consumable is used extensively in the initial fabrication and in the repair and maintenance of power generation plant, where significant risk of HAZ hydrogen cracking exists. These treatments have been assessed using standard tests for weld metal hydrogen content and weld metal composition.

  5. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    PubMed Central

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  6. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts.

    PubMed

    Varnell, Jason A; Tse, Edmund C M; Schulz, Charles E; Fister, Tim T; Haasch, Richard T; Timoshenko, Janis; Frenkel, Anatoly I; Gewirth, Andrew A

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  7. Explosive treatment application for production of metal-polymer composite materials

    NASA Astrophysics Data System (ADS)

    Goulbin, V. N.; Adamenko, N. A.; Trykov, Y. P.; Fetisov, A. V.; Kazurov, A. V.

    2003-09-01

    The paper comprises the investigation results of metal-polymer composites, produced by mean of compressing and explosive activation of adhesion-inert polymers. The hard-treatable thermal stable polymers: ftoroplast F-4, polyethylene (PE), kaprone and others were used as a matrix. Bronze, copper, nickel, iron, titanium and aluminum oxide were used as metal fillers for the HFMPC. In result of this study the optimum regimes were established for polymer coats forming with realization of maximum adhesion interaction in order to manufacture products, parts and details of several functional purpose. The processes were developed for explosive compressing of metal-ftoroplast composites and activation of polymer powders in order to increase their adhesion interaction with metal surfaces.

  8. WasteWater Treatment And Heavy Metals Removal In The A-01 Constructed Wetland 2003 Report

    SciTech Connect

    ANNA, KNOX

    2004-08-01

    The A-01 wetland treatment system (WTS) was designed to remove metals from the effluent at the A-01 NPDES outfall. The purpose of research conducted during 2003 was to evaluate (1) the ability of the A-01 wetland treatment system to remediate waste water, (2) retention of the removed contaminants in wetland sediment, and (3) the potential remobilization of these contaminants from the sediment into the water column. Surface water and sediment samples were collected and analyzed in this study.

  9. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.

    PubMed

    Meunier, N; Blais, J F; Lounès, M; Tyagi, R D; Sasseville, J L

    2002-01-01

    The MUG (Montreal Urban Community) treatment plant produces approximately 270 tons of dry sludge daily (270 tds/day) during the physico-chemical treatment of wastewater. Recently, this treatment plant endowed a system of drying and granulation of sludge for valorization as an agricultural fertilizer having a capacity of 70 tds/day (25% of the daily sludge production). However, the metal content (mainly Cu and Cd) of the sludge surpasses the norms for biosolids valorization. In order to solve this problem, a demonstration project, from the lab scale to the industrial pilot plant, was carried out to test the Metix-AC technology for the removal of metals. A strongly metal-loaded filtrate was generated during the sludge decontamination. Tests concerned the study of the metal recovery by total precipitation and selective precipitation, as well as the use of alternative products for the metal precipitation. Other works consisted to simulate the acid filtrate recirculation from the decontaminated sludge (25% of the total volume) in the untreated sludge (75% of the total volume) intended for the incineration. The total precipitation with hydrated limeappearedeffectivefortherecoveryof metals (87% Cd, 96% Cr, 97% Cu, 98% Fe, 71% Ni, 100% Pb, 98% Zn). However, this option entails the production of an important quantity of metallic residue, which should be disposed of expensively as dangerous material. The selective iron precipitation does not appear to bean interesting option because the iron in solution within the leached sludge was principally present in the form of ferrous iron, which cannot be precipitated at pH lower than five. On the other hand, the use of commercial precipitating agents (TMT-15, CP-33Z, CP-NB and CPX) without pH adjustment of filtrate gave good results for the recovery of Cu and, to a lesser degree for the recovery of Pb. However, the efficiency for the other metals' (Cd, Cr, Fe, Ni and Zn) recovery was weaker (< 25%). Finally, the acid filtrate

  10. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium. PMID:27207229

  11. Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: applicability to the treatment of liquid wastes containing heavy metal cations

    SciTech Connect

    Macaskie, L.E.; Wates, J.M.; Dean, A.C.R.

    1987-01-01

    Polyacrylamide gel-immobilized cells of a Citrobacter sp. removed cadmium from flows supplemented with glycerol 2-phosphate, the metal uptake mechanism being mediated by the activity of a cell-bound phosphatase that precipitates liberated inorganic phosphate with heavy metals at the cell surface. The constraints of elevated flow rate and temperature were investigated and the results discussed in terms of the kinetics of immobilized enzymes. Loss in activity with respect to cadmium accumulation but not inorganic phosphate liberation was observed at acid pH and was attributed to the pH-dependent solubility of cadmium phosphate. Similarly high concentrations of chloride ions, and traces of cyanide inhibited cadmium uptake and this was attributed to the ability of these anions to complex heavy metals, especially the ability of CN/sup -/ to form complex anions with Cd/sup 2 +/. The data are discussed in terms of the known chemistry of chloride and cyanide-cadmium complexes and the relevance of these factors in the treatment of metal-containing liquid wastes is discussed. The cells immobilized in polyacrylamide provided a convenient small-scale laboratory model system. It was found that the Citrobacter sp. could be immobilized on glass supports with no chemical treatment or modification necessary. Such cells were also effective in metal accumulation and a prototype system more applicable to the treatment of metal-containing streams on a larger scale is described.

  12. Water Treatment Residuals and Scrap Tire Rubber as Green Sorbents for Removal of Stormwater Metals.

    PubMed

    Deng, Yang; Morris, Ciapha; Rakshit, Sudipta; Landa, Edward; Punamiya, Pravin; Sarkar, Dibyendu

    2016-06-01

    Bench scale tests were performed to evaluate two recycled wastes, water treatment residuals (WTR) and scrap tire rubber (STR), for adsorption of selected metals from urban stormwater, and assess their release from used sorbents. Aluminum-WTR alone could rapidly and effectively remove Cu, Pb, and Zn, while STR alone continuously released Zn accompanied with Cu and Pb adsorption. Zn leaching from STR was significantly reduced in the presence of WTR. Very little metals released from used combined adsorbents in NaNO3 solution, and only part of them were extracted with EDTA (a strong chelating agent), suggesting that metal release is not a concern in a typical stormwater condition. A combination of WTR and STR is a new, effective method for mitigation of urban stormwater metals-WTR can inhibit the STR leaching, and STR improves the hydraulic permeability of WTR powders, a limiting factor for stormwater flow when WTR is used alone. PMID:27010486

  13. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  14. Toxicity Of Metal-Mine Drainage Before And After Biochemical Reactor Treatment: National Tunnel In The Clear Creek Watershed, Colorado, USA

    EPA Science Inventory

    Many miles of streams in the US (and worldwide) are contaminated by metals originating from both active and abandoned mine-sites. Streams affected by mine drainage are often toxic to aquatic life. Thus, it is desirable to remediate these sites through treatment of the source(s)...

  15. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  16. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  17. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    PubMed

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  18. FIELD MANUAL - PERFORMANCE EVALUATION AND TROUBLESHOOTING AT METAL-FINISHING WASTEWATER TREATMENT FACILITIES

    EPA Science Inventory

    This manual provides a technical field guide or reference document for use in improving the performance of facilities for the treatment of metal finishing wastes. The main purpose of the manual is to provide a troubleshooting guide for identifying problems, analyzing problems, an...

  19. A PERMEABLE REACTIVE BARRIER FOR TREATMENT OF HEAVY METALS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-00327 Ludwig*, R., McGregor, R.G., Blowes, D.W., Benner, S.G., and Mountjoy, K. A Permeable Reactive Barrier for Treatment of Heavy Metals. Ground Water 40 (1):59-66 (2002) Historical storage of ore concentrate containing sulfid...

  20. THE REMOVAL OF METALS AND VIRUSES IN ADVANCED WASTEWATER TREATMENT SEQUENCES

    EPA Science Inventory

    An extensive study of metals and virus removals by advanced wastewater treatment processes was conducted in Dallas, Texas from June 1972 through December 1973. Processes applied to a biologically nitrified effluent included chemical coagulation with alum and/or lime, high-pH lime...

  1. DATA BASE FOR INFLUENT HEAVY METALS IN PUBLICLY OWNED TREATMENT WORKS

    EPA Science Inventory

    Results are presented of a 2-year study involving the identification and assembly of a data base existing within the Publicly Owned Treatment Works (POTW) of the U.S. on influent heavy metals. The general character of the data base with respect to associated descriptors (among wh...

  2. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    EPA Science Inventory

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  3. Enhanced Antimicrobial Activity Of Antibiotics Mixed With Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kumar, Neeraj; Bhanjana, Gaurav; Thakur, Rajesh; Dilbaghi, Neeraj

    2011-12-01

    Current producers of antimicrobial technology have a long lasting, environmentally safe, non-leaching, water soluble solution that will eventually replace all poisons and heavy metals. The transition metal ions inevitably exist as metal complexes in biological systems by interaction with the numerous molecules possessing groupings capable of complexation or chelation. Nanoparticles of metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. the bacterial action of antibiotics like penicillin, erythryomycin, ampicillin, streptomycin, kanamycin etc. and that of a mixture of antibiotics and metal and metal oxide nanoparticles like zinc oxide, zirconium, silver and gold on microbes was examined by the agar-well-diffusion method, enumeration of colony-forming units (CFU) and turbidimetry.

  4. Bactericidal Activity of N-Chlorotaurine against Biofilm-Forming Bacteria Grown on Metal Disks

    PubMed Central

    Ammann, Christoph G.; Fille, Manfred; Hausdorfer, Johann; Nogler, Michael

    2014-01-01

    Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies. PMID:24492358

  5. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    PubMed

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate. PMID:27339314

  6. 28-Homobrassinolide Alters Protein Content and Activities of Glutathione-S-Transferase and Polyphenol Oxidase in Raphanus Sativus L. Plants Under Heavy Metal Stress

    PubMed Central

    Sharma, Neha; Hundal, Gurjinder Singh; Sharma, Indu; Bhardwaj, Renu

    2014-01-01

    Objectives: The application of brassinosteroids (BRs), the plant steroidal hormones, results in an increased tolerance toward stress and thus helps improving the yield of crop plants. The present study was carried out to investigate the effect of 28-homobrassinolide (28-HBL) on the protein content as well as activities of antioxidant enzymes viz., glutathione-s-transferase (GST) and polyphenol oxidase (PPO) in radish plants grown under Cadmium (Cd) and Mercury (Hg) metal stress. Materials and Methods: Shoots of 60 and 90 days old radish plants, grown under Cd and Hg metal stress (0, 0.5, 1.0, 1.5 mM) and given the presowing treatment of 28-HBL (0, 10-7, 10-9, 10-11 M) to seeds for 8 h, were analyzed for protein content and GST and PPO enzyme activities. Results: Protein content showed decrease in plants given Cd and Hg metal treatment alone, while treatment with 28-HBL enhanced the protein content, suggesting its stress protective role. An increase in the activity of antioxidative enzymes was also observed in plants stressed with heavy metals as well as in those supplemented with 28-HBL. Conclusions: In the present investigation, the activity of antioxidative enzymes was found to increase due to metal stress and a further increase was noticed in plants given both metal and 28-HBL treatment, suggesting the stress protective role of 28-HBL via modulating the antioxidative enzymes. PMID:24748734

  7. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2010-12-01

    We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h -1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex ® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated ( R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.

  8. On the origin of high activity of hcp metals for ammonia synthesis.

    PubMed

    Ahmadi, Shideh; Kaghazchi, Payam

    2016-02-10

    Structure and activity of nanoparticles of hexagonal close-packed (hcp) metals are studied using first-principles calculations. Results show that, in contact with a nitrogen environment, high-index {134[combining macron]2} facets are formed on hcp metal nanoparticles. Nitrogen molecules dissociate easily at kink sites on these high-index facets (activation barriers of <0.2 eV). Analysis of the site blocking effect and adsorption energies on {134[combining macron]2} facets explains the order of activity of hcp metals for ammonia synthesis: Re < Os < Ru. Our results indicate that the high activity of hcp metals for ammonia synthesis is due to the N-induced formation of {134[combining macron]2} facets with high activity for the dissociation of nitrogen molecules. However, quite different behavior for adsorption of dissociated N atoms leads to distinctive activity of hcp metals. PMID:26818719

  9. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  10. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  11. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia

    PubMed Central

    Sampson, Elizabeth L; Jenagaratnam, Lydia; McShane, Rupert

    2014-01-01

    Background Alzheimer’s dementia (AD) may be caused by the formation of extracellular senile plaques comprised of beta-amyloid (Aß). In vitro and mouse model studies have demonstrated that metal protein attenuating compounds (MPACs) promote the solubilisation and clearance of Aß. Objectives To evaluate the efficacy of metal protein attenuating compounds (MPACs) for the treatment of cognitive impairment due to Alzheimer’s dementia. Search methods We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group Specialized Register, on 29 July 2010 using the terms: Clioquinol OR PBT1 OR PBT2 OR “metal protein” OR MPACS OR MPAC. Selection criteria Randomised double-blind trials in which treatment with an MPAC was administered to participants with Alzheimer’s dementia in a parallel group comparison with placebo were included. Data collection and analysis Three review authors (RM, LJ, ELS) independently assessed the quality of trials according to the Cochrane Handbook for Systematic Reviews of Interventions. The primary outcome measure of interest was cognitive function (as measured by psychometric tests). The secondary outcome measures of interest were in the following areas: quality of life, functional performance, effect on carer, biomarkers, safety and adverse effects, and death. Main results Two MPAC trials were identified. One trial compared clioquinol (PBT1) with placebo in 36 patients and 32 had sufficient data for per protocol analysis. There was no statistically significant difference in cognition (as measured on the Alzheimer’s Disease Assessment Scale - Cognition (ADAS-Cog)) between the active treatment and placebo groups at 36 weeks. The difference in mean change from baseline ADAS-Cog score in the clioquinol arm compared with the placebo arm at weeks 24 and 36 was a difference of 7.37 (95% confidence interval (CI) 1.51 to 13.24) and 6.36 (95% CI −0.50 to 13.23), respectively. There was no significant impact on non-cognitive symptoms

  12. ACTIVATED CARBON TREATMENT OF KRAFT BLEACHING EFFLUENTS

    EPA Science Inventory

    The removal of color and organic contaminants by adsorption on activated carbon from the effluent of a kraft pulp bleaching plant was investigated in a pilot plant. The caustic bleach effluent, which contains 80% of the color from pulp bleaching, was decolorized successfully when...

  13. Regulation of an in vivo metal-exchangeable superoxide dismutase from Propionibacterium shermanii exhibiting activity with different metal cofactors.

    PubMed Central

    Sehn, A P; Meier, B

    1994-01-01

    The anaerobic, but aerotolerant Propionibacterium freudenreichii sp. shermanii contains a single superoxide dismutase [EC 1.15.1.1.] exhibiting comparable activity with iron or manganese as metal cofactor. The formation of superoxide dismutase is not depending on the supplementation of iron or manganese to the culture medium. Even in the absence of these metals the protein is built in comparable amounts. Bacteria grown in the absence of iron and manganese synthesize a superoxide dismutase with very low activity which had incorporated copper. If the medium was also depleted of copper, cobalt was incorporated, leading to an enzymically inactive form. In the absence of cobalt an enzymically inactive superoxide dismutase was built with unknown metal contents. Upon aeration the amount of superoxide dismutase activity increased continuously up to 9 h, due to a de novo synthesis of the protein. This superoxide dismutase had incorporated iron into the active centre. The superoxide dismutase of Propionibacterium shermanii is able to form a much wider variety of complexes with trace metal ions in vivo than previously recognized, leading to the hypothesis that the original function of these proteins was the binding of cytoplasmic trace metals present in excess. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7818484

  14. Recovering metals from red mud by thermal treatment and magnetic separation

    NASA Astrophysics Data System (ADS)

    Plescia, Paolo; Maccari, Dante

    1996-01-01

    This paper deals with an alternative treatment for recovering metals from goethite red mud (RM), which occurs as a by-product at zinc leaching plants. It is derived from the hydrometallurgical treatment of sphalerite, which involves roasting followed by acid attack and subsequent recovery of the zinc by electrodeposition. The leaching mud contains various oxides and hydroxides of iron plus lesser amounts of sulfates of Pb, Zn, Ca, Cd, Ag, In, Se, and other metals. In recent years, numerous attempts have been made to recover the RM or render it inert, particularly by such processes as vitrification or lithification for the production of glass ceramics. The work reported here proposes a treatment involving reduction and magnetic separation to permit the extraction of pure zinc, a high percentage of a pure magnetite, and a harmless slag containing mixed silicates of zinc and lead as well as oxides of minor elements.

  15. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion.

    PubMed

    Pazos, M; Kirkelund, G M; Ottosen, L M

    2010-04-15

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative to treat sewage sludge. By its use, the high amount of sludge is reduced to a small quantity of ash and thermal destruction of toxic organic constituents is obtained. Conversely, heavy metals are retained in the ash. In this work the possibility for electrodialytic metal removal for sewage sludge ash from FBSC was studied. A detailed characterization of the sewage sludge ash was done initially, determining that, with the exception of Cd, the other heavy metals (Cr, Cu, Pb, Ni and Zn) were under the limiting levels of Danish legislation for the use of sewage sludge as fertilizer. After 14 days of electrodialytic treatment, the Cd concentration was reduced to values below the limiting concentration. In all experiments the concentrations of other metals were under limiting values of the Danish legislation. It can be concluded that the electrodialytic treatment is an adequate alternative to reduce the Cd concentration in FBSC ash prior to use as fertilizer. PMID:20034740

  16. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola.

    PubMed

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming

    2015-01-01

    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process. PMID:26030364

  17. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates. PMID:17511361

  18. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.

    PubMed

    Vogel, Christian; Adam, Christian

    2011-09-01

    Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water. PMID:21819089

  19. LLNL metal finishing and pollution prevention activities with small businesses

    SciTech Connect

    Dini, J.W.; Steffani, C.P.

    1996-07-01

    The Metal Finishing Facility at LLNL has emphasized using environmentally conscious manufacturing principles. Key focus items included minimizing hazardous wastes, minimization of water usage, material and process substitutions, and recycling. Joint efforts with NCAMF (Northern California Association of Metal Finishers), Technic, Inc., EPA, and UC Davis, all directed at pollution prevention, are reviewed.

  20. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage.

    PubMed

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Bussière, Bruno; Potvin, Robin

    2016-06-01

    Intensive research is ongoing for developing low-cost and highly efficient materials in metal removal from contaminated effluents. The present study evaluated dolomite [CaMg(CO3)2], both raw and modified by thermal activation (charring), for Ni and Zn treatment in contaminated neutral drainage (CND). Batch adsorption testing (equilibrium and kinetics) were conducted at pH 6, to evaluate the performance of initial vs. modified dolomite, and to assess potential mechanisms of metal removal. Charring of dolomite led to a rigid and porous material, mainly consisting of CaCO3 and MgO, which showed a sorption capacity increased sevenfold for Zn and doubled for Ni, relative to the raw material. In addition, Freundlich model best described the sorption of the both metals by dolomite, whereas the Langmuir model best described their sorption on charred dolomite. Plausible mechanisms of metal removal include cation exchange, surface precipitation and sorption processes, with carbonate ions and magnesium oxides acting as active centers. Based on these results, charred dolomite seems a promising option for the efficient treatment of Ni and Zn in CND. PMID:26897574

  1. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  2. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies.

    PubMed Central

    Clugston, Susan L; Yajima, Rieko; Honek, John F

    2004-01-01

    GlxI (glyoxalase I) isomerizes the hemithioacetal formed between glutathione and methylglyoxal. Unlike other GlxI enzymes, Escherichia coli GlxI exhibits no activity with Zn(2+) but maximal activation with Ni(2+). To elucidate further the metal site in E. coli GlxI, several approaches were undertaken. Kinetic studies indicate that the catalytic metal ion affects the k (cat) without significantly affecting the K (m) for the substrate. Inductively coupled plasma analysis and isothermal titration calorimetry confirmed one metal ion bound to the enzyme, including Zn(2+), which produces an inactive enzyme. Isothermal titration calorimetry was utilized to determine the relative binding affinity of GlxI for various bivalent metals. Each metal ion examined bound very tightly to GlxI with an association constant ( K (a))>10(7) M(-1), with the exception of Mn(2+) ( K (a) of the order of 10(6) M(-1)). One of the ligands to the catalytic metal, His(5), was altered to glutamine, a side chain found in the Zn(2+)-active Homo sapiens GlxI. The affinity of the mutant protein for all bivalent metals was drastically decreased. However, low levels of activity were now observed for Zn(2+)-bound GlxI. Although this residue has a marked effect on metal binding and activation, it is not the sole factor determining the differential metal activation between the human and E. coli GlxI enzymes. PMID:14556652

  3. Fortifying the Treatment of Prostate Cancer with Physical Activity

    PubMed Central

    Champ, Colin E.; Francis, Lanie; Klement, Rainer J.; Dickerman, Roger; Smith, Ryan P.

    2016-01-01

    Over the past decade, significant data have shown that obese men experience a survival detriment after treatment for prostate cancer. While methods to combat obesity are of utmost importance for the prostate cancer patient, newer data reveal the overall metabolic improvements that accompany increased activity levels and intense exercise beyond weight loss. Along these lines, a plethora of data have shown improvement in prostate cancer-specific outcomes after treatment accompanied with these activity levels. This review discusses the metabolic mechanisms in which increased activity levels and exercise can help improve both outcomes for men treated for prostate cancer while lowering the side effects of treatment. PMID:26977321

  4. Fortifying the Treatment of Prostate Cancer with Physical Activity.

    PubMed

    Champ, Colin E; Francis, Lanie; Klement, Rainer J; Dickerman, Roger; Smith, Ryan P

    2016-01-01

    Over the past decade, significant data have shown that obese men experience a survival detriment after treatment for prostate cancer. While methods to combat obesity are of utmost importance for the prostate cancer patient, newer data reveal the overall metabolic improvements that accompany increased activity levels and intense exercise beyond weight loss. Along these lines, a plethora of data have shown improvement in prostate cancer-specific outcomes after treatment accompanied with these activity levels. This review discusses the metabolic mechanisms in which increased activity levels and exercise can help improve both outcomes for men treated for prostate cancer while lowering the side effects of treatment. PMID:26977321

  5. Organic and metallic pollutants in water treatment and natural wetlands: a review.

    PubMed

    Haarstad, K; Bavor, H J; Mæhlum, T

    2012-01-01

    A literature review shows that more than 500 compounds occur in wetlands, and also that wetlands are suitable for removing these compounds. There are, however, obvious pitfalls for treatment wetlands, the most important being the maintenance of the hydraulic capacity and the detention time. Treatment wetlands should have an adapted design to target specific compounds. Aquatic plants and soils are suitable for wastewater treatment with a high capacity of removing nutrients and other substances through uptake, sorption and microbiological degradation. The heavy metals Cd, Cu, Fe, Ni and Pb were found to exceed limit values. The studies revealed high values of phenol and SO(4). No samples showed concentrations in sediments exceeding limit values, but fish samples showed concentrations of Hg exceeding the limit for fish sold in the European Union (EU). The main route of metal uptake in aquatic plants was through the roots in emergent and surface floating plants, whereas in submerged plants roots and leaves take part in removing heavy metals and nutrients. Submerged rooted plants have metal uptake potential from water as well as sediments, whereas rootless plants extracted metals rapidly only from water. Caution is needed about the use of SSF CWs (subsurface flow constructed wetlands) for the treatment of metal-contaminated industrial wastewater as metals are shifted to another environmental compartment, and stable redox conditions are required to ensure long-term efficiency. Mercury is one of the most toxic heavy metals and wetlands have been shown to be a source of methylmercury. Methyl Hg concentrations are typically approximately 15% of Hgt (total mercury). In wetlands polycyclic aromatic hydrocarbons (PAH), bisphenol A, BTEX, hydrocarbons including diesel range organics, glycol, dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls (PCB), cyanide, benzene, chlorophenols and formaldehyde were found to exceed limit values. In sediments only PAH and PCB

  6. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].

    PubMed

    Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding

    2014-04-01

    Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues. PMID:24946616

  7. Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2015-01-01

    Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554

  8. Floating Treatment Wetland influences on the fate of metals in road runoff retention ponds.

    PubMed

    Borne, Karine E; Fassman-Beck, Elizabeth A; Tanner, Chris C

    2014-01-01

    A field trial comparing the fate of metals in two parallel stormwater retention ponds, one of which was retrofitted with a Floating Treatment Wetland (FTW), was carried out near Auckland, New Zealand. Results suggest that the FTW increased metal accumulation in the pond sediment especially in summer due to lower sediment Eh, more anoxic water column, neutral pH and greater source of organic matter (OM) induced by the FTW. These factors combined with higher temperature enhanced metal sorption onto OM, flocculation of particulate pollutants, metal sulphide formation and reduced OM degradation and thus limited release of metals. Unlike Zn, Cu speciation in the pond sediment was relatively unchanged under various sediment Eh conditions due to its strong binding property with sulphide and OM. Occasional moderate metal release was detected from the FTW pond sediment likely due to aerobic OM degradation at the beginning of spring and/or hydroxides reduction when sediments became reduced later in the season. No release was noticed from the conventional pond sediment likely due to biosorption and/or uptake by algae which developed in the conventional pond and settled on the bottom sediment. Direct uptake by the plants of the FTW and sorption onto root plaques are not thought to be significant removal pathways. Nevertheless roots play a major role in trapping particulate pollutants, eventually sloughing off to settle on the bottom of the pond, and provide an adequate substrate for bacterial development due to release of organic compounds which are both essential for dissolved metal sorption and metal sulphide formation. PMID:24183399

  9. Behavioral activation: a strategy to enhance treatment response.

    PubMed

    Sudak, Donna M; Majeed, Muhammad H; Youngman, Branden

    2014-07-01

    Behavioral activation is an empirically validated treatment for depression pioneered in 1973 by Ferster, based on B.F. Skinner's behavioral principles. After publication of Beck's work on cognitive therapy, the boundaries of behavioral and cognitive therapies were blurred and the two now overlap substantially. Behavioral activation is also used as a stand-alone treatment and can also be effective in conjunction with antidepressant medication. Case conceptualization in behavioral activation entails an assessment of the behaviors that the patient has stopped that produce pleasure or are of importance, as well as behaviors essential to self-care. Activity monitoring, which provides treatment targets and leads to the case conceptualization in behavioral activation, consists of using charts, forms, or other prompts to track the relationship between activities and other variables (e.g., mood, enjoyment). That technique is also used to target rumination, procrastination, and avoidance and may also be helpful for patients with psychosis. PMID:25036582

  10. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.

    PubMed

    Koutsioulis, Dimitris; Lyskowski, Andrzej; Mäki, Seija; Guthrie, Ellen; Feller, Georges; Bouriotis, Vassilis; Heikinheimo, Pirkko

    2010-01-01

    Alkaline phosphatases (APs) are commercially applied enzymes that catalyze the hydrolysis of phosphate monoesters by a reaction involving three active site metal ions. We have previously identified H135 as the key residue for controlling activity of the psychrophilic TAB5 AP (TAP). In this article, we describe three X-ray crystallographic structures on TAP variants H135E and H135D in complex with a variety of metal ions. The structural analysis is supported by thermodynamic and kinetic data. The AP catalysis essentially requires octahedral coordination in the M3 site, but stability is adjusted with the conformational freedom of the metal ion. Comparison with the mesophilic Escherichia coli, AP shows differences in the charge transfer network in providing the chemically optimal metal combination for catalysis. Our results provide explanation why the TAB5 and E. coli APs respond in an opposite way to mutagenesis in their active sites. They provide a lesson on chemical fine tuning and the importance of the second coordination sphere in defining metal specificity in enzymes. Understanding the framework of AP catalysis is essential in the efforts to design even more powerful tools for modern biotechnology. PMID:19916164

  11. DESIGN HANDBOOK FOR AUTOMATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    This report is a systems engineering handbook for the automation of activated sludge wastewater treatment processes. Process control theory and application are discussed to acquaint the reader with terminology and fundamentals. Successful unit process control strategies currently...

  12. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    SciTech Connect

    Koopman, David C.:Eibling, Russel E

    2005-08-01

    simulants were visually very viscous compared to the traditional SB3 simulant. (4) Heat-treatment reduced the viscosity of the two new simulants with and without coprecipitated noble metals, though they were still more viscous than the traditional SB3. (5) The approach of using a 97 C heat-treatment step to qualitatively simulate tank farm aging may not be optimal. A significant change in the base equivalent molarities of both simulants was observed during heat-treatment. (6) Heat-treatment appeared to make phosphates insoluble in water. The following recommendations came out of the work: (1) Washed slurry should be checked for TIC and base equivalents before calculating the final trim chemical additions of sodium carbonate and sodium hydroxide. (2) Final insoluble trim chemicals should be added to the slurry in the cross-flow filtration unit mixing tank, since significant slurry is lost in the CUF equipment. Adding the chemicals here would keep them in the correct proportion relative to the precipitated insoluble solids. (3) A composite wash and decant sample should be prepared containing proportionally weighted masses of each aqueous stream removed during preparation of a co-precipitated noble metal simulant. This sample should then be checked for noble metal losses. This would reduce the sample load, while still confirming that there was no significant noble metal loss. (4) A study of the impact of heat-treatment on existing simulants should be undertaken. If there is a shift in base equivalents, then SRNL acid stoichiometries may be biased relative to real waste. The study should be extended to several real wastes as well.

  13. Treatment of oil well "produced water" by waste stabilization ponds: removal of heavy metals.

    PubMed

    Shpiner, R; Vathi, S; Stuckey, D C

    2009-09-01

    Oil well produced water (PW) can serve as an alternative water resource for restricted halotolerant agricultural purposes if the main pollutants, hydrocarbons and heavy metals, can be removed to below the irrigation standards. In this work, the potential removal of cadmium(II), chromium(III) and nickel(II) from PW by chemical precipitation in biological treatment was evaluated. Precipitation as a sulphide salt was found to be a very effective mechanism, which together with biosorption, biological metal uptake, precipitation as hydroxides and carbonates could remove heavy metals down to below irrigation standards. The existence and capability of these various mechanisms was demonstrated in the performance of a continuous artificial pond followed by intermittent sand filter, achieving removals of around 95% for nickel(II) and even higher removal rates for cadmium(II), chromium(III) from artificial PW after the installation of an anaerobic stage. The treated effluent quality was higher than that required by current European standards. PMID:19580985

  14. Investigation of laser heating effect of metallic nanoparticles on cancer treatment

    NASA Astrophysics Data System (ADS)

    Shan, G. S.; Liu, X. M.; Chen, H. J.; Yu, J. S.; Chen, X. D.; Yao, Y.; Qi, L. M.; Chen, Z. J.

    2016-07-01

    Metallic nanoparticles can be applied for hyperthermia therapy of cancer treatment to enhance the efficacy because of their high absorption rate. The absorption of laser energy by metallic nanoparticles is strongly dependent on the concentration, shape, material of nanoparticles and the wavelength of the laser. However, there is no systematic investigation on the heating effect involving different material, concentration and laser wavelength. In this paper, gold nanoparticles (AuNPs), sliver nanoparticles (AgNPs) and sliver nanowires (AgNWs) with different concentrations are heated by 450nm and 532nm wavelength laser to investigate the heating effect. The result shows that the temperature distribution of heated metallic nanoparticles is non-uniform.

  15. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  16. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The

  17. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  18. Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase

    PubMed Central

    Sheen, Patricia; Ferrer, Patricia; Gilman, Robert H.; Christiansen, Gina; Moreno-Román, Paola; Gutiérrez, Andrés H.; Sotelo, Jun; Evangelista, Wilfredo; Fuentes, Patricia; Rueda, Daniel; Flores, Myra; Olivera, Paula; Solis, José; Pesaresi, Alessandro; Lamba, Doriano; Zimic, Mirko

    2012-01-01

    Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn. PMID:22764307

  19. Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity.

    PubMed

    Aijaz, Arshad; Akita, Tomoki; Tsumori, Nobuko; Xu, Qiang

    2013-11-01

    For the first time, this work presents surfactant-free monometallic and bimetallic polyhedral metal nanocrystals (MNCs) immobilized to a metal-organic framework (MIL-101) by CO-directed reduction of metal precursors at the solid-gas interface. With this novel method, Pt cubes and Pd tetrahedra were formed by CO preferential bindings on their (100) and (111) facets, respectively. PtPd bimetallic nanocrystals showed metal segregation, leading to Pd-rich core and Pt-rich shell. Core-shell Pt@Pd nanocrystals were immobilized to MIL-101 by seed-mediated two-step reduction, representing the first example of core-shell MNCs formed using only gas-phase reducing agents. These MOF-supported MNCs exhibited high catalytic activities for CO oxidation. PMID:24138338

  20. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    PubMed

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. PMID:25644079

  1. Conjugate heat transfer analysis of an ultrasonic molten metal treatment system

    NASA Astrophysics Data System (ADS)

    Zhu, Youli; Bian, Feilong; Wang, Yanli; Zhao, Qian

    2014-09-01

    In piezoceramic ultrasonic devices, the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material. While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber, so that it is difficult to experimentally measure the temperature of the transducer and its variation with time, which bring heavy difficulty to the design of the ultrasonic molten metal treatment system. To find a way out, conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method. In modeling of the system, the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation. Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution. Numerical results show that, after about 350 s of working time, temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling. At 240 s, The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2, while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2, which indicates the effectiveness of heat insulation of the asbestos pad. Transient heat transfer film coefficient and its distribution, which are difficult to be measured experimentally are also obtained through numerical simulation. At 240 s, the heat transfer film coefficient in the surface of the transducer ranges from -17.86 to 20.17 W/(m2 · K). Compared with the trial and error method based on the test, the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.

  2. Treatment of esophageal anastomotic leakage with self-expanding metal stents: analysis of risk factors for treatment failure

    PubMed Central

    Persson, Saga; Rouvelas, Ioannis; Kumagai, Koshi; Song, Huan; Lindblad, Mats; Lundell, Lars; Nilsson, Magnus; Tsai, Jon A.

    2016-01-01

    Background and study aim: The endoscopic placement of self-expandable metallic esophageal stents (SEMS) has become the preferred primary treatment for esophageal anastomotic leakage in many institutions. The aim of this study was to investigate possible risk factors for failure of SEMS-based therapy in patients with esophageal anastomotic leakage. Patients and methods: Beginning in 2003, all patients with an esophageal leak were initially approached and assessed for temporary closure with a SEMS. Until 2014, all patients at the Karolinska University Hospital with a leak from an esophagogastric or esophagojejunal anastomosis were identified. Data regarding the characteristics of the patients and leaks and the treatment outcomes were compiled. Failure of the SEMS treatment strategy was defined as death due to the leak or a major change in management strategy. The risk factors for treatment failure were analyzed with simple and multivariable logistic regression statistics. Results: A total of 447 patients with an esophagogastric or esophagojejunal anastomosis were identified. Of these patients, 80 (18 %) had an anastomotic leak, of whom 46 (58 %) received a stent as first-line treatment. In 29 of these 46 patients, the leak healed without any major change in treatment strategy. Continuous leakage after the application of a stent, decreased physical performance preoperatively, and concomitant esophagotracheal fistula were identified as independent risk factors for failure with multivariable logistic regression analysis. Conclusion: Stent treatment for esophageal anastomotic leakage is successful in the majority of cases. Continuous leakage after initial stent insertion, decreased physical performance preoperatively, and the development of an esophagotracheal fistula decrease the probability of successful treatment. PMID:27092321

  3. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  4. Metal-insulator transition at lanthanum aluminate-strontium titanate interface induced by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Dai, Weitao; Cen, Cheng

    The formation of two-dimensional electron gas (2DEG) at lanthanum aluminate (LAO)-strontium titanate (STO) interface, as well as the 2DEG's unique characters in metal-insulator transition, have evoked widespread interest. Highly insulating interfaces are obtained for the structures with LAO thickness below 3 unit cell (uc) and abrupt transition from an insulating to conducting interface was observed for samples with thicker LAO layers. For 3uc LAO/STO samples, reversible nanoscale control of the metal-insulator transition was implemented by a conductive AFM writing. Our research furtherly discovered a very stable metal-insulator transition can be achieved by oxygen plasma (OP) treatment for samples with thicker LAO layers. AFM imaging and XPS measurement demonstrated the low energy OP treatment altered only the surface bonds, which confirmed the importance of surface properties in the heterostructures. Then microscale Hall bars were patterned at the interface and imaged by electrostatic force microscope. Their transport and magnetic properties were measured. This research will promote deeper understanding about the interfacial metal-insulator transition mechanism and open new device opportunities. This work is supported by the Department of Energy Grant No. DE-SC-0010399 and National Science Foundation Grant No. NSF-1454950.

  5. Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks.

    PubMed

    Dunne, Lawrence J; Manos, George

    2016-03-14

    Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks. PMID:26514851

  6. Recovery of Cu and valuable metals from E-waste using thermal plasma treatment

    NASA Astrophysics Data System (ADS)

    Mitrasinovic, Aleksandar; Pershin, Larry; Wen, John Z.; Mostaghimi, Javad

    2011-08-01

    A thermal plasma treatment was employed for economical recovery of valuable metals from e-waste. Cu-clad plates that simulated circuit boards were fed at the bottom of the reactor and treated with a plasma jet at temperatures between 385 and 840°C. Organic components of the Cu-clad plates were decomposed and contributed to the increased temperature of the offgas. Due to the low temperatures at the base of the reactor, the analyzed samples did not show losses characteristic for the plasma processes such as evaporation or metal oxidation. After plasma treatment, Cu foils were separated from the fiber glass and other solid residues allowing a complete recovery. Solid residues of the plates at the bottom of the reactor were crunched into small particles, allowing easy recycling or use as construction material.

  7. Novel electrowinning technologies: The treatment and recovery of metals from liquid effluents

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2008-10-01

    Over the past several years, considerable efforts have been made to evaluate two novel solution treatment and electrowinning technologies. These two technologies, due to their unique features and superior operating characteristics, could very well represent the next generation of plant practice for the treatment and recovery of metals from liquid effluents. This article reports on the results of using the two technologies to treat printed circuit board spent micro-etch solutions and compares these results with those of competing current technologies for treating similar solutions. The new technologies had about 1.5 10 times higher current efficiencies than current practice and reduced the concentration of metals such as 15 g/L to less than 1 ppm compared to levels as high as 300 ppm again for current practice.

  8. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts.

    PubMed

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and (57)Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  9. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    NASA Astrophysics Data System (ADS)

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-10-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity.

  10. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  11. Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments.

    PubMed

    Tavakoli, Omid; Yoshida, Hiroyuki

    2005-04-01

    The Japanese common squid wastes contained high concentration of metal ions such as 31.7 ppm Cd(II), 264.0 ppm Cu(II), and 140.0 ppm Zn(II). The use of sub- and supercritical water treatment has been investigated as a new method of recovering heavy metals from squid wastes. The reactions were carried out in the temperature range of 443-653 K, a pressure range of 0.792-30 MPa, and reaction times of 1-40 min. The wastes were decomposed into soluble proteins, organic acids, amino acids, and so on in the aqueous phase, and the fat and oil were extracted by sub- and supercritical water. The maximum yields on concentration of Cd(II), Cu(II), and Zn(II) in the solid, fat, and oil phases were found at 653, 573, and 513-573 K, respectively. The aqueous phase showed the lowest concentration of the metal ions (0.05-0.5 ppm). The distribution coefficient of metal ions in the fat, solid, and oil phases to aqueous phase were examined and found highest in the fat phase (max. 48 000). The solid phase (max. 39,000) and oil phase (max. 245) showed the second and third highest. Moreover, the fat and oil phases produced during this method act as chelating agents to catch metal ions with an order of recovery of Cu2+ > Zn2+ > Cd2+ and Zn2+ > Cu2+ > Cd2+, respectively. PMID:15871276

  12. Continuous Emission Monitor for Toxic Metals in the Off-Gases of Thermal Treatment Facilities

    SciTech Connect

    Gary Loge

    1998-12-01

    Self-calibration procedures for continuous monitoring of toxic metals in the off-gases of thermal treatment facilities using laser-induced breakdown spectroscopy (LIBS) were tested. The tests were performed using a heated aerosol/gas flow system that generated simulated off-gas conditions with calibrated amounts of metal in an optical cell. Calibration curves of LIBS signal for metal concentration in the cell were obtained for various gas and optical conditions. Gas conditions that were varied include water in either vapor and condensed aerosol droplet form, the presence of easily ionizable elements (i. e., potassium), speciation of the metal analyte, and the gas temperature. In addition, laser pulse energy, focal length, and detector alignment were independently varied. Two different sets of calibration curves were obtained, one set with Mn(II) and N(II) emission obtained simultaneously and a second set with Cd(I) and Cd(II) emission obtained simultaneously with N(I) emission obtained in a sequential manner. For both sets of data, calibration curves were obtained using 1) single line intensities, 2) the ratio of metal single line intensity to nitrogen single line intensity, and 3) the ratio of total metal emission to total nitrogen emission obtained using the temperature and electron density. Results show that correction using the ratio of metal single line intensity to nitrogen single line intensity does help in maintaining a constant slope of calibration curves for various conditions. However, the total emission self-calibration procedure shows better performance in most cases.

  13. The Application of Forced Resonance in Conjunction with Standard Cryogenic Treatment of Metals

    NASA Astrophysics Data System (ADS)

    Evans, Austin; Leadlove, Kyle; Seyfert, James; Watson, Casey; Paulin, Peter

    2016-03-01

    We explore modifications to the basic cryogenic procedures utilized by 300 Below Inc. to strengthen metal components. We consider the effects of adding forced resonance in our efforts to further optimize the cryogenic treatment - i.e., to augment the already improved tensile strength, shear strength, thermal and electrical conductivity, etc. resulting from 300 Below Inc.'s traditional cryogenic process. We report on the wear-test performance of resonance treated samples relative to standard cryogenically treated samples and control samples.

  14. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  15. Brain activation to cocaine cues and motivation/treatment status.

    PubMed

    Prisciandaro, James J; McRae-Clark, Aimee L; Myrick, Hugh; Henderson, Scott; Brady, Kathleen T

    2014-03-01

    Motivation to change is believed to be a key factor in therapeutic success in substance use disorders; however, the neurobiological mechanisms through which motivation to change impacts decreased substance use remain unclear. Existing research is conflicting, with some investigations supporting decreased and others reporting increased frontal activation to drug cues in individuals seeking treatment for substance use disorders. The present study investigated the relationship between motivation to change cocaine use and cue-elicited brain activity in cocaine-dependent individuals using two conceptualizations of 'motivation to change': (1) current treatment status (i.e. currently receiving versus not receiving outpatient treatment for cocaine dependence) and (2) self-reported motivation to change substance use, using the Stages of Change Readiness and Treatment Eagerness Scale. Thirty-eight cocaine-dependent individuals (14 currently in treatment) completed a diagnostic assessment and an fMRI cocaine cue-reactivity task. Whole-brain analyses demonstrated that both treatment-seeking and motivated participants had lower activation to cocaine cues in a wide variety of brain regions in the frontal, occipital, temporal and cingulate cortices relative to non-treatment-seeking and less motivated participants. Future research is needed to explain the mechanism by which treatment and/or motivation impacts neural cue reactivity, as such work could potentially aid in the development of more effective therapeutic techniques for substance-dependent patients. PMID:22458561

  16. Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals.

    PubMed

    de Orte, Manoela Romanó; Sarmiento, Aguasanta M; DelValls, T Ángel; Riba, Inmaculada

    2014-09-15

    One of the main risks associated with carbon capture and storage (CCS) activities is the leakage of the stored CO2, which can result in several effects on the ecosystem. Laboratory-scale experiments were performed to provide data on the possible effects of CO2 leakage from CCS on the mobility of metals previously trapped in sediments. Metal-contaminated sediments were collected and submitted to acidification by means of CO2 injection using different pH treatments. The test lasted 10 days, and samples were collected at the beginning and at the end of the experiment for metal analysis. The results revealed increases in the mobility of metals such as Co, Cu, Fe, Pb and Zn due to pH decreases. Geochemical modeling demonstrated that acidification influenced the speciation of the metals, increasing the concentrations of their free forms. These data suggest the possible sediment contamination consequences of accidental CO2 leakage during CCS activities. PMID:25125286

  17. Extraction of metals from spent hydrotreating catalysts: physico-mechanical pre-treatments and leaching stage.

    PubMed

    Ferella, Francesco; Ognyanova, Albena; De Michelis, Ida; Taglieri, Giuliana; Vegliò, Francesco

    2011-08-15

    The present paper is focused on physico-mechanical pre-treatments of spent hydrotreating catalysts aimed at concentration of at least one of the valuable metals contained in such secondary raw material. In particular, dry Ni-Mo and Co-Mo as well as wet Ni-Mo catalysts were used. Flotation, grain size separation and attrition processes were tested. After that, a rods vibrating mill and a ball mill were used to ground the catalysts in order to understand the best mechanical pre-treatment before leaching extraction. The results showed that flotation is not able to concentrate any metals due to the presence of coke or other depressant compounds. The particle size separation produces two fractions enriched in Mo and Co when dry Co-Mo catalyst is used, whereas attrition is not suitable as metals are uniformely distributed in rings' volume. Roasting at 550°C and vibrating grinding are the most suitable pre-treatments able to produce fractions easily leached by NaOH and H(2)SO(4) after grain size separation. PMID:21621914

  18. Sewage sludge ash to phosphorus fertiliser: Variables influencing heavy metal removal during thermochemical treatment

    SciTech Connect

    Mattenberger, H.; Fraissler, G.; Brunner, T. Herk, P.; Hermann, L.

    2008-12-15

    The aim of this study was to improve the removal of heavy metals from sewage sludge ash by a thermochemical process. The resulting detoxified ash was intended for use as a raw material rich in phosphorus (P) for inorganic fertiliser production. The thermochemical treatment was performed in a rotary kiln where the evaporation of relevant heavy metals was enhanced by additives. The four variables investigated for process optimisation were treatment temperature, type of additive (KCl, MgCl{sub 2}) and its amount, as well as type of reactor (directly or indirectly heated rotary kiln). The removal rates of Cd, Cr, Cu, Ni, Pb, Zn and of Ca, P and Cl were investigated. The best overall removal efficiency for Cd, Cu, Pb and Zn could be found for the indirectly heated system. The type of additive was critical, since MgCl{sub 2} favours Zn- over Cu-removal, while KCl acts conversely. The use of MgCl{sub 2} caused less particle abrasion from the pellets in the kiln than KCl. In the case of the additive KCl, liquid KCl - temporarily formed in the pellets - acted as a barrier to heavy metal evaporation as long as treatment temperatures were not sufficiently high to enhance its reaction or evaporation.

  19. Sin Nombre hantavirus nucleocapsid protein exhibits a metal-dependent DNA-specific endonucleolytic activity.

    PubMed

    Möncke-Buchner, Elisabeth; Szczepek, Michal; Bokelmann, Marcel; Heinemann, Patrick; Raftery, Martin J; Krüger, Detlev H; Reuter, Monika

    2016-09-01

    We demonstrate that the nucleocapsid protein of Sin Nombre hantavirus (SNV-N) has a DNA-specific endonuclease activity. Upon incubation of SNV-N with DNA in the presence of magnesium or manganese, we observed DNA digestion in sequence-unspecific manner. In contrast, RNA was not affected under the same conditions. Moreover, pre-treatment of SNV-N with RNase before DNA cleavage increased the endonucleolytic activity. Structure-based protein fold prediction using known structures from the PDB database revealed that Asp residues in positions 88 and 103 of SNV-N show sequence similarity with the active site of the restriction endonuclease HindIII. Crystal structure of HindIII predicts that residues Asp93 and Asp108 are essential for coordination of the metal ions required for HindIII DNA cleavage. Therefore, we hypothesized that homologous residues in SNV-N, Asp88 and Asp103, may have a similar function. Replacing Asp88 and Asp103 by alanine led to an SNV-N protein almost completely abrogated for endonuclease activity. PMID:27261891

  20. Infliximab treatment reduces complement activation in patients with rheumatoid arthritis

    PubMed Central

    Familian, A; Voskuyl, A; van Mierlo, G J; Heijst, H; Twisk, J; Dijkmans, B; Hack, C

    2005-01-01

    Background: Tumour necrosis factor (TNF) blocking agents decrease C reactive protein (CRP) levels in rheumatoid arthritis (RA). It has been shown that CRP may contribute to complement activation in RA. Objective: To assess the effect of intravenous infliximab treatment on complement activation, especially that mediated by CRP, in RA. Methods: 35 patients with active RA (28 joint count Disease Activity Score (DAS28) >4.4) were treated with intravenous injections of infliximab (3 mg/kg, at weeks 0, 2, 6, 14, and 22). Clinical response and plasma levels of complement activation products, of CRP and of CRP-complement complexes, which are specific markers for CRP mediated complement activation, were assessed at the indicated time points up to 22 weeks. The relationship between CRP and CRP-complement complexes was analysed by paired t test between two time points and by generalised estimated equation, to test differences of variables over time. Results: At 2 weeks after the first dose, infliximab significantly reduced overall C3 and C4 activation and plasma levels of CRP and CRP-complement complexes were also significantly reduced at this time point. The effects of infliximab on CRP and complement continued throughout the observation period and were more pronounced in patients with a good response to infliximab treatment. Conclusion: Treatment with infliximab decreases plasma levels of CRP and CRP dependent complement activation products and concomitantly may reduce complement activation in RA. Complement activation may be among the effector mechanisms of TNF in RA. PMID:15958758

  1. Metal-based formulations with high microbicidal activity.

    PubMed

    Sagripanti, J L

    1992-09-01

    Substances were evaluated for their relative potencies in inactivating Junin virus, Escherichia coli, and spores of Bacillus subtilis. Under the conditions of our test, glutaraldehyde was the most efficient agent among all substances currently recommended for disinfecting and sterilizing medical devices. Either copper or iron ions by themselves were able to inactivate virus with an efficiency similar to that of substances currently used for disinfection and sterilization. The microbicidal effect of metals, however, was enhanced further by the addition of peroxide. The mixtures of copper and peroxide described here were more efficient than glutaraldehyde in inactivating viruses and bacteria. The addition of a metal chelator to metal-peroxide mixtures further increased the microbicidal potency of the reagent. The formulations described in this study should be harmless to people but able to quickly and efficiently inactivate microorganisms, particularly viruses. PMID:1332611

  2. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  3. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  4. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    PubMed

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    activity but had no significant impact on acid phosphatase activity. In conclusion, the rice straw biochar had greater potential as an amendment for reducing the bioavailability of heavy metals in soil than that of the bamboo biochar. The impact of biochar treatment on heavy metal extractability and enzyme activity varied with the biochar type, application rate, and particle size. PMID:25772863

  5. Assessing microbial activities in metal contaminated agricultural volcanic soils - An integrative approach.

    PubMed

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols. PMID:27057992

  6. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash.

    PubMed

    Nowak, Benedikt; Perutka, Libor; Aschenbrenner, Philipp; Kraus, Petra; Rechberger, Helmut; Winter, Franz

    2011-06-01

    Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100°C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl(2). Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900°C, 10 and 30 min and 3.4 and 4.6 ms(-1). Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl(2) from CaCl(2); diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl(2) out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit. PMID:21333519

  7. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash

    SciTech Connect

    Nowak, Benedikt

    2011-06-15

    Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.

  8. Compartmentalization of metals within the diverse colloidal matrices comprising activated sludge microbial flocs.

    PubMed

    Leppard, Gary G; Droppo, Ian G; West, M Marcia; Liss, Steven N

    2003-01-01

    Activated sludge floc from a wastewater treatment system was characterized, with regard to principal structural, chemical, and microbiological components and properties, in relation to contaminant-colloid associations and settling. Multiscale analytical microscopies, in conjunction with multimethod sample preparations, were used correlatively to characterize diverse colloidal matrices within microbial floc. Transmission electron microscopy, in conjunction with energy dispersive spectroscopy (EDS), revealed specific associations of contaminant heavy metals with individual bacterial cells and with extracellular polymeric substances (EPS). Floc structure was mapped from the level of gross morphology down to the nano-scale, and flocs were described with respect to settling properties, size, shape, density, porosity, bound water content, and EPS chemical composition; gross surface properties were also measured for correlation with principal floc features. Compartmentalization results based on 171 EDS analyses and representative high-resolution images showed that nano-scale agglomerations of (i) silver (100%) and (ii) zinc (91%) were confined almost entirely to EPS matrices while (iii) Pb (100%) was confined to intracellular granules and (iv) aluminum was partitioned between EPS matrices (41%) and intracellular matrices (59%). The results suggest that engineered changes in microbial physiology and/or in macromolecular EPS composition may influence metal removal efficiencies. PMID:14674532

  9. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications.

    PubMed

    Zhang, Wen; Banerjee, Debasis; Liu, Jian; Schaef, Herbert T; Crum, Jarrod V; Fernandez, Carlos A; Kukkadapu, Ravi K; Nie, Zimin; Nune, Satish K; Motkuri, Radha K; Chapman, Karena W; Engelhard, Mark H; Hayes, James C; Silvers, Kurt L; Krishna, Rajamani; McGrail, B Peter; Liu, Jun; Thallapally, Praveen K

    2016-05-01

    A redox-active metal-organic composite material shows improved and selective O2 adsorption over N2 with respect to individual components (MIL-101 and ferrocene). The O2 sensitivity of the composite material arises due to the formation of maghemite nanoparticles with the pore of the metal-organic framework material. PMID:26953336

  10. 77 FR 10544 - Agency Information Collection Activities: Comment Request for the Nonferrous Metals Surveys (30...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... information. III. Request for Comments On August 23, 2011, we published a Federal Register Notice (76 FR 52686... Geological Survey Agency Information Collection Activities: Comment Request for the Nonferrous Metals Surveys... requirements for the Nonferrous Metals Surveys. This collection consists of 30 forms. The revision...

  11. Morphine treatment alters nucleotidase activities in rat blood serum

    PubMed Central

    Rozisky, Joanna Ripoll; Nonose, Yasmine; Laste, Gabriela; dos Santos, Vinicius Souza; de Macedo, Isabel Cristina; Battastini, Ana Maria Oliveira; Caumo, Wolnei; Torres, Iraci LS

    2012-01-01

    Morphine has been widely used in neonatal pain management. However, this treatment may produce adaptive changes in several physiologic systems. Our laboratory has demonstrated that morphine treatment in neonate rats alters nucleoside triphosphate diphosphohydrolase (NTPDase) activity and gene expression in central nervous system structures. Considering the relationship between the opioid and purinergic systems, our aim was to verify whether treatment with morphine from postnatal days 8 (P8) through 14 (P14) at a dose of 5 µg per day alters NTPDase and 5′-nucleotidase activities in rat serum over the short, medium, and long terms. After the in vivo assay, the morphine group showed increased hydrolysis of all nucleotides at P30, and a decrease in adenosine 5′-diphosphate hydrolysis at P60. Moreover, we found that nucleotidase activities change with age; adenosine 5′-triphosphate hydrolysis activity was lower at P16, and adenosine 5′-monophosphate hydrolysis activity was higher at P60. These changes are very important because these enzymes are the main regulators of blood nucleotide levels and, consequently, nucleotide signaling. Our findings showed that in vivo morphine treatment alters nucleotide hydrolysis in rat blood serum, suggesting that purine homeostasis can be influenced by opioid treatment during the neonatal period.

  12. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  13. Treatment of an automobile effluent from heavy metals contamination by an eco-friendly montmorillonite

    PubMed Central

    Akpomie, Kovo G.; Dawodu, Folasegun A.

    2014-01-01

    Unmodified montmorillonite clay was utilized as a low cost adsorbent for the removal of heavy metals from a contaminated automobile effluent. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used to characterize the adsorbent. Batch sorption experiments were performed at an optimum effluent pH of 6.5, adsorbent dose of 0.1 g, particle size of 100 μm and equilibrium contact time of 180 min. Thermodynamic analysis was also conducted. Equilibrium data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. A heterogeneous surface of the adsorbent was indicated by the Freundlich model. The Langmuir maximum adsorption capacity of the montmorillonite for metals was found in the following order: Zn (5.7 mg/g) > Cu (1.58 mg/g) > Mn (0.59 mg/g) > Cd (0.33 mg/g) > Pb (0.10 mg/g) ≡ Ni (0.10 mg/g). This was directly related to the concentration of the metal ions in solution. The pseudo-first order, pseudo-second order, intraparticle diffusion and liquid film diffusion models were applied for kinetic analysis. The mechanism of sorption was found to be dominated by the film diffusion mechanism. The results of this study revealed the potential of the montmorillonite for treatment of heavy metal contaminated effluents. PMID:26644939

  14. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs.

    PubMed

    Colacicco, Antonio; De Gioannis, Giorgia; Muntoni, Aldo; Pettinao, Emmanuela; Polettini, Alessandra; Pomi, Raffaella

    2010-09-01

    Dredged sediments contaminated by heavy metals and PAHs were subjected to both unenhanced and enhanced electrokinetic remediation under different operating conditions, obtained by varying the applied voltage and the type of conditioning agent used at the electrode compartments in individual experiments. While metals were not appreciably mobilized as a result of the unenhanced process, metal removal was found to be significantly improved when both the anodic and cathodic reservoirs were conditioned with the chelating agent EDTA, with removal yields ranging from 28% to 84% depending on the contaminant concerned. As for the effect on organic contaminants, under the conditions tested the electrokinetic treatment displayed a poor removal capacity towards PAHs, even when a surfactant (Tween 80) was used to promote contaminant mobilization, indicating the need for further investigation on this issue. Further research on organics removal from this type of materials through electrokinetic remediation is thus required. Furthermore, a number of technical and environmental issues will also require a careful evaluation with a view to full-scale implementation of electrokinetic sediment remediation. These include controlling side effects during the treatment (such as anodic precipitation, oxidation of the conditioning agent, and evolution of toxic gases), as well as evaluating the potential ecotoxicological effects of the chemical agents used. PMID:20691460

  15. Gas-phase activation of methane by ligated transition-metal cations

    PubMed Central

    Schröder, Detlef; Schwarz, Helmut

    2008-01-01

    Motivated by the search for ways of a more efficient usage of the large, unexploited resources of methane, recent progress in the gas-phase activation of methane by ligated transition-metal ions is discussed. Mass spectrometric experiments demonstrate that the ligands can crucially influence both reactivity and selectivity of transition-metal cations in bond-activation processes, and the most reactive species derive from combinations of transition metals with the electronegative elements fluorine, oxygen, and chlorine. Furthermore, the collected knowledge about intramolecular kinetic isotope effects associated with the activation of C–H(D) bonds of methane can be used to distinguish the nature of the bond activation as a mere hydrogen-abstraction, a metal-assisted mechanism or more complex reactions such as formation of insertion intermediates or σ-bond metathesis. PMID:18955709

  16. Rapidly assessing the activation conditions and porosity of metal-organic frameworks using thermogravimetric analysis

    SciTech Connect

    McDonald, TM; Bloch, ED; Long, JR

    2015-01-01

    A methodology utilizing a thermogravimetric analyzer to monitor propane uptake following incremental increases of the temperature is demonstrated as a means of rapidly identifying porous materials and determining the optimum activation conditions of metal-organic frameworks.

  17. Temperature dependence of dc electrical conductivity of activated carbon-metal oxide nanocomposites. Some insight into conduction mechanisms

    NASA Astrophysics Data System (ADS)

    Barroso-Bogeat, Adrián; Alexandre-Franco, María; Fernández-González, Carmen; Sánchez-González, José; Gómez-Serrano, Vicente

    2015-12-01

    From a commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites are prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in inert atmosphere. The temperature-dependent dc electrical conductivity of AC and the as-prepared nanocomposites is measured from room temperature up to ca. 200 °C in air atmosphere by the four-probe method. The decrease in conductivity for the hybrid materials as compared to AC is the result of a complex interplay between several factors, including not only the intrinsic conductivity, crystallite size, content and chemical nature of the supported nanoparticles, which ultimately depend on the precursor and heat treatment temperature, but also the adsorption of oxygen and water from the surrounding atmosphere. The conductivity data are discussed in terms of a thermally activated process. In this regard, both AC and the prepared nanocomposites behave as semiconductors, and the temperature-dependent conductivity data have been interpreted on the basis of the classical model proposed by Mott and Davis. Because of its high content of heteroatoms, AC may be considered as a heavily doped semiconductor, so that conduction of thermally excited carriers via acceptor or donor levels is expected to be the dominant mechanism. The activation energies for the hybrid materials suggest that the supported metal oxide nanoparticles strongly modify the electronic band structure of AC by introducing new trap levels in different positions along its band gap. Furthermore, the thermally activated conduction process satisfies the Meyer-Neldel rule, which is likely connected with the shift of the Fermi level due to the introduction of the different metal oxide nanoparticles in the AC matrix.

  18. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    NASA Astrophysics Data System (ADS)

    Lichtenberger, D. L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (eta sup 5-C5H4)Rh(CO)2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface.

  19. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Queralt, Ignasi; Hidalgo, Manuela

    2013-08-01

    The control of metal catalyst residues (i.e., platinum group metals (PGMs)) in different stages of the manufacturing processes of the active pharmaceutical ingredients (APIs) and, especially, in the final product is crucial. For API specimens, there are strict guidelines to limit the levels of metal residues based on their individual levels of safety concern. For PGMs the concentration limit has been established at 10 mg/kg in the API. Therefore great effort is currently being devoted to the development of new and simple procedures to control metals in pharmaceuticals. In the present work, an analytical methodology based on benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been developed for the rapid and simple determination of some PGM catalyst impurities (Rh, Pd, Ir and Pt) in different types of API samples. An evaluation of different sample treatments (dissolution and digestion of the solid pharmaceutical samples) has been carried out and the developed methodologies have been validated according to the analytical parameters to be considered and acceptance criteria for PGM determination according to the United States Pharmacopeia (USP). Limits of quantification obtained for PGM metals were in the range of 2-4 mg/kg which are satisfactory according to current legislation. From the obtained results it is shown that the developed TXRF method can be implemented in the pharmaceutical industries to increase productivity of the laboratory; offering an interesting and complementary analytical tool to other atomic spectroscopic methods.

  20. Activated sludge as substrate for sulfate-reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Al-Ani, W.A.G.; Henry, J.G.; Prasad, D.

    1996-11-01

    Acid mine drainage (AMD), characterized by high concentrations of sulfates and heavy metals and low pH, presents a potential hazard to the environment.Several treatment processes (chemical precipitation, ion exchange, reverse osmosis, electrodialysis and electrolytic recovery) are available, but these are often too expensive. Biological treatment of AMD, mediated by sulfate-reducing bacteria (SRB), seems promising. The objective of this study was to use activated sludge as a carbon source for the SRB and determine the most effective COD/sulfate ratio and hydraulic retention time (HRT) for reducing sulfate. Such information would be useful for the application of the proposed two-stage system to AMD treatment. Since the aim of this study was to obtain sulfate reduction and to avoid methane production, it was decided to operate the digesters initially at low COD/SO{sub 4}{sup 2{minus}} ratios of 1.0, 1.5, and 2.0.

  1. Physicochemical properties and catalytic activity of metal tetraphenyl porphins in the oxidation of alkylaromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Kokova, D. A.

    2013-06-01

    We consider the effect of complexing metal in a tetraphenylporphin molecule on its catalytic activity in oxidizing alkylaromatic hydrocarbons by molecular oxygen. The catalytic activity of metal porphyrins (Co, Cu, Zn, Mn, and In TPP) is found to depend on their oxidation potentials and the distribution of electron density in the molecule. The electron-donating compound imidazole is shown to affect the oxidation rate.

  2. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  3. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  4. Active-Metal Template Synthesis of a Halogen-Bonding Rotaxane for Anion Recognition.

    PubMed

    Langton, Matthew J; Xiong, Yaoyao; Beer, Paul D

    2015-12-21

    The synthesis of an all-halogen-bonding rotaxane for anion recognition is achieved by using active-metal templation. A flexible bis-iodotriazole-containing macrocycle is exploited for the metal-directed rotaxane synthesis. Endotopic binding of a Cu(I) template facilitates an active-metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper-template removal, exotopic coordination of a more sterically demanding rhenium(I) complex induces an inversion in the conformation of the macrocycle component, directing the iodotriazole halogen-bond donors into the rotaxane's interlocked binding cavity to facilitate anion recognition. PMID:26500150

  5. Influence of the Conditions of Electrode Position and Heat Treatment on the Structure and Properties of Metallic Coatings

    NASA Astrophysics Data System (ADS)

    Kovenskiy, I. M.; Kulemina, A. A.

    2016-04-01

    Influence of electrodeposition conditions and heat treatment on the structure and properties of metallic coatings has been considered. It has been that at different values of overvoltage, metals crystallize with a cellular, subgrain or monoblock structure. The final formation of the structure occurs during annealing, in the process of which either polygonization or recrystallization develops in the coatings. Varying the conditions of electrodeposition and heat treatment allows obtaining coatings with functional characteristics for specific operating conditions.

  6. Activation of gene expression by metal-responsive signal transduction pathways.

    PubMed Central

    Adams, Timothy K; Saydam, Nurten; Steiner, Florian; Schaffner, Walter; Freedman, Jonathan H

    2002-01-01

    Metallothioneins are small, cysteine-rich, metal-binding proteins that play important roles in maintaining intracellular metal homeostasis and in transition metal detoxification. MTF-1 (metal transcription factor-1) plays a central role in regulating the metal-inducible, transcriptional activation of metallothionein. Here we report that the phosphorylation of MTF-1 plays a critical role in the activation of MTF-1/metal-responsive element-mediated transcription. Inhibitor studies indicate that signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase, and casein kinase II, are essential for zinc- and cadmium-inducible transcription. In addition, calcium signaling is also involved in regulating transcription. In contrast, cAMP-dependent protein kinase may not be directly involved in the metal response. Contrary to what has been reported for other transcription factors, the inhibition of transcriptional activation does not impair the binding of MTF-1 to DNA, suggesting that phosphorylation is not regulating DNA binding. Elevated phosphorylation of MTF-1 is observed under conditions of protein kinase C inhibition, suggesting that dephosphorylation of this transcription factor mediates its activation. PMID:12426137

  7. Effect of thermal treatments on the properties of nickel and cobalt activated-charcoal-supported catalysts

    SciTech Connect

    Gandia, L.M.; Montes, M. )

    1994-02-01

    The effect of thermal pretreatment in N[sub 2] up to 723 K and the activation treatments in H[sub 2] and an inert atmosphere on the properties of Ni and Co activated-charcoal-supported catalysts were studied. Catalysts were characterized by means of N[sub 2] adsorption at 77 K, H[sub 2] chemisorption at room temperature, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The catalysts' activity and selectivity for acetone hydrogenation to 2-propanol under unusual and severe conditions (473 K and high overall acetone conversion) were also measured. TGA and XRD evidence was found for the charcoal-support-promoted NiO and CoO reduction to the metallic states when the catalysts were subjected to an inert atmosphere above 723 K caused a loss of acetone hydrogenation activity (calculated on a metal load basis) for both the Ni and Co activated-charcoal-supported catalysts, with respect to that of the low-temperature (573 K) activation treatments. In a series of activated-charcoal-supported Ni catalysts, a large decrease in the H[sub 2] chemisorption uptake was also found for a sample pretreated in N[sub 2] at 723 K prior to H[sub 2] reduction. These results were not due to nickel or cobalt sintering, as shown by XRD line broadening measurements. The catalytic activity loss was accompanied by a decrease (in the case of Ni) and an increase (in the case of Co) in the 2-propanol selectivity. 44 refs., 13 figs., 3 tabs.

  8. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  9. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  10. Solution pH effects on arsenic removal by drinking water treatment residuals in presence of metals and ligands

    NASA Astrophysics Data System (ADS)

    Nagar, R.; Sarkar, D.; Datta, R.; Makris, K.

    2006-05-01

    are expected to decrease As mobility due to their tendency to complex with As oxyanions, thereby promoting precipitation when the ion activity product (IAP) is equal to or higher then the solubility equilibrium constant (Ksp) of the respective mineral precipitate. Keywords: Adsorption, arsenic, water treatment residuals, oxyanions, complexing metals, competing ions.

  11. Oxygen activation with transition metal complexes in aqueous solution

    SciTech Connect

    Bakac, Andreja

    2010-04-12

    Coordination to transition-metal complexes changes both the thermodynamics and kinetics of oxygen reduction. Some of the intermediates (superoxo, hydroperoxo, and oxo species) are close analogues of organic oxygen-centered radicals and peroxides (ROO{sm_bullet}, ROOH, and RO{sm_bullet}). Metal-based intermediates are typically less reactive, but more persistent, than organic radicals, which makes the two types of intermediates similarly effective in their reactions with various substrates. The self-exchange rate constant for hydrogen-atom transfer for the couples Cr{sub aq}OO{sup 2+}/Cr{sub aq}OOH{sup 2+} and L{sup 1}(H{sub 2}O)RhOO{sup 2+}/L{sup 1}(H{sub 2}O)RhOOH{sup 2+} was estimated to be 10{sup 1 {+-} 1} M{sup -1} s{sup -1}. The use of this value in the simplified Marcus equation for the Cr{sub aq}O{sup 2+}/Cr{sub aq}OOH{sup 2+} cross reaction provided an upper limit k{sub CrO,CrOH} {le} 10{sup (-2{+-}1)} M{sup -1} s{sup -1} for Cr{sub aq}O{sup 2+}/Cr{sub aq}OH{sup 2+} self-exchange. Even though superoxo complexes react very slowly in bimolecular self-reactions, extremely fast cross reactions with organic counterparts, i.e., acylperoxyl radicals, have been observed. Many of the intermediates generated by the interaction of O{sub 2} with reduced metal complexes can also be accessed by alternative routes, both thermal and photochemical.

  12. Formation of nanostructured Group IIA metal activated sensors: The transformation of Group IIA metal compound sites

    NASA Astrophysics Data System (ADS)

    Tune, Travis C.; Baker, Caitlin; Hardy, Neil; Lin, Arthur; Widing, Timothy J.; Gole, James L.

    2015-05-01

    Trends in the Group IIA metal oxides and hydroxides of magnesium, calcium, and barium are unique in the periodic table. In this study we find that they display novel trends as decorating nanostructures for extrinsic semiconductor interfaces. The Group IIA metal ions are strong Lewis acids. We form these M2+ ions in aqueous solution and bring these solutions in contact with a porous silicon interface to form interfaces for conductometric measurements. Observed responses are consistent with the formation of MgO whereas the heavier elements display behaviors which suggest the effect of their more basic nature. Mg(OH)2, when formed, represents a weak base whereas the heavier metal hydroxides of Ca, Sr, and Ba are strong bases. However, the hydroxides tend to give up hydrogen and act as Brönsted acids. For the latter elements, the reversible interaction response of nanostructures deposited to the porous silicon (PS) interface is modified, as the formation of more basic sites appears to compete with M2+ Lewis acidity and hydroxide Brönsted acidity. Mg2+ forms an interface whose response to the analytes NH3 and NO is consistent with MgO and well explained by the recently developing Inverse Hard/Soft Acid/Base model. The behavior of the Ca2+ and Ba2+ decorated interfaces as they interact with the hard base NH3 follows a reversal of the model, indicating a decrease in acidic character as the observed conductometric response suggests the interaction with hydroxyl groups. A change from oxide-like to hydroxide-like constituents is supported by XPS studies. The changes in conductometric response is easily monitored in contrast to changes associated with the Group IIA oxides and hydroxides observed in XPS, EDAX, IR, and NMR measurements.

  13. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The effects of nine metal cations Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water:TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion Mg(2+), Ca(2+), Y(3+) or the water:TEOS mole ratio had no appreaciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  14. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  15. The Effects of DC Electromagnetic Stimuli in Conjunction with Standard Cryogenic Treatment of Metals

    NASA Astrophysics Data System (ADS)

    Leadlove, Kyle Leadlove; Evans, Austin; Seyfert, James; Watson, Casey R.; Paulin, Peter

    2016-03-01

    We explore modifications to the basic cryogenic procedures utilized by 300 Below Inc. to strengthen metal components. We consider the effects of adding DC electromagnetic stimuli in our efforts to further optimize the cryogenic treatment - i.e., to augment the already improved tensile strength, shear strength, thermal and electrical conductivity, etc. resulting from 300 Below Inc.'s traditional cryogenic process. We report on the wear-test performance of DC magneto-cryogenic treated samples relative to standard cryogenically treated samples and control samples.

  16. The Effects of AC Electromagnetic Stimuli in Conjunction with Standard Cryogenic Treatment of Metals

    NASA Astrophysics Data System (ADS)

    Seyfert, James; Evans, Austin; Leadlove, Kyle; Watson, Casey; Paulin, Peter; Peter Paulin Collaboration

    2016-03-01

    We explore modifications to the basic cryogenic procedures utilized by 300 Below Inc. to strengthen metal components. We consider the effects of adding AC electromagnetic stimuli in our efforts to further optimize the cryogenic treatment - i.e., to augment the already improved tensile strength, shear strength, thermal and electrical conductivity, etc. resulting from 300 Below Inc.'s traditional cryogenic process. We report on the wear-test performance of AC magneto-cryogenic treated samples relative to standard cryogenically treated samples and control samples. Replace this text with your abstract body.

  17. Heat treatment optimization of alumina/aluminum metal matrix composites using the Taguchi approach

    SciTech Connect

    Saigal, A.; Leisk, G. )

    1992-03-01

    The paper describes the use of the Taguchi approach for optimizing the heat treatment process of alumina-reinforced Al-6061 metal-matrix composites (MMCs). It is shown that the use of the Taguchi method makes it possible to test a great number of factors simultaneously and to provide a statistical data base that can be used for sensitivity and optimization studies. The results of plotting S/N values versus vol pct, solutionizing time, aging time, and aging temperature showed that the solutionizing time and the aging temperature significantly affect both the yield and the ultimate tensile strength of alumina/Al MMCs. 11 refs.

  18. CONSIDERATIONS IN GRANULAR ACTIVATED CARBON TREATMENT OF COMBINED INDUSTRIAL WASTEWATERS

    EPA Science Inventory

    The objective of this project was to examine the use of activated carbon in reducing the content of biologically resistant organic compounds in a combined industrial wastewater treatment system. The invvestigation was conducted in two stages: (1) characterize organic priority pol...

  19. Activated carbon testing for the 200 area effluent treatment facility

    SciTech Connect

    Wagner, R.N.

    1997-01-17

    This report documents pilot and laboratory scale testing of activated carbon for use in the 200 Area Effluent Treatment Facility peroxide decomposer columns. Recommendations are made concerning column operating conditions and hardware design, the optimum type of carbon for use in the plant, and possible further studies.

  20. Optical activity of catalytic elements of hetero-metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  1. Mutagenic activity of heavy metals in soils of wayside slopes

    NASA Astrophysics Data System (ADS)

    Fedorova, A. I.; Kalaev, V. N.; Prosvirina, Yu. G.; Goryainova, S. A.

    2007-08-01

    The genotoxic properties of soils polluted with heavy metals were studied on two wayside slopes covered with trees in the city of Voronezh. The nucleolar test in cells of the apical meristem of Zebrina pendula Schnizl. roots was used. The genotoxic effect of the soils was revealed according to the increased number of 2-and 3-nucleolar cells (from 41 to 54% and from 19 to 23% in the upper part of the first and second slopes, respectively; in the control, their number was 18 and 7%). The mean number of nucleoli per cell increased from 1.7 to 1.95 in the experiment and 1.31 in the control. The increased vehicle emissions, especially when cars go up the slopes (mainly in the upper and middle parts), correlated with the elevated heavy metal (Pb, Cu, Cd, and Zn) contents in the soil. The mutagenic substances may be removed to the Voronezh Reservoir, where they may be accumulated in some living organisms.

  2. Metal Ion Removal from Wastewaters by Sorption on Activated Carbon, Cement Kiln Dust, and Sawdust.

    PubMed

    Shaheen, Sabry M; Eissa, Fawzy I; Ghanem, Khaled M; El-Din, Hala M Gamal; Al Anany, Fathia S

    2015-06-01

    This study assessed the efficiency of activated carbon, cement kiln dust (CKD), and sawdust for the removal of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) from aqueous solutions under mono-metal and competitive sorption systems and the removal of Cd, Cu, and Zn from different industrial wastewaters. Batch equilibrium experiments were conducted in a mono-metal and competitive sorption system. The efficiency of the sorbents in the removal of Cd, Cu, and Zn from industrial wastewaters was also investigated. Cement kiln dust expressed the highest affinity for the metals followed by activated carbon and sawdust. Competition among the metals changed their distribution coefficient (Kd) with the sorbents. Sorption of Pb and Cu was higher than Cd and Zn. The average metal removal from the wastewaters varied from 74, 61, and 60% for Cd, Cu, and Zn, respectively, to nearly 100%. The efficiencies of CKD and activated carbon in removing metals were higher than sawdust, suggesting their potential as low-cost sorbents for the removal of toxic metals from wastewaters. PMID:26459819

  3. Orally Bioavailable Metal Chelators and Radical Scavengers: Multifunctional Antioxidants for the Coadjutant Treatment of Neurodegenerative Diseases.

    PubMed

    Kawada, Hiroyoshi; Kador, Peter F

    2015-11-25

    Neurodegenerative diseases are associated with oxidative stress that is induced by the presence of reactive oxygen species and the abnormal cellular accumulation of transition metals. Here, a new series of orally bioavailable multifunctional antioxidants (MFAO-2s) possessing a 2-diacetylamino-5-hydroxypyrimidine moiety is described. These MFAO-2s demonstrate both free radical and metal attenuating properties that are similar to the original published MFAO-1s that are based on 1-N,N'-dimethylsulfamoyl-1-4-(2-pyrimidyl)piperazine. Oral bioavailability studies in C57BL/6 mice demonstrate that the MFAO-2s accumulate in the brain at significantly higher levels than the MFAO-1s while achieving similar neural retina levels. The MFAO-2s protect human neuroblastoma and retinal pigmented epithelial cells against hydroxyl radicals in a dose-dependent manner by maintaining cell viability and intracellular glutathione levels. The MFAO-2s outperform clioquinol, a metal attenuator that has been investigated for the treatment of Alzheimer's disease. PMID:26068053

  4. Determination of polycyclic aromatic compounds and heavy metals in sludges from biological sewage treatment plants.

    PubMed

    Bodzek, D; Janoszka, B; Dobosz, C; Warzecha, L; Bodzek, M

    1997-07-11

    The procedure of the analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in the sludges from biological sewage treatment plants has been worked out. The analysis included isolation of organic matter from sludges, separation of the extract into fractions of similar chemical character, qualitative-quantitative analysis of individual PAHs and their nitrogenated and oxygenated derivatives. Liquid-solid chromatography, solid-phase extraction and semipreparative band thin-layer chromatography techniques were used for the separation. Capillary gas chromatography-mass spectrometry analysis of the separated fractions enabled identification of more than 21 PAHs, including hydrocarbons which contained 2-6 aromatic rings as well as their alkyl derivatives, 10 oxygen derivatives, 9 nitroarenes, aminoarenes and over 20 azaarenes and carbazoles. Using the capillary gas chromatography-flame ionization detection technique the content of 17 dominant PAHs was determined. The content of heavy metals was determined in investigated sludges with the use of atomic absorption spectrometry. The concentrations of the respective metals could be ranked in the order Cd < Co < Ni < Pb < Cr < or = Cu < Mn < Zn < Fe. The sludges were analysed for the first time in Poland in view of their possible utilisation in agriculture and in cultivating dumps of coal mine wastes, taking into consideration the contents of toxic organic pollutants and heavy metals. PMID:9253190

  5. Accumulation of metals in the soil of an overland flow wastewater treatment system.

    PubMed

    Stefanutti, Ronaldo; Packer, Ana Paula; Filho, Bruno Coraucci; Mattiazzo, Maria Emilia; de Figueiredo, Roberto F

    2002-12-01

    Accumulation of Co, Cu, Cr, Mo, Ni, Pb and Zn was evaluated in a soil profile of an overland flow system used for the post-treatment of urban wastewater. A pilot version of the overland flow system received urban wastewater from five up-flow anaerobic filters filled with bamboo (Bambusa tuldoides) rings. The anaerobic effluent was applied as feed over 18 months at rates varying from 7 to 28 L min(-1), to a vegetated slope length covered with Tifton 85 (Cynodon) sp. grass. Soil and plant samples were collected in triplicate from the top to the bottom of the slope. In addition, the soils were sampled at the depths 0-20 and 20-40 cm. The metal concentrations found in the overall system were compared to those obtained in a control area located at the beginning of the slope onto which nothing was applied. A month of monitoring the urban wastewater of Limeira City (São Paulo State, Brazil) showed a drastic change in metals concentration due to the irregular discharge of industrial waste. This irregular discharge introduces Cr, Cu, Ni, Pb and Zn into the system used to treat domestic wastewater. The mass balance indicates the accumulation of metals in the soil and the translocation to the plants; also that they could be evapotranspirated, percolated and discharged. PMID:12509052

  6. Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride.

    PubMed

    Vogel, Christian; Exner, Robert M; Adam, Christian

    2013-01-01

    Sewage sludge ash (SSA) is a prospective phosphorus source for the future production of recycling P-fertilizers. Due to its high heavy metals contents and the relatively low P plant-availability, SSA must be treated before agricultural utilisation. In this paper SSA was thermochemically treated with PVC in a bench-scale rotary furnace in order to remove heavy metals via the chloride pathway. PVC has a high Cl-content of 52-53% and a high heating value that can be beneficially used for the thermochemical process. Large amounts of waste PVC are already recovered in recycling processes, but there are still some fractions that would be available for the proposed thermochemical process, for example, the low quality near-infrared(NIR)-fraction from waste separation facilities. Heavy metals were effectively removed at temperatures in the range of 800-950 °C via the gas phase by utilisation of PVC as Cl-donor. The resulting P plant-availability was comparable to SSA thermochemically treated with MgCl(2) as Cl-donor if MgO was used as an additive (Mg-donor). A further increase of the plant availability of phosphorus was achieved by acid post-treatment of the thermochemically treated SSA. PMID:23189972

  7. FE-Analysis of the Sheet Metal Forming Processes using Continuous Contact Treatment

    SciTech Connect

    Kim, Tae-Jeong; Yang, Dong-Yol

    2005-08-05

    In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. For the verification of the proposed method, the compression forming of a tube is simulated and the contact pressures at each integration points are evaluated during deformation of the sheet. The analysis of hemi-spherical punch forming without blank holder is also presented in order to investigate the effects of the proposed algorithm.

  8. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    PubMed

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below. PMID:24960008

  9. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  10. Ten year revision of the brief behavioral activation treatment for depression: revised treatment manual.

    PubMed

    Lejuez, C W; Hopko, Derek R; Acierno, Ron; Daughters, Stacey B; Pagoto, Sherry L

    2011-03-01

    Following from the seminal work of Ferster, Lewinsohn, and Jacobson, as well as theory and research on the Matching Law, Lejuez, Hopko, LePage, Hopko, and McNeil developed a reinforcement-based depression treatment that was brief, uncomplicated, and tied closely to behavioral theory. They called this treatment the brief behavioral activation treatment for depression (BATD), and the original manual was published in this journal. The current manuscript is a revised manual (BATD-R), reflecting key modifications that simplify and clarify key treatment elements, procedures, and treatment forms. Specific modifications include (a) greater emphasis on treatment rationale, including therapeutic alliance; (b) greater clarity regarding life areas, values, and activities; (c) simplified (and fewer) treatment forms; (d) enhanced procedural details, including troubleshooting and concept reviews; and (e) availability of a modified Daily Monitoring Form to accommodate low literacy patients. Following the presentation of the manual, the authors conclude with a discussion of the key barriers in greater depth, including strategies for addressing these barriers. PMID:21324944

  11. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  12. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    PubMed

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-01-01

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity. PMID:27089310

  13. Metal Cofactors in the Structure and Activity of the Fowlpox Resolvase

    PubMed Central

    Culyba, Matthew J.; Hwang, Young; Hu, Jimmy Yan; Minkah, Nana; Ocwieja, Karen E.; Bushman, Frederic D.

    2010-01-01

    Poxvirus DNA replication generates linear concatemers containing many copies of the viral genome with inverted repeat sequences at the junctions between monomers. The inverted repeats refold to generate Holliday junctions, which are cleaved by the virus-encoded resolvase enzyme to form unit-length genomes. Here we report studies of the influence of metal cofactors on the activity and structure of the resolvase of fowlpox virus (FPV), which provides a tractable model for in vitro studies. Small molecule inhibitors of related enzymes bind simultaneously to metal cofactors and nearby surface amino-acid residues, so understanding enzyme-cofactor interactions is important for the design of antiviral agents. Analysis of inferred active site residues (D7, E60, K102, D132, D135) by mutagenesis and metal rescue experiments specified residues that contribute to binding metal ions, and that multiple binding sites are probably involved. Differential electrophoretic analysis was used to map the conformation of the DNA junction when bound by resolvase. For the wild-type complex in the presence of EDTA or Ca2+, migration was consistent with the DNA arms arranged in near tetrahedral geometry. However, the D7N active site mutant resolvase held the arms in a more planar arrangement in EDTA, Ca2+ or Mg2+ conditions, implicating metal-dependent contacts at the active site in the larger architecture of the complex. These data show how divalent metals dictate the conformation of FPV resolvase/ DNA complexes and subsequent DNA cleavage. PMID:20380839

  14. SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION

    SciTech Connect

    Dixon, K.; Knox, A.

    2012-02-13

    Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.

  15. The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation.

    PubMed

    Syu, Cih-Ying; Yang, Hao-Wen; Hsu, Fu-Hsing; Wang, Jeng-Han

    2014-04-28

    The high oxidation activity of coinage metals (Cu, Ag and Au) has been widely applied in various important reactions, such as oxidation of carbon monoxide, alkenes or alcohols. The catalytic behavior of those inert metals has mostly been attributable to their size effect, the physical effect. In the present study, the chemical effects on their high oxidation activity have been investigated. We mechanistically examine the direct and oxidative dehydrogenation (partial oxidation) reactions of ethanol to acetaldehyde on a series of transition metals (groups 9, 10 and 11) with identical physical characteristics and varied chemical origins using density functional theory (DFT) calculations and electronic structure analyses at the GGA-PW91 level. The energetic results show that coinage metals have much lower activation energies and higher exothermicities for the oxidative dehydrogenation steps although they have higher energy for the direct dehydrogenation reaction. In the electronic structure analyses, coinage metals with saturated d bands can efficiently donate electrons to O* and OH*, or other electronegative adspecies, and better promote their p bands to higher energy levels. The negatively charged O* and OH* with high-lying p bands are responsible for lowering the energies in oxidative steps. The mechanistic understanding well explains the better oxidation activity of coinage metals and provides valuable information on their utilization in other useful applications, for example, the dehydrogenation process. PMID:24626959

  16. BORON CATALYSIS. Metal-free catalytic C-H bond activation and borylation of heteroarenes.

    PubMed

    Légaré, Marc-André; Courtemanche, Marc-André; Rochette, Étienne; Fontaine, Frédéric-Georges

    2015-07-31

    Transition metal complexes are efficient catalysts for the C-H bond functionalization of heteroarenes to generate useful products for the pharmaceutical and agricultural industries. However, the costly need to remove potentially toxic trace metals from the end products has prompted great interest in developing metal-free catalysts that can mimic metallic systems. We demonstrated that the borane (1-TMP-2-BH2-C6H4)2 (TMP, 2,2,6,6-tetramethylpiperidine) can activate the C-H bonds of heteroarenes and catalyze the borylation of furans, pyrroles, and electron-rich thiophenes. The selectivities complement those observed with most transition metal catalysts reported for this transformation. PMID:26228143

  17. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley.

    PubMed

    Ruiz, E; Alonso-Azcárate, J; Rodríguez, L

    2011-03-01

    The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils. PMID:21190761

  18. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  19. Self-Expandable Metal Stents in the Treatment of Acute Esophageal Variceal Bleeding

    PubMed Central

    Escorsell, Àngels; Bosch, Jaime

    2011-01-01

    Acute variceal bleeding (AVB) is a life-threatening complication in patients with cirrhosis. Hemostatic therapy of AVB includes early administration of vasoactive drugs that should be combined with endoscopic therapy, preferably banding ligation. However, failure to control bleeding or early rebleed within 5 days still occurs in 15–20% of patients with AVB. In these cases, a second endoscopic therapy may be attempted (mild bleeding in a hemodynamically stable patient) or we can use a balloon tamponade as a bridge to definitive derivative treatment (i.e., a transjugular intrahepatic portosystemic shunt). Esophageal balloon tamponade provides initial control in up to 80% of AVB, but it carries a high risk of major complications, especially in cases of long duration of tamponade (>24 h) and when tubes are inserted by inexperienced staff. Preliminary reports suggest that self-expandable covered esophageal metallic stents effectively control refractory AVB (i.e., ongoing bleeding despite pharmacological and endoscopic therapy or massive bleeding precluding endoscopic therapy) with a low incidence of complications. Thus, covered self-expanding metal stents may represent an alternative to the Sengstaken-Blakemore balloon for the temporary control of bleeding in treatment failures. Further studies are required to determine the role of this new device in AVB. PMID:22013436

  20. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    SciTech Connect

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  1. The Effect of Traditional Treatments on Heavy Metal Toxicity of Armenian Bole

    PubMed Central

    Hosamo, Ammar; Zarshenas, Mohammad Mehdi; Mehdizadeh, Alireza; Zomorodian, Kamiar; Khani, Ayda Hossein

    2016-01-01

    Background: Clay has been used for its nutrition, cosmetic, and antibacterial properties for thousands of years. Its small particle size, large surface area, and high concentration of ions have made it an interesting subject for pharmaceutical research. There have been studies on scavenging foreign substances and antibacterial properties of clay minerals. The main problem with the medical use of these agents, today, is their heavy metal toxicity. This includes arsenic, cadmium, lead, nickel, zinc, and iron. Iranian traditional medicine (ITM) introduces different clays as medicaments. In this system, there are specific processes for these agents, which might reduce the chance of heavy metal toxicity. Armenian bole is a type of clay that has been used to treat a wound. Before in vivo studies of this clay, its safety should be confirmed. Methods: In this work, we investigated the effect of washing process as mentioned in ITM books regarding the presence of Pb, As, and Cd in 5 samples using atomic absorption spectrometry. We washed each sample (50 g) with 500 cc of distilled water. The samples were filtered and dried at room temperature for 24 hours. Results: In all studied samples, the amount of Pb and Cd was reduced after the ITM washing process. The amount of As was reduced in 3 samples and increased in 2 other samples. Conclusion: In ITM books, there are general considerations for the use of medicinal clay. These agents should not be used before special treatments such as the washing process. In this study, we observed the effect of washing process on reducing the amount of heavy metals in Armenian bole samples. In two samples, washing caused an increase in the amount of As. As these heavy metals sediment according to their density in different layers, the sample layer on which the spectrometry is performed could have an effect on the results. PMID:27516695

  2. Bond Strength of Resin Cements to Noble and Base Metal Alloys with Different Surface Treatments

    PubMed Central

    Raeisosadat, Farkhondeh; Ghavam, Maryam; Hasani Tabatabaei, Masoomeh; Arami, Sakineh; Sedaghati, Maedeh

    2014-01-01

    Objectives: The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen. Materials and Method: Cylinders of light cured Z 250 composite were cemented to “Degubond 4” (Au Pd) and “Verabond” (Ni Cr) alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05. Results: When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021) and Verabond (P< 0.001). No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291) and Verabond (P=0.899). Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003). The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011). The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59). RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035). Conclusion: The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2. PMID:25628687

  3. Study of activation of metal samples from LDEF-1 and Spacelab-2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    The activation of metal samples and other material orbited onboard the Long Duration Exposure Facility (LDEF) and Spacelab-2 were studied. Measurements of the radioactivities of spacecraft materials were made, and corrections for self-absorption and efficiency were calculated. Activation cross sections for specific metal samples were updated while cross sections for other materials were tabulated from the scientific literature. Activation cross sections for 200 MeV neutrons were experimentally determined. Linear absorption coefficients, half lives, branching ratios and other pertinent technical data needed for LDEF sample analyses were tabulated. The status of the sample counting at low background facilities at national laboratories is reported.

  4. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites. PMID:27061237

  5. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  6. X-ray crystal structure of divalent metal-activated ß-xyloisdase, RS223BX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  7. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  8. [Behavioral activation and depression: a contextual treatment approach].

    PubMed

    Soucy Chartier, Isabelle; Blanchet, Valérie; Provencher, Martin D

    2013-01-01

    Depression is a widespread psychological disorder that affects approximately one in five North American. Typical reactions to depression include inactivity, isolation, and rumination. Several treatments and psychological interventions have emerged to address this problematic. Cognitive behavioural therapies have received increasingly large amounts of empirical support. A sub-component of cognitive behavioural therapy, behavioural activation, has been shown to in itself effectively treat symptoms of depression. This intervention involves efforts to re-activate the depressed client by having them engage in pleasant, gratifying, leisure, social, or physical activities, thereby counteracting the tendency to be inactive and to isolate oneself. Clients are guided through the process of establishing a list of potentially rewarding social, leisure, mastery-oriented or physical activities, to then establish a gradual hierarchy of objectives to be accomplished over the span of several weeks. Concrete action plans are devised, and solutions to potential obstacles are elaborated. The client is the asked to execute the targeted objective and to record their mood prior to and following the activity. Behavioural activation effectively reverses the downward spiral to depression. Interestingly, studies show that behavioural activation has a positive effect on cognitive activities. It has been shown to reduce rumination and favour cognitive restructuring, without requiring cognitively-based interventions. The advantage of this treatment is therefore that it is simpler to administer in comparison to full-packaged cognitive behavioural therapies, it requires a lesser number of sessions and can be disseminated in a low-intensity format. This article begins by summarizing the origins of the behavioural model of depression, which serves as a basis to the understanding of behavioural activation. This is followed by a detailed explanation of the different phases involved in a behavioural

  9. Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme

    PubMed Central

    Boots, Jennifer L.; Canny, Marella D.; Azimi, Ehsan; Pardi, Arthur

    2008-01-01

    The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed. PMID:18755844

  10. Isolation and divalent-metal activation of a β-xylosidase, RUM630-BX.

    PubMed

    Jordan, Douglas B; Braker, Jay D; Wagschal, Kurt; Stoller, J Rose; Lee, Charles C

    2016-01-01

    The gene encoding RUM630-BX, a β-xylosidase/arabinofuranosidase, was identified from activity-based screening of a cow rumen metagenomic library. The recombinant enzyme is activated as much as 14-fold (kcat) by divalent metals Mg(2+), Mn(2+) and Co(2+) but not by Ca(2+), Ni(2+), and Zn(2+). Activation of RUM630-BX by Mg(2+) (t0.5 144 s) is slowed two-fold by prior incubation with substrate, consistent with the X-ray structure of closely related xylosidase RS223-BX that shows the divalent-metal activator is at the back of the active-site pocket so that bound substrate could block its entrance. The enzyme is considerably more active on natural substrates than artificial substrates, with activity (kcat/Km) of 299 s(-1) mM(-1) on xylotetraose being the highest reported. PMID:26672463

  11. Impact of Heavy Metals on Transcriptional and Physiological Activity of Nitrifying Bacteria.

    PubMed

    Kapoor, Vikram; Li, Xuan; Elk, Michael; Chandran, Kartik; Impellitteri, Christopher A; Santo Domingo, Jorge W

    2015-11-17

    Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of amoA, hao, nirK, and norB were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures exposed to different metals (Ni(II), Zn(II), Cd(II), and Pb(II)). There was significant decrease in sOUR with increasing concentrations for Ni(II) (0.03-3 mg/L), Zn(II) (0.1-10 mg/L), and Cd(II) (0.03-1 mg/L) (p < 0.05). However, no considerable changes in sOUR were observed with Pb(II) (1-100 mg/L), except at a dosage of 1000 mg/L causing 84% inhibition. Based on RT-qPCR data, the transcript levels of amoA and hao decreased when exposed to Ni(II) dosages. Slight up-regulation of amoA, hao, and nirK (0.5-1.5-fold) occurred after exposure to 0.3-3 mg/L Zn(II), although their expression decreased for 10 mg/L Zn(II). With the exception of 1000 mg/L Pb(II), stimulation of all genes occurred on Cd(II) and Pb(II) exposure. While overall the results show that RNA-based function-specific assays can be used as potential surrogates for measuring nitrification activity, the degree of inhibition inferred from sOUR and gene transcription is different. We suggest that variations in transcription of functional genes may supplement sOUR based assays as early warning indicators of upsets in nitrification. PMID:26501957

  12. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol-gel method, and subsequently with surface modifying with amino in the purpose to form SiO2-NH2 shell. Thus, metal particles were easily adsorbed into the SiO2-NH2 shell and in-situ reduced by NaBH4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu2(OH)3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water.

  13. Immunoregulatory and antitumor activity of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Tong, Litao; Liu, Liya; Zhou, Xianrong; Liu, Xingxun; Zhang, Qi; Zhou, Sumei

    2015-09-01

    Aim of this study was to investigate the effect of ultrasonic treatment on the biological activities of schizophyllan (SPG) from Schizophyllum commune. The immunoregulatory and antitumor activity in vitro and in vivo of SPG and ultrasonic-treated SPG (USPG) were evaluated by splenic lymphocytes, macrophages RAW264.7 and human breast carcinoma T-47D cells. Compared with SPG, USPG fractions had small molecular weight and narrow distribution. Meantime, more enhancement of NO production in macrophages RAW264.7, lymphocytes proliferation rates, IL-2 and TNF-α level from spleen lymphocytes and T-47D cells inhibition rates were observed in USPG fractions groups. This result indicated that the immune-enhancing and antitumor activity of SPG was significantly improved after ultrasonic treatment. USPG60 exhibited the highest biological activity in this study. In conclusion, application of ultrasonic technology on SPG preparation is an efficient approach to get high biological polysaccharide, and USPG60 might be a potential functional component for immunoregulatory and cancer treatment. PMID:26126943

  14. Anaerobic Biochemical Reactor (BCR) Treatment Of Mining-Influenced Water (MIW) - Investigation Of Metal Removal Efficiency and Ecotoxicity

    EPA Science Inventory

    BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...

  15. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants.

    PubMed

    Di Cesare, Andrea; Eckert, Ester M; D'Urso, Silvia; Bertoni, Roberto; Gillan, David C; Wattiez, Ruddy; Corno, Gianluca

    2016-05-01

    The impact of human activities on the spread and on the persistence of antibiotic resistances in the environment is still far from being understood. The natural background of resistances is influenced by human activities, and the wastewater treatment plants (WWTPs) are among the main sources of the release of antibiotic resistance into the environment. The various treatments of WWTPs provide a number of different environmental conditions potentially favoring the selection of antibiotic resistance genes (ARGs) and thereby their well-documented spread in the environment. Although the distribution of different ARGs in WWTPs has been deeply investigated, very little is known on the ecology and on the molecular mechanisms underlying the selection of specific ARGs. This study investigates the fate of diverse ARGs, heavy metal resistance genes (HMRGs) and of a mobile element (the class I integron) in three WWTPs. Abundances of the different genetic markers were correlated to each other and their relation to biotic and abiotic factors (total organic carbon, total nitrogen, prokaryotic cell abundance and its relative distribution in single cells and aggregates) influencing the microbial communities in the different treatment phases in three WWTPs, were investigated. Water samples were analyzed for the abundance of six ARGs (tetA, sulII, blaTEM, blaCTXM,ermB, and qnrS), two HMRGs (czcA and arsB), and of the class I integron (int1). The measured variables clustered in two well-defined groups, the first including tetA, ermB, qnrS and the different biotic and abiotic factors, and a second group around the genes sulII, czcA, arsB and int1. Moreover, the dynamics of sulII, HMRGs, and int1 correlated strongly. Our results suggest a potentially crucial role of HMRGs in the spread, mediated by mobile elements, of some ARGs, i.e. sulII. The possibility of a relation between heavy metal contamination and the spread of ARGs in WWTPs calls for further research to clarify the mechanisms

  16. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy

    PubMed Central

    Wang, Wei; Dumoulin, Charles L.; Viswanathan, Akila N.; Tse, Zion T. H.; Mehrtash, Alireza; Loew, Wolfgang; Norton, Isaiah; Tokuda, Junichi; Seethamraju, Ravi T.; Kapur, Tina; Damato, Antonio L.; Cormack, Robert A.; Schmidt, Ehud J.

    2014-01-01

    Purpose To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. Methods An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ~5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. 3T MRI catheter-insertion procedures were tested in phantoms and ex-vivo animal tissue, and then performed in three patients during interstitial brachytherapy. Results The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm3) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. Conclusion This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy. PMID:24903165

  17. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer

    NASA Astrophysics Data System (ADS)

    Shin, Jun-Hwan; Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Kyung Hyun

    2015-08-01

    An active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.1-2.0 THz spectral range. As an illustrative example, we fabricated an actively on/off switchable THz linear polarizer. The fabricated device has shown commercially comparable values in degree of polarization (DOP) and extinction ratio (ER). A high value of 0.89 in the modulation depth (MD) for the transmission field amplitude, superior to other THz wave modulators, is achieved. The experimental results show that the fabricated device can be highly useful in many applications, including active THz linear polarizers, THz wave modulators and variable THz attenuators.

  18. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus

    SciTech Connect

    Mizrahi, L.; Achituv, Y. )

    1989-06-01

    Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is known that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.

  19. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer.

    PubMed

    Shin, Jun-Hwan; Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Kyung Hyun

    2015-08-01

    An active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.1-2.0 THz spectral range. As an illustrative example, we fabricated an actively on/off switchable THz linear polarizer. The fabricated device has shown commercially comparable values in degree of polarization (DOP) and extinction ratio (ER). A high value of 0.89 in the modulation depth (MD) for the transmission field amplitude, superior to other THz wave modulators, is achieved. The experimental results show that the fabricated device can be highly useful in many applications, including active THz linear polarizers, THz wave modulators and variable THz attenuators. PMID:26183858

  20. Ecotoxicological evaluation of the bioleaching treatment of sewage sludges contaminated with heavy metals

    SciTech Connect

    Renoux, A.Y.; Tyagi, R.D.; Paquette, L.; Samson, R.

    1995-12-31

    A new decontamination technology of sewage sludge, the bioleaching of heavy metals, was assessed using ecotoxicity bioassays. Sewage sludges, treated or non-treated, were mixed with a non-contaminated soil used as a negative control at a rate of 1 to 100 g per liter of soil. Aqueous elutriates (TCLP) of the sludges were used for the aqueous bioassays. The bioleaching of metals reduced the toxic effects associated with sludge for most of the bioassays, although the sludge after treatment exhibited an inherent level of toxicity at high loading rates. With respect to seed germination, bioleached sludge was less toxic (EC50 barley: 53 g/L; lettuce: 13.6) than the non-treated (72; 16.8 g/L). The treated sludge stimulated the barley growth at > 5 6 g/L. The non-treated causes an inhibition at 100 g/L. Earthworms survived in up to 56 g/L of bioleached sludge, compared to 32 g/L of the non-treated. The Microtox{reg_sign} EC50s were 4.0% and 8.4% for nontreated and treated sludges respectively. No genotoxicity (SOS Chromotest) in the sludge elutriates was detected, and no significant treatment effects were noticeable using the lettuce root elongation bioassay. The Daphnia magna mortality of the elutriate was increased with sludge treatment. However, the lettuce root elongation and D. magna mortality bioassay results were difficult to interpret due to variability in standard deviations. This study demonstrated that the ecotoxicological battery of bioassays, and particularly direct contact bioassays, can be used to assess sewage sludge remediation technologies.

  1. Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system.

    PubMed

    Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Nielsen, Steen; Laugen, Maria Mølmer; Brix, Hans

    2012-08-01

    The Sludge Treatment Reed Bed (STRB) technology is a cost-efficient and environmentally friendly technology to dewater and mineralize surplus sludge from conventional wastewater treatment systems. Primary and secondary liquid sludge is loaded onto the surface of the bed over several years, where it is dewatered, mineralized and turned into a biosolid with a high dry matter content for use as an organic fertilizer on agricultural land. We analysed the concentrations of five organic micropollutants (galaxolide, tonalide, cashmeran, celestolide and DEHP) and six heavy metals (Pb, Ni, Cu, Cd, Zn and Cr) in the accumulated sludge in a 20-year old STRB in Denmark in order to assess the degradation and fate of these contaminants in a STRB and the relation to sludge composition. The results showed that the deposited sludge was dewatered to reach a dry matter content of 29%, and that up to a third of the organic content of the sludge was mineralized. The concentrations of heavy metals generally increased with depth in the vertical sludge profile due to the dewatering and mineralization of organic matter, but in all cases the concentrations were below the European Union legal limits for agricultural land disposal. The concentrations of fragrances and DEHP ranged from 10 to 9000 ng g(-1) dry mass. The attenuation of hydrophobic micropollutants from the top to the bottom layer of the reed bed ranged from 40 to 98%, except for tonalide which increased significantly with sludge depth, and consequently showed an unusual depth distribution of the galaxolide/tonalide ratio. This unexpected pattern may reflect changes imposed by a long storage time and/or different composition of the fresh sludge in the past. The lack of a significant decreasing DEHP concentration with sludge age might indicate that this compound is very persistent in STRBs. In conclusion the STRB was a feasible technology for sludge treatment before its land disposal. PMID:22608611

  2. Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease

    PubMed Central

    Brazier, Marcus W.; Wedd, Anthony G.; Collins, Steven J.

    2014-01-01

    Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes. PMID:26784872

  3. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials.

    PubMed

    Aronsson, B O; Lausmaa, J; Kasemo, B

    1997-04-01

    Glow discharge plasma treatment is a frequently used method for cleaning, preparation, and modification of biomaterial and implant surfaces. The merits of such treatments are, however, strongly dependent on the process parameters. In the present work the possibilities, limitations, and risks of plasma treatment for surface preparation of metallic materials are investigated experimentally using titanium as a model system, and also discussed in more general terms. Samples were treated by different low-pressure direct current plasmas and analyzed using Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), atomic force microscopy, scanning electron microscopy, and light microscopy. The plasma system is a home-built, ultra-high vacuum-compatible system that allows sample introduction via a load-lock, and precise control of pressure, gas composition and flow rate, etc. This system allows uniform treatment of cylindrical and screw-shaped samples. With appropriate plasma parameters, argon plasma remove all chemical traces from former treatments (adsorbed contaminants and other impurities, and native oxide layers), in effect producing cleaner and more well-controlled surfaces than with conventional preparation methods. Removal (sputtering) rates up to 30 nm/min are possible. However, when inappropriate plasma parameters are used, the result may be increased contamination and formation of unintentional or undesired surface layers (e.g., carbides and nitrides). Plasma-cleaned surfaces provide a clean and reproducible starting condition for further plasma treatments to form well-controlled surface layers. Oxidation in pure O2 (thermally or in oxygen plasmas) results in uniform and stoichiometric TiO2 surface oxide layers of reproducible composition and thicknesses in the range 0.5-150 nm, as revealed by AES and XPS analyses. Titanium nitride layers were prepared by using N2 plasmas. While mild plasma treatments leave the surface microstructure unaffected

  4. X-ray Crystal Structure of Divalent Metal-Activated β-xylosidase, RS223BX.

    PubMed

    Jordan, Douglas B; Braker, Jay D; Wagschal, Kurt; Lee, Charles C; Chan, Victor J; Dubrovska, Ievgeniia; Anderson, Spencer; Wawrzak, Zdzislaw

    2015-10-01

    We report the X-ray crystal structure of a glycoside hydrolase family 43 β-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca(2+) cation is located at the back of the active-site pocket. The Ca(2+) is held in the active site by the carboxylate of D85, an "extra" acid residue in comparison to other GH43 active sites. The Ca(2+) is in close contact with a histidine imidazole, which in turn is in contact with the catalytic base (D15) thus providing a mechanism for stabilizing the carboxylate anion of the base and achieve metal activation. The active-site pocket is mirrored by an "inactive-site" pocket of unknown function that resides on the opposite side of the monomer. PMID:26201482

  5. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of ({eta}{sup 5}-C{sub 5}H{sub 4}X)Rh(CO){sub 2} complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C{sub 60} molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C{sub 60} reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs.

  6. Early Surrogate Markers of Treatment Activity: Where Are We Now?

    PubMed

    Klintman, Marie; Dowsett, Mitchell

    2015-05-01

    The assessment of new therapies in the adjuvant setting in early breast cancer requires large numbers of patients and many years of follow-up for results to be presented. Therefore, the neoadjuvant study setting, which allows for early prediction of treatment response in smaller patient sets, has become increasingly popular. Ki67 is the most commonly used and extensively studied intermediate biomarker of treatment activity and residual risk in neoadjuvant trials on endocrine therapy, new biological therapies, and chemotherapy. It is increasingly being used as a primary endpoint for new therapies particularly those added to endocrine therapy. The PeriOperative Endocrine Therapy for Individualizing Care (POETIC) trial, including more than 4000 postmenopausal, estrogen receptor (ER)-positive patients randomly assigned to receive 2 weeks of presurgical treatment with an aromatase inhibitor or no further treatment, is the largest window-of-opportunity trial conducted and is assessing the clinical utility of on-treatment Ki67 as a predictor of long-term outcome. For generalizability, Ki67 measurements in the POETIC and other trials need to use standard methodology. The International Working Group on Ki67 in Breast Cancer is conducting a series of studies to bring this to reality. PMID:26063881

  7. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    PubMed Central

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells. PMID:27089365

  8. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B.

    PubMed

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the "Large clostridial glycosylating toxins." These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB-together with Toxin A (TcdA)-is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn(2+) > Co(2+) > Mg(2+) > Ca(2+), Cu(2+), Zn(2+). TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn(2+) and 180 µM for Mg(2+). TcsL and TcdB further require co-stimulation by monovalent K⁺ (not by Na⁺). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K⁺ and Mg(2+) (rather than Mn(2+)) in mammalian target cells. PMID:27089365

  9. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins. PMID:24635441

  10. The effect of advanced treatment on chlorine decay in metallic pipes.

    PubMed

    Rossman, Lewis A

    2006-07-01

    Experiments were run to measure what effect advanced treatment might have on the kinetics of chlorine and chloramine decay in metallic pipes that comprise many drinking water distribution systems. A recirculating loop of 6-in diameter unlined ductile iron pipe was used to simulate turbulent flow conditions in a pipe with significant corrosion and tubercle buildup. Conventionally treated test water was subjected to either ozonation, carbon adsorption (GAC), reverse osmosis (RO) or no further treatment before being chlorinated and introduced into the pipeline simulator. Results showed that overall chlorine decay in the simulator was consistently dominated by wall reactions whose first-order rate constants were an order of magnitude higher than those for the bulk water. With free chlorine, the wall rate constants for ozonated and GAC-treated water were about twice those of conventional or RO-treated water. This behavior is believed due to the effect that changes in the organic content of water have on its ability to complex iron and the effect that changes in water conductivity have on pipe wall corrosion. Tests run with chloraminated water showed no statistically significant effect of treatment type and had wall rate constants that were only 40 to 70% as high as those using free chlorine. PMID:16806395

  11. Covered Metallic Stent Placement in the Treatment of Postoperative Fistula Resistant to Conservative Management after Billroth I Operation

    SciTech Connect

    Kang, Yun Jung; Oh, Joo Hyeong Yoon, Yup; Kim, Eui Jong; Ryu, Kyung Nam; Lim, Joo Won; Kim, Deog Yoon; Kang, Heung Sun

    2005-01-15

    A 55-year-old man presented with a case of postoperative enterocutaneous fistula with anastomotic stenosis after a Billroth I operation that was resistant to conservative treatment. This fistula was successfully treated with the placement of a covered metallic stent under fluoroscopic guidance. To our knowledge, this is the first report of postoperative enterocutaneous fistula that was successfully treated with a covered metallic stent.

  12. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1992-01-01

    Purpose of this research program is to obtain experimental information on the different fundamental ways metals bond and activate organic molecules. Our approach has been to directly probe the electronic interactions between metals and molecules through a wide variety of ionization spectroscopies and other techniques, and to investigate the relationships with bonding modes, structures, and chemical behavior. During this period, we have (1) characterized the electronic features of diphosphines and monophosphines in their coordination to metals, (2) carried out theoretical and experimental investigations of the bonding capabilities of C[sub 60] to transition metals, (3) developed techniques for the imaging of single molecules on gold substrates that emphasizes the electronic backbonding from the metal to the molecule, (4) obtained the high resolution photoelectron spectrum of pure C[sub 70] in the gas phase, (5) compared the bonding of [eta][sup 3]- acetylide ligands to the bonding of other small organic molecules with metals, and (6) reported the photoelectron spectra and bonding of [eta][sup 3]-cyclopropenyl groups to metals.

  13. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  14. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  15. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  16. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    SciTech Connect

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  17. Activated phosphors having matrices of yttrium-transition metal compound

    DOEpatents

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  18. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    SciTech Connect

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  19. Ghrelin treatment prevents development of activity based anorexia in mice.

    PubMed

    Legrand, Romain; Lucas, Nicolas; Breton, Jonathan; Azhar, Saïda; do Rego, Jean-Claude; Déchelotte, Pierre; Coëffier, Moïse; Fetissov, Sergueï O

    2016-06-01

    Stimulation of feeding is necessary for treatment of pathological conditions of chronic malnutrition due to anorexia. Ghrelin, a hunger hormone, is one of the candidate for pharmacological treatments of anorexia, but because of its instability in plasma has limited efficacy. We previously showed that plasmatic IgG protect ghrelin from degradation and that IgG from obese subjects and mice may increase ghrelin׳s orexigenic effect. In this study we tested if ghrelin alone or combined with IgG may improve feeding in chronically food-restricted mice with or without physical activity-based anorexia (ABA) induced by free access to a running wheel. Mice received a single daily intraperitoneal injection of ghrelin (1nM) together or not with total IgG (1nM) from obese ob/ob or lean mice before access to food during 8 days of 3h/day feeding time. We found that both ghrelin and ghrelin combined with IgG from obese, but not lean mice, prevented ABA, however, they were not able to diminish body weight loss. Physical activity was lower during the feeding period and was increased shortly after feeding in mice receiving ghrelin together with IgG from obese mice. In food-restricted mice without ABA, ghrelin treatments did not have significant effects on food intake. Thus, this study supports pharmacological use of ghrelin or ghrelin combined with IgG from obese animals for treatment of anorexia accompanied by elevated physical activity. The utility of combining ghrelin with protective IgG should be further determined in animal models of anorexia with unrestricted access to food. PMID:27052473

  20. Potential metal impurities in active pharmaceutical substances and finished medicinal products - A market surveillance study.

    PubMed

    Wollein, Uwe; Bauer, Bettina; Habernegg, Renate; Schramek, Nicholas

    2015-09-18

    A market surveillance study has been established by using different atomic spectrometric methods for the determination of selected elemental impurities of particular interest, to gain an overview about the quality of presently marketed drug products and their bulk drug substances. The limit tests were carried out with respect to the existing EMA guideline on the specification limits for residuals of metal catalysts or metal reagents. Also attention was given to the future implementation of two new chapters of the United States Pharmacopoeia (USP) stating limit concentrations of elemental impurities. The methods used for determination of metal residues were inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), and atomic absorption spectrometry technologies (GFAAS, CVAAS, HGAAS). This article presents the development and validation of the methods used for the determination of 21 selected metals in 113 samples from drug products and their active pharmaceutical ingredients. PMID:26036232

  1. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER).

    PubMed

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael

    2016-02-10

    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. PMID:26686184

  2. Factors affecting sorption of nitro explosives to biochar: pyrolysis temperature, surface treatment, competition, and dissolved metals.

    PubMed

    Oh, Seok-Young; Seo, Yong-Deuk

    2015-05-01

    The application of rice straw-derived biochar for removing nitro explosives, including 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), from contaminated water was investigated through batch experiments. An increase in the pyrolysis temperature from 250 to 900°C in general led to higher pH, surface area, cation exchange capacity (CEC), point of zero charge, and C:O ratio of biochar. The maximum sorption capacity estimated by a mixed sorption-partition model increased when pyrolysis temperatures were elevated from 250 to 900°C, indicating that C content and aromaticity of biochar were strongly related to the sorption of nitro explosives to biochar. Surface treatment with acid or oxidant increased the sorption capacity of biochar for the two strong π-acceptor compounds (DNT and TNT) but not for RDX. However, the enhancement of sorption capacity was not directly related to increased surface area and CEC. Compared with single-sorption systems, coexistence of explosives or cationic metals resulted in decreased sorption of each explosive to biochar, suggesting that sorption of nitro explosives and cationic metals to electron-rich portions in biochar was competitive. Our results suggest that π-π electron donor acceptor interactions are main sorption mechanisms and that changing various conditions can enhance or reduce the sorption of nitro explosives to biochar. PMID:26024263

  3. Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB

    SciTech Connect

    Ludwig, R.; Smyth, D; Blowes, D; Spink, L; Wilkin, R; Jewett, D; Weisener, C

    2009-01-01

    A 30-month performance evaluation of a pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone, and pea gravel was conducted at a former phosphate fertilizer manufacturing facility in Charleston, SC. The PRB is designed to remove heavy metals and arsenic from groundwater by promoting microbially mediated sulfate reduction and sulfide-mineral precipitation and arsenic and heavy metal sorption. Performance monitoring showed effective treatment of As, Pb, Cd, Zn, and Ni from concentrations as high as 206 mg L{sup -1}, 2.02 mg L{sup -1}, 0.324 mg L{sup -1}, 1060 mg L{sup -1}, and 2.12 mg L{sup -1}, respectively, entering the PRB, to average concentrations of <0.03 mg L{sup -1}, < 0.003 mg L{sup -1}, < 0.001 mg L{sup -1}, < 0.23 mg L{sup -1}, and <0.003 mg L{sup -1}, respectively, within the PRB. Both As(III) and As(V) were effectively removed from solution with X-ray absorption near edge structure (XANES) analysis of core samples indicating the presence of As(V) in oxygen-bound form and As(III) in both oxygen- and sulfur-bound forms. XANES solid phase sulfur analysis indicated decreases in the peak amplitude of intermediate oxidized sulfur species and sulfate components with increasing distance and depth within the PRB.

  4. Fully covered self-expandable metal stents for treatment of malignant and benign biliary strictures

    PubMed Central

    Abdel Samie, Ahmed; Dette, Stephan; Vöhringer, Ulrich; Stumpf, Michael; Kopischke, Karolin; Theilmann, Lorenz

    2012-01-01

    AIM: To present a series of covered self-expandable metal stents (CSEMS) placed for different indications and to evaluate the effectiveness, complications and extractability of these devices. METHODS: We therefore retrospectively reviewed the courses of patients who received CSEMS due to malignant as well as benign biliary strictures and post-sphincterotomy bleeding in our endoscopic unit between January 2010 and October 2011. RESULTS: Twenty-six patients received 28 stents due to different indications (20 stents due to malignant biliary strictures, six stents due to benign biliary strictures and two stents due to post-sphincterotomy bleeding). Biliary obstruction was relieved in all cases, regardless of the underlying cause. Hemostasis could be achieved in the two patients who received the stents for this purpose. Complications occurred in five patients (18%). Two patients (7%) developed cholecystitis, stents dislocated/migrated in other two patients (7%), and in one patient (3.6%) stent occlusion was documented during the study period. Seven stents were extracted endoscopically. Removal of stents was easily possible in all cases in which it was desired using standard forceps. Twelve patients underwent surgery with pylorus preserving duodenopancreatectomy. In all patients stents could be removed during the operation without difficulties. CONCLUSION: Despite the higher costs of these devices, fully covered self-expanding metal stents may be suitable to relief biliary obstruction due to bile duct stenosis, regardless of the underlying cause. CSEMS may also represent an effective treatment strategy of severe post-sphincterotomy bleeding, not controlled by other measures. PMID:23125898

  5. Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin

    PubMed Central

    Choo, Seung-Sik; Huh, Yoon-Hyuk; Cho, Lee-Ra

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. MATERIALS AND METHODS Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. RESULTS Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (P<.05). However, in Ti alloy, there was no significant difference between Alloy Primer and MAC-Bond II. Tarnished Co-Cr and Au-Ag-Pd alloy surfaces presented significantly decreased shear bond strength. CONCLUSION Combined use of MDP and VBATDT were effective in bonding of the resin to Co-Cr and Au-Ag-Pd alloy. Tarnish using polyvinylpyrrolidone solution negatively affected on the bonding of veneer resin to Co-Cr and Au-Ag-Pd alloys. PMID:26576256

  6. Electrokinetic removal of Cu and Zn in anaerobic digestate: interrelation between metal speciation and electrokinetic treatments.

    PubMed

    Zhu, Neng-min; Chen, Mengjun; Guo, Xu-jing; Hu, Guo-quan; Yu-Deng

    2015-04-01

    In recent years, a potential controversy has arisen that whether the metal speciation in solid matrix determined its electrokinetic (EK) removal efficiency or by contrast. In present study, Cu and Zn in anaerobic digestate were selected as candidates to investigate the relation between the species of metal and EK treatment. The obtained results show that the removal efficiency for each fraction decreased in the order as follows: exchangeable ≥ bound to carbonates > bound to Fe-Mn oxides>bound to organic matters > residual. For both Cu and Zn, their total removal performance was dependent on their dominant fraction in the digestate. A constant pH maintenance around the digestate via circulation of acid electrolyte is an optional operation because a strong acid atmosphere (pH < 2) around the digestate can be formed automatically as EK time elapses. Despite that many reactions occurred during EK process, the species distribution of Cu and Zn in the digestate determined their total EK removal efficiency essentially. PMID:25562809

  7. Dynamic crystallization during non-isothermal laser treatment of Fe-Si-B metallic glass

    NASA Astrophysics Data System (ADS)

    Joshi, Sameehan S.; Gkriniari, Anna V.; Katakam, Shravana; Dahotre, Narendra B.

    2015-12-01

    Fe-Si-B metallic glass foils were subjected to non-isothermal laser treatment to induce crystallization, and the effect of laser fluence on crystallite size was investigated. Temperature, and corresponding heating and cooling rates generated during laser processing of metallic glass were estimated using multiphysics computational models. Estimation of the onset and arrest temperatures of crystallization was based on the results obtained using the thermal model. Crystallite size was measured with the aid of x-ray diffraction and transmission electron microscopy. The fraction of crystallization was estimated with a differential scanning calorimetry. Crystallite size increased with laser fluence in the initial stages and saturated later within the laser fluence range (0.6-0.9 J mm-2) explored in the current efforts. The fraction of crystallization steadily increased with the increase in laser fluence. Unlike conventional processes, in the present situation the dynamic effects during laser processing dominated the crystallization and growth process. Rapid heating rates during laser processing led to a shift in the onset of crystallization temperature to a higher level. Faster cooling rates prematurely arrested the crystallite growth yielding much finer crystallite sizes.

  8. Effect of annealing treatment on the crystallisation and leaching of dumped base metal smelter slags.

    PubMed

    Maweja, Kasonde; Mukongo, Tshikele; Mbaya, Richard K; Mochubele, Emela A

    2010-11-15

    Leaching tests of base metals contained in two smelter slags were undertaken in ammonia and nitric acid solutions aiming to recover Co, Cu and Zn. Leaching tests were conducted at 25 and 60°C at pH=0 and 3 in HNO(3) and pH=12 in NH(4)OH media. XRD analysis revealed that the dumped slags were amorphous. Annealing these slags at 1180°C produced crystalline phases comprising diopside, magnetite and fayalite. SEM and EDS analysis revealed that Cu and Pb compounds have concentrated in the magnetite phase, whereas another phase rich in Zn and Cu was located in the diopside matrix. ICP-OES analysis of the pregnant leaching solutions (PLS) showed that 30-60% of Co, Cu and Zn were released from the amorphous slags treated in HNO(3) at pH=0, and lesser in ammonia. However, the contamination by Fe and Pb was higher at pH=0. The contamination of the PLS obtained by leaching of the crystallised slags remained low. The low Fe and Pb contamination was attributed in this case to the chemical stability of the crystalline phases formed upon annealing treatment. The higher solubilisation of metals contained in amorphous slags was attributed to the collapse of silicate structures during nitric acid leaching at pH∼0. PMID:20674164

  9. Metal-free melem/g-C3N4 hybrid photocatalysts for water treatment.

    PubMed

    Liu, Shizhen; Sun, Hongqi; O'Donnell, Kane; Ang, H M; Tade, Moses O; Wang, Shaobin

    2016-02-15

    In this study, graphitic carbon nitride was engineered to produce metal-free melem/g-C3N4 hybrid photocatalysts through a hydrothermal technique. It was revealed that the hydrothermal treatment of g-C3N4 could produce a hybrid structure of "thorn ball" liked melem on g-C3N4 layer at a high temperature, and was able to modify the photoelectronic properties of g-C3N4. The spectroscopic measurements implied that a melem/g-C3N4 hybrid has better light absorption and lower electron/hole recombination than pristine g-C3N4. Therefore, the melem/g-C3N4 photocatalysts can decompose methylene blue solution under artificial sunlight with a higher rate and also present good stability. PMID:26606376

  10. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    SciTech Connect

    G. B. Cotten; J. D. Navratil; H. B. Eldredge

    1999-03-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

  11. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Regulski, Krzysztof

    2016-06-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  12. Micro- and nanostructured electro-active polymer actuators as smart muscles for incontinence treatment

    NASA Astrophysics Data System (ADS)

    Osmani, Bekim; Töpper, Tino; Deschenaux, Christian; Nohava, Jiri; Weiss, Florian M.; Leung, Vanessa; Müller, Bert

    2015-02-01

    Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films are micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market.

  13. Micro- and nanostructured electro-active polymer actuators as smart muscles for incontinence treatment

    SciTech Connect

    Osmani, Bekim E-mail: tino.toepper@unibas.ch; Töpper, Tino E-mail: tino.toepper@unibas.ch; Weiss, Florian M. E-mail: bert.mueller@unibas.ch; Leung, Vanessa E-mail: bert.mueller@unibas.ch; Müller, Bert E-mail: bert.mueller@unibas.ch

    2015-02-17

    Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films are micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market.

  14. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants.

    PubMed

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B; Bonab, Ali A; Alpert, Nathaniel M; Lohmann, Kevin; Bortfeld, Thomas

    2007-02-01

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of

  15. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants

    SciTech Connect

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas

    2007-02-15

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of

  16. Synthesis and Structure-Activity Correlation Studies of Metal Complexes of α-N-heterocyclic Carboxaldehyde Thiosemicarbazones in Shewanella oneidensis

    PubMed Central

    Wilson, Barbara A.; Venkatraman, Ramaiyer; Whitaker, Cedrick; Tillison, Quintell

    2005-01-01

    This investigation involved the synthesis of metal complexes to test the hypothesis that structural changes and metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn) and platinum (Pt) complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm) was performed. The wild type (MR-1) grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 × 108 ± 4.3 × 107 SD) than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 × 108 ± 6.4 × 107 SD) under comparable aerobic conditions (p=0.0004). No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p= 0.425) or the thiosemicarbazone ligand (p=0.313). Growth of MR-1 in the presence of diphenyl Sn- thiosemicarbazone was significantly different among treatment groups (p=0.012). MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05). The mean number of DSP-010 variant strain cells also differed among diphenyl Sn

  17. Synthesis and structure-activity correlation studies of metal complexes of alpha-N-heterocyclic carboxaldehyde thiosemicarbazones in Shewanella oneidensis.

    PubMed

    Wilson, Barbara A; Venkatraman, Ramaiyer; Whitaker, Cedrick; Tillison, Quintell

    2005-04-01

    This investigation involved the synthesis of metal complexes to test the hypothesis that structural changesand metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn) and platinum (Pt) complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm) was performed. The wild type (MR-1) grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 X 10(8) +/- 4.3 X 10(7) SD) than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 x 10(8) +/- 6.4 X 10(7) SD) under comparable aerobic conditions (p = 0.0004). No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p = 0.425) or the thiosemicarbazone ligand (p = 0.313). Growth of MR-1 in the presence of diphenyl Sn-thiosemicarbazone was significantly different among treatment groups (p = 0.012). MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05). The mean number of DSP-010 variant strain cells also differed among

  18. Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate.

    PubMed

    Rötting, Tobias S; Thomas, Robert C; Ayora, Carlos; Carrera, Jesús

    2008-01-01

    Passive treatment systems based on the dissolution of coarse calcite grains are widely used to remediate acid mine drainage (AMD). Unfortunately, they tolerate only low metal concentrations or acidity loads, because they are prone to passivation (loss of reactivity due to coating) and/or clogging (loss of permeability) by precipitates. To overcome these problems, a dispersed alkaline substrate (DAS) composed of a fine-grained alkaline reagent (calcite sand) mixed with a coarse inert matrix (wood chips) was developed. The small grains provide a large reactive surface and dissolve almost completely before the growing layer of precipitates passivates the substrate, whereas the dispersion of nuclei for precipitation on the inert surfaces retards clogging. Chemical and hydraulic performance of DAS was investigated in two laboratory columns fed at different flow rates with natural AMD of pH 2.3 to 3.5 and inflow net acidity 1350 to 2300 mg/L as CaCO(3). The DAS columns removed 900 to 1600 mg/L net acidity, 3 to 4.5 times more than conventional passive treatment systems. Regardless of the flow rate employed, Al, Fe(III), Cu, and Pb were virtually eliminated. Minor Zn, Ni, and Cd were removed at low flow rates. High acidity removal is possible because these metals accumulate intentionally in DAS, and their precipitation promotes further calcite dissolution. During 15 mo, DAS operated without clogging at 120 g acidity/m(2).d, four times the loading rate recommended for conventional passive systems; DAS may therefore be capable of treating AMD at sites where influent chemistry precludes the use of other passive systems. PMID:18689735

  19. Treatability studies and large-scale treatment of aqueous mixed waste containing heavy metals

    SciTech Connect

    Haefner, D.R.

    1995-12-01

    Wastes have accumulated at the Idaho National Engineering Laboratory through routine laboratory practices, experimental engineering operations, and decommissioning and decontamination of nuclear reactor facilities. A storage tank at the Test Area North held approximately 129,000 L of acidic wastewater and contained prohibited levels of lead and mercury. Radioactive constituents were also present; the most predominant being radiocesium Cs-137 and radiocobalt Co-60. Bench-scale studio were undertaken to evaluate ion exchange as a means of removing the contaminants. A set of breakthrough curves was obtained and identified capacity constraints, selectivities, and operating requirements of candidate resins. Treatment studies indicated that Purolite S-920 resin could effectively remove mercury, while Rohm and Haas` Amberlite 200-CH was used for lead and radionuclide removal. Based on these laboratory tests a full-scale facility, using multiple ion exchange columns, was designed and operated in the spring of 1994. The liquid effluents were discharged to an onsite evaporation pond and met RCRA disposal limits for hazardous metals and self-imposed radionuclide limits. All secondary wastes and residues were sampled and subjected to the to)dc characteristic leaching procedure. The resulting leachate concentrations were below RCRA discharge limits and, therefore, these will be disposed of at the onsite low-level disposal facility. After concluding the tank wastewater operations, enough reserve resin capacity was available to treat three additional mixed wastes residing onsite. These totaled about 1,900 L (500 gal) and contained prohibited levels of chromium, cadmium, and barium. Laboratory studies demonstrated that these heavy metals could also be removed by the existing resins. Treatment was performed at the full-scale facility with the effluents discharged to the evaporation pond.

  20. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils.

    PubMed

    Rivero-Huguet, Mario; Marshall, William D

    2011-04-01

    Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l'Environnement et des Parcs for the Province of Québec, Canada. The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg(0) particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H(2)-supercritical CO(2) that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al(2)O(3). In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility. PMID:21354593

  1. Metal-based biologically active azoles and β-lactams derived from sulfa drugs.

    PubMed

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Almayah, Abdulelah A; Bolandnazar, Zeinab; Swadi, Ali G; Ebrahimi, Amirpasha

    2016-03-01

    Metal complexes of Schiff bases derived from sulfamethoxazole (SMZ) and sulfathiazole (STZ), converted to their β-lactam derivatives have been synthesized and experimentally characterized by elemental analysis, spectral (IR, (1)H NMR, (13)C NMR, and EI-mass), molar conductance measurements and thermal analysis techniques. The structural and electronic properties of the studied molecules were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The spectral and thermal analysis reveals that the Schiff bases act as bidentate ligands via the coordination of azomethine nitrogen to metal ions as well as the proton displacement from the phenolic group through the metal ions; therefore, Cu complexes can attain the square planner arrangement and Zn complexes have a distorted tetrahedral structure. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. In addition, the antibacterial activities of synthesized compounds have been screened in vitro against various pathogenic bacterial species. Inspection of the results revealed that all newly synthesized complexes individually exhibit varying degrees of inhibitory effects on the growth of the tested bacterial species, therefore, they may be considered as drug candidates for bacterial pathogens. The free Schiff base ligands (1-2) exhibited a broad spectrum antibacterial activity against Gram negative Escherichia coli, Pseudomonas aeruginosa, and Proteus spp., and Gram positive Staphylococcus aureus bacterial strains. The results also indicated that the β-lactam derivatives (3-4) have high antibacterial activities on Gram positive bacteria as well as the metal complexes (5-8), particularly Zn complexes, have a significant activity against all Gram negative bacterial strains. It has been shown that the metal complexes have significantly higher activity than corresponding

  2. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  3. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  4. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  5. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    SciTech Connect

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  6. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  7. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution.

    PubMed

    Xing, Jun; Chen, Jian Fu; Li, Yu Hang; Yuan, Wen Tao; Zhou, Ying; Zheng, Li Rong; Wang, Hai Feng; Hu, P; Wang, Yun; Zhao, Hui Jun; Wang, Yong; Yang, Hua Gui

    2014-02-17

    The process of using solar energy to split water to produce hydrogen assisted by an inorganic semiconductor is crucial for solving our energy crisis and environmental problems in the future. However, most semiconductor photocatalysts would not exhibit excellent photocatalytic activity without loading suitable co-catalysts. Generally, the noble metals have been widely applied as co-catalysts, but always agglomerate during the loading process or photocatalytic reaction. Therefore, the utilization efficiency of the noble co-catalysts is still very low on a per metal atom basis if no obvious size effect exists, because heterogeneous catalytic reactions occur on the surface active atoms. Here, for the first time, we have synthesized isolated metal atoms (Pt, Pd, Rh, or Ru) stably by anchoring on TiO2 , a model photocatalystic system, by a facile one-step method. The isolated metal atom based photocatalysts show excellent stability for H2 evolution and can lead to a 6-13-fold increase in photocatalytic activity over the metal clusters loaded on TiO2 by the traditional method. Furthermore, the configurations of isolated atoms as well as the originality of their unusual stability were analyzed by a collaborative work from both experiments and theoretical calculations. PMID:24403011

  8. Innovative use of activated carbon for the removal of heavy metals from ground water sources

    SciTech Connect

    Lewis, T. III

    1996-12-31

    This report discusses the evaluation of the ENVIRO-CLEAN PROCESS, a technology developed by Lewis Environmental Services, Inc. for the recovery of metals such as chromium, mercury, copper, cadmium, lead, and zinc from surface and groundwater streams. This new heavy metal removal process (patent-pending) utilizes granular activated carbon with a proprietary conditioning pretreatment to enhance heavy metal adsorption combined with electrolytic metal recovery to produce a saleable metallic product. The process generates no sludge or hazardous waste and the effluent meets EPA limits. A 50 gpm system was installed for recovering hexavalent chromium from a ground water stream at a site located in Fresno, California. The effluent from the activated carbon system was reinjected into the ground water table with the hexavalent chromium concentration < 10 ppb. The system simultaneously removed trichloroethylene (TCE) to concentrations levels < 05 ppb. The activated carbon is regenerated off-site and the chromium electrolytically recovered. The full scale system has treated over 5 million gallons of ground water since installation. 5 refs., 1 fig., 3 tabs.

  9. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination

    PubMed Central

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon–nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  10. Effect of [Fe 2+/total metal] on treatment of heavy metals from laboratory wasteliquid by ferrite process

    NASA Astrophysics Data System (ADS)

    Huang, Yuh-Jeen; Tu, Chiu-Hui; Chien, Yi-Chi; Chen, Hung-Ta

    2006-11-01

    In this study, the X-ray absorption near-edge structure shows that poisonous Cr 6+ in the laboratory wasteliquid were reduced to Cr 3+ by adding Fe 2+ at [Fe 2+/total metal, mole ratio higher than 4:1. The X-ray diffraction analysis shows that greater the [Fe 2+/total metal] mole ratios used (such as 6:1, 10:1, 20:1 and 30:1), the more spinel-structured ferrites were formed (0.26, 0.30, 0.48 and 0.59). When [Fe 2+/total metal] mole ratio was larger than 20:1, the saturation magnetization and coercive field were about 5.21 emu/g and 6.2 kOe, respectively. The ferrite precipitates could be recovered as magnitude materials. However, the TCLP test result was beyond the standard of EPA when the [Fe 2+/total metal] mole ratio was 30:1. The optimum operation for the laboratory wasteliquid by ferrite process in the [Fe 2+/total metal] mole ratio was 20:1.

  11. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions.

    PubMed

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    The present authors' systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer. PMID:26579517

  12. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions

    PubMed Central

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    The present authors’ systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer. PMID:26579517

  13. Activation of bone marrow phagocytes following benzene treatment of mice.

    PubMed Central

    Laskin, D L; MacEachern, L; Snyder, R

    1989-01-01

    Techniques in flow cytometry/cell sorting were used to characterize the effects of benzene and its metabolites on subpopulations of bone marrow cells. Treatment of male Balb/c mice with benzene (880 mg/kg) or a combination of its metabolites, hydroquinone and phenol (50 mg/kg), resulted in a 30 to 40% decrease in bone marrow cellularity. Flow cytometric analysis revealed two subpopulations of bone marrow cells that could be distinguished by their size and density or granularity. The larger, more dense subpopulation was found to consist predominantly of macrophages and granulocytes as determined by monoclonal antibody binding and by cell sorting. Benzene treatment had no selective cytotoxic effects on subpopulations of bone marrow cells. To determine if benzene treatment activated bone marrow phagocytes, we quantified production of hydrogen peroxide by these cells using the fluorescent indicator dye, 2',7'-dichlorofluorescein diacetate. We found that macrophages and granulocytes from bone marrow of treated mice produced 50% more hydrogen peroxide in response to the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate than did cells from control animals. It is hypothesized that phagocyte activation and production of cytotoxic reactive oxygen intermediates may contribute to hematotoxicity induced by benzene. PMID:2676504

  14. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  15. Antileishmanial Activity of Disulfiram and Thiuram Disulfide Analogs in an Ex Vivo Model System Is Selectively Enhanced by the Addition of Divalent Metal Ions

    PubMed Central

    Peniche, Alex G.; Renslo, Adam R.; Melby, Peter C.

    2015-01-01

    Current treatments for cutaneous and visceral leishmaniasis are toxic, expensive, difficult to administer, and limited in efficacy and availability. Disulfiram has primarily been used to treat alcoholism. More recently, it has shown some efficacy as therapy against protozoan pathogens and certain cancers, suggesting a wide range of biological activities. We used an ex vivo system to screen several thiuram disulfide compounds for antileishmanial activity. We found five compounds (compound identifier [CID] 7188, 5455, 95876, 12892, and 3117 [disulfiram]) with anti-Leishmania activity at nanomolar concentrations. We further evaluated these compounds with the addition of divalent metal salts based on studies that indicated these salts could potentiate the action of disulfiram. In addition, clinical studies suggested that zinc has some efficacy in treating cutaneous leishmaniasis. Several divalent metal salts were evaluated at 1 μM, which is lower than the normal levels of copper and zinc in plasma of healthy individuals. The leishmanicidal activity of disulfiram and CID 7188 were enhanced by several divalent metal salts at 1 μM. The in vitro therapeutic index (IVTI) of disulfiram and CID 7188 increased 12- and 2.3-fold, respectively, against L. major when combined with ZnCl2. The combination of disulfiram with ZnSO4 resulted in a 1.8-fold increase in IVTI against L. donovani. This novel combination of thiuram disulfides and divalent metal ions salts could have application as topical and/or oral therapies for treatment of cutaneous and visceral leishmaniasis. PMID:26239994

  16. Antileishmanial Activity of Disulfiram and Thiuram Disulfide Analogs in an Ex Vivo Model System Is Selectively Enhanced by the Addition of Divalent Metal Ions.

    PubMed

    Peniche, Alex G; Renslo, Adam R; Melby, Peter C; Travi, Bruno L

    2015-10-01

    Current treatments for cutaneous and visceral leishmaniasis are toxic, expensive, difficult to administer, and limited in efficacy and availability. Disulfiram has primarily been used to treat alcoholism. More recently, it has shown some efficacy as therapy against protozoan pathogens and certain cancers, suggesting a wide range of biological activities. We used an ex vivo system to screen several thiuram disulfide compounds for antileishmanial activity. We found five compounds (compound identifier [CID] 7188, 5455, 95876, 12892, and 3117 [disulfiram]) with anti-Leishmania activity at nanomolar concentrations. We further evaluated these compounds with the addition of divalent metal salts based on studies that indicated these salts could potentiate the action of disulfiram. In addition, clinical studies suggested that zinc has some efficacy in treating cutaneous leishmaniasis. Several divalent metal salts were evaluated at 1 μM, which is lower than the normal levels of copper and zinc in plasma of healthy individuals. The leishmanicidal activity of disulfiram and CID 7188 were enhanced by several divalent metal salts at 1 μM. The in vitro therapeutic index (IVTI) of disulfiram and CID 7188 increased 12- and 2.3-fold, respectively, against L. major when combined with ZnCl2. The combination of disulfiram with ZnSO4 resulted in a 1.8-fold increase in IVTI against L. donovani. This novel combination of thiuram disulfides and divalent metal ions salts could have application as topical and/or oral therapies for treatment of cutaneous and visceral leishmaniasis. PMID:26239994

  17. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  18. Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: Evaluation of antimicrobial activities.

    PubMed

    Saravanan, A; Kumar, P Senthil; Karthiga Devi, G; Arumugam, T

    2016-08-01

    In the present research, in vitro antimicrobial activity of metallic nanoparticles impregnated on activated carbon (MNPI-AC) was investigated. Activated carbon (AC) was successfully prepared from Fishtail palm Caryota urens seeds by using two surface modification process (i) sulphuric acid treated Caryota urens seeds (SMCUS) (ii) ultrasonic assisted Caryota urens seeds (UACUS). Mukia maderasapatna plant extract was used as reducing agent for the synthesis of metallic nanoparticles. The characterization studies of MNPI - AC were performed by using a UV-visible spectrophotometer and Fourier Transform Infrared Spectroscopic (FT-IR) analyses. Different active functional groups were identified by FTIR studies which were responsible for impregnation of metallic nanoparticles on a surface of AC. The antimicrobial activity of MNPI - AC was examined against four bacterial strains: 2 g positive (Staphylococcus aureus and Staphylococcus epidermidis) and 2 g negative (Pseudomonas aeruginosa and Escherichia coli) and one fungal strain (Candida albicans). Among different MNPs, Pb-AC (UACUS) shows that higher zone of inhibition. These results in the literature showed that MNPI - AC are to be effective for deactivation and inactivation of microbes in an efficient manner. PMID:27317855

  19. Overview of EU activities on DEMO liquid metal breeder blanket

    SciTech Connect

    Giancarli, L.; Proust, E.

    1994-12-31

    The European test-blanket development programme, started in 1988, is aiming at the selection by 1995 of two DEMO-relevant blanket lines to be tested in ITER. At present, four lines of blanket are under development, two of them using solid and the other two liquid breeder materials. As far as liquid breeders are concerned, two lines of blankets have been selected within the European Union, the water-cooled lithium-lead (the eutectic Pb-17Li) blankets and the dual-coolant Pb-17Li blankets. Designs have been developed considering an agreed set of DEMO specifications, such as, for instance, a fusion power of 2,200 MW, a neutron wall-loading of 2MW/m{sup 2}, a life-time of 20,000 hours, and the use of martensitic steel as a structural material. Moreover, an experimental program has been set up in order to address the main critical issues for each line. The present paper gives an overview of both design and experimental activities within the European Union concerning these two lines of liquid breeder blankets.

  20. New active drugs for the treatment of advanced colorectal cancer

    PubMed Central

    Zaniboni, Alberto

    2015-01-01

    Newer active drugs have been recently added to the pharmacological armamentarium for the treatment of metastatic colorectal cancer. Aflibercept, a recombinant fusion protein composed of the extracellular domains of human vascular endothelial growth factor receptors (VEGFR) 1 and 2 and the Fc portion of human immunoglobulin G1 (IgG1), is an attractive second-line option in combination with folfiri for patients who have failed folfox +/- bevacizumab. Ramucirumab, a human IgG1 monoclonal antibody that targets VEGFR-2, provided similar results in the same setting. Tas-102, an oral fluoropyrimidine, and regorafenib, a multi-tyrosine kinase inhibitor, are both able to control the disease in a considerable proportion of patients when all other available treatments have failed. These new therapeutic options along with the emerging concept that previous therapies may also be reitroduced or rechallenged after regorafenib and Tas-102 failure are bringing new hope for thousands of patients and their families. PMID:26730280

  1. New active drugs for the treatment of advanced colorectal cancer.

    PubMed

    Zaniboni, Alberto

    2015-12-27

    Newer active drugs have been recently added to the pharmacological armamentarium for the treatment of metastatic colorectal cancer. Aflibercept, a recombinant fusion protein composed of the extracellular domains of human vascular endothelial growth factor receptors (VEGFR) 1 and 2 and the Fc portion of human immunoglobulin G1 (IgG1), is an attractive second-line option in combination with folfiri for patients who have failed folfox +/- bevacizumab. Ramucirumab, a human IgG1 monoclonal antibody that targets VEGFR-2, provided similar results in the same setting. Tas-102, an oral fluoropyrimidine, and regorafenib, a multi-tyrosine kinase inhibitor, are both able to control the disease in a considerable proportion of patients when all other available treatments have failed. These new therapeutic options along with the emerging concept that previous therapies may also be reitroduced or rechallenged after regorafenib and Tas-102 failure are bringing new hope for thousands of patients and their families. PMID:26730280

  2. Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity.

    PubMed

    Stalter, Daniel; Magdeburg, Axel; Wagner, Martin; Oehlmann, Jörg

    2011-01-01

    Concerns about endocrine disrupting compounds in sewage treatment plant (STP) effluents give rise to the implementation of advanced treatment steps for the elimination of trace organic contaminants. The present study investigated the effects of ozonation (O(3)) and activated carbon treatment (AC) on endocrine activities [estrogenicity, anti-estrogenicity, androgenicity, anti-androgenicity, aryl-hydrocarbon receptor (AhR) agonistic activity] with yeast-based bioassays. To evaluate the removal of non-specific toxicity, a cytotoxicity assay using a rat cell line was applied. Wastewater (WW) was sampled at two STPs after conventional activated sludge treatment following the secondary clarifier (SC) and after subsequent advanced treatments: O(3), O(3) + sand filtration (O(3-SF)), and AC. Conventional treatment reduced estrogenicity, androgenicity, and AhR agonistic activity by 78-99% compared to the untreated influent WW. Anti-androgenicity and anti-estrogenicity were not detectable in the influent but appeared in SC, possibly due to the more effective removal of respective agonists during conventional treatment. Endocrine activities after SC ranged from 2.0 to 2.8 ng/L estradiol equivalents (estrogenicity), from 4 to 22 μg/L 4-hydroxytamoxifen equivalents (anti-estrogenicity), from 1.9 to 2.0 ng/L testosterone equivalents (androgenicity), from 302 to 614 μg/L flutamide equivalents (anti-androgenicity), and from 387 to 741 ng/L β-naphthoflavone equivalents (AhR agonistic activity). In particular, estrogenicity and anti-androgenicity occurred in environmentally relevant concentrations. O(3) and AC further reduced endocrine activities effectively (estrogenicity: 77-99%, anti-androgenicity: 63-96%, AhR agonistic activity: 79-82%). The cytotoxicity assay exhibited a 32% removal of non-specific toxicity after O(3) compared to SC. O(3) and sand filtration reduced cytotoxic effects by 49%, indicating that sand filtration contributes to the removal of toxicants. AC was the

  3. Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations.

    PubMed

    Wilczek, Grazyna; Kramarz, Paulina; Babczyńska, Agnieszka

    2003-04-01

    Among the cytoplasmatic enzymes responsible for neutralization of organic xenobiotics, carboxylesterases (CarE) and glutathione S-transferases (GST) play important roles. Our study tested to what extent dietary Zn or Cd could modify the activity of CarE and GST at different life-stages of the carabid beetle Poecilus cupreus. Treatment and stage effects generally were statistically significant. For CarE activity in the beetles exposed to cadmium, only treatment was a significant factor. In all cases, the interaction between studied factors was statistically significant, implying that the physiological condition of the animals may enhance or reduce enzyme activity. We also observed differences between animals treated with cadmium and zinc in the pattern of enzyme activity, and a difference in GST activity measured with two different substrates. Our results confirmed that in studying enzyme activity under metal stress one should consider the animal's life-stage and sex. PMID:12727300

  4. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions.

    PubMed

    Namitharan, Kayambu; Zhu, Tingshun; Cheng, Jiajia; Zheng, Pengcheng; Li, Xiangyang; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2014-01-01

    Transition metal and organic catalysts have established their own domains of excellence. It has been expected that merging the two unique domains should provide complimentary or unprecedented opportunities in converting simple raw materials to functional products. N-heterocyclic carbenes alone are excellent organocatalysts. When used with transition metals such as copper, N-heterocyclic carbenes are routinely practiced as strong-coordinating ligands. Combination of an N-heterocyclic carbene and copper therefore typically leads to deactivation of either or both of the two catalysts. Here we disclose the direct merge of copper as a metal catalyst and N-heterocyclic carbenes as an organocatalyst for relay activation of alkynes. The reaction involves copper-catalysed activation of alkynes to generate ketenimine intermediates that are subsequently activated by an N-heterocyclic carbene organocatalyst for stereoselective reactions. Each of the two catalysts (copper metal catalyst and N-heterocyclic carbene organocatalyst) accomplishes its own missions in the activation steps without quenching each other. PMID:24865392

  5. Metal-containing Complexes of Lactams, Imidazoles, and Benzimidazoles and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Kukalenko, S. S.; Bovykin, B. A.; Shestakova, S. I.; Omel'chenko, A. M.

    1985-07-01

    The results of the latest investigations of the problem of the synthesis of metal-containing complexes of lactams, imidazoles, and benzimidazoles, their structure, and their stability in solutions are surveyed. Some data on their biological activity (pesticide and pharmacological) and the mechanism of their physiological action are presented. The bibliography includes 190 references.

  6. The Desulfuromonas acetoxidans Triheme Cytochrome c7 Produced in Desulfovibrio desulfuricans Retains Its Metal Reductase Activity

    PubMed Central

    Aubert, Corinne; Lojou, Elisabeth; Bianco, Pierre; Rousset, Marc; Durand, Marie-Claire; Bruschi, Mireille; Dolla, Alain

    1998-01-01

    Multiheme cytochrome c proteins that belong to class III have been recently shown to exhibit a metal reductase activity, which could be of great environmental interest, especially in metal bioremediation. To get a better understanding of these activities, the gene encoding cytochrome c7 from the sulfur-reducing bacterium Desulfuromonas acetoxidans was cloned from genomic DNA by PCR and expressed in Desulfovibrio desulfuricans G201. The expression system was based on the cyc transcription unit from Desulfovibrio vulgaris Hildenborough and led to the synthesis of holocytochrome c7 when transferred by electrotransformation into the sulfate reducer Desulfovibrio desulfuricans G201. The produced cytochrome was indistinguishable from the protein purified from Desulfuromonas acetoxidans cells with respect to several biochemical and biophysical criteria and exhibited the same metal reductase activities as determined from electrochemical experiments. This suggests that the molecule was correctly folded in the host organism. Desulfovibrio desulfuricans produces functional multiheme c-type cytochromes from bacteria belonging to a different genus and may be considered a suitable host for the heterologous biogenesis of multiheme c-type cytochromes for either structural or engineering studies. This report, which presents the first example of the transformation of a Desulfovibrio desulfuricans strain by electrotransformation, describes work that is the first necessary step of a protein engineering program that aims to specify the structural features that are responsible for the metal reductase activities of multiheme cytochrome c7. PMID:9546165

  7. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Burkhardt, Michael; Siegrist, Hansruedi

    2011-05-01

    We investigated the behavior of metallic silver nanoparticles (Ag-NP) in a pilot wastewater treatment plant (WWTP) fed with municipal wastewater. The treatment plant consisted of a nonaerated and an aerated tank and a secondary clarifier. The average hydraulic retention time including the secondary clarifier was 1 day and the sludge age was 14 days. Ag-NP were spiked into the nonaerated tank and samples were collected from the aerated tank and from the effluent. Ag concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) were in good agreement with predictions based on mass balance considerations. Transmission electron microscopy (TEM) analyses confirmed that nanoscale Ag particles were sorbed to wastewater biosolids, both in the sludge and in the effluent. Freely dispersed nanoscale Ag particles were only observed in the effluent during the initial pulse spike. X-ray absorption spectroscopy (XAS) measurements indicated that most Ag in the sludge and in the effluent was present as Ag(2)S. Results from batch experiments suggested that Ag-NP transformation to Ag(2)S occured in the nonaerated tank within less than 2 h. Physical and chemical transformations of Ag-NP in WWTPs control the fate, the transport and also the toxicity and the bioavailability of Ag-NP and therefore must be considered in future risk assessments. PMID:21466186

  8. Formation of nanoporous structures in metallic materials by pulse-periodic laser treatment

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2015-09-01

    A method of the formation of nanoporous structures in metallic materials by pulse-periodic laser treatment was developed. In this study, the multicomponent aluminum-iron brass was considered and the nanoporous structure across the entire cross section of the material with a thickness of 50 μm was formed. The method was implemented using a CO2 laser processing unit. The pulse-periodic laser treatment of the Cu-Zn-Al-Fe alloy with pulse frequency of 5 Hz has led to the formation of nanosized cavities due to accumulation of internal stresses during cyclic heating and cooling at high speeds. It was determined that the pores of a channel type with average widths of 80-100 nm are formed in the central region of the heat-affected zone during laser action with thermocycling. When implementing the chosen conditions of the pulse-periodic laser processing, the localness in depth and area of the physical processes occurring in the heat-affected zone is ensured, while maintaining the original properties of the material and the absence of significant deformations in the rest of the volume. This patented process is perspective for the production not only catalysts for chemical reactions, but for ultrafiltration and microfiltration membranes as well.

  9. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators.

    PubMed

    Lu, Shengyong; Du, Yingzhe; Zhong, Daoxu; Zhao, Bing; Li, Xiaodong; Xu, Mengxia; Li, Zhu; Luo, Yongming; Yan, Jianhua; Wu, Longhua

    2012-05-01

    Phytoextraction has become one of the most promising remediation techniques for heavy metal (HM) contaminated soils. However, the technique invariably produces large amounts of HM-enriched hyperaccumulators, which need further safe disposal. In this study, two different thermal treatment methods are investigated as potential options for evaporative separation of HMs from the residues. A horizontal tube furnace and a vertical entrained flow tube furnace were used for testing the disposal of grounded hyperaccumulators. The release characteristics of HMs (Cd, Cu, Pb, and Zn) into flue gas and residues were investigated for thermal treatment of the Cd and Zn hyperaccumulators Sedum plumbizincicola and Sedum alfredii. In a horizontal tube furnace, incineration favors the volatilization of Cu and Cd in contrast to pyrolysis. The percentages of HMs in residues after incineration are lower than those after pyrolysis, especially for Cd, Pb, and Zn. However, in an entrained flow tube furnace, Zn content in flue gas increases with increasing temperature, but Cu and Cd contents are fluctuated. In addition, a higher incineration temperature enhances the Cu content in residues. PMID:22458922

  10. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes.

    PubMed

    Samples, Cynthia R; Raushel, Frank M; DeRose, Victoria J

    2007-03-20

    Phosphotriesterase (PTE) from Pseudomonas diminuta is a binuclear metalloenzyme that catalyzes the hydrolysis of organophosphate nerve agents at rates approaching the diffusion-controlled limit. The proposed catalytic mechanism postulates the interaction of the substrate with the metal center and subsequent nucleophilic attack by the bridging hydroxide. X-band EPR spectroscopy was utilized to monitor the active site of Mn/Mn-substituted PTE upon addition of two inhibitors, diisopropyl methyl phosphonate and triethyl phosphate, and the product of hydrolysis, diethyl phosphate. The effects of inhibitor and product binding on the magnetic properties of the metal center and the hydroxyl bridge were evaluated by measuring changes in the features of the EPR spectra. The EPR spectra support the proposal that the binding of substrate analogues to the binuclear metal center diminishes the population of hydroxide-bridged species. These results, in conjunction with previously published kinetic and crystallographic data, suggest that substrate binding via the phosphoryl oxygen at the beta-metal weakens the coordination of the hydroxide bridge to the beta-metal. The weakened coordination to the beta-metal ion increases the nucleophilic character of the hydroxide and is coupled to the increase in the electrophilic character of the substrate. PMID:17315951

  11. A comparative DFT study of the catalytic activity of the 3d transition metal sulphides surfaces

    SciTech Connect

    Gomez-Balderas, R.; Oviedo-Roa, R; Martinez-Magadan, J M.; Amador, C.; Dixon, David A. )

    2002-10-10

    The catalytic activity of the first transition metal series sulphides for hydrodesulfurization (HDS) reactions exhibits a particular behaviour when analysed as a function of the metal position in the Periodic Table. This work reports a comparative study of the electronic structure of the bulk and of the (0 0 1) metal surface (assumed to be the reactive surface) for the Sc-Zn monosulphides. The systems were modeled using the NiAs prototype crystal structure for the bulk and by applying the supercell model with seven atomic layers for (0 0 1) surfaces. The electronic structure of closed-packed solids code based on the density-functional theory and adopting the muffin-tin approximation to the potential was employed in the calculations of the electronic properties. For the Co and Ni sulphides, the density of states (DOS) variations between the metal atom present in the bulk and the ones exposed at the surface show that at the surface, there exists a higher DOS in the occupied states region just below the Fermi level. This feature might indicate a good performance of these two metal sulphides substrates in the HDS reactions favouring a donation, back-donation mechanism. In contrast, the DOS at the surface of Mn is increased in the unoccupied states region, just above the Fermi level. This suggests the possibility of a strong interaction with charge dontating sulphur adsorbate atoms poisoning the active substrate surface.

  12. Active-matrix organic light-emitting displays on flexible metal foils

    NASA Astrophysics Data System (ADS)

    Chuang, T. K.; Jamshidi Roudbari, A.; Troccoli, M. N.; Chang, Y. L.; Reed, G.; Hatalis, M.; Spirko, J.; Klier, K.; Preis, S.; Pearson, R.; Najafov, H.; Biaggio, I.; Afentakis, T.; Voutsas, A.; Forsythe, E.; Shi, J.; Blomquist, S.

    2005-05-01

    This paper describes the development of a 3.5 inch diagonal Active Matrix Organic Light Emitting Diode Display on flexible metal foils. The active matrix array had the VGA format and was fabricated using the polysilicon TFT technology. The advantages that the metal foil substrates offer for flexible display applications will first be discussed, followed by a discussion on the multilayer coatings that were investigated in order to achieve a high quality insulating layer on the metal foil substrate prior to TFT fabrication. Then the polysilicon TFT device performance will be presented as a function of the polysilicon crystallization method. Both laser crystallized polysilicon and solid phased crystallized polysilicon films were investigated for the TFT device fabrication. Due to the opaque nature of the metal foil substrates the display had a top emission structure. Both small molecule and polymer based organic material were investigated for the display emissive part. The former were evaporated while the latter were applied by spin-cast. Various transparent multi-layer metal films were investigated as the top cathode. The approach used to package the finished AMOLED display in order to protect the organic layers from environmental degradation will be described. The display had integrated polysilicon TFT scan drivers consisting of shift registers and buffers but external data drivers. The driving approach of the display will be discussed in detail. The performance of the finished display will be discussed as a function of the various materials and fabrication processes that were investigated.

  13. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    PubMed Central

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W−1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  14. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  15. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  16. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity.

    PubMed

    Rozpądek, P; Wężowicz, K; Stojakowska, A; Malarz, J; Surówka, E; Sobczyk, Ł; Anielska, T; Ważny, R; Miszalski, Z; Turnau, K

    2014-10-01

    Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity. PMID:25048909

  17. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W‑1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  18. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  19. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  20. The Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation

    PubMed Central

    Shook, Ryan L.

    2012-01-01

    Alfred Werner proposed nearly 100 years ago that the secondary coordination sphere has a role in determining physical properties of transition metal complexes. We now know that the secondary coordination sphere impacts nearly all aspects of transition metal chemistry, including the reactivity and selectivity in metal-mediated processes. These features are highlighted in the binding and activation of dioxygen by transition metal complexes. There are clear connections between the control of the secondary coordination sphere and the ability of metal complexes to 1) reversibly bind dioxygen or 2) bind and activate dioxygen to form highly reactive M–oxo complexes. In this forum article, several biological and synthetic examples are presented and discussed in terms of structure-function relationships. Particular emphasis is given to systems with defined non-covalent interactions, such as intramolecular hydrogen bonds involving dioxygen-derived ligands. To further illustrate these effects, the homolytic cleavage of C–H bonds by M–oxo complexes with basic oxo ligands is described. PMID:20380466

  1. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.

    PubMed

    Soleimanifar, Hanieh; Deng, Yang; Wu, Laying; Sarkar, Dibyendu

    2016-07-01

    Aluminum-based water treatment residual (WTR)-coated wood mulches were synthesized and tested for removal of heavy metals and phosphorus (P) in synthetic urban stormwater. WTRs are an industrial waste produced from coagulation in water treatment facilities, primarily composed of amorphous aluminum or iron hydroxides. Batch tests showed that the composite filter media could effectively adsorb 97% lead (Pb), 76% zinc (Zn), 81% copper (Cu) and 97% P from the synthetic stormwater (Pb = 100 μg/L, Zn = 800 μg/L, Cu = 100 μg/L, P = 2.30 mg/L, and pH = 7.0) within 120 min, due to the presence of aluminum hydroxides as an active adsorbent. The adsorption was a 2(nd)-order reaction with respect toward each pollutant. Column tests demonstrated that the WTR-coated mulches considerably alleviated the select pollutants under a continuous-flow condition over the entire filtration period. The effluent Pb, Zn, Cu, and P varied at 0.5-8.9%, 33.4-46.7%, 45.8-55.8%, and 6.4-51.9% of their respective initial concentrations with the increasing bed volume from 0 to 50. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) tests indicated that leached contaminants were all below the U.S. criteria, suggesting that the release of undesired chemicals under rainfall or landfilling conditions is not a concern during application. This study demonstrates that the WTR-coated mulches are a new, low-cost, and effective filter media for urban stormwater treatment. Equally important, this study provides a sustainable approach to beneficially reuse an industrial waste for environmental pollution control. PMID:27060636

  2. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites. PMID:26786892

  3. Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Hai; Yang, Shaokun; Zhang, Jian; Zhang, Chenglu; Wu, Haiming

    2014-10-01

    Five alkyl phosphate triesters (APTEs), including trimethyl phosphate (TMP), triethyl phosphate (TEP), triisopropyl phosphate (TPP), tributyl phosphate (TBP) and trioctyl phosphate (TOP), were used as activating agents for preparing activated carbons (AC-APTEs) with high surface acidity and metal ion sorption capacity. N2 adsorption/desorption isotherms, surface morphologies, elemental compositions, results of Boehm's titration and sorption capacities of heavy metal ions of the carbons were investigated. AC-APTEs contained much more acidic groups and exhibited much less surface area (<500 m2/g) in comparison with activated carbon (AC-PPA, 1145 m2/g) obtained from phosphoric acid activation. For the AC-APTEs, AC-TOP had the highest surface area (488 m2/g), AC-TMP showed the highest yield (41.1%), and AC-TBP possessed the highest acidic groups (2.695 mmol/g), oxygen content (47.0%) and metal ion sorption capacities (40.1 mg/g for Ni(II) and 53.5 mg/g for Cd(II)). For the carbons, AC-APTEs showed much larger Ni(II) and Cd(II) sorption capacities than AC-PPA, except AC-TPP. The differences of the carbons in the physicochemical and sorption properties suggested surface chemistry of the carbons was the main factor influencing their sorption capacities whereas the pore structure played a secondary role.

  4. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  5. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    PubMed Central

    Sounthararajah, Danious P.; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-01-01

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals. PMID:26343692

  6. Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre

    NASA Astrophysics Data System (ADS)

    Daniel, Jae M. O.; Simakov, Nikita; Hemming, Alexander; Clarkson, W. Andrew; Haub, John

    2016-03-01

    We present a novel metal coated triple clad active fibre design, utilising an all glass inner cladding structure and aluminium outer coating. This metal coated active fibre enables a number of benefits to high power laser design, such as increase robustness and extended operating temperature range. As a demonstration of the advantages of this design a passively cooled ytterbium fibre laser is presented. A 20 m length of active fibre was coiled into a planar arrangement and mounted onto a high emissivity heatsink. Up to 405 W of output power was achieved without the need for active water or forced air cooling. The slope efficiency of this source was 74 % and maximum outer heat sink temperature was ~140°C. This arrangement allowed for significant weight and size savings to be achieved with the active fibre laser head weighing less than 100 g. We will discuss the design choices and trade-offs of metal coated active fibre on high power fibre laser systems as well as the prospects for further power scaling to the kW level.

  7. Determination of kinetic law for toxic metals release during thermal treatment of model waste in a fluid-bed reactor.

    PubMed

    Liu, Jing; Abanades, S; Gauthier, D; Flamant, G; Zheng, Chuguang; Lu, Jidong

    2005-12-01

    Accumulation of toxic metals generated by thermal treatment of municipal solid waste presents a serious threat to the environment. A study was carried out to investigate the kinetic law of toxic metal release from municipal solid waste during their thermal treatment. Both direct and inverse models were developed in transient conditions. The direct mathematical model of the fluid-bed reactor is based on Kunii and Levenspiel's two-phase flow model for Geldart Group B particles. The inverse model intends to predict the metal's rate of vaporization from its concentration in the outlet gas. The derived models were found to predict reasonably well the experimental observations. A method to derive the kinetic law of toxic metals release during fluidized bed thermal treatment of model waste from the global model and the experimental measurements is derived and illustrated. A first-order law was fitted for the mineral matrix, and a second-order law (simplified) was fitted for the realistic model waste. The kinetic law obtained in this way could be integrated in a global model of combustion of municipal solid waste in order to simulate the effects of operating parameters on the metal's behavior. PMID:16382960

  8. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR. PMID:16533030

  9. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip.

    PubMed

    Siddiqui, Maryam Mehmood; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Mohammad; Mahmood, Tariq

    2014-04-01

    Toxicity of heavy metal is a wide spread environmental problem affecting all life forms including plants. In the present study the toxic effects of heavy metals, cadmium (Cd), chromium (Cr) and lead (Pb) on seed germination rate (%), germination index (G-index) and growth (mm) of Brassica rapa var. turnip have been investigated. The seeds were soaked either in distilled water (control) or in aqueous solutions of Cd, Cr and Pb (1 g/l, 2.5 g/l and 5 g/l) at 4°C in dark for 24 hours. Prior to inoculation onto MS0 medium, the soaked seeds were either washed with sterile distilled water or inoculated without washing on solidified MS0 medium at 25 ± 2°C with 16/8-hour photoperiod in a growth chamber to germinate in vitro. Such stress conditions revealed that by increasing the concentration of heavy metals, the germination rate (%), G-index value and growth (mm) decreased significantly, suggesting their toxic effect on B. rapa var. turnip. This study further revealed that experiment with seed washing resulted in less toxicity of selected heavy metals on germination and growth of B. rapa var. turnip, as compared to experiment without washing. However, the resulting toxicity order of the selected heavy metals remained the same (Cd > Cr > Pb). Significant decrease has been observed in seed viability and germination potential and finally heavy metals completely ceased further growth and development of plants. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity revealed that significantly higher activity was observed in control plants without heavy metals treatment. Furthermore, the Cd-treated plants showed decreased antioxidant activity. Cr and Pb were less toxic as compared to Cd (control > Pb > Cr > Cd). This study revealed that selected heavy metals not only affected plant development but also disturbed plant metabolic pathways. PMID:22872632

  10. Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals.

    PubMed

    Anjum, Fozia; Shahid, Muhammad; Bukhari, ShaziaAnwer; Potgieter, J Herman

    2014-01-01

    The mineralogy, as well as elemental composition, of the incinerated hospital waste (HW) ashes are not well known and need to be investigated for the safe handling and disposal of such ash. A study was conducted to investigate the chemical composition, mineralogy and bioleaching of selected metals from incinerated HW bottom ash using Aspergillus niger under the combined effect ofultrasonic radiation. Different techniques were utilized to determine the elemental composition (Electron Dispersive X-ray Spectroscopy [EDX], atomic absorption spectrophotometry, inductively coupled plasma-optical emission spectroscopy, ultraviolet-visible light spectrophotometer) and mineralogy (X-ray Diffraction) of the raw sample, as well as the bioleached samples. Chemical leaching tests were performed to determine the effect of different organic acids on metals dissolution. Microbes were tested for acid production and leaching capabilities of selected metals from medical waste (MW) bottom ash. Wet chemical and EDX analyses showed that the ash was enriched with metallic elements like Na, K, Ca, Fe and Al with a concentration range of 22-115 (g/kg). Furthermore, the ash contained heavy metals such as Cu, Cr, Ni, Sn and Ti in the range of 0.51-21.74 (mg/kg). Citric and oxalic acids generated by fungi could be important leaching agents acting to dissolve these metals. Under ultrasonic treatment, metals dissolution by the acidic metabolites was at its maximum after just 9 d of leaching. The results showed that the dissolution of metals was much higher in citric and oxalic acid than with other acids. Extraction of metals from incinerated MW ash indicated that this ash may be a potential source of metals in the future. PMID:24600864

  11. Bivalent transition metal complexes of cetirizine: Spectroscopic, equilibrium studies and biological activity

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abobakr, Lamis O.

    2013-08-01

    Metal complexes of cetirizineṡ2HCl (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]piperazine-1-yl]-ethoxy]acetic acid, dihydrochloride have been prepared and characterized by elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and UV-Vis spectra. The analytical data of the complexes show the formation of 1:2 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated CTZ ligand. IR spectra show that CTZ is coordinated to the metal ions in a monodentate manner through carboxylate-O atom. Protonation equilibria of CTZ and its metal complexation by some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaCl) using an automatic potentiometric technique. Thermodynamic parameters for the protonation equilibria of CTZ were calculated and discussed. The stability order of M(II)-CTZ complexes were found to obey Mn2+ < Co2+ < Ni2+ < Cu2+, in accordance with the Irving-Williams order. The concentration distribution of the complexes in solution is evaluated as a function of pH. The CTZ ligand and its metal complexes were screened for their biological activity against bacterial species (Bacillus subtillis RCMB 010067, Staphylococcus aureus RCMB 010028, Pseudomonas aeuroginosa RCMB 010043, and Escherichia coli RCMB 010052) and fungi as (Aspergillus flavus RCMB 02568, Pencicillium italicum RCMB 03924, Candida albicans RCMB 05031 and Geotricum candidum RCMB 05097). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent CTZ ligand against one or more bacterial or fungi species. MIC was evaluated for the isolated complexes.

  12. Bivalent transition metal complexes of ONO donor hydrazone ligand: Synthesis, structural characterization and antimicrobial activity.

    PubMed

    Bhaskar, Ravindra; Salunkhe, Nilesh; Yaul, Amit; Aswar, Anand

    2015-12-01

    Mononuclear transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a new hydrazone ligand derived from pyrazine-2-carbohydrazide and 2-hydroxyacetophenone have been synthesized. The isolated complexes were characterized by elemental analysis, spectral and analytical methods including elemental analyses, IR, diffuse reflectance, (1)H-NMR, mass spectra, molar conductance, magnetic moment, ESR, XRD, TG and SEM analysis. From the elemental analyses data, the stoichiometry of the complexes was found to be 1:1 (metal:ligand) having the general formulae [M(HL)(Cl)(H2O)2], [M=Mn(II), Co(II), Ni(II) and Cu(II)] and [M(L)(H2O)], [M=Zn(II) and Cd(II)]. The molar conductance values indicate the nonelectrolytic nature of metal complexes. The IR spectral data suggest that the ligand behaves as tridentate moiety with ONO donor atoms sequence towards central metal ion. The Mn(II), Co(II), Ni(II) and Cu(II) complexes have been assigned a monomeric octahedral geometry whereas tetrahedral to Zn(II) and Cd(II) complexes. The antibacterial and antifungal activities of the ligand and its metal complexes were studied against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis and Streptococcus pyogenes and fungi Candida albicans, Aspergillus niger and Aspergillus clavatus. The activity data show that the metal complexes have a promising biological activity comparable with the parent ligand against all bacterial and fungal species. PMID:26163785

  13. Pharmacological treatment options for mast cell activation disease.

    PubMed

    Molderings, Gerhard J; Haenisch, Britta; Brettner, Stefan; Homann, Jürgen; Menzen, Markus; Dumoulin, Franz Ludwig; Panse, Jens; Butterfield, Joseph; Afrin, Lawrence B

    2016-07-01

    Mast cell activation disease (MCAD) is a term referring to a heterogeneous group of disorders characterized by aberrant release of variable subsets of mast cell (MC) mediators together with accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (systemic mastocytosis [SM] and MC leukemia [MCL]) or morphologically ordinary MCs due to decreased apoptosis (MC activation syndrome [MCAS] and well-differentiated SM). Clinical signs and symptoms in MCAD vary depending on disease subtype and result from excessive mediator release by MCs and, in aggressive forms, from organ failure related to MC infiltration. In most cases, treatment of MCAD is directed primarily at controlling the symptoms associated with MC mediator release. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as kinase inhibitors may be provided. Targeted therapies aimed at blocking mutant protein variants and/or downstream signaling pathways are currently being developed. Other targets, such as specific surface antigens expressed on neoplastic MCs, might be considered for the development of future therapies. Since clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous disease, we seek to familiarize clinicians with MCAD and review current and future treatment approaches. PMID:27132234

  14. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    PubMed

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants. PMID:20883832

  15. Metals content of Glossoscolex paulistus extracellular hemoglobin: Its peroxidase activity and the importance of these ions in the protein stability.

    PubMed

    Caruso, Celia S; Biazin, Ezer; Carvalho, Francisco A O; Tabak, Marcel; Bachega, José F R

    2016-08-01

    In this work we investigate the presence of divalent cations bound to the Glossoscolex paulistus (HbGp) hemoglobin and their effect over the protein stability and the peroxidase (POD) activity. Atomic absorption studies show that the HbGp iron content is consistent with the presence of 144 ions per protein. Moreover, using iron as a reference, the content of calcium was estimated as 30±4 ions per protein, independently of the EDTA pre-treatment or not prior to the acidic treatment performed in the protein digestion. The zinc content was 14±2 ions in the absence of EDTA pre-treatment, and 3±1 ions per protein in the presence of EDTA pre-treatment, implying the presence of one zinc ion per protomer (1/12 of the whole molecule). Finally, the copper concentration is negligible. Different from the vertebrate hemoglobins, where the effectors are usually organic anions, the hexagonal bilayer hemoglobins have as effectors inorganic cations that increase the oxygen affinity and stabilize the structure. Previous studies have suggested that the presence of divalent cations, such as copper and zinc, is related to the different types of antioxidant enzymatic activities as the superoxide dismutase (SOD) activity shown by giant hemoglobin from Lumbricus terrestris (HbLt). Recently, studies on HbGp crystal structure have confirmed the presence of Zn(2+) and Ca(2+) binding sites. The Ca(2+) sites are similar as observed in the HbLt crystal structure. Otherwise, the Zn(2+) sites have no relation with those observed in Cu/Zn SODs. Our peroxidase assays with guaiacol confirm the POD activity and the effect of the zinc ions for HbGp. Our present results on HbGp metal content and their stability effects is the first step to understand the role of these cations in HbGp function in the future. PMID:27221949

  16. Characterizations of Metal Binding in the Active Sites of Acireductone Dioxygenase Isoforms from Klebsiella ATCC 8724

    SciTech Connect

    Chai,S.; Ju, T.; Dang, M.; Goldsmith, R.; Maroney, M.; Pochapsky, T.

    2008-01-01

    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1, 2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M2+ metal ion bound in the active site. The Ni2+-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe2+-bound FeARD' catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD' and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates metal in vivo but

  17. Characterization of Metal Binding in the Active Sites of acireductone dioxygenase Isoforms from Klebsiella ATCC 8724

    SciTech Connect

    S Chai; T Ju; M Dang; R Goldsmith; M Maroney; T Pochapsky

    2011-12-31

    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M{sup 2+} metal ion bound in the active site. The Ni{sup 2+}-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe{sup 2+}-bound FeARD catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates

  18. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  19. A case study in the treatment of spent pickling acids for fluoride compliance at a metals finishing facility

    SciTech Connect

    Francis, J.T.; Walters, J.; Evans, D.

    1995-12-31

    A metal finishing facility located in the Los Angeles area processes coiled steel sheets (300 and 400 series) and other sheet metal alloys by annealing, pickling and cold rolling operations. The facility acquires steel from large manufacturers or mills and finishes to a prescribed thickness, hardness, and grade depending on customers needs, for sale to metal product manufacturers such as can manufacturers and prefabricated steel building industries. Specialty metal alloys such as nickel-cobalt or titanium are also processed for use in aerospace industry applications. The facility produces about 10,000 tons of metal sheets per year and in the process generates about 40,000 gallons per day (gpd) of wastewater that is pretreated for metals removal and discharged to the sewer. About 30,000 gallons per month of spent acid are generated--much of which is used for pH adjustment in the pretreatment system. Acids of concern are sulfuric acid, hydrofluoric acid and nitric acid. The wastewater treatment system (WWTS) is equipped for chromium reduction and metals precipitation and handles the wastewater, the spent acids and other alkaline wastes generated at the facility. An estimated 50 tons of hazardous waste sludge are generated and disposed of on a monthly basis.

  20. Bioaugmentation to improve nitrification in activated sludge treatment.

    PubMed

    Leu, Shao-Yuan; Stenstrom, Michael K

    2010-06-01

    Bioaugmentation is a proposed technique to improve nutrient removal in municipal wastewater treatment. Compared with commonly used nitrification/denitrification (NDN) processes, bioaugmentation may be able to reduce tankage or land requirements. Many approaches for bioaugmentation have been developed, but few studies have compared the benefits among different approaches. This paper quantifies the effectiveness of bioaugmentation processes and investigates three major "onsite" bioaugmentation alternatives: 1) the parallel-plants approach, which uses acclimated biomass grown in a nitrifying "long-SRT" (sludge retention time) plant to augment a low-SRT treatment plant; 2) the enricher-reactor approach, which uses an offline reactor to produce the augmentation cultures; and 3) the enricher-reactor/return activated sludge (ER-RAS) approach, which grows enrichment culture in a reaeration reactor that receives a portion of the recycle activated sludge. Kinetic models were developed to simulate each approach, and the benefits of various approaches are presented on the same basis with controllable parameters, such as bioaugmentation levels, aeration tank volume, and temperatures. Examples were given to illustrate the potential benefits of bioaugmentation by upgrading a "carbon-only" wastewater treatment plant to nitrification. Simulation results suggested that all bioaugmentation approaches can decrease the minimum SRT for nitrification. The parallel-plants approach creates the highest concentration of biomass but may fail at too low temperature. The ER-RAS approach likely would be more useful at lower temperature and required less reactor volume; enricher-reactor approach would likely be more advantageous in the presence of inhibitory compound(s). PMID:20572460

  1. CONSTRUCTED WETLANDS FOR TREATMENT OF HEAVY METALS IN URBAN STORMWATER RUNOFF: CHEMICAL SPECIATION OF WETLAND SEDIMENTS

    EPA Science Inventory

    Heavy metals in urban stormwater runoff are primarily removed by sedimentation in stormwater best management practices (BMPs) such as constructed wetlands. Heavy metals accumulated in wetland sediments may be potentially toxic to benthic invertebrates and aquatic microorganisms, ...

  2. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  3. Metal Removal Efficiency And Ecotoxicological Assessment Of Field-Scale Passive Treatment Biochemical Reactors

    EPA Science Inventory

    Anaerobic biochemical reactors (BCRs) are useful for removing metals from mining-impacted water at remote sites. Removal processes include sorption and precipitation of metal sulfides, carbonates, and hydroxides. A question of interest is whether BCRs remove aquatic toxicity. ...

  4. Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors

    EPA Science Inventory

    Anaerobic biochemical reactors (BCRs) are useful for removing metals from mining-impacted water (MIW) at remote sites. Removal processes include sorption and precipitation of metal sulfides, carbonates and hydroxides. A question of interest is whether BCRs remove aquatic toxicit...

  5. TREATMENT OF HEAVY METALS IN STORMWATER USING WET POND AND WETLAND MESOCOSMS

    EPA Science Inventory

    Urban stormwater runoff is a significant source of suspended sediments and associated contaminants, including heavy metals, to receiving waterways. These metals are either dissolved or bound to particulates (coarse - >75 µm; fine particulates - <75 - 1µm; colloids - <1 µm). Inf...

  6. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators.

    PubMed

    Moilanen, Johanna; Karonen, Maarit; Tähtinen, Petri; Jacquet, Rémi; Quideau, Stéphane; Salminen, Juha-Pekka

    2016-05-01

    Ellagitannins are a subclass of hydrolysable tannins that have been suggested to function as defensive compounds of plants against herbivores. However, it is known that the conditions in the digestive tracts of different herbivores are variable, so it seems reasonable to anticipate that the reactivities and modes of actions of these ingested defensive compounds would also be different. A previous study on a few ellagitannins has shown that these polyphenolic compounds are highly oxidizable at high pH and that their bioactivity can be attributed to certain structural features. Herein, the activities of 13 ellagitannins using the deoxyribose assay were measured. The results provided information about the anti-oxidant, pro-oxidant and metal chelating properties of ellagitannins. Surprisingly, many of the tested ellagitannins exhibited pro-oxidant activities even at neutral pH and only moderate to low radical scavenging activities, although the metal chelating capacities of all tested ellagitannins were relatively high. PMID:26899362

  7. Impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased.

    PubMed

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming; Li, Jian

    2016-06-01

    Groundwater quality deterioration has attracted world-wide concerns due to its importance for human water supply. Although more and more studies have shown that human activities and climate are changing the groundwater status, an investigation on how different groundwater heavy metals respond to human activity modes (e.g. mining, waste disposal, agriculture, sewage effluent and complex activity) in a varying climate has been lacking. Here, for each of six heavy metals (i.e. Fe, Zn, Mn, Pb, Cd and Cu) in groundwater, we use >330 data points together with mixed-effect models to indicate that (i) human activity modes significantly influence the Cu and Mn but not Zn, Fe, Pb and Cd levels, and (ii) annual mean temperature (AMT) only significantly influences Cu and Pb levels, while annual precipitation (AP) only significantly affects Fe, Cu and Mn levels. Given these differences, we suggest that the impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased. PMID:27003366

  8. Bifunctional reactivity of amidoximes observed upon nucleophilic addition to metal-activated nitriles.

    PubMed

    Bolotin, Dmitrii S; Demakova, Marina Ya; Novikov, Alexander S; Avdontceva, Margarita S; Kuznetsov, Maxim L; Bokach, Nadezhda A; Kukushkin, Vadim Yu

    2015-04-20

    Treatment of the aromatic nitrile complexes trans-[PtCl2(RC6H4CN)2] (R = p-CF3 NC1, H NC2, o-Cl NC3) with the aryl amidoximes p-R'C6H4C(NH2)=NOH (R' = Me AO1, H AO2, Br AO3, CF3 AO4, NO2 AO5) in all combinations, followed by addition of 1 equiv of AgOTf and then 5 equiv of Et3N, leads to the chelates [PtCl{HN=C(RC6H4)ON=C(C6H4R'-p)NC(RC6H4)═NH}] (1-15; 15 examples; yields 71-88% after column chromatography) derived from the platinum(II)-mediated coupling between metal-activated nitriles and amidoximes. The mechanism of this reaction was studied experimentally by trapping and identification of the reaction intermediates, and it was also investigated theoretically at the DFT level of theory. The combined experimental and theoretical results indicate that the coupling with the nitrile ligands involves both the HON and monodeprotonated NH2 groups of the amidoximes, whereas in the absence of the base, the NH2 functionality is inactive toward the coupling. The observed reaction represents the first example of bifunctional nucleophilic behavior of amidoximes. The complexes 1-16 were characterized by elemental analyses (C, H, N), high-resolution ESI(+)-MS, FTIR, and (1)H NMR techniques, whereas unstable 17 was characterized by HRESI(+)-MS and FTIR. In addition, 8·C4H8O2, 12, and 16·CHCl3 were studied by single-crystal X-ray diffraction. PMID:25822628

  9. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks.

    PubMed

    Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang

    2016-06-01

    The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal. PMID:27112733

  10. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, September 1995--December 1995

    SciTech Connect

    1996-03-01

    This fifth quarterly report describes work done during the fifth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with the university on this project is Mill Service, Inc. This report describes the activities of the project team during the reporting period. The principal work has focussed upon completing laboratory evaluation of samples produced during Phase 1, preparing reports and presentations, and seeking environmental approvals and variances to permits that will allow the field work to proceed. The compressive strength of prepared concretes is described.

  11. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.

    PubMed

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; le Coutre, Johannes

    2007-08-01

    Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts. PMID:17567713

  12. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    PubMed

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions. PMID:26856546

  13. Gill ATPase activity in Procambarus clarkii as an indicator of heavy metal pollution

    SciTech Connect

    Torreblanca, A.; Del Ramo, J.; Diaz-Mayans, J. )

    1989-06-01

    Lake Albufera and the surrounding rice field waters are subjected to very heavy loads of sewage and toxic industrial residues, including heavy metals, from the many urban and waste waters of this area. The American red crayfish, Procambarus clarkii have a high resistance to toxic effects of heavy metals. The sublethal effects of heavy metals on gills of fish and aquatic invertebrates have been extensively studied. Some metabolic disturbances and histologic damages have been reported, as well as osmoregulation alterations. However, little work has been done about the effect of heavy metals on Na,K and Mg-ATPases of freshwater invertebrate gills. Na,K-ATPase is the prime mediator of ion transport across cellular membranes and plays a central role in whole body ion regulation in marine and estuarine animals. Na,K-ATPase has been reviewed and assessed as a potentially useful indicator of pollution stress in aquatic animals. The purpose of this study is look for the relation, if any, between crayfish gill ATP-ase activity changes and metal exposure in laboratory. This find would allow the authors to assay this potential indicator in the field.

  14. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-01-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment. PMID:26593782

  15. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium.

    PubMed

    Zabrieski, Zac; Morrell, Elliot; Hortin, Joshua; Dimkpa, Christian; McLean, Joan; Britt, David; Anderson, Anne

    2015-08-01

    CuO and ZnO nanoparticles (NPs) have antimicrobial effects that could lead to formulations as pesticides for agriculture or medicine. The responses of two soil-borne plant pathogenic Pythium isolates to the NPs were studied to determine the potential of these metal oxide NPs as pesticides. Growth of the P. ultimum isolate was more sensitive to CuO NPs than the P. aphanidermatum isolate. Growth in liquid medium with CuO NPs eliminated culturability whereas exposure to ZnO NPs resulted in stasis with growth resuming on transfer to medium lacking NPs. The citrate in the medium used for the growth assays was involved in enhanced release of the toxic metals from the NPs. Both CuO and ZnO NPs affected processes involved in Fe uptake. The NPs reduced levels of Fe-chelating siderophore-like metabolites produced by Pythium hyphae. CuO NPs inhibited, but ZnO NPs increased, ferric reductase activity detected at the mycelial surface. These findings illustrate that the toxicity of the metal oxide NPs towards Pythium was influenced by the medium, especially by the presence of a metal chelator. Environmental factors are likely to alter the pesticide potential of the metal oxide NPs when formulated for agricultural use in soils. PMID:26076749

  16. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-08-01

    Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  17. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    PubMed Central

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-01-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment. PMID:26593782

  18. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    NASA Astrophysics Data System (ADS)

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  19. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium

    PubMed Central

    Watts, Mathew P.; Khijniak, Tatiana V.; Boothman, Christopher

    2015-01-01

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  20. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926